

���������	
��������	���
���	

SCHOOL OF NATURAL & APPLIED SCIENCES

DEVELOPMENT OF AN ALGORITHM FOR
VOXELIZATION OF CSG

(CONSTRUCTIVE SOLID GEOMETRY)
OBJECTS USING A 2D CSG PROCESSOR

Ph.D THESIS
IN

ELECRICAL AND ELECTRONICS ENGINEERING

BY
SEMA KOÇ
MAY 2005

Development of An Algorithm for Voxelization of CSG
(Constructive Solid Geometry) Objects Using a 2D CSG

Processor

PhD Thesis
in

Elecrical and Electronics Engineering

University of Gaziantep

Supervisor
����������	��
�������������

Co-Supervisor

������������	��
�������������

by

Sema KOÇ

May 2005

 iii

ABSTRACT

DEVELOPMENT OF AN ALGORITHM FOR VOXELIZATION OF CSG

(CONSTRUCTIVE SOLID GEOMETRY) OBJECTS USING A 2D CSG

PROCESSOR

KOÇ, Sema

Ph. D. In Electrical and Electronics Engineering

��������	�
����	����	������������������

Co-Supervisor: Assist. Prof. D�������������

May 2005, 106 Pages

In this thesis we present a new approach for the voxelization of volumetric scene

graph. The voxelization algorithm is based on the creation of volume slices using the

depth information of front and back surfaces belonging to scene primitives. The

algorithm generates slices of the each primitive intended to be voxelized using 2D

CSG processor.

For the volume scene tree “Blist (Boolean list)” representation is used. In Blist

formulation, a Boolean expression is represented as a list of primitives instead of a

tree, and this may be evaluated in a pipeline fashion, combining at each step the

result of classifying the cells against the current primitive with the result of the

previous classification. The fundamental breakthrough provided here lies in the fact

that the result of the previous classifications does not require the list of values of cell-

primitive classification results, nor a stack of intermediate results of evaluating sub-

expressions. Instead, Blist passes from one primitive to the next a simple label,

which may be stored using at most log(H+1) bits, where H is the height of the CSG

tree .

Where this study differs from previous works is that it provides the following: the

z-buffer based voxelization algorithm can voxelize different type of objects (convex

and concave objects, polygons, lines and surfaces), also the algorithm is suitable for

 iv

accurately voxelizing objects with hidden cavities. Using Blist representation, the

volume scene tree expression can be evaluated without using recursion or stack.

Keywords: volume scene tree, Blist, voxelization, CSG (Constructive solid

geometry), z-buffer.

 V

ÖZ

����������	
�����
�������������� ��������	�
��

��������	
����
�������������
����
��������������

�����������������������
�

KOÇ, Sema

Ph. D. In Electrical and Electronics Engineering

��������� ! " #�$%&'�$('�
)*)+������

�)(,-.!-���������� ! " #��)('�$%&'�$('��/0"������

May 2005, 106 sayfa

����������	
�����	��������������	��������������������	��	��������������������

��� �������	���� 	�������	�� ��� ��� 	��	� ����������� ��������� ������������ ����	�	�	��

�	
�������������������������	�� ���������	�	��	��	�������������	��������	�����

�	���	
	�� ��	�� ���� ���� �������� ����������� �� �������� !"� �����
��� ����	�	�	��

��������	��	����

#	
����� 	���� 	$	
�� ����� ����� %�����	�� ���&� ��������� ����	����	��	����� �����

'�����	������	������	�� 	������(� 	$	��������� 	���� �������$��������� ��������	�	��

���������������� ��� ��� �	� ���� ���� �������� 	���� �$�������� �	���� ���'�	�����	�����

���
�� ���� ���� ��
���� ���'�	�����	���� ���
����� ��������������� ���� 	������� ��	�	��

hesaplanabilir. Burada önemli olan nokta bir önce��� ���'�	�����	(� � ��� ��
��-�$��

���'�	�����	������� ��������������	���	������	������	��	��	�� ���������	�	���$��	�

�����	�� ����	��	����� ������ ������(� ����� ������� ���� �$����� ��$������ 	��
�� ����

������� ����	�	�	�� ���������������� ��� ��� ������� ��$������ 	klamak için sadece

���%#)*&����������������	��	��������	�	�#(� !"�	$	
������������$�����

����	����	������������������
�����	����	�	��	��	�����	��	����

Z-	�	�����$�� �������� �������	���� 	�������	�� '	�����
��������� %��-�����(� ���-

bükey cisimler, poligonl	�(������������������&��������	��������������	���	�����������

 VI

	���
	� 	�������	� 	���� ��������
��������� ��$��� ���� �������� �������	����� �����

��������������� ��������� ����	�	�	�� �	
����� 	���� ��	'�$�� ��$��� ���	� �����������

kullanmadan hesaplanabilinir.

Keywords:�#	
�����	����	$	
�(�����(��������	���(� !"�%�	��	���	�����������&(�

Z-	�	�����$��

ACKNOWLEDGEMENTS

 I would like to express my sincerest appreciation to my supervisor Assist.

Prof. Dr. Ulus Çevik for his guidance, suggestions, valuable criticisms, great help

and encouragement in the preparation of this work.

I would also like to thank Assoc. Prof Dr. ���������	
����	
������
������

responsibility of being my official supervisor at Gaziantep University.

 I must also thank my parents, especially mum, for everything they have done

for me.

 Finally, special thanks go to my husband Sabit Kayhan for his love and

strength throughout my studies.

 viii

TABLE OF CONTENTS

ABSTRACT………………………………………………………………………. iii

ÖZ………………………………………………………………………………….. v

ACKNOWLEDGEMENT………………………………………………………. vii

TABLE OF CONTENTS……………………………………………………….. viii

LIST OF FIGURES………………………………………………………………. xi

LIST OF TABLES……………………………………………………………… xiii

CHAPTER 1………………………………………………………………………. 1

 INTRODUCTION...1

1.1 Introduction ..1

1.2 3D Data Acquisition and Volumetric Data ..2

1.3 Volume Graphics..4

1.3.1 From Vector Graphics to Raster Graphics ..4

1.3.2 From Surface Graphics to Volume Graphics ..6

1.3.3 Weaknesses of Volume Graphics..7

1.3.4 Advantages of Volume Graphics...10

1.3.5 Scene Representation and Composition ..13

1.3.6 Volume Scene Graph...14

1.4 Constructive Solid Geometry ...14

1.4.1 General Research Issues ..15

1.4.2 CSG Tree Conventions and Terminology ...18

1.5 Voxelization ...18

1.5.1 Voxelization Techniques ...19

1.6 Volume Visualization...23

1.7 Conclusion..25

CHAPTER 2 ...27

 ix

A REAL TIME CSG DISPLAY PROCESSOR FOR CONVEX AND

CONCAVE OBJECTS...27

2.1 Introduction ..27

2.2 Previous CSG Rendering Algorithms ..27

2.3 CSG Display Algorithm used and Its Implementation.....................................28

2.3.1 The Depth Value ...28

2.3.2 Display of convex and concave objects...29

2.3.3 First-Stage selection ..33

2.3.4 Clipping process ..38

2.3.5 Second-Stage selection..41

2.4. Hardware Implementation...42

2.4.1 The Data Structure and Data Flow ..44

2.5 Performance..46

CHAPTER 3 ...49

THE VOLUMETRIC SCENE GRAPH and its EVALUATION......................49

3.1 Introduction ..49

3.2 The Volumetric Scene Graph ...49

3.3 Volumetric CSG Modeling ..50

3.3.1 Volume Scene Tree Conversion..51

3.4 Scene Evaluation ..52

3.4.1 Slice Sweeping ..52

3.4.2 Solid Object Slicing...54

CHAPTER 4 ...59

THE BLIST REPRESENTATION OF VOLUMETRIC CSG GRAPHS AND

its EVALUATION..59

4.1 Introduction ..59

4.2 Binary Representation of CSG Trees ...59

 x

4.3 The Blist Representation ..63

4.3.1 Positive Form ..64

4.3.2 The Blist Formulation of Volume Scene Graph..65

4.3.3 Voxel classification using Blist ...72

4.4 Volume Slice Generation ...74

4.5 Blist Evaluation of Volume Scene Tree ...75

CHAPTER 5 ...78

SOFTWARE SIMULATION and RESULTS..78

5.1 Introduction..78

5.2 Data Format for the 2D CSG Display Processor..78

5.2.1 Constructing an Image...79

5.3 Volume Slice Generation Using the 2D CSG Processor..................................82

5.3.1 Handling of Polygon and Line Primitives ...84

5.4 Blist Evaluation ..85

5.5 Performance Analysis...90

CHAPTER 6 ...94

CONCLUSIONS AND FUTURE WORKS...94

REFERENCES...95

 VITA…………………………………………………………………………….. 105

 xi

LIST OF FIGURES

Figure 1.1 CSG representation. ...15

Figure 2.1 3-D Representation of the display space ..28

Figure 2.2 Algorithm used to display a convex object ..30

Figure 2.3 Algorithm used to display a concave bject…………………………….. 31

Figure 2.4 The basic pixel processor for a pixel ... 32

Figure 2.5 Clipping Algorithm ..38

Figure 2.6 Inside/outside test for a perpendicular clipping plane..............................39

Figure 2.7 Inside/outside test for a front clipping plane..40

Figure 2.8 Inside/outside test for a back clipping plane ..41

Figure 2.9 The system structure ..43

Figure 2.10 Data structure of the depth string ...44

Figure 2.11 The data flow..45

Figure 2.12 The real time performance ..48

Figure 3.1 An example for general volumetric CSG modeling: (a) resulted image,

(b) the volumetric CSG tree, (c) and its corresponding VST.51

Figure 3.2 Slicing the volume space..53

Figure 3.3 The process of solid voxelization for one slice by XOR55

Figure 4.1 Tree reformulation: (AUB)-(CU(DUE))����������	
����
������	���	��

positive form:AUB)��������������������������������…... 64

Figure 4.2 The binary tree corresponding to the Boolean expression is shown in (a).

Its positive form is shown in (b). Note the complemented primitives are

indicated using overscores..66

Figure 4. 3 (a) The binary tree of Fig. 4.2 has been rotated to make it left heavy. (b)

The result is inserted as the left-most leaf into a small tree with special IN and

OUT nodes marked by rectangles. ...67

Figure 4.4 (a) blist conversion process of volume scene tree (b) converted tree70

Figure 4.5 Volume space slicing ...75

 xii

Figure 5.1 Clipping box1 with the complement of box2...81

Figure 5.2 A CSG tree example...82

Figure 5.3 (a) Voxelization result of a CSG object. (b), (c), (d), (e) Several slices in

the volume memory..83

Figure 5.4 Polygon and line handling..84

Figure 5.5 Polygon, and line voxelization examples...85

Figure 5.6 (a) Volume scene tree...86

Figure 5.7 Blist evaluation result of the volumetric scene tree seen in Figure 5.6 ...87

Figure 5.8 Different images whose volume data are obtained with the Blist

evaluation method. ...88

Figure 5.9 (a) Image shows a hollow cube, which is erroneously voxelized as a cube

with a hole (b). (c) shows our algorithm result which is correctly voxelized as

the hollow cube. ...89

Figure 5.10 Other examples of voxelization algorithm...90

Figure 5.11 The performance of slice generating..93

 xiii

LIST OF TABLES

Table 1.1 Comparison between vector graphics and raster graphics...........................5

Table 1.2 A comparison between vector graphics and raster graphics........................9

Table 2.1 Maximum real-time performance with respect to panel sizes48

Table 4.1 Blist table resulting from tree conversion process of Figure 4.4 ……….72

Table 4.2 Blist table after labels are evaluated ..72

Table 5.1 Blist table of volumetric scene tree in Figure 5.6.85

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years, the ability to integrate and process volumetric information has

become increasingly desirable due to rapid advances in volume graphics [1, 2] and

volume visualization [3], and proliferation of 3D data acquisition techniques.

Volume data are 3D entities that may have information inside them, might not

consist of surfaces and edges, or might be too voluminous to be represented

geometrically. Volume data are obtained by sampling, simulation, or modeling

techniques. For example, a sequence of 2D slices obtained from Magnetic Resonance

Imaging (MRI) or Computed Tomography (CT) is 3D reconstructed into a volume

model and visualized for diagnostic purposes or for planning of treatment or surgery.

The same technology is often used with industrial CT for non-destructive inspection

of composite materials or mechanical parts. Similarly, confocal microscopes produce

data, which is visualized to study the morphology of biological structures. In many

computational fields, such as in computational fluid dynamics, the results of

simulation typically running on a supercomputer are often visualized as volume data

for analysis and verification. Recently, many traditional geometric computer graphics

applications, such as CAD and simulation, have been exploiting the advantages of

volume techniques called volume graphics for modeling, manipulation, and

visualization.

Volume graphics is concerned with the modeling, manipulation and display of

synthetic geometric objects using volumetric representations and volume rendering

techniques. This allows geometric objects to be intermixed with volume data sets

under a uniform volume representation scheme. In this process, the 3D scene is pre-

converted to a volume representation using a voxelization algorithm before

volumetric modeling and rendering techniques are applied.

 2

Volume visualization is a method of extracting meaningful information from

volumetric data using interactive graphics and imaging, and it is concerned with

volume data representation, modeling, manipulation, and rendering [3].

Over the years many techniques have been developed to visualize 3D data. Since

methods for displaying geometric primitives were already well-established, most of

the early methods involve approximating a surface contained within the data using

geometric primitives. When volumetric data are visualized using a surface rendering

technique, a dimension of information is essentially lost. In response to this, volume

rendering techniques were developed that attempt to capture the entire 3D data in a

single 2D image. Volume rendering convey more information than surface rendering

images, but at the cost of increased algorithm complexity, and consequently

increased rendering times. To improve interactivity in volume rendering, many

optimization methods as well as several special-purpose volume rendering machines

have been developed [4-5].

1.2 3D Data Acquisition and Volumetric Data

3D data acquisition techniques are often the main data sources in many

application fields. Biomedical scanning devices, such as CT, MRI, and confocal

microscopes, produces large volumes of biomedical image data that may be used by

a wide range of applications such as computational biology, medical diagnosis,

surgical simulation and biomedical education. High-resolution remote sensing and

geospatial sensors can generate very large scale and multi-layered geospatial datasets

in a variety of different forms. Many different types of 3D datasets are also generated

from scientific simulations and experiments.

Volumetric data is typically a set S of samples (x, y, z, v), representing the value v

of some property of the data, at a 3D location (x, y, z). If the value is simply a 0 or a

1, with a value of 0 indicating background and a value of 1 indicating the object, then

the data is referred to as binary data. The data may instead be multivalued, with the

value representing some measurable property of the data, including, for example,

color, density, heat or pressure. The value v may even be a vector, representing, for

example, velocity at each location.

 3

In general, the samples may be taken at purely random locations in space, but in

most cases the set S is isotropic containing samples taken at regularly spaced

intervals along three orthogonal axes. When the spacing between samples along each

axis is a constant, but there may be three different spacing constants for the three

axes the set S is anisotropic. Since the set of samples is defined on a regular grid, a

3D array (called also volume buffer, cubic frame buffer, or 3D raster) is typically

used to store the values, with the element location indicating position of the sample

on the grid. For this reason, the set S will be referred to as the array of values S(x, y,

z), which is defined only at grid locations. Alternatively, rectilinear, curvilinear

(structured), or unstructured grids are employed (e.g., [6]). In a rectilinear grid the

cells are axis-aligned, but grid spacing along the axes are arbitrary. When such a grid

has been non-linearly transformed while preserving the grid topology, the grid

becomes curvilinear. Usually, the rectilinear grid defining the logical organization is

called computational space, and the curvilinear grid is called physical space.

Otherwise the grid is called unstructured or irregular. An unstructured or irregular

volume data is a collection of cells whose connectivity has to be specified explicitly.

These cells can be of an arbitrary shape such as tetrahedral, hexahedra, or prisms.

The array S only defines the value of some measured property of the data at discrete

locations in space.

A function f (x, y, z) may be defined over R3 in order to describe the value at any

continuous location.

The function f (x, y, z) =S(x, y, z) if (x, y, z) is a grid location; otherwise f (x, y, z)

approximates the sample value at a location (x, y, z) by applying some interpolation

function to S. There are many possible interpolation functions. The simplest

interpolation function is known as zero-order interpolation, which is actually just a

nearest-neighbor function. The value at any location in R3 is simply the value of the

closest sample to that location. With this interpolation method there is a region of

constant value around each sample in S. Since the samples in S are regularly spaced,

each region is of uniform size and shape. The region of constant value that surrounds

each sample is known as a voxel with each voxel being rectangular cuboids having

six faces, twelve edges, and eight corners.

 4

1.3 Volume Graphics

 Volume graphics is concerned with the graphics defined by volume data. More

specially, it is concerned with the synthesis, modeling, manipulation, and rendering

of volumetric objects, stored in a volume buffer, which is actually an area that holds

a 3D grid of point samples of a volume space. Volume visualization focuses on

sampled and computed datasets in large-scale data processing applications such as

biomedical, geographic and scientific applications. More importantly, volume-based

graphics offers a consistent solution to the primary deficiency of the traditional

surface-based graphics, including its inability to encapsulate the international

description of a model and the difficulties in representing and rendering amorphous

phenomena (e.g. cloud, gas, fluid, etc.).

Volume graphics also proposes to extend raster graphics into 3D by extending a

2D frame buffer [7] into a 3D volume buffer. The fundamental technique, upon

which a volume graphics system built, is the real-time rendering volume data from

the volume buffer to a 2D frame buffer displayed on the screen.

1.3.1 From Vector Graphics to Raster Graphics

The display of graphics in the sixties and seventies was based on vector drawing

devices an object-based approach to scene representation, manipulation, and display.

A geometric representation of the objects comprising the scene was stored in a

display-list. Refreshing the screen was accomplished by redrawing the vectors

comprising the objects in the display-list. The major advantages of vector graphics

were its ability to perform object related operations on the display-list and the fact

that the vectors it drew were continuous and thus exhibited no aliasing. This

technology, however, offered calligraphic drawing only, while the interior shaded

areas were extremely hard to render.

The alternative approach, termed raster graphics, has been predominant since the

late seventies. Raster graphics utilizes a 2D frame-buffer (a raster) of pixels for scene

representation and a point-based renderer for coloring those pixels that correspond to

the discrete representation of the geometric objects. Screen refresh is performed by a

video controller, which repeatedly displays the frame-buffer onto the screen [8].

 5

Table 1 Comparison between vector graphics and raster graphics

 and between surface graphics and volume graphics.

