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ABSTRACT 

PLANE WAVE INCIDENCE TO A CYLINDRICAL FREQUENCY 

SELECTIVE SURFACE COMPRISING OF METAL STRIPS 
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PhD. in Electrical and Electronics Engineering Department 

Supervisor: Prof. Dr. Tuncay EGE 

May 2005, 128 pages 

 

Scatterings from circular cylindrical structures comprising of free-standing or 

dielectric shell backed metal strips are considered. When formulating the problem, 

the scattered waves are written as infinite sums of cylindrical Floquet modes with 

unknown weighting coefficients. The weighting coefficients are then determined by 

using boundary conditions appropriate for the problem. Numerical results are 

obtained by applying the Moment method (MM) techniques whereby entire domain 

sinusoidal basis functions are used. The infinite sums appearing in MM solutions are 

found to be slowly convergent. When solving the problem by a MM technique, the 

infinite sums should be handled properly in order to circumvent slow convergence 

difficulties. One approach in such a case is to use sub-domain basis functions in 

conjunction with a conjugate gradient fast Fourier transform method. Another 

approach is to use entire-domain basis functions together with a convergence 

acceleration method. Here, we follow the second approach and give an appropriate 

convergence acceleration method. It is shown that the resulting infinite sums of the 

MM solutions can be very efficiently computed by employing a new convergence 

acceleration technique based on Kummer’s method. 
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Results reveal that the thickness of the dielectric shell strongly affects the 

scattering properties of conducting strips. Moreover, resonances are detected at some 

specific frequencies where the structure becomes almost invisible to an observer. 

Such properties of cylindrical structures may be very useful in radar applications or 

antenna applications. 

Keywords: Cylindrical Frequency Selective Surface, Cylindrical Structures, 

Cylindrical Floquet Modes, Convergence Acceleration, Kummer’s Method, 

Scattering, Radar Cross Section. 
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ÖZ 

DÜZLEMSEL DALGANIN METAL ŞERİTLERDEN OLUŞMUŞ BİR 

SİLİNDİRİK FREKANS SEÇİCİ YÜZEYDEN SAÇILIMI  

UZER, Ali 

Doktora Tezi,.Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Tuncay EGE 

Mayıs 2005, 128 sayfa 

Boşlukta duran yada dielektrik bir madde üzerine dizilmiş metal şeritlerden saçılan 

elektromanyetik dalgalar incelendi. Formüllerde saçılan dalgalar Floquet modlarının 

bilinmeyen katsayılı sonsuz toplamları cinsinden yazıldı. Daha sonra bu bilinmeyen 

katsayılar sınır şartları uygulanarak bulundu. Moment metot çözümlerinde baz 

fonksiyonları olarak tüm bölge sinüs fonksiyonları kullanıldı ve sayısal çözümler 

elde edildi. Moment metot matrislerinin hesaplamaları yapılırken sonsuz toplamların 

yavaş yakınsadığı görüldü ve yakınsama hızlarının arttırılması gerektiği anlaşıldı. Bu 

tür durumlarda sorunu gidermenin bir yolu baz fonksiyonları olarak alt bölge 

fonksiyonları kullanmaktır. Diğer bir yol ise baz fonksiyonları olarak tüm bölge 

fonksiyonları kullandıktan sonra sonsuz toplamların yakınsama hızlarını arttıracak 

bir hız arttırıcı metot kullanmaktır. Çalışmada ikinci yol seçilerek uygun bir 

yakınsama hızlandırıcı metot geliştirildi. Kummer metoduna dayalı olan yeni 

hızlandırıcı metot sayesinde Moment metot çözümlerinde ortaya çıkan sonsuz 

toplamlar rahatça hesaplanabilmektedir. 

Elde ettiğimiz sonuçlarda dielektrik katman kalınlığının metal şeritlerden 

elektromanyetik dala saçılma özelliklerini çok etkilediği görüldü. Ayrıca katman 

kalınlıklarının sebep olduğu bazı rezonans frekansları tespit edildi ki bu frekanslarda 

silindirik yapı neredeyse hiç saçılma yapmamaktadır. Böyle bir özellik radar yada 

anten uygulamalarında çok kullanışlı olabilir.  
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1. INTRODUCTION 

Measurements demonstrate that periodic surfaces have band-pass and band-stop 

characteristics when illuminated by an incident electromagnetic wave of variable 

frequency. There are many important structures whose characteristics are periodic in 

space. Examples are three-dimensional lattice structures for crystals, artificial 

dielectrics consisting of periodically placed conducting pieces, and waveguides with 

periodic loadings. The waves along these structures exhibit a unique frequency 

dependence often characterized as stop-bands and pass-bands [1, 2]. 

Basically a Frequency Selective Surface may be of two types, either in the form of 

periodically perforated screens (apertures), or in the form of an array of conducting 

patches printed on a dielectric substrate. At a specific frequency, the surface exhibits 

a total transmission for the screen problem, or a total reflection for the dual case. 

Such specific frequencies are called as “resonant frequencies”. Resonant frequencies 

depend on the shape of the elements (patches/slots). 

1.1. Typical Applications of Frequency Selective Surfaces 

Typical applications are many and varied. They range over much of the 

electromagnetic spectrum. For example in the microwave region the frequency 

selective properties of periodic screens are exploited to make more efficient use of 

reflector antennas. As shown in Figure 1.1, a frequency selective surface may be 

placed between two feeds, which are radiating at two different frequencies. The 

resonant frequency of the surface is designed such that the surface becomes totally 

reflective over the operating band of feed 1, but becomes transparent over the 

operating band of feed 2. Hence with this configuration, two independent feeds may 

share a single reflector simultaneously [3]. 

A next example for the exploitation of frequency selective properties of periodic 

screens in the microwave region is the applications in radome designs. The main 

function of a radome is to protect an antenna from environmental conditions such as 
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rain and snow. Although a radome covers the antenna, it must be transparent at the 

antenna’s operation frequencies. The screens of the radome are designed such that it 

gives band-pass transmission characteristics at the operating frequencies of the 

antenna. At the out-of-band frequencies, the radome becomes totally reflecting [2]. 

In the far-infrared region, periodic screens are used as polarizes, beam splitters, as 

well as mirrors for improving the pumping efficiency in molecular lasers [2]. A 

polarizer can be constructed from a diffraction grating such that the fields polarized 

parallel to the grating are reflected, while those with orthogonal polarizations are 

transmitted.  

 

Figure 1.1. An application of frequency selective surfaces. Two feeding antennas are 
placed at front and back focus of the sub-reflector. 

 

Another application in the far-infrared region is infrared sensors where the 

frequency selective property of a frequency selective surface is used to absorb the 

desired frequencies in the substrate material backing the screen, while rejecting the 

out-of-band frequencies [2]. In the near-infrared and visible portions of the 

electromagnetic spectrum, periodic screens are proposed as solar selective surfaces to 

aid in the collection of solar energy. A screen is designed such that it is essentially 

transparent in the frequency band where the solar cells are most efficient and is 

reflecting at frequencies out of this band [2]. 

Parabolic 
reflector 

FSS 
Sub-reflector 

Feed 1 

Feed 2 
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1.2. Previous Works for Planar Frequency Selective Surfaces 

In 1961, a problem of scattering from a conducting screen perforated periodically 

with apertures is analyzed by Keiburt and Ishimaru [4]. Later on, the scattering from 

two-dimensional periodic array of rectangular plates is investigated by Ott, 

Kouyoumjian, and Peters [5]. The given solution is restricted to the case of narrow 

width plates arranged in a rectangular lattice and the incident field is assumed to be a 

normally incident plane wave. In 1970, a general formulation technique for two-

dimensional periodic arrays is presented by C. C. Chen [6]. The field distributions 

are expanded into a set of Floquet Mode functions, and an integral equation is 

obtained. Then the equation is solved for the unknown induced currents by using a 

Moment Method (MM). 

In 1975, J. P. Montgomery [7] give solutions to unsymmetrical problems of 

scattering of plane waves by the infinite periodic arrays of thin conductors. Later on, 

Tsao and Mittra [8] in 1982 present an iterative procedure in spectral domain to solve 

simultaneously for the current distribution and the aperture field of a frequency 

selective surface. They derive a differential equation, based on the Floquet Mode 

expansion and the electromagnetic boundary conditions. They also presented a full 

wave analysis of both the cross shaped and Jerusalem type elements. 

1.3. Previous Works for Cylindrical Frequency Selective Surfaces 

In [9] Floquet Theorem is applied to a cylindrical phased array antenna problem 

consisting of periodically arranged axial dipoles, which are excited by a matching 

network at their centers. The far fields radiated from a dipole are determined by 

employing cylindrical Floquet modes. Later on, Tom Cwik [10] considers circular 

cylindrical structures covered periodically with metallic patches. He presents 

formulations in terms of the cylindrical Floquet modes for calculating the induced 

currents on the surfaces of free-standing strips. The numerical results are given for 

infinitely long strips. References [11, 12] analyze dispersion characteristics of 

circular waveguides made up of free-standing conducting strips or patches. In [13, 

14] plane wave scattering from square patches is considered. When obtaining the 

numerical the MM solutions, the references [10-14] use sub-domain basis functions 
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and a conjugate gradient fast Fourier transform method in order to circumvent the 

slow convergence difficulties of infinite sums. 

A. Freni [15] considers scattering of plane waves from circular cylinders loaded 

periodically with groups of metallic rings along the longitudinal axes. Also, Ahmed 

A. Kishk and Per-Simon Kildal [16] describe asymptotic boundary conditions that 

are intended to be used to model grids of metal strips. But as stated by them, their 

methods are restricted because the given boundary conditions lose accuracy if the 

period of the grid is not small in terms of the wavelength.  

The reference [17] analyzes a cylindrical wave incidence to a cylindrical 

frequency selective surface comprising of metal strips and determine the reflection 

and transmission coefficients of the problem. The results show that the reflection and 

transmission coefficients are dependent on the problem geometry as in the planar 

frequency selective surfaces. The MM solutions of periodic cylindrical structures 

generally yield slowly convergent infinite sums. In [18], a convergence acceleration 

technique is given for the MM solutions of periodic cylindrical structures. In [19] the 

radiated far fields due to a current filament located inside a periodic cylindrical 

structure are determined. Later on, [20] computes the radar cross sections (RCS) of 

conducting circular cylinders perforated periodically with axial slots. More recently, 

the convergence acceleration method in [18] is further improved and generalized 

[21]. 

1.4. The Methods Utilized in this Study 

A periodic excitation to a linear system produces a response that is also periodic. As 

a consequence of this, Floquet theorem recognizes that the responses may be 

represented by an infinite sum of periodic functions, which are called as Floquet 

modes [10]. In Chapter 2, Floquet theorem will be described and the relevant modes 

for periodic cylindrical structures are derived.  

Periodic cylindrical structures comprising of free-standing conducting patches are 

considered in the first part of Chapter 3. The scattered waves of the problem are 

expressed in terms of the surface currents by using the Floquet Theorem. The 

currents are then determined from the exciting wave and from the boundary 
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conditions of the problem. Also, the dual problem where the conducting circular 

cylinders perforated periodically with axial slots is analyzed similarly in the second 

part of Chapter 3. In the second problem, the Equivalence Principle is utilized to 

replace slot fields with equivalent magnetic currents. Later on, boundary conditions 

relevant to the problem are used to determine the scattered waves in terms of the 

exciting wave. The numerical results in all problems are obtained by applying the 

MM solution techniques. In MM solutions, the surface currents or the slot fields of 

the problems mentioned above are expanded into entire domain sinusoidal basis 

functions. A convergence acceleration method is given for efficient and accurate 

computations of the infinite sums in MM solutions. In appendices A and B, the 

acceleration method is explained in detail. 

In Chapter 4, dielectric shell structures covered periodically with conducting 

strips are analyzed. Problem is formulated by writing the scattered waves as infinite 

sums of the Floquet modes. The scattered waves involve transverse magnetic (TM) 

and transverse electric (TE) modes simultaneously. The unknown surface currents of 

the problem are related to the incident wave and the resulting equations are solved by 

MM techniques. It is important to note that the convergence acceleration methods of 

Chapter 3 become applicable if a Kummer’s acceleration method is exploited in the 

MM solution. This point is fully described in appendix C.  

The numerical results for all of the problems considered in this thesis are given in 

Chapter 5. RCS and the field couplings into the cylindrical structures are computed 

against the problem parameters such as the strip/slot lengths, the number of 

strips/slots, the dielectric shell thicknesses, etc. Also our results are compared with 

those available in the literature [10]. 



 6

2. FLOQUET THEOREM FOR PERIODIC CYLINDRICAL 

STRUCTURES 

In this chapter we concentrate on cylindrical wave solutions of periodic cylindrical 

structures. When solving a periodic problem in the cylindrical coordinate system, 

scattered fields are written as infinite sums of cylindrical waves, which are called as 

cylindrical Floquet modes. Starting from the Helmhotz wave equation, the Floquet 

modes are derived for a cylindrical wave excitation case in the following section. If 

the incident wave is not cylindrical –as is a plane wave- it can be represented by 

cylindrical waves as described in Section 2.2. Also in Section 2.3, the cylindrical 

waves radiated from a line current located at the origin are given.  

2.1. Derivation of the Floquet modes 

Consider a periodic cylindrical structure as shown in Figure 2.1, which may consist 

of periodically located elements. The periodicities of the structure are denoted by Tφ 

and Tz in φ and z directions, respectively. If the structure is excited by a cylindrical 

wave, it can be shown that the scattered waves should also be periodic. Hence, the 

scattered waves may be represented as infinite sums of periodic functions, which are 

known as the cylindrical Floquet modes [10]. To obtain the cylindrical Floquet 

modes, we start with a scalar Helmhotz wave equation in a source free region  

 0),,()( 22 =+∇ zAk p φρ , (2.1) 

where Ap, denotes a vector potential and p indicates its polarization (the polarization 

may be transverse magnetic (TM) or transverse electric (TE)). Here k denotes the 

wave number of the medium, μεω=k . Assume the structure is excited by a 

cylindrical wave, which has a phase factor zjjv ee 00 βφ −− . Since the scattered waves 

should be periodic in the cylindrical coordinate variables φ and z, the solutions to the 

wave equation should satisfy the periodicity requirements: 
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Figure 2.1. (a) A cylindrical structure with two-dimensional periodicity. (b) A unit 
cell of the problem at φ=0. N denotes the number of periodic cells in φ direction. 

 

 zTj
pzp ezATzA 0),,(),,( βφρφρ −=+ , (2.2) 

 φφρφρ φ
Tjv

pp ezAzTA 0),,(),,( −=+ . (2.3) 

In the cylindrical coordinate system, the wave equation in (2.1) is expressed as in 

[22] 

 0),,(11 2
2

2

2

2

22

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ zAk

z p φρ
φρρρρ

. (2.4) 

This partial differential equation can be solved by the separation of variables method. 

