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ABSTRACT

A COMPUTATIONAL TOOL FOR DETERMINING OPTIMUM SHAPES OF
LINEARLY ELASTIC ARCHES

ARSLAN, Muhammet Ali
M.S. in Civil Engineering
Supervisor: Assoc. Prof. Dr. Mustafa OZAKCA
January 2003, 51 pages

This thesis deals with the development of reliable and efficient computational tools
to analyze and find optimum shapes of linear elastic arch structures in static
situations. The finite clement method is used to determine the stress and
displacements based on variable thickness C(0) continuity Timoshenko-Hencky
beam theory. An automated analysis and optimization procedure is adopted which
integrates finite element analysis, parametric cubic spline geomstry definition,
automatic mesh generation, sensitivity analysis and mathematical programming
methods.

Key words: Arch structures, static analysis, shape optimization, finite element
method.
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LINEER ELASTIK KEMER YAPILARIN OPTIMUM SEKILLERININ
BULUNMASI ICIN BILGISAYARLI HESAP TEKNIGI

ARSLAN, Muhammet Ali _
Yiiksek Lisans Tezi, Insaat Miih. B6liimil
Tez Yoneticisi: Dog. Dr. Mustafa OZAKCA
Ocak 2003, 51 sayfa

Bu tez, lineer elastik kemer yapilarn statik analizi ve optimum tasarimi i¢in giivenli
ve verimli bir bilgisayar programi gelistirilmesini kapsamaktadw. Degisken
kalnhkh, izoparametrik ve C(0) siirekliliginin saglandig: Timoshenko-Hencky kirig
teorisine bagli sonlu elemanlar metodu kullanilarak deplasmanlar, gerilmeler ve sekil
degistirme enerjileri hesaplanmigtir. Bu galismada sonlu elemanlar metodu, kiibik
egrilerle geometri tammlama, af {iretimi, hassasiyet analizi ve matematik
programlama metotlarmi birlestiren bir entegre analiz ve optimizasyon teknigi
kullaniimaktadir.

Anahtar kelimeler: Kemer yapilar, statik analiz, sekil optimizasyonu, sonlu

elemanlar metodu.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Principal Objectives

The ultimate motivation of the thesis is static analysis and Structural Shape
Optimization (SSO) of arch structures using reliable, versatile and efficient
computational tools. The specific objectives of this work can be summarized as:

e Linear elastic analysis of arch structures based on Mindlin-Reissner (MR) theory
and integrating locking-free finite element (FE) analysis, cubic splines to define
the arch geometry and automatic mesh generation are presented. The accuracy
and relative performance of a family of linear, quadratic and cubic finite elements
are examined by comparing with other numerical solutions.

e Static optimization: in which the structure is subjected to static external loads.
Here, the aim of the SSO is generally to obtain the best geometric shape for the
arc structures; so that it can carry the imposed loads safely and economically.
The type of optimization considered is minimization of strain energy and weight

by constraining the volume of the arch material and stresses.

1.2 Arch Structures

Arches are one of the earliest structures used by man in the history. Arch structures
provide esthetics and strength through their geometry. Arches carry pure



compression in its primary element. Structures of this type, which have the
configuration of an inverted cable, have a pure compressive thrust along the rib of
the arch under the specific loading condition for which it was designed. Variations in
this loading will introduce some bending in the arch, but compression will remain the
dominant mode of action. Secondary members, which attach from portions of the
structure to the arch, are compression members when they attach from above the arch

or tension members when they attach from below the arch [1,2].

Arches provide economical solutions for crossing large spans. They are frequently
used in bridge structures, dome roofs, and for openings in masonry walls. They can
be built with materials of high compressive strength and low tensile strength, such as

concrete and masonry.

Note that the definition of an arch is a structural one, not geometrical. Here again the
relation structure-shape comes into play. Not every structure that looks like an arch is
one. For a structure to be an arch certain conditions have to be satisfied which link
the geometry with the flow of internal forces. False arches abound in our built

environment [3].

What makes an arch an arch is:
e support conditions enabling horizontal reactions;

e correspondence of the shape with the load.

Here the structure-shape or force—form relation finds its utmost expression. Keeping
‘true to form’ will avoid the arch-arc confusion, at least on the semantic/syntactic

level

1.3 Literature Survey

Masonry arch structures are often encountered in old historical building such as

carrying elements for the vertical loading.



Nowadays, steel and concrete have replaced stones. These are monolithic structures,
so they do not have a problem with shear forces. Usage of steel and concrete in

structures decreased the number of arch structures.

But after the improvements in technology the usage of arch structures in long spans

such as bridges, mosques are again increased.

1.3.1 Static analysis

The question of the choice of the proper finite elements to the analysis of the curved
structures is a subject of numerous papers and many authors have devoted their
efforts to it. Yamada and Ezawa [4] presented stiffness matrix of the curved finite
elements for the analysis of circular arches. Litewka and Rakowski [5] derived exact
stiffness matrix for a curved thick beam with constant curvature including the
flexural, shear and axial effects. The stiffness matrix of finite ring elements under the

in-plane forces using polynomial displacement functions was derived by Meck [6].

Finite element analysis of the Timoshenko beam problem has been frequently used
as a starting point for a better understanding of the much more complex problem of
constructing accurate finite element approximations for the Reissener-Mindlin plate
problem. Cheng and Han [7] discussed some finite elements methods for
Timoshenko beam, circular arch and Reissener-Mindlin plate problems. They used to
avoid locking phenomenon, the reduced integration technique and added a bubble

function space to increase the solution accuracy.

Lee and Sin [8] presented the formulation of a curved beam element with 3 nodes for
curvature to eliminate the shear/membrane locking phenomenon. The element was
based on curvature so that it might represent the bending energy fully, and the
shear/membrane strain energy was incorporated into the formulation by the
equilibrium equations. They introduced to deal with general boundary conditions, a

transformation matrix between nodal curvature and nodal displacement.



In most of the papers, curved beam elements with polynomial shape functions are
used. Pandian and Chandra [9] adopted the cubic polynomials as the shape functions
to the displacement of thin elements. They obtained improvement of results by the
application of reduced integration and adoption of a least-square fit. Stolarski and
Chiang [10] applied the combination of linear, quadratic and cubic shape functions

for the components of the displacement.

The elements with other types of curvature are also the subject of some papers, ¢.g.
Marquis and Wang [11] derived the stiffness matrix for a parabolic beam element in
which the flexural, axial and shear deformation effects are taken into account.
Friedman and Kosmatka [12] developed an accurate two-node finite element for
curved shear deformable beams. The element was demonstrated to converge to the
results obtained from a shear deformable straight beam when the beam becomes

shallower.