2D Vector Graphics Raster Graphics

Scene/object
complexity

- +

Block operations - +

Sampled data - +

Interior - +

Memory and
processing

+ -

Aliasing + -

Transformations + -

Objects + -

3D Surface
Graphics

Volume
Graphics

Table 1 compares vector graphics with raster graphics. Unlike vector graphics,

raster graphics provides the capability to present realistic, shaded, and textured

surfaces in full color, as well as line drawings (row 9 in Table 1). The main

disadvantages of this approach are the aliasing present in the image due to the

discrete nature of the representation (row 6 and the large memory and processing

power this approach requires (row 6). The latter two difficulties delayed the full

acceptance of raster graphics until the late seventies when the technology was able to

provide cheaper and faster memory and hardware to support the demands of the

raster approach. In addition, the discrete nature of rasters makes them less suitable

for geometric operations such as transformations (row 7) and accurate measurements

On the other hand, a main appeal of raster graphics is that it decouples image

generation from screen refresh, thus making the refresh task insensitive to the scene

complexity (row 1). In addition, the raster representation lends itself to block

operations, such as bitblt (bit block-transfer) in which a window or a rectangular

block of pixels can be rapidly transferred with variety of pixel-by-pixel operations

 6

between the source and destination blocks (row 7) [8]. Raster graphics is also

suitable for displaying 2D sampled digital images, and thus provides the ideal

environment for mixing digital images with synthetic graphics (row 8). These

advantages, coupled with advances in hardware and the development of antialiasing

methods, have led raster graphics to replace vector graphics as the primary

technology for computer graphics.

1.3.2 From Surface Graphics to Volume Graphics

The object-based approach of vector graphics has been adapted for 3D graphics at

the expense of maintaining and manipulating a display-list of geometric objects and

regenerating the frame-buffer after every change in the scene or viewing parameters.

This approach, termed surface graphics, combines raster technology for the display

and an object-based approach for the representation, manipulation and rendering of

3D scenes. This method is supported by powerful geometry engines, which constitute

the present hardware for polygon rendering. These have flourished in the past

decade, making surface graphics the state-of-the-art in 3D graphics [8].

Surface graphics strikingly resembles vector graphics in many ways. Like vector

graphics, surface graphics represents the scene as a set of geometric primitives kept

in a display-list. These primitives are transformed, mapped to the screen coordinates,

and converted by scan-conversion algorithms into a discrete set of pixels, which is

stored in the frame-buffer. This digitization process is also called rasterization or

pixelization. Any change to the scene, viewing parameters, or shading parameters

requires the image generation system to repeat this process and re-process the

complete scene description. Surface graphics generates merely the surfaces of 3D

solid objects viewed from a given direction, and subject to limitations similar to

those of vector graphics, it does not support the rendering of the interior of these 3D

objects.

Instead of a list of geometric objects, volume graphics employs a 3D volume

buffer as a medium for the representation and manipulation of 3D scenes. A 3D

scene is discretized earlier in the image generation pipeline, and the resulting 3D

discrete form is used as a database of the scene for manipulation and rendering

purposes, which in effect decouples discretization from rendering (viewing and

 7

shading). Furthermore, all objects are converted into one unit form meta-object – the

voxel. Each voxel is atomic and represents the information about at most one object

that resides in that voxel.

Volume graphics offers the same benefits as surface graphics, with several

advantages that are due to the decoupling and uniformity features. The rendering

phase is viewpoint independent and insensitive to scene complexity and object

complexity. It supports Boolean and block operations and constructive solid

modeling. When 3D sampled and simulated data is available, such as that generated

by medical scanners (e.g., CT, MRI) or scientific simulations (e.g., CFD), volume

graphic is suitable for their representation. It is capable of representing amorphous

phenomena and it can have information on both the interior and exterior of 3D

objects. Several disadvantages of this approach are related to the discrete nature of

the representation, namely, that transformations and shading are performed in

discrete space. In addition, this approach requires substantial amounts of storage

space and specialized processing.

The same appeal that drove the evolution of the computer graphics world from

vector graphics to raster graphics, once the memory and processing power became

available, is starting to drive a variety of applications from surface-based

representation of 3D scenes to voxel-based representation. Naturally, this trend first

appeared in applications involving sampled 3D data, such as medicine and scientific

visualization, in which the datasets are in volumetric form. The diverse empirical

imagery applications of volume visualization still provide a major driving force for

advances in volume graphics.

1.3.3 Weaknesses of Volume Graphics

Discrete Form Unlike surface graphics, in volume graphics the 3D scene is

represented in discrete form. This is the cause of many of the maladies of voxel-

based graphics, which are similar to those of 2D rasters [9]. The finite resolution of

the raster poses a limit on the accuracy of some operations, such as volume and area

measurements, that are based on voxel counting (row 9 in Table 2). Manipulation

and transformation of the discrete volume are difficult to achieve without degrading

the image quality or losing some information (row 4). Rotation of raster by angles

 8

other than 90 degrees is especially problematic since a sequence of consecutive

rotations will distort the image.

Since the continuous object is reconstructed by sampling the discrete data during

rendering, a low resolution volume yields high aliasing artifacts (row 3 in Table 2).

This becomes especially apparent when zooming in on the 3D raster. When naive

rendering algorithms are used, the 3D discrete points may appear to be parted from

each other, and may cause the appearance of holes. Nevertheless, this can be

alleviated to some extent in ways similar to those adopted by 2D raster graphics,

such as employing either reconstruction techniques (e.g. supersampling, filtering) or

a high-resolution volume buffer.

Loss of Geometric Information In volume graphics we allow each voxel to

maintain only local information pertaining to the volume unit it represents. After a

surface object has been voxelized, the voxels comprising the discrete object do not

retain any geometric information regarding the surface definition of the object. Thus,

it is advantageous, when exact measurements are required (e.g., distance, volume,

area), to employ surface-based modeling where the geometric surface definition of

the object is available. A voxel-based object is only a discrete approximation of the

original continuous object where the volume buffer resolution determines the

precision of such measurements. On the other hand, several measurement types are

more easily computed in voxel space (e.g., mass property, adjacency detection, and

volume computation) (row 9 in Table 2). The lack of geometric information in the

voxel may inflict other difficulties, such as those encountered when rendering

discrete surfaces. An essential requirement for most shading methods is the ability to

calculate the normal vector to the surfaces comprising the 3D scene [5].

In traditional surface graphics, normal vectors are either analytically calculated

from the surface representation or stored as part of the surface representation. In

voxel-based models discrete shading method is employed to estimate the normal

from a context of voxels. A variety of image-based and object-based methods for

normal estimation from volumetric data based on fitting some type of a surface

primitive to a small neighborhood of voxels.

 9

A partial integration between surface and volume graphics is conceivable as part

of an object-based approach in which an auxiliary object table, consisting of the

geometric definition and global attributes of each object, is maintained in addition to

the volume buffer. Each voxel consists of only an index to the object table, allowing

exact calculation of normal exact measurements, and intersection verification for

discrete ray tracing. The auxiliary geometric information might be useful for re-

voxelizing the scene in case of a change in the scene itself.

Table 2 A comparison between vector graphics and raster graphics.

 Vector Graphics Raster Graphics
Rendering and
Screen refresh

Rendering is
embedded in screen refresh

scan-conversion is
decoupled from
screen-refresh

Rendering performance Sensitive to scene and
object complexity

Insensitive to scene and
object complexity

Memory and
Processing requirements

Variable depends on
scene and object
complexity

Large but constant

Screen space aliasing Nonexistent Frequent

Transformation Continuous, performed
on the geometric
definition of objects

Discrete, performed on
pixel blocks (windows)

Boolean block
Operations

Difficult, must be performed
analytically

Trivial, by employing
bitblt, pixel-by-pixel
operation, aggregation,
quadtrees

Capable of rendering
Interior

No, boundary only Yes, colored, shaded
and textured surfaces

Adequacy for sampled
Digital imaes

No Yes

Measurements(e.g.
distance, area)

Analytical, but often
complex

Discrete approximation,
but simple

Memory and Processing A typical volume buffer occupies a large amount of

memory; for example, for a moderate resolution of 5123 the volume buffer consists

of more than 108 voxels. Even if we allocate only one byte per voxel, 128 M bytes

will be required (row 2 in Table 2). However, since computer memories are

significantly decreasing in price and increasing in their compactness and speed, such

 10

large memories are becoming more and more feasible. This argument echoes similar

discussion when raster graphics emerged as a technology in the mid-seventies. With

the rapid progress in memory price and compactness, it is safe to predict that, as in

the case of raster graphics, the memory will soon cease to be a stumbling block for

volume graphics.

Yet, the extremely large throughput that has to be handled requires a special

architecture and processing attention. Volume engines, analogues to the currently

available geometry engines, are emerging. Because of the presortedness of the

volume buffer and the fact that only a single type of object – the voxel – has to be

handled, volume engines are conceptually simpler to implement than current

geometry engines.

1.3.4 Advantages of Volume Graphics

Insensitivity to Scene Complexity One of the most appealing attributes of volume

graphics is its insensitivity to the complexity of the scene, since all objects have been

pre-converted into a finite size volume buffer (row Table 2). Although the

performance of the voxelization phase is influenced by the scene complexity,

rendering performance depends mainly on the constant resolution of the volume

buffer and not on the number of objects in the scene. This is in contrast to

representing the volume with an octree whose size varies according to the scene

complexity [10]. Insensitivity to the scene complexity makes the volumetric

approach especially attractive for scenes consisting of a large number of objects,

such as those generated by fractal systems. Another example of such a scene is a

curved surface represented by a large polygon mesh that is generated by a polyhedral

smoothing or fitting algorithm. A polygon mesh can approximate a curved surface,

where the approximation precision and presentation quality increase with the number

of polygons in the mesh. However, using a very fine mesh in conventional surface

graphics is expensive with respect to space and display time.

Insensitivity to Object Complexity In volume graphics, rendering (viewing and

shading) is decoupled from digitization (voxelization) and all objects are first

converted into one meta object, the voxel, which makes the rendering process

insensitive to the complexity of the objects (row 5 in Table 2). Thus, volume

 11

graphics is particularly attractive for objects that are hard to render using

conventional graphics systems. Examples of such objects include curved surfaces of

high order and fractals, which require the expensive computation of an iterative

function for each volume unit [11]. Constructive solid models are also hard to render

by conventional methods but are straightforward to render in volumetric

representation.

Another type of object complexity involves objects that are enhanced with a

technique know as texture-mapping, where the realism of objects is increased by

simulating surface details by texture-mapping is commonly implemented during the

last stage of the rendering pipeline where the texture is extracted from a 2D texture

image and mapped onto the surface to be rendered, and its complexity is proportional

to the object complexity [8]. In volume graphics, texture-mapping is performed only

once, during the voxelization stage, where the texture color is calculated and stored

in each voxel. Solid texturing, which employs a 3D texture image, has also a high

complexity similar to texture-mapping [8]. In volume graphics however, solid

texturing, like texture-mapping, is performed during the voxelization stage.

Viewpoint Independence A main difference between voxel-based graphics and

conventional surface graphics is that in the former the scene is discretized

(voxelized) once for multiple viewing conditions, while the latter the scene is

repeatedly scan-converted after every change in the viewing parameters, causing a

performance bottleneck in its rendering pipeline (row 10 in Table 2). This attractive

advantage of volume graphics can be attributed in part to the fact that, in the

volumetric representation, a unit of memory is allocated for each unit of space, in

contrast to surface graphics, where memory is assigned only to complete surface

patches. This enables volume graphics to store view independent attributes at each

volume unit, while surface graphics is not able to provide storage for attributes that

vary across its basic surface elements.

In anticipation of repeated access to the volume buffer (such as in animation), all

viewpoint independent attributes can be precomputed during the voxelization stage,

stored with the voxel, and be readily accessible for speeding up the rendering. The

voxelization algorithm can generate for each object voxel its color, its texture color,

its normal vector (for visible voxels), and information concerning the visibility of the

 12

light sources from that voxel. Actually, the viewpoint independent parts of the

illumination equation, that is, the ambient illumination and the sum of the attenuated

diffuse illumination of all the visible light sources [8], [4] can also be precomputed

and stored as part of the voxel value.

Once a volume buffer with precomputed view-independent attributes is available,

a rendering algorithm such as a discrete ray tracing algorithm can be engaged.

Discrete ray tracing is based on traversing 3D discrete rays through the volume

buffer. The discrete ray tracing approach is especially attractive for ray tracing

complex surface scenes and constructive solid models, as well as 3D sampled and

computed datasets (see below). In spite of the complexity of these scenes ray tracing

time was approximately the same as for much simpler scenes and significantly

superior to traditional space-subdivision ray tracing methods. Moreover, in spite of

the discrete nature of the volume buffer representation, images indistinguishable

from the ones produced by conventional surface-based ray tracing can be generated

by employing auxiliary object tables and screen supersampling techniques, which

casts several rays per pixel.

Sampled and Simulated Datasets Sampled datasets and simulated datasets (such

as in computational fluid dynamics) are often reconstructed from the acquired

samples of simulated points into a regular grid of voxels and stored in a volume

buffer. Such datasets provide for the majority of applications using the volumetric

approach. Unlike surface graphics, volume graphics naturally and directly supports

the representation, manipulation, and rendering of such datasets (row 7 in Table 2),

as well as provides the volume buffer medium or intermixing sampled or simulated

datasets with geometric objects (row 8) [12].

Inner Information A central feature of volumetric representation is that, unlike

surface representation, it is capable of representing inner structures of the objects,

which can be revealed and explored with the appropriate manipulation and rendering

techniques (row 7 in Table 2). Natural objects as well as synthetic objects are likely

to be solid rather than hollow. The inner structure is thus an important aspect of

image complexity, which is easily, explored using volume graphics and cannot be

supported by surface graphics. Moreover, while translucent object can be represented

by surface methods, these methods cannot efficiently support the modeling and

 13

rendering of amorphous phenomena (e.g., clouds, fire, smoke) that are volumetric in

nature and do not have any notion of tangible surfaces [13,14,15].

Block Operations An intrinsic characteristic of rasters is that adjacent objects in

the scene are also represented by neighboring memory cells. Therefore, rasters lend

themselves to various meaningful grouping-based operations, such as bitblt (bit

block-transfer) operations, or its 3D counterpart, voxblt (voxel block-transfer)

operations, which support transfer of cuboidal voxel blocks with variety of voxel-by-

voxel operations between source and destination blocks (row 6 in Table 2) [16]. Such

block operations add a variety of modeling capabilities, which aid in the task of

image synthesis. Moreover, the volume buffer lends itself to Boolean operations that

can be performed on a voxel-by-voxel basis during the voxelization stage. This

property is very advantageous when Constructive Solid Geometry (CSG) is the

modeling paradigm. CSG operations such as subtraction, union, and intersection

between two voxelized objects are accomplished at the voxel level [10], thereby

reducing the original problem of evaluating a CSG tree of such operations during

rendering time down to a 1D Boolean operation between pairs of voxels during a

preprocessing stage. Once a CSG model has been constructed in voxel

representation, it is rendered like any other volume buffer. This makes discrete ray

tracing of constructive solid models straightforward.

1.3.5 Scene Representation and Composition

In a volume space, the parts of many objects in the scene may be overlapping each

other. That is, each point in a volume space can be occupied by many objects. So,

such a point needs to be explicitly represented. Data transformation is the key

technique in volumetric scene composition and manipulation. Volumetric scene

composition can be described by scene expression, which constructs a volumetric

scene from objects of heterogeneous representations using various blending and

filtering functions. A popular technique in scene composition is scene graph. The

scene manipulation can be implemented by volume rendering technology. As volume

data is independent of specific spatial representations, volume rendering under the

volume graphics paradigm is particularly suitable as unified rendering mechanism

for a scene with heterogeneous representations. Using today’s technology, a simple

volume graphics engine can be assembled using a standard PC with a real time

 14

volume rendering chip. However, since the volume buffer needs to be pre-computed

by the application program, the rendering difficulties have shifted to the dynamic

volume reconstruction (voxelization) over a complex volumetric scene

representation. Thus, the two most fundamental issues in volumetric interactions

using a volume graphics system are: the modeling and representation of a volumetric

scene; and the scene voxelization algorithms (evaluation) that efficiently reconstruct

the volume buffer over the current viewing region for each scene modification.

1.3.6 Volume Scene Graph

A popular technique in scene composition is scene graph. It organizes geometric

objects and their rendering parameters in a tree-like hierarchical structure. Also, it

allows sharing of substructures, which naturally forms a cyclic directed graph. Due

to its flexibility of defining complex 3D scenes, scene graph has been widely used in

many 3D graphics systems. Recently, this idea has been extended to volume scene

graph for the composition of complex volumetric scenes from multiple volume

datasets [17]. However, the evaluation of a volume scene graph is done in a brute-

force manner, i.e. for each point in volume space, recursively computing the value of

the scene graph starting from the root. This is a very expensive procedure, and can

only be used as a preprocessing step, which is not practical for interactive

applications.

A similar technique often used for 3D model composition is the Constructive

Solid Geometry (CSG) representation. It allows users to define complex 3D solid

objects by hierarchically combining simple geometric primitives using Boolean

operations and affined transformations [18].

1.4 Constructive Solid Geometry

One of the most popular techniques often used for 3D model composition is the

Constructive Solid Geometry (CSG) representation. CSG technique was originally

introduced in solid modeling for computer aided design applications [19], and has

also been widely used later in 3D computer graphics and animation [20-22]. A

natural extension of the CSG method is to allow volume datasets to be included as

primitives in the CSG construction process, as described independently in several

publications [23-26].

 15

Boolean operations are convenient for incrementally designing solids, for

modeling the geometric effects of certain manufacturing operations, and for

expressing interferences between parts to be assembled. A user’s specification that

combines simple solid primitives through a sequence of Boolean operations yields

Boolean expressions, which, for further processing, may be parsed and stored as a

binary tree, called the CSG representation of solid (In Figure 1.1 the text input (left)

defines two rectangles, A and B of different dimensions, both centered at the origin;

two other rectangles, C and D, obtained by rotating copies of B; and a Boolean

expression S that combines all four rectangles. Parsing the Boolean expression

according to the precedence rules of Boolean operators yields a binary tree (center),

which corresponds to a 2-D region (right).)

Some modelers, for example [27-29], represent solids by N-way trees, where each

node may have more than two children. The leaves of the CSG tree represent

instances of simple parameterized primitive solids, such as blocks, cylinders,

spheres, and cones in 3-D, or rectangles and disks in 2D. Primitives are often

modeled mathematically as intersection of half spaces. The internal nodes of the

CSG tree represent potentially more elaborate regular sets and are associated with

regularized Boolean operators: union, intersection, and difference, respectively

denoted +, ., and -.

�

�

� �

�

�

� �

�
�

�

Figure 1.1 CSG representation.