For this, let us write the vector potential as a product of three functions 

 )()()(),,( zZRzAp φρφρ Φ= . (2.5) 

Substituting this into (2.4) and dividing the resultant equation by )()()( zZR φρ Φ , we 

get 

 0)(
)(

1)(
)(

11)()(
)(

1 2
2

2

2

2

22

2

=+
∂

∂
+

∂
Φ∂

Φ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂ k

z
zZ

zZ
RR

R φ
φ

φρρρ
ρ

ρ
ρ

ρ
. (2.6) 

That yields three ordinary differential equations  

Tφ =2π/Ν 

Tz 

z 

ρ 

φ 

(a) (b) 

ρ =d

z 

ρ 

φ 
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 2
2

2 )(
)(

1 β−=
dz

zZd
zZ

, (2.7) 

 2
2

2 )(
)(

1 v
d

d
−=

Φ
Φ φ

φ
φ

, (2.8) 

and 

 ( ) 0)()()( 222
2

2
2 =−++ ρρκ

ρ
ρρ

ρ
ρρ Rv

d
dR

d
Rd . (2.9) 

Here κ is given by the dispersion relation 

 222 βκ −= k , (2.10) 

and the eigenvalues v and β denote real numbers. A general solution to (2.7) is 

written as 

 zj
p

zj
p eCeCzZ ββ −+− +=)( . (2.11) 

Applying the condition (2.2), the eigenvalues β are determined as follows: 

 ( ) zzz Tjzj
p

zj
p

Tzj
p

Tzj
p eeCeCeCeC 0)()( βββββ −−+−+−++− +=+ , 

 ( ) ( )zz Tj
p

Tjzj
p eCeeC )()(2 00 11 βββββ −++− −=− . (2.12) 

(2.12) is satisfied only if 

 ( ) ( ) 011 )()(2 00 =−=− −++− zz Tj
p

Tjzj
p eCeeC βββββ . (2.13) 

When −+ = pp CC , a trivial solution is obtained but that has no significance. There are 

two possibilities for satisfying the conditions in (2.13): either 

1 and 0 )( 0 == −− zTj
p eC ββ , or 0 and 1)( 0 == ++

p
Tj Ce zββ . A solution satisfying the 

conditions in (2.13) is 

 . . . 2, 1, ,0 ; /20 ±±=+= nTn zn πββ  (2.14) 

and thus 

 
z

zj

n T
ezZ

nβ−

=)( , (2.15) 
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where nβ  and Zn denote eigenvalues and normalized eigenfunctions, respectively. 

Similarly, using the condition (2.3), the eigenvalues v and the corresponding 

eigenfunctions are obtained as 

 . . . 2, 1, ,0 ; /20 ±±=+= mTmvvm φπ , (2.16) 

 
φ

φ

φ
T

e mjv

m

−

=Φ )( . (2.17) 

In that case, the equation (2.9) becomes 

 ( ) 0)(
)()( 222

2

2
2 =−++ ρρκ

ρ
ρ

ρ
ρ

ρ
ρ mnmn

mnmn Rv
d

dR
d
Rd

. (2.18) 

This form of equations is known as Bessel’s differential equations [22]. A general 

solution to (2.18) can be written in terms of the Hankel functions of the first kind 
)1(H  and the second kind  )2(H : 

 )()()( )2(
,

)1(
, ρκρκρ nvmnpnvmnpmn mm

HAHAR +− += . (2.19) 

Here Hankel functions represent cylindrical traveling waves, as do the exponential 

functions, )1(H  representing an inward-traveling wave and )2(H  representing an 

outward-traveling wave. Alternatively, it is sometimes more convenient to express 

the general solution of (2.18) in a form 

 )()()( ,, ρκρκρ nvmnpnvmnpmn mm
YbJaR += , (2.20) 

where J and Y denote Bessel functions of the first kind and the second kind, 

respectively. As emphasized in Appendix C, these functions exhibit oscillatory 

behavior, as do the sinusoidal functions and so (2.20) can be used for the standing 

wave solutions. Their relations to the Hankel functions are  

 )()()()1( ρκρκρκ nvnvnv mmm
jYJH += , (2.21) 

 )()()()2( ρκρκρκ nvnvnv mmm
jYJH −= . (2.22) 

Hence the solution for Ap can be written as infinite sums of the traveling waves: 
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 { }∑ ∑
∞

−∞=

∞

−∞=

+− +=
m n

mnnvmnpnvmnpp zHAHAzA
mm

),()()(),,( )2(
,

)1(
, φψρκρκφρ , (2.23) 

or whenever appropriate it may be written in terms of the standing waves: 

 { }∑ ∑
∞

−∞=

∞

−∞=

+=
m n

mnnvmnpnvmnpp zYbJazA
mm

),()()(),,( ,, φψρκρκφρ . (2.24) 

Here mnψ  are called as the Floquet modes, which involve the products of the 

eigenfunctions )(φmΦ  and )(zZ n  

 
z

zjjv

mn TT
eez

nm

φ

βφ

φψ
−−

=),( . (2.25) 

The propagation constants of the Floquet modes are given by  

  /20 φπ Tmvvm += , (2.26) 

  /20 zn Tnπββ += , (2.27) 

 22
nn k βκ −= . (2.28) 

The roots for the double valued square-root function, “ ”, in (2.28) should be 

chosen properly with the conventions described in [22], that is 

 
⎪⎩

⎪
⎨
⎧

>−−

>−
=

2222

2222

when

when

kkj

kk

nn

nn
n

ββ

ββ
κ . (2.29) 

If the region under the consideration is lossy, the root choice should be such that 

 nnn jκκκ ′′−′= , (2.30) 

where nn κκ ′′′  and  represent non-negative real numbers. Whenever the argument of a 

Bessel function takes an imaginary value ( αρκ jn −= ) as may come across in using 

(2.29), it is appropriate to use the modified Bessel functions. The modified Bessel 

functions are related to the regular Bessel functions through 

 )()( 2/ αα π
m

m

m v
jv

v IejJ −=− , (2.31) 
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 )(2)()( 2/2/ α
π

αα ππ
m

m

m

m

m v
jv

v
jv

v KeIjejY −−=− − , (2.32) 

and 

 )(2)()()( 2/)2( α
π

ααα π
m

m

mmm v
jv

vvv KejjjYjJjH =−−−=− , (2.33) 

where 
mvI  are known as the modified Bessel functions of the first kind and 

mvK  are 

known as the modified Bessel functions of the second kind. 

The weighting coefficients −
mnpA ,  and +

mnpA ,  in (2.23) or mnpa ,  and mnpb ,  in the 

alternative expression (2.24) should be determined from the boundary conditions in 

the radial direction. When the outermost region of the cylindrical structure in Figure 

2.1.b is considered, the expression (2.23) should be utilized because the waves travel 

in the radial direction. Furthermore, inward-traveling waves should not exist and that 

leads to 0, =−
mnpA . However, when the innermost region of the cylindrical structure 

is considered, the expression (2.24) should be exploited because the standing waves 

are expected in that region. Also the wave amplitudes should be finite at ρ=0. 

Among the solutions of Bessel’s differential equation, only )( ρκnvm
J  are 

nonsingular at ρ=0 as shown in Appendix C. Thus the boundary condition in that 

region requires 0, =mnpb . 

Once the vector potential of the problem is written in terms of the Floquet modes, 

the corresponding electric and magnetic fields can be determined from the curl 

equations written in the cylindrical coordinate system [23] 

 TEzTMz AA
j

aaE ×∇−×∇×∇=
ωε
1 , (2.34) 

 TEzTMz A
j

A aaH ×∇×∇−×∇=
ωμ
1 . (2.35) 

which result in the electric and magnetic field expressions 

 
ρφωερφ ∂

∂
+

∂∂
∂

= TETM A
z

A
j

E
21 , (2.36) 
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 TMz Ak
zj

E ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

= 2
2

21
ωε

, (2.37) 

 
z

A
j

AH TETM

∂∂
∂

+
∂

∂
−=

φωμρρφ

21 , (2.38) 

 TEz Ak
zj

H ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

= 2
2

21
ωμ

. (2.39) 

Here, no attention is paid to ρ components of the electric and magnetic fields since 

they are normal to the surface. 

TM and TE vector potentials in a region are expressed as infinite sums of the 

Floquet modes 

 ∑∑=
m n

mnnmnmnTMTM zRaA ),()(, φψρκ , (2.40) 

 ∑∑=
m n

mnnmnmnTETE zRaA ),()(, φψρκ , (2.41) 

where R may be any of the Bessel functions )1(
mvH , )2(

mvH , 
mvJ , or 

mvY . The partial 

differentiations with respect to ρ, φ, and z in (2.36)-(2.39) simplify to the algebraic 

expressions. That is 

 ∑∑∑∑ −=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

m n
mnnmnmnpm

m n
mnnmnmnp zRajvzRa ),()(),()( ,, φψρκφψρκ

φ
, (2.42) 

 ∑∑∑∑ −=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

m n
mnnmnmnpn

m n
mnnmnmnp zRajzRa

z
),()(),()( ,, φψρκβφψρκ , (2.43) 

 ∑∑∑∑ ′=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

m n
mnnmnmnpn

m n
mnnmnmnp zRazRa ),()(),()( ,, φψρκκφψρκ

ρ
. (2.44) 

Then the corresponding electric and magnetic fields can be written as  

+
−

= ∑∑
m n

mnnmnnmmnTM zRva
j

E ),()(1
, φψρκβ

ωερφ  

∑∑ ′
m n

mnnmnnmnTE zRa ),()(, φψρκκ ,(2.45) 
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 ∑∑=
m n

mnnmnnmnTMz zRa
j

E ),()(1 2
, φψρκκ

ωε
, (2.46) 

−′−= ∑∑
m n

mnnmnnmnTM zRaH ),()(, φψρκκφ  

∑∑
m n

mnnmnnmmnTE zRva
j

),()(1
, φψρκβ

ωμρ
,(2.47) 

 ∑∑=
m n

mnnmnnmnTEz zRa
j

H ),()(1 2
, φψρκκ

ωμ
. (2.48) 

Here a prime (’) means a differentiation with respect to the whole argument of a 

Bessel function, that is: )(/)( ρκρκ nmnnmn RR ∂∂≡′ . Once the vector potential in a 

region is specified and written as infinite sums of the Floquet modes, the expressions 

given in (2.45)-(2.48) can be used to obtain the corresponding electric and magnetic 

fields in that region. Later, boundary conditions can be applied to determine 

unknown coefficients of the infinite sums. This procedure is followed in the 

subsequent chapters.  

In the MM solutions, a suitable inner product has to be defined. In this thesis the 

following inner product is used as defined in [10] 

 ∫ ∫
− −

>=<
2/

2/

2/

2/

* ),(),(),(),,(
z

z

T

T

T

T

dzdzgzfzgzf
φ

φ

φφφφφ , (2.49) 

where (*) denotes a complex conjugate. It may easily be shown that the Floquet 

modes ),( zmn φψ  are orthogonal to each other, that is, 

 
⎩
⎨
⎧ ==

>=<
otherwise0

 and for 1
),(),,(

nqmp
zz pqmn φψφψ . (2.50) 

2.2. Decomposition of a plane wave into cylindrical waves  

If plane wave incidence is assumed, the incident wave should be decomposed into 

cylindrical wave components. Then the responses (scattered waves) of the problem 

should be determined separately for each of the cylindrical wave components. The 

total response can then be obtained by summing the individual responses [10]. 
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In this section a plane wave propagating in free-space in a direction ),( incinc φθ  is 

considered. If the incident plane wave has a unit amplitude vector potential, its vector 

potential can be written as 

 )cossinsincos(sin0),,( zyxjk
p

incincincincinc

ezyxA θφθφθ −+= , (2.51) 

where p denotes the polarization of the plane wave (may be TM or TE). It is 

convenient to transform the rectangular variables x, y, and z into the cylindrical 

coordinate system variables ρ, φ, and z by using φρ cos=x  and φρ sin=y . That 

gives  

 zjj
p eezyxA

inc
00 )cos(),,( βφφρκ −−= , (2.52) 

where 

 inck θβ cos00 = , (2.53) 

 inck θκ sin00 = . (2.54) 

Then a useful identity given in [23] may be utilized, which is 

 ∑
∞

−∞=

−+− =
0

0

00 )( 0
)2/()cos(

v
v

jvj Jee
incinc

ρκφφπφφρκ , (2.55) 

where 
0vJ  denotes the Bessel function of the first kind of order 0v . By using the 

identity, the incident wave is decomposed into the cylindrical waves of the form 

 ∑
∞

−∞=

=
0

),,(),,(
v

inc
pp zAzyxA φρ , (2.56) 

where the cylindrical wave components are 

 zjjv
v

jvinc
p eeJezA

inc
00

0

0 )(),,( 0
)2/( βφπφ ρκφρ −−−= . (2.57) 

The corresponding electric and magnetic fields can be obtained using (2.57) in 

(2.45)-(2.48). For a TM incidence case, the electric and magnetic fields are given as, 

 zjjv
v

inc
TM

inc eeJva
j

E 00

0
)(1

000
0

βφ
φ ρκβ

ρωε
−−−

= , (2.58) 
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 zjjv
v

inc
TM

inc
z eeJa

j
E 00

0
)(1

0
2
0

0

βφρκκ
ωε

−−= , (2.59) 

 zjjv
v

inc
TM

inc eeJaH 00

0
)( 00

βφ
φ ρκκ −−′−= , (2.60) 

 0=zH , (2.61) 

where 

 )2/(0 πφ −=
incjvinc

TM ea . (2.62) 

For a TE incidence case, the corresponding electric and magnetic fields are 

 zjjv
v

inc
TE

inc eeJaE 00

0
)( 00

βφ
φ ρκκ −−′= , (2.63) 

 0=inc
zE , (2.64) 

 zjjv
v

inc
TE

inc eeJva
j

H 00

0
)(1

000
0

βφ
φ ρκβ

ρωμ
−−−

= , (2.65) 

 zjjv
v

inc
TE

inc
z eeJa

j
H 00

0
)(1

0
2
0

0

βφρκκ
ωμ

−−= , (2.66) 

where 

 )2/(0 πφ −=
incjvinc

TE ea . (2.67) 

An important parameter in scattering studies is the electromagnetic scattering by a 

target which is usually represented by its echo area or radar cross section (RCS). The 

RCS is defined as “the area intercepting the amount of power that, when scattered 

isotropically, produces at the receiver a density that is equal to the density scattered 

by the actual target” [23]. For a cylindrical structure, the RCS is also referred to as 

the “scattering width”. The RCS of a cylindrical structure is calculated using 

 2

2

2lim
i

s

RCS
E

E
πρ

ρ ∞→
= , (2.68) 

where Es represents the scattered electric field and Ei represents the incident electric 

field. Another way of determining the RCS is to use the scattered magnetic fields  
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 2

2

2lim
i

s

RCS
H

H
πρ

ρ ∞→
= . (2.69) 

The magnitudes of the terms appearing in the denominators of (2.68) and (2.69) can 

be determined from the vector potential given in (2.50). For a TM incidence, the 

corresponding electric and magnetic fields are obtained as 

 inc
TMz

i kzyxA θκ sin),,( 00 ==×∇= aH , (2.70) 

 incii k θππκπ sin120120120 00 === HE , (2.71) 

but for TE incidence, we have 

 inc
TEz

i kzyxA θκ sin),,( 00 ==×∇−= aE , (2.72) 

 
π
θ

π
κ

π 120
sin

120120
00

inci
i k

===
E

H , (2.73) 

where 120π  stands for the intrinsic impedance of the free-space. In the subsequent 

chapters, the RCS of cylindrical structures are determined by using these 

expressions. When computing the fields scattered from a cylindrical structure in the 

far field region (as ρ→∞), the asymptotic forms for the Hankel functions for large 

arguments [24] are used. That is, 

 κρππ

πκρ
κρ jjvj

v eeH −+≈ 2/4/)2( 2)(  as ρ→∞, (2.74) 

 κρππ

πκρ
κρ jjvj

v eejH −+−≈′ 2/4/)2( 2)(  as ρ→∞. (2.75) 

2.3. The electromagnetic field couplings into the cylindrical structures 

Electromagnetic field couplings into the cylindrical structures have some importance 

in antenna applications. The coupling is defined as the total power measured at the 

center of a cylindrical structure when a plane wave is incident on the structure. That 

is to say, the coupling is defined as 
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 2

2

0
lim

i

si

Coupling
E

EE +
=

→ρ
, (2.76) 

where Ei denotes the incident electric field and Es denotes the scattered electric field. 

However, making use of the Reciprocity Theorem the coupling can be determined 

more easily by considering the fields radiated from a line current located at the origin 

[10]. According to the Reciprocity Theorem the response of a system to a source is 

unchanged when source and measurer are interchanged [22].  