Kikuchi [13] presented a mathematical analysis of some finite element models for
thin circular arches. He obtained error estimates for some compatible and mixed
finite elements. In order to analyze numerical behaviors of the finite element
solutions for thin arches, he employed the theory of mixed finite elements with
perturbations as well as the techniques of asymptotic expansion.

In recent years the application of finite elements to problems of large deflection and
stability analysis has been of considerable interest. Chakraborty and Majumdar [14]
derived a high precision finite element for large deflection and post-buckling analysis
of thin arches of arbitrary shapes. They developed a simple general arch element
suitable for the non-linear analysis of thin arches. The representation of arbitrary
geometry was based on a computer-aided design technique which uses vector valued

nodal handles and cubic Hermitian interpolation polynomials.

Chucheepsakul and Huang [15] presented a finite element solution of a simply
supported beam with variable arc length under a point load. They used finite element
method and Newton-Raphson iteration process to solve this highly nonlinear
problem. They gave numerical results from the finite element method and compared

favorably with elliptic-integral and shooting-optimization methods.



Detailed treatment of the static finite element analysis of arches with arbitrarily

cross-sections can be found in many text books [16-19].

1.3.2 Structural shape optimization

Analytical methods for solving shape optimization problems have been used for a
long time. Perhaps the best known early work is the work by Michell (1904). During
the last 20 years, optimal structural design has received considerable attention. The
development of powerful computers and the implementation of efficient general
algorithms has stimulated renewed interest in this field, which is as old as structural
engineering. One of the first treatments of the problem of selecting an optimum
shape of a structure is by Zienkiewicz and Campbell [20]. They used the finite

element method with node coordinates as design variables to find an optimum shape.

Ding [21] reviewed numerical and analytical methods for shape optimization of
structures. Several steps in the shape optimization process, such as model
description, selection of objective function and shape variables, representation of
boundary shape, finite element mesh generation and refinement, sensitivity analysis
and solution methods, were reviewed in detail. Tadjbakhsh [22] developed an
algorithm which determines the optimum profile of an arch considering the stability
constraints.

In general optimization techniques used in structural engineering design can be
categorized into four distinct approaches: (1) Optimality Criteria (OC) methods; (2)
Genetic Algorithm (GA); (3) Evolution Strategies (ES); and (4) Mathematical
Programming (MP) methods.

The OC methods are developed from indirectly applied the Kuhn-Tucker conditions
of non-linear mathematical programming combined with Lagrangian multipliers. The
Kuhn-Tucker conditions provide the necessary requirements for an optimum solution

and the Langrangian multipliers are used to include the associated constraints.



OC methods are based on continuous design variables. For the case where discrete
variables are desired using OC methods a two-step procedure is typically used. First,
the optimization problem is solved using continuous variables. Second, a set of
discrete values is estimated by matching the values obtained from the continuous
solution. OC methods use a single cross-sectional property of a structural member as
the design variable. All other cross-sectional properties are expressed as a function of

~ the selected design variable.

No and Aguinagalde [23] used optimality criterion to optimize structures modeled by
means of the Finite Element Method. Uzman and Daloglu [24] used optimality
criteria method to develop an optimum design of arch structures with uniform and/or
varying cross section subjected to displacement, stresses and minimum depth
constraints. The optimality criteria method is employed to obtain its solution which
was reported to be quite effective in solving nonlinear optimum design problems by
Saka and Hayalioglu [25,26] and Saka and Ulker [27].

Genetic Algorithm (GA) is a strategy that models the mechanisms of genetic
evolution which that operates on a population of design variable set defining a
potential solution is called a string. Each string is made up of a series of characters,
typically binary numbers, representing the values of the discrete design variables for
a particular solution. The fitness of each string is a measurement of performance of
the design variables as defined by the objective function and the constraints. GA
basically consists of three parts:

(1) coding and decoding variables into strings;

(2) evaluating the fitness of each solution string; and

(3) applying genetic operators to generate the next generation of solution strings.

The fitness of each string is evaluated by performing some type of system analysis to
compute a value of the objective function. If the solution violates constraints, the

value of the objective function is penalized.

The core characteristics of a GA are based on the principles of survival of the fittest
and adaptation and the ability to deal with discrete optimum design problems and do

not require derivatives of functions, unlike classical optimization.



The advantages of applying a GA to optimized design of structures include discrete
design variables, open format for constraint statements and multiple load cases [28].
A GA does not require an explicit relationship between the objective function and the
constraints. Instead, the value of the objective function for a set of design variables is
adjusted to reflect any violation of the constraints. Peng and Fairfield [29] presented
an integrated design optimization combining the mechanism method with genetic

algorithms.

The Evolutionary Structural Optimization (ESO) method is based on the concept of
slowly removing the inefficient material and or gradually shifting the material from
the strongest part of the structure to the weakest part until the structure evolves
towards the desired optimum. And also ESO are the application of combinatorial
optimization methods based on probabilistic searching. These algorithms have some
selection process based on fitness of individuals and some recombination operators.
Both ESOs and GAs imitate biological evolution in nature and combine the concept
of artificial survival of the fittest with evolutionary operators to form a robust search

mechanism

ESO method for shape and layout optimization has been proposed by Xie and Steven
[30] which is based concept of gradually removing redundant elements to achieve
optimal design. It is widely recognized that combinatorial optimization techniques
are in general more robust and present a better global behavior than Mathematical
Programming (MP) methods [31].

Mathematical Programming can be subdivided into linear programming and non-
linear programming. The major characteristic of linear programming is that the
objective function(s) and the associated constraints are expressed as a linear
combination of the design variables. To apply linear programming techniques to
structural optimization, the relationship between the objective function and the
constraints to the design variables have to be linearized. However, when a linear

relationship is used to model a non-linear structural response, errors are inevitable.

Mathematical programming techniques were first used in design of frames by Moses
[32]. Many authors have since then investigated the shape optimization problem.



Majid and Saka [33] and Topping [34] employed mathematical programming
techniques in the shape optimization of rigidly jointed frames. In some of these
works, the minimum weight was replaced by minimum cost. It was demonstrated in
all these works that the shape of a frame can successfully be treated as a design

parameter.

1.4 About Computer Program

The adaptivity and shape optimization group (ADOPT) at the University College of

Swansea were developing a series of basic analysis and shape optimization programs

for straight and curved planform prismatic plates and shells [35]. These programs

have been run on VAX mainframes and require NAG subroutine libraries. In this

thesis, these programs are modified to assist structural engineer to design structurally

efficient forms and provide considerable insight into the structural behavior of

arches. The intention is to deal with arch structure idealizations problem involving

static analysis. The following improvements are done in original programs:

e Existing plate programs are modified and some new subroutines are written for
analysis and optimization of arch structures.

e Program is re-written in FORTRAN 90 using double precision and run on
personal computers.

e Program is simplified and written in modular form. The modules of program are
mesh generation, static analysis, sensitivity and mathematical programming,.

e Static analysis and optimization are integrated in one program.

e New linear equation solver so-called “skyline method” which is possible to use
more efficient storage scheme, is implemented.