1.4.1 General Research Issues

Guaranteed validity is one of the major advantages of CSG: It enables CSG

representations to be parameterized, composed almost arbitrarily, edited interactively

 16

without danger of producing an invalid model (a representation corresponding to a

“nonsense object”). CSG has also disadvantages. We list below some perceived

problem areas together with examples of pertinent research:

Practical implementation of CSG restricts the represented objects to be semi

algebraic sets specified as regularized Boolean combinations of algebraic

inequalities. It is often inconvenient, and sometimes impossible, to specify certain

well-defined operations (such as offsetting and blending) in these terms. Rossignac

and Requicha added constant radius blending [30] and offsetting operations [31] to

the CSG scheme. Shirma et al. [32] studied tools for modeling Boolean combinations

of sweeps, and [33] developed tools for displaying them.

The design in CSG of complex 3D solids requires that the users produce

sequences of rotations and translations that will correctly position the solid

primitives. This task is particularly hard when it is necessary to achieve complex 3D

arrangements of primitives bounded by curved surfaces. Rossignac [34] and

Anderson [35] incorporated constraint-based specifications in the CSG

representation, and Peterson [36] and Vossler [37] described techniques for

converting 2-D contours into CSG representations of 2D regions and swept volumes.

Most CSG-based systems were developed for representing and manipulating

homogeneously 2D regions or 3D solids. Certain CAD/CAM applications, however,

deal with multi-dimensional collections of open geometric elements. Cameron [38]

used 4D CSG representations to compute intersections of moving objects, and

Rossignac [39] proposed algorithms for performing Boolean operations on

nonhomogeneous, n-dimensional sets.

A CSG representation of a given solid is not unique and thus, it is expensive to

determine whether two CSG trees represent the same solid and whether any

particular CSG tree represents the empty set. Tilove [40, 41] dealt with efficient

methods for comparing sets represented by two different CSG trees, and Cameron

[42] proposed improvements to some of Tilove’s results. Woodwark [43] described a

different method, which simplifies CSG representations by reasoning on geometric

approximations of combinations of half spaces.

 17

A CSG representation, although informationally complete, does not contain

explicit information about the boundary of the represented solid. Some applications,

such as mass-property calculation [44] and null-object detection [40, 45], do not

require such information and may be said to operate directly on CSG. Other

applications require that some form of partial or complete boundary evaluation be

done. Requicha and Voelcker [46] described the basic techniques for boundary

evaluation, which is inherently computationally intensive. The generation of shaded

pictures from CSG has received a great deal of attention; many references can be

found in [31].

The performance of boundary evaluation and other CSG-based algorithms can be

improved by reducing redundant computation. The essential notion may be

summarized as follows:

Compute only entities and over regions of space that can affect the desired final

result.

Improve the Boundary Evaluation Algorithm. For a solid defined in CSG,

boundary evaluation algorithms compute intersection of the primitive’s boundaries

with solid’s boundary. Typically, candidate elements (faces, edges, points, that are

subsets of primitives’ boundary) are classified against all primitives, and the results

combined according to the Boolean expression that defines the solid. However, the

classification of particular candidate element with respect to certain primitives or

subtrees may be irrelevant to the final result. Such redundant computation may be

easily avoided in simple cases. (e.g. given an element X and two primitives A and B,

������������	��
����
��������������������������
��
�����������������������������

�
����������

Eliminate Redundant Primitives. A CSG representation may contain many

redundant primitives or half spaces that can be eliminated without altering the

represented solid. The detection of such redundancies is relatively expensive, but in

some applications it provides a one-time processing step that enables all subsequent

calculations to be speeded up. Note that the redundancy of primitives cannot be

calculated by performing boundary evaluation and keeping track, for each resulting

 18

boundary element, of the primitives it lies on. The active zone algorithm [47] leads to

improvements of the performance of redundancy-detection algorithms.

1.4.2 CSG Tree Conventions and Terminology

Although a given set may have infinitely many CSG representations, throughout

this thesis that to each set S is attached a particular CSG tree, called “the tree of S” or

“the CSG representation of S” each algebraic representation of the Boolean function

associated with a CSG tree by its positive form, which uses only regularized + and .

operators, but represents rigorously the same Boolean function and thus the same

solid as the original tree.

The tree regularized operators, union, intersection, and complement, form a

Boolean algebra over regular sets. Therefore, De Morgan’s laws [48] can be invoked

to manipulate CSG expressions.

A CSG tree may be converted into its positive form by a preorder traversal of the

tree applying, when appropriate, the following transformations to each node:

 X-Y= X. Y

 YX + = Y.X

 YXY.X +=

 XX =

This reformulation exchanges the . and + operators at negative internal nodes,

replaces – operators by . if the corresponding node is positive and by + otherwise,

and replaces negative primitives by their regularized complements. The resulting

positive form contains only . and + operators. In a positive form, all nodes are

positive, but may represent unbounded regular sets. However, the set represented by

the entire positive form is equal to solid represented by the original CSG tree.

1.5 Voxelization

 Voxelization is the process of generating volume dataset from a geometric model,

and is a necessary step in the volume graphics pipeline as proposed in [1]. Thus,

 19

voxelization is used as a pre-processing step in the current volume graphics

paradigm. A major drawback of this paradigm is its limited support for dynamic

scenes and interactive applications. A volume representation is often not suitable for

or capable of providing many sophisticated object manipulation and modeling

operations needed for applications such as computer aided design, animation and

surgical simulation. Each object’s original representation (geometric or volumetric)

is generally more convenient, accurate, and cost-effective. In a computer-aided

design system, for instance, complex geometric modeling operations have to be

interactively applied to the geometric representations. The voxelization process,

therefore, needs to be done on the fly after each change of the model for volume

rendering and other volume related applications such as layered manufacturing and

finite element analysis. The ability to work with both geometric and volumetric

representations also allows some part of the 3D models to be directly defined from

scanned volume data to produce alternative 3D models that are often more accurate

and realistic.

 To support dynamic scenes and interactive applications, an interactive volume

graphics paradigm can be employed. In this approach, 3D scenes are modeled and

manipulated in their own representations, and the volume techniques are only applied

to the desired regions (e.g. the viewing regions) of the scene when needed. This

requests fast voxelization algorithms that are able to generate volume representations

of regions of interest on the fly for complex 3D scenes involving both geometric and

volumetric objects.

 Conceptually, voxelization is a set membership classification problem for all

voxels in a volume against the given 3D model. In addition, from the view of the

process, voxelization is a 3D scan conversion [49] process.

1.5.1 Voxelization Techniques

Voxelization is essentially a sampling process, and therefore sampling theory

rules should be taken into account. The first voxelization algorithms were binary,

assigning, for example, 1 to occupied voxels and 0 to those unoccupied [3,50]. This

approach totally ignored sampling theory, and consequently rendered pictures

suffered from aliasing. This was predominantly related to the poor estimation of the

 20

surface normal vector. Techniques were proposed to improve the normal vector

estimation by taking into account information from a larger neighborhood (e.g.,

contextual shading [51], context sensitive normal estimation [52], center-of-gravity

shading [53]). Although the improvement was significant, none of the techniques

yielded a normal vector precise enough for the simulation of such effects as

reflection and refraction of light on an object surface. Better results were obtained by

discrete ray tracing [54]. In this technique, in addition to estimating the normal from

the discrete data, the normal was confirmed from the analytic object description,

which is kept along with the voxel raster. Hohne and Bernstein [55] pointed out that

shading of scanned objects could be significantly improved, if one takes advantage of

“inaccuracy” of the 3D scanning device. Due to physical limitations, a point-spread

function of the scanner is not the ideal dimensionless pulse, but rather a Gaussian

like profile with a finite support. Therefore, it acts as a low-pass filter, suppressing

high frequencies and blurring object edges. This is known as the partial volume

effect (PVE). Using such data, realistic shading can be achieved when the normal is

computed by means of a discrete gradient filter (e.g., by central differencing). The

first “smoothed” objects were synthesized for the sake of algorithm testing. A value,

proportional to the distance from a center of the test sphere, was stored in voxels near

its surface [56]. Other test objects were obtained by simulating the PVE by

computation of relative occupancy of each voxel, shared both by the object and

background [57].

Techniques for voxelization of smooth objects, primarily aimed at visualization,

were proposed later. We classify them into two categories: filtration and distance

field techniques.

Filtration techniques solve the problem of aliasing by low-pass filtering of the

object. Different filters were used: cone shaped Bartlett filter [58, 59], Gaussian [60]

and oriented box filter (a 1D box filter perpendicular to object surface) [61- 63]. The

continuous filtered function is subsequently sampled at grid locations. Assuming that

the filter support is smaller than the object, its interior is represented by some

“inside” density and background is assigned some “outside” density. There is, of

course, a transition area, which smoothly blends the inside and outside densities in a

 21

thin layer around the surface. Thus, this volumetric representation is similar to the

data obtained by a 3D scanning device.

Distance field techniques assign to all voxels of a scene their distance to the

nearest surface point of the object [64-67]. Usually a certain value, typically 0, is

assigned to the point on the surface. The distances are in general unbounded and the

distance field of an object embodies the whole scene, which means that the

traditional notion of spatially localized objects is violated. Object interior and

background are usually distinguished by a different sign of the distance.

In recent years, a number of curve and surface voxelization algorithms have been

proposed [50, 68- 72]. Broadly speaking, these algorithms aim to provide extensions

of 2D scan conversion methods to a volumetric domain. This requires additional

sampling in the third dimension for each scanline. The existing algorithms are object-

type specific, i.e. different algorithms are needed to be employed for different types

of objects (e.g. lines, circles, polygons, quadratic surfaces, etc.) leading to

implementation difficulties for general volume graphics tools.

Solid object voxelization, on the other hand, has not been sufficiently studied.

Voxelization of solid models is a much harder problem. This is because solid objects

are normally represented by their boundary surfaces without explicit interior

information, which would require an inside test for each voxel in the volume space.

One of the few algorithms for solid objects is the one by Lee and Requicha [73]

based on point classification.

Another common solid representation is the constructive solid geometry (CSG)

method [18]. Graphics techniques for CSG models have been studied by many

researchers. Most such efforts are focused on direct display of CSG objects [21, 22].

With volume graphics, the CSG method can also be extended to include volume data

sets as CSG primitives. Such models are called volumetric CSG or (VCSG) models

[24], and are potentially useful for combining geometric and volumetric objects in

one common modeling environment. There are also a number of voxelization and

volume rendering techniques for CSG and VCSG models. They include beam

oriented voxelization algorithm [74], the volume sampling approach [23], the octree-

based rendering algorithm [24], and the distance volume algorithm [75]. The

 22

common problem of these algorithms is that the volume reconstruction process is

expensive and very slow.

In [17], the evaluation of volume scene graph is done in a brute-force manner, i.e.

for each point in the volume space the value of the scene graph is computed

recursively starting from the root. This is a very expensive procedure, and can only

be used as a preprocessing step, which is not practical for interactive applications.

In [26], a hardware voxelization algorithm was described. Although this algorithm

is fast for small-scale interactive applications, its performance is limited by the need

of generating an intermediate object for each Boolean operation node, and a

hardware restriction in blending function combination. It was improved by using a

point classification map for Boolean operations based on a frame buffer color-

encoding scheme [76]. But the algorithm only provides a binary volume, which may

not provide complete information in volumetric space.

In [77], another volume pipeline is used in which each slice is applied to the entire

CSG (Constructive Solid Geometry) tree, rather than performing volume level

voxelization for each CSG node named “slice sweeping”. Here, the basic idea is to

generate a slice for each object in the scene first, and than apply the blending and

filtering functions on the slice in the postfix order of the volume scene tree. This

algorithm needs slice data storage to store the intermediate result. A 2D texture

memory was used to represent slices in a slice stack. Since the slice stack operation

will occupy a large amount of memory and time, the more slice stack operations will

lead to slower volume voxelization process. Thus, in order to reach a higher speed,

interior operation nodes must be reduced as much as possible during the design of

the volume scene tree.

In another study, Prakash [78] introduces a z-buffer based voxelization algorithm.

However, it is limited to only convex objects represented as unstructured grid cells

and the voxelization process is intertwined with the scan conversion process.

Karabassi [79] presents another z-buffer based voxelization algorithm, which

creates volume data using depth information extracted from six different views of

objects. Although this algorithm is fast and easy to implement, the algorithm misses

 23

concavities, if some area of a surface is not visible from any of the six faces. And this

area will not be properly voxelized.

The voxelization of composite objects or scenes has not been sufficiently studied,

though it is perhaps the only way to render and analyze complex scenes with

intermixed multiple geometric and volumetric objects. Currently, it seems that there

is no an efficient algorithm for the voxelization of such scene graphs.

1.6 Volume Visualization

Representing a surface contained within a volumetric data set using geometric

primitives can be useful in many applications; however there are several main

drawbacks to this approach. First, geometric primitives can only approximate

surfaces contained within the original data. Adequate approximations may require an

excessive amount of geometric primitives. Therefore, a trade-off must be made

between accuracy and space requirements. Second, since only a surface

representation is used, much of the information contained within the data is lost

during the rendering process. For example, in CT scanned data useful information is

contained not only on the surfaces, but within the data as well. Also, amorphous

phenomena, such as clouds, fog, and fire cannot be adequately represented using

surfaces, and therefore must have a volumetric representation, and must be displayed

using volume rendering techniques.

Volume rendering is the process of creating a 2D image directly from 3D

volumetric data. Volume rendering can be achieved using an object-order, an image-

order, or a domain-based technique.

Object-order volume rendering techniques use a forward mapping scheme where

the volume data is mapped onto the image plane. In image-order algorithms, a

backward mapping scheme is used where rays are cast from each pixel in the image

plane through the volume data to determine the final pixel value. In a domain-based

technique the spatial volume data is first transformed into an alternative domain,

such as compression frequency, and wavelet, and then a projection is generated

directly from that domain.

 24

For this algorithm, the strict definition of back-to-front can be relaxed to require

that if two voxels project to the same pixel on the image plane, the first processed

voxel must be farther away from the image plane than the second one. This can be

accomplished by traversing the data plane-by-plane, and row-by-row inside each

plane. For arbitrary orientations of the data in relation to the image plane, some axes

may be traversed in an increasing order, while others may be considered in a

decreasing order. The traversal can be accomplished with three nested loops,

indexing on x, y, and z. Although the relative orientations of the data and the image

plane specify whether each axis should be traversed in an increasing or decreasing

manner, the ordering of the axes in the traversal is arbitrary.

An alternative to back-to-front projection is a front-to-back method in which the

voxels are traversed in the order of increasing distance from the image plane.

Although a back-to-front method is easier to implement, a front-to-back method has

the advantage that once a voxel is projected onto a pixel, other voxels which project

to the same pixel are ignored, since they would be hidden by the first voxel.

Another advantage of front-to-back projection methods is that if the axis which is

most parallel to the viewing direction is chosen to be the outermost loop of the data

traversal, meaningful partial image results can be displayed to the user. This allows

the user to better interact with the data and terminate the image generation if, for

example, an incorrect view direction was selected. Partial image results can be

displayed to the user during a back-to-front method also, but the value of a pixel may

change many times during image generation. With a front-to-back method, once a

pixel value is set, its value remains unchanged.

Clipping planes orthogonal to the three major axes and clipping planes parallel to

the view plane are easy to implement using either a back-to-front or a front-to-back

algorithm. For orthogonal clipping planes, the traversal of the data is limited to a

smaller rectangular region within the full data set. To implement clipping planes

parallel to the image plane, data samples whose distance to the image plane is less

than the distance between the cut plane and the image plane is ignored. This ability

to explore the whole data set is a major difference between volume rendering

techniques and the surface rendering techniques. In surface rendering techniques, the

geometric primitive representation of the object need to be changed in order to

 25

implement cut planes, which could be a time consuming process. In a back-to-front

method, cut planes can be achieved by simply modifying the bounds of the data

traversal, and utilizing a condition when placing depth values in the image plane

pixels.

 For each voxel, its distance to the image plane could be stored in the pixel to

which it maps along with the voxel value. At the end of a data traversal a 2D array of

depth values, called a Z-buffer, is created, where the value at each pixel in the Z-

buffer is the distance to the closest non-empty voxel. A 2D discrete shading

technique can then be applied to the resulting image.

1.7 Conclusion

In this chapter, we give an overview of the volume graphics, including volume

scene representation, volumetric scene model, voxelization techniques and volume

visualisation.

Volume graphics is concerned with the graphic scenes defined by a volume data.

A volume scene can be constructed from various types of geometric or volumetric

objects such as curves, surfaces, solids and CT data sets. A popular technique in

scene composition is the scene graph. It organizes geometric objects and rendering

parameters in a tree-like hierarchical structure.

Evaluation of the scene graph is carried out by a voxelization algorithm. In recent

years, a number of curve and surface voxelization algorithms have been proposed

Solid voxelization, on the other hand, has not been sufficiently studied. Solid objects

are normally represented by their boundary surfaces. Since the interior of a solid

object is not explicitly represented, solid voxelization is difficult and requires an

inside/outside test for each voxel involved.

The voxelization algorithm used in this study is based on the fact that surface

graphics displays a surface by 2D scan conversion process. When only a slice of the

object is displayed, the result is essentially a slice of the volume from a 3D scan

conversion. Since 2D scan conversion is implemented in hardware in modern

graphics systems, we ought to be able to take this advantage for 3D voxelization.

 26

Using a slice-by-slice approach, our algorithm proceeds by moving a cutting

plane, called Z-plane, parallel to the projection plane, with a constant step size in a

front-to-back order. The thin space between two adjacent Z-planes within the volume

space is called a slice For each new Z-plane, the algorithm defines the new slice as

the current orthogonal viewing volume, and renders all the surface primitives using

standard CSG rendering procedures. The resulting frame buffer image from the

display of this slice will become one slice of the resulting volume.

This voxelization algorithm can be used for the voxelization of surfaces, solids,

and polygons as well. Surface rendering effects, such as color and shading, can also

be stored in the volume representation without extra computation. For the volume

scene tree we used “Blist (Boolean list)” representation [4] as a different than

traditional representation. In Blist formulation, a Boolean expression is represented

as a list of primitives instead of a tree, and this may be evaluated in a pipeline

fashion, combining at each step the result of classifying the cells against the current

primitive with the result of the previous classification. The fundamental

breakthrough provided here lies in the fact that the result of the previous

classifications does not require the list of values of cell-primitive classification

results, nor a stack of intermediate results of evaluating sub-expressions. Blist

distributes the merging operation to the primitives and reduces the storage

requirement for each voxel to log(H+1) bits.

 27

CHAPTER 2

A REAL TIME CSG DISPLAY PROCESSOR FOR CONVEX AND

CONCAVE OBJECTS

2.1 Introduction

In this chapter, we introduce a real time CSG (Constructive Solid Geometry)

display system to render convex and concave objects.

The formation of CSG models is based on performing set operations, usually

union or difference, being applied to simpler primitive volumes. Advantages of this

display system include capability of rendering both convex and concave objects,

elimination of sorting the surfaces according to frontness and backness, and a simpler

implementation.

