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ABSTRACT

ANALYSIS AND OPTIMUM DESIGN OF STRUCTURES UNDER STATIC
AND DYNAMIC LOADS

Taysi Nildem
Ph.D. in Civil Engineering
Supervisor: Prof. Dr. Mustafa Ozakga
Co-supervisor: Assoc. Prof. Dr. Ibrahim H. Giizelbey
January 2005, 260 pages

This thesis deals with the development of reliable, and efficient computational tools
for the linearly elastic analysis and optimum design of 2D and 3D discrete structures
under static, free vibration and dynamic loads. Structural optimization procedures
considered in this thesis involve the efficient integration of computer aided geometry

modeling, automatic mesh generation, structural analysis and genetic algorithm.

The procedures for structural shapes and thickness definition using parametric cubic
splines for complex discrete structures are developed. A versatile, efficient and
inexpensive algorithm for mesh generation, which is integrated with the shape
definition is implemented. Finite element formulations for the static and free vibration
analysis of 2D and 3D trusses, beams, arches and frame structures are developed and
implemented. The use of a reliable and competitive procedure for finding the optimum
solutions for problems involving discrete and continuous design variables based on
genetic algorithms is demonstrated. A reliable finite element formulation for the
transient analysis of 2D and 3D beams, arches and frame structures is implemented
and the dynamic characteristics of various optimized beam and frame structure are
considered. The validity of the formulations and programs is verified by comparing

with literature, commercial software and analytical solution whenever possible.

Key words: Finite element, geometric modeling, mesh generation, static analysis, free
vibration analysis, transient dynamic analysis, structural shape optimization, genetic
algorithm.,
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0Z

STATIC VE DINAMIK YUKLER ALTINDAKI YAPILARIN ANALIZ VE
OPTIMUM TASARIMI

Taysi Nildem
Doktora Tezi, Ingaat Mithendisligi Béliimii
Tez Yoneticisi: Prof. Dr. Mustafa Ozakca
Yardime: Tez Yoneticisi: Dog. Dr. Ibrahim H. Giizelbey
Ocak 2005, 260 sayfa

Bu tez, statik, serbest titresim ve dinamik yiikler altindaki iki ve {i¢ boyutlu yapilarin
analizi ve optimum tasarum i¢in giivenli ve verimli bir sonlu elemanlar bilgisayar
program geligtirilmesiyle ilgilidir. Bu tezde kullanilan yap1 optimizasyon prosediirii,
verimli bir bilgisayar destekli geometri modeli olugturulmasini, otomatik ag iiretimini,

yapt1 analizini ve genetik algoritmay: icermektedir.

Kompleks yapilarm sekillerinin ve kalmhklarnimin parametrik  kiibik egriler
kullamlarak tammlanmasi igin bir prosediir geligtirilmigtir. Ag tretim igin gekil
tammlanmasmin da entegre edildigi, esnek, verimli ve hizli bir algoritma
uygulanmustir. iki ve fi¢ boyutlu kafes, kirig, kemer ve cergeve sistemlerin statik ve
serbest titresim analizi igin sonlu elemanlar formiilii geligtiriimis ve uygulanmugtir.
Stirekli ve siireksiz tasarim degiskenlerini igeren problemlerin optimum ¢6ziimlerini
bulmak i¢in genetik algoritmasina bagh etkili ve uyumlu bir prosediir sunulmugtur. Iki
ve ii¢ boyutlu kirig, kemer ve gergevelerin zamana bagh dinamik analizi i¢in etkili bir
sonlu elemanlar formiilii uygulanmigtir ve optimize edilmis olan gesitli kiris ve
gergeve drneklerinin dinamik karakteristikleri yorumlanmugtir, Kullanilan model ve
programlarin gegerliligi, miimkiin oldugu kadar literatiirdeki yaymnlarla, gesitli paket
programlarla ve analitik ¢dzlimlerle karsilagtirilarak ispatlanmigtir.

Anahtar kelimeler: Sonlu elemanlar, geometrik modelleme, ag {iretimi, statik analiz,

serbest titregim analizi, zaman bagh dinamik analiz, yap1 sekil optimizasyonu, genetik
algoritma.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In structural design, it is necessary to obtain an appropriate form for a structure so
that it can carry the imposed loads safely and economically. Traditional approaches
towards the task of finding such forms for structures have been by the use of
experimental models or by intuition and experience. However, in many cases the
optimum shapes for structures are not evident from experiments and experience.
There is therefore a need for better approaches which offer a more general and

reliable way for determining optimum shapes under static and free vibration cases.

Structural Shape Optimization (SSO) of linear elastic structures has advanced
steadily by the deepening of its theoretical foundations from different disciplines and
the widening of its field of applicability. The significant progress in this field, in the
last three decades, is a result of parallel progress in structural analysis, optimization
algorithms (such as nonlinear programming, Genetic Algorithm (GA), neural
network) geometric modeling and computer hardware. Structural optimization
combines mathematics and mechanics with engineering and has become a
multidisciplinary field with applications in areas such as civil, mechanical,
aeronautical, nuclear and marine engineering. In its present state of maturity, it is
regarded as a practical, automated and integrated numerical tool for research and

design.

In order to establish the functional requirements of a SSO scheme it is desirable to

examine the objectives. The objectives of the design process are twofold:



® to achieve a safe design which simultaneously satisfies manufacturing (or

constructional) and functional requirements, and

to reduce the cost of the manufacture (or construction) and maintenance of a

structural component (or structure).

In other words, structural optimization is concerned with achieving the best design

for a given objective while satisfying certain restrictions.

1.2 Thesis Objectives

The main objective of the thesis is to develop reliable, creative and efficient

computational tools for the linearly elastic analysis and optimum design of 2D and

3D discrete structures under static, free vibration and dynamic loads. Structural

optimization procedure of the type considered in this work involve the efficient

integration of computer aided geometry modeling, automatic mesh generation,

structural analysis and GA. The specific objectives of this thesis can be summarized

as follows:

To develop procedures for structural shapes and thickness definition using
parametric cubic splines for complex discrete structures.

To implement a versatile, efficient and inexpensive algorithm for mesh generation
which is integrated with the shape definition and has a facility for automatically
updating the loading and boundary conditions.

To present and implement a Finite Element (FE) formulation for the static and
free vibration analysis of 2D and 3D trusses.

To develop and implement a reliable FE formulation for the static and free
vibration analysis of 2D and 3D beam, arch and frame structures. The curved,
variable thickness, isoparametric Mindlin-Reissner (MR) FE method employed is
tested for accuracy by comparing with previous solutions and measuring the
discrepancy between linear, quadratic and cubic FE sub-clement divisions.

To develop and demonstrate the use of a reliable and competitive procedure for
finding the optimum solutions for problems involving discrete and continuous

design variables based on GAs.



* To develop and implement a reliable FE formulation for the transient analysis of
2D and 3D beam, arch and frame structures.

¢ To determine the dynamic characteristics of various optimized beam and frame
structures.

During the course of this research work, a series of studies is undertaken to provide
evidence of the effectiveness of the proposed models, comparing numerical

predictions with analytical or experimental results whenever possible.

Principally, it is hoped that this thesis will provide firm foundations for further
investigation, leading to a more intensive use of structural optimization algorithms to

solve practical problems.

1.3 Structure Types Considered in This Thesis

Because of the wide variety of structures encountered in practice, it becomes clear
that a thesis dealing with analysis and structural optimization should focus on
selected topics. For this reason, structures considered in this thesis are composed of
members whose lengths are significantly larger than their cross-sectional dimensions.

Truss, beam, arch and frame structures will be examined in depth in this thesis.

Trusses: Initially, we consider the analysis and optimization of 2D and 3D trusses
under static and free vibration conditions. This enables us to develop some
introductory tools and gain some useful experience in optimization prior to

considering beam, arch and frame structures.

Beams, arches and frames: Later, we turn our attention to the analysis and
optimization of beam, arch and frame structures under static, free vibration and
transient dynamic conditions. Types of the structures dealt with in this thesis include
variable thickness beam and arch, and single and multistory frame structures. The
examples in this thesis include well known test examples often treated in the
literature.



1.4 Structural Shape Definition and Automatic Mesh Generation

In SSO, the manual preparation of FE analysis data for each optimization trial is
discouragingly tedious, time consuming, error-prone and requires user intervention at
each iteration. For these reasons, the geometric shape definition and automatic mesh
generator are of prime importance in the automated structural optimization process.
We present the mesh generation schemes used in this thesis for various types of

structures considered in Chapter 3.

In the present work, a mesh generator for discrete structures has been developed
which has the capability of the controlling mesh density distribution on the natural
axis of the structure which is defined using parametric cubic splines. The mesh
generator can generate meshes of two, three and four noded elements. Moreover, the
thickness and distributed loading are interpolated from the key points to the nodal
points using cubic splines. A bandwidth minimization is carried out before the
boundary and loading conditions are transferred to the FE model. The mesh

generator is also updating boundary condition and loading at each optimization
iteration.

1.5 Structural Analysis

Structural analysis is a vital part of the overall design optimization task because one
has to be able to predict structural behavior for various designs in order to guide the

design improvement process.

Trusses: Matrix and FE methods for the analysis of truss problems are well
developed and details of their formulation can be found in standard textbooks. These
methods are reviewed in Chapter 4 for static and free vibration analysis and used for
optimization of trusses in Chapters 8 and 9.

Beams, arches and frames: The FE method has proven to be an inexpensive and
useful tool in the static and dynamic analysis of beam, arch and frame structures in

2D and 3D. Two basic theories are used for analysis. Thin beam theories neglect



transverse shear deformation and rotatory inertia effects and consequently may yield
incorrect results, especially for higher values of the ratio of the thickness to length.
For example, in beam and arch analyses, the frequencies are overestimated for all
modes in shear weak situations and for the higher modes in shear stiff cases. In such
circumstances, the effects of shear deformation and rotatory inertia should be taken
into account. MR beam' theory allows for transverse shear deformation effects and
thus offers an attractive alternative to classical Kirchhoff-Love thin beam theory. The

accuracy and relative performance of the elements are verified.

A formulation is developed to produce a family of MR, curved, isoparametric and
variable thickness FEs which include shear deformation and rotatory inertia effects

for static and free vibration analyses of beam, arch and frame structures in 2D and
3D.

1.6 Optimization Method Considered in This Thesis

In this thesis, GA is adopted for the optimization process. Here, it is important to
note that GA requires no sensitivity analysis in the search method. The search
method depends solely on the objective function information and mimics the

‘survival of the fittest’ process found in nature.

Most mathematical programming algorithms assume that the design variables are
continuous, but in many practical problems in engineering like truss and frame
structures, the design variables are discrete. This is what makes GAs so useful as

they accept both discrete and continuous design variables.

1.6.1 Classification of structural optimization problems

Because of the wide variety of SSO problems encountered in practice, it is

convenient to consider classifications based on several criteria.



Classification based on mode of behavior: In the first classification, problems are

identified by the mode of behavior under consideration. Thus we have:

* Static optimization in which the structure is subjected to static external loads.
Here, the aim of structural optimization is generally to obtain the best geometric
shape for the structure so that it can carry the imposed loads safely and
economically.

¢ Dynamic optimization in which the structure is subjected to dynamic forces or
excitations of its supports. The aim of the structural optimization is generally to
avoid resonance by maximizing the difference between the forcing frequency (or

frequencies) and the natural frequencies of the structure, subjected to certain

geometric restrictions.

Classification according to type of design variable: Alternatively, the form of
structural optimization problem can usually be described by two types of design
variables:

* In sizing optimization, sizing variables may be used to define the thickness and
widths of rectangular or diameter of circular members or cross sectional areas of
the structural components.

e In shape optimization, geometrical or shape variables may be used to define the
structural geometry.

1.7 Software Developed in This Thesis

In this thesis, reliable, efficient and robust computer programs are developed to assist

structural engineers in designing structurally efficient forms and provide

considerable insight into the structural behavior. Five main computer programs have

been developed and verified using benchmark examples for analysis and

optimization:

e STATT deals with the static analysis and shape optimization of 2D and 3D
trusses.

e FREET deals with the free vibration analysis and shape optimization of 2D and
3D trusses.



* BAFS-GA deals with static analysis and GA optimization of 2D and 3D beam,
arch and frame structures.

* BAFF-GA deals with free vibration analysis and GA optimization of 2D and 3D
beam, arch and frame structures.

* DYNABAF deals with the transient dynamic analysis of 2D and 3D beam, arch
and frame structures.

All programs are written in FORTRAN 90 using double precision and run on
LINUX mainframe and personal computers.

1.8 Layout of Thesis

This thesis consists of eleven chapters. The contents of each chapter are now briefly

described:

o A literature survey for static, free vibration, transient analysis of truss, beam, arch
and frame structures and some optimization algorithms are summarized in
Chapter 2

» Chapter 3 covers various terms typically used for structural shape definition, the
automatic mesh generation process occurring before FE analysis, and allocation of
size/shape design information for structures.

e Chapter 4 describes the basic formulation for 2D and 3D static and free vibration
trusses. The matrix displacement methods adopted are described.

e Chapter 5 presents the basic formulation for the static analysis of beam, arch and
frame structures. The analyses are carried out using curved, variable thickness,
isoparametric MR FEs.

e Chapter 6 describes the formulation for the free vibrations of beam, arch and
frame structures. FEs based on curved, variable thickness, isoparametric MR
theory are adopted.

o Chapter 7 gives a detailed review of important aspects of the GA. The flow chart
of the GA optimization is explained.



Chapter 8 includes static optimization examples for 2D and 3D truss, beam, arch
and frame structures. Both shape and size optimizations are tested with continuous
and discrete design variables or a combination of them.

Chapter 9 includes free vibration optimization examples for 2D and 3D truss,
beam, arch and frame structures. Comparisons are made with previous works. .
Chapter 10 describes the transient dynamic analysis and gives some time
dependent analysis examples. The transient dynamic characteristics of optimized

structures are dealt,

Chapter 11 provides the conclusions of the present work and discusses the scope
for further work.



CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

Computer based structural analysis and optimization technologies have now passed
their thirtieth birthday. Over these last three decades, Structural Optimization (SO)
and FE analysis have been continually developed and improved so that these
techniques have matured to become useful design tools. We now provide a brief and
selective review of the literature on structural analysis and shape optimization which

are limited to the type of structures and conditions considered in this thesis.

2.2 Static Analysis of Structures

The development of computing techniques has made it possible to study structural
analysis problems with numerical methods, which are far more powerful than
analytical approaches. During the last four decades considerable advances have been
made in the applications of numerical techniques to analyze basic structural elements
as well as highly sophisticated structures in various fields of engineering. Among
these numerical procedures, the FE method is the most frequently used today for the
solution of structural problems. With the versatility of the FE method and the
availability of high-performance computers, extremely complicated and multi degree

of freedom problems can now be solved with high accuracy [1-3].

FE method basically consists of point-wise discretization for the satisfaction of
boundary conditions in terms of nodal values and interpolation of shape function, and
piecewise discretization to simplify the assumed trial solution. There are a few different
formulations for FE. The FE can be formulated based on the assumed displacement



field and the principle of the minimization of potential energy and it is called the
displacement element, which is the most common one used. If the FE formulation is
based on an assumed stress field and the principle of complementary potential energy, it
is called an equilibrium element. There is a third kind of elements, which is called a
mixed element. In mixed elements, force and displacement are the primary unknowns
and treated as field variables [1].

Trusses: Detailed treatment of the matrix formulation for the analysis of linearly elastic
trusses can be found in any text book [2-5]. Standard FE matrix displacement methods
are used in this thesis for 2D and 3D static analysis, such as those mentioned in
Chandrupatla and Belegundu [5].

Beams, Arches and Frames: The analysis of beam and arch structures is perhaps the
most widely studied class of problems in engineering literature. The analysis of
curved beams is quite complex due to the presence of bending stretching coupling
and, including the effects of shear deformation and rotatory inertia add to the
complexity. Many methods of analysis have been used to study the analysis of
curved beams. Closed form solutions for classical arch geometries under various
boundary conditions have been obtained to establish rough guidelines for the analysis
of complex arch structures [6]. Various structural analysis procedures based on
Rayleigh-Ritz, FE and differential quadrature element methods have also been used.

The FE approach has proved to be a powerful and widely applicable method for
complex problems encountered by designers and considerable research work has
been subsequently directed towards the improvement of solution accuracy and
versatility of application as well as computational efficiency. The question of the
choice of the proper FEs for the analysis of curved structures have been the subject
of numerous papers and many authors have devoted their efforts to it [7-10]. A
variety of new elements have been proposed based on different structural theories
(e.g. Kirchhoff-Love, MR theories), interpolation functions and formulation
procedures (e.g. assumed strain methods and hybrid/mixed methods) in order to

achieve a more accurate prediction of the structural response. The elaboration of the
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simple FE, which would give the correct results for the wide range of elements, still

remains the main goal of their work.

The development of FE for a curved beam has received considerable attention in

recent years. Before proceeding, we will briefly review more recent achievements

with particular attention to element derivations.

Analytical solution of MR straight and curved beam is certainly valuable for basic
understanding of analysis of frame (beam) and arch structures. There has been
much achievement in computational methodology for arch analysis in the past two
decades. Shape functions are formed from the product of two-dimensional
polynomials and appropriate basic functions, which ensure the satisfaction of
piecewise boundary geometric conditions [14].

Lee and Sin [15] presented a formulation of a curved beam element with 3 nodes
of curvature to eliminate the shear/membrane locking phenomenon. The element
is based on curvature so that it may represent the bending energy fully, and the
shear/membrane Strain Energy (SE) is incorporated into the formulation by the
equilibrium equations.

Litewka and Rakowski [8] derived the exact stiffness matrix for a thick, curved
beam element with constant curvature. The plane two-node six degree of freedom
element was considered in which effects of flexural, axial and shear deformations
was taken into account. The analytical shape functions describing radial and
tangential displacements as well as cross-section rotations were found in the
algebraic trigonometric form.

Two node (three degree of freedom per node) FE for curved shear deformable
beams was developed by Friedman and Kosmatka [16]. The element formulation
is based on shape functions that satisfy the homogeneous form of the partial
differential equations of motion which renders it free of shear and membrane
locking.

FE methods for Timoshenko beam, circular arch and MR plate problems were
discussed by Cheng et al. [17]. In this study, to avoid locking phenomenon, the
reduced integration technique was used and a bubble function space was added to

increase the solution accuracy.
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The behaviors of MR arch element are usually very good and it is only in shear stiff
thin beams that real problem arise. In thin, displacement based elements, full
integration of stiffness matrices leads to locking or over-stiff behavior and reduced
integration process is required to overcome these difficulties [11].

Zhang and Di [18] presented accurate two-noded FEs which were derived from
the potential energy principle and the Hellinger-Reissner functional principle
respectively. They introduced the internal displacement parameters in developing
a high-order related displacement-rotation interpolation field.

Chapelle [19] defined an approximation procedure based on a discretization by
linear Timoshenko beam elements for arbitrary three dimensional rods and
established optimal error estimates independent of the thickness, thereby proving
that shear and membrane locking was avoided.

A shear-flexible three-noded curved beam element based on coupled displacement
field interpolation is proposed by Raveendranath et al. [20]. The shear flexibility
was based on Timoshenko beam theory and the element has three degrees of
freedom.

The plane two-node curved beam FE with six degrees of freedom was considered
by Litewka and Rakowski [8]. Knowing the set of 18 exact shape functions their
approximation was derived using the expansion of the trigonometric functions in
the power series.

Kim and Kim [21] showed the use of nodeless degrees of freedom in developing a
highly accurate, locking free hybrid-mixed C(0) curved beam element. In the
performance evaluation process of the field-consistent higher-order element, the
effect of field consistency and the role of higher-order interpolation on both
displacement-type and hybrid-mixed-type elements were carefully examined.

The effect of shear deformation on deflection and shear deformation together with
rotatory inertia on natural and cross over frequencies of curved beams were
obtained using a cubic linear beam element having 4 degrees of freedom per node
by Krishnan and Suresh [22].

All the above-mentioned studies have been successfully applied to achieve locking

free elements with different levels of accuracy. Most of the formulations dealt with
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two or three noded curved beam element. It has been noticed that higher accuracy of
some of these elements is at the cost of more complex mathematical formulations.
The literature review indicates the need to develop simpler and more accurate curved
beam elements which can handle both straight and curved situations as well as thick,

thin and variable thickness cases.

Initially, when FE based models were first introduced, Kirchhoff-Love (or Euler-
Bernoulli) formulation were favored and strictly required C(1) inter-element continuity
although this condition was relaxed with non-conforming elements which had to pass
the patch test to ensure convergence. Subsequently, MR (or Timoshenko) formulations
came into vogue. Unfortunately, MR elements tended to lock or exhibit over stiff
behavior in shear-weak (e.g. thin) situations. Reduced integration [11] of the element
stiffness matrices helped to overcome such difficulties in many cases but introduced the
accompanying problem of mechanisms or zero (or low) energy modes which in turn led
to unreliable results. Over the years many researches have been carried out to improve
our understanding of such elements and indeed many new elements have been
developed. For example, assumed strain elements [12,13] avoid locking, contain no

mechanisms, are convergent and provide general good behavior.

The elaboration of the simple FE, which would give the correct results for the wide
range of elements, still remains the main goal of their work. In this thesis the variable
thickness curved beam element is considered. The structures are modeled using
linear, quadratic or cubic, curved, variable thickness, C(0) continuity MR FEs. These
belong to a family of elements introduced by Potts and Day [23] and subsequently
extended by Hinton and co-workers [14]. This element has over performance than
Kirchhoff-Love based FE. In this present study the shell element extended by Hinton

and his coworkers will be adapted to curved beam element.

2.3 Free Vibration Analysis

Truss, beam, arch and frame structures are quite common. Examples of these

structures abound in contemporary society and in engineering practice: multistory
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buildings, bridges, roofs, transmission towers and automobile chassis --- the list
almost endless. Our knowledge of the dynamic behavior of these structures and

components is vital for sound design.

The literature contains results of many FE studies of truss, beam, arch and frame
structures in free vibration situations. However, the author could find few references
in the literature to the FE based on MR beam theory for free vibration analysis of

variable thickness structures which may be curved in cross-section.

Studies which have been carried out on free vibration analysis of curved and straight

Timoshenko beams can be summarized as follows:

* Mou et al. [24] derived the exact dynamic stiffness matrix for the transverse
vibration beams whose cross-sectional areas and moment of inertia vary in
accordance to any two arbitrary real-number powers. This approach enabled most
beams to be modeled by just one element, and for beams having abrupt profile
changes or with very complex profiles.

* Rossi et al. [25] reported numerical experiments performed on vibrating
orthogonal beam grillages rigidly clamped at two adjacent edges. The first five
natural frequencies of transverse vibrations were determined by using a FE code
based on Timoshenko’s mathematical model. Dynamic stiffening was
successfully achieved in orthogonal grillages by judiciously introducing
discontinuities in the thicknesses of beam element.

e Comn et al. [26] proposed a new method for simply and systematically
constructing finite beam elements. The continuous model considered both rotary
inertia and transverse shear deformation.

e Howson and Jemah [27] presented a method for finding exact out-of-plane natural
frequencies of plane structures composed of curved Timoshenko beams. The
required natural frequencies correspond to the roots of a transcendental eigenvalue
problem and any natural frequency could be obtained with certainty to any desired
accuracy, by using a modification to a well-established algorithm, which ensures

that no natural frequencies could be missed.
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The following studies mentioned about stepped beams, discontinuities in the

thickness and tapered beams.

Lee and Lee [28] presented a FE method based on the basis of a first-order shear
deformation beam theory for the analysis of free vibration of arbitrarily stepped
beams and investigated effects of shear deformation, step geometry, step
eccentricity and multiple stepped sections and also analyzed phenomenon of
dynamic stiffening.

Gupta [29] derived stiffness and consistent mass matrices for linearly tapered
beam element of any cross-sectional shape in explicit form. The variation of the
area and moment of inertia of cross-section along the axis of the element exactly
represented by simple functions involving shape factors.

Stanley and Ganesan [30] analyzed cantilever beams with discontinuity in the
thickness subjected to harmonic point load. A beam element with two degrees of
freedom per node was used for the analysis. Three beam models were analyzed
for possible reduction of maximum displacement and maximum stress by
choosing discontinuity at different locations.

Free vibrations of Bernoulli beams of bilinearly varying thickness were studied by
Laura et al. [31] by using the optimized Rayleigh-Ritz method, the differential
quadrature technique and the FE approach. The fundamental frequencies of
vibration of the structural elements as determined by the optimized Rayleigh-Ritz
method and the FE approach which showed good agreement while rather
considerable discrepancies were found when using the differential quadrature
technique was determined.

Houmat [32] presented variable order Timoshenko beam FE and formulated in
terms of a cubic polynomial and a variable number of trigonometric sine terms for
both the transverse displacement and the rotation of the beam cross-sections.
Advantage of this element is that highly accurate frequencies for Timoshenko

beams can be obtained with small number of system degrees of freedom.

Cross section variations of curved beams were studied by the following researchers:

Krishnan and Suresh [33] presented a two-node FE model with four degrees of
freedom per node that gives satisfactory results for static and free vibration
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behavior of arches of varied curvatures and thicknesses. The element developed in
Cartesian coordinates and Margurre’s shell theory was adapted to obtain bending-
stretching coupling,.

* Auciello and Rosa [34] presented a critical brief review of the free dynamics of
circular arches. A simple and efficient method was proposed, which allows one to
take into account quite naturally the cross-section variations and the presence of
flexible supports. Uniform arches with rotationally flexible and axially flexible
supports have been extensively examined, together with three different kinds of
stepped arches and two different arches of linearly varying cross-section.

* Morales [35] applied Rayleigh-Ritz based substructure synthesis method to the
dynamic analysis of multi-story framed structures. Because these structures were
multiply supported, it was necessary to combine a suitable kinematical procedure
with a constraining process.

* Lee et al. [36,37] proposed an efficient numerical method calculating vibration
mode shape derivatives of the proportionally and non-proportionally damped
systems with multiple eigenvalues. The method was found to be efficient in the
case of the multiple eigenvalue problems since the computer storage and analysis
time required were smaller than those of Dailey’s method.

* Baychev [38] presented formulas and algorithms for more efficient application of
FE method in the static and dynamic analysis of frames with variable
characteristics. Numerical formulation of the stiffness matrix, load vector and
mass matrix were presented for frame elements with smoothly varying
geometrical and physical characteristics according to the arbitrary law. The
greater amount of input data for a single element with variable characteristics was

compensated by the less number of elements necessary for the structure modeling.

2.4 Transient Dynamic Analysis

This thesis is also concerned with the transient dynamic behavior of the optimum
structures subjected to dynamic loads. Dynamic means time varying and the

application and/or removal of the loads necessarily varies with time [39]. Moreover,
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the response such as resulting deflections, internal stresses, etc. of a structure

resisting such loads is also time dependent or dynamic in nature.

There are many different mathematical models to solve dynamic equilibrium

equations [3]. These methods are mode superposition and direct integration.

Mode Superposition Methods: Mode superposition analysis is ideally suited for
situations where the dynamic disturbance is confined to the lowest modes of

vibration system, and the duration of the disturbance is relatively long [40].

Direct Integration Methods: A direct integration analysis should be conducted in
situations when a large number of vibration modes must be included in response
calculations. This is generally the scenario for structures subjected to high-intensity,
short duration impulse type loading, such as shock or blast load. Finally, for
nonclasically damped systems or systems exhibiting any nonlinear characteristics a
direct integration analysis is required [3,40,41]. Numerical techniques can
fundamentally be classified as either explicit or implicit integration methods;
a) Explicit Methods

¢ Central Difference Method
b) Implicit Methods

e Newmark Family Methods

e Houbolt Method

e Wilson § Method

e Hilber, Hughes and Taylor c Method

Explicit Methods: The discrete multi degree of freedom system equilibrium
equations are a set of simultaneous ordinary differential equations with constant
coefficients. Therefore, any convenient finite difference expressions that
approximate the acceleration and velocities in terms of the displacements may be
used. However, only a small number of finite difference expressions would render an
effective solution scheme. One particular finite difference algorithm that has proved
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to be quite effective in these types of applications is the central difference method

(31

Implicit Methods: Focusing attention on the inertial class of dynamical elasticity
problems, implicit methods are attractive (although some analysts prefer explicit
methods). The implicit Houbolt method [42] was developed in 1950 and is one of the
earliest employed for the calculation of the structural response of an airplane
subjected to dynamic loads. It uses the concept of displacement difference
equivalents to approximate the velocity and acceleration components, and thereby
establishes a recurrence relation that can be used to solve for the step-by-step
response of the structure. In the Houbolt method, the generality and physical aspects
of the basic equilibrium are preserved. From a stability'an'd accuracy point of view, it
is unconditionally stable, second-order accurate, and is not suitable for higher

frequency dynamic problems. A disadvantage is the need to use a large historical
data pool.

In 1959, Newmark [43] introduced an implicit method of computation for the
solution of problems in structural dynamics. The algorithm assumes that the average
acceleration is constant over an integration time step. Belytschko and Hughes [44]
document the Newmark- S family of approaches which are either implicit or
explicit depending upon the choices of the two free parameters which control the
stability and accuracy of the algorithms. As an implicit scheme, the Newmark
method is unconditionally stable and second-order accurate. As an explicit scheme,

the Newmark method is only conditionally stable and second-order accurate.

The Wilson-6 method [41] is essentially an extension of the average acceleration
approximation in which the variation between time levels n and n+1 is assumed to be
linear. In particular, the Wilson-0 method assumes that the acceleration is linear
between t and t+6, with 8>1.0. It is indicated that when 6= 1.4 the obtained

solution is most accurate and stable [44,45].
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Park [46] developed a stable algorithm applicable for both linear and nonlinear
structural dynamic problems which retains good accuracy in the low frequencies and
strong dissipative characteristics in the high frequency regime. The Park method is
unconditionally stable and second-order accurate. However, the method requires a

large historical data pool.

Zienkiewicz and co-workers [47,48] described a different class of recurrence
formulae for the equations of motion using a weighted residual approach. Several
previously described algorithms were identified as special cases of these
formulations. The collocation methods generalize and combine aspects of the
Newmark and Wilson methods. The collocation methods can be adjusted to reduce to
either the Newmark or the Wilson methods and an analysis of these is contained in
Hilber and Hughes [49].

It has been long recognized that many basic problems of mechanics, including those
of vibration, are nonlinear. Although the linear treatments commonly adopted are
quite satisfactory for most purposes [3,40,41]. Contribution to the linear dynamic
analysis of structures have been made by Velestos and Ventura [50] Clough and
Penzien [51], Wilson and Itoh [52], Wilson et al. [53], Caughey [54], Ibrahimbegovic
and Wilson [55], Choi and Park [56].

Hence, a solution for dynamic response is commonly sought through the modal
transformation that employs a set of real mode shapes. Some possibilities for
generating a set of vectors for modal transformation are the Rayleigh-Ritz
approximations [51], exact undamped eigenvectors [52] or load-dependent Ritz
vectors [53]. Two other possibilities for the solution of the set of coupled modal
equations are a step-by-step procedure [57] and further modal transformation to the
uncoupled form by solution of the quadratic eigenvalue problem for the set of modal

equations [58].

Ibrahimbegovig and Wilson [55] proposed an integration algorithm, which produce
an exact solution for proportional damping and for loading that varies linearly within
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an arbitrary time interval. Choi and Park [56] developed a method, was based on
transformation of dynamic loads into equivalent static loads. This method seems

feasible for SO of dynamic systems.

In nonlinear dynamic analysis of structures the incremental equation of motions are
often solved using the Newmark method in conjunction with the pseudo force
method, which is reviewed in detail in Subbaraj et al. [59]. Kasimali [60] and Saka
and Hayalioglu [61] employed a method for the nonlinear response of an in-plane
frame with prismatic members, subjected to external loads applied at the joints. The
displacement restrictions are kept large enough to allow the frame to have

comparatively large deflections.

2.5 Optimization Algorithms

Analytical methods for solving SO problems have been used for a long time. During
the last 30 years, optimal structural design has received considerable attention. The
development of powerful computers and the implementation of efficient general
algorithms have stimulated renewed interest in this field, which is as old as structural
engineering [62-65]. One of the first treatments of the problem of selecting an
optimum shape of a structure is done by Zienkiewicz and Campbell [65]. They used
the FE method with node coordinates as design variables to find an optimum shape.
In the field of optimal design of structures, the main emphasis and most significant
progress have been SO in static and dynamic situations [63].

Many methods and algorithms have been developed for optimum design of structural
systems in the last three decades. Most of the methods deal with continuous design
variables and use mathematical programming techniques. In most practical design
problems, the design variables are discrete. This is due to the availability of standard
sizes and their limitations for construction and manufacturing reasons. A number of
methods have been reported for optimum deign of discrete structural systems [66,67]
In general optimization techniques used in structural engineering design can be
categorized into four distinct approaches: (1) mathematical programming; (2)
optimality criteria methods; (3) heuristic search methods (GA); and (4) evolution
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strategies. Several textbooks discuss these methods, among them Reklaitis et al. [68],
Vanderplaats [69], Arora [70], Brandt [71], Haftka and Gurdal {72}, and Adeli [73].
Review papers Vanderplaats and Thanedar [74], Schittkowski et al. [75], Arora et al.
[76], and Huang and Arora [77] also illustrate methods applied for mixed discrete-
integer, continuous variable nonlinear optimization for structural design applications
with the focus on problems having linked discrete variables. These methods as well

as the literature review are presented in the following sections.

2.5.1 Mathematical programming

The mathematical programming optimization algorithms make use of the information
supplied by the FE analysis and sensitivity analysis. However, there is no single
efficient method available for solving all optimization problems. Hence a number of
mathematical programming optimization algorithms have been developed for solving
different types of optimization problems. The most common mathematical
programming optimization methods used in SSO are: sequential linear programming
Zienkiewicz [65], Vanderplaats [69], sequential quadratic programming
Vanderplaats [69] and the method of moving asymptotes Svanberg [78].

Mathematical programming can be subdivided into linear and nonlinear
programming. The major characteristics of linear programming are that the objective
functions and the associated constraints are expressed as a linear combination of the
design variables. To apply linear programming techniques to structural optimization,
the relationship between the objective function and the constraints to the design
variables have to be linearized [79-81]. However, when a linear relationship is used

to model a nonlinear structural response, errors are inevitable.

Nonlinear mathematical model is developed for nonlinear unconstrained
optimization problems. The well-known Kuhn-Tucker conditions [82] provide the
necessary conditions for optimal solutions. Direct application of the Kuhn-Tucker
conditions is extremely difficult for most problems. The calculation of gradients and
the solution of the correlated nonlinear equations prohibit the direct application of
the Kuhn-Tucker conditions for most engineering situations.
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2.5.2 Optimality criteria

Optimality criteria methods are developed from indirectly applying the Kuhn-Tucker
conditions of nonlinear mathematical programming combined with Lagrangian
multipliers [70]. Optimality criteria methods are based on continuous design
variables. For the case where discrete variables are desired using optimality criteria
methods a two-step procedure is typically used. First, the optimization problem is
solved using continuous variables. Second, a set of discrete values is estimated by
matching the values obtained from the continuous solution. Optimality criteria
methods use a single cross-sectional property of a structural member as the design
variable. All other cross-sectional properties are expressed as a function of the
selected design variable. Optimization using optimality criteria methods have been
widely applied in engineering design [61,83,84].

Ding [62] reviewed numerical and analytical methods for SSO. Tadjbakhsh [64]
developed an algorithm which determines the optimum profile of an arch considering

the stability constraints. Zhou and Rozvany [85] used optimality criterion to optimize
structures.

Uzman and Daloglu [9] used optimality criteria method to develop an optimum
design of arch structures with uniform and/or varying cross section subjected to
displacement, stresses and minimum depth constraints. The optimality criteria
method was employed to obtain its solution which was reported to be quite effective
in solving nonlinear optimum design problems by Saka and Hayalioglu [61] and
Saka and Ulker [86].

Optimum design of frame structures including stability constraint along with stress
and displacement constraints has been reported by Barsan [87], Lin and Liu [83] and
Pezeshk and Hjelmstad [88] using optimality criteria methods and Karihaloo and
Kanagasundaram [89] using a non-linear mathematical programming method.
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2.5.3 Genetic Algorithms

GAs are an evolutionary optimization approach which are an alternative to traditional
optimization methods. GA are most appropriate for complex non-linear models
where location of the global optimum is a difficult task. It may be possible to use GA
techniques to consider problems which may not be modelled as accurately using

other approaches. Therefore, GA appears to be a potentially useful approach.