¢ A mathematical programming method, DOT is integrated to the program.

o The capability of the present program is increased such as program can handle
different loading, objective function and constraints.

e In chapters 2-4, the case studies are carried out related with arch structures.



1.5 Layout of the Thesis

The layout of thesis is now described:

e Chapter 2 is devoted to the static analysis of arch structures. The basic theory and
FE formulation is first presented. Several numerical examples are studied.

e Chapter 3 deals with various aspects of the optimization process including the
definition and selection of the design variables, the sensitivity analysis and the
optimization algorithm adopted.

e Chapter 4 presents several examples which demonstrate the optimal shapes and
thickness distributions obtained for arch structure optimization problems.

e Finally in Chapter 5, some brief conclusion are presented together with some
suggestions for future work.



CHAPTER 2

STATIC ANALYSIS

2.1 Introduction

The finite element method is now widely employed in analysis of curved structural
members such as arches and shells. Modern matrix methods have two main methods.
The first one flexibility method is based on deflection per unit force and the second
one stiffness method is force per unit deflection. These methods are based on two

formulations.

e Euler — Bernoulli formulations are based on the assumption that normals to the
midsurface remain straight and normal to the midsurface after deformation. Only
direct stresses in the spanning directions contribute directly to the strain energy.

This theory is suitable for thin beam. See Figure 2.1

e Mindlin-Reissner (or Timoshenko-Hencky ) formulations on the other hand are
based on the assumption that normals to the midsurface remain straight but not
necessarily normal to the midsurface after deformation. Deflections are small
compared with the beam thickness. This theory is suitable for thick beam. See
Figure 2.2.

The selection of finite elements is quite delicate especially when the members are
thin and flexible. We often experience that the deflections calculated by certain finite

element models are unbelievably smaller than the exact ones.

10



dw_ Neutral axis
dx

Beam saction

ILLZY\./A/.

Figure 2.1 Euler — Bernoulli formulations [18]

dw_ oo
-~ ¥=D

dw
dx

Neutral axis

Beam section

< T

Figure 2.2 Mindlin-Reissner formulations [18]

In this chapter, we consider the basic formulation and associated finite elements
based on Timoshenko (Mindlin-Reissner) beam models for the static analysis of
arches. The arches are essentially curved Timoshenko beams and the elements used
are based on the work of Potts and Day [36] and extended Hinton and co workers.

2.2 Finite Element Formulation of Arch Structures

Consider the MR curved shell element shown in Figure 2.3. The displacement

components #, and w,, expressed in terms of axes which are tangential and normal,

11



may be written in terms of global displacements # and w as

u, =ucosa+wsina

w, =-usin @ + wcosa

%

@.1)

<~§<(—ve)

Figure 2.3 Definition of curved Mindlin-Reissner finite elements

where « is shown in Figure 2.3. The radius of curvature R may be obtained from the

expression
da__1
dr R
The total potential energy for a typical MR is given as

TI(u,, w,,8) =1/2 (e, 1" D, +[£,1 D,e, +1e,1"D,, ) dt

— [w,qdt - (M8 + Nu, +w,)

where the axial strain is given by the expression

g = W
d{ R

or re-writing interms of the global displacements

du aw .
&, =—COSa+—sina

" ode 114
The bending strain or curvature may be written as
de
g, =——
art
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and the shear strain is given as

dw, u
="t _g-—L 2.
L7 R @7
or
du aw
=—0-—siha+— 2.8
£, 7, in o 7, cosa 2.8)
Also, note that the axial, flexural and shear rigidities have the form
D, =EA; D, = EI; D, =xGA (2.9)

where E is the elastic modulus, 4 is the cross-sectional area, I is the moment of
inertia, G is the shear modulus and « is the shear modification factor and is taken as

5/6 for an arch of rectangular cross-section.

The loading in (2.3) consists of a distributed pressure loading g, as well as
couples M, axial forces N or lateral forces Q applied along a circumferential circle

at{=7. Note that#,, w, and @ are the corresponding displacement and rotation

valueat £=1/.t

2.2.1 Finite element idealization

Using n-noded, C(0) line elements, the global displacement parameters », and @
may be interpolated, within each beam element by the expressions

u=§n:N,.u,.; w=iN,.w,.; 0=2Ni0,. (2.10)

i=1 i=1 i=1
where u,, w, and 8, are typical nodal displacement degrees of freedom and N, (&) is

the shape function associated with node i which, for 2-noded linear elements, have
the form
N, =1/2(1-¢); N, =1/2(1+¢&) (2.11)
for 3-noded, quadratic elements
N, =£/2(E +1); N,=(1-&);  N,=¢£/2(6+1) 2.12)

and for 4-noded, cubic elements

13



N, =9/16(9-E*XE ~1); N, = 27/16(-E Y&~ &)
N, =26/160-E)YE+E); N, =-916(/9-ENE+D)  (2.13)

These elements are essentially isoparametric so that

X = iNixi ; y= iNiyi ; I= iNiti (2.14)

i=1 i=1 i=1

where x,, y, and ¢, are typical coordinates and thickness of node i respectively.

Note also that the Jacobian
2 5°1/2
J=g1£= & + > ; db=Jd& (2.15)
dé o0& o0&
where
& N, Y 3N, 2.16)
95 305 8§ T 08
Also note that
sina=il; cosa=£l 2.17
déJ déJg
and
aN, _d, 1 218
e dé J
The axial strains &, may then be expressed as
e, =) B:d; (2.19)
i=1
where
B¢, = [(8N,/8f)cosa (8N,/d¢)sina 0] (2.20)
and
a; =[u,w,0]. (2.21)
The flexural strain or curvatures &, can be written as
& =) Bid; (2.22)
i=1
where
B =[(0 0 -an,/d(] (2.23)

and the shear strain ¢, is approximated as

14



e, =3 Bed: (2.24)

i=1

where
B¢, =[-(dN, /df)sina (dN,/d¢)cosa - N, ]| (2.25)
Thus, neglecting circumferential line loads and couples, the contribution to the total
potential from element e may be expressed as
ZZ —[d; T K;d5 > [a;1 £ (2.26)
i=1 _1~1 i=1

where the submatrix of the strip stiffness matrix [Kj] linking nodes / and j has the

form
K; = [ {B,,D,B,, +B; DB, +B,DB_}Jdf (2.27)
and the consistent nodal force vector associated with node i is written as
['N.gsin asdg
=[N cosa]d§ (2.28)

2.2.2 Strain energy evaluation

~ 112
The Strain Energy (SE) of the FE solution"W“ for the beam is computed as the sum
of the membrane, bending and shear SEs

¥ -

Wi’ ~L[o,,] D;'6,d

W[ ~ [[6,17D;6,d0

W[’ ~ [[6,1"D}6,d2 2.29)

s

in which 6, =[M,]" contains the FE bending moments, &, =[N,] contains the FE

membrane forces and &, =[Q,] is the FE shear force.