2.2 Previous CSG Rendering Algorithms

One of the most popular methods to model solid objects or volumes is CSG.

Unbounded planes divide space into half-spaces. With these half spaces higher-level

intersection objects can be defined as convex solids or as their complements, which

are convex holes or voids. More complex volumes can be constructed from the

union, intersection, and difference of collection of these convex/concave units. In

such an object, plane half-spaces oriented away from the viewpoint are called ‘front

surfaces’ and oriented towards the viewpoint are called ‘back surfaces’.

The problem of hidden surface removal arises whenever a 3-D object is wanted to

be displayed without ambiguity. Hidden surface removal algorithms attempt to

determine surfaces that are visible or invisible to the viewer. The z-buffer algorithm

is one of the most popular hidden surface removal algorithms. The depth of the

current surface, belonging to an object, is compared with those of previous surfaces

stored in a buffer. The one having the smaller depth is stored in the buffer as the

visible surface. But such an algorithm requires surface sorting, such that in order to

 28

constitute an image correctly all the front surfaces of an object must be processed

before the back surfaces [80-82]. And this may introduce significant delays even in

parallel processing applications. So we developed an algorithm to eliminate the

surface-sorting problem for both convex and concave objects.

Although there are many CSG rendering algorithms in the literature, most of them

are able to render only convex objects [21], [80], [83-84]. This rendering algorithm

can be used for effective visualization of both convex and concave objects.

2.3 CSG Display Algorithm used and Its Implementation

 Our CSG display algorithm operates on a similar basis to Çevik’s display

algorithm [82]. But, sorting of the surfaces according to frontness and backness was

eliminated for both convex and concave objects.

The algorithm to display an object is based on the comparisons of distances,

depth, between the viewpoint and surfaces in the scene.

2.3.1 The Depth Value

The display space can be considered as a box as in Figure 2.1.

Figure 2.1 3-D Representation of the display space

The depth z, for a plane in the display space, can be written as

O

Z

X

Y

Maxdepth

Screen

 29

Zx,y = Z0 + xdZx + ydZy (2.1)

Kx,y =K0 + xdkK +ydKy (2.2)

where Z0 and K0 are the Z and K values at the origin while dZx, dZy, dKx, and dKy

are differential increments of Z and K along the x and y axes. K can be defined as the

distance between a pixel and a plane if the plane is perpendicular to the screen.

In [81], the depth of a plane, to be displayed, is generated by means of a depth

generator on every pixel simultaneously on the display window.

2.3.2 Display of convex and concave objects

The following simple algorithm, depicted in Figure 2.2, employs the plane

properties (front or back planes), explains how a convex object is formed from half

spaces. In diagram (a), the visible part of the planes which construct the object

surface is determined by selecting the front planes which have greater distances to

the viewpoint amongst the other front planes along a given ray. In diagram (b),

selecting back planes having smaller distances isolates the back surface. Finally, in

diagram (c), the front planes are kept along a given ray whenever ZFs<ZBs, where

ZFs and ZBs are the depths of a front surface, and the depth of a back surface,

respectively. Otherwise, they are clipped out by the back planes. The surface

produced by this process is the visible surface of the intended object observed from

the viewpoint.

A similar algorithm can be used to display concave objects. Figure 2.3 explains

the algorithm. First, in diagram (a), the front planes which have smaller distances are

selected amongst the others, along a given ray. Then, in diagram (b), the back planes

having greater distances amongst the others are selected. Finally, the visible surface

of the hole is obtained as part of the previously selected front planes for which

ZFs>ZBs (Diagram (c)).

It can be seen, in this algorithm, there is no importance of which surface

front/back is processed first. The algorithm can be implemented in identical

processors, Figure 2.4, at each pixel. Although the use of the processors is going to

be explained in detail later, it is important, here, to mention that our processors have

 30

an additional register, (B), for holding the depths of the back planes of the object to

be displayed.

����� �����	
�	�

�

���

�	�

� ��	� �����	

���

�	�

�

���

�����
 �����	

Figure 2.2 Algorithm used to display a convex object

 31

����� �����	
�	�

�

���

�	�

� ��	� �����	

���

�	�

� �����
 �����	

���

Figure 2.3 Algorithm used to display a concave object

 32

Figure 2.4 The basic pixel processor for a pixel

However, hidden surface removal algorithms without eliminating the surface

sorting problem did not use a register for holding back planes. Instead, front and

back planes were processed in the same register. If all the back surfaces were

processed after the front surfaces the object was displayed correctly. But if one or

some of the front planes was/were processed after the back planes then it/they would

never be clipped even its/their depths was/were greater than the depths of the back

surfaces (which were processed before front surfaces), since the back surfaces

clipped all front surfaces, replacing depth values with maxdepth value (which

represents infinity) at each pixel where their depths were less than those of front

surfaces.

In order to build algorithms we need some information about the planes which are

used to constitute an object. We can divide this information into two parts: externally

supplied information; includes data related to the nature of the plane and supplied

along with input data, and internally supplied information which is generated during

the comparisons of the depth values, in the pixel processors. So, we can define this

information in the form of Boolean variables as follows:

 33

 Externals: Internals:

L=0 Convex object L=1 Concave object N=1 A<0 N=0 A>0

S=1 First plane S=0 Not first J=1 A≤ F or A ≤ B J= 0 A>F or A>B

H=1 Front surface H=0 Back surface T=1 A=F or A=B

 T=0 A BAor ≠≠ F

Y=1 Perpendicular Y=0 Not Perpend.

M=1 Overflow M =0 No Overflow

2.3.3 First-Stage selection

The role of the first-stage selection is to determine the object defined by each set

of planes in the display list.

In this stage we use three depth registers: A, F, B, and two colour registers: D and

E (Figure 2.4). Initially all the depth registers are loaded with maxdepth value and

the colour registers are loaded with the background colour.

For each plane the Z or K values are initially stored in A-registers. If the plane is a

front plane or a perpendicular plane the depth values in A-registers are compared

with those in F-registers, which hold the depth of the previous front surface, and

greater depth values are stored in F-registers (smaller depths for concave objects). If

the plane is a back plane then the depth values in A-registers are compared with

those in B- registers, which hold the depth of the previous back surface, and smaller

depth values are stored in B-registers (greater depths for concave objects).

After processing all the planes of the object, the depth values of F and B-registers

are compared at each pixel in the scene and the following actions are taken:

Convex Concave

 If ZF<ZB ; Keep ZF If ZF>ZB ; Keep ZF

If ZF�������������	
�������
���������-register If ZF����������	
�������
���

into F- register

 34

The colour section is a slave process to that of the depth. And possible cases for

the first-stage selection according to nature of the plane are:

 Front/Perpendicular plane

Depth section Colour section

1)Put A (Transfer the depth from A to F-register) 1)Put D (Transfer the colour

from D to E-register)

2)Keep F (Keep the current depth in F-register) 2)Keep E (Keep the current

colour in E-register)

3)Put Maxdepth (Put Maxdepth in to F-register) 3)Put background (Put

background colour into E-

register)

4)Put 0 (Put 0 into F-Register) 4) Put internalcolour (put

internal colour of the object

into e- register)

 Back plane

1)Put A (Transfer the depth from A to B-register)

2)Keep B (Keep the current depth in B-register)

3)Put Maxdepth (Put maxdepth into B-register, surface is at infinity)

 There is no need to use a colour register for the back planes, since they are

invisible.

Front/Perpendicular plane (A and F registers are in use)

• S=1, Y=1 (The first plane in the display list, perpendicular to the screen)

As the plane is perpendicular to the screen, A-register is loaded with a K value. If

K<0, the plane is clipped by the screen, and the visible surface is at infinity. If K����

on the other hand, the visible surface is the screen itself. The result is:

 35

If K<0 Put 1 (N=1) If K≥ 0 Put 0 (N=0)

• S=1, Y=0, H=1 (The first plane in the display list, not perpendicular, front

surface)

The plane is visible only if 0 ≤ Z<Maxdepth. If Z<0, which means that the surface

is between the screen and the viewpoint, the plane is clipped by the screen, so the

internal colour of object is displayed. If Z≥ Maxdepth, then the visible surface is at

infinity.

If 0 ≤ Z<Maxdepth Put A (N=0, M=0)

IF Z<0 PUT 0 (N=1)

If Z≥ Maxdepth Put 1 (N=0, M=1)

• S=0, Y=1, L=0 (Not first plane, perpendicular to the screen, convex object)

If K ≥ 0 the visible surface is the one contained in F-register. In regions where

K<0, however, the perpendicular plane clips the other surfaces so that the visible

surface is at infinity.

If K<0 Put 1 (N=1) If K≥ 0 Keep F (N=0)

• S=0, Y=1, L=1 (Not first plane, perpendicular to the screen, concave object)

If K<0, the visible surface is the plane itself, if K ≥ 0 then the screen is the visible

surface itself.

If K<0 Keep F (N=1) If K��������������������������

• S=0, Y=0, H=1,L=0 (Not first, not perpendicular, front surface, convex object)

The visible surface will be the plane which has the greater depth. But if A=F then

the result is up to the user, it can either be the depth of A or F.

If F<A<Maxdepth Put A (M=0, N=0, J=0)

 36

If 0 ≤ A<F<Maxdepth Keep F (M=0, N=0, J=1, T=0)

If A=F Put A or F (M=0, N=0, J=1, T=1)

If A<0 ≤ F Keep F (N=1)

If Maxdepth ≤ A Put 1 (N=0, M=1)

• S=0, Y=0, H=1, L=1 (Not first, not perpendicular, front surface, concave object)

The visible surface will be the plane which has the smaller depth, if A=F then

result is up to the user, it can be either A or F.

If 0������
������� Keep F (M=0, N=0, J=0)

If 0 ≤ A<F<Maxdepth Put A (M=0, N=0, J=1, T=0)

If A=F Put A or F (M=0, N=0, J=1, T=1)

If A<0 ≤ F Put 0 (N=1)

If Maxdepth ≤ A Keep F (N=0, M=1)

Back planes (A and B registers are in use)

• S=1, Y=0, H=0 (The first plane, not perpendicular, back surface)

If the plane depths are less than 0 then the plane is clipped by the screen, and

maxdepth value is put into B-register. If plane depths are greater than 0, then these

depths are put into B-register.

If Z<0 Put 1 (N=1) If Z≥ 0 Put A (N=0)

• S=0, Y=0, H=0, L=0 (Not first, not perpendicular, back surface, convex object)

 The plane which has the smaller depth is kept in B-register (If the depth is greater

than 0).

If 0 ≤ B<A<Maxdepth Keep B (M=0, N=0, J=0)

If 0 ≤ A<B<Maxdepth Put A (M=0, N=0, J=1, T=0)

 37

If B<Maxdepth ≤ A Keep B (M=1, N=0)

If A<0 ≤ B Put 1 (N=1)

If A=B Keep B or Put A (N=0, M=0, J=1, T=1)

• S=0, Y=0, H=0, L=1 (Not first, not perpendicular, back surface, concave object)

 The plane which has the greater depth is kept in B-register (If the depth is less than

maxdepth).

If 0 ≤ B<A<Maxdepth Put A (M=0, N=0, J=0)

If 0 ≤ A<B<Maxdepth Keep B (M=0, N=0, J=1, T=0)

If B<Maxdepth<=A Put 1 (M=1, N=0)

If A<0 ≤ B Keep B (N=1)

If A=B Keep B or Put A (N=0, M=0, J=1, T=1)

Using the above cases we have constructed Karnaugh maps [85] for the

simplification of the Boolean functions S1 and S2 which control the data selection

within the pixel processors. The actions to be taken according to values of S1 and S2

are:

Front/Perpendicular plane (Sel1) Back plane (Sel2)

Put A S1=0 S2=0 Put A S1=0 S2=0

Put 0 S1=1 S2=0 Keep B S1=0 S2=1

Put F S1=0 S2=1 Put 1 S1=1 S2=1

Put 1 S1=1 S2=1

After the simplification of the maps we obtain the following Boolean functions for

S1 and S2.

For front/perpendicular surfaces

 38

S1�=L� �!��" �����"#� !���"# �!���"# !��

S2�� �!�"#� �$�����" !��"# ��"# ��"!����"#$����%�

For back surfaces

S1��#�$�!���"#�!����"#!��"#$!���&�

S2��!��"%�#�$����"#$�����

2.3.4 Clipping process

The clipping process determines whether a surface which has already been in F-

registers after first-stage selection lies inside a clipping volume, at a given pixel, or

not. The clipping algorithm consists of, first, expressing the clipping phrase in the

postfix form. Then, for each clipping plane, a partial inside/outside test is performed,

at each pixel, on the previously selected surface. At the end of this stage the visible

surfaces are stored in F-registers. The partial inside/outside test is illustrated in

Figure 2.5.

Figure 2. 5 Clipping Algorithm

Now, the details of the evaluation of the partial inside/outside test will be given.

 39

• Y=1 (Clipping plane is perpendicular).

If the clipping plane is perpendicular, the sign of the K value belonging to this

plane at a given pixel determines if the point is going to be kept or discarded (Figure

2.6).

LL=1 if K�� (N=0)

LL=0 if K<0 (N=1)

�����

� �

������

�

� �

�� ���

	�����
������

	��������
�������

�������

Figure 2. 6 Inside/outside test for a perpendicular clipping plane

For non-perpendicular planes, two points can be defined, at each pixel, one on the

clipping plane, and one on the previously selected plane (Figure 2.7 and 2.8). By

comparing the depths of A and F it can be determined whether F is inside or outside

the half-space defined by the clipping plane. In the case of the equality between the

depths of A and F, the result is arbitrary because there is no reason why such a point

should be considered inside or outside. Therefore, it is up to the user to decide as a

preliminary condition whether user wants that surface to be kept or not. This

information is represented by an external variable X such as, X=0 if the surface will

be kept, and X=1 if not.

• Y=0, H=1 (Not perpendicular, front plane)

 40

LL=0 If A>Maxdepth (M=1, N=0)

LL=1 If A<0 (N=1)

LL=0 If A>F (J=0)

LL=1 If A<F (J=1)

LL=X If A=F

����� ����	

��		�

�

��

���

��	���
��

	�	��	�

�����	

��

��
	

��	� ���	�

Figure 2. 7 Inside/outside test for a front clipping plane

• Y=0, H=0 (Not perpendicular, back plane)

LL=0 If A<0 (N=1)

LL=1 If A>Maxdepth (M=1, N=0)

 LL=0 If A<F (J=1)

 LL=1 If A>F (J=0)

LL=X If A=F

 41

���� ����	

��		�

�

��

���
��	���
��

	�	��	�

�����	

��

��
	

��	� ���	�

Figure 2. 8 Inside/outside test for a back clipping plane

 Using these results, a Boolean function can easily be obtained for LL (partial

answer for each clipping plane).

 LL=H’.Y.T’ + H.Y’.N + X’.H.Y’.J.M’ + Y.J’T’+ H.Y.J.T + H’.Y’.M. N’

 + H’.Y’.T.N’ + X.H.Y’.J.T’.M’+ H’.Y’.J’.N’

 As explained above, LL is an input for the local stack for each pixel. When all the

planes of the clipping volume have been processed, the evaluation of the stack gives

the result (LL’) of the clipping for that pixel. The value of the LL’ determines that

how the F-register will be modified by the clipping:

Keep F If LL’=1 The surface is inside

Put 1 If LL’=0 The surface is outside

2.3.5 Second-Stage selection

The second-stage selection is required each time a new object is to be added to an

existing scene which has been kept in C-registers (depth) and G-registers (colour).

An object which may have been clipped during the clipping stage is transferred from

F-registers to the C-registers taking into account that which object will be visible at a

given pixel. The comparison is as follows:

 42

Put F If F�C (J=1)

Keep C If F>C (J=0)

Keep in mind the possibility of the fact that a new scene overwriting the existing

one may be required. So an external variable, P, affects the second-stage selection

such that:

Put 1 If P=1 (initialise C-registers)

Keep C If P=0 (no change)

Therefore, there are three possibilities for the modification of C-registers:

Put 1 S3 =0, S4 =0 put F S3 =0, S4 =1

Keep C S3 =1, S4 =X (don't care)

After the simplification of the maps we obtain the following Boolean functions for

S3 and S4.

S1=J’P’ S2=P’

2.4. Hardware Implementation

In this section, the display algorithms which were implemented in terms of

Boolean functions will be realized using digital logic, mostly in LUT based FPGAs.

The structure of the system is shown in Figure 2.9.

 43

DEPGEN

COM PARE
A B

AGB ALB

SGEN E

TRANSD

A\B\1\0
TRANSC
A\B\1\0

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

8-Bit-wide
 RAM

R\W

R\W

M EM D M EM EM EM C

SQ1 SQ2

A B

Z /K0/ 0

Stage
select

Stage se lectors

External
variab les

Figure 2.9 The system structure

 Here, DEPGEN is the tree-structured depth generator [81-82]. Each cluster of it,

making a row in the display area is connected to the MEM A memories. While the

depth values are coming from the DEPGEN, the colour values corresponding to each

plane are fed in the MEM D memories.

The stage selectors switch between the first-stage and second-stage selection.

There are four different positions of the stage selectors. At the three of these

positions the system is in the first-stage selection mode. At the last position the

system is in the second-stage selection mode. When the switch is on the first

position, the selector connects the mem A and mem F to the depth section of the

pixel processors, and mem D and mem E to the colour section. For the second

position, the selector connects mem A and mem B to the depth section, here, the

usage of the colour registers is not necessary since B registers keep the depth values

of the back surfaces. At the third position, mem B and mem F are connected to the

 44

depth section and mem E to the colour section. For the last position, the selectors

connect the mem F and mem C to the depth section of the pixel processor and mem E

and mem G to the colour sections.

The part shown in the dashed frame is the pixel processor. The compare module

compares two depth values, while SGENE module determines the S1 and S2 values,

which were explained in the previous section, according to the result of the

comparison. TRANSD puts the required value, either the new depth or the old one or

1 or 0 on the output depending on the S1 and S2. The TRANSC is the same as

TRANSD, but it deals with the colour values rather than the depth.

2.4.1 The Data Structure and Data Flow

The depth data coming from the tree-structured depth generator is downloaded to

the pixel processor in a serial manner. The depth stream carrying the depth value is

composed of 32-bit-long strings in 2’s complement format (Figure 2.10).

Figure 2.10 Data structure of the depth string

The first 10 LSBs (low significant bits) (0-9) are for the fractional part of the

depth, the next ten (10-19) are for the decimal part, the other eleven (20-30) are for

the overflow, which means that the plane is beyond the display limit of the window,

and the MSB (most significant bit) is for the sign of the depth value.

The first column in Figure 2.11 explains the flow of the depth data when the

selection switch is at the first position. Each pattern in the figure represents a plane.