GA is a fairly new optimization technique based on the Darwinian survival of the
fittest theory. The method has been proposed first by John Holland in 1975 [90] at
the University of Michigan, but has not become popular until one of his graduate
students Goldberg in 1989 [91] applied it to solve a difficult problem.

John Holland was one of the first developers of artificial reproduction schemes. A
good introduction to the topic is found in his book Adaptation in Natural and
Artificial Systems [90]. Goldberg [91] has written an excellent survey text on GAs
which is highly recommended. A good survey article is found in Forrest [92].

Philosophically, GAs are based on Darwin’s theory of survival of the fittest. Since
then GA have been used in many science and engineering fields to successfully solve
optimization problems. A detailed information for GAs is given in references [90-
95]. GA represents a step forward in the optimization field because they are a “weak”
method.

The core characteristics of a GA are based on the principles of survival of the fittest
and adaptation and the ability to deal with discrete optimum design problems and do
not require derivatives of functions, unlike classical optimization. The advantages of
applying a GA to optimized design of structures include discrete design variables,
open format for constraint statements and multiple load cases [96]. A GA does not
require an explicit relationship between the objective function and the constraints.
Instead, the value of the objective function for a set of design variables is adjusted to

reflect any violation of the constraints.
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Many research works have been recently reported for the solution of SO problem via
GAs. Optimization using GAs have been successfully applied to structural design by
Goldberg and Samtani [97], Lin and Hajela [98] and Rajeev and Krishnamoorthy
[94]. Hayalioglu [93] presented a GA which is applied to the optimum design of

geometrically non-linear frames made of an elastic-plastic material.

Adeli and Cheng [95] presented optimization of space structures by integrating GA
with the penalty function method. Subsequently, Adeli and Cheng [95] presented an
improved augmented Lagrangian GA for the optimization of space structures, where

the problem of the trial-and-error selection of the initial value for the penalty

function coefficient is avoided.

2.5.4 Evolution strategies

Generally, evolutionary algorithms require more function evaluations than gradient-
based methods. The investigation of different techniques is important to speed up
these algorithms. The advantages of applying these optimization techniques are
discussed in many textbooks such as Arora [70], Brandt [71], Haftka and Gurdal

[72], Adeli [73], and Xie and Steven [99]. These advantages can be summarized as

follows:

e Some optimization techniques do not need any prior information about the

- objective function or constraint functions.

e The possibility and flexibility of dealing with complex structures under different
loading conditions and constraints,

o The ability of dealing with sections from standard catalogues classified as discrete
design variables.

¢ The capability of achieving more than one design solution.

* The flexibility of formulating the engineer experiences and skills into the design
optimization problem. For examples, the number of design variables, the linking
of the desjgn variables to the structural members, the acceptance of the design
obtained according to the practical experiences of the designer.
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During the last fifteen years there has been a growing interest in problem solving
systems based on algorithms, which rely on analogies to natural processes. The best-
known algorithms in this class include evolutionary programming, GAs, and
evolution strategies. Evolution-based [100] algorithms maintain a population of
potential solutions. Evolution strategies [101] are the application of combinatorial
optimization methods based on probabilistic searching. These algorithms have some
selection process based on fitness of individuals and some recombination operators.
Both evolution strategies and GAs imitate biological evolution in nature and combine
the concept of artificial survival of the fittest with evolutionary operators to form a

robust search mechanism.

When a gradient-based optimizer is used the most time-consuming part of the
optimization process is devoted to the sensitivity analysis phase, which is an
important ingredient of all mathematical programming optimization methods [102].
On the other hand evolution strategies, do not need gradient information and
therefore avoid performing the computationally expensive sensitivity analysis step
[103]). Furthermore, it is widely recognized that combinatorial optimization
techniques are in general more robust and present a better global behavior than
mathematical programming methods. They may suffer, however, from a slow rate of

convergence towards the global optimum.

Xie and Steven [99] has proposed evolution strategies optimization and some
examples of this method for problems with stress or frequency or stiffness
constraints can be found in [99,104].

2.5.5 Multi-objective optimization problem

In the practical optimization problems, usually more than one objective are required
to be optimized, such as, minimum mass or cost, maximum stiffness, minimum
displacement at specific structural points, maximum natural frequency of free
vibration, minimum structural SE while all the constraints are satisfied. The
constraints provide bounds on member stress, deflection, frequency, local buckling,

dynamic response, etc.
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This makes it necessary to formulate a multi-objective optimization problem, and
look for the set of compromise solution in the objective space. More and more design
problems can now be optimized using a variety of algorithms. Despite the
advancements in SO, a solution to an optimization problem involving a large number
of design variables and constraints is still less tractable from a computational view in
that the computational cost is a highly nonlinear function of the problem size. The
multilevel decomposition technique is probably a good solution to the difficulty
[105]. This technique decomposes the original optimization problem into a set of
sub-problems, and each of them can be optimized independently.

2.5.6 Other optimization aspects

Salajegheh [106] presented an efficient method for optimum design of frame
structures, using approximation concepts. A dual strategy in which the design
variables can be considered as discrete variables was used. A two level
approximation concept was used. In the first level, all the structural response
quantities such as forces and displacements are approximated as functions of some
intermediate variables. Then the second level approximation is employed to convert
the first-level approximation problem into a series of separable forms, which can be
solved easily by dual methods with discrete variables. In the second level
approximation, the objective function and the approximate constraints are linearized.
The objective of the first level approximation is to reduce the number of structural
analyses required in the optimization problem and the second level approximation

reduces the computational cost of the optimization technique.

Saka and Kameshki [107] presented an algorithm for the optimum design of
unbraced rigid frames, which takes into account the non-linear response of the frame
due to the effect of axial loads. It considers the sway constraints and combined stress

limitations in the design problem.
In the traditional optimization algorithms, constraints are satisfied within a tolerance

defined by a crisp number. In actual engineering practice, constraint evaluation

involves many sources of imprecision and approximation. When an optimization
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algorithm is forced to satisfy the design constraints exactly, it can miss the global
optimum solution within the confine of commonly acceptable approximations. Sarma
et al. [108] presented extending the augmented Lagrangian GA of Adeli and Cheng
[95] a fuzzy augmented Lagrangian GA for optimization of steel structures subjected
to the constraints of the AISC allowable stress design specifications taking into

account the fuzziness in the constraints.

To address the problem of non-convex solution spaces, which arise due to dynamic
response constraints, researchers [109] have investigated the application of stochastic
search techniques. The uses of stochastic optimization algorithms pose challenges for
the incorporation of approximation concepts in design space search. This is primarily
due to the fact that stochastic search techniques do not make use of line search
procedures, and hence conventional approximation concepts, which are valid only
for small changes, become useless for predicting the modified design characteristics.
Recent research [110] at the Computational Engineering and Design Center has
focused on the development of algorithmic frameworks for integrating
approximation concepts with genetic search procedures. However, to fully exploit
the potential of such frameworks, there exists the requirement for approximation

concepts which are valid for large changes in the design variables.

Nair et al. [110] proposed a reduced basis approximation method for approximation
of eigenvalues and eigenvectors. The terms of a local approximation based on Taylor
or matrix power series were used as basis vectors for approximating the perturbed
eigen parameters. For each eigenmode, a reduced eigensystem was generated by
using the baseline eigenvector and the first-order approximation term as Ritz vectors.
The solution of the reduced eigensystem laid to two possible estimates of each

perturbed eigenvalue and eigenvector.
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CHAPTER 3

STRUCTURAL SHAPE DEFINITION AND AUTOMATIC MESH
GENERATION FOR FRAME AND ARCH STRUCTURES

3.1 Introduction

The spline and mesh generation techniques discussed herein, are used for the
subsequent FE analysis. The spline and mesh generation process is coupled together
as an automatic pre-processing routine, incorporated within the FE analysis code. It
serves to alleviate the laborious, monotonous task of data preparation and subsequent

mesh generation, and also helps to reduce the risk of errors in initial input data.

The mesh generator is capable of generating two, three or four noded elements of
specified size, along a cubic spline. The merits of using parametric representations
such as cubic splines become obvious when considering an arch built up of multiple
elements. Typically under a Cartesian approach, numerous coordinates need to be
specified for each element. Parametric spline representation simplifies the curved
member definition by implementing a coordinate system independent of the shape of

the curved structures [111].

Another advantage of using cubic splines is the ability to interpolate pressure loading
and thickness information from spline key points to mesh nodal points. Cubic splines
are the typical and most favorable choice for representing curved shapes due to their
simplicity and numerical stability. The three main types of cubic spline curves are:
Ferguson, Bezier, and cubic-B spline curves. The difference between them are shown

in Figure 3.1 and described in further detail in the chapter.
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(a)

(b)

(©)

o  end points of curve

e control points of curve

Figure 3.1 Three equivalent representations of a cubic spline curve:
(a) Ferguson representation, (b) cubic Bezier representation and
(c) cubic B-spline representation

Among the various types of curves used for representing a shape, cubic splines are
the most popular. The cubic spline is the spline of lowest degree with C(2) continuity
which meets the needs of most problems arising in practical applications [112].
Further, it is numerically simple to handle and stable. Cubic spline curves (Ferguson
curves), cubic B-spline curves and cubic Bezier curves may be regarded as certain
varieties of the cubic spline functions. The basic difference is that in the Ferguson

representation, the cubic spline curve is expressed in terms of the position
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coordinates of a set of points and their corresponding tangents, whereas in the Bezier
and B-spline representations the curve is represented in terms of control points of a
polygon. This scheme is particularly advantageous when fitting of the curve is to be
done interactively. The iterative process of spline fitting involves a first, initial curve
approximation via a control polygon. Adjustment of the curve shape is then done in
subsequent iterations by updating the positions of the polygon vertices, and
sometimes the addition of new polygon control points. After a small number of
iterations, an accurate curve representation is made. It should be noted that all three

methods produce the same curve when fitted through a given set of data points.

To avoid the time consuming iterative procedure mentioned above, a modified cubic-

B spline curve representation was implemented within the FE code.

In this chapter a flexible system of representation is used which offers facilities for
both interpolation and interactive manipulation. This can be achieved by the process
of inverse design i.e. for a given set of points on the curve, the corresponding
vertices of the control polygon are found. Using this procedure the exact location and
number of vertices of the polygon can be determined and, furthermore, the cubic
spline curve passes through the given set of points. In the next section a brief
mathematical description of the three equivalent representations of parametric cubic
curve segments will initially be given to avoid any confusion arising from the
terminology. Later, the method adopted in the present work will be described with
details regarding the computer implementation. In the following section, the
integration of automatic mesh generation and the shape definition procedures will be

described.

3.2 Structural Shape Definition

This section defines the differences between the Bezier, Ferguson and interactive

cubic-B spline representations for a simple example. For the curve of end points 7,

to P, (see Figure 3.1), with the parametric coordinate 4, which varies along the curve
segment from 0 to 1 respectively, and for a curve of 4 points, 4 is evenly distributed
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as 0, 0.333, 0.666, 1. The position vector of any point on the curve is p(h), and can

be represented for cubic splines as:
[p(7)]" = HRM (3.1)
H=[" h h 1] 0<h<1 3.2)

The R and M matrices vary for each of the three cubic splines, and are now

classified.

For the Ferguson cubic spline segment shown in Figure 3.1(a)

2 -2 1 17 p(0)”
-3 3 -2 -1 T
R=Rfer= and M=Mfw= p(D) 0<h<1 (33)
0 0 1 0 p'(0)”
1 0 0 0 p'()’

where the position vectors p(0) and p(l) have associated tangents p’(0) and p’(l)
at h=0 and & =1 of the curve at the starting and end points of the curve segment

respectively. This representation is simple and suitable for numerical computation.

For the cubic Bezier spline curve shown in Figure 3.1(b)

-1 3 -3 1 s

3 -6 3 0 e’
R=R, = and M=M, =|" 0<h<l (34
bez Y 2 0 0 bez cg (3.4)

1 0 0 O cl

where ¢,,¢,,¢, and ¢, are the position vectors of the control vertices C,,C,,C, and
C, of the polygon representing the curve. It can be readily observed from Figure
3.1(b) that for the cubic Bezier curve, vertices C, and C, coincide with the

parametric positions # =0 and 4 =1 (start and end points) respectively.
The cubic B-splines R and M matrices follow the same logic as for the Bezier curve,

with control vertices By, B), B>, B3, having respective position vectors by, b1, b, bs.

In this case however, vertices By and B3 do not coincide with the curve end points.
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-1 3 -3 1 bf,'

113 -6 3 0 b’

R=R,=- d M= =| !
25l 0 3 o an M, b§' 0<k<1l (3.5

1 4 1 0 b§'

3.2.1 The cubic B-spline representation

For the shape definition of structures we have adopted the B-spline representation of
the cubic spline curve, which is represented by Eq (3.5). Joining the end points of

vectors by,...,b; forms the B-characteristic polygon. All the points on the B-spline

curve lie within the convex hull of the corresponding B-characteristic polygon.

The tangent at any point on a cubic B-spline curve can be computed using the

expression
p'(h)=[3k* 2h 1 OIR,M, 0<h<l1 (3.6)
and the curvature at any point on a cubic B-spline curve can be computed using
p"()=[6h 2 0 OR,M,  Oshs<l G.7)
The following relations can be easily derived from the above equations for a cubic B-

spline curve segment and are very useful for manipulation and computer

implementation of shape definition [113].
p(0)=1/6(b, +4b, +b,) and p(1)=1/6(b, +4b, +b,)
p'(0)=1/2(b, —-b,) and p'(1)=1/2(b, —b,) '
P'0)=®,-b)+({,~b) and p’()=(b,~b,)+(b,-b;)  (3.8)

All these relations have a geometrical interpretation. For example, consider Figure

3.2, which shows some of the geometrical features of the cubic B-spline curve

segment mentioned above. The starting point Po is on the median B,B; of the
triangle B,B, B, and the tangent vector p’(0)at this point is parallel to the side
B, B, of the triangle and the magnitude of BB, is twice that of p'(0). A similar

geometrical characteristic can also be described for the end point Py.
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Figure 3.2 Geometrical properties of the cubic B-spline representation
3.2.2 Terminology

At this stage it is convenient to define certain terms, which will be used frequently in
this thesis. The profile of typical structures is shown in Figure 3.3 and is formed by
an assembly of segments. Further each segment is formed by an assembly of sub-
segments passing through certain key points all of which lie on the midsurface of the
structure. Each subsegment is a cubic spline curve and spans between two adjacent

key points within a segment. Some key points are common to different segments at

their points of intersection.

@

@ Segments 4_}

® Keypoinis

Figure 3.3 Representation of structural geometry of arch and frame structures
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3.2.3 Computer implementation

Consider a cubic spline segment passing through a set of representative key points P,
which lie on the midsurface of the curved structure and whose position vectors are
p,where i =1,2,....k; see Figure 3.4. To represent this structure midsurface using B-

splines we can make use of the relations in Eq (3.8). Thus we have a system of linear

algebraic equations of the form
b,,+4b, +b,, =6p, (i=12,.,k) (3.9
in which b, is the position vectors of the control vertices B; of the polygon and p, is

the position vectors of the points on the curve segment.

B i+1
Bl f’/.\B 1+2
/‘1 Pi+l ‘.\\
/ /B AN\
c,"/ ‘\".\
‘ Y
/ \ 2
® 3
B.e¢

Figure 3.4 A cubic spline segment passing through a set of key points and the
associated control points

The cubic spline segment is formed by an assembly of several subsegments. The first
subsegment is determined by the polygon which has vertices B,,B,,B,, and B,. If
one more vertex B, is added then B,,B,,B; and B, determines the second

subsegment. Such an arrangement always ensures C(2) continuity between the
Jjunction of two subsegments the proof of which can be found in [113]. Thus adding

one more vertex adds another subsegment and so on. Therefore, the number of
vertices defining
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the curve is By, B,,..., B,, B,,,. The relation Eq (3.9) for the curve can be written in

matrix form as

b i _bf7 .
4 1 b? 6p;
1 4 1 b; |=| 6p]
1 4 1 b{-l 6P17c.-1
dl|b; | [ 7

(3.10)

where the values of @, b, ¢ and d and e and f can be determined from the end

condition specified for the segment and explained in Table 3.1. The unknowns for

the curve are the position vectors of the control vertices b, to b,,, and can be

determined by solving Eq (3.10) which are tridiagonal equations and hence

inexpensive to solve. To solve Eq (3.10) we require two additional pieces of

information, so that the system of equations may have a unique solution. This

additional information can be obtained by specifying the end conditions of the spline.

Once the position vectors b,,...,b,,, of the vertices are known the whole curve can

be defined, manipulated and all points on the curve can be evaluated using Eq (3.5).

Table 3.1 Values of g, b, ¢, d and the vectors e and f for different boundary

conditions
Variable name Type Qf boundary condition
Specified tangents at end points | Natural spline condition
e 3 +(1/3)p'(D} p()
f 3p(R) +(1/3)p' ()} p(k)
ad 3 I
b,c 1 0
bo b, ~2p’'(0) 2b, -b,
B+ b, —2p'(k) 2b, -b,_,
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3.2.4 Spline end conditions

To distinguish between “smooth” (i.e. continuous) and kinks between connecting
splines, two end conditions are considered. The end conditions have an important
influence in the matrix system of equation 3.10. End conditions can either be

“natural” or have some specified tangent and weight.

Natural Spline End Condition: If no influence of curvature is desired between
successive splines, the natural spline end condition is defined. This condition is also
known as C(0) continuity, and is imposed by specifying zero curvature at the
relevant end points, therefore relieving the need to specify tangent values. Examples

of structures with C(0) continuity include the edges of frame, between column and
beams.

End Tangent Condition: The majority of arch structures are smooth in profile. To
allow for this smooth transition in curvature between cubic splines (also known as
C(2) continuity) the end tangents are specified. The magnitude of these end tangents
at the spline ends can have a profound effect on the overall shape of spline. Faux and
Pratt [114] summarized this with an interesting example: for a parametric cubic

spline of R key points, the end tangents p’(0)and p’(1) can be represented by the

product of weighting factors £, and £, with unit tangents t(0) and t(1):
P'(0)=/4t0) and p'(D)=At() @3.11)

The significance of the tangent vector magnitudes is as follows. A simultaneous

increase of both f, and B, simply gives more “fullness” to the curve, whereas
increasing only f, causes the curve to remain close to the direction of t(0) for a
greater part of its length before turning into the direction of t(1). See Figure 3.5. For
large values of S, and B, kinks and loops occur. For cubic curves, a safe rule is to

ensure that the tangent magnitudes S, and S, do not exceed three times the chord

length [p(1) ~p(0)]. - -
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Figure 3.5 Significance of the specification of end tangents for a cubic spline curve

3.3 Structural Thickness Definition

The thickness of the structure is specified at some or all of the key points of the
structure and then interpolated using cubic splines with natural spline end condition.
This results in smooth structure shapes. The implementation of the thickness
definition in the present work is entirely independent of the shape definition to allow
flexibility in having different types of thickness variation. Thus it is left to the user's
discretion to use some or all of the key points for thickness interpolation. Moreover,
since the thickness values at different nodal positions are obtained by interpolation,
there is no need to use a cubic B-spline representation; in fact, the classical cubic

spline representation is used here only because of its simplicity.

Consider a segment of a curve, which is defined using & key points. The location of
the key points on the segments can be expressed in terms of the parameter / which is

the arc length of the curve from the starting point of a segment as shown in Figure
3.6. Assume that the key points are located at a distance ¢,,(i =1,...,k) from the

starting position. Since f(£) is a cubic spline function it is cubic in each subinterval
£, =>¢,_, (i=1,..,k). Further, if an associated set of thickness values f, (or any

other parameter such as pressure, temperature, etc.) is prescribed at the key points
then the values of the thickness at any distance ¢ from the starting point can be

evaluated using the expression [113]
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Figure 3.6 Cubic spline interpolation of thickness values along the curve segment
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for i=1,.,k-1 where ,a,,2, and a, can be determined by solving a set of

tridiagonal equations [113].

3.4 Automatic Mesh Generation
3.4.1 General requirements

Many frame and arch structures have complex cross-sections, which must be
discretized before any FE analysis can be carried out. Manual or semi-automatic
procedures are often inefficient, tedious and prone to errors. To make the process of
mesh generation automatic, efficient and reliable the following requirements should

be met:

e The mesh generation algorithm should be efficient and fully automatic.
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It should incorporate a convenient geometric representation of boundaries

and be able to represent complex shapes easily.

e It should be able to automatically generate meshes of different sizes over the
cross-section of the structure as specified by the user.

e It should possess a convenient means of prescribing the element size
variation over the domain.

e The input data to the mesh generator should be minimized.

e The mesh generator should be portable, so that it can be attached as a part of
the analysis module.

e It should be flexible; so that its potential can be exploited in other

applications (e.g. shape optimization or generation of bouﬁdary elements).

Here, the mesh generator is based on an approach similar to that of Peraire et al.
[115] and Peiro [116], which incorporates a remeshing facility to allow for the
possibility of refinement (or derefinement). It also allows a significant variation of

mesh spacing throughout the region of interest.

3.4.2 Algorithm for mesh generation

Assume that the cross-section of a structure surface is represented by a segment,
which passes through a set of k key points.

Mesh Density Definition: To control the mesh density or spatial distribution of
element size throughout the region of interest, it is convenient to specify the mesh

density J,at a sequence of & key points in the structure. At the initial stages of the

analysis mesh density values given at the two end points of each segment will be

sufficient if only a uniform or a linearly varying mesh density is required.

Discretization of Segments: Based on the prescribed mesh density, the profile of the
structure is discretized into a series of straight elements (linear) or curved (quadratic
or cubic) elements. A brief description of the algorithmic steps involved in the mesh

generation procedure is now presented.
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Step 1 Find the arc length coordinate £, of the key points at which the mesh density
d,is specified by making use of the values of the 4 coordinate at those key points
(which is either 0 or 1) and relation Eq (3.5).
Step 2 Evaluate the inverse mesh density function s(¢),

s(¢), =1/6, i=L..,k (3.13)

at the key points which represents the concentration of elements along the length of

the curve.
Step 3 Construct a piecewise linear spacing function ¢(¢) along the length of the
segment using

(&), =P(L,) +0.5¢(s(£,) +s(£,.)AL,, i=2,.k (3.14)
in which the value at ¢(¢,)=0and AL, =(¢,-¢ ).
Step 4 The number of elements n, into which the structure midsurface is divided is
taken as an integer value of the spacing function at the last key point i.e. ¢(¢ )
Step 5 The position and arc length coordinate of the nodes £,,(i =1,...,n, +1) to be

generated along the curve is then determined from the number of points and the
spacing function by solving iteratively

#)=i (i=1,..,n,) (3.15)
The first node lies at £ =0 and the last node at /=L .

Step 6 The number of nodes n, for the linear elements generated is equal to
n, =n,+1. However, if higher order elements are to be generated then additional
internal nodes are equally spaced and the number of nodes is equal to n, = (2n,+1)
for the quadratic element and n, = (3n, +1) for the cubic element.

Step 7 From the known values of £, of the nodes, the % coordinate of the nodes is

evaluated using an iterative procedure.

Step 8 Once the & coordinates are known, the x,,x,,x, coordinates (Note that
X,,X,,%, correspond to coordinates x, y and z in the analysis) of the nodes, the

tangent values and the curvature values at the nodes can be evaluated using the
relations Eq (3.5) to (3.7).
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Steps 1 to 8 are repeated for every segment. The mesh generation procedure is
illustrated graphically in Figure 3.7.
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Figure 3.7 Generation of nodes along the length of the segment

In the mesh generator the following additional features have been incorporated:
* The loading and boundary conditions are automatically updated after every
remeshing.
» If desired the mesh generator gives the values of £ and /4 coordinates at every
node. This information is especially useful in sensitivity analysis for shape
optimization of structures. In addition this information is useful where

graphic visualization of geometry, mesh etc. are necessary.

3.5 Shape Definitions and Mesh Generation in Structural Analysis

The above tools have been implemented into the program and have been extensively
used in subsequent chapters for the structural analysis of variable thickness of arches
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and frame structures with varying loading and boundary conditions. The real
advantage of using the present tool lies in the generation of meshes (either uniform
or graded) even for complicated cross-sections by just specifying the location of only
a few key points and the desired mesh size. The whole process of shape definition
and mesh generation is computationally inexpensive and provides the user with

greater flexibility when deciding on the type of element, mesh density etc.

However, it should be noted that the cubic spline represents the real geometry only in
an approximated form. Therefore, in some special cases, for example, the evaluation
of the convergence properties of the FE solutions, it is essential to carry out a
geometric correction of the evaluated nodal coordinates to ensure that all the nodes
generated lie exactly on the midsurface of the arch structure to be analyzed. Another
important aspect in the definition of the structural shape is the number of key points
used to define the shape of the structure. For curved structures, the more key points
used the better the representation of the middle surface of the structure.

3.6 Shape Definition and Mesh Generation in Structural Optimization

In SSO procedures the shape or the thickness of the structure is varied to improve the
structural performance. Since such procedures are iterative they should involve
automatic updating of shape and/or thickness variation as well as the mesh during the
optimization process. The shape or the thickness variation of a structure is modified
by the shape or thickness design variables. In the following section the various
approaches available for the selection of shape and thickness variables are discussed
as well as how the present tools developed for shape definition are exploited for the

purpose of optimization.

3.6.1 Shape design variables

The choice of design variables is a key factor in obtaining the optimum shape, since
it changes the character of the problem by changing the degree of nonlinearity of the
objective or constraint functions or by imposing additional implicit side constraints.

It is desirable to have a direct connection between the values of the design variables
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and the actual geometry. The following general approaches for design variables have
been used:

Nodal Coordinates: In early work on shape optimization the positions of the nodes
on the boundary were used as design variables; see Zienkiewicz and Campbell [65].
This approach is simple but leads to a large number of design variables.
Compatibility and slope continuity between adjacent nodes cannot be achieved

easily, often leading to unrealistic shapes and designs.

Polynomials: Polynomials have been used in shape design problems to represent the
shape of the structure; see Bhavikatti and Ramakrishnan [117]. The coefficients of
these polynomials are taken as design variables. Use of polynomials for shape
representation can obviously reduce the total number of shape variables, but may

result in an oscillatory shape due to numerical instability associated with higher order

polynomial curves.

Control Points of Splines: Braibant and Fleury [118] use Bezier and B-spline curves
for shape representation in a method they call the design element technique. The
region of the structure to be modified during the optimization process is defined by
one or more design elements, which contain a part of the mesh. Blending functions
are employed to determine the coordinates of any points inside the design element or
on the boundary. The shape variables are the position vectors of the points, which
control the curves, which define the design element. Ramm et al. [119] also use this
approach which leads to a considerable decrease in the number of design variables
and has been found to give more realistic shapes. This approach is general, but the
number of design elements used to represent the structure and the degree of the curve
affects the performance considerably [118].

Present Approach: In the present approach the position vectors of the key points
used to define the structure midsurface are taken as design variables. The midsurface
of the structure to be optimized is represented by cubic spline curves passing through

key points on the structure. This procedure has been extensively discussed earlier.
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The position vectors of the key points chosen to be the design variables can be
selected at the discretion of the user. Therefore the design variables are no longer the
position vectors of the control points as in reference [118] but the position vectors of

the key points, which are used to define the structure midsurface.

Figure 3.8 shows a general curve which passes through position vectors p ;, Where

P, =[p. p,I" (3.16)
Pl+l
m (a)
b{+2

(b)

O Key points \]
b i+4

e Control points

Figure 3.8 Alternative approaches for selection of design variables: (a) position
vectors of the key points as design variables and (b) position vectors of the control
points as design variables.

The position vector of the vertices or control points of the polygon defining this

curve are designated b,. Therefore in the present approach the position vectors p,

are taken as design variables instead of the position vectors of the control vertices

b,. We can now define the shape variables s as

s=[pxl pyI sz pyZ ..... ‘pm pyn]T (3°17)



‘ where the position vectors of the point P; are defined with respect to the Cartesian
coordinate system. Choosing the position vectors of the key points as design
variables has the following advantages:

¢ the number of design variables is considerably reduced; and

o the positions of the design variables can be selected with convenience even

for complex shapes.

The shape design variables can be expressed either in a Cartesian or a polar

coordinate system. Figure 3.9 shows an example of shape variables adopted in the
present work.

Figure 3.9 Typical shape design variables used in the present work
3.6.2 Selection of thickness design variables

In previous research work on structures only uniform or piecewise uniform thickness
variation has been allowed (see Mota Soares et al. [120]). This over constrains the
optimization process and does not give the greatest opportunity for weight reduction.
In this work, the use of cubic splines for thickness distribution along the structures
gives greater flexibility and a smooth variation of thickness. A similar approach to
that adopted for the shape design variables is used in which the thickness values at

some key points are specified as design variables.
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To demonstrate the different variations of thickness that can be achieved consider the
case of a beam shown in Figure 3.10(a), which is modeled using one segment and

four key points.

@

®)

©

Figure 3.10 Thickness design variables: (a) geometric definition (b) linear thickness
variation obtained by using 1 and 4 as master variables and 2 and 3 as slave variables
and (c) cubic thickness variation obtained by using 1 to 4 as master variables

For example, to obtain a linear thickness variation, the interpolation is performed
using the thickness values at key points 1 and 4 and the thicknesses ¢; and #, are taken
as design variables. Figure 3.10(b) shows the linear thickness variation that can be
obtained. The design variables in this case can be defined as

s=[t, t,J ' (3.18)
Similarly, to obtain a cubic variation of thickness, the thicknesses at three or more
key points are considered for interpolation. Figure 3.10(c) shows the cubic variation
of thickness obtained by considering all the key points for interpolation. The number

of design variables in this case can be defined as

s=[t, t, ¢ ¢t]J (3.19)
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3.6.3 Linking of design variables

Sometimes for practical reasons and computational efficiency it is necessary to link
the design variables at two or more key points to satisfy certain requirements.
Linking of design variables also has the following main advantages:
e the number of design variables is reduced considerably;
e the movement of a whole segment (as a rigid body) can be treated with a
single design variable; and

e symmetry of shape can be easily achieved.

Linking of Shape Design Variables: Figure 3.11 shows the cross-section of an arch.
The shape design variables are linked by the relations s, =s,, 5, =5, and s, = s by

which symmetry of shape is obtained. Further the number of design variables is

reduced from seven to four. However, if no symmetry is required then linking is not

necessary.

51 =5,
§2 =56

83 =85

"Figure 3.11 Linking of shape design variables of an arch

Linking of Thickness Design Variables: To demonstrate the linking of thickness
variables consider the case of a beam modeled using two segments and three key

points. In this particular case each segment has two key points. It is convenient to use

the notation ¢ for each thickness variable in which the subscript i refers to the key

point and the superscript (j) refers to the segment. Thus, for example, for the plate in
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Figure 3.12(b) we have ", 1{”, +{” and £{” where " implies the thickness at key

point 2 associated with segment 1 and #{” means thickness at key point 2 but

associated with segment 2. In practice, these two quantities can be identical or totally
different.

(@) * 5+— ————————— 3+ Geometric definition

(b) '
—_— — M) _ ) 4(2) _ 4(2
? hg) 3 0 =8, =1?

Figure 3.12 Linking of thickness design variables: (a) geometric definition, (b)
piecewise constant thickness variation and (c) piecewise linear variation

i. Piecewise constant variation: To obtain piecewise constant thickness variation
across each segment the thickness variables have to be linked where linking here
implies equating different thickness variables. Equating ¢t =1, #? =t® gives a
piecewise constant thickness variation as shown in Figure 3.12(b). The number of
design variables is equal to two so that

s=[t" BT (3.20)

ii. Piecewise linear variation: Similarly, by imposing the condition t{’ =¢? a
piecewise linear thickness variation is obtained across each segment. See Figure
3.12(c). In this case the number of design variables is equal to three so that

s=[t £ 27, (3.21)
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Figure 3.13 shows the design variables for a box girder bridge that has been adopted

in the present work. Such design variables can be used after linking as described
above.

]
[l
1
i
[
]
:
-

Figure 3.13 Typical design variables for a box-girder frame
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CHAPTER 4

STATIC AND FREE VIBRATION
ANALYSES OF TRUSSES

4.1 Introduction

Although the topic of truss analysis and optimization had been discussed frequently over
recent years, this chapter was included to illustrate the validity of analysis program,
which is used in GA optimization program. In this chapter, static and free vibration
matrix displacement methods are introduced and before any optimization was carried
out, each analysis program was tested against known benchmark solutions, to confirm
integrity of the analyses.

4.2 Static Analysis of One Dimensional Rod Elements

Given the 1D rod element shown in Figure 4.1 which has element local node numbers 1
and 2 with coordinates x{”and x{and nodal displacements u{”and u{” we will

demonstrate how to derive the stiffness matrix of the member.

The total potential energy for the general elastic body is
m= % [o7 eddx~ [u" F, ddx— [u" qaix Y u,P, @.1)
i
The quantities o and & are the axial stresses and strains in the element respectively, and
A is the cross-sectional area. The length £, body force F, and traction force g terms are

used. In the last term P; represents a force acting at point i, and ; is the x displacement

at that point. The summation on i gives the potential energy due to all point loads.
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Since the continuum has been discretized into FEs; the Eq (4.1) becomes
N=3U"-Y [, u"Fddx- [u"qdx-Y u,P,
e e - e i
where
ye =L [oTedax
2

is the element SE

1
[ o
l_—’ul I__—' U,

A\
~
/__

*®
i
(=)

Figure 4.1 Two-noded 1D rod element (showing local node numbers)

4.2.1 Element stiffness matrix
The SE U of each element may be written as

(e)q2
@_f [°T @
U = [ 4de

or

e, 1 e, e, e,
U® = L-)_z-[g( "PE®A@de

(4.2)

(4.3)

4.4)

4.5)

Note that the total SE for the whole assemblage may be written as the sum of the

contribution from each element.

v=3Yvo3 Lﬂ%[e"’) P E® 494
e=l e=]
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Now let us assume that the axial displacement » has a linear variation over each

individual element, so that

u(x) = NOul® + NOu® @4.7)
where
N, = (@ - x)re@ and N, =x/4© 4.8)
or
N =(1-¢) and N =¢ (4.9)

where & = x/£ is a non-dimensional coordinate and where N and N are known

as shape functions and are illustrated in Figure 4.2.

1 Nl(e) Nge) 1

—

[T
—
e

Figure 4.2 Linear shape function for 1D rod element

Equation (4.7) may be written in matrix shorthand form as

ul® =N©@g® (4.10)

e N@ =[N©® N (4.11)

™ d@ =u® 4977 (4.12)
The axial strain in element e may then expressed as

@ =(_§_)m =;(1;)-Z—1; 4.13)
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so that from Eq (4.7) and Eq (4.13)
u(e)
£ =[-1/49 17497 "
U,
or
g(e) = B(e)d(e)

where

B9 =[B® B or [-1/49 1/29],

Thus the SE of element e may be expressed as
U(e) = _l_[d(e)]T K(e)d(e)
2
where the element stiffness matrix

K® = L BT E@OB® 4@ gp
€)

L5 (e)
_J‘l: 1/¢ ]E(e)[_‘l/e(e) l/g(e)]e(e)A(e)dg

RV
_(EA)“’ 1 -1
e ) [-1 1|

4.2.2 Force vector

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

Body Force: The element body force term _[uTF,,Adx appearing in the total potential

energy is considered. Substituting u(x) = N?»{® + N®u{® we have

[47F,ddx = 4F, [(NPu® + N{Pu®)dx

(4.19)

Recall that the body force F} has units of force per unit volume. In Eq (4.19), 4 and F,
are constant within the element and are consequently brought outside the integral. This

equation can be written as

[w" Fddx = d’{AFb IN‘(‘)dx}

AF, [N
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The integrals of shape functions evaluated by making the substitution dx = £,/2)dé
and Eq (4.9) into Eq (4.20). Thus the body force term in Eq (4.20) reduces to

1
[u"F,ddx=d" ﬁze-eeF,, {1} (4.21)
which is of the form
_[u’F,,Adx= arfe (4.22)
Thus, the element body force vector, £°, is identified as
1
=25 (4.23)
2

The element body force above has a simple physical explanation. Since AL, is the

volume of the element and F} is the body force per unit volume, we see that AL F,

gives the total body force acting on the element. The factor % in Eq (4.23) tells us that

this total body force is equally distributed to the two nodes of the element.