15



2.3 Examples of Static Analysis

2.3.1 Cantilever beam

Problem definition: The first example is a cantilever beam with a square cross-
section as shown in Figure 2.4. The following material properties are used: elastic

modulus E = 200 GPa and Poisson’s ratio v=0.3.

) 7m 1(3|OkN
A ] N
0.3m AL \B
0.3 m, 10m Q
Figure 2.4 Cantilever beam

Discussion of results: The results obtained using a fine mesh of 4-noded cubic

elements are also compared with exact solution. Rotation at point A and reactions at
point B are respectively 3.33x107>,—300.0kNm, 100kN are obtained from exact

solution and FE solution.

2.3.2 Portal frame

Problem definition: The next example is portal frame with a square 0.3 0.3 m

cross-section, which is simple supported as shown in Figure 2.5.

Discussion of results: Used material properties are elastic modulus £ = 200 GPa
and Poisson’s ratio v = 0.3. In the analysis 2-noded linear Timoshenko elements is
used with 173 DOF. The results are tabulated in Table 2.1 and compared with non-
commercial program CMEFRAME. Remarkably good agreement is obtained.

16
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7m S5m

Figure 2.5 Portal frame

Table 2.1 Comparisons of member forces of portal frame

points reactions present study | CMEFRAME
horizontal (kN) +1.843 +1.850
A vertical (kN) +25.737 +25.740
rotation (rad,) | +1.668 x10* | +1.676 x 10™
horizontal (kN) -1.843 -1.850
s vertical (kN) +24.262 +24.260

2.3.3 Arches of uniform cross-section

Problem definition: This example involves analysis of square arches under two
different load condition, which have been studied by Roark [37]. An arch of uniform
cross-section with opening angle 120° is considered. The arch, which is radius of
curvature of R = 10 m and 0.3 0.3 m cross-section, has the following material

properties: elastic modulus £ =200 GPg, Poisson’s ratio v =0.3.

In the analysis two different loading cases is considered;
a) Point load at the crown
b) Uniformly normal loading

shown in Figure 2.6(a)-(b).
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100 kN 10 kKN/m

(@) (b

Figure 2.6 Loading conditions of uniform cross-section arch

Discussion of results: The results are tabulated in Table 2.2 and compared with
results obtained from Roark [37]. Close agreement between results can be observed.

Table 2.2 Comparisons of member forces of uniform cross-section arch

load case a load case b

points reactions present study | Roark [37] |present study | Roark [37]

horizontal (kN) 63.67 63.06 49.95 49.96
rotation (rad.) 0.001 0.001 0.121x 10 {0.111x10*

2.3.4 Arches of uniform cross-section

Problem definition: The next example involve a series of arches with rectangle
cross-sections, which have been studied by Litewka and Rakowski [ ]. An arch of
uniform cross-section with opening angle @ = 120° is considered. The arch, which is
radius of curvature of R = 4 m and 0.6 X0.4 m cross-section, has the following

material properties: elastic modulus E = 30 GPa, Poisson’s ratio v=0.17.

The analysis are carried out for two different fixity conditions and three different

loading cases;

18



i Clamped-clamped arch
a) Vertical point load at the crown,

b) Horizontal point load at the crown,

¢) Moment at the crown.

iL. Simple support arch
d) Vertical point load at the crown,

¢) Horizontal point load at the crown,

f) Moment at the crown.

shown in Figure 2.7.

Discussion of results: The results of the normalized displacements: u, /!, w,/l and

8,/o obtained using a fine mesh of 4-noded elements are also compared with

solution obtained by Litewka and Rakowski [5], in Table 2.3 and Table 2.4.

1KN

1KN

1KkNm

Figure 2.7 Loading conditions of uniform cross-section clamped arch

Table 2.3 Comparisons of clamped-clamped arch results

u,fl w, [l 0./o
present Ref [5] present Ref[5] present Ref [5]
al 6.192x107° |  0.000 | 2.516x10” |2.488 x10” |2.164 x10® | 0.000
bl 1.236x107 [1.252x107 | 6.192x10™ | 0.000 [3.621 x107 [ 3.796 x10°”
c| 9.095x10% [9.490x10%| 5.436x10° | 0.000 |1.079x10°|1.082 x10°
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Table 2.4 Comparisons of simple support arch results

u,f/l w, /[l 0.]w
present Ref. [5] present Ref. [5] present Ref. [5]
al9.243x10”| 0.000 |2.799x107 | 3.047x10” | 3.741 x10® |  0.000
b[2.765 x107 | 2.884 x107 | 9.240 x10° |  0.000 | 7.770 x107 | 8.064 x107
c] 1.952 x107 [ 2.016 x107 [ 9.396 x10” | 0.000 [ 1.362x10°| 1.361 x10°

2.3.5 Arches of non-uniform cross-section

Problem definition: The last example is an arch of non-uniform cross-section with
opening angle 40°. The arch, which is radius of curvature of R = 100 m, 0.8 X 1.0 m
and 1.0X 1.0 m cross-sections and elastic modulus £ = 2.85056 GPa. Shown in

Figure 2.8.

100 kN

Figure 2.8 Geometry of non-uniform arch
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Discussion of results: In the analysis 4-noded linear elements are used with 51 DOF.
The results are tabulated in Table 2.5 and compared with results obtained from
SAP(2000). Again, excellent agreement in the results is obtained.

Table 2.5 Comparisons of member forces of non-uniform arch

points reactions present study | SAP 2000
A horizontal (kN) +24.655 +24.657
vertical (kN) +50.000 | +50.000
B horizontal (kN) -24.655 -24.657
vertical (kN) +50.000 +50.000
C | vertical displacement (cm) -8.413 -8.411
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CHAPTER3

OPTIMIZATION ALGORITHM

3.1 Introduction

Arch structures provide economical solutions for crossing large spans. Compared
with beams smaller cross sections can be used in arches as the axial forces are
dominant. Further economy can be achieved in design of these structures by using
structural optimization. In structural design it is necessary to obtain an appropriate
geometric shape for the structure so that it can carry the imposed loads safely and
economically. The optimisation process uses the results of the finite element analysis
to predict the optimum shape. In Structural Shape Optimization (SSO), the original
mesh is gradually changed as the iterative optimization method proceeds and the
structural geometry changes. SSO tools can be developed by the efficient integration
of structural shape definition procedures, automatic mesh generation, structural
analysis and mathematical programming methods.