In the very first item, the selector has decided that the plane in the F register is going

to be kept, while the next plane belonging to an object is ready to be downloaded

from the depth generator. In the second item, the depth values of the downloading

plane are compared to those of the one keep in the F register. When the plane has

been downloaded, in the third item, the selector determines what is going to be

transferred into the F register. When the switch is at the second position, the same

action takes place, except the B register is used instead of the F register. For the third

 45

position in Figure 2.11, the depth values stored in the B and F registers are compared

and the depth values of the visible part is stored in the F register. For the second

stage selection the same action takes place, but in that case F and C registers are

used. Then the object, in the F register, is added to the existing scene.

Figure 2.11 The data flow

The simulation of the display system shown in Figure 2.9 was performed using

the Work View® software package. This software allows the user to arrange the

schematics in a hierarchical order that brings about a compact view, and,

consequently, an easy-to-follow circuit. The software can use the XILINX® supplied

component and symbol libraries to save the user from a laborious behavioural

determination of the components. The user, then, can simulate the schematic by

 46

means of the VIEWSIM®, which is the functional simulation program supplied by

the Work View.

2.5 Performance

The performance of a pixel-based system, in terms of the number of surfaces

rendered per second, can be defined by the following formula:

�
�

� �
� �

=
⋅

 (2.3)

where

 P, performance in terms of surfaces/sec,

 ND, number of bits to store the depth (so the number of clock cycles required

to render a single surface),

 TC, clock period in terms of seconds.

Using this formula, the number of surfaces that can be rendered in real-time can

be calculated:

 � � �
�

= ⋅ �
�

� �
�

� �

=
⋅

 (2.4)

where

 PR, real-time performance,

 t, frame time for real-time display in sec. (1/30 to 1/70).

This is the real-time performance of an Sx by Sy pixel area of the display. Here, it

is assumed that there is a basic pixel processor available for every pixel on the

display area. As can be noticed, the real-time performance is practically dependent

on the clock speed. And it is independent of the display size as long as there is a

single processor array dealing with the entire area of the display.

 With a 32-bit depth length and a 10 MHz clock speed, the performance of such a

system would be:

 47

 312500
910001.32

1
P =−⋅

= surfaces/second,

Or, in real-time (t=1/50 sec.)

 6250
91010032

501
RP =−⋅⋅

= surfaces/frame time.

 Although the performance that was calculated above is enough for the real-time

animation of simple objects, it must be improved for complex scenes. The basic

strategy for increasing the real-time performance is to subdivide an image area into

sub-areas, not necessarily continuously, and generate sub-images in parallel, using

multiple panels of the pixel processor array. In this approach, many pixel processor

arrays can operate on separate, small, n by m panels on the screen.

 Primitives that fall into more than one region must be processed in the

corresponding panels, which mean processing the same primitive more than once in

separate panels. This suggests that there is not a fixed performance; instead that the

performance is dependent upon how evenly the primitives fall into the panels, and

how many panels are being processed in parallel. A rough estimate of the potential

increase in the performance however can be made, assuming an even distribution of

primitives within the panels, and having enough panels to cover the entire screen.

CDmn

P
R TN

t

SS

Mmn
P

⋅
⋅

⋅
⋅⋅= (2.5)

where

 Sn.Sm, screen resolution,

 n.m, panel size.

For a 1024 by 1024 pixels resolution screen, the maximum real-time

performances with respect to different panel sizes are given in Table 2.1.

 48

Table 2.1 Maximum real-time performance with respect to panel sizes

PANEL NUMBER OF SURFACES PER FRAME

512 X 512 25000

256 X 256 100000

128 X 128 400000

64 X 64 1600000

32 X32 6400000

16 X 16 25600000

8 X 8 102400000

 The graph of the real-time performance with respect to the number of processor

arrays working in parallel is shown in Figure 2.12.

�

��

���

����

�����

������

�������

� � �� �� ��� ���� ���� ���	�

Number of processor arrays

T
ho

us
an

d
su

rf
ac

es
 in

 r
ea

l t
im

e

Figure 2.12 The real-time performance

 49

 49

CHAPTER 3

THE VOLUMETRIC SCENE GRAPH and its EVALUATION

3.1 Introduction

In this chapter we will introduce the volumetric scene graph and volume scene

tree expression. Scene evaluation is carried out by the slice-sweep voxelization

algorithm [26].

3.2 The Volumetric Scene Graph

Generally, a scene graph is a hierarchical organization of shapes, groups of

shapes, and groups of groups that collectively define the content of a scene. Shapes

and subtrees may be shared among multiple groups, creating a directed acyclic

graph. Scene graphs are widely used to define complex 3D scenes with hundreds or

thousands of separate shapes.

Traditionally, scene graphs contain shapes defined by surfaces, such as sets of

polygons. Volume scene graphs introduced here support volumetric shapes defined

procedurally or by data sets read from disk. Compositing operators in the graph

specify the treatment of overlapping volumes. Transform operators translate, rotate,

and scale shapes or subtrees to construct a scene.

Constructive Solid Geometry (CSG) introduces an explicit scene description

expressed as a binary tree containing solid primitive shapes (box, sphere, etc.) at the

leaves, and set operators (union, intersect, subtract) for interior nodes. The

procedurally defined primitives and set operators of CSG trees place them on the

functional side of the scene description spectrum.

Volume scene graphs extend CSG trees to support leaves containing volume data

set primitives, and to support interior nodes that perform arbitrary operations.

 50

3.3 Volumetric CSG Modeling

A volumetric CSG model provides a constructive way of designing 3D models

using intermixed geometric and volumetric objects.

Volumetric Boolean operations in the volumetric CSG tree can be represented by

blending operations in the scene expression tree. The standard definition of

volumetric Boolean operations is straightforward. They can also be represented by

blending functions in a 3D graphics. More specially, a frame buffer is applied

between the incoming pixel color and the pixel color at the corresponding location in

the frame buffer. Let Cs denote the incoming pixel color in the frame buffer and Cd

denote the corresponding pixel color in the frame buffer. And C is the output color to

be written back to the frame buffer. Thus, volumetric Boolean operations in the

volumetric CSG tree can be implemented with the replacement of blending functions

in the scene expression by the following combinations:

Union:

C=max(Cs,Cd)

Or:

C=ksCs+kdCd

Where ks and kd are their factors respectively.

Intersection:

 C=min(Cs,Cd)

Difference:

 C=min(Cd-Cs,0)

Where, C is equal to 0 if Cd-Cs<0.

 51

3.3.1 Volume Scene Tree Conversion

A volumetric scene expression can be represented as sequence of objects and

operators that are carried out in a certain order. It describes the composition process

of a complex volumetric scene, and can be best represented by a volume scene

expression tree, or simply VST (Volumetric Scene Tree).

It is quite easy to turn a volumetric CSG tree into a volumetric scene expression

tree (i.e. VST). VST is not a complete binary tree. It can be any kind of tree, which

allows a parent node to have more than two children or only one child. So the VST

of the volumetric CSG tree may also have more than two operands for an OR (union)

blending operator. This kind of scene expression tree can reduce the time of stack

operations, thus running speed of the program may be improved.

Figure 3.1 An example for general volumetric CSG modeling: (a) resulted image,

(b) the volumetric CSG tree, (c) and its corresponding VST.

U -: Blending operations

(a)

-

U

CThead

Sphere Sphere

Sphere

U -

U

(b)

(c)

 52

Figure 3.1 shows such a simple example, which converts a volumetric CSG tree

into a VST. Here, the CT dataset has 256 different intensity levels for each voxel.

The brain of the CT head is represented by two geometric spheres with black and

white colors.

The evaluated result of a volumetric scene expression is a field defined over a

volume space. Conceptually, each object represents a volumetric field, defined by its

attribute values. The voxelization process will then extract volumetric information

from different representations and perform operations for them according to their

operators in the scene expression.

3.4 Scene Evaluation

Scene evaluation is very important for volumetric scene graph. In this chapter,

scene evaluation is carried out by the slice-sweep voxelization algorithm [26].

3.4.1 Slice Sweeping

Space-sweep approach has been widely used in many computational geometry

and computer graphics problem [93-94]. This approach can be applied to compute

volume information of a scene expression on a 2D slice, which moves across the

volume space in regular increments. So, this approach is called slice sweeping.

The basic idea of slice sweeping is to generate slices for each object in the scene

first, and then apply the blending functions on the slices in the order defined by the

scene expression [26]. To ensure the correct operational order, a postfix expression is

generated by a standard pre-order traversal of the volume scene tree. For example,

the expression of the volume scene tree

((Cylinder)U(Curve))U((Surface)U(Cube)U(Sphere))

will be rewritten into the following postfix form:

(Cylinder)(Curve))U((Surface)(Cube)(Sphere)UUU

This algorithm proceeds by moving a slice plane, which is parallel to the

projection plane, with a constant step size in a front-to-back or back-to-front order in

volume space. This process is shown in Figure 3.2. For each new slice, all primitives

 53

are rendered into the slice buffer (i.e., frame buffer) using a standard rendering

pipeline. This algorithm needs a slice stack data structure to store the intermediate

result slices. For each slice, stored as a 2D image, the algorithm reads one node at a

time from the postfix expression of the VST, and pushes slices of leaf nodes (objects)

into the stack. If the node is a blending operator, it can have more than one child

node. For this operator node, it needs to pop k slices from the stack, where k is the

number of children for this node. At the end, the last slice in the stack will be final

evaluated result for this slice.

Z

X

Y

Vo lum e sp ace
O n e slice

Figure 3.2 Slicing the volume space

The entire algorithm is described in the following pseudocode:

Slice Sweeping (VST vs_tree)

{

for (each slice S){

 read the first node P from the VST

 while (P is not NULL) {

 if (P is a leaf node){

 voxelize P into the slice S;

 54

 push(S)

 }

 if(P is a blending operator){

 for(each operands)

 T[i]=pop();

 S=blending(T[0],…,T[k],P) ;

 Push(S);

 }

 S=pop();

 Output the final slice S into volume memory;

 Move to the next slice;

 }

}

3.4.2 Solid Object Slicing

Unlike volumetric objects, solid objects are normally represented by their

boundary surfaces without explicit interior information. Thus, when solid objects are

clipped with a geometric method, their interior voxels should be generated to get

complete solid slices. In this chapter, for solid voxelization, an XOR operation based

method will be introduced.

A cubic volume space is first defined over the CSG model. The algorithm

proceeds slice by slice in a front-to-back order by moving the Z-plane, a plane

parallel to the projection plane, along the viewing direction to generate slices for all

primitives (Figure 3.2). For each slice, the algorithm defines the viewing volume of

the system as a thin space between two adjacent Z-planes inside the volume

boundary, and then renders each primitive within this viewing volume. When the

 55

algorithm moves from Z-plane to Z-plane, slices of the primitives are displayed and

composited onto the frame buffer in a front-to-back order. Using a proper color-

coding of the primitives, the algorithm can directly generate slices in the frame

buffer. The distance between adjacent Z-planes determines the resolution of the

volume in the Z direction. The resolutions in the X and Y directions are determined

by the size of the display window.

If the CSG tree has n primitives, n distinct colors are assigned to different

primitives so that the color code of the jth primitive is a binary number, with the jth

bit set to 1 and all other bits set to 0. For a spatial point P, the color of P with respect

to the jth primitive, Cj(P), is defined as the color of the jth primitive if P is inside the

primitive, and 0 otherwise. Now, if we combine C1(P), C2(P),…Cn(P) using a logical

operation OR or XOR, the result, C(P), is exactly the classification index of point P.

Thus, for each Z-plane, algorithm generates a slice for each primitive, and then

composites the slices from the primitives into one single slice of classification

indices in the frame buffer using appropriate frame buffer pixel functions. This

composition process is carried out as follows:

X O R

Vo x el w ith v a lu e e m p ty v o x e l

(a) (b) (c)

Figure 3.3 The process of solid voxelization for one slice by XOR

((a) the previous solid slice, (b) the boundary voxelization of current slice , (c) the

final solid current slice)

For a primitive defined by its surface boundaries, since only the boundary

surfaces are drawn, we need to have a way to determine the interior points [79]. The

idea is based on the principle that when a ray is shot from a pixel towards the jth

primitive in the viewing direction, it has to enter the primitive object first (jth color

bit becoming 1) and stay there (keeping the jth bit) until it exits the object (changing

 56

the jth bit to 0). This can be done by drawing the boundary surfaces of each primitive

with a logical XOR operation (Figure 3.3). When a slice is complete, the frame

buffer will not be cleared, i.e. the frame buffer content of the slice will be used for

blending operations with subsequent slices. This way, the XOR operation will

automatically set the jth color bit to 1 for all interior points, and 0 for all outside

points. Since the pixel colors on the slice generated by the jth primitive has 0’s at all

bit positions except the jth, the XOR operation for the jth primitive will have no

effect to the classifications of other primitives.

In order for this algorithm to work correctly, the slicing process has to start from

the outside of the object. In other words, the objects need to be completely contained

by the volume space. Consequently, the volume space may need to be made very

large. Since the size (resolution) of the volume is limited by the system memory, a

large spatial region can lead to low resolution voxel representations of the object

details. But for a correct operation, the slicing process has to start to overcome this

problem; the voxelization process should be applied on the fly to only region of

interest (e.g. the viewing region) of the scene. With a fixed sized volume

representation, a region-based dynamic voxelization leads to a natural multi-

resolution volume rendering approach with desired level of detail for different

viewing regions.

This region based voxelization process, however, requires a small modification of

the basic voxelization algorithm. The basic algorithm assumes that the slicing

process starts from the outside of all primitives. But when the Z-plane starts from the

front face of a sub region of the spatial domain, the XOR operation may not work

correctly for all pixels since the parity is no longer guaranteed for every pixel. If we

define the 0th slice as the space between the first Z-plane of the region and the z=-∝

plane, as shown in Figure3.2, the 0th slice can be used to represent and store

information about the starting status of each pixel. To generate the content of the 0th

slice, we can draw all the geometric primitives once using the 0th slice as the viewing

volume, with the XOR logical operation set for the frame buffer. The resulting frame

buffer will not be cleared, i.e. the frame buffer content of the slice will be used for

blending operations with subsequent slices. This way, the XOR operation will

automatically set the jth color bit to 1 for all interior points, and 0 for all outside

 57

points. Since the pixel colors on the slice generated by the jth primitive has 0’s at all

bit positions except the jth, the XOR operation for the jth primitive will have no

effect to the classifications of other primitives.

 59

CHAPTER 4

THE BLIST REPRESENTATION OF VOLUMETRIC CSG GRAPHS AND its

EVALUATION

4.1 Introduction

In this chapter, the Boolean list (Blist) representation of volumetric CSG scene

graphs will be given. In Blist formulation, a Boolean expression is represented as a

list of primitives instead of a tree, and this may be evaluated in a pipeline fashion.

Evaluation of the volume scene is carried out by z-buffer based voxelization

algorithm [95]. This voxelization algorithm generates slices of objects using the 2D

pixel processor, given in Chapter 2.

4.2 Binary Representation of CSG Trees

In a CSG model, primitive shapes are combined through regularized Boolean

expressions. The primitive shapes define solids, which may be represented as

parameterized primitives, such as cylinders or blocks, or as more general boundary

or procedural representations. The Boolean expression combines the primitive shapes

through union (U), regularized intersection (���� ���� ��	
������� ����������� �-)

operations. It may be represented as a binary tree, whose interior nodes store the

Boolean operators and whose leaves store integer references to the primitives in a

table.

To make things more precise, we assume that the input CSG model is represented

as a binary tree. With each node, n, is associated a structure with several fields. The

field n.type specifies the type of the node: leaf or internal.

Internal nodes contain the following fields:

• n.type, which is equal to node

• n.operator, an operator (U, ������-)

 60

• n.leftChild, a pointer to the left child

• n.rightChild, a pointer to the right child

• n.parent, a pointer to the parent node (null for the root)

Leaf-nodes contain the following fields:

• n.type, which is equal to leaf

• n.parent, a pointer to the parent node

• n.primitiveReference, which identifies the corresponding primitive in a Table of

Primitives, which contains a complete description of the primitive, for example:

the primitive's type, parameters, position, and color.

• n.primitiveID, an integer used during the CSG-to-Blist conversion to identify the

corresponding entry in the Blist table.

Many other popular CSG representations may be converted to this simple format.

For instance, rooted, directed, acyclic CSG graphs may be expanded into binary CSG

trees. CSG trees with transformation nodes may be converted to trees with only

Boolean nodes by composing the transformations that are applied to each primitive

and by storing the result in the table of primitives.

Let S be an r-set [96]. Let X be a candidate set: curve, surface, volume, edge-

neighbourhood. A set membership classification process segments a candidate set, X,

into three subsets: X������-S; and X��

interior and the boundary of S. All set membership classification algorithms perform

two tasks: (1) subdivide X into cells of uniform classification against primitives and

(2) combine the binary results of classifying these cells against the primitives

according to the corresponding Boolean expression. CSG-to-boundary conversion

algorithms are often based on such set-membership classifications.

Subdivision typically involves computing intersections between the carrier of X

and the surfaces that bound the primitives. Classification may in general be

expressed as a combination of binary values, which represent the results of

 61

classifying the cell against the interior of the primitives. The combination uses

Boolean operators (OR, AND, and AND NOT) for the corresponding CSG operators

(U, �������-).

The standard way of implementing the evaluation of such expressions [47] is

illustrated by the pseudo-code of Procedure ClassifyAgainstTree, below, which is

invoked using the cell and the root-node of the tree as arguments.

PROCEDURE ClassifyAgainstTree(cell,node)

IF node.type = leaf

THEN RETURN InPrimitive(node.primitiveReference, cell)

ELSE RETURN Combine(ClassifyAgainstTree(cell,node.leftChild),

node.operator, ClassifyAgainstTree(cell,node.right.child));

When the set membership classification process implements such a recursive

procedure of evaluating the Boolean expression, it requires a stack of binary values,

whose length equals the height, H, of the binary tree.

Note that the recursive procedure produced above may be improved by avoiding

the ClassifyAgainstTree(cell,node.right.child)) call when its result is irrelevant. For

example, if A returns FALSE, then A��� ��� �� �!� ��� "������ ����� �� ���
���#�

Similarly, when A is TRUE, then AUB returns true, no matter what B returns. The

Blist technique proposed here avoids all these unnecessary calls.

The CSG tree described above could be represented in different ways. For

example, using the inverse Polish notation, the CSG expression (A�� ������) -(

(DU(E ��)) -G) could be represented by the sequence of operations ###U�$$$� -

U#�-, where # pushes a new value on the stack and where the other operators

combine the two top elements of the stack.. The expression could be evaluated

without recursion. Nevertheless, the evaluation would use a stack, whose length

would be equal to the height of the tree, at least when the CSG tree is full (i.e. when

all leaves are at the same depth).