Distributed Load: The element distributed load term [u’qu appearing in the total

potential energy is now considered. We have

[#7adx = [(NOu© + N©OuP)qax (4.24)
Since the distributed load g is constant within the element, we have
Ndx
iurqu=d7 q[ ‘ (4.25)
q [N{dx
Thus, the element distributed load vector is given by
qf, |1
c=Le 426
== {1} (4.26)
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4.2.3 Assemble of equations

Element matrices K°,f; and q° have been obtained. After we account for the element

connectivity, the total potential energy defined by Eq (4.2) can be written as
= %Z[d@]f K“d® -d’q. @.27)
e=1

For equilibrium, IT must be a minimum for which the conditions are
oIl

5(1—,.- = i=1np (4.28)
This leads to the well known stiffness equation
Kd=f (4.29)
where
f=f +q (4.30)

4.3 Static Analysis of Two Dimensional Trusses

The derivation of stiffness along with the ultimate stress terms for a constant cross-
section truss element is now discussed. Standard FE matrix displacement methods were

used in this calculation, such as those mentioned in [5].

Equation (4.18) represent the stiffness matrix for a 1D rod element expressed in terms of
the end axial degrees of freedom 4 and »{”. In this section we derive similar
expression for truss members expressed in terms of degrees of freedom u(®, 42,
v and v;®. Whereas u7® and u® represent displacements in the x° direction,
1) and v{ represent displacements in the y° direction.

Now let us consider the rod element of Figure 4.3 which is lying at an angle &' to the

x°axis, where the x° - y° are global reference axes and the x—y axes are the local

axes of the rod [25].
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Y,y

—>» x°,u’

A

Figure 4.3 Global and local coordinates systems for a 2D truss element

For the point shown in Figure 4.3, it can be seen that,

u=u"cosa® +v’sing®
v=-u’sina® +v° cosa®
or in matrix form
u c s|{u®
v -5 cl{v®
or
0
Ul @)%
v v°
where
A@ = cosa® sinag®
-sina® cosa®

(4.31)

(4.32)

(4.33)

(4.34)

For the two-node 2D truss element, the relationship between local and global

displacement is given by
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u l(e) u f(e)

Vl(e) _[l“” 0] v{"‘”
- (e) ole)
0 A u;

vge) v;(e)

(4.35)

or
d@ =Tq°® (4.36)

where T is the matrix of direction cosine and 0 is 22 x 2 null matrix. Note that it can

be shown that

T =1, (4.37)

For the 2D truss element shown in Figure 4.4 the total potential energy II may be

expressed in the following form for static problems

II= %Z {[dO(e)]T T(e)TK(e)T(e)Tdo(e) _ [do(e)]T fa(e)}
. e=|
= Z {[dO(e)]T Ko(e)do(e) _[do(e)]Tfo(e)} (4.38)
e=l
where
1 0 -1 0
(e
0 0
K® = E) 0 0 (4.39)
4 -1 0 0
0 0 0 O

and where the vectors of nodal displacements and forces expressed in terms of the global

x° and y° axis may be listed as

d° =[u’ W u; v; oo uy, vo1,and

f=fa fn fa fno oo AR (4.40)
in which fJand fjare the applied nodal forces in the x° and y»° directions
respectively. “

From Eq (4.38) the truss element stiffness matrix may be written as
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c cs —-c* -cs
(e) 2 2
o) E4 cs s ~-cs -8
K° =(7—) : (4.41)
-¢® -5 ¢ cs
-cs -5 o5 s?
O’VO
yll
Y,V
x,u
] L] ,
(x3,52)

Figure 4.4 Two-noded 2D truss element

4.4 Static Analysis of Three Dimensional Trusses

Figure 4.5 shows a 3D truss element. Using the same concepts as those described in

Section 4.3 it can be easily shown that the element stiffness and mass matrices for a 3D

truss element may be expressed as

K.,(e) - a
~-a
in which
CZ
a= (%) Cc.C,
C.C,
where

(e)
a] (4.42)
a -
c.C, CC.
c: ¢, (4.43)
c,c, Ct
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C,=(x3-x))/¢
C,=(y; )2

C,=(z3-20)/¢

E=[(x; ~x0) + (5 = ¥0) + (25 - 27)* ] (444)
The global displacement vector for the 3D truss element can be written in the form
d°=[u; v w u; v; wy - oup ve, wol (4.45)
z°,w°
A

% .0 _o
19 V1323)

y,v

Figure 4.5 Global and local coordinate systems for a 3D truss element

4.5 Free Vibration Analysis of One Dimensional Rod Elements
For a rod element undergoing dynamic excitation, each element e experiences inertia
body forces 5 which has the form

b =-[, p A iide (4.46)
where p'® is the density of the element. A superposed (i ) implies differentiation with
respect to time so that the axial acceleration in the element may be written as

ii = NOd® + NPd® (4.47)
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If simple harmonic motion is taking place

d©@ = @i (4.48)
and

d©@ = —p?d@e'~ (4.49)

where @ is the frequency (in radians), i = V=1 and ¢ is time.

The potential energy of the inertia body forces for element e may then be expressed in

the form
Wi = [, ubde
= -0 [d9 T M@a@e™ ‘ (4.50)
where the mass matrix M for element e can be written as

M(e) = [N(e)]T(pA)(e)N(e)df
(e}

= [ [(1;5)](;»1)“’[(1—5) £10de

@2 1
=(PA6f) [1 2}, 4.51)

For simple harmonic motion the total potential of the assemblage may then be expressed
as

M= ZI_;. [[@@TKOT® - 2 [d0 ) MOT® ] 2o 4.52)

As before, for equilibrium, IT must be a minimum which, using condition Eq (4.28),
leads to the well known eigenvalue matrix equation for free vibration

K-o!M]d,=0 p=L..np  (453)
_ where M is the assembled mass matrix, EP is the p" mode shape and @,is the

associated frequency. For a representation with np nodes there will be np frequencies
and mode shapes. In the present studies the eigenvalues are evaluated using the subspace
iteration algorithm [3].
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4.6 Free Vibration Analysis of Two Dimensional Trusses

Equations (4.51) represent the mass matrices for a 1D rod element expressed in terms of

the end axial degrees of freedom #® and #{”. In this section we derive similar

expression for truss members expressed in terms of degrees of freedom u/®, y2®

2

W@ and v;. Whereas 4/ and u2® represent displacements in the x° direction,
v@and v{® represent displacements in the y° direction. Figure 4.3 shows a 2D truss

element,.

The total potential energy IT for trusses under inertia forces may be written as
= _;_ Z[ao(e) ]TKo(") a'a(e) eZM _ a)z Z[Ea(e) ]T Mo(e) ao(e) eZIm (454)
e=| e=l
The derivation of stiffness matrices and the vectors of nodal displacements expressed in

terms of the global x° and y° axis. Using the same concepts as those described in

Section 4.3 it can be easily shown that the element mass matrices for a 2D truss element

may be expressed as
M°© = [To(e) ]TM(e)TO(") (4.55)
where
2 010
M© = paL “0 201
6 1 0 2 0
010 2

M =m©@ (4.56)

4.7 Free Vibration Analysis of Three Dimensional Trusses

Figure 4.5 shows a 3D truss element. Using the same concepts as those described in
Section 4.6 it can be easily shown that the element mass matrices for a 3D truss element

may be expressed as
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2 00100
020010
(e)
0@ (pA€Y 10 0 2 0 0 1
M* = — 4,
( 6 ) 1 00200 (*:37)
010020
001 0 0 2

The global displacement vector for the 3D trusses element can be written in the form

4

d°=[u] v w uj vi wi e u?, vo, wel’

4.8 Example

The assemblage and solution processes and some simple benchmark examples are
illustrated in references. The topic of truss analysis had been discussed frequently over
recent years and there are a lot of known simple analysis techniques. Some analysis
examples are given in this chapter, and each analysis program was tested against known
benchmark solutions, commercial package programs, and controlled the validity and
accuracy of programs. Static and free vibration analysis programs of 2D and 3D truss
structures gives accurate results when compared with commercial package programs,
books and exact solutions.

4.8.1 Static analysis of two and three dimensional trusses
4.8.1.1 Three-bar two dimensional truss
Problem definition: The three-bar truss of Figure 4.6 is to be analyzed. A load of 20 kip

acts at 45° to the horizontal at node 4. Nodes 1, 2 and 3 are the locations of pin-jointed

static supports. Material properties for the truss are: Young’s modulus, £ =2.07x10®
Kip/in®, material density, p =1.01 b/in’. Cross-sectional areas of members 1, and 3 are

3.0 in?, and member 2 is 6.0 in?.
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Figure 4.6 Nodal and element numbering for three bar truss (a =b=c =100 in,
P=20kip)

Discussion of the results: Table 4.1 illustrates the displacements of point 4 in x and y
directions and it was compared with CME-Truss program. Close agreement between

results can be observed.

Table 4.1 Comparison of displacements at point 4 for three bar 2D truss

Displacements| Present CME-Truss

u (in) 3.22x107° | 3.22x10°®
v(in) -0.841x107% |-0.841x107¢

4.8.1.2 Four-bar two dimensional truss

Problem definition: The four-bar truss of Figure 4.7 is to be analyzed. Vertical download
point loads of 10 kip and 20 kip act on nodes 2 and 3 respectively. Material properties
for the truss are: Young’s modulus, E =1.0x10* kip/in?, material density, p=1.0
Ib/in’. Cross-sectional areas of members 1,2, and 3 are 0.006 in’, and member 4 is 0.008

in?.
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Figure 4.7 Nodal and element numbering for four bar truss

Discussion of the results: Table 4.2 illustrates the displacements of point 2 and 3 in x
and y directions and it was compared with CME-Truss program. Close agreement
between results can be observed.

Table 4.2 Comparison of displacements of four bar 2D truss

Point | Displacements | Present | CME-Truss
u (in) 0.0741 0.077
v (in) -0.2040} -0.200
u (in) -0.1441| -0.150
v (in) -0.8412| -0.860

4.8.1.3 Ten-bar two dimensional truss

Problem definition: The ten-bar truss of Figure 4.8 is to be analyzed. Material properties
for the truss are: Young’s modulus, E =1.0x10" kip/in?, and material density p=0.1

Ib/in’. Cross-sectional areas of members are 5.0 in?.
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Figure 4.8 Nodal and element numbering for ten-bar truss

Discussion of the results: Table 4.3 illustrates the displacements of points in x and y
directions and it was compared with CME-Truss program. Close agreement between

results can be observed.

Table 4.3 Comparison of displacements of ten bar 2D truss

Point | Displacement | Present | CME-Truss
| u (in) 0.4317 0.424
v (in) -1.7566| -1,900
) u (in) -0.4681| -0.476
v (in) -1.8325 -1,970
u (in) 0.3558 0.352
? v (in) -0.7853| -0.837
u (in) -0.3641| -0.368
* v (in) -0.8336/ -0.901
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4.8.1.4 Four-bar three dimensional truss

Problem definition: The four bar truss of Figure 4.9 is to be analyzed. Material
properties for the truss are: Young’s modulus, E =0.2x10° kN/m? and material density
p =1.0kg/m*. Two horizontal loads of 2.0 kN and 4.0 kN are imposed in the x and y-

directions at node 5, along with a 3.0 kN downward vertical load. Cross-sectional areas

of members are 0.001 m2.

Discussion of results: Table 4.4 illustrates the displacements of point 5 in x, y and z

directions and it was compared with SAP 2000. Close agreement between results can be

observed.

Table 4.4 Comparison of displacements at point 5 for four bar 3D truss

Figure 4.9 Nodal and element numbering for four-bar 3D truss

Displacements Present SAP 2000
u (m) 0.39916x10™* | 0.399160x10*
v (m) -0.525593x107{-0.525595x10™
w (m) 0.441348x10™ | 0.441346x10™
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4.8.1.5 Twenty five-bar three dimensional truss

The 25-bar 3D truss of Figure 4.10 is to be analyzed. Material properties for the truss
are: Young’s modulus, E =1.0x10*ksi, material density, p=0.1 Ib/in®, Nodes 7,8,9
and 10 are fully constrained, and nodes 1, 2, 3 and 6 are loaded with different loads

values see Table 4.5. Cross-sectional areas of members are 3.0 in’.

Table 4.5 Loading details for 25-bar truss

Toint| P, (o) | P, (1b) | P; (Ib)
1 | 1000 [-10000]-10000
2 | 0 [-10000{-10000
3 | 500 | 0 0
6 | 600 | O 0

Figure 4.10 Nodal and element numbering for 25-Bar 3D truss
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Discussion of results: Table 4.6 illustrates the displacements of points in x, y and z

directions.

Table 4.6 Displacements of 25 bar 3D truss

Point u (in) v(in) | w(in)

1 0.01313  {0.25929(-0.01411

0.01495 |0.25865(-0.02161
0.86335x107 [ 0.01726 | -0.06395
0.45629x10210.01784 | -0.06846
0.34359x107 {0.01633 | 0.04188
0.42620x107|0.01675 | 0.04683

A} Wl bl W N

4.8.2 Free vibration analysis of two and three dimensional trusses

4.8.2.1 Three-bar two dimensional truss

Problem definition: The three-bar truss of Figure 4.11 is to be analyzed. Material
properties for the truss are: Young’s modulus, E =2.0x10"'N/m?, material density,

p =7860.0 kg/m*, Nodes 1, 2 and 3 are the locations of pin-jointed static supports.

Cross-sectional areas of members are 0.001 m?.

| 10m 1 2.0m N

Figure 4.11 Nodal and element numbering for three bar truss
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Discussion of results: Table 4.7 shows the three lowest natural frequencies of three bar

truss. It can be seen that solutions compare very favorably with the solution obtained

using GS-USA [128].

Table 4.7 Natural frequencies of three bar 2D truss

Frequencies (Hz)
Mode
Present | GS-USA[128]|Ref. [112]
1 |528.529} 515.436 542.61
2 |785.117| 761.558 -

4.8.2.2 Nine-bar two dimensional truss

Problem definition: The nine bar truss of Figure 4.12 is to be analyzed. Material

properties for the truss are: Young’s modulus, E =2.0x10""N/m*, material density,

p =7860.0 kg/m*. Node 1 acts as a pin-jointed static support, while node 6 is free to

move in the x-direction. Cross-sectional areas of members are 0.2 m>.

6

4
3
1.0 m 2 3
1 4 @ 7
v @ @
S 6.0m 1 6.0m
- |

..

Figure 4.12 Nodal and element numbering for nine-bar truss

Discussion of results: The five lowest natural frequencies of nine bar are listed in Table

4.8. The results of the analyses compare very well with those obtained using GS-USA

[128] program.
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Table 4.8 Natural frequencies of nine bar 2D truss

Frequencies (Hz)
Present | GS-USA [128]
30.788 30.332
81.222 80.367
112.166 107.095
225.089 209.049
251.368 246.256

Mode

[V, TR SR VS R\ I

4.8.2.3 Three-bar three dimensional truss

Problem definition: The 3D three-bar truss of Figure 4.13 is to be analyzed. Material
properties for the truss are: Young’s modulus, E =6.7x10'"N/m?, material density,
p =2700.0kg/m>. Nodes 1, 2 and 3 are the locations of pin-jointed static supports.

Cross-sectionalv areas of members are 0.0004 m>.

Figure 4.13 Nodal and element numbering for three bar 3D truss



Discussion of results: Table 4.9 shows the first three modes of frequencies of three bar
3D truss. There is remarkably good agreement between the present results and those
obtained using SAP 2000 commercial program. Once again, this comparison clearly

indicates the accuracy of the present formulation.

Table 4.9 Natural frequencies of three bar 3D truss

Frequencies (Hz)
Present | SAP 2000
177.083] 178.752
2 |242.912( 245376
3 1328.620| 332.078

Mode
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CHAPTER 5

STATIC ANALYSIS OF TWO AND THREE
DIMENSIONAL STRUCTURES

5.1 Introduction

Considerable research effort has been directed towards the development of accurate
and inexpensive analysis procedures for structures in static situations. Most structural
analysis problems can be treated as linear static problems, which can provide most of
the information about the behavior of a structure, and can be a good approximation for

many analyses.

In the analysis of beams, arches and frames, structural engineers use mathematical
models which may or may not take into account the effect of transverse shear
deformation; two types of beam theory are widely used: Thin beam theory and thick
beam theory. The kinematic assumptions of these theories are:
1) Kirchhoff-Love (or Euler-Bernoulli) theory: the planes normal to the midline are
assumed to remain plane and normal; this is also called engineering beam theory
or thin beam theory. See Figure 5.1.
2) MR (or Timoshenko-Hencky) theory: the planes normal to the midsurface
remain straight, but not necessarily normal to the midsurface after deformation.
In other words, the normals undergo an extra rotation due to transverse shear
deformation. This theory is also called shear beam theory or thick beam theory.
See Figure 5.2.

MR arch theory is similar to Timoshenko beam theory. Only difference is that MR
theory can be applicable to the arch structures. Several benefits have accrued from the
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use of MR theory such as automatic inclusion of transverse shear deformation effects
and thus offer an attractive alternative to classical Kirchhoff-Love beam theory. It is
well known that displacement based MR FEs requires only C(0) continuity of the
displacements and independent normal rotations between adjacent elements. This
provides an important advantage over FEs based on classical Kirchhoff-Love theory
where C(1) continuity is strictly required.

82(X) = 6(X)

current configuration

S o

reference configuration

Reference
cross section

Figure 5.1 Euler-Bernoulli beam theory [11]

The behaviors of MR straight and curved (arch) beam element are usually very good and
it is only in shear stiff thin beams that real problems arise. In thin, displacement based
elements, full integration of stiffness matrices leads to locking or over stiff behavior and

reduced integration process is required to overcome these difficulties [11].

In the present study, the structures are modeled using linear, quadratic or cubic,
curved, variable thickness, C(0) continuity MR FEs. These belong to a family of
elements introduced by Day and Potts [23] and subsequently extended by Hinton and
co-workers [14]. This element has over performance than Kirchhoff-Love based FE. In
this present study the shell element extended by Hinton and his coworkers will be
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adopted to curved beam element. In the following sections, the fundamental theory of

FE formulation is presented.

normal to reference

) _,Ea//beamaxisX

normal to deformed

|_—"beam axis

direction of deformed
cross section

Figure 5.2 Timoshenko beam theory [11]

5.2 Planar Structures

In this section, we consider the basic formulation and associated FE idealization based
on the MR type models for linearly elastic analysis of variable thickness beam, arch
and frame structures.

5.2.1 Theory of structural matrix

Consider the MR curved beam element shown in Figure 5.3. The displacement

components u, andw,, are associated with movements in ¢ and n directions

respectively, expressed in terms of axes which are tangential and normal to the arch,
may be written in terms of global displacements u and w in the x and y directions as

u, =ucosa +wsine
w, =-usina + weosa 5.1

where o is shown in Figure 5.3. The radius of curvature R may be obtained from the

expression

ga __1 (5.2)
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Ol(+ve)

,Q(-—ve)

Figure 5.3 Definition of curved Mindlin-Reissner arch FEs

The total potential energy for a typical MR curved beam element resting on elastic
Winkler type foundation of modulus k£ shown in Figure 5.3 is given in terms of the
global displacements « and w and rotation 6 of the midsurface normal in the ¢n

plane by expression.

T(u,,w,.0) =1/2 [, 1 D,e,, +[6,17 Dy, +[e,17D,e, + kw?) e

_ (5.3)
- fug.de- [waq dt-[6,q,d0— (M8 + N, +%,)
where the membrane (axial) strain is given by the expression
du, w,
== e 5.4
&=t R (54)
or re-writing in terms of the global displacements
du aw
=—cosQ +—sina 55
T A 7 G-3)
The bending (flexural) strain or curvature may be written as
do
Ep =—— 5.6
b= (5.6)
and the shear strain is given as
aw, u
="t _p-2t 5.7
ST TR G-7

or

75



£, =—6—d—usina+‘;—jcosa (5.8)

dl
Also, note that the membrane, bending and shear rigidities have the form
D, =E4; D, = EI; D, =xGA (5.9)

where E is the elastic modulus, 4 is the cross-sectional area, I is the moment of
inertia, G is the shear modulus and « is the shear modification factor and is taken as

5/6 for an arch of rectangular cross-section.

Note that the displacement field vector u has the form

u=[u,,w,,0] (5.10)
and the corresponding distributed loading q may be written as
a={9.,9.-96]" (5.11)

in which the distributed forces are g, and g,, and the distributed couples g,,.

The loading in Eq (5.3) consists of é distributed pressure loading q, as well as couples
M, axial forces N or lateral forces Q applied at £ = £. Note that #,, W, and & are the

corresponding displacement and rotation values at ¢ = ¢.

5.2.2 Finite element idealization

Using n-noded, C(0) line elements, the global displacement parameters u, w and 6

may be interpolated, within each beam element by the expressions

u=2n:N,u,; w=iN,wi; 9=iN,.0, (5.12)

i=l i=l i=l

where u,, w, and 6, are typical nodal displacement degrees of freedom and N, (¢) is
the shape function expressed in terms of the natural coordinates & and associated with
node i which, for 2-noded linear elements, have the form
N, =12(-¢); N, =12(1+¢&) (5.13)
for 3-noded, quadratic elements’
N, =&/2(£-1); N, =(1-&);  N,=g2(6+1)  (5.14)

and for 4-noded, cubic elements
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N, =-9/16(£* -1/9)(&-1); N, =27/16(£* -1)(¢& -1/3);

N, ==27/16(£* -1)(£+1/3) ; N, ==9/16(&* -1/9)E+1)  (5.15)
These elements are essentially isoparametric and variable thickness so that
x=ZN,x, K y=ZNiy, ; t=ZN,.tI s b=ZN,.bi (5.16)

i=l i=1 i=l i=l
where x;, y,, t, and b, are typical coordinates, thickness and width of node i

respectively. Note also that the Jacobian may be written as

2 2V/2
J=£= & + ¥ s dl=Jdé (5.17)
ag |\o¢ o5
where
Ox 0N, 0y 0N,
—_= ) —X; =) —y (5.18)
o Fog ot ‘Fog”
Also
sina = ib—)l, cosa = &1 (5.19)
dé J aéJ
and
4N, _dN; 1 (5.20)
dat d&J
The axial strains ¢, may then be expressed as
€, = BdS (5.21)
i=l
where
B, = [(0N,/6f)cosa (3N, /8¢)sina 0] (5.22)
and
d; = [u,,w,,@i]r (5.23)
The flexural strain or curvatures &, can be written as
&, =y BdS (5.24)
i=l
where
B;=[0 0 -dv,/de] (5.25)
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and the shear strain ¢, is approximated as

g, = Bid; (5.26)
- 1=l
where
B = [—- (dN,/dl)sina (dN,/dl)cosa -N ,] (5.27)

Thus, neglecting point loads and couples, the contribution to the total potential from

. €lement e may be expressed as

e Sht 1 e ege c e e
o = ZZE[": ]TKijd} —Z[di I'f; (5.28)
i=l j=l fal
where the submatrix of the stiffness matrix K} linking nodes i and j has the form
K = L‘{B;DMB w +BLD,B, +BID B _}Jd& + [—;] (5.29)
where
k, k., O
K:]=|kp K © (5.30)
0 0 O
in which

l .
ku = [ KN,N, sin” & Jdg

k,, and k,, = —‘[:lkN,Nj sinacosa Jdé

Ky = [ KN,N, cos® a Jd¢ (5.31)
and the consistent nodal force vector associated with node i is written as
1 1 .
LN,qu cosa Jdé LN,qw sing Jdé 0 N
fi = _[:'N,qu sina Jd& |+ _[:lNiqw cosa Jdé |+ 0 + Q| (532
|
0 0 [Nag,ag| |m

To avoid locking behavior, reduced integration is adopted, i.e. 1-, 2- and 3- point
Gauss-Legendre quadrature is used for 2-, 3- and 4- noded elements respectively [14].
Note also that since the rigidities D,, D, and D, all depend on ¢ and since ¢ is
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interpolated within each element e from the nodal values ¢,, elements of variable

thickness can be easily accommodated in the present formulation.

5.3 Three Dimensional Frame Analysis

3D frames also called as space frames, are frequently encountered in the analysis of
multistory buildings. They can also be found in the modeling of the car body and the
bicycle frames. In this section, we consider the basic formulation and associated FE
idealization based on the MR type models for linearly elastic analysis of variable
thickness grid and frame structures. The elements used are based on Day and Potts
[23].

5.3.1 Theory of structural matrix

Consider the MR 3D frame element shown in Figure 5.4. Each node has six degrees
of freedom (as opposed to only three degrees of freedom in a planar structure). The
degrees of freedom numbering is shown in Figure5.4. For node i, u, v and w represent
translational degrees of freedom, while ,, 6, and 6, represent rotational degrees of
freedom in x, y and z axes. The element displacement vectors in local and global
coordinate systems are denoted as d’ and d respectively. These vectors are

d'=[' v v 6, 6, 6] d=[u v w 6, 6, 6,] (5.33)
The global displacements may be written in terms of local displacement as

d=d'T (5.34)

where T is the transformation matrix which is given in Appendix A,

The total potential energy for a typical MR space frame element is given as
(v, w.6.,6,,6,)=1/2 [(e, 1" D e, +[e,]D,z, +[e,]"D,¢, ) ¢

(5.35)
- I(u'q, + v’qy +w'q, )l - (Nu+ Qv+Q,w+T0, +M 6, +M.,0,)
where the membrane (axial) strain is given by the expression
du'
g =|—— 5 36)
-] <
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W

Figure 5.4 Local and global coordinates of Mindlin-Reissner 3D frame element

The bending (flexural) strain may be written as
8IJ = [8y 82]
the flexural strain in y and z axes are given as

do

2

de’
=- : §, =——=
7 dz' dy

The shear strain is given as

&=V 7oy Vel

the shear strain in x, y and z axes are given as

- 46, aw,
Ve =—

, av,
Yoy =—7r+0, Ve =—2—0
The axial, flexural and shear rigidities have the form

'

==

GAla
0 EI,

EI, 0
D, =[E4]; D,,=[ ]; D,=| 0 Gdla 0

0

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

where E is the elastic modulus, 4 is the cross-sectional area, I, I , are the moment of

inertia with respect to z and y axes, J is the polar moment of inertia, G is the shear

modulus and «is the shear modification factor and is taken as 5/6 for rectangular

cross-section.
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The loading in Eq (5.31) consists of a distributed pressure loading g, g 4. as well as
couples M,, M,, torque T, axial forces N or lateral forces ¥}, ¥, applied along the

member.

5.3.2 Finite element idealization

Using n-noded, C(0) line elements, the global displacement parameters u, and 8 may

be interpolated, within each beam element by the expressions

u=iN,u,; v=iN,v, ; w=iN,.w,;

i=l il i=l

6,=Y N8, 6,=N6,; 6,=3Ng, (5.42)

[=) i=l =1
where u,, v,, w,, 6,,, éﬂ and @, are typical nodal displacement degrees of freedom
and N,(£) is the shape function associated with node i which, for 2-noded linear
elements, have the form )

N, =12(1-¢); N, =1/2(1+¢&) (5.43)
for 3-noded, quadratic elements ‘ .
N, =£/2(&-1); N, =(1-8%); N =&20+1) (544
and for 4-noded, cubic elements
N, =-9/16(&* -1/9)(& - 1); N, =27/16(&* ~1)(¢ -1/3);
N, =-27/16(&* -1) (¢ +1/3); N, =-9/16(£* -1/9) (& +1) (5.45)

These elements are essentially isoparametric so that

x=3Nx: y=3Ny,; z=3Nz; h=SNh; b=3Nb (546)

i=al =1 i=l i=l i=l
where x,, y,, z,, h and b, are typical coordinates, thickness and width of node i

respectively. Note also that the Jacobian

1/2
_at |(axY (oY (a&)]| _
where
& <o, ¥_<N oz _<ON,
FERR U TP Y N TP Y ral 649
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and

dv, _dN, 1
A dE T (5.49)
The axial strains €, may then be expressed as
g, =) BLd! (5.50)
i=]
where
B, =[dN/d&x' 0 0 0 0 0] (5.51)
and
A7 ={u;, v, w:0,4:8,,0,1 (5:52)
The flexural strain or curvatures &, can be written-as
g, =) Bidf (5.53)
i=l
where
0 000 0 dN/dx'
B}, = 5.54
”‘[oooocﬂv/dx'o] 59
and the shear strain €, is approximated as
g, =) Bid; (5.55)
i=l
where
0 dN/dx' 0 0 0 -N
B ={0 0 dN/dx' 0 N 0 (5.56)
0 0 0 dN/dx' 0 0

Thus, neglecting point loads and couples, the contribution to the total potential from
element e may be expressed as
o= ii%[df FK;dS —i[d;’]’ff (5.57)
i=l j=l i=l
as we wish to set up the governing matrix in terms of strain expressed in gloBal rather
than local directions, it is worth noting the membrane strain displacement matrix is
then modified to
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B,=B,T (5.58)
with similar expression for B,, and B,,. T s the transformation matrix and given in

appendix A.

The submatrix of the stiffness matrix linking nodes i and j can then be written as

K; = [ (B%D,B,, +BD,B, +B’D B, }Jd¢ (5.59)
and the consistent nodal force vector associated with node i is written as
['Nguag| | ['Ng.0a g F N
1 1
[Na,Jd¢| | [Na,JdE . o,
1 |
€7 = [Nt |+| [N dg |+| [y, gpiae |+| & (5:60)
0 0 1 *
X X J]leq@sz; M,
o |l o || L N gaJd¢ | M, |

5.4 Stress Resultant and Strain Energy Evaluation
The stress resultant vector can be expressed as

(5.61)

where ¢, 6, and o, are the stress resultant vectors due to membrane, bending and

shear effects, so that
o, =[N]; o,=[M, M,]; o,=[M, Q 0.1 (562

the stress resultants can be obtained by the expressions

¢,=D,Y'B.d,, 0,=D,YB,d,, o,=D,>B,d, (5.63)

i=l im] i=l

The SE of the FE solution"W"2 for the beam is computed as the sum of the bending,

membrane and shear SEs
2

9 =[], + o+
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2 ~ -] A
W ~ [[8,]7D;'8,dQ

W' ~ [[6,17D'5,d2

m

W[ ~ [[6,]"D;'6,d0 (5.64)

5.5 Static Analysis Examples

To verify that the formulation of the FE model can be successfully used for the static
analysis of the structures, several examples for which solutions are available have
been considered. Note that in all cases the nodes of the structures have six degrees of
freedom, because of 3D analyses. These degrees of freedom are translations in x, y

and z directions and rotations about x, y and z-axes, respectively.

5.5.1 Thick beams

Problem definition: The thick beams with various combinations of loading and
boundary conditions have been analyzed by Chen [136] using the differential
quadrature element method based on the Timoshenko beam model. The beams are 3

m long and the cross-sectional dimension of 5x5m as shown in Figure 5.5. The
following material properties are used: modulus of elasticity E =2.6Pa, Poisson’s
ratio v =0.3 and rigidity modulus G =1.0Pa. The thick beam is analyzed for two
separate loading and boundary conditions:

1. A fixed- free beam subject to point load at the free end. See Figure 5.5(a)
2. A fixed- fixed beam subject to a uniformly distributed load. See Figure 5.5(b)
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Figure 5.5 Thick beams (a) fixed-free subject to a point load, (b) fixed-fixed subject
to a uniformly distributed load, (c) cross sectional dimension of the beams

Table 5.1 Results of a fixed-free Timoshenko beam subjected to transverse force at

the free end
Element DOF Displacement at B Moment at A Shear force at A
type (m) (Nm) ™)

18 -0.207176 2.75000 1.10788
Linear 36 -0.207540 2.88462 1.05223
54 -0.207581 291176 . 1.04032
183 -0.207634 2.97541 1.01148
18 -0.207638 3.00000 1.01308
Quadratic | 36 -0.207638 3.00000 1.00327
54 -0.207638 3.00000 1.00145
18 -0.207638 3.00000 1.00000
Cubic 36 -0.207638 3.00000 1.00000
54 -0.207638 3.00000 1.00000
Chen [136] -0.207638 3.00000 1.00000
Exact solution -0.207638 3.00000 1.00000

Discussion of results: In this example, the convergence and general performance of
the linear, quadratic and cubic FEs are examined. The beam is discretized using three
sets of meshes of 18, 36 and 54 degrees of freedom. The deflections and stress
resultants are listed in Tables 5.1 and 5.2 for fixed-free and fixed-fixed beams
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respectively. The results of the analyses are found to be in excellent agreement with
exact solution and the results presented by Chen [136]. As we can see from Tables 5.1
and 5.2, the quadratic and cubic elements give better performance and convergence

than the linear elements.

Table 5.2 Results of a fixed-fixed Timoshenko beam subjected to uniformly

distributed load

Element DOF Displacement | Moment at A Moment at Shear force
type at middle (m) (Nm) middle (Nm) at A(N)
18 | -0.0543258 -0.416667 0.333333 1.26635
Linear 36 | -0.0544556 -0.572917 0.364583 1.38624
54 | -0.0544796 -0.629630 0.370370 1.42490
183 | -0.0544972 -0.714100 0.374610 1.47852
18 | -0.0544796 -0.666667 0.333333 1.51308
Quadratic | 36 | -0.0544989 -0.729167 0.395833 1.50409
54 | -0.0544989 -0.740741 0.370370 150194
18 | -0.0544989 -0.750000 0.375000 1.50441
Cubic 36 | -0.0544989 -0.750000 0.375000 1.50055
54 | -0.0544989 -0.750000 0.375000 1.50016
Chen [136] -0.0544988 -0.750000 0.375000 1.50000
Exact solution | -0.0544988 -0.750000 0.375000 1.50000

5.5.2 Beam on elastic foundation

Problem definition: Consideration is given to beams with span length ¢ and with
rectangular cross-section resting on elastic Winkler foundations as shown in Figure
5.6. The analysis of bending of beams on elastic foundation is developed on the
assumption that the reaction forces of the foundation are proportional at every point to
the deflection of the beam at that point. In the study of beams on elastic foundation,
use is made of the non-dimensional quantity 4 known as the foundation modulus
which is defined as
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: bk 1/4 .
A=| 2
( 4EI) (5.65)

where b is the constant width of the beam in contact with the foundation; and EI is
the flexural rigidity of the beam. A value of A =0 indicates no elastic foundation

whereas a value of 4 =5 corresponds to a stiff elastic foundation [121].

Three types of beams are considered: thick beams with ¢/¢ = 0.1, moderately thick
beam ¢/£=0.05 and thin beam with ¢/£ =0.01. Both ends of the beam are fixed.
The following material properties are assumed in the analysis so that the results can
be expressed in a non-dimensional form: the elastic rigidity EI =1 and Poisson’s
ratio v =0.3. The beam has a span length £ =10 and a width 5 =1. Two load cases
are considered. These are; a concentrated vertical load P=1 and uniformly

distributed load with an intensity of 0.1.

, P 7 d
////////,/,/////m % /I/I/l////l/-/-;; o et %
o We y We
z y ¢ ]
@ (b)

Figure 5.6 Clamped beam on elastic foundation a) concentrated force in the middle
b) uniformly distributed loading over the whole span

Discussion of results: Tables 5.3 and 5.4 present the values of the maximum
deflections and strain energies and its composition for the different span to thickness
ratios and foundation moduli for point load and uniformly distributed load
respectively. The results are compared with closed form solution given by Heteny
[121] based on thin beam (Euler beam) model. The closed form solutions for
maximum deflections presented by Hetény [121] are:

w _ PA CoshAd +cos Al -2
© 2k SinhAfL+sin Al

for point load and, (5.66)
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2| Sinh M cos —/K + Cosh % sin —%J
2 2 2

e =% S T for uniformly distributed load (5.67)

The present results compare very well with Hetény [121] closed form solution for
both point load and uniformly distributed load conditions.

Table 5.3 Deflections and strain energies of beams on elastic foundation subject to

point load
Foundation | Thick Point load
modulus | ratio { Maximum deflection SE and its percent composition

A t/£ | Present | Ref. [121] Membrane‘ Bending | Shear | Total
0.01 |0.99073 0.00 99.64 | 0.36 | 0.272578
0.5 0.05 | 1.01408 | 0.98975 0.00 91.64 | 8.36 | 0.289218
0.1 | 1.08518 0.00 77.58 | 27.42)0.339217
0.01 ]0.12546 0.00 98.46 | 1.54 | 0.031710
1.0 0.05 ]0.13685 | 0.12497 | 0.00 71.11 | 28.89 | 0.040071
0.1 ]0.16926 0.00 35.34 | 64.66 | 0.062562

Table 5.4 Deflections and strain energies of beams on elastic foundation subject to

uniformly distributed load
Distributed load
Foundation | Thick.
modulus | ratio SE and its percent composition
1 '10 deflection
Present | Ref. [121] | Membrane | Bending | Shear | Total
0.01 | 0.41285 0.00 99.65 | 0.35 | 0.045698
0.5 0.05 |0.41266 | 0.40000 0.00 91.87 | 8.13 | 0.046142
0.1 |0.41206 0.00 73.13 | 26.87 | 0.046924
0.01 |0.02523 0.00 98.46 | 1.54 |0.001256
1.0 0.05 |0.02520 | 0.02500 0.00 71.08 |28.92}0.001335
0.1 |0.02514 0.00 3532 | 64.68 | 0.001364
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5.5.3 Arches with uniform cross-section

Problem definition: This example involves a series of arches with rectanglar cross-
sections, which have been studied by Litewka and Rakowski [8]. The arches have a
radius of curvature of R=4m, the opening angle w =27/3 (length [ =8x/3),
thickness #=0.6m and width 5=04m as shown in Figure 5.7. The following
material properties are used: elastic modulus E =30GPa and Poisson’s ratio
v =0.17. The analysis is repeated for, two different boundary conditions: fixed-fixed
and hinged-hinged and three different loading cases; a) vertical point load at the

crown, b) horizontal point load at the crown and ¢) moment at the crown.