3.2 Mathematical Definition of Optimization Problem

The optimization problem can be stated in the formal mathematical language of
nonlinear programming as:
minimize : F{(s) 3.D
subject to
&)< 0
h(s)=0
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sl <s <s*
in which F(s) is the objective function to be minimized, g(s) is behavioral constraint,
hi(s) is an equality constraint and s/ < 5, < s/ are geometric constraints. The
subscripts j, k and i denote the number of behavioral constraints, equality constraints
and design variables respectively. The terms s/ and s} refer to the specified lower

and upper bounds on the design variables.

Table 3.1 summarizes the commonly used design variables, objective functions and
constraints functions in structural shape optimization. Note that, in general, the
functions F, g; and / may all be nonlinear implicit functions of the design variables

s.

Table 3.1 Design variables, objective functions and constraints

used in structural shape optimization

Design variables s

o Coordinates of key points s
o Thickness at key points #
Objective functions F(s)

o Weight

e Strain energy

e Error energy

e Stress leveling

Constraint functions g(s)

e Stress constraint

e Displacement constraint

e Volume constraint
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In static situation minimization of strain energy, weight, error enetgy or stress
leveling subject to stress, displacement and/or weight constraints. In addition explicit
geometrical constraints are imposed on the design variables to avoid impractical
geometries. For example, a minimum element thickness is defined to avoid zero or
negative element thickness values. It is worth mentioning here that the objective
function and the constraint hull may be non-convex and there fore local optima may

exist.
3.3 Structural Shape Optimization Algorithm

The basic algorithm for structural shape optimization is shown in Figure 3.1.

DEFINE
GEOMETRY ETC.

¥

START

GENERATE MESH

ANALYSE
WITH FEs

3

EVALUATE
SENSITIVITIES

GENERATE
NEW SHAPE STOP

Figure 3.1 Basic algorithm to structural shape optimization

If we present an overview of a typical structural shape optimization procedure which

is based on the following algorithm:
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1. Define the optimization problem including the objective function, constraints and
design variables. The objective function and constraint functions are highly
nonlinear with respect to shape variables in most cases.

2. The initial structural shape of the arch is defined using cubic spline segments
with the coordinates specified at the certain key points. The thickness distribution
may also be defined using cubic splines with thickness values specified at the key
points. Design variables s@ =[s®,s{",...,s"]" may include the coordinates
and thickness of some specific points. (The superscript denotes the design
number in other words the optimization iteration number.)

3. Main problem in the shape optimization is the geometry modeling and finite
element mesh generation. This may be achieved with an automatic mesh
generator for a prescribed mesh density.

4. In the FE analysis the arch is modeled using linear, quadratic or cubic, MR,
curved, variable thickness elements. Carry out a FE analysis of current design s©
and evaluate the objective function and constraints. Details of the FE formulation
is given in Chapter 2.

5. In static situation the sensitivities of strain energy, displacement and stress
resultant of the current design to small changes in the design variables are
evaluated. Methods for evaluating the sensitivities may be semi analytical or
based on finite differences.

6. Modify the current design and evaluate the design changes As® using a suitable
optimization algorithm, such as sequential quadratic programming (SQP).

7. Check the new design changes As‘. If the design changes As‘” are non-zero
then update the design vector to

§©D = @ L AL© 3.2)

and new values of the design variables are sent to mesh generator and the whole

sequence of operations is repeated. Otherwise stop.
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3.4 Geometry Definition

3.4.1 Structural shape definition

The way used to describe the shape of the structure is the key element in the process
of obtaining the optimum shape. The definition and control! of the geometric model
of the structure is a complex task. Detail information is given in ref [38].

Three methods are used:

(1) boundary nodes are used for shape representation;

(2) boundary shape is described by piecewise polynomials;

(3) boundary shape is described by spline or spline blending functions.

Spline, as a shape representation, can eliminate the problem derived by using high
order polynomials to describe the boundary. Because spline functions are composed
of low order polynomial pieces which are combined to maximize smoothness [21].

The geometric representation of arch structure is shown in Figure 3.2. which is
formed by either a single or an assembly of segments. Each segment is a cubic spline
curve passing through certain key points. Some key points are common to different
segments at their points of intersection. To represent a straight line the analysts have
to provide a minimum of two key points lying on the segment and three points to

represent a curved line.

Another important aspect in shape optimization is the number of key points used to
define the shape of the structure. For arch structure, the more key points used the
better the representation of geometry. However, it should be noted that in SSO
procedures increasing the number of key points leads to an increase in the number of

design variables and is likely to lead to greater computational expense.

26



Figure 3.2 Geometric representation of arch structure

3.4.2 Structural thickness definition

The thickness of the arch is specified at some or all of the key points of the structure
and then interpolated using cubic splines or lower order functions. Only uniform
thickness variations in structural shape optimization over constrain the optimization
process and does not give the greatest opportunity for objective function

improvement.

3.4.3 Selection of constraint points

The objective is to minimize the weight of the arch by reducing the depth of the cross
section. However, there may be some limitations on the displacements to consider
while the optimum depth of the cross section is searched. Hence, there is an objective
such as the minimization of the weight of the arch to find the optimum values of the
depths, and there are some restrictions like the upper bounds of the displacements
and stresses, and also the lower bound of the depths. In SSO procedures where
remeshing is performed at every iteration the function cannot be associated with the
nodes since their number and position do not remain constant. Therefore, apart from
being used to represent the shape and thickness, the key points are also used as stress
sampling points the verify whether the stress constraint has been satisfied or not.
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Although this approach is satisfactory in most cases, it can be dangerous, since the
maximum value of the stress may not occur at a key point. To avoid this potential
problem, the points where the maximum stress occur are also taken as constraint

points in addition to the key points. This approach has been found to be reliable.

3.5 Mesh Generation

The second main problem in the shape optimization is the finite element mesh
generation. A fixed finite element model, like in the sizing optimization, is no longer
valid to assure the accuracy of the structural analysis as the shape of the boundary

changes, since the accuracy of various portions of the finite element mesh will

change [21].

One general way of handling this problem is to take advantage of the automated
mesh generation in the computer program of the shape optimization. Mesh
generation should be robust, versatile and efficient. Here, we use a mesh generator
which incorporates a remeshing facility to allow for the possibility of refinement. It
also allows for a significant variation in mesh spacing throughout the region of
interest. The mesh gencrator can generate meshes of two, three and four noded
elements. To control the spatial distribution of element sizes or mesh density
throughout the domain, it is convenient to specify the mesh density at a sequence of
points in the structure. Figure 3.3 shows a mesh of arch structure.