Suppose that the incident plane wave of the original problem is due to a line 

current (a transmitter) located at the infinity. Furthermore, let a receiver located at 

the origin of the cylindrical structure measures the scattered fields. According to the 

reciprocity theorem, the locations of the line current and the receiver can be 

interchanged. In that case, we evaluate the radiated fields at the infinity and 

normalize these with respect to the fields that would exist at the infinity if the 

cylindrical structure were not present. That is, 

 2

2

lim
inc

sinc

Coupling
E

EE +
=

∞→ρ
, (2.77) 

or if the magnetic fields are used 

 2

2

lim
inc

sinc

Coupling
H

HH +
=

∞→ρ
, (2.78) 

where Es and Hs denote the fields in the presence of the cylindrical structure; Einc and 

Hinc denote the fields in the absence of the cylindrical structure. In this section, we 

shall determine the fields Einc and Hinc appearing in (2.77) and (2.78).  

When a line current is located at the origin of a cylindrical structure and radiates 

into the free-space (in non-existence of the cylindrical structure), the radiated electric 

and magnetic fields can be derived from a vector potential ATM or ATM, depending on 

the type of the line current. For an electric type current, the fields are derived from a 

vector potential ATM and for a magnetic type current, the fields are derived from a 

vector potential ATE.  
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Consider an electric type line current carrying a current I0 is located at the origin 

and it is represented by 

 zj
z eI 0

0
β−= aI , (2.79) 

where 0β  denotes a linear phase variation along z axis. Since the line current is 

directed along the z axis, the fields radiated by the line current can be obtained by 

letting 

 zjinc
TMTM eHaA 0)( 0

)2(
0

βρκ −= , (2.80) 

where inca0  denote an unknown to be determined, )2(
0H  denote a Hankel function of 

the second kind, and 

 2
0

2
00 βκ −= k , (2.81) 

denotes the propagation constant of the wave in ρ direction. The corresponding 

electric and magnetic fields can be derived by using (2.80) in (2.45)-(2.48) 

 0=incEφ , (2.82) 

 zjinc
TM

inc
z eHa

j
E 0)(1

0
)2(

0
2
0

0

βρκκ
ωε

−= , (2.83) 

 zjinc
TM

inc eHaH 0)( 0
)2(

00
β

φ ρκκ −′−= , (2.84) 

 0=inc
zH . (2.85) 

The unknown inca0  is determined in the limit as ρ→0 

 ( ) ( ) ∫∫∫
−

→
−

→→

− =⋅=⋅=
π

π
φρ

π

π
φφφρρ

β φρφρ dHdHdleI incinc

C

zj

0000 limlimlim0 aaH . (2.86) 

Since the integration of (2.86) must be performed in the limit as ρ→0, it is 

convenient to represent the Hankel function by its asymptotic expansion for small 

arguments. By using a small argument approximation for the derivative of the 

Hankel function [24], the unknown inc
TMa  is determined as follows 
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∫
−

→

− =
π

π
φρ

β φρdHeI inczj

00 lim0  

 0(2)
0 0 00

lim ( ) j zinc
TMa H e d

π
β

ρ
π

κ κ ρ ρ φ−

→
−

′= −∫  

 0
00

0

2lim j zinc
TM

ja e d
π

β

ρ
π

κ ρ φ
πκ ρ

−

→
−

−
= −∫  

 0
0

0

2 2j zinc
TM

ja e βκ π
πκ

−−
= −  

 
j

I
ainc

TM 4
0=⇒ .  (2.87) 

Thus, the radiated electric and magnetic fields for the line current considered are  

 0=incEφ , (2.88) 

 zjinc
z eH

j
I

j
E 0)(

4
1

0
)2(

0
2
0

0

0

βρκκ
ωε

−= , (2.89) 

 zjinc eH
j

I
H 0)(

4 0
)2(

00
0 β

φ ρκκ −′−= , (2.90) 

 0=inc
zH . (2.91) 

When a magnetic type line current is located at the origin then the corresponding 

electric and magnetic fields can be determined similarly. But, more simply, duality 

principle may be utilized and the radiated fields can be determined from the 

expressions in (2.87)-(2.91). Assume a magnetic type line current carries a current 

M0,  

 zj
z eM 0

0
β−= aM . (2.92) 

According to the duality principle, the variables appearing in (2.87)- (2.91) should be 

replaced as follows: 

 00 MI → , (2.93) 

 incinc HE → , (2.94) 

 incinc EH −→ , (2.95) 

 00 εμ → , (2.96) 
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 00 με → . (2.97) 

The radiated electric and magnetic fields for the magnetic line current are 

 
j

M
ainc

TE 4
0= , (2.98) 

 0=incHφ , (2.99) 

 zjinc
z eH

j
M

j
H 0)(

4
1

0
)2(

0
2
0

0

0

βρκκ
ωμ

−= , (2.100) 

 zjinc eH
j

M
E 0)(

4 0
)2(

00
0 β

φ ρκκ −′= , (2.101) 

 0=inc
zE . (2.102) 
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3. SCATTERING FROM CYLINDRICAL SURFACES 

CONSISTING OF FREE-STANDING STRIPS OR SLOTS 

Periodic cylindrical structures consisting of free-standing conducting patches or slots 

are analyzed. When formulating the problem, the scattered waves are written as 

infinite sums of the Floquet modes with unknown weighting coefficients. The 

weighting coefficients are related to the surface currents (aperture fields) of the 

conducting patches (slots) by applying the appropriate boundary conditions. Later 

on, an integral equation is obtained for the surface currents (aperture fields) and 

solved numerically by using the MM techniques. The infinite sums appearing in the 

MM solutions are seen to be slowly convergent. The infinite sums should be handled 

properly in order to circumvent slow convergence difficulties. One approach in such 

a case is to use sub-domain basis functions in conjunction with a conjugate gradient 

fast Fourier transform method as suggested in [10]. Another approach is to use 

entire-domain basis functions together with a convergence acceleration method that 

is based on a Kummer’s series acceleration method, as described in [18, 21]. Here, 

we follow the second approach to accelerate the infinite sums.  

3.1. Determination of the scattered waves from the free-standing strips  

Consider a cylindrical structure consisting of free-standing periodically located 

rectangular strips of dimension l×w as shown in Figure 3.1. The periodicities in φ and 

z directions are denoted by Tφ and Tz,, respectively. The cylindrical surface is located 

at ρ = ρ0.  

When a plane wave is incident on the structure, the incident plane wave can be 

decomposed into cylindrical waves. This procedure is described in section 2.2. If the 

incident plane wave has a unit amplitude vector potential and its polarization is TM, 

its cylindrical wave components are of the form 
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Figure 3.1. a) A cylindrical structure consisting of free-standing rectangular strips 
that are periodically located on a cylindrical surface. A cylindrical TM wave is 
incident on the structure (b) A unit cell at φ=0, showing the parameters of the 
problem. N denotes the number of strips in φ direction. 
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v0 denotes an integer, θinc and φinc denote propagation directions of the incident wave. 

The corresponding electric fields are obtained as 
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Such an excitation induces surface currents on the conducting strips. In turn, these 

currents radiate giving rise to scattered waves. In accordance with the Floquet 

Theorem described in Chapter 2, the scattered waves are represented as infinite sums 

of the Floquet modes. If the strip widths are very small compared to the free-space 

wavelength, then φ components of the surface currents may be ignored. As a 

consequence, the scattered fields can be derived from the vector potentials; 

 ρρφψρκ <= ∑∑ 0
)2(

0,0, for   ),()(
m n

mnnvmnTM
s
TM zHaA

m
, (3.7) 

 01,1, for  ),()( ρρφψρκ <= ∑∑
m n

mnnvmnTM
s
TM zJaA

m
, (3.8) 

where the weighting coefficients aTM,0mn and aTM,1mn denote unknowns to be 

determined from boundary conditions of the problem. The Floquet modes are given 

in Chapter 2: 
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zjjv

mn TT
eez

nm

φ

βφ

φψ
−−

=),( , (3.9) 

 zn Tn /20 πββ += , (3.10) 

 φπ Tmvvm /20 += , (3.11) 

 22
0 nn k βκ −= . (3.12) 

Here 00  and βv  denote the phase constants of the exciting wave in the 

circumferential and longitudinal directions, respectively. In the summations, 
mvJ  and 

)2(
mvH  respectively denote the Bessel functions of the first kind and the Hankel 

functions of the second kind, both of order mv . Note that in the external region, the 

Hankel functions of the second kind are chosen to represent the outward traveling 

waves. But for the internal region, the Bessel functions of the first kind are used due 

to the standing wave nature of the waves in this region.  

In order to determine the unknown coefficients in (3.7) and (3.8), boundary 

conditions are applied. The boundary conditions of the problem are: 
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a. Tangential components of the total electric field should be continuous at 0ρ ρ= , 

b. Tangential components of the total magnetic field should be discontinuous at 

0ρ ρ=  by an amount equal to the induced current density Jz. 

The tangential electric and magnetic fields are obtained from the vector potentials in 

(3.7) and (3.8) by using the expressions (2.45)-(2.48).The fields in the external 

region are therefore 

 ∑∑−
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m n
mnnvnmmnTM
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j
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 0),,(0 =zH s
z φρ . (3.16) 

The fields in the internal region are expressed similarly. However in this case all 

Hankel functions of the second kind ( )2(
mvH ) are replaced by the Bessel functions of 

the first kind (
mvJ ), that is, 
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The boundary conditions are then applied 
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If the inner product operation described in Chapter 2 is employed, the equations that 

hold for doubly-infinite sums simplify. By taking the inner products of both sides of 

the equations with the Floquet modes, the boundary conditions become 
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The resultant equations can then be solved for the coefficients aTM,0mn and aTM,1mn. 

The coefficients for the fields in the external region are  
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In obtaining the expression (3.27), the Wronskian relation 
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is utilized [24].  

So far, the scattered fields are expressed in terms of the surface current Jz. 

However, it is still an unknown quantity in the formulation above and has to be 

determined using the additional boundary condition that the total tangential electric 

field has to be zero at the surface of a strip. Note that the surface current is also 

related to the incident wave. Then the surface current can be computed numerically 

by using the MM technique. 
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3.2. An integral equation for the surface currents and the MM Solution 

As mentioned, an integral equation for the problem considered in this chapter is 

obtained by equating total tangential electric fields to zero across a strip surface. 

Since the strips are oriented in z direction and their widths are very narrow, only z 

components of the electric fields are taken into consideration. So starting with 

 0),,(),,( 000 =+ zEzE inc
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where inc
zE  denotes the exciting and s

zE0  the scattered electric field respectively. 

From the expression (2.46), we have 
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inc
zE  is obtained from the vector potential of the incident wave as in (3.1). Therefore 

the exciting electric field is  
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An integral equation is then obtained as follows 
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and finally 
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Here S∂  denotes the strip surface. That is, 

 { }2/2/ ; 2/2/ ; 0 lzlawawS <<−<<−==∂ φρρ . (3.34) 

This integral equation may be solved numerically by using a MM technique. For 

obtaining a numerical solution, the current is expanded into entire domain sinusoidal 

basis functions for narrow strips [25] 
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where 

 { })(sin 2
l

l
q

q zf += π , (3.36) 

and cq denote unknown expansion coefficients. Substituting the expansion of the 

current into the integral equation, one obtains 
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In accordance with the Galerkin’s method, by taking inner products of both sides of 
(3.37) with basis functions fp, a new equation  
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is obtained. This is performed for p=1, 2, . . ., Q. This results in a set of equations 

that can be written in matrix form 
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In the computations of the matrix elements Apq in (3.40), the infinite sum with 

respect to the summation index m is seen to be slowly convergent. Therefore we use 

a convenient computation method that is based on a Kummer’s series acceleration 

method to circumvent the slow convergence difficulty.  

As the summation index m in (3.40) tends to infinity, it is noted that the products 

of the Bessel functions asymptotically equal to 
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where “||” means an absolute value and N denotes the number of strips in φ direction 

such that NT /2πφ = . Then it is convenient to compute Apq as follows: 
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Now, the infinite sum with respect to m in (3.46) converges more rapidly. However, 

the infinite sum in (3.47) converges slowly as shown in [18, 21]. In Appendix A, a 

computation scheme for slowly convergent infinite sums is described. Also, as an 

example, the computation of (3.47) is provided in the same appendix.  

Once the MM solution of the problem is obtained for the surface current, the 

coefficients mnTMa 0,  in (3.27) are expressed in terms of the current coefficients cq as 

follows : 
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By using these coefficients, the scattered fields are determined by using the 

expressions in (2.45)-(2.48) 
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The scattered fields obtained so far correspond to a single cylindrical wave 

excitation of the form given in (3.1). However, if the excitation is a plane wave then 

the scattered fields are determined separately for each cylindrical wave components 

of the incident plane wave. Using the superposition principle, the total scattered 

fields are then obtained by summing the individual scattered fields. The 

decomposition of a plane wave into the cylindrical wave components has already 

been considered in Section 2.2. The RCS of the problem is therefore 
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Here the infinite sum in the numerator indicates the total scattered magnetic field and 

Hi denotes the magnetic field of the incident plane wave. As shown in Chapter 2, 

when the vector potential of the incident plane wave has unit amplitude, the absolute 

value of the magnetic field is given by 

 inci k θκ sin00 ==H . (3.54) 

On the other hand, the scattered magnetic fields in the far field region are determined 

from the expression (3.51) by using the asymptotic form for the Hankel functions 

[24], 
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Thus the absolute value of the total scattered magnetic field in the far field region is 

obtained as follows 
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and the RCS is determined from 
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Electromagnetic field couplings into the cylindrical structures have some practical 

importance in antenna applications. The coupling is defined as the total power 

measured at the center of a cylindrical structure when a plane wave is incident on the 

structure. As discussed in section 2.3, the coupling can be determined by considering 

the far fields radiated from an electric type line current located at the center of the 

cylindrical structure shown in Figure 3.1. The coupling is determined using 
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where sH  denotes the scattered magnetic field in the presence of the cylindrical 

structure; Hinc denotes the incident magnetic field in the absence of the cylindrical 

structure, as given in section 2.3. As ρ → ∞, the limiting value of the expression in 

(2.84) is obtained as  
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and the coupling is determined by using this expression and the corresponding 

asymptotic expression of the scattered magnetic field in (3.57). 
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3.3. Determination of the scattered waves from axial slots and the Equivalence 

principle 

Now consider a periodic cylindrical structure as shown in Figure 3.2, which consists 

of a perfectly conducting circular cylinder perforated periodically with axial slots. 

The periodicities in the circumferential and longitudinal directions are denoted by Tφ 

and Tz respectively as shown in the unit cell of the problem. In the figure, the slot 

dimensions are taken as lw× .  

When a plane wave is incident on the structure, the incident plane wave can be 

decomposed into cylindrical waves. This procedure has already been described in 

Chapter 2. If the incident plane wave has unit amplitude vector potential and its 

polarization is TE, its cylindrical wave components are of the form 
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where  
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v0 denotes an integer, θinc and φinc denote propagation directions of the incident wave. 

The corresponding magnetic fields are obtained as 
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inc
TE

inc
z eeJa

j
H

m

00)(1
0

2
0

0

βφρκκ
ωμ

−−= . (3.66) 

Such an excitation induces aperture fields across the slotted regions of the 

conducting cylinder. Scattered fields of the problem are assumed to be radiated by 

those aperture fields. In accordance with the Floquet Theorem described in Chapter 

2, the scattered fields are represented as infinite sums of the Floquet modes. If the 

slots are very thin compared to the free-space wavelength, then z components of the 

aperture fields may be ignored. As a consequence of this the scattered fields can be 

derived from the vector potentials 
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Figure 3.2. A perfectly conducting circular cylinder perforated periodically with 
axial slots. A cylindrical TE wave is incident on the structure (a) Array geometry. (b) 
A unit cell of the problem at φ=0. N denotes the number of slots in φ direction. 

 

 

Figure 3.3. Application of the Equivalence Principle for the conducting circular 
cylinder with the slots. a) The original problem, b) The equivalent problem for the 
internal region. The aperture field in the original problem is replaced by a magnetic 
current M1, which radiates the fields ss

11  , HE . c) The equivalent problem for the 
external region. A magnetic current 10 MM −=  radiates the fields ss

00  , HE . 
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   for  ),()( 00,0, ρρφψρκ <= ∑∑
m n

mnnvmnTE
s
TE zJaA

m
, (3.67) 

   for  ),()( 0
)2(

1,1, ρρφψρκ <= ∑∑
m n

mnnvmnTE
s
TE zHaA

m
, (3.68) 

where the weighting coefficients mnTEa 0,  and mnTEa 1,  denote unknowns to be 

determined from boundary conditions of the problem. Note that for the external 

region, the Hankel functions of the second kind are chosen to represent outward 

traveling waves. But for the internal region, the Bessel functions of the first kind are 

used because the waves should be purely standing. 