Figure 5.7 Loading conditions of uniform cross-section arch

Discussion of results: To avoid the possibility of significant discretization error, the
arches are analyzed using 12 cubic elements. The results for maximum deflections are
summarized in Tables 5.5 and 5.6 for fixed-fixed and hinged-hinged arches
respectively. Table 5.7 contains the magnitude of the SE and its composition. The
results of the analyses compare very well with those obtained by Litewka and
Rakowski [8] based on thick beam model.
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Table 5.5 Displacements of uniform cross-section arches for fixed-fixed boundary

condition
g u, /1 (Disp. in x-direct.) | v,/I(Disp. in y-direct.) 6. /® (Rotation)
3 Present Ref. [8] Present Ref. [8] Present Ref. [8]
a | 6.19x10" 0.000 -2.51xx107 | -2.48x107 | 2.16x10° 0.000
1.23x107 | 1.25x107 | -6.19x10™° 0.000 3.62x107 | 3.78x107
c | 9.09x10° | -9.49x10% | -543x10° | 0.000 | 1.07x10° | 1.08x10°

Table 5.6 Displacements of uniform cross-section arches for hinged-hinged boundary

condition
u, /1 (Disp. in x-direct.) | v, /! (Disp. in y-direct.) | 8,/ (Rotation)
§ Present Ref. [8] Present Ref. [8] Present Ref. [8]
a |9.243x10° 0.000 -2.799% 107 | 3.047x 107 | 3.741x 10°® 0.000
b |2.765%107 | 2.880x107 |-9.243x10® | 0.000 | 7.770x107 | -8.064x 107
c | 1.952x107 | -2.016x107 | -9.396x10° | 0.000 | 1.362x10% | 1.361x107

Table 5.7 SE values and their composition for uniform cross section arch

Boundary condition Load | Total iE % Energy distributions
type | (x10™) | Membrane | Bending | Shear
0.2084 40.40 48.28 [11.32
Fixed-fixed b | 0.1049 28.98 61.75 | 9.27
c | 0.2266 0.61 95.29 | 4.10
0.2416 14.67 81.43 | 3.90
Hinged-hinged 0.2353 28.17 62.47 | 9.36
c | 0.2855 0.25 98.06 ) 1.69

5.5.4 Arches with non-uniform cross-section

Problem definition: To check that the present formulation is applicable to curved

beams of non-uniform cross section two examples are investigated. The arches were

originally analyzed to compute natural frequencies by Gutierrez and Laura [125]. Two

types of cross sectional variation 4A(@) = 4, f(@) are studied:
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(2) symmetric stepwise cross sectional variations as shown in Figure 5.8(a),

f@=t,  -psa<l

n 3

) = Bz B

f@) =t,, S S@<2
f(5)=£n°-, gs&'Sﬂ (5.68)

where 77 =¢,/t,0.4 and B =30°.

(b) nonsymmetric linear continuous cross sectional variations as shown in Figure

5.3(b)
f(o?):l--’ll‘;‘:, _B<E<p (5.69)

where 77 =¢,/t,0.4 and B =30°,

@ | ()

Figure 5.8 (a) Clamped arch of symmetric discontinuously varying cross section
(b) clamped arch of nonsymmetric linear continuously varying cross section

The dimensions adopted for variable thickness arch are identical to those given in
reference [125]. The arches are clamped at their ends. The arch has a radius of

curvature of R =20 m and the width b is equal to 1 m and area of section is equal to

A,=05m>. The following material properties are used: elastic modulus
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E =200GPa, Poisson’s ratio v =0.3. The arches are subject to a concentrated

vertical downward load of P =1kN at the crown.

Discussion of results: The FE analysis of an arch with symmetric stepwise cross-
section variations are carried out using quadratic elements. The arch is discretized
using five set of meshes of 21, 45, 93, 165 and 333 degrees of freedom. The
displacements in the direction of the force obtained using the present formulation are
listed in Table 5.8 and compared with SAP 2000 program results which are obtained
using linear elements and same degrees of freedom. Note that SAP 2000 has only
linear beam element. A close agreement between the results can be observed.
However, present formulation gives better rate of convergence and requires less

degrees of freedom.

Table 5.8 The vertical deflection w, of arches with non-uniform
(symmetric stepwise) cross-section

Deflection w, x107
DOF
Present | SAP2000
21 |-0.945984 | -0.938026
45 |-0.962389 | -0.957064
93 |-0.963417 | -0.961886
165 | -0.963479 | -0.962963
333 | -0.963486 | -0.963357

Arch with non-symmetric continuously varying cross-section is analyzed using 4
cubic elements with 33 degrees of freedom. The resulting maximum vertical
deflection of -0.2599x 10 compares well with the value of -0.2568x 10 obtained
using SAP 2000. The SAP 2000 results are obtained using plane stress elements and
252 degrees of freedom.

5.5.5 A Circular cantilever arch

Problem definition: A tip-loaded circular cantilever ring shown in Figure 5.9 is a
standard example to test curved beam FEs [16-21]. The quarter ring is subjected to a
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radial point load P =1 at the free end. The ring has a radius of curvature R =10 and
the width of section is b =1.

T

Figure 5.9 A tip-loaded circular cantilever ring

The numerical values of geometrical dimensions and the material properties given for
the test problem are in consistent units. The following material properties are used:
elastic modulus £ =10.5x10°, Poisson’s ratiov = 0.3125. The tip deflections in the

direction of the applied load are derived in closed-form based on Castigliano’s energy
theorem [16-21].

zPR(Rz 1 1 J
W, =——— — +—— b —

° 4 \EI GAx EA
g = IR (5.70)
©  EI '

Using the FEs, a range of ratios of R/¢ from 5 to 1000 is used.

Discussion of results: The circular cantilever arch is analyzed using one and two cubic
elements with 9 and 18 degrees of freedom, respectively. Table 5.9 shows that the
results of the present analysis compare very well with the Castigliano’s solutions for
different radius-thickness R/t ratios, without exhibiting any locking in the thin
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situations. The results indicate that even one-element idealization yields very accurate

tip displacements.

Table 5.9 Comparison of present FE solutions (u 72 Wy, 0,) for tip displacement of
the circular cantilever arch with Castigliano's energy solutions (u,, w,,0,)

One element Two elements
R/t

uplu, | welw, | 6,16, {uslu, | w,lw, | 6,/6,

5 | 1,0054 | 1,0016 |-1,0013 | 1,0054 | 1,0003 | -1,0002
10 ]1,0016 | 1,0016 | -1,0013 | 1,0013 | 1,0003 | -1,0002
100 | 1,0008 | 1.0016 | 1.0013 | 1.0002 | 1.0003 | 1.0002
1000 | 1.0007 | 1.0016 | 1.0013 | 1.0001 | 1.0003 | 1.0002

5.5.6 A pinched ring

Problem definition: The final example investigated is the pinched ring which was
considered by many authors [16-21]. The ring is subject to two pinching concentrated
loads as shown in Figure 5.10(a). A pinched ring serves as the best illustration to
evaluate the element behavior in a deep arch problem. The exact radial displacement
w, at the loaded point can be easily derived using Castigliano’s theorem [16-21].

(5.71)

PR [, PR PR
w, = —-—(72' —8)+—+———
87l 8GAk 8EA

The tangential axial force, radial shear force and bending moment at certain point B

on the ring,
N =-—sing,
M =—£1—e-(-2-—sm(o,,)
2 \xm
Q= %cos @5 (5.72)

The following material properties are used: modulus of elasticity E =10.5x10°,
Poisson’s ratiov = 0.3125. For the present model, we use R =4.953, ¢ =0.5554 with
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the b=1. The units are consistent. Using symmetry only quarter of the ring is
analyzed with appropriate boundary conditions, as shown in Figure 5.10(b).

(a) | (b)

Figure 5.10 (2) a pinched ring model, (b) ring is modeled with appropriate boundary
conditions

Discussion of results: The pinched ring is analyzed using linear, quadratic and cubic
elements. Figure 5.11 shows the convergence trend for the vertical deflection w , of
the present linear, quadratic and cubic FEs solutions compared with Castigliano’s
solutions. The results are normalized with respect to the exact solution given by
equation (5.71) which is based on Castigliano's energy theorem. Note the superior
performance of the quadratic and cubic elements compared to the linear element. This
reflects the superior convergence characteristic of the higher order elements and the
fact that the linear element models the curved shapes less accurately. The minimum
two elements are used in the case of the linear element solutions. The results agree
very well with the exact solution. Figures 5.12-15.14 show distribution of bending
moment, shear force and axial force over the quadrant AB of the pinched ring which

is analyzed using 30 degree of freedom of linear, quadratic and cubic elements.
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Figure 5.11 Convergence of normalized radial deflection under the point load of the

pinched ring
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Figure 5.12 Bending moment distribution in a quadrant of the pinched ring

96




8 8 8
|
i

n

.
—eo—exact
—m— 2 noded
—i— 3 noded

—Jli— 4 noded

Shear Forces, O
N
o

-
o O

30 40 50 80 70 80 90
Angles in Degrees

o
py
o
N
o

Figure 5.13 Shear force distribution in a quadrant of the pinched ring
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Figure 5.14 Axial force distribution in a quadrant of the pinched ring

5.5.7 Frame structure with curved members

Problem definition: In this example, a frame structure is analyzed and then results are
compared with SAP2000 structural analysis package. The geometry of the structure
and the cross sections of the members are shown in Figure 5.15. The structure has the

following material properties: elastic modulus E =200GPa and Poisson’s
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ratiov =0.3. The curved part of the frame, which is shown in Figure 5.15, has a
uniform cross-section with opening angle 60° and radius of curvature is R = 6m.
The analysis is repeated for three different loading cases;

a) At point C, a concentrated vertical 5 kN load,

b) At point C, a concentrated horizontal 5 kN load,

¢) On curved member, distributed load with an intensity of 3 kN/m, which is
normal to the member.

SkN
3 kN/m
— C
T r/ 02m
y
g
= 02m
*
Cross-section
_ A
777777 6.0 m ;ZZEFJE/‘
I‘ V'

Figure 5.15 Geometry and cross section of frame structure

Table 5.10 Horizontal displacement and rotations at point C for frame structure

Load | Disp.&rot. | Present SAP2000
W (m) | 0.295x10” [0.295x107
(a) 5
& (rad) |0.401x10 0.000
W (m) |0.371x10?| 0.000
® g (rad) | 0.937x10° | 0.937x10°
© W (m) | 0.540x10* | 0.540x10™
C
@ (rad) |0.145x102} 0.000

Discussion of resuits: The frame structure is analyzed by using four noded 50
elements with 447 degrees of freedom. The analysis results are tabulated in Tables
5.10 and 5.11, and compared with SAP2000 results. A close agreement between the
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results can be observed. In Table 5.12 total strain energies and % distributions of

membrane, bending and shear energies for three different loading conditions are
given.

Table 5.11 Comparison of reaction forces for frame structure

Load | Reactions A B
Present | SAP2000 | Present | SAP2000
N 2.500 | 2.500 | 2.500 | 2.500
(a) Q 1.063 | 1.063 |-1.063| -1.063
M -1.699 | -1.699 | 1.699 | 1.699
N 1.942 | 1.942 |-1.942| -1.942
(b) Q -2.500 | -2.500 |-2.500 | -2.500
M 6.185 | 6.185 | 6.185 | 6.185
N 9.000 | 9.000 | 9.000 | 9.000
(c) Q 2367 | 2367 |-2367| -2.367
M -3.714 | -3.714 | 3.714 | 3.714

Table 5.12 Total SE and % distribution of frame structure

Total SE % SE distributions -
(x10%) | Membrane Bending | Shear
(@ | 0.147 0.57 98.43 | 1.00
(b) | 0.449 0.23 99.24 | 0.53
(c) | 0.548 1.89 97.11 | 1.00

Load

5.6 Two Dimensional Frame Examples

5.6.1 T-shape frame

Problem definition: This example involves the static analysis of the frame, which is

shown in Figure 5.16. The system has uniform rectangular cross sections 0.2x0.1,

density p =800, Poisson’s ratio v =0.3 and modulus of elasticity 2x10® and is
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analyzed under three point loads and gravitational force due to self-weight. (All units

are consistent).

Figure 5.16 Loads and dimensions of frame example

Discussion of results: The resulting displacements at key points are found and
compared with SAP 2000 v. 7.40. Remarkably good agreement is obtained and
tabulated in Table 5.13. '

Table 5.13 Comparison of displacements

Point |._Horizontal displacement Vertical displacement
Present SAP 2000 Present SAP 2000

B ]0.6128x10*]0.6128x10*| -0.10097 | -0.1010
C [0,1226x10°]0,1226x 10| -0.266x 10| -0.266x 10

D |0,1226x107}0,1226x102] -0.4960 -0.4960

5.7 Three Dimensional Frame Examples

5.7.1 Grid under distributed load

Problem definition: A frame example analyzed with matrix stiffness method (4] is
considered first. The geometry of the frame is shown in Figure 5.17. The frame has
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the following material properties: elastic modulus E =29000 ksi and rigidity
modulus G =11500 ksi. Typical properties of members are; moment of inertia J =
5310 in* and polar moment of inertia J=41.3in*. The frame is analyzed for

distributed load with an intensity of 2 k/ft, which is shown in Figure 5.17.

Figure 5.17 Geometry of distributed loaded frame

Discussion of results: The frame is analyzed by using three noded two elements with
12 degrees of freedom. The results are tabulated with the matrix stiffness method [4]
solutions of the example. Table 5.14 shows that the results of the present solution are

in good agreement with the reference solution.

Table 5.14 Deflection and rotations of frame

Deflection in y direction | Rotation about x axis Rotation about z axis
Point (in) (rad) (rad)
Present Ref. [4] Present Ref. [4] Present Ref. [4]
C -0.7792 -0.71317 0.01144 | 0.011346 | -0.003233 | -0.003233
B -4.57 -4.529 0.009343 | 0.0092457 | -0.01781 | -0.017808
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5.7.2 Frame under concentrated moment

Problem definition: A frame example analyzed with the matrix stiffness method [4]is
considered again. The geometry of the frame is shown in Figure 5.18. The frame has
the following material properties: elastic modulus E =10000 ksi and rigidity

modulus G=4000 ksi. All members have circular cross-sections with;
A=452 in?; moment of inertia J, =1, =18.7in*and polar moment of inertia

J =37.4in*. The frame is analyzed under two concentrated moments with 150 k-ft.

e R D T R N R TSR

J

Figure 5.18 Frame subject to concentrated moment

Discussion of results: The frame is analyzed by using three noded two elements. The
results are tabulated with the matrix stiffness method [4] solutions of the example.
Table 5.15 shows that the results of the present solution are in good agreement with

the reference solution.
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Table 5.15 Deflections and rotations of point C in x, y and z directions

Displacement Present study| Ref. [4]

in x direction | -0.0626945 |-0.06273
Translation

' in y direction | 0.0358446 | 0.03588
(in)

in z direction | -0.194109 | -0.1942

about x axis -0.484089 | -0.4836

Rotation | outy axis | 0.00101191 |0.001013
(rad)

about z axis 0.307100 0.3067
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CHAPTER 6

FREE VIBRATION ANALYSES OF TWO AND THREE
DIMENSIONAL STRUCTURES

6.1 Introduction

For decades, the vibration analyses of beams and frames have been important
research topics due to their wide applications in structural, civil, acrospace and
mechanical engineering. One of the most successful theories for beams is based on
the Kirchhoff-Love model, which assumes that the thickness of the beam is very
small comparing to its shortest dimension. However, as the beam thickness increases,
the classical Kirchhoff-Love model loses its validity because of the transverse shear
strain. To accommodate this effect the MR beam theory, commonly used in thick
beam analysis, has been extended to arch studies [14], which yields linearly varying
transverse shear strain in contrast to the constant distribution. A shear correction
factor is therefore introduced to compensate for the errors resulting from the
approximation of non-linear transverse shear strain distribution by the linear

distribution. Since then, extensive research work has been conducted in the field.

All real physical structures, when subjected to loads or displacements, behave
dynamically. The additional inertia forces from Newton s second law are equal to the
mass times the acceleration. If the loads or displacements are applied very slowly
then the inertia forces can be negleéted and a static load analysis can be justified.

Hence, dynamic analysis is a simple extension of static analysis.

When free vibration is under consideration, the structure is not subjected to any

external excitation (force or support motion) and its motion is governed only by the
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initial conditions. There are occasional circumstances for which it is necessary to
determine the motion of the structure under conditions of free vibration, but this is
seldom the case. Nevertheless, the analysis of the structure in free motion provides
the most important dynamic properties of the structure which are the natural

frequencies and the corresponding modal shapes.

In addition, all real structures potentially have an infinite number of displacements.
Therefore, the most critical phase of a structural analysis is to create a computer
model, with a finite number of massless members and a finite number of node (joint)
displacements that will simulate the behavior of the real structure. The mass of a
structural system can be accurately estimated by two basic formulations. To
construct mass matrix, these formulations employed:

e the lumped mass formulation resulting in a lumped mass matrix and

e the consistent mass formulation resulting in a consistent mass matrix.

The lumped mass matrix is the simpler to construct gnd is more frequently employed.
In the construction of a lumped mass matrix, the distributed mass properties are
lumped or localized at the predefined node points, or joints, defining the degree of
freedom in the structure.

The consistent mass matrix is constructed by a procedure similar to that used for the
stiffness coefficients for a structure. The consistent mass formulation is generally
used for continuous or distributed parameter systems, rather than for discrete

systems.

The dynamic analysis of a consistent mass system generally requires considerably
more computational effort than a lumped mass system does, for two reasons:
(1) the lumped mass matrix is diagonal, while the consistent mass matrix has
many off diagonal terms;
(2) the rotational DOF can be eliminated from a lumped mass analysis, whereas
all rotational and translational DOF must be included in a consistent mass
analysis [41-51].
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6.2 Theory of Free Vibration Analysis of 2D Arch and Frame Structures

Consider the free vibrations of the MR curved arch element shown in Figure 6.1. The

displacement components u, and w,, expressed in terms of axes which are tangential

and normal, may be written in terms of global displacements u and w as

U, =uUcCosa + wsina

w, =-usina +wcosa 6.1)

o (+ve)

Figure 6.1 Definition of curved Mindlin-Reissner arch FEs

where @ is shown in Figure 6.1. The radius of curvature R may be obtained from the
expression

do 1
ok 6.2
al R 62)

In the absence of external loads and damping effects, the virtual work (or more

precisely the virtual power) expression for 2D dynamic analysis can be written as
1, = [(%elD,¢, +0e] D&, + 0l D, + S Pd)dl = 0 (6.3)

where the membrane (axial) strain is given by the expression

du, w
e = W

= 6.4
" d¢ R €5
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or re-writing in terms of the global displacements

&y = j—;cosa +%sina (6.5)

The bending (flexural) strain or curvature may be written as
dé

& =—— 6.
b= (6:6)
and the shear strain is given as
dw, u
=—t_g--2L .
or
g, = —0—%sina +%cosa (6.8)
Also, note that the membrane, bending and shear rigidities have the form
D, = EA; D, = EI; D, =xGA (6.9)

where E is the elastic modulus, 4 is the cross-sectional area, [ is the moment of

inertia, G is the shear modulus and «x is the shear modification factor and is taken as

5/6 for rectangular cross-section. Note that §d,d¢,, d¢, and Je, are the virtual

displacements, membrane strain, bending strain and shear strain respectively. Note

also that the displacement field vector d has the form

d=[u,,w,,0]" (6.10)
and that
pA 0 O
P={0 p4 0 (6.11)
0 0 o

where p is the density of the material and 7 is the moment of inertia of the cross-
section, thus rotatory inertia effects are included. The vector d contains the

accelerations of the displacement components #, and w, as well as the normal

rotations &, a superposed dot implies differentiation with respect to time.

As we wish to set up the governing equation in terms of displacements expressed in

global rather than local directions, it is worth noting the following relationship
d=Td (6.12)
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where

d=[u,w,07 (6.13)
and the transformation matrix
cosa sinae 0
T=|-sina cosa 0 (6.14)

0 0 1

the detailed derivation of transformation matrix is given in appendix A.

Thus the last term in the virtual power expression of Eq (6.3) has the form
[saTpdde = [saTPdde (6.15)
since

TTPT = P (6.16)

6.2.1 Finite element idealization

Using n-noded, C(0) line elements, the global displacement parameters u, w and 6

may be interpolated, within each beam element by the expressions

u=Nu; w=dNw; 6=3Ng, 6.17)

=1 i=l i=l
where u,, w, and 6, are typical nodal displacement degrees of freedom and N, (&) is

the shape function associated with node i which, for 2-noded linear elements, have

the form
N, =1/2(1-£&); N, =1/2(1+¢&) (6.18)
for 3-noded, quadratic elements
N=¢2@-1);  N=(-8)  N=£2(E+). (619
and for 4-noded, cubic elements
N, =-9/16(&* -1/9)(& - 1); N, =27/16(§* -1)(§ -1/3);
N, =-27/16(&* -1)}(& +1/3); N, =-9/16(£* -1/9)(&E+1)  (6.20)

These elements are essentially isoparametric so that

x=zn:Nix, ; y=iN,y, ; t=z”:N,ti ; (6.21)

i=i i=l i=l
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where x,, y, and ¢, are typical coordinates and thickness of node i respectively.

Note also that the Jacobian
d ax 2 ay 2 1/2
{4
—| +{= ;  di=Jd 6.22
“ae [(%J [%H : €2
where
n a}’ n aNi
— ; (6.23)
ag ; 2™ of o
Also note that
sing = %—}- cosa = %—} (6.24)
and !
dN;, dN, 1
=—t— 6.25
r daé J (6.25)
The membrane strain ¢,, may then be expressed as
£, = Bd! (6.26)
i=l
where
=[(@N,/0¢)cosa (8N, /0¢)sina 0] (6.27)
and
df =[u,w,6,]" (6.28)
The bending strain or curvatures ¢, can be written as
&, =) Byd! (6.29)
i=l
where
B, =[0 0 -dN,/d/] (6.30)
and the shear strain ¢, is approximated as
e, =Y Bid; (6.31)

sl
where

B = [‘ (ON,/0¢)sina  (ON,/0¢)cosa -N,.]
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If we list the nodal displacements and accelerations in a vector d and d respectively,
then upon substitution of Eq (6.17)-(6.31) into Eq (6.3) we obtain the expression

S d[Kd+Md]=0 (6.32)
where K and M are the stiffness and mass matrices respectively and contributed from
each element e linking nodes i and j which has the form

K, =K, +K,; +K; (6.33)
where

X,, = [BI,D,BI,Jd¢ (639)

X,, = [ BLD,B.JdE (6.35)

K,, = [ BD,BJd¢ (6.36)
and

M; = ['NTPN,Jd¢ (6.37)

where N, = NI, in which I, is the 3x3 identity matrix. To avoid locking behavior,

reduced integration is adopted i.e. 1-, 2- and 3-point Gauss-Legendre quadrature is
used for the 2-, 3- and 4-noded elements respectively. Note also that since the
rigidities D,,, D, and D, depend on the thickness ¢ and since ¢ is interpolated with
each element e from the nodal values #, elements of variable thickness in the &-

direction may be easily accommodated in the present formulation.

Since the discretized virtual power expression Eq (6.32) must be true for any set of
virtual displacementsdd, then by taking advantage of the orthogonality conditions

Eq (6.32) may be re-written » uncoupled form for each harmonic p as

Kd+Md =0 (6.38)
The general solution of (6.38) is written as
q oyt
d,=d,e (6.39)

where €' = cos(w ,t) +isin(w,t) and @, and d ,are pth natural frequency and

vibration mode (eigenvector). Thus Eq (6.38) may be rewritten in the standard

eigenvalue form
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K-oM)d, =0 (6.40)

In the present study the eigenvalues are evaluated using the subspace iteration
algorithm [3].

6.3 Theory of Free Vibration Analysis of 3D Frame Structures

Consider the MR 3D frame element shown in Figure 6.2. Each node has six degrees
of freedom (as opposed to only three degrees of freedom in a planar structure). The
numbering of the degrees of freedom is shown in Figure 6.2. For node i, %, v and w

represent translational degrees of freedom, while 6,, 6, and 6, represent rotational

degrees of freedom about x, y and z axes.

z,w

Figure 6.2 Local and global coordinates of Mindlin-Reissner 3D frame element

In the absence of external loads and damping effects, the virtual work (or more
precisely the virtual power) expression for 3D dynamic analysis can be written as

I, = I(Jsf,Dmam +0eD,e, +e'D g, +5d"Pd)dl =0 (6.41)
where the membrane (axial) strain is given by the expression
du’
=l— 6.42)
- [dx] (
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The bending (flexural) strain may be written as
g, =g, ¢,] (6.43)
the bending strain in y and z axes are given as

de; . de;

=— =——2
) ok g, X (6.44)
The shear strain is given as
& =[Vu 7y Vsl (6.45)
the shear strain in x, y and z axes are given as
deo. aw! av.
=—= =—=+6 =—=-_¢! 6.4
78 dx’ 7;)} dxl y 7xz dxl z ( 6)
The membrane, bending and shear rigidities have the form
A
D, =[EA]; D, = L0, D = Go/a G/(I)/ g (6.47)
m = ’ b~ 0 EIy ’ s = o .

0 0 GJ

where E is the elastic modulus, 4 is the cross-sectional area, I, y are the moments of
inertia with respect to z and y axes, J is the polar moment of inertia, G is the shear
modulus and « is the shear modification factor and is taken as 5/6 for a rectangular
cross-section. Note that &d,d¢€,, de, and dg are the virtual displacements,

membrane strain, bending strain and shear strain respectively. Note also that the

displacement field vector d has the form

d=[u,,,,%,,6,,0,.,0,]" (6.48)
and that
pdA 0 0 0 0 0]
0 pA4 0 0 0 O
0 0 p4 0 0 O
- 49
P=lo 0o o aJ 0 0 (649)
0 0 0 0 o, O
|0 0 0 0 0 ]

where p is the density of the material and , I, I, are the moments of inertia of the
cross-section with respect to z and y axes, J is the polar moment of inertia, thus

rotatory inertia effects are included. The vector d contains the accelerations of the
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displacement components u,, v, and w, as well as the rotations 6,,6,,0,, a

superposed dot implies differentiation with respect to time.

As we wish to set up the governing equation in terms of displacements expressed in

global rather than local directions, it is worth noting the following relationship

d=Td (6.50)
where

d=[u,v,w,6,.,0,,0,1 (6.51)

T is the transformation matrix and the detailed derivation of transformation matrix is

given in appendix A.

Thus the last term in the virtual power expression of Eq (6.41) has the form
[saTpdde = [sd7Pdae (6.52)
since

T’PT =P (6.53)

6.3.1 Finite element idealization

Using n-noded, C(0) line elements, the global displacement parameters u, and 6 may

be interpolated, within each beam element by the expressions

n n n
u=) Nu;; v=Y Ny ; w=Y Nw;

=l i=l i=l

9,=2 N8, 6,=3Ng,; 6,=3Ng, (6.54)

i=1 i=l i=l
where u,, v,, w,, 8, 6, and @, are typical nodal displacement degrees of freedom
- and N,(&) is the shape function associated with node i which, for 2-noded linear
elements, have the form
N, =1/2(1-¢&); N, =1/2(1+¢) (6.55)
for 3-noded, quadratic elements
N, =¢/2(£-1); N, =(1-&%); N, =¢£2(6+1)  (6.56)
and for 4-noded, cubic elements
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N, =-9/16(£* -1/9)(& - 1); N, =27/16(&* - 1) -1/3);
N, =-27/16(£* -1)(& +1/3); N, =-9/16(&*-1/9)¢+1)  (6.57)

These elements are essentially isoparametric so that

X=X N5 y=Y Ny =Y Nz h=3Nh; b=3Np 658

i=l =l i=] i=l [

where x,, y,, z,, h, and b, are typical coordinates, thickness and width of node i

respectively. Note also that the Jacobian

2 2 271/2
dt ox oy Oz
J==—==||=| +| Z] +| = ;. di=Jd 6.59
T [(66) [afJ (36) ] ¢ 6
where
ox &ON, dy &ON, 0z &ON,
—_— X —_= -y _—= -2z (660)
= o5 T ot o5 Fog’
and
aN, _aN, 1 66D
¢ dé J
The membrane strains €, may then be expressed as
g, = ZBfmdf (6.62)
=l
where
B2, =[dN/d&x' 0 0 0 0 O] (6.63)
and
d; ={u,,v,,w,,6,,6,,6,1" (6.64)
The bending strain or curvatures €, can be written as
g, =) Bjd; (6.65)
i=i
where
dN '
‘- 0 00O 0 /dx (6.66)
0 00 0 dN/ax 0

and the shear strain &, is approximated as
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g, =) Byd; (6.67)

i=l

where
0 dN/dx' 0 0 0 -N
B =|0 0 dN/dx' 0 N 0 (6.68)
10 0 0 dNfdx'’ 0 0

If we list the nodal displacements and accelerations in a vector d and d respectively,
then upon substitution of Eq (6.54)-(6.68) into Eq (6.41) we obtain the expression

& d[Kd +Md|=0 (6.69)
where K and M are the stiffness and mass matrices respectively and contributed from
each element e linking nodes i and j which has the form

K, =K, +K,, +K,, (6.70)
where
K,, = [BLD,B,Ji 6.71)
K,, = [ BD,BLJa¢ (6.72)
K,, = ['BD,BTJa¢ (6.73)
and
M; = ['NTPN Jd¢ (6.74)

where N, = N I, in which I, is the 3x3 identity matrix. To avoid locking behavior,

reduced integration is adopted i.e. 1-, 2- and 3-point Gauss-Legendre quadrature is
used for the 2-, 3- and 4-noded elements respectively. Note also that since the

rigidities D, D, and D, depend on the thickness ¢ and since ¢ is interpolated with
each element ¢ from the nodal values #, elements of variable thickness in the &-

direction may be easily accommodated in the present formulation.

Since Eq (6.69) must be true for any set of virtual displacements§d, Eq (6.69) may

be written as
Kd+Md=0 (6.75)
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The general solution of Eq (6.75) is written as
d,=d, " (6.76)
where &' = cos(@ ,t) +isin(w,¢) and @, and d pare pth natural frequency and
vibration mode (eigenvector). Thus Eq (6.75) may be rewritten in the standard
eigenvalue form
K-w:M)d, =0 (6.77)

In the present study the eigenvalues are evaluated using the subspace iteration
algorithm [3].

6.4 Beam and Arch Examples

To verify that the free vibration formulation of the FE model can be successfully
used for the analysis of the beam and frame structures, several examples for which

solutions are available have been considered

Note that in 2D examples, the nodes of the structures have three degrees of freedom
and these degrees of freedom are translations in x and y directions and rotation about
x-axis, respectively. In 3D examples the nodes of the structures have six degrees of
freedom and these degrees of freedom are translations in x, y and z directions and

rotations about x, y and z-axes, respectively.

6.4.1 A two dimensional deep beam example

Problem definition: This example is a 2D deep beam with a square cross-section,
which is simply supported at each end, as shown in Figure 6.3. The example is taken
from the free vibration benchmarks of NAFEMS [123]. The beam, which is of length
10 m, ha; the following material properties: elastic modulus £ = 200GPa , Poisson’s
ratio v =0.3 and mass density p = 8000kg/m’. Boundary conditions are u =v =0
atAand v=0 atB.
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10.0m

Discussion of results: The relative performance of the various types of elements is
examined. Table 6.1 presents a comparison of frequencies for linear, quadratic and
cubic elements for 3 different degrees of freedom. The convergence rate of the cubic
and quadratic elements are considerably higher than that of the linear elements. The
results are compared with a FE solution obtained by Abbassian et al. [123] and
Jantan et al. [124] in Table 6.1. Close agreement between the results can be
observed. The accuracy of the developed program is excellently proved by using

Figure 6.3 Cross-section of 2D deep beam

world-wide accepted benchmark examples of NAFEMS.

Table 6.1 Natural frequencies (Hz) for 2D deep beam

Mode

DOF

Linear

Quadratic

Cubic

Ref. [124]

Ref. [123]

12
21
66

51.178
43.994
42.759

43.212
42.735
42.609

43.138
42.619
42.608

42.608

42.649

12
21
66

127.936
125.527
125.058

125.064
125.013
125.000

125.016
125.000
125.000

125.000

125.000

12
21
66

326.614
166.202
149.658

173.826
153.330
147.822

208.216
149.423
147.789

148.786

148.310
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6.4.2 Two dimensional pin-ended double cross frame

Problem definition: This example is another NAFEMS benchmark frame with a
square cross-section which is pin-ended at each end, as shown in Figure 6.4. The
frame is 0.125mx0.125m in cross-section and has the following material
properties: elastic modulus £=200 GPa, Poisson’s ratio v =0.0 and mass density
p =8000 kg/m’.

o
—
N
(¥}
=

§||§

50m

lO.lZSm

50m

1 v

50m " 50m

5

Figure 6.4 Dimensions of pin-ended double cross frame

Discussion of results: The natural frequencies, obtained using a fine mesh of 3-noded
elements are listed in Table 6.2. The results are compared with the analytical solution
and those obtained by Abbassian et al. [123] where isoparametric beam elements

were used. Close agreement between the results can be observed.
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Table 6.2 Natural frequencies for double cross frame

Mode Frequencies (Hz)
Present | Exact [123] | Ref. [123]

1 11.3380] 11.336 11.332
2&3 17.6885) 17.687 17.670
4,5,6,7&8 |17.7172| 17.715 17.698
9 45.8658| 45477 45.667
10&11 58.0656| 57.364 57.716
12,13,14,15&16 | 58.4093| 57.683 58.052

6.4.3 Arches of non-uniform cross-section

Problem definition: To check that the present formulation is applicable to arches of
non-uniform cross-section some examples presented by Gutierrez et al. [125] are
investigated. Two types of cross-sectional variations are studied:

(a) symmetric discontinuous cross-sectional variations as shown in Figure 6.5

wheret, /t, = 1.25 and f=40" and

(b) non-symmetric linear continuous variation of cross-section as shown in

Figure 6.6 wheret, /t, =0.43 and §=60°.

Figure 6.5 Clamped arches of discontinuously varying cross-section
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Figure 6.6 Pinned-pinned arches of continuously varying cross-section

The frequencies are given in terms of a frequency parameter A defined as

7 =% (rg,)
EI, (6.78)

where R is the radius of arch.

Discussion of results: The first three frequency parameters obtained using a fine
mesh of 4-noded elements in each case are also tabulated in Table 6.3 with results
obtained by Jantan et al. [124] and Gutierrez et al. [125]. Again, remarkably good

agreement in the results is obtained.

Table 6.3 Frequency parameters for arches of non-uniform cross-section

Frequency parameters 4

Present | Ref. [124] | Ref. [125]}

Cross-section | Mode

1 | 49.65 | 49.80 49.91

2 | 76.14 | 86.60 -
Sym. discont.

3 |133.78{ 161.11 -

1 3544 | 35.39 35.32

2 | 7641 78.88 -
Non-sym. cont

137.57| 148.89 -
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6.4.4 A 3D deep beam example

This example is a 3-D deep beam with a square cross-section, which is analyzed as a
2-D problem in section 6.4.1. The example is taken from the free vibration
benchmarks of NAFEMS [123). Boundary conditions of the beam are

u=v=w=R =0atAand v=w=0 atB

Discussion of results: The results obtained using a fine mesh of 4-noded elements are
compared with a FE solution obtained by Abbassian et al. [123] in Table 6.4. Close

agreement between the results can be observed.