Figure 3.3 Mesh representation of arch structure
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The mesh density is a piecewise linear function of the values of mesh size 3 at some
points along the midsurface of the structure. At the initial stages of the analysis,
mesh density values given at the two end points of each segment will be sufficient if
only a uniform or a linearly varying mesh density is required [39].

3.6 Structural Analysis

In the FE analysis the arch is modeled using linear, quadratic or cubic, MR, curved,
variable thickness elements. These belong to a family introduced by Potts and Day
[36] and subsequently extended by Hinton et al [35]. They are well tried and tested
good performers and to avoid locking or overstiff behaviour for shear stiff arches,
reduced integration of the stiffness matrices with a one, two- and three-point Gauss-
Legendre rule is adopted for the linear, quadratic and cubic elements respectively.
Theory and implementation of FE method for static analyses are given in Chapters 2

respectively.

3.7 Sensitivity Analysis

Design sensitivity analysis, that is, the calculation of quantitative information on how
the response of a structure is affected by changes in the variables that define its
shape, is a fundamental requirement for the shape optimization. We calculate the
sensitivities of items such as strain energy. Methods for evaluating the sensitivities
may be purely analytical or can be based on finite differences in which case the
choice of the step size may be crucial. Alternatively, we may use semi-analytical

methods which are partly analytical and partly based on finite differences.

Sensitivity analysis consists of the systematic calculation of the derivatives of the
response of the FE model with respect to parameters characterizing the model i.e. the
design variables which may be length, thickness or shape. FE structural analysis
programs are used to calculate the response quantities such as displacements, stresses
etc. The first partial derivatives of the structural response quantities with respect to

the shape (or other) variables provide the essential information required to couple
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mathematical programming methods and structural analysis procedures. The
sensitivities provide the mathematical programming algorithm with search directions

for optimum solutions.

In the present study, both the finite difference and semi analytical methods are used
to calculate sensitivities. The finite difference method uses a difference formula to
numerically approximate the derivatives. The semi-analytical method which was
originally proposed by Zienkiewicz and Campbell [20] is quite popular in shape
optimization and it combines the analytical and finite difference methods. The
derivatives of some quantities are evaluated using finite difference whereas for the
others the analytical method is adopted. These two methods are accurate,
computationally efficient and sensitive to roundoff and truncation errors associated

with step size.
In the FE displacement approach the equilibrium equations
Kd =f (3.3)

Differentiating (3.3) with respect to design variable s; we have

g, Ky o G.4)
Os, Os, Os,
On rearranging equation (3.4) we get
kA _g 3.5)
Os,
where
. ,of oK
f =(—-—d 3.
X (ask Os, ) ©6)
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In general, if we have several design variables s, we get

al 6d al ) * #
K T 9 . peeey = f f son fn 3.
(6s, 5, (PR PR ) (CN)

n

Thus, to obtain the derivatives of the displacement with respect to each design
variable we should calculate K /0s, and of /s, . These quantities can be computed

either analytically, semi - analytically or using a global finite difference method.

Semi — analytical approach can be used in which the derivatives 0K /ds, and
of / 65, are approximated by a forward finite difference scheme [38]. In this case we
store the factored K matrix during the solution of (3.3) and calculate the pseudo- load

matrix fy ie. we compute the terms of/ds, and JK/&s,. These derivatives are
computed by recalculating the new K(s, +As,), and f(s, +As,) for a small
perturbation As, of the design variables and by applying the forward finite

difference scheme so that

oK _ K(s, +As,)—K(s;) (3.8)
aSk Ask .
of _f(s, +4s,)—1(s,) (3.9

Os, As,

Derivative of displacements and stress resultants: To get od/os,and 8o/0s,

global finite difference method is used and following expressions may be written

od _ d(s, +As,)—d(s,) (3.10)
Os, As,
8o _ o(s, +As,) —0(s,) (3.11)
Os, As,

where As, is step size, d(s, + As,) is evaluated by solving

K(s, +As, )d(s, +As,) =1(s, +As;) (3.12)
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and o(s, +As,) is found from

o(s, +As,) =D(s, +As,)B(s, +As, )d(s; +As,) (3.13)

Derivative of volume: The volume derivative is calculated using a forward finite

difference approximation

v Vs, +As,)-V(s;) 3.14)
0s, As,

where the volume ¥ of the whole structure (or cross-sectional area of the structure
may also be used) can be calculated by adding the volumes of numerically integrated
FEs.

3.8 Mathematical Programming

Various numerical algorithms have been applied to solve the shape optimization of
structures. They can be divided into the following categories:

e method of moving asymptotes (MMA),

e scquential quadratic programming (SQP),

e sequential linear programming (SLP),

e penalty function methods,

e feasible direction methods.

In the present work we use SQP which is considered to be quite powerful for a wide
class problems.

3.8.1 Sequential quadratic programming

The SQP, the principal concept is to use a variable metric algorithm to create an

approximation to the Lagrangian function. This function is used in a quadratic
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programming subproblem to find a search direction in design space which will drive
the design to the satisfaction of the Kuhn-Tucker necessary conditions for optimality.
A one dimensional search is then performed to achieve the design improvements

[38].

The optimization process usually begins with a proposed design s&, provided as

input. The design is then typically updated by modifying sy as
st=si"+ar! (3.15)

where q is the iteration number. The vector r = [ry,r2,....]" is the search direction and

a is a scalar move parameter.

No effort has been made to study the mathematical programming methods used for
SSO procedures and algorithm is used here essentially as a “black box’.
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CHAPTER 4

OPTIMIZATION EXAMPLES

4.1 Introduction

In this chapter a series of static examples will be considered which illustrate the
algorithm for shape and thickness optimization of arch structures. The design
variables are used to define the shape or the thickness variation or both.

Only linear elastic behavior is considered and the optimized shape and thickness
distributions are not checked for buckling under the given set of loads. Although
some of the optimal shapes of the structures obtained may look impractical, they

could serve as a guide to designing practical shapes and as an educational tool.

4.2 Strain Energy Minimization of Arch Structure Under the Point Load

Problem Definition: The geometry of the structure is shown in Figure 4.1. The arch
has a radius of 10 m and opening angle 120°. The following material properties are

assumed: elastic modulus £ = 200 GPa, Poisson’s ratio v=0.3.
The shape of uniform arch is defined using two segments and five key points. Strain

energy minimization with a constraint that the total material volume of structure is

limited to 1.9 #’. A total of two shape and three thickness design variables as shown
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in Figure 4.2 are considered. Use is made of design variables linking procedures to
maintain symmetry of the structure.