Before applying the boundary conditions of the problem, the Equivalence 

principle [23] is utilized. In accordance with the Equivalence Principle, the slots on 

the conducting cylinder are replaced by equivalent magnetic currents denoted by M0 

and M1 for the external and internal regions as shown in Figure 3.3. An equivalent 

magnetic current in the external region is defined as 

 slot
z

slot EE φρφφ aaaM −=×=0 , (3.69) 

while the current for the internal region is defined as 

 slot
z

slot EE φρφφ aaaM =−×= )(1 . (3.70) 

Here slotEφ  denote φ component of the electric field on the slotted region. In that case, 

the scattered fields for the external region are determined from the magnetic current 

M0 , while the scattered fields for the internal region are determined from the 

magnetic current M1.  

Consider the equivalent problem for the external region of the cylindrical 

structure shown in Figure 3.3.b. The current source M0 is backed by a perfectly 

conducting cylinder. In that case, a boundary condition for the scattered fields is 

 00 MaEa =× ρφ
s  at 0ρρ = . (3.71) 

The scattered electric and magnetic fields are obtained from the vector potentials in 

(3.67) and (3.68) and by using the expression (2.45)-(2.48).The fields in the external 

region are therefore 
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 ∑∑ ′=
m n

mnnvnmnTE
s zHaE

m
),()()2(

0,0 φψρκκφ , (3.72) 

 00 =s
zE , (3.73) 

 ∑∑−=
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mnnvnmmnTE
s zHva

j
H

m
),()(1 )2(

0,
0

0 φψρκβ
ρωμφ , (3.74) 

 ∑∑=
m n

mnnvnmnTE
s
z zHa

j
H

m
),()(1 )2(2

0,
0

0 φψρκκ
ωμ

. (3.75) 

Similarly, the scattered fields in the internal region can be inferred from these 

expressions by replacing all occurrences of the Hankel functions ( )2(
mvH ) with the 

Bessel functions (
mvJ ). The scattered fields in the internal region are 

 ∑∑ ′=
m n

mnnvnmnTE
s zJaE

m
),()(1,1 φψρκκφ , (3.76) 

 01 =s
zE , (3.77) 
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mnnvnmmnTE
s zJva

j
H

m
),()(1

1,
0

1 φψρκβ
ρωμφ , (3.78) 

 ∑∑=
m n

mnnvnmnTE
s
z zJa

j
H

m
),()(1 2

1,
0

1 φψρκκ
ωμ

. (3.79) 

Performing the cross product operations in (3.71), a scalar equation involving 

infinite sums of Floquet modes is obtained. Taking the inner product of both sides of 

the resulting equation with Floquet modes, the unknown coefficients mnTEa 0,  are 

determined in terms of the slot field slotEφ ; 

 
)(
),(,

0
)2(

*

0, ρκκ
φψφ

nvn

mn
slot

mnTE
m

H
zE

a
′

><
= . (3.80) 

Next, the equivalent problem for the internal region as shown in Figure 3.3.c is 

considered, where the current source M1 is backed by a perfectly conducting 

cylinder. In this case, the boundary condition requires that 

 11 )( MaEa =−× ρφ
s  at 0ρρ = . (3.81) 
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Similarly, using the expression (3.76), the unknown coefficients for the internal 

region are determined as  

 
)(
),(,

0

*

1, ρκκ
φψφ

nvn

mn
slot

mnTE
m

J
zE

a
′

><
= . (3.82) 

Note that, the scattered fields are all expressed in terms of the slot field slotEφ . 

However, it is still an unknown quantity and has to be determined from an additional 

boundary condition. In the next section, an integral equation will be obtained for the 

slot field by using the fact that the total tangential magnetic fields are continuous on 

both sides of the slot. 

3.4. An integral equation for the aperture fields and the MM Solution 

The slot field is an unknown quantity and should be determined in terms of the 

exciting wave of the problem. The vector potential of the exciting wave is given in 

(3.61), and the corresponding magnetic field is given in (3.65). Since there is no 

electric current at the slotted region and the slots are narrow, we require that z 

components of the magnetic fields should be continuous across the slot. This 

requirement is written in a mathematical form  

 c
z

inc
z

s
z

s
z HHHH ++= 01 , on S∂ . (3.83) 

Here S∂  refers to the slotted region, inc
zH  denote the magnetic field of the exciting 

wave, and c
zH  denote the magnetic field that would have been scattered by the 

conducting cylinder if the slots were not present. To determine c
zH , consider a 

conducting cylinder without slots of radius ρ0. Since the incident field is known, c
zH , 

can be determined from TE fields 

 zjjv
v

c
TE

c
TE eeHaA 00

0
)( 0

)2( βφρκ −−= . (3.84) 

The unknown coefficient is determined by writing a boundary condition for the 

corresponding electric fields of the vector potential. Since the tangential electric field 

must vanish on the surface of a conductor, the φ component of the total electric field 

should be equal to zero across the cylinder. That is, 



 
37

 0)()( 00 =+ ρρ φφ
cinc EE , 
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0 00
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The corresponding electric fields are therefore 
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Substituting (3.75), (3.79), (3.80), and (3.82) into (3.83) yields 
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where 
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0
)2(

000 ρκρκπρωμ nvnv
mn

mm
HJ

Y
′′

= . (3.88) 

In obtaining (3.87), the Wronskian relation given in (3.28) is used 

To solve (3.87) the slot field is expanded into entire domain sinusoidal basis 

functions as in the previous section, 

 ∑
=

=
Q

q
qq

slot fcE
1

�
φ , (3.89) 
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where 

 { })(sin 2
l

l
q

q zf += π , (3.90) 

and qc�  denote unknown expansion coefficients. When (3.90) is substituted into the 

equation (3.87) one gets 

 )(),(),(,
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Q

q m n
mnmnqmnq HHzzfYc +−=><∑ ∑∑

=

φψφψ�  on S∂ . (3.91) 

In accordance with the Galerkin’s method, taking inner products of both sides of 

(3.91) with a basis functions fp, a new equation is obtained 
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If this is performed for p=1, 2, . . ., Q, a new set of equations is obtained in matrix 

form 
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that can be solved by a matrix inversion, ][][][ 1
ppqq BAc
��� −= . The matrix elements are 

* 2
*
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Here 
mvnqnp SCC  and , , *  are given by (3.42)-(3.44).  

As in the conducting strips problem considered in Section 3.2, numerical 

computations of the matrix elements have convergence difficulties. The convergence 

acceleration method discussed for the strips problem is also applicable to the slot 
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problem of this Section. The asymptotic value of the products of Bessel functions 

[24] is 
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It is therefore more convenient to write pqA
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 as follows: 
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where 
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Here I is given by (3.47) and it can be computed as described in Appendix A. 

Once the matrix equation is solved for the coefficients qc� , the scattered electric 

and magnetic fields are determined easily. For the external region of the structure, 

the coefficients mnTEa 0,  are determined as follows 
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Then the fields in (3.76)-(3.79), which are given for the external region become 
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As before, the scattered fields are determined separately for each cylindrical wave 

components of the incident plane wave. The RCS of the surface is determined from 

(2.76); 
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where Es refers to the scattered electric fields given in (3.102), Ec refers to the 

electric fields corresponding to (3.84), and Ei refers to the electric field of the 

incident wave. According to Section 2.2 of Chapter 2, the absolute value of a unit 

amplitude TE plane wave is  

 inci k θκ sin00 ==E . (3.105) 

In the far field region, the scattered electric fields that are due to the magnetic 

currents are determined from the expression (3.102) using the asymptotic form of the 

Hankel functions in (2.75) 
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Similarly, the electric fields Ec that are scattered from the conducting cylinder when 
the slots were not present are determined from the expression (3.85) using the 
asymptotic form of the Hankel functions in (2.75), that is 
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The RCS of the cylindrical structure can be determined by using the far field region 
expressions of the scattered electric fields established in (3.106) and (3.107) in 
(3.104). That is, 
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Electromagnetic field penetrations into the conducting cylinders perforated with 

the slots have also important consequences in antenna applications. The amount of 

penetration is measured by a quantity that is called as “the coupling”. The coupling is 

defined as the total power measured at the center of a cylindrical structure when a 

plane wave is incident on the structure. As discussed in section 2.3, it can be 

determined by considering the far fields radiated from a magnetic type line current 

located at the center of the cylindrical structure. The definition of the coupling is  

 2
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0lim
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E
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φ

φ

ρ ∞→
= , (3.109) 

where Es denotes the scattered electric field in the far field region (as ρ→∞); Einc 

denote the electric field radiated from a magnetic type line current located at the 

center of the cylindrical structure, and is given by (2.101). As ρ → ∞, the limiting 

value of the expression for Einc is obtained as  
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4. SCATTERING FROM A CYLINDRICAL SURFACE 

CONTAINING A DIELECTRIC SHELL 

A cylindrical structure consisting of a dielectric shell covered periodically with 

conducting patches is analyzed by considering the TE and TM modes 

simultaneously. When formulating the problem, the scattered waves are written as 

infinite sums of the Floquet modes with unknown weighting coefficients. The 

weighting coefficients are then related to the surface currents of the conducting 

patches by using boundary conditions of the problem. Later on, an integral equation 

is obtained for the surface currents and solved numerically by using MM techniques. 

The formulation technique given in this Chapter can be extended to multiple 

dielectric layer problems.  

As in the problems considered in the previous chapters, the infinite sums 

appearing in this chapter are found to be slowly convergent. When solving the 

problem by a MM technique, the infinite sums should be handled properly in order to 

circumvent slow convergence difficulties. One approach in such a case is to use sub-

domain basis functions in conjunction with a conjugate gradient fast Fourier 

transform method as in [10]. Another approach is to use entire-domain basis 

functions together with a convergence acceleration method as described by us in [18, 

21] which is based on a Kummer’s series acceleration method. Here, we followed the 

same approach and derived the appropriate convergence acceleration method for the 

problem. 

4.1. The scattered waves from a dielectric shell covered by conducting strips 

A periodic cylindrical structure consisting of conducting patches printed on a 

dielectric shell is shown in Figure 4.1. The scattered waves in three different regions 

are illustrated in Figure 4.2. The strips are periodically located on a surface at 0ρ ρ=  

with periodicities Tφ and Tz in the directions φ and z. When a plane wave is incident 

on the structure, the incident wave can be decomposed into cylindrical waves as 
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described in Section 2.2. If the incident plane wave has unit amplitude vector 

potential and its polarization is TM, the cylindrical wave components are given by 

 0 0

0 00( )
inc inc

jv j zTM TM
vinc inc

TE TE

A a
J e e

A a
φ βκ ρ − −⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠

, (4.1) 

where 

 

 

Figure 4.1. a) A periodic cylindrical structure consisting of rectangular strips on the 
surface of a dielectric shell. A cylindrical wave is incident on the structure (b) A unit 
cell at φ=0, showing the parameters of the problem. N denotes the number of periodic 
strips in φ direction. 

 

 

Figure 4.2. The top view of the unit cell of the problem. Scattered waves in regions 
0, 1, and 2 are radiated by a current, Js, which is induced due to the incident wave. 
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 0 ( / 2)1
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jvTM
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TE

a
e

a
φ π−⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. (4.2) 

 inck θβ cos00 = , (4.3) 

 00 0 sin inckκ θ= , (4.4) 

v0 denotes an integer, θ inc and φ inc denote propagation directions of the incident 

wave. Such an excitation induces a surface current, Js, on a patch surface as seen in 

the unit cell of the problem. In turn, those currents radiate the scattered waves. In 

accordance with the Floquet Theorem described in Chapter 2, the scattered waves are 

represented as infinite sums of the Floquet modes. The scattered waves involve TM 

and TE modes simultaneously, and they can be derived from vector potentials ATM 

and ATE. According to the conventions discussed in Chapter 2, the appropriate 

expressions for the three distinct regions are 

 ∑∑=
m n

mnnvmnTM
s
TM zHaA

m
),()( 0

)2(
0,0, φψρκ  in region 0, (4.5) 

 ∑∑=
m n

mnnvmnTE
s
TE zHaA

m
),()( 0

)2(
0,0, φψρκ  in region 0, (4.6) 

 { }∑∑ +− +=
m n

mnnvmnTMnvmnTM
s
TM zYaJaA

mm
),()()( 11,11,1, φψρκρκ  in region 1, (4.7) 

 { },1 ,1 1 ,1 1( ) ( ) ( , )
m m

s
TE TE mn v n TE mn v n mn

m n
A a J a Y zκ ρ κ ρ ψ φ− += +∑∑  in region 1, (4.8) 

 ∑∑=
m n

mnnvmnTM
s
TM zJaA

m
),()( 22,2, φψρκ  in region 2, (4.9) 

 ∑∑=
m n

mnnvmnTE
s
TE zJaA

m
),()( 22,2, φψρκ  in region 2, (4.10) 

where 
mvJ , 

mvY , and )2(
mvH  denote the cylindrical Bessel functions of order mv . The 

weighting coefficients , , and TM imn TE imna a  denote the unknowns to be determined from 

boundary conditions. The Floquet modes denoted by mnψ  are given in Chapter 2, 
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z

zjjv

mn TT
eez

nm

φ

βφ

φψ
−−

=),( , (4.11) 

 zn Tn /20 πββ += , (4.12) 

 φπ Tmvvm /20 += , (4.13) 

 22
niin k βκ −= . (4.14) 

Here 00  and βv  denote the phase constants of the exciting wave in (4.1) and 

iik εμω 0=  denotes the wave-number of i-th region. Since purely standing waves 

exist in the innermost region of the cylindrical structure (region 2), Bessel functions 

of the first kind 
mvJ  are used in the relevant expressions. For the external region, the 

waves should be propagating in +ρ direction and so Hankel functions of the second 

kind )2(
mvH  are used in the expressions. However, the waves in the dielectric shell 

region are represented by using the functions 
mvJ  and 

mvY  because there should exist 

forward and backward traveling waves in that region. It is shown in Appendix C that 

the functions 
mvJ  and 

mvY  exhibit oscillatory behavior, as do the sinusoidal functions 

[22]. Hence, the waves in the dielectric shell are represented by cylindrical standing 

waves.  

If there is no current at an interface, boundary conditions require that the 

tangential components of electric and magnetic fields should be continuous. 

Otherwise the fields should be discontinuous by amounts equal to the magnitudes of 

the surface currents. Consider the boundary at 1ρ ρ=  as shown in Figure 4.2. Since 

there is no current at the boundary, the tangential components of the electric and 

magnetic fields should be continuous 

 )()( 1112 ρρ s
z

s
z EE = , (4.15) 

 )()( 1112 ρρ φφ
ss EE = , (4.16) 

 )()( 1112 ρρ φφ
ss HH = , (4.17) 

 )()( 1112 ρρ s
z

s
z HH = . (4.18) 
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On the other hand, there exists a surface current Js at the boundary 0ρ ρ=  and so  

 )()( 0001 ρρ s
z

s
z EE = , (4.19) 

 )()( 0001 ρρ φφ
ss EE = , (4.20) 

 )()( 0001 ρρ φφ
s

z
s HJH +−= , (4.21) 

 )()( 0001 ρρ φ
s
z

s
z HJH += , (4.22) 

where φJ  and zJ  denote the components of the surface current Js, that is, 

 zzs JJ aaJ += φφ . (4.23) 

The electric and magnetic fields can be obtained from the vector potentials ATM 

and ATE as discussed in Chapter 2. To simplify the application of the boundary 

conditions, we use matrix representations for the tangential components of electric 

and magnetic fields. The expressions for distinct regions are written as follows 
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where e and h stand for 2x2 square matrices that are obtained from the expressions 

given in (2.45)-(2.48) as; 
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and a prime over a Bessel function implies the derivative of that function with 

respect to the argument, that is 

 
)(
)()(

κρ
κρκρ

∂
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=′ RR . (4.38) 

By using the matrix representations for the electric and magnetic fields, the 

boundary conditions in (4.15)-(4.22) are expressed as 
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An inner product for the Floquet modes is defined in (2.49) and it was shown in 

Chapter 2 that the modes ),( zmn φψ  are orthogonal to each other. Taking the inner 

products of both sides of equations  (4.39)-. (4.42) with the Floquet modes one 

obtains: 
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where the brackets “<>” represent the inner products, that is, 
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Next, the unknown coefficients mnTMa 0,  and mnTEa 0,  of the scattered waves are 

expressed in terms of the surface currents by solving the set of equations 

algebraically. For example, the unknowns mnTMa 2,  and mnTEa 2,  can be eliminated 

from the equations (4.43)-(4.46) by writing 
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and similarly remaining unknowns can be eliminated. The solution for mnTMa 0,  and 

mnTEa 0,  can be written in the matrix form: 
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Here 2 2I ×  denotes an identity matrix, 

 2 2
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I ×
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However, the surface currents Jφ and Jz appearing in (4.49) are still unknown 

quantities. To determine these quantities we equate total tangential electric field on a 
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strip to zero, as described in the next section. This will allow us to express the 

surface current density in terms of the incident wave.  