Table 6.4 Natural frequencies for 3D deep beam

Frequencies (Hz)
Present | Ref. [123]
Bending (modes1&2) | 42.619 | 42.649
Torsional (mode 3) 77.522 | 77.542
Extensional (mode 4) {125.000{ 125.000
Bending (modes 5&6) | 148.177| 148.310
Torsional (mode 7)  |232.684| 233.100
Bending (modes 8&9)|285.564 | 285.140

Mode shapes

6.5 Three Dimensional Portal Frame Examples

6.5.1 Single story portal frame

Problem definition: The following example deals with a single story portal frame which
is originally presented by Yu and Wang [126] and shown in Figure 6.7. The following
material properties are assumed: the modulus of elasticity 1x10’ psi, Poisson’s ratio
0.25 and the mass density 0.1/386.4 Ib/in’. The frame is modeled using three segments
and four key points.
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100 in

Figure 6.7 Three dimensional portal frame

Discussion of results: The analysis result is tested against the reference solutioq [126].
The result is obtained using a fine mesh of 3-noded elements. The fundamental
frequency is equal to 3.6092 Hz both in the present study and the reference solution.

6.5.2 Two story portal frame

Problem definition: This example, which involves the optimization of the two story
portal frame is shown in Figure 6.8, was also originally presented by Yu and Wang
[126]. The following material properties are assumed: the modulus of elasticity 1x10’
psi, Poisson’s ratio 0.25 and the mass density 0.1/386.4 Ib/in’. The frame structure is
completely fixed at nodes 1 and 4.

Discussion of results: The analysis result is tested against the reference solution [126].
The result is obtained using a fine mesh of 3-noded elements. The fundamental
frequency is equal to 1.0885 Hz both in the present study and the reference solution
[126].
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Figure 6.8 Two level portal frame

6.5.3 Three story space frame

Problem definition: This example, which involves the optimization of the three-story
space frame structure is shown in Figure 6.9, was also originally presented by Yu and
Wang [126]. The frame structure is completely fixed at nodes 1, 2, 3 and 4. The
following material properties are assumed: the modulus of elasticity 1x107 psi,
Poisson’s ratio 0.25 and the mass density 0.1/386.4 Ib/in’.

Discussion of results: The analysis result is tested against the reference solution [126].
The result is obtained using a fine mesh of 3-noded elements. The fundamental
frequencies are equal to 1.4397 Hz and 1.4399 Hz in the present study and the reference
solution [126] respectively.
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Figure 6.9 Three-story space structure
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CHAPTER 7

GENETIC ALGORITHMS

7.1 Introduction

The search for a better, or rather than 'optimal' solution to a number of tasks that man
has to face throughout his life is perhaps as old as mankind itself. The pursuit of an
optimum design has long been the quest of designers, philosophers, economists,

engineers, environmentalists and many others.

The introduction of the large-scale digital computers allowed the adaptation of classic
optimization algorithms to realistic engineering problems, as well as the advancement
of new and more powerful techniques. The investment of time and resources required to
develop an optimization capability can be considerable and the projected results must
justify the costs. Finally, a FE method allows the design of a class of problems with the

investment of a little more than an analysis.

In many cases, mechanical and civil engineering structures are assembled of rolled
profiles available on the market, and listed in commercial catalogues. Minimum weight
design of these structures has been commonly known as discrete SO. Recently, there
has been an increasing interest in discrete SO, due to its importance in the modern
technology. However, there are considerable difficulties in finding exact solutions of
discrete SO for practical cases. This is because of a very large number of combinations
arising from the number of structural members and catalogue elements. This is the
reason for intensive research, which has been carried out, and directed on simpler, but
not necessarily exact solutions. Among them, one of the best known, and applied in

different branches of science and technology, is the GA. All advantages and
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disadvantages of GA are rather well known. One of the latter is that once the coded
chromosomes are introduced, the GA mutatiori doesn't carry any information about the
physical properties of the considered problem. It is then the aim of the thesis to
investigate a problem oriented GA for minimum weight and/or SE (or maximum ,
fundamental frequency) design. ‘Among others it consists in introducing mutation

carrying information about stress levels in particular structural members.

GAs are categorized under the umbrella term evolutionary algorithms, which is used to
describe computer-based problem solving systems which use computational models of
evolutionary processes as key elements in their design and implementation. A variety of
evolutionary algorithms have been proposed, of which the major ones are: GAs,
evolutionary programming, evolution strategies, classifier systems, and genetic
programming. They all share a common conceptual base of simulating the 'evolution' of
individual structures via processes of selection, mutation and reproduction [112]. But
these terms shoul not be confused with their respective meaning in molecular biology!
There is some resemblance, as you will see below on this page, but the researchers in
informatics allowed themselves quite some liberties in modelling certain ideas of
evolution. This does not mean it isn't possible from a theoretical point of view to adjust
the algorithm to work with DNA as input data, but at the moment this is certainly not
the situation.

In the GA application, the number of strings with design variables (chromosomes)
obtained from crossover carried over the previous populations is constant. In the initial
population, the first string of design variables is given. The cross sectional areas A4; or
thicknesses in the remaining strings are randomly generated. A constant number
(defined by the user) of chromosomes, giving the highest values of the fitness function

is carried over to the next population.

Many practical optimum design problems are characterized by mixed continuous-
discrete variables, and discontinuous and nonconvex design spaces. If standard
nonlinear programming techniques are used for discrete or discontinuous problems they

will be inefficient, computationally expensive, and in most cases, find a relative
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optimum that is closest to the starting point. GAs are well suited for solving such
problems, and in most cases they can find the global optimum solution with a high
probability.

The GA is a search strategy based on the rules of natural genetic evolution. Even before
the traits of genetic systems were used in solving optimization problems biologists had
used digital computers to perform simulations of genetic system by the early 1950s. The
application of GA for adaptive systems was first proposed by John Holland (University
of Michigan) in 1962, and the term "genetic algorithms" was first used in his student's
dissertation [91].

Unlike many mathematical programming algorithms, GAs do not require the evaluation
of the gradients of the objective function and constraints. GAs are computationally
simple, but powerful in their search for improvement, and they are not limited by
restrictive assumptions about the search space, such as continuity or existence of
derivatives. GAs are search procedures based on the mechanics of natural genetics and
natural selection. They combine the concept of the artificial survival of the fittest with

genetic operators abstracted from nature to form a robust search mechanism [127].

7.2 Comparison of the Genetic Algorithm with the Gradient Based Optimization

Techniques

GAs are based on the principles of natural genetics and natural selection. The basic
elements of natural genetics-reproduction, crossover, and mutation are used in the
genetic search procedure [127]. GAs differ from the traditional methods of optimization

in the following respects:

1. A population of points (trial design vectors) is used for starting the procedure
instead of a single design point. If the number of design variabies is n, usually
the size of the population is taken as 27 to 4n. Since several points are used as

candidate solutions, GAs are less likely to get trapped at a local optimum.
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2. GAs use only the values of the objective function. The derivatives are not used
in the search procedure.

3. In GAs the design variables are represented as strings of binary (or gray)
variables that correspond to the chromosomes in natural genetics. Thus the
search method is naturally applicable for solving discrete and integer
programming problems. For continuous design variables, the string length can
be varied to achieve any desired resolution.

4. The objective function value corresponding to a design vector plays the role of
fitness in natural genetics.

5. In every new generation, a new set of strings is produced by using randomized
parents selection and crossover from the old generation (old set of strings).
Although randomized, GAs are not simple random search techniques. They
efficiently explore the new combinations with the available knowledge to find a

new generation with better fitness or objective function value.

7.3 Natural Selection —Survival of the Fittest

GAs make use of chromosomes which contain all of the necessary information about
the individual they represent which in the present context is a structural design. The GA
randomly creates an initial population of individuals (here structural designs) and
subsequently breeds new generation using natural selection, which is based on the
“fittest” of the population. These fitnesses in the present context might be weight, SE
(stiffness) or the fundamental frequency. Better designs have lower weight, lower SE
(greater stiffness) or higher fundamental frequency. This process of natural selection
was originally observed in nature by Darwin and is called ‘survival of the fittest’.

Evolution takes place during reproduction and is driven by mechanism known as

‘crossover’ and ‘mutation’ of the parent chromosomes leading to new and hopefully
fitter children. Here, the children will be new structural designs.
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7.4 Problem Definition in Genetic Algorithm

The GA is used to solve the following problem.
To minimize f (s)
Subject to Sp <S5, <sY, k=12,...,n
in which, s is the vector of design variables, and f’ (s) is the fitness function to be

minimized (or maximized). s and s’ are the lower and upper bounds on a typical

design variable s, .

Note that the problem is primarily an unconstrained minimization problem with lower
and upper bounds on the design variables. To solve a constrained minimization problem
it needs to make transformation. We first present the necessary background and GA
before describing constraint handling. In the 1anguage of the GA, we are
computing f" (s), the fitness function, not f(s), the objective function. The two functions

are related and the distinction between the two will be made later.

7.4.1 Binary encoding and decoding of design variables

A major task is the encoding of the variables into chromosomes so that the GA can use
them. Later the chromosomes can be evaluated or decoded and the fitness function
evaluated. Usually each variable is represented using a bitstring. Each bitstring is then

merged to form a chromosome, which represents a design.

Binary encoding is the most popular way of encoding the design variables. A binary

number is represented as (b, ...5h,), where b, is either 0 or 1. The relationship
between binary and decimal numbers is defined as
(b, ---bdy), = (2%, +2'b, +...+27b,,),,
Hence, as an example, (101); is a three digit or three-bit binary number
(101),(2° -1+2-0+22-1),, = ()0
In other words, the binary number (101); is equal to decimal 5.
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The process of taking a decimal number and constructing its binary-representation (not
value) is called encoding. Decoding is the inverse process of taking the binary encoded

value and constructing its decimal equivalent.

7.4.2 Pseudo-continuous design variables

Since GAs can only approximate continuous real (coded as double precision) variables,
the minimum range of possible DVs needs to be broken down to a list of catalogue
values. The difference or step between each catalogue real value, the resolution 7, is
defined as:

_ s/ -s;

T2 10 (7.1)
where m is the binary string length specified in tﬁe GA data file, and 2" is the humber of
possible binary numbers in the catalogue table of possible design variables.

From this resolution, the real design variable s, list can be generated. The binary

catalogue number, used to reference the real design variables, is stored in a separate
array as the binary form of each integer catalogue number. An example of this cross

referencing is given in Table 7.1 for a required binary string length m of 4, a minimum
design variable s' value of 4.2, and a maximum design variable s* value of 28.0.

Hence, the resolution with 4 bits is » = (28.0 —-4.2) /(2* —1) =1.5867 .

The decoding (real design variable value) is achieved using

S =S +Catxr (7.2)
where, Cat is catalogue table real value and calculated during optimization process
using
| Cat = integer(rnd x2™) (7.3)
where, rnd is a random generated number between 0 and 1. The binary design variable
is binary equivalence of Cat value. For example, rhe catalog value, binary and real

design variables for m=4 s' =4.2, s* =28.0and r =1.5867 is given in Table 7.1.
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Table 7.1 Binary equivalent relations between real and catalogue values

Catalogue | Binary Representation Real value
Value (Cat) Spinary = (03020,80); | 5,y =5' +rx Cat
0 0000 42000
1 0001 5.7867
2 0010 1.3734
3 0011 8.9601
4 0100 10.5468
5 0101 12.1335
6 0110 13.7202
7 0111 153069
8 1000 16.8936
9 1001 18.4803
10 1010 20.0670
11 1011 21.6537
12 1100 23.2404
3 1101 248271
14 1110 26.4138
16 1111 28.0000

7.4.3 Discrete design variables

Another option for input of the size and shape information in the developed GA is by
lists of discrete design variables. Once read in, the chromosome bit strings are used as
pointers to refer to the appropriate discrete value. It should be noted that the number of

total values in the discrete list (7, ) input from file must be less than or equal to the
number of possible binary values (2”)to encompass all the discrete design variables.
For example, if n, < 2" several binary strings will point to each discrete value, but if

n, > 2" all discrete values (of course not their actual real value) above 2” will never be

chosen, as there are not enough binary strings in the catalogue list to encompass them.

The evaluation of the binary and real design variable values follows the same method as
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for the continuous design variables, with the only difference being the Cat value
definition:

np X zpos

Cat =——2= ]
> (7.4

where i, is the current integer position number (ranging from 1 to the number of

binary values 2").

7.5 Parameters Used in Genetic Algorithm

Many parameters play a major rule in the optimization process using GAs. Such

parameters are chromosome, string length, population size and fitness evaluation.

7.5.1 Chromosome

To represent all the design variables in a problem, we need to create the chromosome
for the problem. A chromosome is a concatenated binary string of all the binary
representations of the design variables. If there are n design variables with m =3 to
represent each design variable, then the chromosome looks as shown in Figure 7.1,
where X is 0 or 1. The number of bits need not be equal for all the design variables, nor

need the design variables be ordered from 1 to # in the chromosome.

X1 X2 X3 Xn

Figure 7.1 Possible chromosome or gene

It is found that, during the evolutionary process, the same chromosomes at times are
repeatedly generated. Since the fitness evaluation in structural design involves FE
analysis, a computationally expensive step, all generated chromosome and the
associated fitness information are saved in memory. In this way, if a chromosome is
repeated, a FE analysis is not necessary. Saved chromosomes may also be helpful for

further processing of the design history.
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7.5.2 String length

The string length represents each design variable and determines the size of the space

search, the longer the string length the bigger the search space.

7.5.3 Initial population

The first step is to create the initial population. Unlike gradient-based methods, where
the search for the optimal solution takes place by moving from one point to the next, in
a GA the traits of a population (of members) are used to move from one generation to
the next. Figure 7.2 shows the initial population consisting of members. The initial
population is usually created randomly.

Member 1 XXX XXX XXX ... XXX

Member2 XXX XXX XXX ... XXX

Member z XXX XXX XXX ... XXX

Figure 7.2 Initial Population

With the example in Figure 7.2, the size of the chromosome is 3» bits. A random
number generator can be used to generate a random number between 0.0 and 1.0.
Invoking the random number generator 3n times, we can generate each member of the
population as follows if the random number is less than 0.5 then a 0 is assigned to that
bit, otherwise if the number is less than 0.5 a 1 is assigned to that bit.

Population size is an important parameter in the GA process. The use of a large size of
population leads to better chance for selection, but a greater amount of computational

time will be required.
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7.5.4 Fitness evaluation

Once the initial population is generated, the actual search process starts. The
chromosome is decoded to obtain the values of the design variables s and the fitness

function value is computed for each member of the population. In other words, fitness

values j} (s) are calculated for all population z.

7.6 Structure of Genetic Algorithm

The existing GAs are founded upon the following main principles:
e Reproduction
e Fitness
e Crossover

e Mutation

Figure 7.3 shows a simplified flow chart of GA and they will be discussed in more

detail in following sections.

There are various flavours of GAs in circulation, varying in implementation of these
three parameters, but in essence the algorithms all follow a standard procedure:
1. Start with a randomly generated population of 7 bit strings (candidate solutions to
a problem). (These "solutions" are not to be confused with "answers" to the
problem, think of them as possible characteristics that the system would employ in

order to reach the answer)
2. Calculate the fitness f (s) of each string in the population.

3. Repeat the following steps until #» new strings have been created:
¢ Select a pair of parent strings from the current population, the probability of
selection being an increasing function of fitness. Selection is done "with
replacement” meaning that the same string can be selected more than once to

become a parent.
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 With the crossover probability, cross over the pair at a randomly chosen point
to form two new strings. If no crossover takes place, form two new strings that
are exact copies of their respective parents.
* Mutate the two new strings at each locus with the mutation probability, and
place the resulting strings in the new population.
4. Replace the current population with the new population.
5. Go to step 2.

Initial pdpulation

-—

Selection

v

Mating

b

Crossover

b

Mutation

Terminate 2 No

Yes

Figure 7.3 Simplified flow chart of a Genetic Algorithm

To generate the members of the next generation, the operation has at least three distinct
steps. First the mating pool is created in reproduction step. Typically, the weaker
members (higher fitness values) are replaced by stronger members (lower fitness
values). To produce offspring, two members from the mating pool are selected and a

crossover operation is carried out to create the chromosome of the offspring. Finally, to
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bring diversity into the population, the mutation operation is carried out. The basic

operations of natural genetics, reproduction, crossover, and mutation implemented are

as follows.

7.6.1 Reproduction

Reproduction is a process in which the individuals are selected based on their fitness
values relative to that of the population. In this process, each individual string (design

vector) is assigned a probability of being selected for copying as

/. (7.5)

2

i=l

where f; is the fitness or objective function value of the ith individual (design vector,

x;) and z is the size of population. Thus designs (individuals) with higher fitness values
have a greater chance of being selected for mating and subsequent genetic action.
Consequently, highly fit individuals live and reproduce, and less fit individuals die
(survival of the fittest).

The mating pool is constructed by selecting members from the population. In a simple
GA, once the mating pool is constructed, two parents are selected and the reproduction
process is carried out using the crossover and mutation operators [128]. There

commonly used methods are described.

Roulette-Wheel Selection: In roulette-wheel selection, the chance of being selected is
based on the fitness value. The individual members of the population are mapped to

segments of a line such that the length of the segment is related to its fitness value.

Tournament Selection: In tournament selection, using a random number generator, two
members of the population are selected. Their fitness values are compared head-to-head
and the one with the lower fitness value is put into the mating pool. This is done z times
to create the mating pool of size z. In a “double elimination” tournament selection
method, all the individuals in the population are placed in a bag. Two individuals are

chosen at random. Their fitness values are compared head-to-head and the one with the
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lower fitness value is put into the mating pool. These two individuals are then
eliminated from the bag and the process is repeated until the bag is empty. This will
occur when the mating pool is half full. To complete the mating pool, the process is

repeated once again.

Elitist Selection: Third selection scﬁeme used in the GA is elitist selection, in which, for
each iteration the best ¢ % of individuals in the population (specified in the GA data
files) is saved just before the genetic operators are applied. One the new parent
population has been formed the g % of saved individuals are written over the worst g %
of the new population. This selection process therefore provides a ‘safety net’, in case
the genetic operations do not produce particularly desirable individuals, and ensures the

survival of the fittest designs from the previous generation to the next.

7.6.2 Crossover

After reproduction, the crossover operation is implemented in two steps. First, two
individual strings (designs) are selected at random from the mating pool generated by
the reproduction operator. Next, a crossover site is selected at random along the string
length, and the binary digits (alleles) are swapped between the two strings following the
crossover site. Three methods of crossover can be adopted, one point, two point and

uniform crossover.

One-point crossover: Two chromosomes selected randomly from the mating pool. They
are labeled chromosome of parent individual 1 and 2 in Figure 7.4. Based on a
predetermined probability, a single crossover point in chosen. If the length of

chromosome is n, bits, then a random number is generated between 1 and n_ and used

as crossover point. The binary values of the chromosomes are then swapped from the
right hand side of the new gene strings to binary crossover position. The resulting

individual chromosomes are then passed onto the next generation.
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Chromosome New chromosome

Crossing sit¢ ———» = oo _
Parent individual 1 11000100 1100010

Parent individual 2 0011010 00 11100

Figure 7.4 One-point crossover process

Two-point crossover: This method is like one-point crossover, except that two cut
points rather than one are selected at random, and chromosomal material is exchanged

between the two cut points. Figure 7.5 illustrates the method.

Chromosome New chromosome

Parent individual 1 1 1 0{1 1 0 0|1 O 1 000(1 100f{011

Parent individual2 0 0 0{1 0 1 1/0 1 1 1 10/1011101

N/

Crossing sites

Figure 7.5 Two-point crossover process

Uniform crossover: In this method, every location is potential crossover point. First, a
crossover mask is created randomly. This mask has the same length as the chromosome
and the bit value (parity) is used to select which parent will supply the offspring with
the bit. If the mask value is 0 then the bit is taken from the first parent; otherwise the bit
is taken from parent 2. If two offspring are needed, the mask is used with the parents to
create the offspring and the inverse of the mask is used to create the second offspring.

Figure 7.6 illustrates the method.
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Chromosome

Parent individual 1 10001001
Parent individual 2 00110111
Mask 00101011
Inverse mask 11010100

New chromosome

Parent individual 1 10100011

Parent individual 1 00011101

Figure 7.6 Uniform crossover process

7.6.3 Mutation

The new strings obtained from crossover (offsprings) are placed in the new population
and the process is continued. The third operator of the simple GA is the mutation which
plays a secondary role in the operation of the GA. Mutation is needed because, even
though reproduction and crossover effectively search and recombine existing strings, to
allow new genetic parents to be formed improving the search method. In artificial
genetic systems, the mutation operator occasionally protects some useful genetic
material against loss. In GAs, mutation is the occasional random alternation of the value

of a string position.

The mutation operator is applied to the new string with a specified mutation probability.
A mutation is the occasional random alteration of a binary digit (allele’s value). Thus in
mutation a 0 is changed to 1, and vice versa, at a random location. When used sparingly
with the reproduction and crossover operators, mutation serves as a safeguard against a

premature loss of important genetic material at a particular position.
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7.6.4 Next generation and maximum number of generations

The new generation is formed when sufficient offspring are generated in the
reproduction phase. The whole process of fitness evaluation and reproduction starts all
over again with this new population. Obviously, somewhere in the evolutionary
procedure the iterative process is stopped. Typically this is done if a predetermined
number of iterations have been completed or if the fitness function does not change
appreciably. Unlike most gradient-based techniques, there is no convergence criterion
for the iterative process associated with the GA. Maximum number of generations is

given by the user to control the convergence criteria (stop the optimization process) in
the GA codes.

7.7 Constraint Handling for Genetic Algorithms

Since the GA scales individual’s fitness values via the objective functions alone,
constrained optimization problems require the incorporation of a penalty transformation
method (first envisioned by Courrant [129] in the 1940s). This converts the constrained
problem into an unconstrained one, which can then be utilized by the GA. The types of
penalty functions used by researchers vary greatly [130], but the better algorithms are

not problem specific, and therefore a certain degree of choice is available here.

The transformation method implemented in the current GA closely resembles the
approaches of Rajeev et al [94], Goldberg [97] and Langley [111]. The method involves
the normalization, squaring and summation of the violated constraints. The sumis
multiplied by a prescribed penalty value and added to the original objective function,
thus converting the optimization problem into its required unconstrained form. All the
optimization problems tested in this thesis had both upper and lower design variable
bounds, therefore an equality constraint transformation, which is mentioned above, was
applied to the GA optimizer. One important aspect of equality constrain treatment is the
need to penaiize violations of the constraint boundaries equally. An uneven penalization
of either side of the bounds is easily recognized, as the population of individuals would
collectively drift away from the boundary of greater penalty.
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7.7.1 Equality constraints

The ideal position for each of the individuals within the design space is of course at the
intersection between upper and lower equality constraint bounds (the zero position). It is
close to this position that the majority of individuals exist, and therefore care must be
taken when allocating the severity of the penalty coefficient p.. The penalty controls the
‘steepness’ of the constraint boundaries and too high a value can quite easily kill off
individuals with small violations. This situations is highly undesirable, as the reduce
genetic information in the gene pool can severely inhibit the evolutionary process. In
the current implementation a linear penalty is applied for all levels of violation (Figure
7.7), so that individuals with small violations are allowed to continue to the next GA
step, while individuals with large violations are eliminated. Constraints are normalized
for all design problems. By doing this, a common set of GA optimization parameters

can be used for most problems, and still give a satisfactory optimal solution.

e = allowable constraint violation

A = penalty
h (i, /) = normalized equality constraint
T A —— = current constraint representation
----- = Ghasemi constraint represantation
\ -1000.0 /
S -200.0
o004 = o6
1 R >
02 -0.1-001 -e e 0001 01 02

Figure 7.7 Comparison between normalized constraint i7, ; and penalty A when

minimizing the objective function

Unless otherwise stated, the normalized constraint i?, , takes the form:

h,=—1-10 (7.6)
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where, i is the constraint number, j is the design number, 4; is the current equality

constraint, hyma is the allowable value of constraint i before penalization occurs. Figure

7.7 illustrates the variation of }-z-i ; with the level of penalty occurring A. In relation to
the Figure 7.7 for maximization problems A =(1- D. ‘h ;), and minimization

A=Q1+p, -ﬁj) (see equations 7.6(a) and 7.6(b) below). Two other constraint

representations are also shown and although not exactly of the same scaling, are
presented purely to compare the nature of application of the constraint. Note that a
constraint tolerance factor e was implemented, which in doing so allows the ‘optimal’
objective to violate constraint limits. The technique of Ghasemi [131] follows a similar

logic by introducing a constraint tolerance factor &,, which allows the objective to

violate constraints to the maximum specified level of & , instead of 0.

For a non-penalized design, there are no constraint violations (i?i, ; =0.0). During the

evolutionary process this is typically not the case, and so the objective function is
modified to reflect this:

for objective minimization: g;=g;(+ pcﬁ ;) (7.7a)
for objective maximization: g,=g,(- pcﬁ ;) (7.70)
where, g is the ‘pure’ (non penalized) objective, g, is the modified objective, p, is

the fixed penalty coefficient (from the input file), h,

; is the sum of all absolute,

normalized constraints (i‘z:. ;) for each individual j of the design space (). In other

words:

=k, (7.8)

=]

h

..

Calculation of the fitness function fj(s) then follows the straightforward technique of

adding a large constant as suggested by [111]:

for objective minimization:  f,(s) = [Max g, + Min 8 ]- ¢, (7.92)
for objective maximization: F)=[Max g, +Min g, )+ ¢, (7.9)
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where, Max g;, Max g, are respectively the maximum and minimum values of the

modified objective g,.

7.7.2 Inequality constraints

The case for inequality constraints has also been used in this work, in which the tensile
and compressive stresses and the nodal displacements are restricted to some values
beyond which they are not allowed or else the constraints are said to be violated. Thus,
the concept of penalizing the violated constraints used for the equality constraints is

applied for the inequality constraints.

7.8 The Structure of Optimization Using Genetic Algorithm

The three examined operators; reproduction, crossover and mutation, have proved to be
both computationally simple and effective in tackling a number of important

optimization problems.

Figure 7.8 illustrates the structure chart for the GA. All the necessary data will be read
in and the process of the GA will start for the first generation. The initial population will
be generated randomly. The constraint violation may be computed so that the objective
functions can be modified. By applying some statistics procedures, the average, the
maximum and the fittest design will be found, and the convergence criteria will be
checked. If the convergence is achieved the GA process will be terminated otherwise
the GA process will resume by storing the best individual which will be used in the next
generation. By producing the mating pool, the creation of the next population is started
by applying the crossover operator, and the GA process will proceed continuously until

convergence, or the maximum generation is achieved.
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Figure 7.8 Structure chart of genetic
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CHAPTER 8

STATIC OPTIMIZATION OF TWO AND THREE DIMENSIONAL
STRUCTURES

8.1 Introduction

The relation between structural form, stiffness and strength in discrete structures has
been widely recognized by structural engineers and designers. Many discrete
structures gain considerable rigidity (stiffness) by a modification of their thickness
variation and shape. Such rigid structures have higher resistance against deformation

and may therefore be considered structurally more efficient.

Engineers have always been concerned with the task of finding efficient structural
forms for truss, frames and arches. Traditional approaches towards the task of
finding such forms for structures have been by the use of experimental models or by
intuition and experience. However, in many cases the optimum shapes for structures
are not evident from experiments and experience. There is there fore a need for better
approaches which offer a more general and reliable way for determining optimum

shapes under load cases other than self weight.

With the remarkable breakthroughs achieved in computer technology and the
increasing trend towards the use of computer based modeling procedures, computer
aided SSO tools seem to offer the obvious answer to the problem of finding optimal
structural forms. Optimization is a valuable tool to generate efficient innovative
layouts for structures, which go beyond the experience of the designer. The objective

of optimization is often to produce minimum weight structures with maximum
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strength and stiffness by changing the layout within a specified design domain and
subject to a set of support and load conditions.

After some clean up and testing, the analysis code was converted to an F90 format
with the embedding of a suitable F90 data structure to directly transfer the required
information to and from the GA. For each individual of a population, this interface
urdated the member thickness and widths within the analysis with the appropriate
GA design variables. Following analysis, each of the member stresses and nodal
displacements are extracted to the GA.

8.2 Problem Definition

The optimization based on GA has been defined earlier in Chapter 7. Before any
optimization process can be started the objective function, the constraint functions

and bounds on the design variables must be specified.

8.2.1 Selection of objective (fitness) function

The objective function is a mathematical function expressed in terms of the design
vector s, which quantifies (in a mathematical sense) the Worm of any design. If isa
criterion, which has to be chosen for comparing the different alternative acceptable
designs and for selecting the best one. The choice of the objective function is
governed by the nature of the problem.

Problem of structural optimization are characterized by various objective function
and constraints, which are nonlinear function of the design variables. The functions
can be implicit, discontinuous and non-convex. Detailed formulations of practical
optimization problems (i.e objective and restrictions) vary with every application.

Typical objective functions and constraints used in SO are listed in Table 8.1.
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Weight minimization: Summing for the number of elements n,, the individual

masses (the unmodified objective functions) for individual i and population n, are

calculated from:

g

f6), = p-4-1 for: j=L.n, and i=l.n,  (8.1)
Jj=t

Table 8.1 Design variables, objective functions and constraints used for structural
shape optimization of discrete structures

Design variables s
e Coordinates of key points
e Thickness and/or width at key points

e (Cross-sectional area of member

Objective functions F(s)
e Weight
e Volume

e Strain energy

Constraint functions g(s)
e Stress constraint
¢ Displacement constraint
e Volume constraint

Strain energy minimization: In the case of the SE minimization, objective function

S(s); for the structure is computed as the sum of the membrane, bending and shear
strain energies

A 12 A 12 a

5, =, +[W, +|¥

2
s

(32)

where
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z -
W ~ [[8,17D;'6,d0

W ~ [[6,17D}'6,40

m

W[ ~ [18,17D;%,d0 (8.3)

The detail treatment of the volume and SE computation is presented for truss, arch
and frame structures in Chapter 4 and 5 respectively.

In order to complete the formulation of the problem, some restrictions must be
imposed on the values of the design variables for the mathematical model to be

meaningful. Such restrictions are termed the constraints of the problem.

Stress constraint: For the n, members of each individual design i, the stress

constraints are calculated depending on the nature of the stress as:

e-— —
¢l =—— or ¢ =
o)

(8.4)

cmax o-t max
where, ¢/ is the normalized element stress constraint of element e, o, and o,

are the maximum allowable member stresses within the structure, for compression
and tension cases respectively . Element compressive and tensile stresses are

similarly defined by o and o7 .

From the normalized constraint value c;, the member constraint violation viol? is
derived from:
viol{ =¢/ -1.0 for ¢/ >1.0

viol; =0.0 for ¢/ <1.0 (8.5)

Displacement constraint: The constraints from the nodal displacement limits for each
individual are calculated by:

(8.6)
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where, u] is the maximum nodal displacement component to be compared against

the maximum allowable displacement u_, .

The nodal constraint violation viol] is obtained from the nodal displacement
constraints ¢;

viol! =¢/ ~1.0 8.7
where, n is the node number, and nodal displacements u; must lie within the

maximum displacement values of u,,, , without incurring constraint violation viol”.

Weight constraint: Structural weight is kept constant by using the target weight 7.

viol, = LA for W,>W,
Wy

viol, =% for W, <W, (8.8)

i
where, W, is the weight of the structure for individual design i. Note that, this

constraint is only used together with SE minimization.

Fitness function: After computing objective function f{s) from Eq (8.1) or Eq (8.2)
and constraint violations viol] from Eq (8.5)-(8.7) and/or Eq (8.8), the individual

modified objective function f(s), can be derived:
f(s)i =f(s),; + ch(ViOZin)z (8.9)

Note that the influence of viol on the above modified objective function is controlled

by an input penalty multiple p,. The maximum and minimum modified objective

function (£(s),),,, and (f (8);)min in the population of individuals can then be used

to calculate the fitness value of each individuals designs:
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fit, = = (8.10)
2 f
=l
nz
where:
[i = (f ) max + () ) in) = 1), 8.11)

In GA optimization of structures, the interface method and parsing of information to
and from the GA follows the same formats as for the 2D and 3D analysis above, the

only differences being the inclusion of a third dimension.

8.2.2‘Design variables

The choice of the design variable is a key factor in obtaining the optimum shape
since it changes the character of the problem by changing the degree of nonlinearity

of the objective or constraint functions.

In SSO, the optimum solutions obtained are based on certain bounds imposed on the
design variables. Hence, to avoid ambiguity, there is a need to provide complete
information on the upper and lower bounds values considered for the design
variables. This information is often lacking in examples presented in the literature.
The inclusion of this information eliminates any confusion in the definition of the

problem and will enable other researchers to use these examples as benchmark tests.

8.3 Genetic Algorithm Based Solution Items

Apart from the usual definition of the SO problems which includes the structural
geometry and members connectivities, loadings, boundary conditions, material
properties, design variables, objective function and constraints, in a GA-based
solution we must define the following items which may vary from problem to

problem:
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a) The bitstring length, i.e. the number of binary digits used in the coding of
each design variable- this value is usually between 5 and 10.

b) If the design variables are continuous, we must specify the lower and upper
bounds for each design variable assuming that all intermediate values are
equally spaced between those two bounds, so that

su - SI
r=
2" -1.0

(8.12)

where, s“and s' are the upper and lower bounds respectively, and m is the
string length.
¢) If the design variables are discrete then we must supply the catalogue of
values, for equally spaced discrete values we use the above expression. Note
that the number of catalogue is
Incat=2" (8.13)
d) The population size (usually between 100 and 1000).

We also need to define a set of convergence criteria. The mathematical
representation of one of theses convergence criteria may be given in the following

formulation;

I—fL;—folOO < convg (8.14)

av

where, f3, is the average fitness value in each generation, fye is the best fitness value

in each generation, and convg is the convergence value specified by the user.

The other convergence criterion is the maximum allowable number of generations

allowed before the optimization is terminated.

8.4 Two Dimensional Truss Examples

In this part two dimensional truss examples which are analyzed in cahpter 4 are
optimized under static loads. The objective function is weight minimization under

stress and displacement constraints.
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8.4.1 Three-bar truss

Problem definition: The three bar truss of Figure 8.1 is to be optimized for minimum
weight. A load of 20 kip acts at 45° to the horizontal from node 4. Nodes 1,2,and 3
are the locations of pin-jointed static supports. Two design variables are considered

by the GA where design variable s, = A” = A? and s, = 4®. Material properties
for the truss are: Young’s modulus E =2.07x10%kip/in?, material density p=1.0
Ib/in’, maximum tensile stress o, =20.0ksi, maximum compressive stress

o, =—15.0ksi, and maximum u, and u, displacement at node 4 being 100.0 in.

GA solution parameters: Two different sets of design variables are considered.

i.  Pseudo-continuous variables: a population size of 50 and a maximum
generation number of 100 are considered. The design variable binary string
length m =10. The range of design variables is 0.1 to 10.0 in’.

ii.  Discrete variables: a population size of 30 and a maximum generation
number of 100 are considered. The design variable binary string length
m=>5. The range of design variables is 0.1 to 10.0 in’>. The number of

catalogue values is 32.

Figure 8.1 Nodal and element numbering for three bar truss (a=b=c=100in,
P=20kip)
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Discussion of the results: Table 8.2 gives the results obtained using the GA for
pseudo-continuous and discrete design variables. Convergence to the optimal
minimum weight design was achieved after 100 and 56 iterations for discrete and
continuous design variables respectively. The resulting truss design of the GA for
discrete and pseudo-continuous design variables was compared with various
references in Table 8.2. The weight of the truss is reduced from 1448.52 to 262.673
Ib (81.86 % reduction) and 261.389 Ib (81.95 % reduction) for discrete and pseudo-
continous design variables respectively. While some design variables vary from the
reference values, the total truss weight was found to be very close to that of the
reference solutions. Since elements 1 and 3 share the same design variable, the final
optimal structure is symmetric. If however the optimization problem had used one
design variable per element, the truss would have reduced to only one significant bar
with element 2 and 3 at their minimum limits to prevent the structure from turning to
a mechanism. The iteration history of the optimization process is illustrated in

Figures 8.2 and 8.3 for discrete and pseudo-continuous design variables respectively.

Table 8.2 Comparison of optimum design variables of three bar 2D truss against

other solutions
Optimum design variables (in‘)
Element
DV Present GA Ref. [111] | Ref.[112] | Ref.[112]
number
Discrete | Continuous GA GA DOT
s, 1,3 0.7800 0.7838 0.7864 0.8140 0.7890
s, 2 0.4200 0.3967 0.4190 0.3430 0.4080
Optimum weight
) 262.6173 | 261.3896 | 264.3391 264.6000 263.9000
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Figure8.2 Convergence curve for three bar 2D truss with discrete design variables
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Figure8.3 Convergence curve for three bar 2D truss with pseudo-continuous design
variables

8.4.2 Four-bar truss

Problem definition: The second example to be optimized is the four bar truss shown

in Figure 8.4. Two cross-sectional area design variables are considered by the GA
where design variable s, = AV = 4® = 4®and 5, = 4. Vertical download point
loads of 10 and 20 kip act on nodes 2 and 3 respectively. The material properties for
the problem are as follows: Young’s modulus E =1.0x10* kip/inz, material density

p =1.0 1b/in’, maximum tensile stress o, =8.7 ksi, maximum compressive stress

0, =—4.83 ksi, and maximumu, and u, displacement at node 3 being 0.0006 in.
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The GA pseudo- continuous design variables considered are in the range 0.1 to 10.0
in?, population size 100, number of iterations 100, design variable binary string
length m =10.