Figure 4.1 Geometry of uniform arch

h|
rary

Figure 4.2 Location of design variables

Optimization is carried out for four types of design variables.

i-) only shape design variables s;,s;

i) only thickness design variables t;,t2,t3

iii-)  both shape and thickness design variables are considered together
iv-)  only thickness design variables t,t,,t; after type
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Discussion of results: The analysis is carried out using cubic elements and 53 DOF.
Table 4.1-4.4 presents initial and optimal design variables together with their bounds,
Table 4.5 presents initial, optimal values and percent improvements of total strain
energy and Table 4.6 presents % contributions to total strain energy. We used
thickness design variables after shape optimization so highest improvement is
obtained in type iv.

Table 4.1 Uniform arch; values of the design variables
(Type i-only shape)

design variables opt. design
type min. initial max. variables
S1 5.0 - 10.0 15.0 8.99
S 5.0 10.0 15.0 10.78

Table 4.2 Uniform arch: values of the design variables
(Type ii-only thickness)

design variables opt. design

type min. initial max. variables
t 0.1 0.3 0.8 0.20
t 0.1 0.3 0.8 0.23
13 0.1 0.3 0.8 0.64

Table 4.3 Uniform arch: values of the design variables
(Type iii-both thickness and shape)

design variables opt. design
type min. initial max. variables
S1 5.0 10.0 15.0 9.50
S 5.0 10.0 15.0 10.22
t 0.1 0.3 0.8 0.10
t 0.1 0.3 0.8 0.25
t3 0.1 0.3 0.8 0.7
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Table 4.4 Uniform arch: values of the design variables
(Type iv-only thickness after type i)

design variables opt. design
type min. initial max. variables
t 0.1 0.3 0.8 0.31
t 0.1 0.3 0.8 0.32
ts 0.1 0.3 0.8 0.31

Table 4.5 Initial-optimal values and % improvement of total strain energy

strain energy (X 107%)
type initial optimum | % decrease
i 3639.027 93.711 97.4
i 3639.027 | 2282.044 37.3
iii 3639.027 | 924.429 74.6
v 3639.027 89.420 97.6

Table 4.6 % Contributions to total strain energy

% contributions to strain energy
case | shape | membrane | bending | shear
; initial 1.911 97.470 | 0.619
optima | 99.923 0.077 | 0.000
i Initial 1.911 97.470 | 0.619
optima | 2.819 96.381 | 0.800
jii initial 1.911 97.470 | 0.619
optima 9.970 89.258 | 0.771
v initial 99.923 0.077 | 0.000
optima | 99.925 0.075 | 0.000

4.3 Strain Energy Minimization of Beam

Problem Definition: The beam which is of length 10 m and 0.3X0.3 m cross-
section, has the following material properties: clastic modulus £ = 200 GPa,

Poisson’s ratio v = 0.3.
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The shape of the beam is defined using two segments and eleven key points. A total
of five shape design variables as shown in Figure 4.3 are considered.

In the analysis two different loading case;

i-) Point load at the crown
ii~)  Uniformly normal loading
shown in Figure 4.4.

S1 S S3 S4 S5 S4 S3 S 0§
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7
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Figure 4.3 Location of design variables
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Figure 4.4 Geometry of beams

Discussion of results: Table 4.7 and 4.8 presents initial and optimal design variables
together with their bounds. Table 4.9 presents initial, optimal values and percent
improvements of total strain energy and Table 4.10 presents %contributions to total
strain energy. As you can see from optimum shape of the beam is becoming an arch
structure, because of structural advantages of arch structure. The optimum shape of
structures are shown in Figure 4.5 and 4.6.
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Table 4.7 Beam: values of the design variables (case i)

design variables opt. design
type min. initial max. variables
S 0.01 0.0 1.5 0.2266
$2 0.01 0.0 1.5 0.5910
S3 0.01 0.0 1.5 0.9088
S4 0.01 0.0 1.5 1.2733
S5 0.01 0.0 1.5 1.5000

Table 4.8 Beam: values of the design variables (case ii)

design variables opt. design
type min. initial max. variables
S1 0.01 0.0 1.5 0.5107
S 0.01 0.0 1.5 1.0010
S3 0.01 0.0 1.5 1.3010
S4 0.01 0.0 1.5 1.5000
S5 0.01 0.0 1.5 1.5000

Table 4.9 Initial-optimal values and % improvement of total strain energy

strain energy (X 10™%)
case initial optimum | % decrease
i 3901.358 | 157.341 95.9
i 1043.251 44.033 95.8

Table 4.10 % Contributions to total strain energy

% contributions to strain energy
case | shape | membrane | bending | shear
; initial 0.000 98.889 | 1.111
optima | 89.279 9289 | 1.432
ji initial 0.000 98.615 | 1.385
optima | 91.858 7.145 | 0.997
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Figure 4.5 Optimum shape of case i

F =

Figure 4.6 Optimum shape of case ii

4.4 Volume Minimization of Arch Structure Under the Point Load

Problem Definition: The next example involve two arches with rectangle cross-
sections, which have been studied by Uzman and Daloglu [24].The depth of arch is
taken as 5 m. The modulus of elasticity of the material £ = 20700 kN/em? , the
allowable stress oy = 20.25 kN/cm’ and Poisson’s ratio v = 0.3. Only a displacement
constraint, the vertical displacement at the crown, is limited to 0.5 cm.

The shape of uniform arch is defined using two segments and five key points. The
geometry of the structure and the location of three thickness design variables are
shown in Figure 4.7. Use is made of design variables linking procedures to maintain
symmetry of the structure.
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In the analysis two different fixity conditions;
i-) Clamped-clamped arch
ii-)  Simple support arch

Discussion of results: Table 4.11 and Table4.12 presents initial and optimal design
variables together with their bounds and Table 4.13 presents comparisons of initial,
optimal values and percent improvements of volume. The results of optimizations
compare very well with those obtained by Uzman and Daloglu [24]. For case(i) the
problem of volume minimization 36.9 percent decrease and for case(ii) 20.4 percent

decrease is obtained.