4.2. An integral equation for the surface currents 

An integral equation for the problem can be obtained from the requirement that the 

total tangential electric field should be zero across a conducting patch surface. This 

condition has already been applied to the problems of the previous chapters, where 

there was no dielectric shell. For the problem of this chapter, the requirement can be 

expressed as 
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Figure 4.3. (a) The incident and scattered waves when the conducting strips were not 
present in Figure 4.2. (b) Top view of the problem showing three different regions. 

 

where s∂  refers to the surface of the conducting patch. Here 0
sE  denotes the electric 

fields scattered by the conducting patches, 0
cE  denotes the fields that would be 

scattered if the conducting patches were not present, and Einc denotes the exciting 

electric field.  
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Initially, 0
cE  is determined by using appropriate expressions for TM and TE waves 

in absence of the conducting patches. Assume a cylindrical wave incE  is incident on 

the cylindrical structure shown in Figure 4.3.a. Referring to three different regions 

seen in Figure 4.3.b, the scattered TM and TE waves may be derived from vector 

potentials: 

 0 0

0

(2)
,0 ,000 00( ) jv j zc c

TM TM vA a H e eφ βκ ρ − −=  in region 0, (4.56) 

 0 0

0

(2)
,0 ,000 00( ) jv j zc c

TE TE vA a H e eφ βκ ρ − −=  in region 0, (4.57) 

 0 0 0 0

0 0,1 ,100 10 ,100 10( ) ( )jv j z jv j zc c c
TM TM v TM vA a J e e a Y e eφ β φ βκ ρ κ ρ− − − −− += +  in region 1, (4.58) 

 0 0 0 0

0 0,1 ,100 10 ,100 10( ) ( )jv j z jv j zc c c
TE TE v TE vA a J e e a Y e eφ β φ βκ ρ κ ρ− − − −− += +  in region 1, (4.59) 

 0 0

0,2 ,200 20( ) jv j zc c
TM TM vA a J e eφ βκ ρ − −=  in region 2, (4.60) 

 0 0

0,2 ,200 20( ) jv j zc c
TE TE vA a J e eφ βκ ρ − −=  in region 2. (4.61) 

Here , 00
c
TM ia  and , 00

c
TE ia  denote the unknown coefficients to be determined in terms of 

the exciting wave and 0iκ  is given by (4.14), which denotes the propagation 

constants of cylindrical modes. The boundary conditions of the problem require that 

the tangential components of the electric and magnetic fields should be continuous 

across the cylindrical interfaces at 10  and ρρρρ == , that is: 

 ,200 ,100 ,100
200 1 100 1 100 1

,200 ,100 ,100

( ) ( ) ( )
c c c
TM TM TM
c c c
TE TE TE

a a a
e e e

a a a
ρ ρ ρ

− +
− +

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, (4.62) 

 ,200 ,100 ,100
200 1 100 1 100 1

,200 ,100 ,100

( ) ( ) ( )
c c c
TM TM TM
c c c
TE TE TE

a a a
h h h

a a a
ρ ρ ρ

− +
− +

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, (4.63) 

 ,100 ,100 ,000
100 0 100 0 000 0 0

,100 ,100 ,000

( ) ( ) ( ) ( )
c c c inc
TM TM TM inc TM
c c c inc
TE TE TE TE

a a a a
e e e e

a a a a
ρ ρ ρ ρ

− +
− +

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, (4.64) 

 ,100 ,100 ,000
100 0 100 0 000 0 0

,100 ,100 ,000

( ) ( ) ( ) ( )
c c c inc
TM TM TM inc TM
c c c inc
TE TE TE TE

a a a a
h h h h

a a a a
ρ ρ ρ ρ

− +
− +

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, (4.65) 
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where 00 00 and i ie h  are given by (4.30)-(4.37) with 0== nm . Here  and inc inc
TM TEa a  

denote the coefficients given in (4.2) and the matrices and inc ince h  are given by 

 0 0

0

0 0 00 0 00 00

2
0 00 00

( ) ( )1( )
( ) 0

v vinc

v

v J j J
e

j J

β κ ρ ωε ρκ κ ρ
ρ

ωε ρ κ ρ κ ρ

′⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
, (4.66) 

 0

0 0

2
00 00

0 0 00 00 0 0 00

0 ( )1( )
( ) ( )

vinc

v v

J
h

j j J v J

κ ρ κ ρ
ρ

ωμ ρ ωμ ρκ κ ρ β κ ρ

⎡ ⎤
= ⎢ ⎥

′⎢ ⎥⎣ ⎦
. (4.67) 

Next, the set of equations are solved algebraically for the coefficients 

,000 ,000 and c c
TM TEa a . An expression is obtained in matrix form; 

 ,000 1
000 0 0

,000

[ ( )] ( )
c inc
TM c inc TM

Qc inc
TE TE

a a
e e

a a
ρ ζ ρ−⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
, (4.68) 

where 

 { } { }11 1
000 0 000 0 000 000 0 0( )[ ( )] ( )[ ( )]c c c inc inc

Q h e Y Y h eζ ρ ρ ρ ρ
−− −= − − , (4.69) 

 { }{ } 11 1
000 100 0 100 0 100 0 100 0 000 2 2 000( )[ ( )] ( )[ ( )]c c cY h e h e Iρ ρ ρ ρ ζ ζ

−− − − + + −
×= + + , (4.70) 

 1 1
000 100 0 100 1 100 100 1 100 0( )[ ( )] ( )[ ( )]c ce e e eζ ρ ρ ζ ρ ρ+ + − − − −= , (4.71) 

{ } 11 1
100 100 1 100 1 200 1 200 1( )[ ( )] ( )[ ( )]c h e h eζ ρ ρ ρ ρ

−+ + − −= −  

{ }1 1
200 1 200 1 100 1 100 1( )[ ( )] ( )[ ( )]h e h eρ ρ ρ ρ− − − −− . (4.72) 

In that case, the electric fields incE  and 0
cE  in (4.55) are established as follows: 

0 0 0 0,0000
000 0 0

,0000

( ) ( )
cinc c inc
TM jv j z jv j zinc TM
cinc c inc
TEz z TE

aE E a
e e e e e e

aE E a
φ β φ βφ φ ρ ρ− − − −⎛ ⎞⎛ ⎞ ⎛ ⎞+

= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 0 0
2 2 0( ) ( )

inc
jv j zc inc TM

Q inc
TE

a
I e e e

a
φ βζ ρ − −

×

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
. (4.73) 

Recall that in the previous section, the unknown coefficients mnTMa 0,  and mnTEa 0,  

of the scattered electric field 0
sE  in (4.55) is expressed in terms of the surface 

currents. Substituting the expression (4.49) into (4.24), the tangential components of 

the scattered electric field outside the cylindrical structure are obtained as 
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0 0 ,0
0 0

0 0 ,0

( , , )
( ) ( , )

( , , )
TM mn

mn mn
m nz TE mn

E z a
e z

E z a
φ ρ φ

ρ ψ φ
ρ φ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∑  

 
*

1
0 0 0 0 *

, ( , )
( )[ ( )] ( , )

, ( , )

mn

mn mn Q mn
m n z mn

J z
e e Z z

J z

φ ψ φ
ρ ρ ψ φ

ψ φ
−

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑∑  

 
*

*

, ( , )
( , )

, ( , )

mn

Q mn
m n z mn

J z
Z z

J z

φ ψ φ
ψ φ

ψ φ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑∑ . (4.74) 

(4.55) can therefore be written as 

 0),(
),(,
),(,

),,(),,(
),,(),,(

*

*

000

000 =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
+ ∑∑

m n
mn

mnz

mn
Qc

z
inc
z

cinc

z
zJ
zJ

Z
zEzE
zEzE

φψ
φψ
φψ

φρφρ
φρφρ φφφ  on s∂ ,(4.75) 

or as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑∑ ),,(),,(

),,(),,(
),(

),(,
),(,

000

000
*

*

zEzE
zEzE

z
zJ
zJ

Z c
z

inc
z

cinc

m n
mn

mnz

mn
Q φρφρ

φρφρ
φψ

φψ
φψ φφφ  on s∂ .(4.76) 

If the constitutive parameters of the dielectric shell were equal to that of the free-

space 1 0( )ε ε=  or if its thickness were zero 1 0( )ρ ρ= , one can easily show that the 

expressions given for ZQ (denoted by 
0QZ  in this case) in (4.50)-. (4.53) would 

simplify to those given in [10]. That is, 

0

2(2)
0 0 0 02

(2) 0 0 (2)
0 0 0 0 0 0 0 0 0 0

0 2
0 0

( ) ( ) 1
( ) ( ) .( ) ( )

2

m m

m m m m

v n v n m n
m n

Q v n v n v n v n n

m n n

J H vk v
Z J H J H

v

κ ρ κ ρ βρ βπ κ ρ κ ρ κ ρ κ ρ ρ κ
ωε

β κ ρ

⎡ ⎤′ ′ ⎛ ⎞
⎢ ⎥+ −− ⎜ ⎟= ⎢ ⎥⎝ ⎠
⎢ ⎥−⎣ ⎦

  (4.77) 

Furthermore, if the conducting patches were infinitely long in z direction, ZQ would 

then simplify to 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′′−
)()(0

0)()(
2 00

)2(
00

00
)2(

00

0

0
2
0

ρρ
ρρ

ωε
ρπ

kHkJ
kHkJk

mm

mm

vv

vv . (4.78) 

The problems involving free-standing and infinitely long strips are analyzed in [10], 

where the surface currents of the problems are expanded into sub-domain basis 

functions in MM solutions and a “conjugate gradient fast Fourier transform method” 

is utilized. It is shown in Chapter 3 that the direct computations of the matrix 
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elements in MM solutions are difficult because the resultant infinite sums are slowly 

convergent with respect to the summation index m. It is also the case for the problem 

considered in this chapter, where a dielectric shell is involved. The infinite sums 

should be handled properly in order to circumvent slow convergence difficulties. 

One approach is to use sub-domain basis functions in conjunction with a conjugate 

gradient fast Fourier transform method as done in [10]. Another approach is to use 

entire-domain basis functions together with a convergence acceleration method based 

on a Kummer’s series acceleration method, as described in [18, 21]. Here, we go 

along with the second approach and use a convergence acceleration method.  

In Appendix C, it is shown that the matrices QZ  and 
0QZ  both have the same 

asymptotic form. That is, 

 
aQQQ ZZZ ≅≅

0
 as | |mv → ∞ , (4.79) 

where 
aQZ  is given as 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
=

0
2
0

0

2

2
0

0

2 ρκβ

β
ρ

ωμ
φ

φφφ

nnm

nm
m

mzzz

z
Q

v

v
v

vk
j

ZZ
ZZ

Z
aa

aa

a
. (4.80) 

The integral equation (4.76) can be solved more easily by rearranging its terms as 

follows; 

{ }0 0

* *

* *

, ( , ) , ( , )
( , ) ( , )

, ( , ) , ( , )

mn mn

Q Q mn Q mn
m n m nz mn z mn

J z J z
Z Z z Z z

J z J z

φ φψ φ ψ φ
ψ φ ψ φ

ψ φ ψ φ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− + =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ ∑∑  

0 0 0

0 0 0

( , , ) ( , , )
( , , ) ( , , )

inc c

inc c
z z

E z E z
E z E z

φ φρ φ ρ φ
ρ φ ρ φ

⎛ ⎞+
−⎜ ⎟

+⎝ ⎠
 on s∂ .(4.81) 

Now the first part on the left hand side in .(4.81) converges more rapidly because 

both QZ  and 
0QZ  asymptotically equal to 

aQZ  as m→∞. However, the second part 

should be computed by employing an appropriate acceleration method as will be 

given in the following section. 
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4.3. The MM Solution of the problem 

For the problem considered in this chapter, the numerical results are obtained by 

assuming that the patches are narrow rectangular strips oriented in z direction. In that 

case, φ components of the surface currents may be ignored, that is 0Jφ = . 

Accordingly, the current in the z direction is expanded into entire domain sinusoidal 

basis functions of the form 

 ∑
=

=
Q

q
qqz fcJ

1

, (4.82) 

where the basis functions are  

 { })(sin 2
l

l
q

q zf += π . (4.83) 

Here l denotes the strip length and qc  denote unknown expansion coefficients. By 

substituting the expansion (4.82) into the integral equation (4.76), one obtains 

 ( )),,(),,(),(),(, 000
1

* zEzEzzfZc c
z

inc
z

Q

q m n
mnmnqzzq φρφρφψφψ +−=∑ ∑∑

=

 on s∂ ,(4.84) 

where Zzz is the element in the second row and second column of the 2x2 matrix ZQ 

given in (4.50). When both sides of the above equation is inner producted by a basis 

function fp, the following equation is obtained 

*

1
, ( , ) , ( , )

Q

q zz q mn p mn
q m n

c Z f z f zψ φ ψ φ
=

< >< > =∑ ∑∑  

( )0 0 0, ( , , ) ( , , )inc c
p z zf E z E zρ φ ρ φ< − + > .(4.85) 

When the process is repeated for p=1, 2, . . ., Q, a system of equations is obtained. 

The equations can be put into a matrix form 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

QQQQ B

B
B

c

c
c

A

AA
AA

##%##
…
…

2

1

2

1

2221

1211

, (4.86) 

where 
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 ∑∑∑∑ =>><<=
m n

vnpnqzz
m n

mnpmnqzzpq m
SCCZzfzfZA 2** ),(,),(, φψφψ , (4.87) 

 ( )0 0 0, ( , , ) ( , , )inc c
p p z zB f E z E zρ φ ρ φ= − + , (4.88) 
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2/2/2/

2/
2 )()(

)1()](sin[
π

ππ

plk
ee

T
lpdzz

T
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nznznz
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ljkljkp
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zjk

np −
−−
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∫ , (4.89) 
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zjk
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∫ , (4.90) 
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eS
m

m
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v

m

m 2/
2/sin2/

2/ φφ

φ

φ == ∫
−

−

. (4.91) 

Now the unknown coefficients can be determined by an inversion; ][][][ 1
ppqq BAc −= .  

As discussed in Section 4.2, the infinite sums in (4.87) are slowly convergent with 

respect to the index m. However the convergence can be accelerated by employing 

Kummer’s acceleration method as follows:  

∑∑=
m n

vnpnqzzpq m
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n m
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ZZSCC
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*
2
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002*

2
)(      κ

ρπωμ
, (4.92) 

where I involves a slowly convergent infinite sum 

 ∑
∞

−∞=

=
m m

v

v

SjI m

2

π
, (4.93) 

and 
azzZ is given in (4.80), which denotes the asymptotic value of zzZ , 
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 0
2
02

0

0

2
ρκ

ωμ
n

m
zz vk

j
Z

a

−
= , (4.94) 

The first part on the right hand side in (4.92) converges rapidly because,  

 
azzzz ZZ ≅  as | |mv → ∞ , (4.95) 

as shown in Appendix C. The second part in (4.92) can be computed with the same 

approach considered in Chapter 3, since the expressions for 
0zzZ , 

mvnqnp SCC  and , , *  in 

this chapter are exactly the same as that given in Chapter 3. Note that the expression 

for I is also identical to the expression that was given in Chapter 3, (3.47). So, the 

infinite sum in I is can be computed as described in Appendix A. 