2.0

Figure 8.4 Nodal and element numbering for four bar truss

Discussion of the results: Table 8.3 illustrates the fesults obtained using the GA for
pseudo-continuous design variables. Convergence to the optimal minimum weight
design of 89.5478 was achieved after 71 iterations for the four bar truss. The
resulting truss design of the GA for pseudo-continuous design variables was
compared with various references in Table 8.3. Figure 8.5 illustrates the convergence’

to the optimum solution for pseudo-continuous design variables.

Table 8.3 Comparison of optimum static four bar 2D truss against other solutions

DV Element Optimum design variables (in®)
number | Present GA | Ref. [111] GA {Ref. [112] GA |Ref. [112] DOT
5, 1,2,3 9.4604 9.4683 9.5290 9.4640
s, 4 9.4643 9.4586 9.3710 9.4640
Optimum weight (Ib)| 89.5478 89.5751 89.6400 89.5600
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Figure8.5 Convergence curve for four bar 2D truss example with pseudo-continuous
design variables

8.4 3 Ten-bar truss

Problem definition: This example is taken from the work of Langley [111] to verify
the results obtained using present approach. The geometry and loading of the truss is
shown in Figure 8.6. Ten design variables are considered by the GA where a design

variable is allocated for each truss member. The following material properties are
assumed: Young’s modulus E =1.0x10kip/in® and material density p=0.1 Ib/in’.
The objective is to minimize the weight of the truss, subject to the maximum tensile
stress o, =0.25x10°ksi, maximum compressive stress o, =—-0.25x10°ksi and

maximum displacement is 2 in.

! < 360.0 >!< 360.0 >!
@® @
A
N5
7 ©) @)
> >~ (©]360.0
8
v
Ngt? ® @ 2
. 100 kip 100 kip

Figure 8.6 Nodal and element numbering for ten bar truss
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The GA pseudo-continuous design variables considered are in the range 0.00005 to
10.0in%, population size 100, number of iterations 100, design variable binary string
length m =10.

Discussion of the results: Table 8.4 presents the optimal values of the design
variables and the corresponding minimum weight. The weight of the truss reduced
from 2098.2 Ib to 1692.566 Ib. The resulting truss design of the GA for pseudo-
continuous design variables was compared with various references in Table 8.4.
Convergence to the optimal minimum weight design was achieved after 349

iterations for the ten bar truss.

Table 8.4 Comparison of optimum static three bar 2D truss against other solutions

DV Element Optimum design variables (in”)
number |Present GA |Ref. [111] GA |Ref. [112] GA |Ref. [112] DOT
s, 1 7.370 7.44 7.73 7.52
s, 2 1.251 0.50 0.21 0.46
55 3 9.384 8.28 8.12 8.43
s, 4 3.411 3.62 3.76 3.54
S 5 6.256 0.19 0.02 0.10
S, 6 5.865 0.50 0.23 0.46
5 7 6.422 6.24 591 6.29
Sy 8 5.004 5.07 5.32 4.99
S, 9 4.799 3.37 3.76 3.35
510 10 1.016 0.62 0.31 0.65
Optimum weight (Ib)| 1692.566 1508.21 1503.20 1516.00

Initial objective function value is 2098.2
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8.5 Three Dimensional Truss Examples
8.5.1 Four-bar truss

Problem definition: The four bar truss of Figure 8.7 is to be optimized for minimum

weight. Two design variables are considered by the GA where the design variable
5,= AV = 4P = 4® and §, = A®. The constraints are maximum tensile stress
o, =4500.0 kN/m?, maximum compressive stress o, =-2500.0kN/m? and
maximum displacement 0.1 m. Material properties for the truss are: Young’s
modulus E =0.2x10°kN/m? and material density p =1.0 kg/m®. Two horizontal

loads of 2.0 and —4.0 kN are imposed in the x and y-directions at node 5, along with
a 3.0 kN downward vertical load.

The GA pseudo-continuous design variables considered are in the range 0.00001 to
0.0012 m?, population size 300, number of iterations 100, design variable binary
string length m =10.

Figure 8.7 Nodal and element numbering for four-bar 3D truss

Discussion of Results: The optimum results are summarized and compared with other

solutions, which are available in literature in Table 8.5. Size optimization resulted in
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a 12.9 % reduction in the total weight from the initial value of 10.5 kg. The
convergence to optimal design for four-bar truss was achieved after 24 iterations.
Convergence to the global optimum in this case was rapid, due to the relative
simplicity of this optimization problem along with the less restrictive design
constraints.

Table 8.5 Comparison of optimum static four bar 3D truss against other solutions

DV Element Optimum design variables (mm®)
number | Present GA |Ref. [111] GA|Ref. [112] GA|Ref. [112] DOT
s, 1,2,3 0.001055 0.001102 0.001100 0.001100
s, 4 0.00057 0.000279 0.000290 0.000250
Optimum weight (kg)| 9.677 9.158 9.150 9.200
8.5.2 Twenty five bar truss

Problem definition: The twenty five bar 3D truss of Figure 8.8 is to be optimized for

minimum weight. The following material properties are used: elastic modulus
E=1.0x10%ksi and material density, p =0.11b/in*. Nodes 7, 8, 9 and 10 are fully
constrained, and nodes 1, 2, 3 and 6 are loaded with different loads values see Table
8.6. The design constraints are maximum tensile stress o, = 40.0 ksi, maximum
compressive stress o, =-—40.0ksi and maximum displacement 0.35 in which is

imposed for all nodes and in all directions. Eight design variables are considered by
the GA. The member groupings for design variables assignment are shown in Table
8.7.

- The GA pseudo-continuous design variables considered are in the range 0.1 to 5.0,
population size 200, number of iterations 100, design variable binary string length

m=38.
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Figure 8.8 Nodal and element numbering for twenty five bar 3D truss

Table 8.6 Loading details for twenty five bar 3D truss

Joint| P, (Ib) | P, (Ib) | 7, (Ib)
1 | 1000 |-10000]-10000
2 | 0 |-10000|-10000
3| 500 | 0 0
6 | 600 | 0 0

Discussion of Results: The resulting truss design of the GA for pseudo-continuous
design variables is presented and compared with various references in Table 8.7. The
optimum structure is obtained in less than 50 optimization iteration. Size
optimization results in 52 % reduction in total weight from the initial value of 991.84
Ib. Initial cross sectional areas for this weight were 3.0 in.
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Table 8.7 Comparison of optimum static twenty five bar 3D truss against other

solutions
DV Element Optimum design variables (in°)
number  Present GA [Ref. [111] GA [Ref. [112] DOT

s, 1| 0.1000 0.1000 0.1000
s 2,3,4,5 0.1000 0.2537 0.1000
55 6,7,8,9 13.2600 3.2322 3.5800
S, 10,11 0.1000 |  0.1000 0.1000
s, 12,13 2.6300 1.9831 2.0500
s¢ | 14,1516,17 | 0.8900 0.8686 0.8000
s, | 18,19,2021 | 0.4200 0.2345 0.2200
sg | 22,232425 | 3.8900 3.9816 3.8700

Optimum weight (Ib)| 488.74 | 488.7400 472.4300

The initial objective function value is 991.84

8.6 Two Dimensional Arch Examples
8.6.1 Strain energy minimization of a beam

Problem definition: The beam which has 10 m span length and 0.3x0.3 m cross-
section is considered as shown in Figure 8.9. The following material properties are
assumed: elastic modulus £ = 200 GPa and Poisson’s ratio v = 0.3. The shape of the
beam is defined using two segments and eleven key points. A total of five shape
design variables is considered. To take the advantage of symmetry, shape variable
linking is also used. All the shape design variables are constrained to move in
vertical direction only. The initial geometry of the beam and the location of the
design variables are shown in Figure 8.9. SE of the beam is minimized subject to
Von Misses stress constraint. The value of the stress constraint is equal to maximum
value of the Von Misses stress at the initial design (5 MPa). Structure is optimized
under the two different load conditions, which are shown in Figure 8.10

i) Point load at the crown
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ii.) Uniformly distributed normal loading
The GA pseudo-continuous design variables considered are in the range 0.001 m to

1.5 m, population size 100 number of iterations 100, design variable binary string
length m =10.

Y N
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Figure 8.9 Location of design variables
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Figure 8.10 Dimensions and loadings of beams (i) point load, (ii) distributed load

Discussion of results: Table 8.8 presents initial and optimal values and percent
improvements of total SE. Note the remarkable reduction in SE that has been
obtained. The SE of the structure is reduced from 3901.358 to 241.099 and 52.239
for point and distributed load cases respectively. Also, it is very interesting to note
that the changes in the SE contributions associated with membrane and bending
behaviors as the shape changes. In the initial shape the contributions to total SE from
membrane and shear behavior are both negligible. Subsequently, as the shape
changes, the membrane energy becomes dominant (up to 89.6 %) and bending and
shear energy becomes negligible. Table 8.9 displays optimal design variables. The
optimum shapes of structures are shown in Figures 8.11 and 8.12 for point load and
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distributed load cases respectively. As you can see from Figure 8.11 and 8.12,
optimum shapes of the beams are becoming an arch structure, because of structural
advantages of arches. Figure 8.13 illustrates the convergence to the optimum solution

for pseudo-continuous design variables.

Table 8.8 For SE minimization of beam, initial and optimum SE and percent

distributions
) Total SE % SE distribution
Loading cases 4
(x10™) [Membrane | Bending | Shear
Initial 3901.358| 0.00 98.89 | 1.11
Case i
i Ref. [132] MMA | 157.341 89.57 9.06 | 1.37
(point load)
Present GA 241.099 | 73.65 2444 } 191
Initial 1043.251 0.00 98.61 | 1.39
Case ii
— Ref. [132] MMA | 44.033 92.19 6.86 | 0.95
(distributed load)
Present GA 52.239 89.76 947 10.77

Table 8.9 Optimum design variables of minimized beam

Case i (point load) |Case #i (distributed load)
DV {Ref. [132]|Optimum | Ref. [132] | Optimum
(MMA) | (present) | (MMA) | (present)
st | 0.2266 | 0.25514 | 0.5107 0.45455
s2 | 0.5910 | 0.41789 | 1.0010 0.85777
s3 | 0.9088 | 0.83871 1.3010 1.1510
ss | 1.2733 | 1.0733 1.5000 1.3284
ss | 1.5000 | 1.3827 1.5000 1.4310
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Figure 8.11 Optimum shape of beam under point load, case (a)

=y

Figure 8.12 Optimum shape of beam under distributed load, case (b)
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Figure8.13 Convergence curve for beam example with pseudo-continuous design
variables

164



8.6.2 Arches with uniform cross-section

Problem definition: This example involves optimization of a series of arches with
rectangle cross-sections, which have been analyzed by Litewka and Rakowski (8]
and analyzed in chapter 4. The geometry and loadings of arch which has uniform
cross-section with opening angle 120° is considered shown in Figure 8.14. The arch,
have a radius of curvature R =4m, the angle @ =27/3 (span length I = 8z/3), the
rectangular cross-section with depth £ =0.6 m and width 5=0.4 m. The following
material properties are used: elastic modulus £ =30GPa and Poisson’s
ratiov =0.17.
The arches are optimized for the following objective and constrairit functions,
» SE minimization with constraints that the total material volume of the structure
should remain constant and the maximum von-Misses stress should not exceed
300 kPa.
o Weight (or volume) minimization subject to the constraint that the maximum

von-Misses stress and displacement should not exceed 300 kPa and 0.0005 m
respectively

The arch geometry is defined using five key points and two segments. The locations
of the shape and thickness design variables are shown in Figure 8.15. Note that the
width of the arch is kept constant. Use is made of design variable linking to maintain
symmetry of structures. In the case of weight minimization, three thickness design
variables are only defined. On the other hand, in the case of the SE minimization
three thickness and two shape design variables are used. The shape design variables

are allowed to move in radial direction.
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Figure 8.14 Loading conditions of arch

Optimization is repeated for three different loading cases;
a) Vertical point load at the crown,
b) Horizontal point load at the crown,

¢) Moment at the crown.

The GA pseudo- continuous design variables considered for 3 height and two radius
of the arc as shown in Figure 8.15, population size 100 number of iterations 100,
binary string length 10.

.4|||| ] H[lh.

)

Figure 8.15 Design variables of arch structure
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Discussion of results: Table 8.10 shows the initial and optimal values of design
variables and weight for the different loadings considered. In all loading cases there
is considerable reduction in the magnitude of the weight. The percentage reductions
obtained in the weight are 64.56, 62.09 and 72.68 % for loading cases a, b and ¢

respectively.

Table 8.10 For weight minimization of arch, initial and optimum values of design

variables
Design variables Optimum
Type | Minimum | Initial | Maximum | Case (a) | Case (b) | Case (c)
t, 0.1 0.v6 1.0 0.1992 |0.1501 }0.2319
t, 0.1 0.6 1.0 0.1743 {0.1932 |[0.1704
t, 0.1 0.6 1.0 0.4391 |0.4853 |0.1836
Weight 5.009 1.7752 | 1.8991 | 1.3682

Table 8.11 presents the initial and optimal energies and contributions to the SE from
membrane, bending and shear behavior. In loading case (a) and (b) the membrane
and bending energies are almost equally distributed. However, for loading case (c),
the bending energy is significant in the initial and optimum shapes. Table 8.12 gives

the optimum values of the design variables for different loading cases considered.

Table 8.11 For SE minimization of arc, initial and optimum SEs and percent
distributions

Total SE % SE distribution

(x10%) [Membrane [Bending | Shear
Pointload | Initial | 1.0141 | 30.374 | 60.954 | 8.671
in x direction |Optimum| 0.5641 | 40.692 | 49.234 |10.074
Pointload | Inmitial | 2.111 | 39.729 | 50.207 |10.064
iny direction | Optimum| 1.4403 | 61.012 | 32.289 | 6.699
| Tnitial | 22532 | 0.606 | 95212 | 4.183
Optimum | 2.1361 | 1268 | 95.332 | 3.400

Loading cases

Moment
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Table 8.12 For SE minimization of arc, initial, optimum and constrain values of

design variables
Design variables Optimum
Type | Minimum | Initial | Maximum | Case (a) | Case (b) | Case (c)
t, 0.1 0.6 1.0 0.8522 | 0.9305 | 0.6973

t, 0.1 0.6 1.0 0.6780 | 0.4132 | 0.8373

t, | 01 | 06| 10 |0.2469]0.8364 | 0.8076
s | L0 [ 40| 80 [21642]39765 | 24027
s, | 10 | 40 | 80 |23402 | 42874 | 5.1001

8.6.3 Frame structure with curved members

The cylindrical shell roof analyzed in Chapter 4 of this thesis is considered for
optimization. The geometry of structure and cross sections of members are shown in
Figure 8.16. The structure has the following material properties: elastic modulus E =
200 GPa and Poisson’s ratiov =0.3. The curved part of frame, which is shown in
Figure 8.16, has uniform cross-section with opening angle 60° and radius of

curvatureis R =6m.

The symmetric half of the structure is modeled using two segment and four key
points and by taking advantage of the symmetry only half of the structure is
analyzed. The structure is optimized for SE minimization with constraints that the
total material volume of the structure should remain constant and the maximum von-
Misses stress should not exceed of its initial value prior to optimization. Both shape
and thickness design variables are used. The location of the design variables are
shown in Figure 8.17. The cross-sectional area of column and curved member is
defined as square. Use is made of design variable linking to maintain square cross-
sectional area. Two loading cases are considered:

a) The structure subject to a concentrated vertical 5 kN load at point C, and

b) Distributed load with an intensity of 3 kN/m is applied to curved member.
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Figure 8.16 Geometry and cross section of frame structure
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Figure 8.17 The location of the design variables

Discussion of results: This example demonstrates the principal capabilities of the
present approach. In Table 8.13 initial and optimal energies and % distributions of
membrane, bending and shear energies for three different loading conditions are
given. Note that remarkable reduction in SE that has been obtained. In the initial
shapes, contribution to SE from the bending behavior is significant. As the
optimization process is proceed, in the optimum shape the membrane energy
becomes dominant (up to 60%). Table 8.14 displays the optimum values of the
design variables for the different loading cases.
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Table 8.13 Total strain energy and % distribution of frame structure

Total % SE distributions

Load 3
SE(x10) | Membrane | Bending | Shear
@ Initial 1.47 0.57 98.43 | 1.00

a

Optimum | 0.003252 18.53 61.48 119.99
) Initial 5.48 1.89 97.11 | 1.00
Optimum| 0.02273 60.32 26.24 1343

Table 8.14 For SE minimization of frame with curved member, initial, optimum and
constrain values of design variables

Design variables Optimum
Type | Minimum | Initial | Maximum | Loading (a) | Loading (b)
t, 0.05 0.20 1.00 0.8366 0.8319
t, 0.05 0.20 1.00 0.9972 0.7130
s, | 300 |600| 900 | 54340 | 6.6481
S, 3.00 6.00 9.00 7.9384 7.0469

s; | 3.00 |600] 9.00 7.4809 7.4927

8.7 Two Dimensional Frame Examples

8.7.1 T-shape frame

Problem definition: This example involves the optimization of frame, which is

shown in Figure 8.18. System with uniform rectangular cross sections 0.2x0.1,
density p =800, Poisson’s ratio v=0.3 and modulus of elasticity is 2x10° is

analyzed under three-point load and gravitational force due to self-weight. (All units

are consistent).
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Figure 8.18 Loads and dimensions of frame example

The objective is to minimize the weight of the frame subject to limits on tensile and

compressive stresses and displacement. Maximum tensile stress o, =1.0x10,

maximum compressive stress o, =—1.0x107, and maximum displacement 1.5 are

used. In this example, also design variables are linked to achieve desired thickness

variation. The thicknesses at all the key points (used to define the structure) are taken

as design variables as shown in Figure 8.19. The following two cases are considered..

a) Piecewise constant. three design variables are used. These are thickness of
the column, cantilever segment and upper beam.

b) Piecewise linear: six design variables are defined. These are the thicknesses

of key points.

The GA pseudo-continuous design variables considered are in the range 0.01 to 0.5,

population size 100, number of iterations 200, design variable binary string length
10.
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Figure 8.19 Design variables of frame example (a) piecewise constant, (b) piecewise
linear

Discussion of results: The convergence to optimal design for two-dimensional frame
was achieved after 127 iterations. The initial weight of the frame is equal to 288.0
kg. Tables 15 and 16 give the initial and optimum values of the design variables and
objective function. The percentage weight reductions are 30.2 % and 61.3% for
piecewise constant and piecewise linear thickness variations respectively. Significant
differences in the percentage weight reductions are found for two cases, with the
piecewise linear variation of thickness giving the maximum percentage of weight
reduction. In general, it can be observed that the volume reduction is greater when

more thickness variables are used.

Table 8.15 Initial, optimum and constraints of 2D frame structure piecewise constant

design variables
DV Design variables (mm)
Minimum | Initial | Maximum | Optimum
t, 0.01 0.2 0.5 0.165
t, 0.01 0.2 0.5 0.221
- 4 0.01 0.2 0.5 0.050
Weight (kg) 288.0 201.02
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Table 8.16 Initial, optimum and constraints of 2D frame structure piecewise linear

design variables
DV Design variables (mm)
Minimum | Initial | Maximum | Optimum

: 001 | 02 | 05 | 00407
t, 001 | 02 | 05 | 0.0638
‘s 001 | 02 | 05 | 01695
' 001 | 02 | 05 | 0.0869
1, 001 | 02| 05 | 00100
t, 001 | 02| 05 | 00580
Weight (kg) 2880] 111.40

8.7.2 Size optimization of a rectangular frame

Problem definition: Next, 2D frame shown in Figure 8.20 is considered for size
optimization. The frame subject to horizontal distributed force of intensity 4 kip/ft as
shown in Figure 8.20 The frame is made of steel with the following properties:
modulus of elasticity, £=29(10°) ksi and Poisson’s ratio v = 0.3.

The frame is modeled using two segments and three key points. The thickness and
width of the two segments are defined as design variables. The allowable tensile and
compressive stresses are constrained to be less than or equal to 2000 psi and the

objective is to minimize the weight.

The GA pseudo-continuous design variables considered are in the range 5.0 to 40.0,
population size 100, number of iterations 200, design variable binary string length
10.
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Figure 8.20 Frame structure with rectangular solid cross-section

Discussion of results: Table 8.17 displays the initial and optimal design variables and
weight. Note the remarkable reduction in the weight that has been obtained. 47.38 %
improvement in objective function is achieved. The result of the present study is

compared with GS-USA program result in Table 8.17 and it is found that present

approach gives better improvement in the objective function.

Table 8.17 Optimum design variables and volume

) " .. Optimum (in)
DV Minimum | Initial | Minimum
GS-USA program | Present
t 5,0 40.0 33.47 34.35
w 5.0 40.0 7.19 6.13
Volume (in°) 864.28 517.71 454.81
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8.8 Three Dimensional Frame Examples
8.8.1 Grid under distributed load

Problem definition: A frame example analyzed with matrix stiffness method in [4] is
now considered for optimization. The geometry and loading of frame is shown in
Figure 8.21. The frame is analyzed for distributed load with an intensity of 2k/ft,
which as shown in Figure.8.21. The frame has the following material property:

elastic modulus E =29000 ksi, Poisson’s ratio v =0.26 and material density

p =0.11b/in®.

The design problem is to find the lowest volume subject to allowable tensile and
compressive stress of o =50.0ksi and maximum displacement of 3.0in in all
directions. The geometry of the frame is modeled using four key points and three
segments. The cross-sectional area of the each segment is defined as design

variables. Initial cross-section of members are 4 =256 1in?.

The GA pseudo-continuous design variables considered are in the range 50.0 to
500.0, population size 100, number of iterations 300, design variable binary string
length 10.

Figure 8.21 Cross section of distributed loaded frame
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Discussion of results: The convergenc‘e to optimal design for three-dimensional
frame was achieved after 230 iterations. The resulting frame design of the GA is
listed in Table 8.18. The reduction in the weight of the frame structure is 29.3 %.

Table 8.18 Initial, optimum and constrain values of design variables of grid under

distributed load

pv  |Element)y imum| Initial |Maximum|Optimum

number um | ptmum

5 1 50.0 256.0 500.0 82.56

5, 2 500 | 256.0 500.0 72.00

55 3 50.0 | 2560 | 500.0 | 388.71

Weight (Ib) | 276480.0 195579.5

8.8.2 Eight bar frames

Problem definition: The frame to be optimized is shown in Figure 8.22 and has initial
uniform rectangular cross sections 0.6x 0.6. The frame is subjected to a concentrated
point load of 100 unit applied at point B. The following material properties are
assumed: Poisson’s ratio v = 0.3, modulus of elasticity £ =300x10° and material

density p=100.0.

The objective is to minimize the weight of the frame with constraints on allowable
tensile and compressive stress o =800.0 and maximum displacement for all nodes
and direction 0.1 units. All units are consistent. The design variables are the
thicknesses and widths at the key points. Two cases of thickness and width variations
are considered. Wherever, necessary design variable linking is used to achieve the
desired thickness variation. The following cases of the thickness variation are

optimized:
¢ Piecewise constant: in which eight segments and eight key points are used, with
the thickness and width of the columns and beams taken as design variables.

Total number of design variables is four.
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* Piecewise linear: in which eight segments and eight key points are used, with
the thickness and width at all the key points (joints) of columns and the
thickness and width of all beam taken as design variables. Total number of
design variables is six.

The GA pseudo-continuous design variables considered are in the range 0.2 to 1.0,

population size 100, number of iterations 300, design variable binary string length
10.

Figure 8.22 Loads and dimensions of eight bar frame example

Discussion of results: The convergence to optimal design for three-dimensional
frame was achieved after 168 and 236 iterations for piecewise constant and
piecewise linear design variable cases respectively. The final thickness and width
distributions obtained for various cases considered are presented in Table 8.19 and
8.20. The initial weight of the frame is 1152.0. The percentage reductions in weight
obtained for piecewise constant and piecewise linear are 31.42 % and 27.68 %

respectively.
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Table 8.19 Initial, optimum and constrain values of design variables

DV Minimum | Initial | Maximum | Optimum
Thickness of bottom of 1,2,4,5 columns 0.2 0.6 1.0 0.741935
Width of bottom of 1,2,4,5 columns 0.2 0.6 1.0 0.741935
Thickness of top of 1,2,4,5 columns 0.2 0.6 1.0 0.922581
Width of top of 1,2,4,5 columns 02 | 06 10 |0.354839
Thickness of 5,6,7,8 beams , 0.2 0.6 1.0 0.483871
Width of 5,6,7,8 beams 0.2 0.6 1.0 0.225806
Weight ' - 1152.00 790.010

Table 8.20 Initial, optimum and constrain values of design variables

DV Minimum | Initial | Maximum | Optimum
Thickness of 1,2,4,5 columns 0.2 0.6 1.0 0.870968
Width of 1,2,4,5 columns 0.2 0.6 1.0 |0.948387
Thickness of 5,6,7,8 beams 0.2 0.6 1.0 0.200000
Width of 5,6,7,8 beams 0.2 0.6 1.0 0.329032
Weight 1152.00 833.1321

8.8.3 Thirty two bar frame

Problem definition: Last, the multistory building frame is considered for weight
minimization. The geometry and loading of multistory building frame is shown in
Figure 8.23. The frame is made of steel material with 0.5x0.5 mz, Poisson’s ratio
v =0.3, modulus of elasticity £ =200x10° Pa and magnitude of applied loads are
equal to 250 N.

The objective is to minimize the weight of the frame with constraints on allowable

tensile o, =25.0x10°Pa, allowable compressive stress o, =-35.0x10°Pa and

maximum displacement for all nodes and direction 0.009 m. The design variables
are the thicknesses and widths of beams and columns. Wherever, necessary design

variable linking is used to achieve the piecewise constant thickness variation. In
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which 32 segments and 22 key points are used, with the thickness and width of the
columns and beams of each floor taken as design variables. Total number of design
variables is eight.

10.0 m

R

ZB-\'&
iz 10.0 m
m y

Figure 8.23 Loads and dimensions of 32-bar frame example

Discussion of results: The resulting frame design of the GA is listed in Table 8.21.
214 % improvement is achieved in the objective function. After weight
minimization a more uniform stress distribution is usually obtained throughout the

frame and this can be important in situations where the stress initially varies
considerably in the members
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Table 8.21 Initial, optimum and constrain values of design variables

DV Minimum| Initial |Maximum| Optimum
Thickness of bottom floor columns 0.1 0.5 1.0 0.700
Thickness of top floor columns 0.1 0.5 1.0 0.8714
Thickness of bottom floor beams 0.1 0.5 1.0 0.5714
Thickness of top floor beams 0.1 0.5 1.0 0.7571
Width of bottom floor columns 0.1 0.5 1.0 0.2571
Width of top floor colurmns 0.1 0.5 1.0 0.1857
Width of bottom floor beams 0.1 0.5 1.0 0.4142
Width of top floor beams 0.1 0.5 1.0 0.2285
Weight 314400.00 246996.489
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CHAPTER 9

FREE VIBRATION OPTIMIZATION OF
TWO AND THREE DIMENSIONAL STRUCTURES

9.1 Introduction

In the design of major structures, such as bridges, building and machine components
etc., it is necessary to study the oscillatory behavior to guard against failure due to
resonance. Indeed, the dynamic performance of many truss and frame structure can be

improved by modification of their structural shape or form.

The problem of finding such optimal forms can be solved using GA procedures in
which the shape and/or thicknesses of the components of the structure are varied to
achieve a specific objective satisfying certain design and manufacturing or construction
constraints. In this chapter, the aim of these optimizations are; (a) to maximize the
structural fundamental frequency while maintaining a constant total structure weight or
(b) to minimize the structure weight while keeping the structural fundamental frequency

over a limited value.

This chapter was included to illustrate the application of the GA in free vibration
optimization of truss and frame structures. All analysis used were updated to a Fortran
90 format, some solvers replaced, and F90 data structures added to enable rapid passing
of information between the GA and respective simulation code. Before any optimization
was carried out, each analysis program was tested against known benchmark solutions,
to confirm integrity of the analyses.

For each individual of the population, the F90 interface directly inputs the relevant GA

design variables information (such as member thickness, widths, cross-sectional areas
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or coordinates of key points) into the analysis, and afterwards extracts the member

weights and structure’s fundamental frequency.

9.2 Problem Definition

The optimization based on GA has been defined earlier in Chapter 7. Before any
optimization process can be started the objective function, the constraint functions and

bounds on the design variables must be specified.

9.2.1 Selection of objective (fitness) function

The objective function is a mathematical function expressed in terms of the design
vector s, which quantifies (in a mathematical sense) the worth of any design. It is a
criteria which has to be chosen for comparing the different alternative acceptable
designs and for selecting the best one. The choice of the objective function is governed
by the nature of the problem.

Problem of structural optimization are characterized by various objective function and
constraints which are nonlinear function of the design variables. The functions can be
implicit, discontinuous and non-convex. Detailed formulations of practical optimization
problems (i.e objective and restrictions) vary with every application. Typical objective
functions and constraints used in SSO are listed in Table 9.1.

Weight minimization: Summing for the number of elements n,_, the individual masses

(the unmodified objective functions) for individual i and population 7, are calculated

from:

f(s)i = 2’0 Al for: Jj= 1"“”3 and i= 1,...ﬂz (91)

j=l
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Table 9.1 Design variables, objective functions and constraints used for structural shape
optimization of discrete structures

Design variables s
e Coordinates of key points
¢ Thickness and/or width at key points

e Cross-sectional area of member

Objective functions f(s)
o Weight
e Volume

e Fundamental frequency

Constraint functions g(s)
e Frequency constraint

e Weight constraint

Fundamental frequency maximization: In the case of the frequency maximization,
objective function F(s) for the structure is computed as the

f®), =, .2
o is the associated frequency, and well known eigenvalue equation for free vibration is,
K-oM)d, =0 9.3)

where M and K are the assembled mass and stiffness matrices. d » is the mode shape

(eigen-) vector. The detail treatment of the volume and fundamental frequency

computation is presented for truss, arch and frame structures in Chapter 4 and 6
respectively.

In order to complete the formulation of the problem, some restrictions must be imposed

on the values of the design variables for the mathematical model to be meaningful. The

constraints in an optimization problem can be geometric constraints setting a fixed
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volume for the structure throughout the entire optimization process. Alternatively, there

are behavior constraints imposing limiting values on the frequency.

Fundamental frequency constraint: the constraint from the fundamental frequency for
each individual are calculated by:

@
¢, =—

9.4)

winltial

where, @, is the individual fundamental frequency to be compared against the initial

fundamental frequency @, .

The constraint violation viol, is obtained from the fundamental frequency constraints
c :

viol, =¢, =1.0 ©.5)
where, and individual fundamental frequency @, must be larger than the initial

fundamental frequency values of w,,,, , without incurring constraint violation viol, .

Weight constraint: Structural weight is kept constant by using the target weight W,
which is initial weight of structure.

w,

c = for: W, > W, 9.6)

C; = for: W, <W, 9.7)

W,
7
.
The constraint violation viol, is obtained from the weight constraints ¢, :

viol, =¢c, -1.0 (9.8)
where, and individual weight W, must lie within the initial weight values of W,

without incurring constraint violation viol,. This constraint is used together with

fundamental frequency maximization.
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Fitness function: After computing objective function F(s) from (9.1) or (9.2) and
constraint violations viol, from (9.5)-(9.8), the individual modified objective function
F(s), can be derived:

f6), = f(s),+p. . (viol, )* (9.9)

Note that the influence of vio/ on the above modified objective function is controlled by

an input penalty multiple p,. The maximum and minimum modified objective function

(f(8),) e ad (F(5) Jmin in the population of individuals can then be used to calculate

the fitness value of each individuals designs:

fity= L 9.10)
PN/
Al
nZ
where:
[i = (F®)) man + (FS)) i) = F5), (9.11)

In GA optimization of structures, the interface method and parsing of information to
and from the GA follows the same formats as for the 2D and 3D analysis above, the
only differences being the inclusion of a third dimension.

9.2.2 Design variables

The selection of design variables is very important in the optimization process. One has
to decide a priori where to allow for design changes and evaluate how these changes
should take place by defining the location of the design variables and move directions.
Design variables which used in this chapter are also listed in Table 9.1.

For various reasons, it is usually necessary to provide upper and lower bounds on the

design variables and also we may wish to enforce certain relationships between the

variables to impose symmetry etc. and this is done via linking,
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9.3 Genetic Algorithm Based Solution Items

Apart from the usual definition of the structural optimization problems which includes
the structural geometry and members connectivities, loadings, boundary conditions,
material properties, design variables, objective function and constraints, in a GA-based
solution we must define the following items which may vary from problem to problem:
a) The bitstring length, i.e. the number of binary digits used in the coding of each
design variable- this value is usually between 5 and 10.
b) If the design variables are continuous, we must specify the lower and upper
bounds for each design variable assuming that all intermediate values are

equally spaced between those two bounds, so that

u !

S =S
r= 9.12
2" -1.0 ( )

where, 5" is the upper bound, s’ is the lower bound, and m is the string length.

c) If the design variables are discrete then we must supply the catalogue of values,
for equally spaced discrete values we use the above expression. Note that the
number of catalogue is

Incat =2" (9.13)
d) The population size (usually between 100 and 1000).
We also need to define a set of convergence criteria. The mathematical representation of

one of theses convergence criteria may be given in the following formulation:

IL‘”J}Z”—“J x 100 < convg (9.14)

av
where, f is the average fitness value in each generation, fy.s is the best fitness value in
each generation, and convg is the convergence value specified by the user.
The other convergence criterion is the maximum allowable number of generations

allowed before the optimization is terminated.
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9.4 Truss Examples
9.4.1 Three bar 2D truss

Problem definition: The three bar truss of Figure 9.1 is to be optimized for maximum
fundamental frequency while maintaining a constant total structural weight. Two design

variables are considered by the GA. These are cross sectional area of members in which
5; =AY =4?® and 5, = A®. Material properties for the truss are: Young’s modulus
E=20x10"N/m® and material density p =7860.0 kg/m*. Nodes 1, 3 and 4 are the

locations of the pin-jointed static supports. The initial weight of the truss is 36.551 kg
which is kept constant through out optimization

The GA pseudo-continuous design variables considered are in the range 0.00005 to
0.002 m, with initial cross-sections of each bar is equal to 0.001 m? population size

100, design variable binary string length 10 and number of iterations 100.

‘ |‘ 1.0m ' | 20m R

Figure 9.1 Nodal and element numbering for three bar truss

Discussion of the results: The convergence to optimal design for three bar truss is
achieved after 70 iterations. For an initial weight of 36.551 kg, the frequency before
optimization is 528.529 Hz. The resulting truss design of the GA for pseudo-continuous
design variables is compared with various references in Table 9.2. The increase in

fundamental frequency from sizing optimization is 3.1 %.
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Table 9.2 Comparison of optimum frequencies of three bar 2D truss

DV Element Size opt converged solutions (m®)
number | Present GA [Ref. [111] GA |Ref. [112] GA [Ref. [1 121 DOT
5 1,2 0.000753 0.0007 0.00032 0.00064
S, 3 0.001266 0.0014 0.00068 0.00139
Initial freq (Hz) 528.53 528.53 542.61 542.61
Optimum freq (Hz) | 545.4783 547.6714 547.8530 547.7700
9.4.2 Nine bar 2D truss

Problem definition: In the second truss example, we consider the sizing optimization of

nine bar truss. The geometry of the truss is shown in Figure 9.2. Material properties for
the truss are: modulus of elasticity E=2.0x10"N/m®and material density
p =7860.0kg/m’ . Node 1 acts as a pin-jointed static support, while node 6 is free to

move in the x-direction.

In this optimization problem, the objective is to maximize the fundamental frequency
with a constraint that the total weight of the structure should remain constant. The
objective weight is 55215.89 kg. Nine design variables are considered by the GA where

design variables are cross-sectional area of each member.

The GA pseudo-continuous design variables considered are in the range 0.0005 to 0.5
m, with initial cross-sections of each bar is equal to 0.2 m%, population size 400, design

variable binary string length 10 and number of iterations 100.