Figure 4.7 Geometry of arch and location of design variables

Table 4.11 Arch: values of the design variables (case 7)

design variables opt. design
type min. Initial max. variables
t 0.08 0.35 0.7 0.08
[>) 0.08 0.35 0.7 0.25
t3 0.08 0.35 0.7 0.31
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Table 4.12 Arch: values of the design variables (case ii)

design variables opt. design
type min. initial max. variables
t 0.08 0.35 0.7 0.16
ta 0.08 0.35 0.7 0.31
13 0.08 0.35 0.7 0.31

Table 4.13 Comparisons of initial and optimum values of volume and

% improvement

present study Uzman and Daloglu [24]
volume volume
initial optimum | % decrease | initial optimum | % decrease
i 0.800 0.505 36.9 0.800 0.562 29.8
i 0.800 0.637 20.4 0.800 0.667 16.6

4.5 Strain Energy Minimization of Non-Uniform Cross Section Arch

Problem definition: The last example is an arch of continuously varying cross-
section with opening angle 60°. The arch, which is radius of curvature of R = 100 m
and elastic modulus E = 0.14431 GPa. Its beginning and ending cross-section values

are 0. 6 X 1.0 m and 1.4 X 1.0 m respectively. Shown in Figure 4.8.

The shape of uniform arch is defined using two segments and five key points. Strain
energy minimization with a constraint that the total material volume of structure is
limited to 105 »’. A total of two shape and five thickness design variables as shown

in Figure 4.9 are considered.

Optimization is carried out for three types of design variables.
i)

ii-)

only shape design variables s;,s»

only thickness design variables t,t;,t3

iii-)  both shape and thickness design variables are considered together
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Figure 4.8 Geometry of non-uniform arch

ts

Figure 4.9 Location of design variables

Discussion of results: The analysis is carried out using cubic elements and 195
DOF. Table 4.14-4.16 presents initial and optimal design variables together with
their bounds, Table 4.17 presents initial, optimal values and percent improvements of
total strain energy and Table 4.18 presents %contributions to total strain energy.
Highest improvement is obtained in type i because membrane energy increased

highest value in type i..



Table 4.14 Non-uniform arch: values of the design variables

(Type i-only shape)
design variables opt. design
type min. initial max. variables
St 50.0 100.0 150.0 97.38
Sz 50.0 100.0 150.0 102.62

Table 4.15 Non-uniform arch: values of the design variables

(Type ii-only thickness)

design variables opt. design
type min, initial max. variables
t 0.2 0.6 2.0 0.93
153 0.2 0.8 2.0 0.99
ts 0.2 1.0 2.0 1.24
ty 0.2 1.2 2.0 0.96
ts 0.2 1.4 2.0 1.11

Table 4.16 Non-uniform arch: values of the design variables

(Type iii-both thickness and shape)

design variables opt. design
type min. initial max. variables
S1 50.0 100.0 150.0 96.63
$2 50.0 100.0 150.0 103.37
t; 0.2 0.6 2.0 0.69
1) 0.2 0.8 2.0 0.88
t3 0.2 1.0 2.0 1.07
4 0.2 1.2 2.0 1.15
ts 0.2 1.4 2.0 1.32

Table 4.17 Initial-optimal values and % improvement of total strain energy

strain energy (X 10

type initial optimum | % decrease
i 443.407 27.538 93.8
ii 443.407 288.969 34.8
iii 443.407 73.99 833




Table 4.18 % Contributions to total strain energy

% contributions to strain energy

case | shape | membrane | bending | shear
initial 4.881 94.864 | 0.256
optima | 74.951 24.980 | 0.068

initial | 4.881 | 94.864 | 0.256
optima | 7.159 | 92.486 | 0.354

initial | 4.881 | 94.864 | 0.256
optima | 24.356 | 75.430 | 0.243

ii

iii
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CHAPTER 5

CONCLUSION AND FURTHER WORK

5.1 Conclusion

In the present work computational tools have been developed for geometric
modeling, automatic mesh generation, analysis and shape optimization of arch
structures. During the research work, an efficient, reliable, robust and flexible
computer program has been developed based on the previous work [35]. Several
examples have been studied and used to test and to demonstrate the capabilities
offered by these computational tools. Based on the above studies the following

general conclusions can be drawn.

5.1.1 Structural analysis

o FEs of the types presented in the present work, which can perform well in thick,
thin and variable thickness cases have proved to be most appropriate for the
analysis and optimization of arch structures due to their inexpensiveness,
accuracy and reliability.

e The results obtained using FE analysis tools generally compare well with those
obtained from other sources based on alternative formulations. The results
illustrate that the FE methods presented here can be used with confidence for the
static analysis of arch structures which may have rectangular cross-sections.
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5.1.2 Structural optimization

e Definition of the shape variables is crucial, i.e. the parameterization of the
optimization model has to have as few degrees of freedom as possible to simplify
the optimization task and as many degrees of freedom as necessary so that the
problem is not over-constrained. The optimum solution obtained is only the
optimum for this particular problem definition; in only very rare cases will it be
the global optimum.

e The application of SSO in conjunction with finite element analysis is an efficient
an effective method, in particular for problems with a great number of design
variables and a reasonable number of design constraints.

e It is important to identify the objective of a particular problem clearly and then
use the correct function to solve the problem.

e Constraints are important since they guide the optimizer to the optimum and
restrict the design space to a useful feasible domain.

e Shape optimization with a strain energy minimization as the objective seems to
be a mathematically better bechaved problem than those defined using
volume/weight minimization as objective function.

e The more accurate the information given to the optimizer, the faster the
convergence achieved. FE solutions in combination with the semi-analytical
sensitivity method deliver more accurate function and derivative values.

e In certain special cases, we have demonstrated that the SE and volume can be
improved by as much as 97 and 37 percent respectively using shape optimization.

e The introduction of thickness as well as shape variation leads to a further
improvement in the objective function of the optimal structures.

e Some of the optimum shapes presented in this thesis are not practical and are
included to show how shape and thickness changes can substantially alter the
values of objective function. However, manufacturing constraints etc. can be
imposed to produce more practical optimum designs.

¢ The tools developed in the present work are useful creative design aids for

structural engineers. They also offer potential as educational aids.
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5.2 Further Work

The following possibilities exist for extending the various aspect of the present work.

5.2.1 Structural analysis

o The finite element analysis code could extend to handle the buckling analysis of
arch structures

e The FEs developed and used in this thesis are inexpensive and accurate.
However, it would be a desirable feature to include error estimation and adaptive
analysis procedures. An error estimation and adaptivity technique could be
investigated for dynamic problems.

5.2.2 Structural optimization

e The stability characteristics, post buckling and general nonlinear behavior of the
optimized structures could be investigated so that their safety is assured.

e The optimization of structures constructed from composite materials could be
considered.

e In SSO of structures analyzed by FE method, the use of other objective functions
such as minimization of error energy could be investigated. Further, multi-
objective problems should be considered in which there are several objective
functions to be minimized and/or maximized. In static problems, multiple load
cases should be considered.

o The user friendliness of the SSO algorithm could be investigated by developing a
modern user interface. It would also be of interest to integrate the present SSO
algorithm with a standard CAD system.
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