The MM solutions formulated so far correspond to a single cylindrical wave 

excitation given in (4.1). The solutions have to be determined separately for each 

individual cylindrical wave component of the incident plane wave. Using the 

superposition principle, the total solution is obtained by summing the individual 

solutions. The decomposition of a plane wave into the cylindrical wave components 

is considered in Chapter 2. Once the MM solutions for the coefficients cq are 

obtained, RCS of the structure as defined in (2.68) is determined using  

 
{ }

0

2

0 0

2

( , , ) ( , , )
lim 2

c s

v

i

z z
RCS

ρ

ρ φ ρ φ
πρ

∞

=−∞

→∞

+

=
∑ E E

E
. (4.96) 

Here 0
sE  denotes the electric field due to the surface currents on the conducting 

patches, 0
cE  denotes the field that is scattered by the dielectric shell when the 

conducting patches are not present and Ei denotes the electric field of the incident 

plane wave. As discussed in Chapter 2, if the incident plane wave has a unit 

amplitude vector potential then the denominator of (4.96) is 

 00120i πκ=E , (4.97) 

where 00κ  is given by (4.14). The scattered electric fields of the problem are written 

in terms of the coefficients cq by using (4.24), (4.49), and (4.82) 
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Here, the matrix )(0 ρmne  as ρ→∞ is computed using the large argument asymptotic 

forms of the Hankel functions (2.74) and (2.75), that is 

 ⎥
⎦

⎤
⎢
⎣

⎡ −
≅ −+

0
021)(
0

02/4/0

0
0

0

n

jjvjn
mn

j
ee

j
e nm

κ
ωε

π
ρκ

ρωε
ρ ρκππ  as ρ→∞. (4.99) 

Using  (4.73), the fields 0
cE  are written as 

 0 010
000 000 0 0

0

( )[ ( )] ( )
c inc

jv j zc inc TM
Qc inc

z TE

E a
e e e e e

E a
φ βφ ρ ρ ζ ρ − −−⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

, (4.100) 

where 0( )ince ρ  and c
Qζ  are given in (4.66)- (4.72) and the matrix 000 ( )e ρ  is 

determined asymptotically as 

 0 00 0/ 4 / 200
000

000

021( )
0

j jv j j
e e e

j
π π κ ρ ωεκ ρρ

κωε ρ π
+ − −⎡ ⎤
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⎣ ⎦

 as ρ→∞. (4.101) 

Finally, the RCS (4.96) is determined by combining the expressions (4.98)-(4.100).  

The coupling for the cylindrical structures is described in section 2.3. When a 

plane wave is incident on a cylindrical structure, the coupling is defined as the total 

power measured at the center of the structure. For the cylindrical structure of this 

chapter, we use the definition given in (2.77) that is 

 
2

0 0
2

( , , ) ( , , ) ( , , )
lim

( , , )

inc c s

inc

z z z
Coupling

zρ

ρ φ ρ φ ρ φ

ρ φ→∞

+ +
=

E E E

E
, (4.102) 

where Einc denotes the electric field that would be radiated by a line current if the 

cylindrical structure was not present. Those fields are established in section 2.3 and 

the electric field Einc is given by (2.88) and (2.89). When ρ → ∞, the limiting value 

of it is obtained as 
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02 (2)
00 0 00

0

1 ( ) j zinc inc
z TMa H e

j
βκ κ ρ

ωε
−=E a  

 00 02 / 4
00

0 00

1 2 j j zinc j
z TMa e e e

j
κ ρ βπκ

ωε πκ ρ
− −= a  

 00 02 / 4
00

0 00

1 2 j j zinc j
z TMa e e e

j
κ ρ βπκ
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Then the coupling is determined by using this expression and the corresponding 

asymptotic expressions of the scattered fields appearing in (4.102). 

In order to test the accuracy and the validity of our methods, a cylindrical 

structure that was previously analyzed in the literature [10] is reconsidered and the 

numerical results are given in Chapter 5. In [10], a cylindrical structure consisting of 

infinitely long strips is analyzed by using sub-domain basis functions together with a 

conjugate gradient fast Fourier transform method in MM solutions. But here, we also 

include a dielectric shell inside the cylindrical structure and use entire domain basis 

functions in MM solutions. Since the structure is uniform in z direction, the induced 

currents and the scattered fields can be assumed to be uniform in z direction. The two 

dimensional Floquet modes of the problem simplify to  
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and the propagation constants in that are  

 0nβ = , (4.105) 

 φπ Tmvvm /20 += . (4.106) 

The matrix elements in MM solutions are determined from the expression given in 

(4.87). For a TM wave excitation, we set Jφ=0 and expand the axial current Jz as  
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In that case, the corresponding matrix elements of the MM solution are accelerated 

as follows 
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where the inner products are determined as 

*, ( ) , ( )q m p mf fψ φ ψ φ< >< >=  

 ( ){ } ( ) ( ){ }
2 20 0

0 0

0 0

2 20 0

*

2 2cos cos
w w

m m

w w

jv jv
q pw w

w w

e ed d
T T

ρ ρ

ρ ρ

φ φ
πρ πρ

ρ ρ
φ φ

φ φ φ φ
− −

− −

⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪= − −⎨ ⎬⎨ ⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

∫ ∫  

 
( )

( )( )
( )

( )( )
2 2 2 20 0 0 0

0 0
2 22 2

( 1) ( 1)
w w w w

m m m mj v j v j v j vq p
m m

q p
m mw w

jv e e jv e e

T v T v

ρ ρ ρ ρ

πρ πρ
φ φ

− −
− − − − −

=
− −

 

 
( )

( )( ) ( )( )
0 0

0 0

2

2 22 2

1 ( 1) ( 1) ( 1)
w w

m mj v j vp q p q
m

q p
m mw w

e e v

T v v

ρ ρ

πρ πρ
φ

−++ − − − − −
=

− −
, (4.109) 

and the function ITM is given in terms of the asymptotic form 
azzZ  in (4.80)  
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On the other hand, when the excitation is a TE wave: we set 0zJ =  and expand the 

current Jφ as  
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In that case, the corresponding matrix elements of the MM solution are accelerated 

as follows: 
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and the function ITE is given in terms of the asymptotic form 
a

Zφφ  in (4.80) 
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Note that, both the functions ITM and ITE are given in terms of an infinite sum, which 

can be decomposed into various infinite sums of the form 

 ∑
∞

=

+

1

)/2( 0

m
m

Tmvi fe φπα  or ∑
−∞

−=

+

1

)/2( 0

m
m

Tmvi fe φπα , (4.115) 

where 



 
62

 
( )( ) ( )( )0 0

0

2 22 2
0 0

( 2 / )

( 2 / ) ( 2 / )
m

q p
w w

v m T
f

v m T v m T

φ

πρ πρ
φ φ

π

π π

+
=

+ − + −
. (4.116) 

A convergence acceleration method for infinite sums of this type is given in 

Appendix A. So, the infinite sums are calculated as described in the appendix. 
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5. NUMERICAL RESULTS 

Numerical results given in this chapter are obtained by using entire domain basis 

functions in MM solutions. The currents on the narrow rectangular strips or the 

electric fields on the slots are expanded into seven basis functions. The resulting 

slowly convergent infinite sums are accelerated as described in the previous chapters. 

For cylindrical structures involving infinitely long strips, the problems become one 

dimensional and the MM solutions of the currents are obtained as described in 

Section 4.3.  

An important parameter in scattering studies is the electromagnetic scattering by a 

target which is usually represented by its radar cross section (RCS). The RCS is 

defined as “the area intercepting the amount of power that, when scattered 

isotropically, produces at the receiver a density that is equal to the density scattered 

by the actual target” [23]. Another important parameter for the cylindrical structures 

is the electromagnetic field couplings into the cylindrical structures. The coupling is 

defined as the total power measured at the center of a cylindrical structure when a 

plane wave is incident on the structure. So, the couplings and the RCS are 

determined for several types of cylindrical structures and the numerical results are 

plotted versus the frequency or the observation angle in the circumferential direction.  

5.1. Comparisons with the results found in the literature 

To test the accuracy and validity of our methods and techniques, a cylindrical 

structure that was previously analyzed in the literature [10] is reconsidered. In [10], a 

cylindrical structure consisting of infinitely long strips oriented in z direction is 

analyzed by using sub-domain basis functions together with a conjugate gradient fast 

Fourier transform method in MM solutions. But here, we also include a dielectric 

shell inside the cylindrical structure and use entire domain basis functions in MM 

solutions. Since the structure is uniform in z direction, the induced currents and the 

scattered  fields  can  be assumed  to  be uniform in z direction.  The resulting infinite  
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Figure 5.1 The field couplings at the origin versus the electrical length of the radius 
for infinitely long strips located on a dielectric shell. A TE plane wave is normally 
incident (φ inc=00) and the scattered fields are computed at the origin (ρ=0) of the 
cylindrical structure. The curve for t=0 case matches to the result given by [10]. 

 t=0,  t=0.05ρ0,  t=0.1ρ0. 

 

Figure 5.2 The field couplings at the origin versus the electrical length of the radius 
for infinitely long strips located on a dielectric shell. A TM plane wave is normally 
incident (φ inc=00) and the scattered fields are computed at the origin (ρ=0) of the 
cylindrical structure. The curve for t=0 case matches to the result given by [10]. 
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sums in the MM solutions are accelerated by using the expressions (4.104)-(4.116) 

and the electromagnetic field couplings (the total fields at ρ=0) are determined as 

described in Section 4.3. 

For the results given in Figure 5.1 (TE excitation case) and Figure 5.2 (TM 

excitation case), it is  assumed  that  four  strips  (N=4)  are  located  on  the outer 

surface of a dielectric shell having radius ρ0=1000mm. The strip widths are chosen 

such that the angular extend of a strip equals to one half of the periodicity of a unit 

cell, that is φρ Tw 5.0
0

= , where Tφ denotes the periodicity of the structure in φ 

direction, Tφ=2π/Ν=π/2. The results are obtained by using nine basis functions in the 

MM solutions. For a TE excitation case, the couplings are plotted versus k0ρ0 (the 

electrical length of the radius) as in Figure 5.1. The plot given for the case t=0 

corresponds to a free-standing strips structure, which is considered in [10] and the 

agreement between them is excellent. In that plot, resonances are detected at 

k0ρ0≅5.32 and k0ρ0≅9.28 where the coupling almost vanishes. Note that those 

resonances occur at the cut-off frequencies of the circular waveguide modes TE41 

and TE42, respectively. As the dielectric shell thickness (t) is varied from t=0 to 

t=0.1ρ0, it is seen from the plots that the resonances are moved toward left. If a TM 

excitation case is considered, the couplings become as shown in Figure 5.2. As in the 

previous figure, the plot for the case t=0 corresponds to a result given in [10] and the 

agreements between them is excellent. A resonance that is corresponding to cut-off 

frequency of TM41 mode is detected at k0ρ0≅7.59 where the coupling vanishes. Also, 

the coupling makes a sharp peak at k0ρ0≅2.2 and reaches to a value 20.3 in the 

vicinity of the cut-off frequency of TM01 mode. While the shell thickness (t) 

increases, the resonances are shifted toward left on the figure. Furthermore, the plots 

become more oscillatory and extra resonances are observed. 

When thickness (t) and radius (ρ0) of the dielectric shell are fixed (t=0.05ρ0 and 

ρ0=1000mm) but the number of strips (N) around the shell is varied, the numerical 

results are obtained as shown in Figure 5.3 and Figure 5.4. The other parameters of 

the structure are as given in the inset and the plots are given for a TE excitation case. 

It is assumed that the angular extend of a strip equals to one half of the periodicity of 

a unit cell, that is  NNw //22
1

0
ππρ == .  When N is varied from  N=4 to N=32, the  
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Figure 5.3 The field couplings at the origin versus the electrical length of the radius 
(k0ρ0) for infinitely long strips located on a dielectric shell. The number of elements 
(N) in the circumferential direction is varied. The cylinder radius (ρ0) is kept 
constant. A TE plane wave is normally incident (φ inc=00) and the scattered fields are 
computed at the origin (ρ=0) of the cylindrical structure. 

 N=4,  N=8,  N=16. 

 

Figure 5.4 The field couplings of the structure considered in Figure 5.3 when the 
number of elements (N) in the circumferential direction is further increased. 
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strip width (w) decreases since the radius is fixed (ρ0=1000mm). That’s why; one can 

predict that the magnitudes of φ-directed currents decrease as N is increased. This 

prediction is verified by the plots given in the two figures, which reveal that the 

strips become less prominent as N is increased. Specifically, the plot corresponding 

to the case N=32 in Figure 5.4 is in close proximity to a plot corresponding to the 

non-existence of strips. 

 

Figure 5.5 The magnitude of the currents induced on the conducting wall of a 
cylindrical cavity that is located on a dielectric shell. The slit region subtends an 
angle of π/2 and other parameters are as given in the inset. A TE plane wave is 
normally incident (φ inc=1800) on the cylindrical structure. The curve for t=0 case 
matches to the result given by [10]. 

 t=0,  t=0.05ρ0,  t=0.1ρ0. 
In Figure 5.5, the magnitude of currents induced on the conducting wall of a 

cylindrical cavity is given. On the cylinder surface, a slit subtends an arc length 

0.5πλ and the conducting wall subtends an arc length w=1.5πλ, where λ denotes the 

wavelength. For a TE excitation case, the  MM  solutions of the  induced currents  

are  obtained  by using the expressions (4.111)- (4.114). Since the arc length of the 

conductor is rather large in terms of the wavelength (w=1.5πλ), accurate results are 

achieved after expanding the currents into 15 sinusoidal basis functions. When the 

number of basis functions is further increased, the current profile is not influenced 

significantly. Note that the plot for the case t=0 corresponds to non-existence the 
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excellent. As the thickness is increased, the currents become more oscillatory and 

also are amplified appreciably. 

5.2. Numerical results for free-standing axial strips 

In Figure 5.6, RCS of free-standing and infinitely long strips are plotted versus 

frequency. The radius and the width of strips are fixed but, the number of elements 

(N) in the circumferential direction is varied as seen in the inset. It is assumed that a 

TM polarized plane wave is normally incident ( 0)incφ =  on the cylindrical structure 

and the scattered fields are observed in the back side 0( 180 )φ =  of the structure. The 

results show that, as N increases, the scattered field magnitudes increase in average. 

The small ripples on the plots occur very close to the TM cut-off frequencies of 

circular waveguides as labeled in the figure. 

 

Figure 5.6 RCS versus frequency for free-standing and infinitely long strips. The 
number of elements (N) in the circumferential direction is varied. A TM plane wave 
is normally incident (φ inc=00) and the scattered fields are computed in the back side 
(φ=1800) of the structure. 

 N=16,  N=24,  N=32,  Conducting circular cylinder. 
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In Figure 5.7, RCS of the cylindrical structure considered in the previous figure 

are plotted versus frequency for the case where the observations are made in the front 

side 0( 0 )φ =  of the cylindrical structure. As N increases, the scattered field 

magnitudes increase. The small ripples at the lower frequencies occur very close to 

the TM cut-off frequencies of circular waveguides. We see from the figure that the 

scattered wave amplitudes in the front side of the structure are very small compared 

to the fields at the back side of the cylinder. See plots in Figure 5.6 and Figure 5.7. 

Furthermore, there are too many fluctuations with respect to frequency. These effects 

are reasonable since the currents induced on the strips should have some small phase 

progressions in the propagation direction of the incident plane wave. In that case, the 

fields radiated from those current will be in-phase in the back side of the structure. 