 62

The storage required for this stack is usually not a problem when the cells are

classified one at a time against the entire CSG model.

However, when the cells form a regular array of points in space or on the

boundary of a primitive or when they form a pencil of rays, it may be more efficient

to classify all cells against one primitive, before classifying them against the next

primitive. For example, rasterization techniques may be used to classify all pixels or

all voxels against a single primitive, and forward difference techniques may be used

to compute the intersections of a family of rays with an algebraic surface. In such

cases, either all the results of cell-primitive classification must be stored for all

primitives before they are combined, or each step of the combine process may be

performed as soon as its arguments are available.

The latter solution requires storing a stack of intermediate results for each cell.

Parallel implementations of algorithms that classify large amounts of cells (points,

voxels, or ray segments) may assign one primitive to each processor or thread. A cell

may be either classified simultaneously by all threads or may be classified against the

primitives one-by-one in a pipeline fashion. The pixel-planes architecture [97]

combines both approaches. In any case, these binary classification results for each

cell must be combined according to the Boolean expression that defines the CSG

solid. The combine process requires passing the results of the cell-primitive

classifications between processors, and may be implemented as a hardware combine-

tree, an array of p by log(p) processors. Because the array does not grow linearly

with the number of primitives, it is difficult to extend such architectures to support

larger CSG models without performing several passes or breaking the tree into

subsets, for which intermediate results must be stored and recycled.

In Blist representation of Boolean expression, because it may be represented as a

list of primitives, instead of a tree, and may be evaluated in a pipeline fashion,

combining at each step the result of classifying the cell against the current primitive

with the result of the previous classifications. The fundamental breakthrough

provided here lies in the fact that the result of the previous classifications does not

require the list of values of cell-primitive classification results, nor a stack of

intermediate results of evaluating sub-expressions. Instead, Blist passes from one

 63

primitive to the next a simple label, which may be stored using at most log(H+1)

bits, where H is the height of the CSG tree. Note that log(H) equals log(log(|P|)),

where |P| is the total number of primitives [4].

Using the Blist representation, any Boolean expression can be evaluated without

using recursion or a stack. In fact, the whole binary merging process is replaced by a

simple comparison between the content of the label that is attached to the cell and the

name of the primitive.

In the remainder of this chapter, we define the structure of the Blist table; propose

a simple algorithm for converting volumetric CSG trees to a Blist form while

minimizing the number of bits needed for each label; and provide an intuitive

explanation of the essence of our approach. We demonstrate the conversion process

and the evaluation algorithm on an example.

4.3 The Blist Representation

The Blist method transforms in some sense the CSG tree into a decision graph. A

primitive classifies a candidate cell and depending on the result, forwards the cell to

one or another primitive.

Blist represents a CSG expression as a table, called BL, of primitive entries. The

entry BL[p] associated with primitive number p contains:

• BL[p].primitiveReference: The reference to the primitive’s description, which

includes its type, parameters.

• BL[p].sign: The sign (binary value) indicating, when set, that the result of

classifying a cell against the primitive should be complemented.

• BL[p].name: The name associated with the primitive (several primitives may

have the same name and many primitives have no name).

• BL[p].stamp: The stamp, which contains the name of the next primitive in the list

that should classify the cell that are inside the current primitive if its sign is

positive, or the cells that are outside of the current primitive, if its sign is

negative.

 64

The Blist representation can be applied to any CSG tree. However, to simplify

definitions and proofs, each algebraic representation of the Boolean function

associated with a CSG tree is replaced by its positive form, which uses only

regularized + and . operators, but represents rigorously the same Boolean function

and thus the same solid as the original tree.

4.3.1 Positive Form

The three regularized operators, union, intersection, and complement, form a

Boolean algebra over regular sets [86]. Therefore, De Morgan’s laws [47] can be

invoked to manipulate CSG expressions.

Any CSG tree may be converted into its positive form by a preorder traversal of

the tree applying, when appropriate, the following transformations to each node:

X-Y=X. Y’,

YX + = Y.X ,

YXY.X +=

XX =

� �

�

� �

��

� � � �

� �

�

�

� � � �

�

�

�

Figure 4.1 Tree reformulation: (AUB)-(CU(DUE))���%&�� ��� ��������"��� ����� ����
positive form: (AUB)�-(C’��'(%!��%��(%&(�#

This reformulation (illustrated in Figure 4.1) exchanges the . and + operators at

negative internal nodes, replaces - operators by . if the corresponding node is positive

and by + otherwise, and replaces negative primitives by their regularized

 65

complements. The resulting positive form contains only . and + operators. In a

positive form, all nodes are positive.

The set represented by the entire positive form is equal to the solid represented by

the original CSG tree, and hence is bounded (assuming the original primitives are

bounded).

Any CSG tree can be expressed in a positive form, and thus, without loss of

generality, we shall use a positive form throughout the rest of this thesis.

4.3.2 The Blist Formulation of Volume Scene Graph

In Blist formulation of the volume scene tree each primitive represents a

volumetric dataset or a geometric model. The basic idea of our algorithm is to

generate a slice for each primitive in the list first, then to evaluate Blist by updating a

label, when its value matches the primitive’s name. At the end if the label on the

voxel is 1(IN name) the voxel is inside the volume scene otherwise, it is outside the

volume. So, the Boolean expression of the volume scene tree is evaluated directly,

i.e. combining steps used with the traditional recursive evaluation is not necessary.

The details of Blist formulation of the volume scene tree are given below.

The CSG-to-Blist conversion process takes, as input, the root-node of the binary

tree, T, and produces the corresponding BL table. Both structures have been

described above. The conversion performs the following steps:

1. Convert T into a positive form by applying deMorgan’s laws and

propagating complements to the leaves.

2. Rotate the tree by switching the left and right children at each node to make

the tree left heavy.

3. Visit the leaves from left to right and for each leaf, p, fill in the

corresponding fields of BL[p].

 66

For unbalanced trees, Step 2 may reduce the total number of bits needed for each

label to less than [log(H+1)].

We describe the details of these steps below using as example T= (AUB)-(CU(D-

E))���%&�). The literals, A, B…G, denote integer primitive references. Parsing this

expression yields a binary tree shown in Figure 4.2 (a).

�

�

� �

�

� �

� �

� �

�

� �

� �

Figure 4.2 The binary tree corresponding to the Boolean expression is shown in (a).
Its positive form is shown in (b). Note the complemented primitives are indicated
using overscores.

(a)

(b)

 67

� �

�

� �

� �

� �

�

� �

� �

�	

��

Figure 4.3 (a) The binary tree of Fig. 4.2 has been rotated to make it left heavy. (b)
The result is inserted as the left-most leaf into a small tree with special IN and OUT
nodes marked by rectangles.

We first convert that tree to its positive form (as in [47]). This conversion process

traverses the tree top-down and applies the DeMorgan transformations: A-B����’,

(A���’�A’UB’, (A���’�A’UB’, and (A’)’�A, where X’ denotes the

complement of set X. The result (Figure 4.2 (b)) is a tree with the same structure and

(b)

(a)

 68

no difference operators. Note that some of its leaves (indicated by an apostrophe)

have been negated, i.e., replaced by their complements.

Then, we exploit the fact that both U and �� ���� ��""
������� ��%�-BUA and

A��-B���� ��� ������� ���� ����� ���� ��	��� ������ ��� ������ ����� ���� ��	��� �hild is a

higher sub-tree (i.e. has a superior maximum path length from its root to its leaves).

The switch is performed during a recursive traversal of the positive tree, switching

first the lower-level nodes and reporting their height to the parent node, before we

consider switching the parent node. The result is illustrated Figure 4.3 (a).

Finally, we insert the resulting tree, T, as the left-most leaf of a two level tree: (T

UOUT)�)*�� ��� ������ ��	
��� +#,� ���� ���� ��� ��������� ���� ���� ����� ���� ����	��

consecutive integer ID’s, P.primitiveID, to each leaf, P, in left-to-right order.

Now we are ready for the final phase, which fills in the Blist table BL. During that

phase, we initialize the content of BL to zero and, once more, traverse the rotated

positive version of the tree T recursively. At each leaf, P, we invoke the procedure

Match(P,BL) illustrated by the pseudo-code below.

Procedure Match(P,BL)

(a) p := P.primitiveID;

(a) IF BL[p].name -.�/0!*��������)���	��*�"��� 1�2#��"���

(c) BL[p].sign := P.sign;

(d) BL[p].primitiveReference := P.primitiveReference;

(e) M := P;

(f) WHILE M -3#������#����4�����'5�3�67�3#�������

(g) op := M.parent.operator;

(h) IF op = “�8�/0!*�� 1�2#��	��67�*5/ BL[p].sign;

(i) M := M.parent;

(j) WHILE (M-3#������#����4������59��3#������#���������7�����'5�3�67�3#�������

 69

(k) M := M.parent.rightChild;

(l) WHILE M.type -�����'5�3�67�3#����4�����

(m) m := M.primitiveID;

(n) IF BL[m].name = 0 THEN BL[m].name := lockLowestAvailbleIntegerName;

(o) BL[p].stamp := BL[m].name;

Procedure Match is based on the following observation. Consider a sub-tree S-

((P����4�%��3%!����� ��� /#�)�� ��� ���� ����������	� ���� ��:��� �� �	������ �� ����

discover that it is outside of primitive P, then we must classify it against primitive B,

which is the next one in the Blist representation. Therefore, marking the voxel with a

zero label will indicate to the next primitive, B, that it should process the voxel. If,

however, we discover that v ⊂ P, we can skip primitives (or sub-trees) B and C and

go directly to M, which is the left-most leaf of the sub-tree ((MUE)���#�

Consequently, we must write on the label of v the name used by M.

If M does not yet have a name, we use the procedure

lockLowestAvailbleIntegerName (line n) to obtain the lowest strictly positive integer

that is not yet in use as the name of any primitive coming after P in the Blist table.

Note that when later we reach M, that integer is released using procedure

releaseIntegerName (line b), so that it can be used as a name for another primitive

that comes after M. The same name is often used multiple times. This strategy helps

reduce the maximum number of bits needed for labels.

Given the current primitive, P, we locate its match, M, by moving up the tree (line

f), until we reach the left child of a node N1. We detect this situation because it is the

first time that M is the left child of its parent. We save the operator of N1 in the

variable: op. In the above example of the sub-tree S, the operator for N1 is U.

However, if it was �����������:�"������������
�-tree S-((P����C)U((MUE)�����

we would jump to M, only if v ⊄ P, or would continue to the next primitive, if v ⊂ P.

To distinguish between these two situations, we toggle the sign associated with P

(line h), when the variable op is “�8#

 70

� �

�

� �

� �

�	

��

 (a)

� �

�

� �

� �

�

�

�

 (b)

Figure 4.4 (a) blist conversion process of volume scene tree (b) converted tree

Then, we keep walking up the tree, until we reach a node, N2, which is the left-

child of a node, whose operator is different from op (line j). The desired “match”

leaf, M, is the left-most leaf in the sub-tree that is the right child of N2. We move to

 71

the right child first (line k), and then walk down the tree, always turning left (line l).

M is the leaf where this journey ends.

If the name attributed to the IN node was not 1, but x, we simply switch all uses of

x’es and 1’s in the names and stamps stored in BL, so as to follow the convention

that all voxels marked 1 at the end of the classification process are in.

Figure 4.4 (b) shows the modified tree to be converted to Blist representation.

In Figure 4.4 (a) the leaves of tree of are visited in the left to right order. We

number the leaves with increasing positive integers. For this tree there are seven

primitives (p 1:7). For each leaf, numbered p, we compute its match. Given the

current primitive, D (p=1 in the table), we locate its match, M, by moving up to the

tree until we reach the left child of node N1 (in this tree N1 is U). We detect this

situation because it is the first time that D is the left child of its parents and we save

the operator of N1 as op (in this case op=U). If N1.op=���������	�������������#��	�����

inverted. For the primitive D, since N1.op=U, in the table Blist.sign= +. Then we

keep walking up to the tree until we reach a node N2, that is the left-child node

whose operator is different from op (for the given primitive N2=��#� /��� ��������

match, leaf, M, is the left-most leaf in the subtree that is the right child of N2 (for the

given primitive match leaf is C). Then if M (C leaf) does not yet have a name, it

grabs the lowest available positive integer and use it as its name (in the table

C.name=1). We also store that name as the stamp, Blist[p].stamp of p (in the table for

primitive D, Blist[1].stamp=1). In (Figure 4.4 (b)) we showed the resulting names for

leaves and their stamp.

Blist represents a CSG expression in the form of a table, called BL, of primitive

entries. Here BL[p].primitive reference is the reference to the primitive’s description,

which includes its type, parameters, color. BL[p].sign is the binary sign value, when

set, the result of classifying a voxel against the primitive should be complemented.

BL[p].name is the name associated with the primitive. And BL[p].stamp contains the

name of the next primitive in the list that should classify a voxel inside the current

primitive, if its sign is positive, or outside, if its sign is negative.

 72

The Blist table resulting from the conversion process for the example of Figure 4.4

is given in Table 1.

Table 1 Blist table resulting from tree conversion process of Figure 4.4

P Bl[p].name BL[p].sign BL[p].Primitive Reference Bl[p].stamp

1 0 - D 1

2 0 - E 2

3 1 - C 1

4 2 + F 2

5 0 + G 2

6 1 + A 1

7 0 + B 1

4.3.3 Voxel classification using Blist

During set membership classification, a label is attached to each voxel and passed

to the successive primitives in the Blist. When the label matches the primitive’s

name, the voxel is classified against the primitive. If the result of this classification

matches the primitive’s sign, the name on the primitive’s stamp is put on the label—

if not, a zero name is put on the label of the voxel.

Table 2 Blist table after labels are evaluated

P Bl[p].

name

BL[p].

sign

BL[p].Primitive

 Reference

Bl[p].

stamp

Bl[p].

Class

Bl[p].

label

1 0 - D 1 0 1

2 0 - E 2 1 1

3 1 - C 1 0 1

4 2 + F 2 1 1

5 0 + G 2 0 1

6 1 + A 1 0 0

7 0 + B 1 1 1

 73

The following procedure describes how a single voxel, v, is classified against a

volumetric CSG tree represented by a Blist array BL. |P| defines the total number of

primitives in BL.

PROCEDURE ClassifyAgainstBlist(v,BL)

v.label := 0;

FOR p := 1 TO |P| DO

IF (v.label = 0) OR (v.label = BL[p].name)

THEN IF InPrimitive(BL[p].primitiveReference , v) = BL[p].sign

THEN v.label := BL[p].stamp

ELSE v.label := 0;

At the end of this process, if the label on the voxel is 1 the voxel is inside the CSG

solid. Otherwise, it is out.

To classify a set V of voxels, we propose a simple extension of the above

procedure:

PROCEDURE ClassifyvoxelsAgainstBlist(V,BL)

FOREACH voxel v in V DO v.label := 0;

FOR p := 1 TO |P| DO

FOREACH voxel v in V DO

IF (v.name = 0) OR (v.label = BL[p].name)

THEN IF InPrimitive(BL[p].primitiveReference , v) = BL[p].sign

THEN v.label = BL[p].stamp

ELSE v.label = 0;

 74

To illustrate how this classification works, consider for example a voxel whose

classification against the sequence of primitives, A,B,C,D,E,F,G, yields the

following position of bits: 0100110.

Originally the label is 0 (Table 2), the voxel is out of the first primitive D, and

since the primitive is inverted BL[1].sign= -1, we set the label to contain

BL[1].stamp which is 1. We skip the primitive 2, F, because its name does not match

the label. At primitive 3, we have match between the label and its name, the

classification of the voxel against the C yields zero and since the primitive is inverted

we write content of BL.stamp into the label which is again set to 1, we skip primitive

4 and 5, because their names are not 1. Then in primitive 6, the label matches its

name, but classification of the primitive does not match its sign so we put 0 to label.

At primitive 7, B, the label matches its name and since classification matches its sign

we put its stamp to the label which is again 1. So, at the end of this process, the label

has a value 1, which indicates the voxel is inside the CSG volume.

4.4 Volume Slice Generation

Voxelization algorithm introduced in this chapter is based on creation of volume

slices using depth information of front and back surfaces and used for voxelization of

line, polygon and solid objects.

The voxelization algorithm generates the volume representation for a given region

in a 3D scene. We define a region of interest, a regular 3D box with side faces

parallel to the axis planes of the viewing coordinate system, as seen in Figure 4.5.

The algorithm generates slices of the object using the 2D CSG processor, given in

Chapter 2, to form the final volume representation. Using this display algorithm both

convex and concave objects can be voxelized correctly. Also clipping capability of

display algorithm provides us to construct more complex volumes and objects using

simpler ones.

Using a slice-by-slice approach, the voxelization algorithm proceeds moving Z-

plane parallel to the projection plane with a constant step size in a front to back

order. The thin space between two adjacent Z-planes within the volume space is

called a slice. Since the Z planes (Z-plane(i)-Z-plane(i+1)) are used as clipping

planes, the clipping capability of the CSG processor provide that only the part of

 75

surfaces within planes are displayed. The resulting frame buffer image from the

display of this slice will be the one of the slice of the resulting volume.

Z

X

Y

Vo lu m e sp ace
O n e slic e

C lip p in g
p lan es

Figure 4.5 Volume space slicing

Since we have both front and back surfaces, depth/color values of the object the

processor used in the slice generation puts the color of the front clipping plane into

the object interior voxels, they can be displayed directly. Thus, there is no need for

extra computations to fill the interior voxels of solid objects like in [1,7,9]. In these

algorithms, to generate interior voxels, algorithms employ a frame buffer blending

function with a logical XOR operation to carry boundary information to the interior

of the solid object. And the parity rule used in solid voxelization may not be correct,

if vertex or some point on edge of surface primitive happens to project to the exact

center of a pixel.

4.5 Blist Evaluation of Volume Scene Tree

To evaluate volume scene tree, after generating a slice for each primitive in the

list, we evaluate Blist by updating a label, when its value matches the primitive’s

name. At the end, if the label on the voxel matches the IN’s name the voxel is inside

the volume scene otherwise, it is outside the volume. So, the Boolean expression of

the volume scene tree is evaluated directly, i.e. combining steps used with the

traditional recursive evaluation is not necessary.

 76

After filling Blist table (explained in the previous section), for the set membership

classification a label is attached to each voxel and is passed to the successive

primitive in the Blist. When the label matches the primitive’s name, the voxel is

classified against the primitive. If the result of this classification matches the

primitive’s sign, the name on the primitive’s stamp is put in the label. If not, 0 is put

in the label of the voxel. At the end of this process, if the label on the voxel matches

the IN’s name, the voxel is inside the volume scene tree, otherwise it is out. In this

representation, each voxel has a classification status with respect to all primitives. If

the voxel lies in several primitives that overlap, in this case the result will be order

dependent.