Discussion of the results: The convergence to optimal design for nine bar truss is
achieved after 61 iterations. The fundamental frequency increases from 30.79 Hz to
36.79 Hz. The increase in fundamental frequency from sizing optimization was 16%.
The resulting truss design of the GA for pseudo-continuous design variables, is
compared with various references in Table 9.3. The present optimum solution is very

close to reference solutions.
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Figure 9.2 Nodal and element numbering for nine bar truss

Table 9.3 Comparison of optimum frequencies three bar 2D truss

DV Element Optimum design variables (m®)
number |Present|Ref. [111] GA [Ref. [112] DAT
5 | 1 0.3170 0.3501 0.2720
s, 2 0.3080 0.3975 0.3250
S5 3 0.1810 0.2139 0.1430
s, 4 0.0440 0.0474 0.0340
Ss 5 0.0970 0.1279 0.1010
Sg 6 0.1590 0.2539 0.1520
s, 7 0.0260 0.0503 0.0310
Sy 8 0.2660 0.3809 0.2710
Sy 9 0.2660 0.4263 0.3060
Optimum Freq (Hz) | 36.69 37.15 37.38
9.4.3 Three bar 3D truss

Problem definition: This example, involves the optimization of the 3D three bar truss
shown in Figure 9.3 was presented by other researchers [111,112]. The following

material properties are assumed: Young’s modulus £ =6.7x10'"N/m* and material
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density p =2700.0 kg/m*. Nodes 1,2,3 are the locations of ball and socket static
supports. The objective is to maximize the fundamental frequency subject to the
constraint that the weight of the truss remains constant. Two design variables are
considered by the GA where design variable s, = 4” = 4® and 5, = 4®. and The
constrained weight is 9.9803 kg.

The GA pseudo-contimuous design variables considered are in the range 0.0001 to 0.005
m, with initial cross-sections of each bar is equal to 0.001 m? population size 200,

design variables binary string length 10, number of iterations 100.

p,1.8)

3
(4.5,1.5,0)

Figure 9.3 Nodal and element numbering for three bar 3D truss

Discussion of the results: The convergence to optimal design for three bar truss was
achieved after 70 iterations. For an initial weight of 9.98 kg, the frequency before
optimization was 177.08 Hz. Table 9.4 illustrates the results obtained using the GA for
continuous design variables. The increase in fundamental frequency from sizing
optimization was 13.6 %.
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Table 9.4 Comparison of optimum frequencies of three bar 3D truss

DV Element Optimum design variables (m?)
number | Present GA | Ref. [111] GA | Ref. [112] GA [Ref. [112] DOT
s, 1,3 0.000541 0.000532 0.000542 0.000526
s, 2 0.000129 0.000332 0.000127 0.000148
Optimum Freq (Hz)| 205.022 205.164 205.164 203.056
9.5 Arch Examples

9.5.1 Arches with discontinuously varying cross-section

Problem definition: This example, which involves the optimization of the

discontinuously varying cross-section arch shown in Figure 9.4 was originally presented

by Gutierrez et al [125] and analyzed in Chapter 6. The arches are optimized for

following cases

(a) maximization of the fundamental frequency with a constraint that the total material
volume of the structure should remain constant, and

(b) volume (or weight) minimization subject to the constraint that the fundamental
frequency should remain constant.

Piecewise constant: The geometry of the arch is modeled using seven key point and

three segments. Four design variables are considered these are thickness and width of

segment 1 and 2. Design variables of segments 1 and segment 3 are linked. Use is made

of design variable linking to achieve desired thickness variation and to maintain

symmetry of structures. The piecewise constant (and discontinuous) cross-sectional

variation and boundary condition of arch is shown in Figure 9.4 where#, /A, =1.25 and
B =40,

The GA pseudo-continuous design variables considered and the minmum and maximum
values of design variables are given in Table 9.5 and Table 9.6 for discontinously and
continously varying arches respectively. Population size 500, design variables binary
string length 10, number of iterations 100.
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Figure 9.4 Clamped arches of discontinuously varying cross-section

Discussion of results: Table 9.5 presents the initial and optimal values of the design

variables and objective functions together with bounds on the design variables for

piecewise constant thickness variation. In case (a), the fundamental frequency increases

from 7.90 to 9.42. --- an 18% improvement. However, in case (b) the weight reduces

from 60.49 and 19.262 % improvement is obtained; initial volume of the arch is 60.49

to 29.49 --- an improvement of more than 51%. The optimum solution is obtained in 56

iterations.

Table 9.5 Initial and optimum design values of discontinuously varying arch

DV | Minimum | Initial | Meximum Optimum design variables
Frequency maximization | Weight minimization
t 0.4 1.0 1.5 1.3903 1.07849
t, 04 1.0 1.5 1.1881 0.81183
w, 0.4 0.8 1.5 0.55483 0.41936
w, 0.4 1.0 1.5 0.89677 0.44731
Optimum frequency 9.4217 -
Optimum weight - 29.4936
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9.5.2 Arches with continuously varying cross-section

Problem definition: The following example deals with a continuously varying cross-

section arch supported by pin joints at both ends as shown in Figure 9.5. The arch was

originally analyzed (but not optimized) by Gutierrez et al [125] and analysis is repeated

in Chapter 6. The arches are optimized for following cases

(c) maximization of the fundamental frequency with a constraint that the total material
volume of the structure should remain constant, and

(d) volume (or weight) minimization subject to the constraint that the fundamental

frequency should remain constant.

The location of the design variables and boundary condition for the arch is shown in
Figure 9.5 where,/h, =0.43 and B = 60°. The geometry of the arch is modeled using
five key points and one segment. Six design variables are considered. These are

thicknesses of five key points and width of arch. The width of the arch at the key points

is same.

Figure 9.5 Pinned-pinned arches of continuously varying cross-section

Discussion of results: Table 9.6 shows initial and optimum values of design variables
and objective functions together with bounds on the design variables for cubic thickness

variation. For case (a), the problem of fundamental frequency maximization --- a2 77%
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increase in the fundamental frequency from 5.58 to 9.69 is obtained. In case (b)
involving volume minimization, a reduction of 53% from 104.61 to 49.09 is obtained.
Large numbers of thickness design variables, apart from leading to impractical
geometries, can sometimes lead to negative thicknesses between key points. Therefore,
care is exercised when checking the convergence to optimal structures by studying the
effect of increasing the number of thickness design variables. Constraints on the bounds
of the design variables are used to guard against negative or zero element thickness. As
seen in Table 9.6 the optimum thicknesses of arch shows that, the symmetry varying of
thickness gives better results and upper part of arch thickness is smaller than lower
parts.

Table 9.6 Initial and optimum design values of continuously varying arch

DV | Minimum | mitial | Maxizmum Optimum design variables
Frequency maximization | Weight minimization

L 0.1 0.6 2.0 ' 1.2302 1.6118
t, 0.1 0.8 2.0 1.9472 0.97106
L 0.1 1.0 2.0 1.4721 0.8596
ty 0.1 1.2 2.0 - 1.9853 0.9209
L 0.1 1.4 2.0 1.5835 1.6508
w, 0.1 1.0 2.0 0.5586 0.4436

Optimum frequency 9.6905 -
Optimum weight - 49.0884

9.6 Three Dimensional Portal Frames
9.6.1 Single story portal frame

Problem definition: The following example deals with a single story portal frame as
shown in Figure 9.6. The following material properties are assumed: the modulus of
elasticity 1x107 psi, Poisson’s ratio 0.25 and the material density 0.1/386.4 1b/in®. The
single story frame is optimized for following objective functions and constraints: case
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(a) maximization of fundamental frequency with a constraint that the total material
volume of the structure should remain constant, case (b) minimization of the volume of
material subject to the constraint that the fundamental frequency should be greater than

initial values @, = 3.61Hz and case (c) minimization of the weight of material subject to

the constraint that the fundamental frequency should be greater than the predefined
values of @, =50 rad/s @, = 7.9577 Hz.

The frame is modeled using three segments and four key points. The geometry of the
frame and location of the key points and segments are shown in Figure 9.6. In cases a)
and b) it is assumed that each member has a rectangle cross-sectional and the thickness
and widths of columns and beam are defined as design variables. Totally, four design
variables are defined in these optimization problems. In case c) as in referance solution,
it is assumed that each member has a cicular cross-sectional area and the diameter of

each segment is defined as design variable. Totally, three design variables are defined in
this case.

The GA pseudo-continuous design variables considered and the minimum and
maximum values of design variables are 0.5 to 6.0 respectively. Population size 100,

design variables binary string length 10, number of iterations 400.
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Figure 9.6 Two dimensional portal frame
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Discussion of results: Table 9.7 presents the initial and optimum design variables and
objective functions together with limits of the design variables. In case (a), the
fundamental frequency increases from 3.61 Hz to 6.6408 Hz. A 83.95 % improvement
in the fundamental frequency is obtained. In the case (b) involving weight
minimization, a reduction of 67.55 % from 0.31 1b to 0.1006 Ib is found for a constraint
that the fundamental frequency is equal to 3.61Hz. The result indicates that the use of
thickness and widths design variables seperately gives better results. It means that

rectangular cross ssections are more efficient than square or circular cross sections.

In case () we consider an alternative design case for the frame, for which we attempt to
minimize the weight of the frame for a given frequency value of 50 rad/s or 7.9577 Hz.
If the initial weight is taken as 0.31 1b then the final weight achieved is 0.4666 1b. The
optimum solution presented in Table 9.7 gives around 50.32 % weight increase. It is
noted that, the initial design is infeasible where the initial frequency is 3.61 Hz and
target frequency is 7.9577 Hz. The frequency and final weight values obtained for the

portal frame is in good agreement with the optimum solution obtained by Yu and Wang
[126].

Table 9.7 Optimum cross-sectional areas for 3D portal frame

DV Case (a) Case (b) Case (c) Ref.[126]

s, 1.8655 1.0885 3.5864 3.149

s, 2.9086 1.5435 1.0683 1.0

8, 2.1666 1.0269 2.9942 3.1489

S, 0.68279 0.5137 - -

Constrain | W=0.31041b |Fre=3.6473 Hz|Fre = 7.9577 Hz | Fre = 7.9577 Hz
Opt abjective Fre=6.6408 Hz| W=0.10061b | W=0.46661b | W=0.42341b
function

Initial fundamental frequency is 3.61 and initial weight is 0.3104
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9.6.2 Two story portal frame

Problem definition: This example, which involves the optimization of the two story
portal frame is shown in Figure 9.7, was also originally presented by Yu and Wang
[126]. The following material properties are assumed: the modulus of elasticity 1x10’
psi, Poisson’s ratio 0.25 and the material density 0.1/386.4 1b/in®. The frame structure is
completely fixed at nodes 1 and 4. Three different types of objective functions and
constraints are considered in the GA optimization: case (a) maximization of
fundamental frequency with a constraint that the total material weight of the structure
should remain constant, case (b) minimization of the weight of material subject to the
constraint that the fundamental frequency should be greater than initial values

@, =1.0885Hz and case (c) minimization of the weight of material subject to the

constraint that the fundamental frequency should be greater than the predefined values
of w, =20rad/s w, =3.183Hz.

5 () 6
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Figure 9.7 Two story portal frame
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The frame is modeled using six segments and six key points. The geometry of the frame
and location of the key points and segments are shown in Figure 9.7. In cases a) and b),
it is assumed that each member has a rectangular cross-sectional area. The thickness and
‘width of columns and beams are defined as design variables. Totally, four design
variables are defined in this optimization problems. In case c), It is assumed that each
member has a circular cross-sectional area as in reference [126] and the diameter of

each segment is defined as design variable. Totally, six design variables are defined in
this case.

The GA pseudo-continuous design variables considered and the minimum and
maximum values of design variables are 0.5 to 6.0 respectively. Population size 100,

design variables binary string length 10, number of iterations 400.

Discussion of results: The results for cases (a), (b) and (c) are listed in Table 9.8. The
initial, bounds and optimum values of the design variables are also shown in Table 9.8.
Analyses are done by using 3-noded 2 elements in each segment. Analysis result are

tested against reference solution and given in Chapter 6

In case (a), the fundamental frequency of the two story portal frame for the initial shape
~ 18 1.0885 Hz. For optimum shape, the fundamental frequency increases to 2.2709 Hz
which corresponding to 108.63 % improvement in the objective function.

In the case (b) involving weight minimization subject to a constraint that the
fundamental frequency is equal to initial value of 1.0885 Hz, a reduction of 72.26 %
from 0.6209 Ib to 0.1722 Ib is found. The result indicates that the use of thickness and
widths design variables seperately gives better results. It means that rectangular cross

ssections are more efficient than square or circular cross sections.

In case (c) we consider an alternative design case for the frame, for which we attempt to
minimize the weight of the frame for a given frequency value of 20 rad/s or 3.183 Hz. If
the initial weight is taken as 0.6209 Ib then the final weight achieved is 0.8436 1b. The

optimum solution presented in Table 9.8 gives around 35 % weight increase. It is noted
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that, the initial design is infeasible where the initial frequency is 1.0885 Hz and target
frequency is 3.183 Hz. The frequency and final weight values obtained for the portal
frame is in good agreement with the optimum solution obtained by Yu and Wang [126].

Table 9.8 Optimum cross-sectional areas for two-level porté] frame

DV Case (a) Case (b) Case (c) Ref. [126]
5 1.4731 0.7151 3.8592 3.7062
5, 3.5268 1.7854 1.1808 1.0
S, 2.1505 1.5435 3.8592 3.7062
S, 0.8656 0.5049 2.1144 1.9528
s, . - 1.1808 1.0
Sg - - 2.1144 1.9528
Constrains | W =10.6209 Ib |Fre=1.0896 Hz | Fre = 3.183 Hz | Fre = 3.183 Hz
Opt objective Fre =2.2709Hz| W=0.17221b | W=0.8436 b | W=0.75406 Ib
function

Initial fundamental frequency is 1.0885 and initial weight is 0.6209

9.6.3 Three story space frame

Problem definition: This example, which involves the optimization of the Three-story
space frame structure is shown in Figure 9.8, was also originally presented by Yu and
Wang [126]. and analyzed in Chapter 6. The frame structure is completely fixed at
nodes 1, 2, 3 and 4. The following material properties are assumed: the modulus of
elasticity 1x10” psi, Poisson’s ratio 0.25 and the material density 0.1/386.4 Ib/in’. Three
different types of objective functions and constraints are considered in the GA
optimization: case (a) maximization of fundamental frequency with a constraint that the
total material weight of the structure should remain constant, case (b) minimization of
the weight of material subject to the constraint that the fundamental frequency should be
greater than initial values (@, =1.8860 Hz) and case (c) minimization of the weight of

material subject to the constraint that the fundamental frequency should be greater than
the predefined values of @, =20rad/s @, =3.183Hz.
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The space frame is modeled using 24 segments and 16 key points. The geometry of the
frame and location of the key points and segments are shown in Figure 9.8. In cases a)
and b), it is assumed that each member has a rectangular cross-sectional area. The
thickness and width of columns and beams are defined as design variables. Totally, four
design variables are defined in these optimization problems. In case c), it is assumed
that each member has a circular cross-sectional area as in reference [126] and the

diameter of segments are defined as design variable. The design variables s,, s,, s,,
s,, s and s, are the cross sectional areas of members 1-4, 5-8, 9-12, 13-16, 17-20 and

21-24 respectively. Totally, six design variables are defined in this case.
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Figure 9.8 Three-story space structure
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The GA pseudo-continuous design variables considered and the minimum and
maximum values of design variables are 0.5 to 6.0 respectively. Population size 100,

design variables binary string length 10, number of iterations 400.

Discussion of results: The results obtained using the proposed method are given in
Table 9.9 for cases (a), (b) and (c). Analyses are done by using 3-noded 2 elements in

each segment. Analysis result are tested against reference solution and given in Chapter
6.

Table 9.9 Optimum cross-sectional areas for three story space structure

DV Case (a) Case (b) Case (c) Ref. [126]
5, 0.58627 45764 1.9411 4.2622
s, 5.3960 0.95294 0.62745 4.0789
5, 3.2823 0.65098 2.1078 3.1194
S, 1.4921 1.2549 1.5000 2.8519
S5 - - 0.72549 1.9738
8¢ - - 0.51960 1.0
Constrains W=24819 | Fre=1.8860 | Fre=3.183 | Fre=3.183
Optimum objective |
fumctions Fre =3.2190 Hz | W =1.6075 1b | W=3.78771b | W = 4.683 Ib

Initial fundamental frequency is 1.8860 and initial weight is 2.4819

In case (a), the fundamental frequency is maximized under weight constraint, which
maintaining the first weight of structure is constant with its initial value and equal to
2.4819. The fundamental frequency of the space frame increases from 1.8860 Hz to
3.2190 Hz. A 70.68 % improvement in fundamental frequency is obtained.

In the case (b) involving weight minimization subject to a constraint that the

fundamental frequency is equal to initial value of 1.8860 Hz, a reduction of 57.26 %
from 2.4819 Ib to 1.6075 1b is found in the material weight of the space frame.
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In case (c) we consider an alternative design case for the frame, for which we attempt to
minimize the weight of the frame for a given frequency value of 20 rad/s or 3.183 Hz. If
the initial weight is taken as 2.4865 Ib then the final weight achieved is 3.4806 Ib. The
optimum solution presented in Table 9.9 gives around 39.0 % weight increase. It is
noted that, the initial design is infeasible where the initial frequency is 1.8860 Hz and
target frequency is 3.183 Hz. The frequency and final weight values obtained for the

portal frame is in good agreement with the optimum solution obtained by Yu and Wang
[126].
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CHAPTER 10

TRANSIENT DYNAMIC ANALYSIS

10.1 Introduction

Many sources of external load that must be considered in the design of structures, the
most important by far in term of its potential for disastrous consequences is the
dynamic load. It is evident that the design of economic and attractive structures,
which can successfully withstand the forces induced by a severe dynamic load, is a
challenge demanding the best in structural engineering, art and science. During
analysis and design process, it is convenient to distinguish between the static and
dynamic components of the applied loading to evaluate the response to each type of
loading separately and then to superpose the two response components to obtain their
total effect.

Aim of the dynamic analysis to determine the dynamic behavior of a structure, where
the inertia or/and damping effects play an important role. Types of dynamic analysis
classified into [51,133];

a) Transient Dynamic Analysis

b) Modal Analysis

¢) Harmonic Analysis

d) Spectrum Analysis

Transient Dynamic Analysis is a technique to determine the response of a structure to

arbitrary time-varying loads such as an explosion. This is the most géneral form of
dynamic analysis. Loading may be any arbitrary function of time. Equation of
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motion is directly integrated step by step over time. At each time point, a set of

simultaneous “static” equilibrium equations is solved.

The equation of the dynamic system represent expressions Newton’s second law of
motion, which, states that the rate of change of momentum of any mass particle » is
equal to the force acting on it. The relationship can be expressed mathematically by

the differential equation

d du
f(t)—z(mz) (10.)

where f(¢) is the applied force vector and u(¢) is the position vector of particle

mass m. Fdr most problems in structural dynamics it may be assumed that mass does
not vary with time, in which case (10.1) may be written

2

f@= m%t—f = md () (10.2)

where the dots represent differentiation with respect to time. Eq (10.2), indicating
that force is equal to the product of mass and acceleration, may also be written in the

form
f@)-md(f)=0 (10.3)
in which case, the second term md(f) is called the inertial force resisting the

acceleration of the mass. The concept that a mass develops an inertial force
proportional to its acceleration and opposing it is known as D’ Alembert’s principle.
It is a very convenient device in problems of structural dynamics because it permits

the equations of motion to be expressed as equations of dynamic equilibrium [57].

In dynamic analysis, force equilibrium of a multi degrees of freedom lumped mass

system as a function of time can be expressed by following relationship;

F@), +F(9), +F(t); =F () (10.4)
in which the force vectors at time ¢ are; F(f), is a vector of inertia force acting on the
node masses, F(t), is a vector of viscous damping, or energy forces, F(¢), is a
vector of internal forces carried by the structure and F(¢f) is a vector of externally

applied loads.
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Eq (10.4) is based on physical laws and is valid for both linear and nonlinear systems

if equilibrium is formulated with respect to the deformed geometry of the structure.

For many structural systems, the approximation of linear structural behavior is made
in order to convert the physical equilibrium statement, Eq (10.4), to the following set
of second-order, linear, differential equations:

Mii(z), +Cu(r), +Ku(?), =F() (10.5)
in which M is the mass matrix (Iumpéd or consistent), and K is the static stiffness
matrix and the derivation of these matrices are same with in static and dynamic
analysis and given in previous chapters. C is viscous damping matrix for the system

of structural elements. The time-dependent vectors u(¢),, u(f), andii(f), are the

absolute node displacements, velocities and accelerations respectively.

10.2 Types of Loads

The response of a structure to dynamic loads may be categorized as either
deterministic or nondeterministic [57,133]. If the magnitude, point of application and
time variation of the loading are completely known, the load is said to be prescribed,
and the analysis of the structural response to this prescribed loading is defined as
deterministic analysis. However, if the time variation and other characteristics of the
loading are not completely known, but can be defined only in a statistical sense, the
loading is referred to as random, and the corresponding analysis of the structural

response is termed nondeterministic.

It is convenient to classify prescribed dynamic loads as either periodic or
nonperiodic. Periodic loadings repeat themselves at equal time intervals. A single
time interval is called the period T,. The simplest form of periodic loading can be

represented by a sine function as shown in Figure 10.1. This type of periodic loading
is referred to as simple harmonic. Another form of periodic load is termed periodic,
nonharmonic. Summing a sufficient number of harmonic terms in a Fourier series
may accurately represent most periodic loads. Any loading that cannot be

characterized as periodic is nonperiodic. Nonperiodic loads range from short duration
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impulsive types, such as a wind gust or a blast pressure, to fairly long duration loads,

such as an earthquake ground motion [57].

® (b) © (d)

Figure 10.1 Types of dynamic loadings (a) simple harmonic; (b) periodic,

nonharmonic; (c) nonperiodic, short duration; (d) nonperiodic, long duration [57]

10.3 Damping

In structural engineering viscous, velocity-dependent damping is very difficult to
visualize for most real structural systems. Only a small number of structures have a
finite number of damping elements where real viscous dynamic properties can be
measured. In most cases modal damping ratios are used in the computer model to
approximate unknown nonlinear energy dissipation within the structure. Damping
can be classified as;
a) Viscous damping occurs when a body moves through a fluid.
b) Hysteresis (or solid) damping inherently present in a material. Not well
understood and therefore difficult to quantify.
c) Coulomb (or dry-friction) damping occurs when a body slides on a dry surface.
Damping force is proportional to the force normal to the surface. The
proportionality constant 4 is called the coefficient of friction.
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10.3.1 Construction of damping matrix

It is impractical to determine the coefficients of the damping matrix directly from the
structural dimensions, structural member sizes, and the damping properties of the
structural materials used. Even if these properties were known, the resulting damping
matrix would not account for a significant part of energy dissipated in friction at steel
connections, opening and closing of micro cracks in concrete, stressing nonstructural
elements — partition walls, mechanical equipment, etc.— friction between the
structure it self and nonstructural elements and other similar mechanisms, some of

which are even hard to identify.

Thus the damping matrix for a structure should be determined from its modal
damping ratios, which account for all energy dissipating mechanisms. The modal
damping ratios should be estimated from available data on similar structures shaken
strongly during past earthquakes but not deformed into the inelastic range; lacking
such data the values of Table 10.1 are recommended [41].

Another form of damping, which is often used in the mathematical model for the
simulation of the dynamic response of a structure, is proportional to the stiffness and
mass of the structure. ThlS is referred to as Rayleigh damping. Both modal and
Rayleigh damping are used in order to avoid the need to form a damping matrix
based on the physical properties of the real structure.

Clearly the simﬁlest way to formulate a proportional damping matrix is to make it
proportional to either the mass or the stiffness matrix because undamped mode
shapes are orthogonal with respect to each of these. Thus the damping matrix might
be given by

C=aM or C=gK (10.6)
™ in which the proportionality constants a, and @, have units of 1/sec and sec,

respectively. These are called mass proportional and stiffness proportional damping.
The stiffness proportional damping appeals to intuition because it can be interpreted

to the energy dissipation arising from story deformation. In contrast, the mass
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proportional damping is difficult to justify physically because the air damping it can
be interpreted to model is negligibly small for most structures. Neither of the two
damping models is appropriate for practical application [41,57].

Table 10.1 Recommended damping values [41]

Stress level Type and condition of structure Dam;z};l% ratio
0
o Welded steel, prestressed concrete, well- 23
Working stress, reinforced concrete (only slight cracking)
no more than e Reinforced concrete with considerable 3.5
about % yield cracking )
point e Bolted and/or riveted steel, wood structures 5.7
with nailed or bolted joints
o Welded steel, prestressed concrete (without 5.7
complete loss in prestress)
At or just » Prestressed concrete with no prestress left 7-10
below yield ¢ Reinforced concrete 7-10
potnt e Bolted and/or riveted steel, wood structures
. 10-15
bolted joints
¢ Wood structures with nailed 15-20

Mass proportional damping: We now relate the modal damping ratios for a system
with mass proportional damping to the coefficient a,. The generalized damping for

nth mode is,
C,=a,M, (10.7)
and the modal damping ratio is,
a, 1
=—— 10.8
"2 e, (108)

the damping ratio is inversely proportional to the natural frequency (See Figure
10.2). The coefficient a, can be selected to obtain a specified value of damping ratio

in any one node, say &, for the ith mode, (10.8) the gives,
a, =280, (10.9)
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with g, determined, the damping matrix C, is known from (10.6), and the damping
ratio in any other mode, say the nth mode, is given by (10.8).

Stiffness proportional damping: Similarly, the modal damping ratios for a system

with stiffness proportional damping can be related to the coefficienta, . In this case
C,=aK, and & =£2‘—w,, (10.10)

The damping ratio increases linearly with the natural frequency (See Figure 10.2).

The coefficient @, can be selected to obtain a specified value damping ratio in any

mode one mode, say &, for the jth mode, (10.10) the gives,

a, =-ii (10.11)
J

with a, determined, the damping matrix C is known from (10.6), and the damping
ratio in any other mode, say the nth mode, is given by (10.10). Neither of the
damping matrices defined by (10.6) is appropriate for practical analysis of multi
degrees of freedom systems. The variations of modal damping ratios with natural
frequencies they represent Figure 10.2 are not consistent with experimental data that

indicate roughly the same damping ratios for several vibration modes of a structure.

&, =a,/2m, C=agK
gn = almn /2
| | | | >

Figure 10.2 Variation of modal damping ratios with natural frequency mass
proportional and stiffness proportional damping
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Rayleigh damping: As a first step toward constructing a classical damping matrix
consistent with experimental data, we consider Rayleigh damping:

C=gM+4gK (10.12)
the damping ratio for nth mode of such a system is
a 1 a
y = —t+—a, 10.13
2w, 2 ( )

n

these two algebraic equations can be solved to determine the coefficients a, and g,
can be determined from specified damping ratios &, and &, for the jth and jth

modes, respectively. Expressing (10.13) for these two modes in matrix form leads to

slie, o fo)=1e} o1y
these two algebraic equations can be solve to determine the coefficients a, and q;.
If both modes are assumed to have same damping ratio &, which is reasonable based
on experimental data, then
20,0 ; 2

a, =& ——— a, =
0 5w,+a)j : gco,+a)j_

(10.15)

the damping matrix is then known from (10.12) and the damping ratio for any other
mode, given by (10.13), varies with natural frequency as shown in Figure 10.3 [41].

£ A Rayleigh Damping

Figure 10.3 Variation of modal damping ratios with natural frequency
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10.4 Method of Linear Analysis

Detail treatment about evaluation of stiffness and mass matrices mentioned before in
Chapter 4 and Chapter 5, respectively. Types of loads and construction of damping
matrix is mentioned above. Already, equation of motion is presented at (10.5) is
constructed. Classically; there are many different mathematical models to solve
dynamic equilibrium equations. These methods are;

e Mode superposition

e Direct Integration

10.4.1 Mode superposition method

The mode superposition method was employed to obtain the dynamic response of the
linear multi degrees of freedom systems by transforming equations of motion to
principal (normal) coordinates and solving the resulting set of uncoupled equations
of motion. For simple excitation functions, the uncoupled model equations could be
solved in closed form [14]. However, for more complex or arbitrary excitations it
was necessary to implement one of the numerical methods to evaluate the response.
The mode superposition method is not valid for multi degrees of freedom systems
with nonlinearities or with non-classical damping (i.e.,, damping that is not
orthogonal or that is coupled). Such systems require direct integration of set of
coupled differential equations to evaluate the dynamic response. If the system under
consideration exhibits any nonlinearities or is characterized by non-classical
damping, then a mode superposition analysis is precluded. Mode superposition
analysis is most effective for large systems when the dynamic response can be
accurately evaluated by consideration vibration. This is because the majority of the
computational effort expended for a mode superposition analysis is associated with
the eigenproblem solution. The mode superposition analysis is ideally suited for
situations where the dynamic disturbance is confined to the lowest modes of
vibration system, and the duration of the disturbance is relatively long [40].

The mode superposition approach [3,133] is commonly used for the dynamic
response analysis of structural systems and especially for the response spectrum
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analysis of linearly behaving structures subjected to earthquake induced ground
motions. To obtain dynamic characteristics such as mode shapes, natural frequencies
and participation factors required in the mode superposition approach, the eigenvalue
analysis of the structure is performed. In a modal analysis, it is a common practice to
use only a first few modes in the calculation of the structural response because the
contribution of the high modes to the response is usually small. Quite often,
therefore, one needs to calculate only a first few modes by eigenvalue analysis. To
obtain a first few modes, it is not necessary to solve the full eigenvalue problem.
Therefore several techniques have been proposed to reduce the size of the eigenvalue
problem. Some types of schemes used to reduce the size of the problem are calling

condensation techniques [41].

10.4.2 Direct integration methods

A direct integration analysis should be conducted in situations when a large number
of vibration modes must be included in response calculations. This is generally the
scenario for structures subjected to high-intensity, short duration impulse type
loading, such as shock or blast load. For non-classically damped systems or systems
exhibiting any nonlinear characteristics a direct integration analysis is required
(3,57,41].

Direct numerical integration of the dynamic equilibrium equations involves after the
solution is defined at time zero, the attempt to satisfy dynamic equilibrium at discrete
points in time. Most methods use equal time intervals Az, 24t 34,......... nat.
Numerical techniques can fundamentally be classified as either explicit or implicit
integration methods;
a.) Explicit Methods

¢ Central Difference Method
b.) Implicit Methods

o Newmark Family Methods

e Houbolt Method

e Wilson § Method

212



e Hilber, Hughes and Taylor @ Method

In explicit (or open, or predictor) methods, such as the central difference method,
dynamic equilibrium is considered at time ¢ to evaluate the solution at time z+Az.
Therefore, all explicit methods conditionally stable with respect to the size of the
time step. In implicit (or closed, or corrector) methods, such as the Wilson-6 and
Newmark methods, the solution u+4 is found expressions that consider equilibrium
at time ¢+4t. These methods require the solution of a set of linear equations at each
time step; however, larger time steps may be used. Implicit methods may be
conditionally or unconditionally stable [133].

Newmark family of methods: In 1959, Newmark [43] presented a family of single-
step integration methods of solution of structural dynamic problems for both blast
and seismic loading. During the past 40 years Newmark’s method applied to the
dynamic analysis of many practical engineering structures. In addition, has been
modified and improved by many other researchers. In order to illustrate the use of
this family of numerical integration methods consider the solution of the linear
dynamic equilibrium equations as in (10.5) is mentioned. The direct use of Taylor’s
series provides a rigorous approach to obtain the two additional equations. First to

obtain the u, by u,_,, and it’s following order derivatives terms. The ladder is #, by

u,_,,and it’s following order derivatives terms. Newmark truncated these equations
and rearrange them. He produces Newmark’s equations in standard form

Upn =t + U=y Wi, +7 i, A (10.16)

Uppn =t + i, At +[(1/2= B i, + B i, JAL? (10.17)

Two special cases of Newmark’s method are the well-known average acceleration

and linear acceleration methods. The assumption in average acceleration is made that

within small increment of time 4¢, the acceleration is the average value of the

acceleration at the beginning of the interval i, and the acceleration at the end of the

time interval i,,,, as illustrated in Figure 10.4. The assumption in linear
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acceleration is made that a linear variation of acceleration from time # to time #+4¢ as

illustrated in Figure 10.5.

A
()

-

Y

|

! T t+ At

Figure 10.4 Numerical integration using; the average acceleration method

The parameters § and y define the variation of acceleration over time step and
determine the stability and accuracy characteristics of the method. 7z is the arbitrary
time between time ¢ and time ¢+A4z. Typical selection of y =1/2and 1/6< f<1/2
is satisfactory from all points of view, including that of accuracy. Newmark’s
equations with ¥ =1/2 and B =1/2 are the same as those derived assummg
constant average acceleration, and those with y =1/2 and S =1/6 correspond to

assumption of linear variation of acceleration [40,41,57133].

Stability of Newmark’s method: For zero damping Newmark’s method is
conditionally stable if;

y21/2, B<1/2 and At € e (10.18)

/4
a) — —

where @, is the maximum frequency in the structural system [43]. Newmark’s

method is unconditionally stable if;
282y 21/2 (10.19)
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u(r) = U, +E (ut+At - ut)

Figure 10.5 Numerical integration using; linear acceleration method

Géradin and Rixen [134] proposes another constraint of f and y is can
summarized;

y=1/2+a and B=1/4y+1/2) with a>0 (10.20)

However, if ¥ is greater than 1/2, errors are introduced. These errors are associated

with “numerical damping” and “period elongation”.

For large multi degrees of freedom structural systems the time step limit, given by Eq

(10.18), can be written in a more useable form as

-T—A’—s———l—- (10.21)
m o -}2:—,6

Computer models of large real structures normally contain a large number of periods
which are smaller than the integration time step; therefore, it is essential that one
select a numerical integration method that is unconditional for all time steps [40].
The stability region of the Newmark method is shown in Figure 10.6.
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Figure 10.6 Stability region for the Newmark’s method [134]

Selection of a direct integration method: 1t is apparent that large number different
direct numerical integration methods are possible by specifying different integration

parameters. A few of the most commonly used methods are summarized in Table
10.2.

Table 10.2 Summary of Newmark methods modified by the & factor [40]

At
Method 1Bl &S T Accuracy
) 11, Excellent for small At
Central difference ) 0 [0.3183
Unstable for large At
111 Very good for small At
Linear acceleration 216 0 [05513 e
Unstable for large Ar
) 1)1 Good for small At
Average acceleration =|=10 o C
2|4 No energy dissipation
MOdlﬁed_ a"e’ag,e ) 11| A Good for small At
acceleration (using stiffness 1zl 7 @ No enerery dissipation
proportional damping) ° &y P
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For single degree of freedom systems the central difference method is most accurate;
and the linear acceleration method is more accurate than the average acceleration
method. However, if only single degree of freedom systems are to be integrated the

piece-wise exact method, previously presented, and should be used since there is no

need to use an approximate method.

It appears that the modified average acceleration method, with a minimum addition
of stiffness proportional damping, is a general procedure that can be used for the
dynamic analysis of all structural systems. Using & = AT/z will damp out periods
shorter than the time step and introduces 2 minimum error in the lbng period

response [40].

10.5 Examples of Transient Dynamic Analysis

To verify that the formulation of the FE model can be successfully used for the
transient dynamic analysis of the beam and frame structures, several examples for

which solutions are available have been considered.

10.5.1 Cantilever beam with sinusoidal tip load example

The cantilever beam shown in Figure 10.7 is a benchmark example to test dynamic
analysis schemes. The cantilever beam of unit length is subjected to a tip loading
p(¢) given by a half-sine pulse shown in Figure 10.8. The tip loading has the
following characteristics, an amplitude E7 and duration equal to fundamental period.
T. The material properties of the beam are given by an EI of 3.1941 and a mass per
unit length p4 of 1.0.
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Figure 10.7 Geometry of cantilever beam
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Discussion of results: First, the free vibration analysis is carried out. The
fundamental frequency of the beam is computed and equal to 6.239 rad/sec. A very
good agreement is obtained between the present solution and the analytical (exact)
solution presented by Smith and Griffiths [135] which indicates a fundamental

frequency value of @ =6.284rad/sec (orw=3.5160vEI/mL"). So the exact

Figure 10.8 Loading history of cantilever beam

fundamental period is found to be 7 =27 /w =1.0sec.

This problem is solved by average acceleration method. The interval value of
At=0.05sec is taken. The damping ratio is equal to zero. The result of presented
study and values given by Smith and Griffiths [135] is tabulated in Table 10.3. The
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numerical results obtained for tip displacement of beam is compared with Smith and
Griffiths [135] and analytical solution in Figure 10.9. Remarkably good agreement

between results is observed.