However this does not happen in the front side of the cylindrical structure and the 

field magnitudes rapidly vary due to the cancellations.  

 
Figure 5.7 RCS of the structure considered in Figure 5.6 when the scattered fields 
are computed in the front side (φ=00).  

 N=16,  N=24,  N=32,  Conducting circular cylinder. 
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be normally incident (φinc=00) on the cylindrical structure and the scattered fields are 

observed in the back side (φ=1800) of the structure. As l decreases, the magnitudes of 

the induced currents decrease as well and that causes reductions on the scattered field 

amplitudes. 

 

Figure 5.8 RCS versus frequency for free-standing rectangular strips. The length of 
strips (l) is varied and other parameters are as shown in the inset. A TM plane wave 
is normally incident (φ inc=00) and the scattered fields are computed in the back side 
(φ=1800) of the cylindrical structure. 

 l=90mm,  l=60mm,  l=30mm. 
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polarized plane wave is assumed to be normally incident (φinc=00) on the cylindrical 

structure and the fields are computed at the origin (ρ=0) of the cylindrical structure.  

Ν 32 

ρ0(mm) 254 

Tφ (rad) 2π/N 

Tz(mm) 100 

l(mm) 90,60,30 

w(mm) 4mm 

 

incidence

observation 
φ 

R
C

S/
λ 

frequency, f (GHz) 



 71

 

Figure 5.9 RCS of the structure considered in Figure 5.8 when the scattered fields 
are computed in the front side (φ=00). 

 l=90mm,  l=60mm,  l=30mm. 

 

Figure 5.10 The field couplings at the origin versus frequency for free-standing 
rectangular strips. The length of strips (l) is varied and other parameters are as shown 
in the inset. A TM plane wave is normally incident (φ inc=00) and the scattered fields 
are computed at the origin (ρ=0) of the cylindrical structure. 
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When l=90mm, the plot reveals that a resonance appears at 1.82GHz and the 

coupling shows a null. The total field inside the cylindrical structure almost vanishes 

at that frequency. This is attributed to the fact that the fields of the incident plane 

wave are cancelled by the fields due to the surface currents on the strips. For the case 

l=60mm, the same phenomena is observed at a higher frequency, 2.55GHz. If the 

length is further decreased, namely for the case l=30mm, a null in the field is not 

detected in the frequency range of interest (from 0 to 3GHz). However it may be 

possible to have a null at a higher frequency. “For l=30mm case, it is recognized that 

the structure becomes totally transparent at low frequencies”. Another interesting 

result observed from the plots is that the couplings equal unity at several frequencies. 

When the coupling equals unity, it means that the fields due to the surface currents 

on the strips cancel themselves and only the incident plane wave is detected at the 

origin. It is seen from the figure that the corresponding frequencies of this 

phenomenon are very close to the TM cut-off frequencies of circular waveguides. 

This phenomenon is also discussed in [19]. 

5.3. Numerical results for conducting cylinders perforated with axial slots 

In Figure 5.11, RCS of a conducting circular cylinder perforated periodically with 

rectangular slots are given. This cylindrical structure is the dual of the structure 

where strips are freely standing. The length (l) of the slots on the conducting cylinder 

is varied. The assumed parameters of the structure are as given in the inset. It is 

assumed that a TE polarized plane wave is normally incident (φinc=00) on to the 

cylindrical structure and the scattered fields are observed in the back side (φ=1800) of 

the cylinder. When l=90mm the plot reveals that a resonance occurs at 1.82GHz and 

the RCS show a null. Close to that frequency the structure becomes almost invisible 

at that frequency. This is due to the fact that the far fields radiated by the “magnetic 

currents” flowing on the slotted regions of the cylinder are cancelled by the fields 

due to the “electric currents” flowing on the conducting parts of the cylinder. Such a 

property may be very useful in radar applications. However, the same effect is not 

observed when l=60mm. However a dip is observed at a higher frequency, at 2.5 

GHz. The small ripples at the lower frequencies occur very close to TE cut-off 

frequencies of circular waveguides, which are labeled in the figure. If the slot length 

is further decreased to l=30mm, the resonance disappears (or at least it is shifted 
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toward higher frequencies) and the corresponding curve of this case becomes 

indistinguishable from the curve of a smooth conducting circular cylinder. 

 

Figure 5.11 RCS versus frequency for a conducting circular cylinder perforated 
periodically with rectangular slots. The length of slots (l) is varied and other 
parameters are as shown in the inset. A TE plane wave is normally incident (φ inc=00) 
and the scattered fields are computed in the back side (φ=1800) of the cylindrical 
structure. 

 l=90mm,  l=60mm,  l=30mm,  l=0 (Conducting circular 

cylinder). 

In Figure 5.12, the RCS are determined in the front side (φ=00) of the slotted 

conducting cylinder. The results are plotted for various lengths of slots. The incident 

plane wave and the other parameters of the cylindrical structure are the same as in 

the previous figure. The results show that the scattered wave amplitudes in the front 

side of the structure are very small and fluctuating when compared with those in the 

back side given in the previous figure. It is since the aperture fields on the slotted 

regions have small phase progressions in the propagation direction of the incident 

plane wave. In that case, the fields radiated from the slotted regions will be in-phase 

in the back side of the structure. However this does not happen in the front side of 

the cylindrical structure and the field magnitudes become smaller due to the 

cancellations of the scattered fields from the slotted regions. A similar phenomenon 
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was discussed for the cylindrical structure of Figure 5.7. The small ripples at the 

lower frequencies occur very close to TE cut-off frequencies of circular waveguides, 

which are labeled in the Figure. As the slot length (l) decreases, the “magnetic 

current” magnitudes on the slotted regions reduce and that causes reductions on the 

scattered field amplitudes. That’s why, the plot for l=30mm case is almost 

indistinguishable from the plot for a smooth conducting circular cylinder. This 

problem is also considered in [20]. 

 

Figure 5.12 RCS of the structure considered in Figure 5.11 when the scattered fields 
are computed in the front side (φ=00). 

 l=90mm,  l=60mm,  l=30mm,  l=0 (Conducting circular 

cylinder). 

The numerical results for electromagnetic field penetrations (couplings) into the 

slotted conducting cylinder are given in Figure 5.13. The incident plane wave and the 

other parameters of the cylindrical structure are the same as in the previous figures 

but here the observations are made at the origin (ρ=0). The numerical results are 

plotted for various slot lengths (l). When l=90mm, the corresponding plot reveals 

that a resonance occurs at a frequency 1.65GHz, where the coupling curve makes a 

sharp peak. This is attributed to the internal resonances in the cylindrical structure. 

Note that the resonant frequency is very close to the cut-off frequency of TE01 mode 

and similar resonances also occur at higher frequencies. As the slot length is varied, 
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the resonant frequencies do not change significantly but the peaks become sharper. 

When the slot length is very small (namely for the case l=30mm), the coupled field 

amplitudes are extremely weak on out-of-resonant-frequencies. It is concluded from 

the results that the resonances in cylindrical structures are not dependent on the 

length of slots but they occur near the cut-off frequencies of circular waveguide 

modes. Hence, the resonant frequencies are dependent on the curvature of the 

cylindrical surface. On the other hand, the resonant frequencies of planar structures 

involving periodically located slots are dependent on the length of slots. 

 

Figure 5.13 The field couplings at the origin versus frequency for a conducting 
circular cylinder perforated periodically with rectangular slots. The length of strips 
(l) is varied. A TE plane wave is normally incident (φ inc=00) and the scattered fields 
are computed at the origin (ρ=0) of the cylindrical structure. 

 l=90mm,  l=60mm,  l=30mm. 

5.4. Numerical results for the axial strips backed by a dielectric shell  

Figure 5.14 gives the RCS of a dielectric shell covered periodically with infinitely 

long strips. The parameters assumed for the structure are given in the inset. The 

relative dielectric constant of the shell is denoted by εr. The plots are given for 

varying N values, where N denotes the number of strips around the cylinder. A TM 

polarized plane wave is normally incident (φinc=00) on the structure and the 
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observations are made in the back side (φ=1800). For N=16, a weak resonance occurs 

near 1.5GHz but as N increases, the resonant frequency shifts toward higher 

frequencies and the resonances become deeper. At a resonant frequency, the fields 

due to the currents on the strip surfaces are cancelled by the fields due to the 

polarization currents inside the dielectric and so null fields are observed. When too 

much strips are placed on the dielectric shell (as in the case N=64), a resonance is not 

detected in the given frequency range. Possibly a resonance occurs at a higher 

frequency. The small ripples at the lower frequencies are due to TM cut-off 

frequencies of circular waveguide modes. 

 

Figure 5.14 RCS versus frequency for infinitely long strips located on a dielectric 
shell. The number of elements (N) in the circumferential direction is varied. A TM 
plane wave is normally incident (φ inc=00) and the scattered fields are computed in 
the back side (φ=1800) of the cylindrical structure. 

 N=16,  N=24,  N=32,  N=64. 

The effects of the dielectric shell thickness (t) on the scattering characteristics of 

the cylindrical structure are visualized in Figure 5.15. The parameters of the problem 

are given in the inset. When obtaining the numerical results, the number of infinitely 

long strips is taken as N=32 but the shell thickness (t) is varied. As in the previous 

figure, a TM polarized plane wave is normally incident (φinc=00) on the cylindrical 

structure and the scattered fields are computed in the back side (φ=1800) of the 
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structure. The results show that the thickness of the dielectric shell affects the 

resonant frequencies at which the scattered field amplitudes vanish. The case t=0 in 

the figure corresponds to a plot given in Figure 5.6. As the thickness of the dielectric 

shell increases, a resonance occurs at a high frequency and move toward the lower 

frequencies. Specifically for the case t=4mm, a resonance occurs at 2.65GHz and the 

structure becomes almost invisible at that frequency. At lower frequencies, all plots 

are indistinguishable from each other. So the numerical results have shown that the 

thickness of the dielectric shell has no effect on the scattered field magnitudes at 

lower frequencies. The small ripples on the plots are close to the TM cut-off 

frequencies of circular waveguide modes. 

 

Figure 5.15 RCS versus frequency for infinitely long strips located on a dielectric 
shell. The dielectric thickness (t) is varied and other parameters are as shown in the 
inset. A TM plane wave is normally incident (φ inc=00) and the scattered fields are 
computed in the back side (φ=1800) of the cylindrical structure. 

 t=0,  t=2mm,  t=4mm,  t=8mm. 

In Figure 5.16, the plots are given for a case t=4mm but, the relative dielectric 

constant (εr) of the dielectric shell is varied. It is assumed that a TM polarized plane 

wave is normally incident (φinc=00) on the cylindrical structure involving infinitely 

long strips and the RCS are determined in the back side (φ=1800) of the structure. 

Other parameters are as given in the inset. When the relative dielectric constant of 
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the shell (εr) is greater than unity, the polarization currents in the dielectric makes 

additional radiation into the free-space and at a resonant frequency those fields 

cancel the fields radiated from the currents on the strips. The results show that the 

resonant frequencies are dependent on εr; as it increases, the resonances are shifted 

toward lower frequencies and become deeper. Specifically for εr =8.5, a resonance 

occurs at 1.8GHz and the structure becomes almost invisible. However at low 

frequencies, all plots are almost indistinguishable and it means the dielectric material 

has no influence at those frequencies. That has also been recognized from the plots 

given in the previous figures. The small ripples at the lower frequencies are close to 

the TM cut-off frequencies of circular waveguide modes.  

 

Figure 5.16 RCS versus frequency for infinitely long strips located on a dielectric 
shell. The relative dielectric constant (εr) is varied and other parameters are as shown 
in the inset. A TM plane wave is normally incident (φ inc=00) and the scattered fields 
are computed in the back side (φ=1800) of the cylindrical structure. 

 εr =1,  εr =2,  εr =4.25,  εr =8.5. 

The numerical results given in Figure 5.17 and Figure 5.18 are obtained for a case 

when the axial strips are of finite length. The RCS are plotted versus frequency for 

different values of the dielectric shell thickness (t). As in the previous figures, the 

cylindrical structure is illuminated by a normally incident TM polarized plane wave.  
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Figure 5.17 RCS versus frequency for rectangular strips located on a dielectric shell. 
The dielectric thickness (t) is varied. A TM plane wave is normally incident 
(φ inc=00) and the scattered fields are computed in the back side (φ=1800) of the 
cylindrical structure. 

 t=0,  t=0.01ρ0,  t=0.05ρ0.  

 

Figure 5.18 RCS of the structure considered in Figure 5.17 when the dielectric 
thickness (t) is further increased. 

 t=0.05ρ0,  t=0.1ρ0,   t=ρ0. 
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The scattered fields are computed in the back side (φ=1800) of the structure. If the 

thickness of the dielectric shell is varied from 0 to 0.05ρ0 as in Figure 5.17, the 

resonances become deeper and the resonant frequencies are shifted toward the lower 

frequencies. Specifically for t=0.05ρ0 a resonance occurs at 1.76 GHz and the 

structure becomes almost invisible at that frequency. The resonances are due to the 

cancellations between the fields radiated from two different types of currents that are 

induced on the cylindrical structure: one is the polarization currents inside the 

dielectric shell and the other is the surface currents on the conducting strips. When 

the dielectric thickness is further increased, the resonances become weaker as shown 

by the plots in Figure 5.18. The plot for t=ρ0 corresponds to a case when the inside of 

the cylindrical surface is completely filled with the dielectric material. 

 

Figure 5.19 RCS versus observation angle (φ) for rectangular strips located on a 
dielectric shell. The length of strips (l) is varied and other parameters are as shown in 
the inset. A TM plane wave is normally incident (φ inc=00) and the scattered fields are 
computed at the resonant frequency (f=1.76GHz) of Figure 5.18. 

 l=90mm,  l=60mm,  l=30mm,  l=0. 

The RCS versus observation angle (φ) are plotted in Figure 5.19 for the case of 

t=0.05ρ0, f=1.76 GHz. The other parameters of the cylindrical structure are given in 

the inset. The assumed parameters correspond to the case where the strong resonance 

in Figure 5.18 occurred at 1.76GHz. The plots are given for decreasing lengths of 

Ν 32 

ρ0(mm) 254 

Tφ (rad) 2π/N 

Tz(mm) 100 

l(mm) 90,60,30,0 

w(mm) 4 

εr 4 

t(mm) 0.05ρ0 

 

incidence

φ 

observation

t 
εr 

R
C

S/
λ 

angle, φ (degrees) 



 81

strip (l). As l decreases, the total scattered field amplitudes increase in average. 

However the currents induced on the strips become weaker as l shrinks. So the fields 

radiated from the strips can not cancel the fields radiated from the polarization 

currents inside the dielectric shell and the resultant effect is observed as a net 

increase in RCS. The plot for the case l=0 corresponds to the RCS of a dielectric 

shell having no strips on its surface. It is interesting to note that the two plots namely 

for the cases l=0 and l=30mm almost coincide in the shadow region of the cylindrical 

structure (between 1200 and 1800). It is also remarkable that when l=90mm there 

exists some angles regularly spaced along the φ-axis at which the surface becomes 

almost invisible. 

 

Figure 5.20 RCS versus observation angle (φ) for rectangular strips located on a 
dielectric shell. The width of strips (w) is varied and other parameters are as shown 
in the inset. A TM plane wave is normally incident (φ inc=00) and the scattered fields 
are computed at the resonant frequency (f=1.76GHz) of Figure 5.18. 

 w=2mm,  w=4mm,  w=6mm. 

In Figure 5.20, the effect of the width on the RCS is investigated. The RCS are 

plotted versus observation angle φ, for the case t=0.05ρ0, f=1.76GHz, and l=90mm. 

The plot for w=4mm corresponds to the case, where the strong resonance occurs in 

Figure 5.18. The numerical results reveal that if the strip width is varied (that is: if 

4≠w mm), the scattered field amplitudes increase in average. It is since; a variation 

in w causes variations on the currents induced on the strips. As a result, the above-
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mentioned cancellation phenomenon between the fields radiated from the 

polarization currents inside the dielectric shell and the fields radiated from the strip 

currents are broken down. Thus the RCS increases if the widths (w) of the strips are 

decreased or increased. 