Blist Evaluation(VST_tree) {

 for(each slice S) {

 v.label=0; v.color=0;

 for(each primitive P in Blist table) {

 voxelize P into the slice S;

 If ((v.name=0) or (v.label=BL[p].name))

 If (Inprimitive(BL[p].primitive reference=BL[p].sign){

 v.label=BL[p].stamp;

 If (Inprimitive(BL[p].primitive reference && v.label=IN.name)

 v.color=BL[p].color; }

 else v.label=0;

 move to the next primitive P in Blist table; }

 77

 put v.color to the slice of volume memory;

 move to the next slice; } }

 78

CHAPTER 5

SOFTWARE SIMULATION and RESULTS

5.1 Introduction

In this chapter, the software simulation of the developed algorithms will be

presented. For the simulation, a program was written in the C programming

language. Also, the performance analysis is done, and voxelization and Blist

evaluation methods are compared with the previous algorithms.

5.2 Data Format for the 2D CSG Display Processor

The data of the object primitives used in the simulation program are stored in text

files. The following example contains the required data for drawing a cube on the

screen.

46.06 -1.0 1.18 2

1 0 0

38.28 1.0 0 1

0 0 0

-131.42 1.0 0 1

1 0 0

328.24 -1.0 -1.68 3

1 0 0

570.25 -1.0 -1.68 6

0 0 0

193.75 -1 1.18 4

0 0 0

0 0 0 1234

 79

The data set per plane, belonging to object primitive intended, consists of two

rows:

The first one comprises Z0, dZx, dZy, and the colour of the plane. The second one

is for external variables (H, Y, L) required to complete the definition of the plane. In

the example, the first defines a plane, such that its depth, at the origin of the display

window, is 46.06, the depth increment in X direction is –1.0, the depth increment in

Y direction is 1.18, and its colour is green (2 corresponds to green). The plane is a

front plane (H=1), is not perpendicular to the screen (Y=0), belongs to a convex

object (L=0). There are 6 sets in the display list as it defines a cube. The last line in

the list is a dummy entry since the program senses the end of the display list when

the colour value is greater than 1000.

5.2.1 Constructing an Image

Before beginning to draw an image, the user must be aware of the fact that the

size of the display window is 250x250, and the origin of the display space is at the

top left corner of the window. As an example to image construction, think of two

boxes, box2 being removed from box1, i.e. box1 is clipped by the complement of

box2.

The display data for box1 shown in Figure 5.1(a) is:

58.57 -1.0 1.41 5

1 0 0

42.42 1.0 0 6

0 0 0

-127.27 1.0 0 3

1 0 0

281.42 -1.0 -1.41 4

1 0 0

501.42 -1.0 -1.41 1

1 0 0

218.57 -1.0 1.41 2

 80

0 0 0

0 0 0 1234

and for box2 shown in Figure 5.1(b)is:

18.57 -1.0 1.41 2

1 0 0

14.14 1.0 0 5

0 0 0

-98.99 1.0 0 6

1 0 0

321.42 -1.0 -1.41 1

1 0 0

461.42 -1.0 -1.41 3

0 0 0

258.57 -1.0 1.41 5

0 0 0

0 0 0 1234

The mathematical expression of this is @(box1. 2box)=@(box1). 2box +

@(1box).box2. This means that the image is constructed by adding (second-stage

selection) the object firstly obtained by clipping box1 with the complement of box2

to the object then obtained by clipping the complement of box2 with box1. To

perform this operation user selects ‘Clipping’ option in the menu. Then the program

asks for the name of the files containing the clipping display data (in this case first

the filename of box1 and that of box2). Then enter the clipping function. The

clipping function for this case is A.!B (A stands for box1 and B stands for box2).

Then type the name of the file, which will be storing the final image. The resulting

picture of clipping box1 with the complement of box2 is shown in Figure 5.1 (e).

User can also display the resulted image step by step. The Figure 5.1 (c) shows box1,

which has been clipped by the complement of box2 (A.!B). And Figure 5.1 (d) shows

the complement of box2, which has been clipped by box1 (B’.A). With the

 81

Figure 5.1 Clipping box1 with the complement of box2.

 (c) (d)

 (e)

(a) (b)

 82

‘Clipping’ operation more complex images can be constructed using a desired

number of objects.

5.3 Volume Slice Generation Using the 2D CSG Processor

Using the 2D CSG processor it is possible to clip CSG objects with CSG volumes

and surfaces.

Using a slice-by-slice approach, the algorithm moves a Z-plane, parallel to the

projection plane with a constant step size, in a front-to-back order. Since the Z planes

(Z-plane(i)-Z-plane(i+1)) are used as clipping planes, the clipping facility of the CSG

processor will ensure that only the part of the volume within the planes is displayed.

The resulting frame buffer image from the display of this slice will be the one of the

slices of the resulting volume.

For example, in Figure 5.2, the expression of the CSG tree can be written as:

((Cube1)U(Cube2)) – ((Cylinder1)U(Cylinder2))

It becomes the following, after converting it into the postfix form:

(Cube1) (Cube2) U (Cylinder1) (Cylinder2) U –

 −

UU

C y lin d e r1C u b e 1 C y lin d e r2

Figure 5.2 A CSG tree example

For each object in the CSG tree the display processor generates slices of the

volume memory. For example, to generate volume slices of Cube1 the program uses

the following clipping function: Cube1.Vz. Here the Vz is a clipping volume

constituted between Z-plane(i)-Z-plane(i+1). The Z value changes between 1 and the

maximum depth value of the object and its up to user to determine the number of

slices. The clipping function, for each different Z values (that means for each

different volumes), displays the part of Cube1, which stays in volume Vz. Since the

processor puts the color of the front clipping plane into the object interior voxels, the

 83

Figure 5.3 (a) Voxelization result of a CSG object. (b), (c), (d), (e) Several slices in
the volume memory.

(a)

(b) (c)

(d) (e)

 84

color of each object can be displayed directly. There is no need to make extra

computations, like to fill in the interior voxels or shading of solid objects.

Using our program it is possible to voxelize the complete CSG tree using the tree

expression given above. In this case our clipping expression becomes:

((Cube1)U(Cube2)U – (Cylinder1)U(Cylinder2)).Vz

Figure 5.3 shows some slices of the given CSG tree.

5.3.1 Handling of Polygon and Line Primitives

Besides CSG objects, the system can handle objects made of polygons and lines.

The edges of each polygon making up the objects, is encoded in linear equations of

the form Ax+By+D=0, which is a perpendicular plane to the screen. These planes cut

another plane of the form Ax+By+Cz+D=0 so that resultant clipped plane is the

required N-sided polygon. Thus, to render an N-sided polygon N+1 planes are

required. The method is illustrated in Figure 5.4. Line primitives are constructed in

the same way as seen at the bottom of the figure.

��

��

��

��

��

��

��

��

��

��

��

� ��� ���	
� � �

� ��� ���	
� � �

� ������	
� � �

� ��� ���	
� � �

� ��� ���	
� � �

� ��� ���	
� � �

� ����

Figure 5.4 Polygon and line handling

After constructing line and polygon primitives the CSG processor can voxelize

them succesfully. Figure 5.5 shows voxelized polygon and line primitives. In (a) the

line thickness is more than one pixel and in (b) the line has one pixel thickness.

 85

Figure 5.5 Polygon, and line voxelization examples

5.4 Blist Evaluation

In Blist formulation of the volume scene tree each primitive represents a

volumetric dataset or a geometric model. The Blist method transforms the CSG tree

into a decision graph. A primitive classifies a candidate voxel and depending on the

result, forwards the voxel to one or another primitive.

Table 5.1 Blist table of volumetric scene tree in Figure 5.6.

The Blist evaluation program, firstly, transforms the tree into a positive form, then

rotates the tree by switching the left and right children at each node to make the tree

left heavy, and then inserts the resulting tree, T, as the left-most leaf of a two level

tree: (T U OUT)����������	���
������������	��������
��	� 	������	����������
��������

and finally, corresponding fields of a table BL[p] are filled. Figure 5.6 (a) shows the

P BL[p].name BL[p].sign BL[p].Primitive Reference (or color) Bl[p].stamp

1 0 + A 1

2 0 + B 1

3 0 - C 2

4 1 + D 2

5 0 - E 1

 86

volume scene tree. Here, cube1, cube2, cylinder1 and cylinder2 represent a

volumetric CSG object produced with the CSG processor and CT head is a

volumetric dataset obtained by computed tomography. Figure 5.6 (b) shows

conversion process and Figure 5.6 (c) shows the modified tree to be converted to

Blist representation.

Figure 5.7 shows the resulting image of the given volumetric tree, and Figure 5.8

shows another example whose volume data is constructed with the Blist evaluation

method.

�

� �

� � �

(a)

�

� �

� � �

 (b) (c)

Figure 5.6 (a) Volume scene tree

 (b) Blist conversion process of the volume scene tree

 (c) Converted tree

� �

� �
�

�
�

���

	

�

�

�

cube1:A
cube2: B
CT:C
cylinder1:D
cylinder2:E

 87

Figure 5.7 Blist evaluation result of the volumetric scene tree seen in Figure 5.6

 88

Figure 5.8 Different images whose volume data are obtained with the Blist
evaluation method.

Other ability of our voxelization algorithm is that concave objects with hidden

cavities can be voxelized accurately. The algorithm given in [79] was not suitable

for accurately voxelizing objects with hidden cavities which means if some area of

surface was not visible from any of the six faces then this area would not be properly

voxelized (see Chapter 1). In Figure 5.9 (b) there is an error in voxelization, Figure

((a) (b)

(c) (d)

 89

5.9 (a) shows a hollow cube, which is erroneously voxelized as a cube with a hole

(Figure 5.9 (b). The Figure 5.9 (c) shows the result of our voxelization algorithm

applied to the same kind of hollow cube. As it is seen, hidden cavities are kept after

voxelization.

Figure 5.9 (a) Image shows a hollow cube, which is erroneously voxelized as a cube
with a hole (b). (c) shows our algorithm result which is correctly voxelized as the
hollow cube.

Figure 5.10 shows other examples obtained with voxelization algorithm.

(a) (b)

(c)

 90

Figure 2

Figure 5.10 Other examples of voxelization algorithm.

5.5 Performance Analysis

One approach for the comparison of our algorithm with the other algorithms in the

literature is to compare the voxelization times. But comparing the execution times

on different machines with different system configurations is not very meaningful.

Nevertheless, theoretically we can compare our algorithm with the other methods.

 91

In the previous algorithms given in [26], [77], and [93] a slice is generated for

each object in the scene first, and then the blending functions are applied on the slice

in the order defined by the scene expression. From the point of view of time spent,

since the 2D slice stack operations occupy a large proportion in practice, the running

times of previous algorithms are longer than the Blist algorithm.

For a binary tree, if there are T operands, there will be T-1 operators. Then for the

slice sweeping algorithm [26], the number of required push operations is 2T-1 and

the number of required pop operations is 2(T-1), and the number of required

comparisons is 2T-1. For the Blist approach, on the other hand, only 3T comparisons

at most required, there is no need to use push and pop operations. For the volume

scene in Figure 5.6, this algorithm requires a comparison for each leaf to understand

whether the leaf is an operator or operand (9 comparisons). And to store the

intermediate result 17 pop, push operations are needed. But our algorithm requires

only 10 comparisons between the contents of the label and the name of the primitive

to update a label; there is no need for push and pop instructions since Blist can be

evaluated efficiently only updating a label.

This comparison is only for a small tree. If the tree becomes larger, the number of

operands will increase. This also increases the 2D slice stack operations (pop, push),

and comparison operations of the slice sweeping algorithm. So the difference

between the processing times of the two algorithms will also become larger.

From the point of view of occupied memory, our algorithm reduces the storage

requirement for each voxel to at most log(H+1), where H is height of the tree, bits,

since there are no slice stack operations. But in [26], since the algorithm uses slice

stack operations, M slice buffers are needed, and in [93], MN slice buffers are

needed, where M and N are the number of nodes in the VST and the number of slices

respectively.

In this study, production of each slice of an object is performed using the 2D pixel

processor. The display system is simulated WorkView and ORCAD software

packages.

 The performance of slice generation, in terms of number of slices produced per

second, can be defined by the following formula:

 92

Psp=

sN

RP
. (5.1)

Where,

Psp the performance in terms of slice/sec ,

PR performance of a 2D processor in terms of surface/sec,

Ns the number of surfaces that constitute the primitive,

The performance of a pixel-based system, in terms of the number of surfaces

rendered per second, can be defined by the following formula:

 �
�

� �
� �

=
⋅

 (5.2)

 Where,

 P, performance in terms of surfaces/sec,

 ND, Number of bits to store the depth (so the number of clock cycles required

to render a single surface),

 TC, clock period in terms of seconds.

Using this formula, the number of surfaces that can be rendered in real-time can

be calculated:

 �
�

� �
�

� �

=
⋅

 (5.3)

Where,

 PR, real-time performance,

 t, frame time for real-time display in sec. (1/30 to 1/70).

This is the real-time performance of an SX by SY pixel area of the display. Here, it

is assumed that there is a basic pixel processor available for every pixel on the

display area. As can be noticed, the real-time performance is practically dependent

 93

on the clock speed. And it is independent of the display size as long as there is a

single processor array dealing with the entire area of the display.

With a 32-bit depth length and a 10 MHz clock speed, the performance of such a

system would be:

 312500
10001.32

1
P

9
=

⋅
= − surfaces/second,

or, in real-time (t=1/50 sec.)

 6250
1010032

501
P

9R =
⋅⋅

= − surfaces/frame time.

0

30000

60000

90000

120000

150000

180000

210000

240000

0 2000 4000 6000 8000 10000

primitive surface number

sl
ic

e/
se

co
nd

Figure 5.11 The performance of slice generating

 With a 32-bit depth length, and a 10 MHz clock speed, for a 128x128 pixel

resolution screen, the maximum performance of the 2D processor would be

20,000,000 surface/sec, and the performance of slice generation, Psp, with respect to

different primitive surface numbers are given in Figure 5.11. As can be noticed, the

real-time performance is dependent on the number of the surfaces, which construct

the scene primitive.

 94

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this study, a z-buffer based voxelization algorithm using Boolean list

evaluation of volumetric CSG graph is presented.

The voxelization algorithm used in this study is implemented by a CSG surface

graphics rendering system that displays surfaces by a 2D scan conversion process.

When only a slice of an object is displayed, the result is essentially a slice of the

volume from a 3D scan conversion. And using the depth information of front and

back surfaces belonging to scene primitives our 2D CSG processor creates volume

slices successfully.

In Blist formulation of the volume scene tree each primitive represents a

volumetric dataset or a geometric model. The Blist method transforms the CSG tree

into a decision graph. The basic idea of our algorithm is to generate a slice for each

primitive in the list first, then to evaluate Blist by updating a label, when its value

matches the primitive’s name. At the end if the label on the voxel matches the IN’s

name the voxel is inside the volume scene otherwise, it is outside the volume. So, the

Boolean expression of the volume scene tree is evaluated directly.

The algorithms introduced in this thesis differ from the traditional ones as follows:

• In Blist formulation, a Boolean expression is represented as a list of primitives

instead of a tree, and this may be evaluated in a pipeline fashion. The

fundamental breakthrough provided here lies in the fact that the result of the

previous classifications does not require the list of values of cell-primitive

classification results, nor a stack of intermediate results of evaluating sub-

expressions. Instead, Blist passes from one primitive to the next a simple label,

which may be stored using at most log(H+1) bits, where H is the height of the

CSG tree [14].

 95

• The voxelization algorithm is based on the creation of volume slices using the

depth information of front and back surfaces belonging to scene primitives, and

can be used for the voxelization of surfaces and solids .

• Besides CSG objects, the system can voxelize objects made of polygons and

lines.

• Surface rendering effects, such as color and shading, can also be stored in the

volume representation without extra computation.

• Other ability of our voxelization algorithm is that concave objects with hidden

cavities can be voxelized accurately.

Future Works

As a future work, the following investigations and modifications can be considered:

• This algorithm can be realised in hardware.

• An error measure technique to quantify the quality of voxel representation of 3D

solid objects can be developed. Also to increase the quality of the voxel data

some filtering techniques to the resulting volume data can be applied.

96

REFERENCES

[1] Kaufman, A., Cohen, D., and Yagel, R. (1993). Volume Graphics.IEEE

Computer Graphics and Applications.13, pp.51-64.

[2] Kaufman, A. (2000). State-of-art in Volume Graphics. Volume Graphics,

Springer Verlag, pp.3-28.

[3] Kaufman, A. (1991). Volume Visualization. IEEE Computer Society Press

Tutorial, Los Alamitos, CA.

 [4] Rossignac, J. (1998). Blist: A Boolean list formulation of CSG trees. Technical

Report GIT-GVU-94-04.

[5] Çelebi, Ö., C., A Template-Based Discrete Ray Tracing System for Volume

Rendering. MSc. Thesis, Gaziantep University, 2003.

[6] Speray, D., and Kennon, S. (November 1990). Volume Probes: Interactive

Data Exploration on Arbitrary Grids. Computer Graphics, 24, 5, pp. 5-12.

[7] Neider, J., Davis, T. (1993). Open GL Programming Guide, Addison-Wesley

Press.

[8] Cohen-Or, D. and Kaufman, A. (November 1995). Fundamentals of Surface

Voxelization, CVGIP: Graphics Models and Image Processing, 56, 6, pp. 453-

461.

[9] Coquillart, S. (August 1990). Extended Free-Form Deformation: A Sculpturing

Tool for 3D Geometric Modeling. Computer Graphics, 24, 4, pp. 187-196.

[10] Avila, R., He, T., Hong, L., Kaufman, A., Pfister, H., Silva, C., Sobierajski, L.

and Wang, S. (October 1994). VolVis: A Diversified Volume Visualization

System. Visualization ’94 Proceedings, Washington, DC, pp. 31-38.

[11] Bakalash, R., Kaufman, A., Pacheco, R. and Pfister, H. (September 1992). An

Extended Volume Visualization System for Arbitrary Parallel Projection,

Proceedings of the 1992 Eurographics Workshop on Graphics Hardware,

Cambridge, UK,.

[12] Cohen, M. F., Chen, S. E., Wallace, J. R. and Greenberg, D. P. (1988). A

Progressive Refinement Approach to Fast Radiosity Image Generation.

97

Computer Graphics (Proc SIGGRAPH), pp. 75-84.

[13] Barillot, C., Gibaud, B., Luo, L. M. and Scarabin, I. M. (1985). 3D

Representation of Anatomic Structures From CT Examinations. Proceedings

SPIE, 602, pp. 307-314.

[14] Chen, L. S., Herman, G. T., Reynolds, R. A. and Udupa, J. K. (December

1985). Surface Shading in the Cuberille Environment. IEEE Computer

Graphics & Applications, 5, 12, pp. 33-43.