Table 10.3 Tip displacement results of cantilever beam

. i Ref. Present . . Ref. Present
Time | Analytical Time | Analytical
[135] study [135] study

0.00 | 0.0000 0.0000 0.0000 | 0.90 | 0.2632 0.2659 0.2755
0.05 | 0.0022 0.0019 0.0020 | 0.95 | 0.1357 0.1393 0.1546
0.10 | 0.0093 0.0095 0.0101 1.00 | 0.0000 0.0043 0.0203
0.15 | 0.0255 0.0253 0.0269 | 1.05 | -0.1335 | -0.1284 | -0.1153
0.20 | 0.0538 0.0529 0.0542 | 1.10 | -0.2540 | -0.2487 | -0.2380
0.25 | 0.0958 0.0949 0.0945 L15 | -0.3495 | -0.3455 | -0.3368
0.30 { 0.1513 0.1497 0.1489 | 1.20 { -0.4109 | -0.4081 | -0.4051
035 | 02182 0.2153 0.2153 1.25 | -0.4320 | -0.4308 | -0.4365
0.40 | 0.2925 0.2892 0.2875 1.30 | -0.4108 | -0.4123 | -0.4249
0.45 | 0.3688 0.3650 03618 | 1.35 | -0.3494 | -0.3534 | -0.3711
0.50 | 0.4410 0.4361 0.4337 | 1.40 | -0.2538 | -0.2597 | -0.2833
0.55 | 0.5023 0.4976 04957 | 145 | -0.1333 | -0.1415 | -0.1704
0.60 | 0.5464 0.5420 0.5403 1.50 | 0.0002 | -0.0093 | -0.0403
0.65 | 0.5677 0.5633 0.5626 | 1.55{ 0.1337 0.1244 0.1026
0.70 | 0.5622 0.5589 0.5602 | 1.60 | 0.2541 0.2452 0.2265
0.75 | 0.5278 0.5261 0.5302 | 1.65 | 0.3496 0.3423 0.3246
0.80 | 0.4646 0.4638 04704 | 1.70 | 0.4109 0.4067 0.3986
0.85 | 0.3750 03757 | 03836 | 1.75{ 0.4320 0.4310 0.4335
0.90 { 0.2632 0.2659 0.2755 | 1.80 | 0.4108 0.4132 0.4251
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Figure 10.9 Tip displacements of cantilever beam respect to time

10.5.2 Two bay-two story reinforced concrete frame

Problem definition: Figure 10.10 shows the next example considered which consists
of a two bay-two story reinforced concrete frame subject to ramp loads. The frame is
assumed to be clamped at the base and the mass and flexural rigidity is computed

from the gross area of concrete (neglecting the reinforcing steel). The unit weight of
concrete is 24kN/m’ and its elastic modulusE, =28.5x10°kN/m”. All column
cross-sections are identical and are 0.40mx0.40m in dimensions. All beam cross-

sections are also identical and are 0.25mx0.50m in dimensions. Frame is subjected

to ramp loads shown in Figure 10.11, which are at story levels and are half of the

previous value.
Py A
3m
0.5pﬂ B
3m
7 W/ 4
le Sm e sm N
i~ D g

Figure 10.10 Geometry of two bay-two story reinforced concrete frame
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Figure 10.11 Loading history of ramp loads

Discussion of results: The first two fundamental periods are computed using free
vibration program and results are presented and compared with SAP 2000 in Table
10.4. By making the assumption ¢, /T, = 0.2, rise time of ramp load ¢, is found to

be ¢, =0.08sec. As a result of this assumption the dynamic response of the structure
is clearly observed. Loading history of ramp load can be summarized as shown in
Figure 10.11. The response of structure computed for a time period of 1.0sec
with Az =0.01sec. This problem is solved by average acceleration method. The
analysis results are tabulated and compared with SAP 2000 for undamped situation
in Table 10.5. The numerical results obtained for displacements of point A and
rotations of point B are compared with the results obtained by SAP2000 in Figure
10.12 and 10.13. Remarkably good agreement between results is observed. This

problem is solved for ¢, /T, = 0.2. The other ¢, /T, ratios computed and presented in

Figure 10.14. If ¢, /T, ratio is increased the dynamic disturbances are getting

decreased.

For damped case, by making the assumption & =0.10 is more convenient to observe
effects of damping forces, clearly. The response of structure computed for a time
period of 1.0sec withAs=0.01sec for damped situation. The numerical results
obtained for displacements of point A and rotations of point B for damped case are
compared with the results obtained by SAP2000 in Figure 10.15 and 10.16. Again,

remarkably good agreement between results is observed.
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Table 10.4 Periods for two bay-two story reinforced concrete frame

Periods (sec)
Present study | SAP2000

0.3622 0.3622
2 0.1120 0.1120

Mode

Table 10.5 Displacement results of point A and rotation results of point B for
undamped situation & = 0.0

Point A (mx107) Point B(radx107)
SAP2000 | Present study | SAP2000 | Present study
0.00 | 0.0000 0.0000 0.0000 0.0000
0.01 | 0.0016 0.0016 0.0000 0.0000
0.02 | 0.0067 0.0068 0.0000 0.0002
0.03 | 0.0168 0.0169 0.0000 0.0009
0.04 | 0.0344 0.0345 0.0026 0.0026
0.05 | 0.0620 0.0621 0.0054 0.0054
0.06 | 0.1008 0.1010 0.0091 0.0091
0.07 | 0.1519 0.1521 0.0141 0.0141
0.08 | 0.2164 0.2166 0.0206 0.0206
0.09 | 0.2927 0.2929 0.0286 0.0286
0.10 | 0.3792 0.3794 0.0377 0.0377
0.20 | 1.2700 1.2677 0.1301 0.1302
0.30 | 0.8213 0.8208 0.0837 0.0836
0.40 | 0.0709 0.0710 0.0054 0.0054
0.50 | 0.7516 0.7524 0.0762 0.0763
0.60 | 1.2800 1.2839 0.1317 0.1317
0.70 | 0.4363 0.4352 0.0434 0.0433
0.80 | 0.1771 0.1779 0.0166 0.0167
090 | 1.1100 1.1124 0.1139 0.1140
1.00 | 1.0800 1.0735 0.1101 0.1100

Time
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Figure 10.12 Displacements of point A with respect to time for undamped situation
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Figure 10.13 Rotations of point B with respect to time for undamped situation
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Figure 10.14 Comparisons of displacements results of point A for static and different
t, /T, ratios -- undamped situation & = 0.0
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Figure 10.15 Displacements of point A with respect to time for damped situation
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Figure 10.16 Rotations of point B with respect to time for damped situation
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10.5.3 Three-dimensional portal frame

The three-dimensional portal frame considered in the next transient dynamic study is
subject to ramp loading as shown in Figure 10.17. The frame is assumed to be
clamped at the base and the mass and flexural rigidity is computed from the gross

area of concrete (neglecting the reinforcing steel). The unit weight of concrete is 24
kN/m’ and its elastic modulus E, =28.5x10°kN/m?. All column cross-sections are
identical and are 0.40 m x 0.40 m in dimensions. All beam cross-sections are also

identical and are 0.25 m x 0.50 m in dimensions. Frame is subjected to ramp loads

shown in Figure 10.11, which are at story levels and are half of the previous value.

Discussion of results: The first two fundamental periods are computed using free
vibration program and results are presented and compared with SAP 2000 in Table
10.6. By making the assumption ¢, /T, = 0.2, rise time of ramp load ¢, is found to
be ¢, =0.08sec. As a result of this assumption the dynamic response of the structure

is clearly observed. Loading history of ramp load can be summarized as shown in

Figure 10.11. The response of structure computed for undamped situation & =0.0
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and a time period of 1.0sec withAz=0.01sec. This problem is solved by average
acceleration method. The analysis results are tabulated in Table 10.7. The numerical
results obtained for displacements of point A and rotations of point B are compared
with the results obtained by SAP2000 in Figure 10.18 and 10.19. Remarkably good

agreement between results is observed.

p) B D
3m

0.5p(1) C

A _

/7 /A
Sm
/7 77
5Sm

Figure 10.17 Geometry of three-dimensional portal frame

Table 10.6 Periods of three-dimensional portal frame.

Periods (sec)
Present study | SAP2000
1&2 | 0.22071 0.22078

3 0.17221 0.17559

Mode
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Table 10.7 Displacement results of point A and rotation results of point B

Point A (mx107?) Point B(radx10™%)
SAP2000 | Present study | SAP2000 | Present study
0.00 | 0.0000 0.0000 0.0000 0.0000
0.01 | 0.0078 0.0081 0.0000 0.0000
0.02 | 0.0380 0.0388 0.0000 0.0002
0.03 | 0.1034 0.1055 0.0000 0.0009
0.04 | 0.2144 0.2179 0.0026 0.0026
0.05 | 0.3710 0.3754 0.0054 0.0054
0.06 | 0.5664 0.5707 0.0091 0.0091
0.07 | 0.7943 0.7971 0.0141 0.0141
0.08 | 1.0502 1.0506 0.0206 [ 0.0206
0.09 | 1.3202 1.3262 0.0286 0.0286
0.10 | 1.6101 1.6151 0.0377 0.0377
0.20 | 23213 2.3218 0.1301 0.1302
0.30 | 0.4681 0.4816 0.0837 0.0836
0.40 | 3.1603 3.0924 0.0054 0.0054
0.50 | -0.0343 0.0381 0.0762 0.0763
0.60 | 3.2614 3.1118 | 0.1317 0.1317
0.70 | 0.1869 0.2821 0.0434 0.0433
0.80 | 2.7407 2.6141 0.0166 0.0167
0.90 [ 0.8661 0.8713 0.1139 0.1140
1.00 | 1.9405 1.9001 0.1101 0.1100

Time

—e—sap 2000
—=— present

disp at point A (x0.001)

time (sec)

Figure 10.18 Displacements of point A with respect to time
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Figure 10.19 Rotations of point B with respect to time

10.6 Transient Dynamic Behavior of Optimized Structures
10.6.1 Cantilever beam with sinusoidal tip load example (SE minimization)

The cantilever beam analyzed in Section 10.4.1 of this chapter is now optimized in
order to compare the dynamic behavior of structure before and after the optimization.
The geometry and loading of the structure is shown in Figure 10.7. The material
properties and loading are same as Section 10.4.1. The problem is solved in two
stages. First of all, the beam is optimized and then the transient dynamic analysis is

carried out for initial and optimum shape.

The beam is optimized for the SE minimization with a constraint that the total
material volume of the structure should remain constant and the maximum von
Misses stress should not exceed of its initial value prior to optimization. The beam is
modeled using one segment and two key points. The thickness and width of the beam
are defined as design variables.

Discussion of optimization results: The initial and optimum values of SE and design
variables are given in Table 10.8. The SE of the beam is reduced from 0.1051 to
0.007775. Note that, a remarkable reduction in the SE is obtained. SE minimization
leads to an increase in the stiffness of the structure thereby reducing the

deformations.
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Table 10.8 Initial and optimum design variables of cantilever beam

Design variables .
Optimum
Type [Minimum | Initial | Maximum
Thickness| 0.001 0.1 1.0 0.3916
Width 0.1 10.0 15.0 2.5469
SE 0.1051 0.007775

Discussion of dynamic analysis results: The free vibration analyses are carried out
for initial and optinium shapes. The results of the analysis are given in Table 10.9.
After the SE minimization, the fundamental frequency increases from 6.2390 rad/sec
to 22.251 rad/sec which corresponding to 256% increase.

Table 10.9 Initial and optimum frequencies of cantilever beam

Frequency (rad/sec)
Mode
Initial shape | Optimum shape
1 6.2390 22251
2 37.985 96.502

This problem is solved by average acceleration method. The interval value of
At =0.05sec is taken. The damping ratio is equal to zero. The results of presented
study are tabulated in Table 10.10 for initial and optimum shape. Figure 10.20 shows
that the displacements for initial and optimum shapes. Note the remarkable reduction
in the amplitude of the vibration that has been obtained.
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Table 10.10 Tip displacement results of cantilever beam for initial and optimum

shape
Time | Initial Shape | Optimum Shape | Time | Initial Shape. | Optimum Shape
0.00 0.0000 0.00000 0.90 0.2755 0.00940
0.05 0.0020 0.00099 0.95 0.1546 0.00239
0.10 0.0101 0.00462 1.00 0.0203 -0.00329
0.15 0.0269 0.01079 1.05 -0.1153 -0.00488
0.20 0.0542 0.01705 1.10 -0.2380 -0.00184
0.25 0.0945 0.02045 1.15 -0.3368 0.00292
0.30 0.1489 0.02044 1.20 -0.4051 0.00494
0.35 0.2153 0.01942 1.25 -0.4365 0.00227
0.40 0.2875 0.02011 1.30 -0.4249 -0.00253
0.45 0.3618 0.02326 1.35 -0.3711 -0.00495
0.50 0.4337 0.02676 1.40 -0.2833 -0.00269
0.55 {  0.4957 0.02747 1.45 -0.1704 0.00211
0.60 0.5403 0.02455 1.50 -0.0403 0.00491
-0.65 0.5626 0.01990 1.55 0.1026 0.00307
0.70 0.5602 0.01649 1.60 0.2265 -0.00168
0.75 0.5302 0.01583 1.65 0.3246 -0.00484
0.80 0.4704 0.01611 1.70 0.3986 |  -0.00343
0.85 0.3836 0.01443 1.75 0.4335 0.00122
0.90 0.2755 0.00940 1.80 0.4251 0.00940
0,8 —e— initial sahape
0,6 — after optimization

g 04 N ”
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Figure 10.20 Comparison of tip displacements of initial and optimum cantilever
beam
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10.6.2 Cantilever beam with sinusoidal tip load example (weight minimization)

The cantilever beam analyzed in Section 10.5.1 of this chapter is now optimized in
order to compare the dynamic behavior of structure before and after the optimization.
The geometry and loading of the structure is shown in Figure 10.7. The material
properties and loading are same as Section 10.5.1. The problem is solved in two
stages. First of all, the beam is optimized and then the transient dynamic analysis is

carried out for initial and optimum shape.

The beam is optimized for the weight minimization subject to a constraint that the
maximum von Misses stress and displacement should not exceed of its initial value
prior to optimization. The beam is modeled using one segment and two key points.

The thickness and width of the beam are defined as design variables.

Discussion of optimization results: The initial and optimum values of weight and
design variables are given in Table 10.11. The weight of the beam is reduced from
1.0 to 0.2938. Weight minimization leads to a decrease in the mass of the structure

thereby improve the dynamic behavior.

Table 10.11 Initial and optimum design variables of cantilever beam

Design variables

Type |Minimum |Inijtial | Maximum | Optimum
Thickness| 0.001 | 0.10 5.0 1.2715
Width 0.100 | 10.0 15.0 0.2311
Weight ' 1.0 0.2938

Discussion of dynamic analysis results: The free vibration analyses are carried out
for initial and optimum shapes. The results of the analysis are given in Table 10.12.
After the weight minimization, the fundamental frequency increases from 6.2390
rad/sec to 45.1307 rad/sec which corresponding to 623% increase.
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This problem is solved by average acceleration method. The interval value of
At =0.05sec is taken. The damping ratio is equal to zero. Figure 10.21 shows that
the displacements for initial and optimum shapes. Note the remarkable reduction in
the amplitude of the vibration that has been obtained.

Table 10.12 Initial and optimum frequencies of cantilever beam

Frequency (rad/sec)

Mode
Initial shape | Optimum shape
1 6.2390 45.1307
2 37.985 97.2589
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Figure 10.21 Comparison of tip displacements of initial and optimum cantilever
beam

10.6.3 Two bay-two story reinforced concrete frame (SE minimization)

The Two bay-two story reinforced concrete frame analyzed in Section 10.5.2 of this
chapter is now optimized in order to compare the dynamic behavior of structure
before and after the optimization. The geometry and loading of the structure is shown
in Figure 10.10. The material properties and loading are same as Section 10.5.2. The
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" problem is solved in two stages. First of all, the frame is optimized and then the

transient dynamic analysis is carried out for initial and optimum shape.

The frame is optimized for the SE minimization with a constraint that the total
material volume of the structure should remain constant and the maximum von
Misses stress should not exceed of its initial value prior to optimization. The frame is
modeled using ten segment and nine key points. The thickness and width of the

column and beam are defined as design variables.

Discussion of optimization results: The initial and optimum values of SE and design
variables are given in Table 10.13. The SE of the beam is reduced from 0.858x10™ to
0.0448x10™. Note that, a remarkable reduction in the SE is obtained. SE

minimization leads to an increase in the stiffness of the structure thereby reducing the

deformations.

Table 10.13 Initial and optimum design variables of two bay-two story frame

Design variables )
Optimum
Type Minimum| Initial |Maximum
Thickness and width of columns 0.1 0.4 1.0 0.8645
Thickness of beams 0.1 0.5 1.0 0.9049
Widths of beams . 0.1 0.25 1.0 0.9569
SE 0.858x10™ 0.448x10°

Discussion of dynamic analysis results: The free vibration analyses are carried out
for initial and optimum shapes. The results of the analysis are given in Table 10.14.
After the SE minimization, the fundamental frequency increases from 2.76 rad/sec to
4.961 rad/sec which corresponding to 79.74 % increase.

This problem is solved by average acceleration method. The interval value of

At =0.01sec is taken. The damping ratio is equal to zero. The results of presented
study are tabulated in Table 10.15 for initial and optimum shape. Figure 10.22 shows
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that the displacements for initial and optimum shapes. Note the remarkable reduction
in the amplitude of the vibration that has been obtained.

Table 10.14 Initial and optimum frequencies of two bay-two story frame

Frequency (rad/sec)
Mode
Initial | After optimization
1 | 276 4,961
2 8927 15.658

Table 10.15 Tip displacement results of two bay two story frame for initial and

optimum shape

Time | Initial Shape | Optimum Shape | Time | Initial Shape. | Optimum Shape
0.00 0.0 0.0 0.50 | 7.5243x10° | 3.8198x10®
0.05 | 6.2139x10° | 8.7550x107 | 0.55 | 12.0320x10° | 6.1933x10°
0.10 | 3.7940x10° | 4.3304x10° | 0.60 | 12.8388x10° | 3.5107x10°
0.15 | 8.8881x107 | 6.1118x10° | 0.65 | 9.5384x10° | 9.9411x107
0.20 | 12.6767x10° | 2.9913x10° | 0.70 | 4.3525x10° | 3.5653x10°
0.25 | 12.3306x10° | 1.0575x10° | 0.75 | 9.4723x10° | 6.1958x10°
030 | 8.2076x10° | 4.0757x10° | 0.80 | 1.7792x10% | 3.7687x10°
0.35 | 3.1646x10° | 6.1694x10° | 0.85 | 6.1302x10° | 1.0057x10°
0.40 | 0.7100x10° | 3.2437x10° | 0.90 | 11.1242x10° | 3.3019x10°
0.45 | 2.6795x10° | 1.0183x10° | 0.95 | 13.0428x10° | 6.1783x10°
0.50 | 7.5243x10” | 3.8198x10° [ 1.00 | 11.5024x10% | 4.7878x10°
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Figure 10.22 Comparison of tip displacements of initial and optimum two bay two
story frame
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CHAPTER 11

CONCLUSION

11.1 Summary of Achievements

In this work, computational tools have been developed for geometric modeling,
automatic mesh generation, static and free vibration analysis, sizing and SSO using GAs
and transient dynamic analysis. During this research work, five computer programs
have been developed and verified using several benchmark examples. FREET deals
with the free vibration analysis and shape optimization of 2D and 3D trusses. STATT
deals with the static analysis and shape optimization of 2D and 3D trusses. DYNABAF
deals with the transient dynamic analysis of 2D and 3D beam, arch and frame structures.
BAFF-GA deals with free vibration analysis and GA optimization of 2D and 3D beam,
arch and frame structures and BAFS-GA deals with static analysis and GA optimization
of 2D and 3D beam, arch and frame structures. Each of these programs has four main
ingredients:

e a geometrical modeling tool,

¢ an automatic mesh generation scheme,

¢ a structural analysis tool,

e a GA optimization tool.

11.1.1 Geometric modeling and automatic mesh generator

A geometric modeling tool, based on parametric cubic spline, has been implemented for
the shape and thickness definition of 2D and 3D structures. The geometry and thickness
of arbitrary and complex beam, arches, frames and combination of them can be defined
with the aid of only few representative key points using this geometric modeling tool.
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Moreover, procedures have been incorporated allowing for either smooth C(2)

continuity or alternatively, kinks with C(0) continuity at the junctions of segments.

In this present study, the automatic 2D mesh generator presented by Sienz [137] was
extended to handle 3D structural geometries. Along the parametric cubic splines, mesh
generation is performed according to a specified mesh density. The mesh generator can
generate meshes of two- three- and four noded elements. The thickness and width of
structures and pressure loading along the segments are interpolated from key points to
the nodal points using cubic splines. A bandwidth minimization is implemented and is
carried out before the boundary and loading conditions are transferred to the FE model.
As the structural shape changes during the optimization, the mesh generator has a

facility to produce new geometry and mesh automatically.

11.1.2 Structural analysis

Truss structures: An existing FE code for the linear elastic analysis of 2D and 3D
structures was upgraded by adding new subroutines for free vibration analysis. The

existing Gauss elimination solver was replaced by skyline (profile) solver.

Beam, arch and frame structures: A family of new, curved, variable thickness, C(0),
MR, curved beam FEs has been developed for the linear elastic, static and free vibration
analysis of beam, arch and frame structures in 2D and 3D. The implementations of these
FEs have been verified using several benchmark examples in which the results have

been compared with available analytical and numerical data.

11.1.3 Structural shape optimization

A general methodology for SSO of beam, arch and frame structures has been presented
by integrating the tools developed for shape definition, automatic mesh generation and
FE analysis with GA. The optimization capabilities of these programs have been

verified using known benchmark examples wherever available.
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Various optimization examples were presented, minimizing SE, maximizing
fundamental frequency and minimizing the weight of the structures. Thickness, widths
and shape design variables were used. The influence of the number of design variable
employed was also investigated. The changes in the relative contributions of bending,
membrane and shear energies were monitored for static optimization of frames, arches

and beams during optimization process.

11.1.4 Transient dynamic analysis

Procedures for the transient dynamic analysis of 2D and 3D discrete structures using
Newmark’s method have been presented together with some details of their computer
implementations. Some problems and limitations in the usage of Newmark’s method
were pointed out. Newmark’s method provided good approximations for the evaluation
of transient dynamic behavior provided that. the FE results were calculated with
sufficient accuracy. Various examples were presented. The transient dynamic
characteristics of initial and optimum structures were investigated so that their safety

was assured.

11.2 General Conclusions

Throughout this thesis, brief conclusions were given after each example; therefore the
main conclusions are drawn from various aspects and summarized in the following

sections.

11.2.1 Geometric modeling and mesh generation

Cubic splines offer a flexible and versatile tool for modeling 2D and 3D shapes. End
tangent conditions have a strong influence on the shape of the structure modeled using
cubic splines. A coupling between the modeling system and the analysis/optimization

system is desirable and reduces the time spent in the design-analysis cycle.

The mesh generation algorithm presented was efficient and fully automatic. It

incorporated a convenient geometric representation of boundaries and was able to
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represent complex shapes easily. It possessed a convenient means of prescribing the
element size variation over the domain. This feature is important for adaptivity study. In
the present study adaptivity was not considered. The input data to mesh generator was
kept to a minimum. It was flexible, so that its potential could be exploited in other
applications (e.g. SSO or adaptivity analysis)

11.2.2 Structural analysis

Truss structures: The fourth chapter of this thesis dealt with 2D and 3D trusses under
static and free vibration conditions. Matrix displacement methods were used and gave

exact results proving that their implementation was correct.

Beam, arch and frame structures: The curved, variable thickness, isoparametric MR FE
method was employed. The FEs performed well for both straight and curved elements,
as well as for thick, thin uniform and variable thickness cases. The method has proved
to be most appropriate for the analysis of such structures as it is inexpensive, accurate

and reliable.

Most of the results obtained using FEs was compared well with the results of other
researchers based on different formulations. The superior performance of the higher
order curved elements for beam, arch and frame has been demonstrated. Quadratic and

cubic FEs exhibit a higher rate of convergence than 2-noded linear elements as

anticipated.

When transverse shear deformation is taken into account in the free vibration analysis of
thin beams and arches, the lower values of fundamental frequency are usually obtained
with values predicted using formulations ignoring transverse shear deformation. For
much thicker beams and arches or higher modes, the frequencies can be significantly

lower when transverse shear deformation is included.

The results illustrate that the FE method presented here can be used with confidence for
static or the free vibration analysis of beam, arc and frame structures.
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11.2.3 Structural optimization

The GA method proved to be powerful, reliable and accurate. It is a costly method in
terms of CPU time, but the use of parallel computations may overcome this problem.

Two classes of design variables were used: continuous and discrete.

The GA method allowed the option of choosing a set of design variables from a certain
specified catalogue. The advantages of using this method are:

e discrete optimum design variables may be used,

* very simple calculations are involved, complex problems can be solved reasonably

reliably

o problems that have many local optima can be solved, and

e it is easy to interface the GA method to existing simulations and models.
One of the major disadvantages of using this method is that CPU time is high; however
the use of parallel computations may help to circumvent this problem. The GA was

applied to optimization under static and free vibration conditions.

The optimization method used is useful creative design aids for structural engineers and
could be used for teaching purposes. It allows a reduction in weight or SE or an increase
in the fundamental frequency of the optimal structures obtained by introducing
thickness and widths as well as shape variation. The introduction of thickness as well as
shape variation leads to a significant improvement in the objective function as
demonstrated by several examples. Some of the optimal shapes obtained are not
practical and are included to illustrate the optimization method. However, introducing

certain constraints can lead to practical solutions.

Difficulties in GAS: In the GAs method, many difficulties that were faced in selecting
the different solution parameters. The most important ones are listed below:

e String length: Different string lengths have been chosen for discrete and continuous
design variables. In most examples used in this thesis, the string length of 5 has been
adopted for the discrete design variables, and for the continuous design variables a
string length of 5-10 has been chosen. These values can, of course, vary for different
problem types.
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* Population size: For different sized problems, population sizes must be adjusted for
the best results. In general, for small problems with a small number of design
variables, a small population size between 100-200 will be adequate, while for large
problems with large number of design variables, a large population size between
300-1000 will be adequate.

e Mutation factor: In most of the examples considered in this work, a mutation factor
value of 0.0015 has been chosen for the small problems where a small number of
design variables were used. However, a value of 0.5 has been chosen for the large
problems where a large number of design variables were used.

® Penalty coefficient factors: Penalty coefficient factor values of 200, 300 and 1000
were adopted for the small problems with a small number of design variables, while
for the large problems where a large number of design variables, values of 2000,
3000 and 10000 were chosen. Once again these values can be varied for different
types of structure.

11.2.4 Transient dynamic analysis

The dynamic behavior of the optimized structures was investigated so that their safety
was assured. SSO with volume/weight and SE minimization as the objective seems to
be a mathematically better behaved problem and better dynamic behavior than those
obtained other objective function. It was observed that the dynamic behavior of the
optimum structure was much better than the initial geometry. In other words,
optimization of structure in static situation improved the dynamic behavior of the
structures.

It was observed that the selection of an appropriate time step size At was one of the
most critical aspects of the dynamic analysis. The time step affects not only the stability
and accuracy of the solution, but also the computational effort expended as well. The
results are very sensitive to round off truncation errors. Due to that FE code written in

FORTRAN 90 using double precision and higher order elements were used in analyses.
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11.3 Suggestion for Further Work

Some suggestions for further work are listed as follows:

By integrating a standard CAD system to the programs developed, a wider range of
optimization problems could be solved.

Although currently computer processing power is growing exponentially, the
option of parallel progressing during GA optimization should be used when
considering large three dimensional flow problems.

Modified rebirthing or other similar techniques could be further investigated to
improve the consistency and reliability of GA optimum solutions without the need
for fine tuning GA control parameters. A more sophisticated set of convergence
criteria is also necessary.

The GA method could be applied to the optimization of composite structures.

The use of multi-objective functions should be investigated.

Inclusion of the topology optimization should be added to the GA for truss
structures.

The FE method presented in this work could be extended to the analysis of
buckling behavior for homogeneous as well as composite structures.

The use of different discrete optimization methods such as the evolution method
would be useful to check the optimum results obtained with the GAs.
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APPENDIX A

TRANSFORMATION MATRICES

A.1 Introduction

In many truss and frame structures, the bar and beam structural elements are found in
many different orientations. Analysis of such structures for displacement and stress
requires the setting up of a global coordinate system and referencing of all quantities of
individual elements to the common (global) coordinate system in order to assemble the
elements and impose boundary conditions on the whole structure. When a truss element
is oriented at an angle from the global axis, its axial displacements at the nodes have
components along the global axes. Thus, every node of a truss will have two
displacements in the global coordinates: one along the global x axis and aﬁother
transverse to the x axis. Therefore, the element will have two dof per node in the global

coordinate system.

In the previous section, in which we focused on orthogonal structures derivation of the
structures element stiffness matrices [K°]. The determination of the element stiffness
matrix in global coordinates, from the element stiffness matrix in local coordinates

requires the introduction of a transformation.

This section will examine the 2D and 3D transformations required to obtain an element
stiffness matrix in global coordinate system prior to assembly. Recalling that [6]

fp}=mx“) {5} A
{P}=[K“1{a} (A2)

Let us define a transformation matrix[T] such that:
{8} =T} (A3)
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{p}=[1I{P} (A4)
Note that we use the same matrix T since both {ﬁ}and {p} are vector quantities (or

tensors of order one). Substituting Eq (A.3)and Eq (A.4) into Eq (A.1) we obtain

[re}= [k [irlia} (A5)

pre-multiplying by [T]'1
{2} = (1] [[T}a) A6
But since the rotation matrix is orthogonal, we have ,
[T]" =[x] (A7)

and

{p}= [T][i[k]("’ Iia} (A.8)
bk ]= [T k@ ]r] (A.9)

which is the general relationship between element stiffness matrix in local and global

coordinates.

A.2 Transformation Matrices for 2D Framework Elements

The vector rotation matrix [y] is identical for 2D frame. For the 2D case, we will note

that four angles are interrelated (I Ly, Lx Ly) and can all be expressed in terms of a
single one o ,were « is the direction of the local x axis (along the member from the first
to the second node) with respect to the global X axis. The remaining 5 terms are related
to the angle between Z axis and x-y plane. This angle is zero because we select an

orthogonal right handed coordinate system. Thus the rotation matrix can be written as:

- i -
cosa cos(—--aj 0

loe Ly g 2 cosa sina 0

[7]= Ly Ly Ly|= cos(%ﬂz) cos O[=|{-sina cosa 0] (A.10)

le Ly I 0 0 1 0 0 1

e -

and we observe that the angles are defined from the second subscript to the first, and

that counterclockwise angles are positive.
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The element rotation matrix [T]will then be given by

[cosa sina 0 0 0 o]
-sinag cosa O 0 0 0
0 0 1 0 0 0
0 0 0 cosa sina 0
0 0 0 -sina cosa 0
0 0 0 0 0 1
1Y /
A 5 6/{
Yy
\ s

Figure A.1 Two dimensional frame element rotation

A.3 Transformation Matrices for 3D Framework Elements

(A.11)

Given that rod elements, are defined in such a way to have their local x axis aligned

with their major axis, and that the element is defined by the two end nodes (of known

coordinates), then recalling the definition of the direction cosines it should be apparent

that the evaluation of the first row, only is quite simple. However evaluation of the other

two is more complex.

The rotation matrix [T] will obviously vary with the element type. In the most general

case (3D element 6 dof per node) we would have to define:
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and should distinguish between the vector transformation [y] and the element
transformation matrix [T].

Figure A.2 Three dimensional vector transformation

This generalized transformation from X, ¥, Z to x, y, z was accomplished in one step in
the two dimensional case, but intermediary ones will have to be defined in the 3D case.
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Starting with reference (Xj, Y3, Z;) coordinate system which corresponds to the global
co-ordinate system, we can define another one X, Y2, Z, such that X; is aligned along

the element.

In the 2D case this was accomplished through one single rotation o and all other angles
where defined in terms of it. In the 3D case, it will take a minimum of two rotations B

and v, and possibly a third one o (different than the one in 2D) to achieve this

transformation.

We can start with the first row of the transformation matrix which corresponds to the
direction cosines of the reference axis (Xj, Y1, Z;) with respect to Xz. This will define the

first row of the vector rotation matrix [’y]

C, C C,
['Y]= L Ly Iy (A.13)
l3l 132 133
where
X, —x Yy, -y Z; -2
C, = jL L, = jL L C, = 1andL=\/(xj—x,)2+(}’j—y1)2+(zf"zf)2‘

Note that this does not uniquely define the new coordinate system. This will be

achieved in two ways: a reduced and a generalized one.

A.3.1 Simple 3D case

We start by looking at a simplified case one in which Z; is assumed to be horizontél in
the Xi-Z plane this will also define Y. We note that there will be no ambiguity unless
the member is vertical. This transformation can be used if:
1. The principal axes of the cross section lie in the horizontal and vertical plane (i.e
the web of an I Beam in the vertical plane).
2. If the member has 2 axis of symmetry in the cross section and same moment of

inertia about each one of them (i.e circular or square cross section).

257



The last two rows of Eq (A.13) can be determined through two successive rotations
(assuming that X), ), Z, and X3, Y3, Z, are originally coincident):

1. Rotation by B about the Y, axis this will place the X; axis along X - This
rotation [R ;] is made of the direction cosines of the 8 axis (X 5:Y5,Z5) with

respect to (X,,Y,,Z,):

cosf 0 sinf
R,=| o 1 o (A.14)
-sinff 0 cosf

we note that: cosﬂ=—g£-sinﬂ=cgz— and C,, =,/C2 +C2.

P4 Xz

2. Rotation by y about the Z; axis

cosy siny O
[R,]= —siny cosy 0 (A.15)
0 0 1
wherecosy =C,, and siny =C,.

Combining Eq (A.14) and (A.15) yields

Cy Cy o
-C,C -C,C
=R, ]|R,] C" L Cy cY £ (A.16)
Xz Xz
—Cz 0 D4
L CJZ CJIZ J

For vertical member the preceding matrix is no longer valid as Cyz is undefined.
However we can obtain the matrix by simple inspection as we note that:

1. X; axis aligned with ¥,

2. Y, axis aligned with X,

3. Z, axis aligned with Z;

Hence the rotation matrix with respect to the y axis is similar to the one previously

derived for rotation with respect to the z axis except for the reordering of terms:

258



0
['Y] =-C¢ 0 0
0 0 1

(A.17)

which is valid for both cases (Cy=1 for y = 90deg and Cy=-1 fory = 270deg).

A.3.2 General case

In the most general case, we need to define an additional rotation to the preceding

transformation of an angle o about the X7y axis, Figure 6. This rotation is defined such
that:

1. Xatis aligned with X5 and normal to both Y, and Z,

2. Yaomakes an angle 0, ¢and 8 = % —a with respect to X3, ¥, and Z; respectively
3. Zamakes an angle 0, g—+ a and o with respect to X3, Y3 and Z; respectively

Noting that cos(-’-zr—+a) =—sina and cosf =sina, the direction cosines of this

transformation are given by:

1 0 0
[R,]=|0
0 -sina cosa

cosa sing (A.18)

causing the Y,-Z, axis to coincide with the principal axes of the cross secﬁon. This will

yield:
[r]=[R.][R, ][R, | (A.19)
CX CY CZ
[7]= -C,Cycosa—C,sina C,, cosa -C,C,cosa+C,sina (A.20)
Cy Cx
C,C,sina—-C,cosc _C,sina C,C,sina+Cy cosa
Cy Cy

As for the simpler case, the preceding equation is undefined for vertical members, and a

counterpart to Eq (A.17) must be derived. This will be achieved in two steps:
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1. Rotate the member so that:

(a)X; axis aligned with Y,
(b)Y; axis aligned with —X;
(c)Z; axis aligned with Z;
this was previously done and resulted in Eq (A.17)
0 ¢ 0
R ]=|-c, 0 o (A21)
0 0 -1

2. The second step consists in performing a rotation of angle o with respect to the new
X as defined in Eq (A.18).

3. Finally, we multiply the two transformation matrices [Ry] [Ra]given by Eq (A.21)
and (A.18) to obtain:

0 c, O
[r]=[r,] R,] |-Cycosa 0 sina (A.22)
Cysine 0 cosa

Note with o= 0, we recover Eq (A.17).
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