[15] Chiueh, T., He, T., Kaufman, A. and Pfister, H.. (January 1994). Compression

Domain Volume Rendering. Technical Report 94.01.04, Computer Science,

SUNY at Stony Brook,

[16] Danielsson, P. E., (1970). Incremental Curve Generation. IEEE Transactions

on Computers. C-19, pp. 783-793.

[17] Nadeau, D. (Oct. 2000). Volume Scene Graphs. In Proc. IEEE/ACM

Symposium on Volume Visualization, pp. 49-56.

[18] Requicha, A. A. G. (December 1980). Representation for Rigid Solids: Theory,

Methods and Systems. Computing Surveys, 12(4), pp. 437-464.

[19] Hoffmann, Christoph M. (1989). Geometric and Solid Modeling. Morgan

Kaufmann Publishers.

[20] Goldfeather, J., Molnar, J., Turk, S., and Fuchs, H. (1989). Near Real-time

CSG Rendering Using Tree Normalization and Geometric Pruning. IEEE

Computer Graphics and Applications, 9, pp.20-28.

[21] Wiegand, T. F. Interactive Rendering of CSG Models. (1996). Computer

Graphics Forum, 15(4), pp.249-261.

[22] Rappoport, A. and Spitz S. (August 1997). Interactive Boolean Operations for

Conceptual Design of 3-D Solids. Computer Graphics, SIGGRAPH 97, pp.

269-278 .

[23] Wang, S. and Kaufman, A. (September 1994). Volume-sampled 3D Modeling.

IEEE Computer Graphics and Applications, 14, pp.26-32.

[24] Fang, S. and Srinivasan, R. (1998). Volumetric CSG -- A Model-Based

98

Volume Visualization Approach. In Proc. Sixth International Conference in

Central Europe on Computer Graphics and Visualization, pp. 88-95.

[25] Chen, M., Tucker, J.V., and Leu, A. (March 2000). Constructive

Representations of Volumetric Environments. Volume Graphics, Springer-

Verlag. pp. 97-117.

[26] Fang, S. and Chen, H. (March 2000). Hardware Accelerated Voxelization. In

Volume Graphics, Springer-Verlag. Chapter 20, pp. 301-315.

[27] Okino, N., et al. (1978). TIPS-l. Institute of Precision Engineering, Hokkaido

University, Sapporo, Japan.

[28] Hillyard, R. C. (Mar.1982). The BUILD group of solid modellers. IEEE

Comput. Graph. Appl. 2, 2, pp. 43-52.

[29] Wolfe, R. N., Wesley, M. A., Kyle, J. C., Gracer, F., and Fitzgerald. (May

1987). Solid modelling for production design. IBM J. Res. Den 31, 3, pp. 277-

295.

[30] Rossignac, J. R., And Reqwicha, A. A. G. (Aug. 1986). Offsetting operations

in solid modelling. Comput. Aided Geom. Des. 3,2, pp. 129-148.

[31] Rossignac, J. R., And Reqwiicha, A. A. G. (Sept. 1986). Depth buffering

display techniques for constructive solid geometry. IEEE Cornput. Graph.

Appl. 6,9, pp. 29-39.

[32] Shirma, Y., Okino, N., Aped Kakazu, Y. (1982). Research on 3-D geometric

modelling by sweep primitives. In Proceedings of CAD ‘82, pp. 671-680.

[33] Van Wijk, J. J. (1984). Ray tracing objects defined by sweeping a sphere. In

Proceedings of Eurographics ’84. Elseviers Science Publishers, Amsterdam,

pp. 73-82.

[34] Rossignac, J. R. (Sept. 1986). Constraints in constructive solid geometry. In

Proceedings of the 1986 Workshop on Interactive 30 Graphics (Chapel Hill,

N.C., October 23-24). ACM Press, New York, 1986, pp. 93-110.

[35] Anderson, D. C. (May 1986). Closing the gap: A workstation-mainframe

connection. Comput. Mech. Eng. 4,6 pp. 16-24.

99

[36] Peterson, D. P. (Jan.-Feb. 1986). Boundary and constructive solid geometry

mapping: A focus on 2-D issues. Comput. Aided Des. 18, pp. 1 3-14.

[37] Vossler, D. L. (Aug. 1985). Sweep-to-CSG conversion using pattern

recognition techniques. IEEE Comput. Graph. Appl. 5,8, pp. 61-68.

[38] Cameron, S. A. (1985). A study of the clash detection problem in robotics. In

Proceedings of the International Conference on Robotics and Automation (St.

Louis, Mar.). IEEE, pp. 488-493.

[39] Rossignac, J. R., And O’connor, M. A. Selective geometric complexes:

Representations and algorithms for processing and combining mixed

dimensional geometric objects. IBM Research Division, T. J. Watson Research

Center, Yorktown Heights, N.Y.

[40] Tilove, R. B. (Oct. 1981). Exploiting spatial and structural locality in

geometric modelling. Tech. Memo. 38, Production Automation Project,

University of Rochester, Rochester, N.

 [41] Tilove, R. B. (July 1984). A null-object detection algorithm for constructive

solid geometry. Commun. ACM 27,7, pp. 684-694.

[42] Cameron, S. A. (1989). Efficient intersection tests for objects defined

constructively. Int. J. Rob. Res. Volume 8,1, pp.3-25.

[43] Woodwark, J. R. (May 1988). Eliminating redundant primitives from set-

theoretic solid models by a consideration of constituents. IEEE Comput.

Graph. Appl. 8,3, pp. 38-47.

[44] Tilove, R. B. (Oct. 1980). Set membership classification: A unified approach to

geometric intersection problems. IEEE Trans. Comput. C-29,10, pp. 874-883.

[45] Tilove, R. B., Requicha, Pl. A. G., And Hopkins, M. R. (May 1984). Efficient

editing of solid models by exploiting structural and spatial locality. Tech.

Memo. 46, Production Automation Project, Univ.of Rochester, Rochester, N.Y.

 [46] Requicha, A. A. G., And Voelcker, H. B. (Jan. 1985). Boolean operations in

solid modelling: Boundary evaluation and merging algorithms. In Proc. IEEE

73, 1, pp. 30-44.

 [47] Rossignac J., Voelcker H. (1989). Active Zones in CSG for Accelerating

100

Boundary Evaluation, Redundacy Elimination, Interference Detection and

Shading Algorithms. ACM Transactions on Graphics, Vol.8, p.51-87.

[48] Rudeanu, S. (1974). Boolean Functions and Equutions. North-Holland,

Amsterdam.

[49] Kaufman A. (1990). Introduction to Volume Graphics. State University of

NewYork at Stony Brook.

[50] Kaufman, A. (1991). Introduction to Volume Synthesis, Scientific Visualization

of Physical Phenomena (Proceedings of CG International '91), Springer-

Verlag, pp. 27-35.

[51] Kaufman, A. (July 1987). Efficient Algorithms for 3D Scan-conversion of

Parametric Curves, Surfaces, and Volumes’’. Computer Graphics, 21, 4, pp.

171-179.

[52] Chen, L.-S., Herman, G.T., Reynolds, R.A., and Udupa, J.K.(December 1985).

Surface shading in the cuberille environment. IEEE Computer Graphics and

Applications, 5(12) pp.33–43.

[53] Yagel, R., Cohen, D., and Kaufman, A. (June 1992). Normal estimation in 3D

discrete space. The Visual Computer, 8(5–6), pp.278–291.

[54] Sramek, M. (1998). Visualization of Volumetric Data by Ray Tracing. Austrian

Computer Society, Austria,. ISBN: 3-85403, pp. 112-114.

[55] Yagel, R. Cohen, D. and Kaufman, A. (September 1992). Discrete ray tracing.

IEEE Computer Graphics and Applications, 12(5), pp. 19–28.

[56] Hohne, K.H.and Bernstein, R. (March 1986). Shading 3D-images from CT

using gray-level gradients. IEEE Transactions on Medical Imaging, MI-5(1),

pp. 45–47.

[57] Magnusson, M., Lenz, R. and Danielsson, P.E. (1990). Evaluation of methods

for shaded surface display of CTvolumes. Computerized Medical Imaging and

Graphics, 15(4), pp. 247–256.

[58] Tiede, U., Hohne, K.H., Bomans, M., Pommert, A., Riemer, M. and

Wiebecke,G. (1990). Investigation of medical 3D-rendering algorithms. IEEE

101

Computer Graphics and Applications, 10(3), pp. 41–53.

[59] Wang, S.W. and Kaufman, A. (October 1993). Volume sampled voxelization

of geometric primitives. In Visualization ’93, San Jose, CA, pp. 78–84.

[60] Wang, S.W and Kaufman, A. (September 1994). Volume-sampled

3DModelling. IEEE Computer Graphics and Applications, 14(5), pp. 26–32.

[61] Oomes, S., Snoeren, P., and Dijkstra, T. (1997). Transforming polygons into

voxels. In Scale-Space Theory in Computer Vision, Lecture Notes in Computer

Science, Springer-Verlag, Vol. 1252.

[62] Sramek, M. (1994). Gray level voxelization: A tool for simultaneous rendering

of scanned and analytical data. In Proceedings of the 10th Spring School on

Computer Graphics and its Applications, pp. 159–168.

[63] Sramek, M. and Kaufman, A. (1998). Object voxelization by filtering. In IEEE

Symposium on Volume Visualization, pp.111–118.

[64] Sramek, M., and Kaufman, A. (1999). Alias-free voxelization of geometric

objects. IEEE Transactions on Visualization and Computer Graphics, (3)5,

pp.251-266.

 [65] Payne, B.A., and Toga, A.W. (January 1992). Distance field manipulation of

surface models. IEEE Computer Graphics and Applications, 12(1), pp. 65–71.

[66] Jones, M.W. (December 1996). The production of volume data from

triangularmeshes using voxelisation. ComputerGraphics Forum, 15(5), pp.

311–318.

[67] Gibson, S.F.F. (1998). Using distance maps for accurate surface reconstruction

in sampled volumes. In IEEE Symposium on Volume Visualization, pp. 23–30.

[68] Breen, D.E., Mauch, S., and Whitaker, R.T. (1998). 3D scan conversion of

CSG models into distance volume. In IEEE Symposium on Volume

Visualization, pp. 7–14.

[69] Kaufman, A. and Shimony, E. (Oct. 1986). 3D Scan-conversion Algorithms for

Voxelbased Graphics. In Proceedings of 1986 Workshop on Interactive 3D

Graphics, pp. 45-75.

102

[70] Kaufman, A. (1988). Efficient Algorithms for Scan-converting 3D Polygons.

Computers and Graphics, 12(2), pp. 213-219.

[71] Cohen, D. and Kaufman, A. (1991). Scan-conversion Algorithms for Linear

and Quadratic Objects. In A. Kaufman, editor, Volume Visualization, pp. 280-

301.

[72] Cohen, D. and Kaufman, A. (1997). 3D Line Voxelization and Connectivity

Control. IEEE Computer Graphics and Applications. 17(6), pp. 80-87.

 [73] Huang, J., Yagel, R., Filippov, V.,and Kurzion, Y. (1998). An Accurate

Method for Voxelizing Polygon Meshes. In Porc. IEEE/ACM Symposium on

Volume Visualization, pp. 119-126.

[74] Lee, Y.T. and Requicha, A.A.G. (1992). Algorithms for Computing the

Volume and Other Integral Properties of Solids. Communications of the ACM,

25(9), pp. 635-650.

[75] Shareef, N., and Yagel, R. (May 1995). Rapid Previewing Via Volume-based

Solid Modeling. Solid Modeling’95 , pp. 281-292.

[76] Breen, D.E., Mauch, S., and Whitaker, R.T. (1998). 3D Scan Conversion of

CSG Models into Distance Volumes. In Porc. IEEE/ACM Symposium on

Volume Visualization, pp. 7-14.

[77] Fang, S., and Liao, D. (Oct. 2000). Fast CSG Voxelization by Frame Buffer

Pixel Mapping. In Porc. IEEE/ACM Symposium on Volume Visualization, pp.

43-48.

[78] Prakash, C.E., and Manohar, S. (1995). Volume rendering of unstructured

grids-a voxelization approach. Computer Graphics, 19(5), pp. 711-726.

[79] Karabassi, E. A, Papaioannou, G., Theoharis, T. (1999). A fast depth-buffer

based voxelization algorithm, Journal of Graphics Tools, ACM, Vol.4, No.4,

pp. 5-10.

[80] Epstein, D., Jansen, F., Rossignac, J. (November 1989). Z-Buffer Rendering

From CSG: The Trickle Algorithm. IBM Research Report Rc 15182.

[81] Çevik, U., And Thomas, A.L. (1994). Design & Implementation Of An

Intelligent Frame Buffer In A Traditional Display Pipeline System. Melecon

103

94, 7th Mediterranean Electrotechnical Conference, Antalya, Turkey, pp. 347-

350.

[82] Çevik, U. (June 1996). Design Of An FPGA Based Parallel Architecture

Processor Displaying CSG Volumes And Surfaces. Phd. Thesis. University Of

Sussex, Brighton.

[83] Su, C.J., Lin, F.H., (July 1989). A New Collision Detection Method For CSG-

Represented Objects in Virtual Manufacturing. Computers in Industry, 40 (1),

pp. 79-88.

 [84] Stewart, N., Leach, G., John, S. (2000). A Z-Buffer Rendering Algorithm For

Convex Objects. Proceedings Of The 8-���������	�
��	�������������������	��

Europe On Computer Graphics, Visualisation AND Interactive Digital Media'

2000-WSCG, Volume II, pp. 369-372.

 [85] Koç, S. (June 1999). Development Of An Algorithm For The Elimination Of

Surface� ����
��� ��� ���� ��	��� ��� �
����� ����	��� �����	�� ��� �
���	�
���

Constructive Solid Geometry (CSG) Volumes And Surfaces, M.Sc. Thesis.

[86] Ming, C. L., and Canny, J.F. (September 1992). Efficient Collision Detection

for Animation, Third Eurographics Workshop on Animation and Simulation,

Cambridge, United Kingdom.

[87] Michael, K., and Poston, T., and Bricken, W. (August 1994). Efficient Virtual

Collision Detection for Multiple Users in Large Virtual Spaces, Virtual Reality

Software and Technology Proceedings of VRST’94, pp. 271-286.

[88] Bez, H.E., and Bricis, A.M., and Ascough, J. (1996). A collision Detection

method with applications in CAD systems for the Apparel Industry, Computer-

aided Design, 28(1), pp.27-32.

[89] He, T., and Kaufman, A. (October 2000). Collision Detection for Volumetric

Object Visualization, Proc. IEEE Visualization’97.

[90] Boyles, M., and Fang, S. (2000). Slicing based Volumetric Collision Detection,

ACM Journal of Graphics Tools, pp.23-32.

[91] Gagvani, N., and Silver, D. (Oct. 2000). Shape based Volumetric Collision

detection. In proc IEEE/ACM Symposium on Volume Visualization, pp.57-61.

104

[92] Lin, M.C., and Manocha, D. (1995). Fast Interference Detection between

Geometric Models. The Visual Computer, 11(10), pp. 542-551.

[93] Duoduo, L., Fang, S. (June 2002). Fast Volumetric CSG Modelling Using

Standart Graphics System. 7th ACM symposium on Solid modeling and

Applications, Saarbrucken, Germany, pp.204-211.

[94] Preparata, F.P. and Shamos, M.I. (1985). Computational Geometry. Springer-

Verlag, New York.

[95] Koç, S., Çevik U. (Jun 2004). A New Approach For The Voxelization Of

Volumetric CSG Graphs, Computers & Electrical Engineering 30 (4), pp. 245-

255.

[96] Requicha, A. A. G., And Tilove, R. B. (June 1978). Mathematical foundation

of constructive solid geometry: General topology of closed regular sets. Tech.

Memo. 27a, Production Automation Project, Univ. of Rochester, Rochester,

N.Y.

[97] Fuchs, H., Pulton, J. (1982). Developing Pixel-Planes, A Smart Memory-Based

Raster Graphics System, Proc. 82 Conf. On Advanced VLSI, M.I.T.

 105

VITA

Sema KOÇ received her BSc and Msc degrees in Electrical and Electronic Engineering from

the University of Gaziantep, Turkey, in 1996 and 1999, respectively. She has worked on her

doctoral research in volume graphics. She has the following publications:

Journals

1. Koç, S., Çevik, U. A New Approach For The Voxelization Of Volumetric CSG

Graphs, Computers & Electrical Engineering 30 (4), Jun 2004, pp. 245-255.

2. Erçelebi, E., Koç, S. Lifting-Based Wavelet Domain Adaptive Wiener Filter For

Image Enhancement. IEE Proc. Vision, Image & Signal

Processing (Accepted for publication).

International Conferences

1. Koç, S., and Çevik, U. Development of an Algorithm for the Elimination

of Surface Sorting in the Stage of Hidden Surface Removal in Displaying

Constructive Solid Geometry (CSG) Volumes and Surfaces. CAR&FOF' 98

14th International Conference on CAD/CAM, Robotics and Factories of the

Future, Coimbatore, India. 1998., Conf. Proc. v. 1, pp. 37-43.

2. Koç, S., and Çevik, U., Volumetric CSG Graph and Its Voxelization. Eleco03

International Conferences on Electrical and Electronics Engineering, Bursa 2003.

3. Koç, S., and Çevik, U., A CSG Clipping Algortihm. JCI Proceedings of Intl. XII.

Turkish Symposium on Artificial Intelligence and Neural Networks, Vol.1, No.1, July

2003, pp.359-361.

4. Koç, S., and Çevik, U. A Z-������� ��	�
������ ���������� ����� ��������������

��� !!"�����#������$%����

National Conferences

1. Koç, S., and Çevik, U. &'� �������� ����������� 	(�)��)� �������������� �'��� ����

��*��������+�*����� ,��-���--El�-�����-� �����������+)���*����.�� /�� 0������1��������

1999, Gaziantep, pp.13-16.

2. Koç, S., and Çevik, U., 1��2�-��2��1��-�2������������	(�)��)��������$'���1�����

������������� ,����� !! � ,��-���--,��-�����-� ����������� +)���*����.�� ����%�����

3��4����� !! ��ursa, pp. 295-297.

 106

3. 1�'�� ���� ��*� #�2�-�� 0��� 5�������� 	(�)��)� 	����.����� ������ 	(��������� ,��-���-��

,��-�����-�2�������������+)���*����.��6!��0������1���������,��)�� !!7�$8&��$���������

pp.496-498.

���������	
���

Sema Koç. Development of an Algorithm for the Elimination of Surface Sorting in the Stage

of Hidden Surface Removal in Displaying Constructive Solid Geometry Volumes and

Surfaces. A Master’s Thesis, June 1999.