It is noticed from the numerical results that the dielectric shell thickness (t) also 

influences the RCS. Plots of the RCS in Figure 5.21 are given versus observation 

angle φ for the case w=4mm, f=1.76GHz, and l=90mm as the shell thickness 

changes. The parameters are chosen to reflect the resonance at 1.76GHz in Figure 

5.18 (t=0.05ρ0). The plots reveal that if the dielectric thickness is varied, the total 

scattered field amplitudes increase in average. It is since, changes in the dielectric 

thickness causes variations in the polarization currents inside the dielectric and so the 

cancellation phenomenon discussed in the preceding figures is broken down. As a 

result, the RCS increases if the dielectric shell thickness is decreased or increased.  

 

Figure 5.21 RCS versus observation angle (φ) for rectangular strips located on a 
dielectric shell. The dielectric thickness (t) is varied. A TM plane wave is normally 
incident (φ inc=00) and the scattered fields are computed at the resonant frequency 
(f=1.76GHz) of Figure 5.18. 

 t=0.01ρ0,  t=0.05ρ0,  t= 0.1ρ0. 

The plots given in Figure 5.22 show that the resonant frequencies are changed if 

the number of strips in the circumferential direction (N) is varied. It is assumed that a 
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TM polarized plane wave is normally incident (φinc=00) on the cylindrical structure 

and the scattered fields are computed in the back side (φ=1800) of structure. No 

resonances are detected and a smooth curve is obtained when there are no strips. The 

other plots reveal that as N is increased, the resonant frequencies are shifted from 

lower to higher frequencies. Specifically for N=32, the resonance occurs at 1.76 GHz 

and the structure becomes almost invisible at that frequency. However, a clear 

resonance is not detected when N=8. It is recognized that the fields radiated from the 

currents on the strips for the case N=8 are so weak that they can not cancel the fields 

radiated from the polarization currents inside the dielectric shell.  

 

Figure 5.22 RCS versus frequency for rectangular strips located on a dielectric shell. 
The number of elements (N) in the circumferential direction is varied. A TM plane 
wave is normally incident (φ inc=00) and the scattered fields are computed in the back 
side (φ=1800) of the cylindrical structure. 

 without strips,  N=8,  N=16,  N=32. 

In Figure 5.23, the effects of small variations in the strip lengths (l) are illustrated. 

RCS are plotted versus frequency for the case when a TM polarized plane wave is 

normally incident (φinc=00) on the cylindrical structure and the scattered fields are 

observed in the back side (φ=1800) of the structure. The plots reveal that a change in 

the strip length causes a shift in the resonance frequency: if the strip length is 
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increased, the resonance occurs at a lower frequency. In addition, the scattered field 

amplitudes are raised at low frequencies.  

 

Figure 5.23 RCS versus frequency for rectangular strips located on a dielectric shell. 
The length of strips (l) is varied. A TM plane wave is normally incident (φ inc=00) 
and the scattered fields are computed in the back side (φ=1800) of the cylindrical 
structure. 

 l=85mm,  l=90mm,  l=95mm. 

Figure 5.24 shows the variation of RCS as the incidence angle (φinc) is varied. The 

observation angles (φ) are measured from the incidence direction of the plane wave 

such that the directions φ=00 and φ =1800 respectively correspond to the front side 

(φinc) and the back side (1800+φinc) of the cylindrical structure. The number of strips 

(N) in the circumferential direction is 20 and the frequency is 1.76GHz. The other 

parameters of the cylindrical structure are as given in the inset. The incidence angle 

of the plane wave is varied from 00 to 0.5Tφ, where Tφ denotes the periodicity in the 

circumferential direction: Tφ.=2π/N=180. For the case φ inc =0.5Tφ., the cylindrical 

structure becomes invisible near the observation angles at φ=100 and φ=700. The 

plots reveal that the scattered field amplitudes in the shadow region of the cylindrical 

structure are not affected (for φ>1200) as the angle of incidence changes. 
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Figure 5.24 RCS versus observation angle (φ) for rectangular strips located on a 
dielectric shell. The circumferential angle of incidence (φ inc) is varied. The number 
of elements (N) in the circumferential direction is 20. The scattered fields are 
computed at the resonant frequency (f=1.76GHz) of Figure 5.18. 

 φ inc =0,  φ inc =0.25Tφ,  φ inc =0.5Tφ.. 

 

Figure 5.25 RCS of the structure considered in Figure 5.24 when the number of 
elements in the circumferential direction is increased (N=26). 

 φ inc =0,  φ inc =0.25Tφ,  φ inc =0.5 Tφ. 
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In the case of oblique incidence numerical investigations have revealed that if the 

number of strips in the circumferential (N) direction is large enough (such as if 

N>26), the incidence angle (φinc) becomes insignificant. This is demonstrated in 

Figure 5.25, where N=26 and the frequency is 1.76GHz. The radius of the structure is 

(ρ0=254mm). The plots show that the scattered fields are not affected with the 

variations in the incidence angle. 

 

Figure 5.26 RCS versus frequency for rectangular strips located on a dielectric shell. 
The elevation angle of incidence (θ inc) is varied. The scattered fields are computed in 
the back side (θ=1800−θ inc; φ=1800) of the cylindrical structure. 

 θ inc =900,  θ inc =600,  θ inc =300. 

In the figures given so far, plane waves are assumed to be incident on the 

cylindrical structures in directions perpendicular to the z axis (on x-y plane) and the 

scattered fields are observed on the same plane. Those directions correspond to an 

elevation angle 900 for both the incident waves and the scattered waves. Variation of 

RCS versus incidence angle (θ inc) is given in Figure 5.26. The observation angles (θ) 

in that cases are aligned at θ=1800−θ inc. Moreover the scattered fields are computed 

in the back side of the cylindrical structure (φ=1800). The data of the problem is 

given in the inset. The plots reveal that if the angle θ is decreased, the resonance at 

the frequency 1.76GHz shifts toward lower frequencies. Furthermore, the scattered 

fields’ amplitudes are typically decreased in the frequency range from 0 to 3GHz. 
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Such an assessment is also detected in Figure 5.27, where the RCS are computed in 

the front side (φ=00) of the same structure. The plots in that figure are very 

oscillatory on the high frequency portion.  

 

Figure 5.27 RCS of the structure considered in Figure 5.26 when scattered fields are 
computed in the front side (θ =1800−θ inc; φ = 00) of the cylindrical structure. 

 θ inc =90 degrees,  θ inc =60 degrees,  θ inc =30 degrees. 

The numerical results on the electromagnetic field penetrations (the couplings) 

into a dielectric shell covered with the strips are given in Figure 5.28. It is assumed 

that a TM polarized plane wave is normally incident (θ inc=900; φ inc=00) on the 

cylindrical structure and the scattered fields are computed at the origin (ρ=0) of the 

structure. The dielectric thickness (t) is varied and the other parameters of the 

structure are as given in the inset. Note that the t=0 corresponds to the free-standing 

strips case, which was previously considered (namely, it corresponds to a plot given 

in Figure 5.10). When t=0, the fields inside the cylindrical structure almost vanishes 

at a resonant frequency 1.82GHz. It is recognized that the incident fields and the 

scattered fields cancel themselves at that frequency. As the shell thickness is 

increased the resonance at 1.82GHz disappears and the plots become smoother. 

However, very sharp ripples are detected in the vicinity of 1GHz. Those ripples may 

be due to the TM cut-off frequencies of circular waveguide modes. Note that, the two 

cut-off frequencies (at 0.96GHz and 1.04GHz) corresponding to the modes TM21 and 
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TM02 are very close to each other and so the remarkable ripples are possibly due to 

that proximity.  

 

Figure 5.28 The field couplings at the origin versus frequency for rectangular strips 
located on a dielectric shell. The dielectric thickness (t) is varied. A TM plane wave 
is normally incident (φ inc=00) and the scattered fields are computed at the origin 
(ρ=0) of the cylindrical structure. 

 t=0,  t=0.01ρ0,  t=0.05ρ0,  t=0.1ρ0. 

When the elevation angle of the incident wave (θ inc) is varied, the couplings are 

plotted as shown in Figure 5.29. The shell thickness is fixed (t=0.05ρ0) and the 

scattered fields are computed at the origin (ρ=0) of the structure. The other 

parameters of the structure are the same as in the previous figure. While the 

incidence angle varies from θ inc=900 to θ inc=600, the sharp ripples are shifted toward 

higher frequencies. But if the incidence angle is further decreased (namely for 

θ inc=300 case), the coupling approaches unity and the sharp spikes are not detected. 
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Figure 5.29 The field couplings at the origin versus frequency for rectangular strips 
located on a dielectric shell. The elevation angle of incidence (θ inc) is varied. The 
scattered fields are computed at the origin (ρ=0) of the cylindrical structure.  

 θ inc=90 degrees,  θ inc=60 degrees,  θ inc=30 degrees. 
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6. CONCLUSION 

6.1. Conclusions on the numerical result 

Numerical results are obtained by using entire domain basis functions in MM 

solutions. The resulting slowly convergent infinite sums are accelerated. An 

important parameter in scattering studies is the electromagnetic scattering by a target 

which is usually represented by its radar cross section (RCS). The RCS is defined as 

“the area intercepting the amount of power that, when scattered isotropically, 

produces at the receiver a density that is equal to the density scattered by the actual 

target” [23]. Another important parameter for the cylindrical structures is the 

electromagnetic field couplings into the cylindrical structures. The coupling is 

defined as the total power measured at the center of a cylindrical structure when a 

plane wave is incident on the structure. So, the couplings and the RCS are 

determined for several types of cylindrical structures and the numerical results are 

given in Chapter 5. The numerical analyses have shown that:  

In free-standing rectangular strips structures, the scattered field magnitudes are 

seen to be dependent on the surface periodicities and the strip dimensions. As the 

strip length decreases, the magnitudes of the induced currents decrease as well and 

that causes reductions on the scattered field amplitudes. Some weak resonances are 

detected near the TM cut-off frequencies of circular waveguide modes. Amplitudes 

of the scattered fields in the front side of the structure are seen to be very small and 

fluctuating when compared with those in the back side. 

For cylindrical structures involving a conducting cylinder perforated by the 

rectangular slots, resonances are detected at some specific frequencies. Close to such 

a frequency the structure becomes almost invisible. A resonance occurs when the far 

fields radiated by the “magnetic currents” flowing on the slotted regions of the 

cylinder are cancelled by the fields due to the “electric currents” flowing on the 

conducting parts of the cylinder. Such a property of the slotted cylinder may be very 

useful in radar applications. Amplitudes of the scattered fields in the front side of the 
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structure are seen to be very small and fluctuating when compared with those in the 

back side. The resonant frequencies depend on the slot length and the curvature of 

the cylindrical surface. On the other hand, the resonant frequencies of planar 

structures involving periodically located slots are dependent on the length of slots. 

The numerical analysis on dielectric shell structures that are covered periodically 

with the rectangular strips have shown that the scattered filed amplitudes vanish at 

some resonant frequencies. The resonances occur when the fields due to the currents 

on the strip surfaces are cancelled by the fields due to the polarization currents inside 

the dielectric. By the way null fields are observed at a resonant frequency. The 

resonant frequencies are seen to be dependent on many parameters of the structure 

such as the dielectric constant of the shell, the shell thickness, the strip dimensions, 

the incident angle of an exciting wave etc. As the dielectric constant of the shell 

increase, the resonances are shifted toward lower frequencies. But if the strip length 

is decreased, the resonances are shifted toward lower frequencies. It is also seen that 

if the number of strips in the circumferential (N) direction is large enough (such as if 

N>26), the scattered fields are not affected from the variations of the circumferential 

angle of incidence.  

6.2. Future Work  

In this study, we considered a simple dielectric shell inside a cylindrical structure. 

However, the formulations given in this dissertation can be easily extended to 

analyze multiple concentric shells made up of different dielectric materials. 

Furthermore, the problems involving lossy dielectrics or anisotropic materials such 

as a chiral material can also be investigated after some modifications in the 

formulation.  

Numerical results require computations of slowly convergent infinite sums as 

discussed in this study. Here the acceleration method is applied to the formulation 

involving narrow rectangular strips. As a future work one should attempt to apply the 

acceleration techniques to other geometries such as conducting patches.  
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APPENDIX A. THE CONVERGENCE ACCELERATION OF 

SLOWLY CONVERGENT INFINITE SUMS INVOLVING 

OSCILLATING TERMS 

In this appendix, an acceleration technique based on a Kummer’s transformation 

method is developed for some kind of slowly convergent sums. An infinite sum is 

decomposed into two parts; one part being rapidly convergent and the other part 

being slowly convergent. Then the sum in the slowly convergent part is expressed as 

integrals of some auxiliary functions and subsequently they are written in terms of 

polynomials whose coefficients are given by the zeta functions. The given method is 

very general and does not involve too much analytic effort. A numerical example is 

provided to illustrate the usage and the efficiency of the method.  

The MM solutions of Chapter 3 yield slowly convergent infinite sums of the form 
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where Nvr /0= . The constants N, v0 , b, w, ρ0, and Tφ are as seen in the unit cell of 

the problem in Figure 3.1.b. Direct computations has shown that the series in (A.1) 

converges slowly for small values of πw/b. Particularly, in the limiting case 

0/ →bwπ , the series is divergent. However, the sum can be decomposed into 

rapidly convergent sums by applying a Kummer’s acceleration method as in [18, 21]. 

In this manuscript, we consider more general sums and develop a computation 

scheme. At the end, computations of the sum in (A.1) are provided in a numerical 

example. 

The method that will be given is a generalization of a method discussed by 

Flojolet et. al. [26]. According to [26] one can write 
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where )(mζ  denote the values of the zeta function at the integers, cm denote the 

power series coefficient of nf  when it is expanded into inverse powers of n. The 

coefficients nf  in the original sum (A.2) is assumed to be such that 

0 and 0 →→ nn nff  as ∞→n . The series on the left hand side of (A.2) may or may 

not be slowly convergent but, the one on the right hand side is, evidently, a rapidly 

convergent series. Such an expression is very useful for the computation once the 

values of the zeta function are available from a table. However, the difficulties may 

be encountered in finding the power series coefficient of nf . 

As in [21], we extend this method to the sums of the form 
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n
in feS αα , (A.3) 

where α denotes a real variable 0→nf  as ∞→n . The sum in (A.1) can be 

expressed in terms of the sums of the form (A.3) as follows 
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In deed, lots of sums can be represented in the form (A.3), for example a Fourier 

series 
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can be re-expressed as 
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In order to compute an infinite sum of the form (A.3) easily, a computation 

scheme is derived. Initially, the sum in (A.3) is decomposed into two parts  
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and   ,. . . , , 21 Mccc  denote the constant coefficients coming out in a power series 

expansion 
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If 00 ≠c , a final result for S(α) would involve impulse functions, which can be 

determined easily by an analytical approach, and that case is not considered here. 

Note that the function )(αMR  can be computed conveniently because; the expression 

in (A.13) is rapidly convergent. But, this is not the case for the function )(αMQ . The 

computation of )(αMQ  can be aided by defining an auxiliary function and 

establishing a recurrence relation 
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After that, )(αMQ  is expressed as 
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are polynomials of degree m-2 and ζ  denotes a zeta function defined as 
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whose values at the integers are tabulated in [24]. Also its values at the even integers 

can be expressed in terms of the Bernoulli numbers, which are considered in 

Appendix B. 

The real and imaginary parts of )(1 αh  can be written as [27 – Appendix A.6 ]  
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and the Taylor series expansion of )(1 αU  is 
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Substituting (A.21) into (A.19) and then carrying out the recurrence relation defined 

in (A.15) for each )(αmh , the expression in (A.16) is converted into a numerically 

convenient form and S(α) is written as 
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where )(αmU  denote rapidly convergent sums 
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and mH  are known as harmonic numbers [24] 
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The constraint πα 2||0 <<  in the expressions is due to branch point singularities of 

the function )(1 αh  at α =0, ±2π, ±4π, .... But, the identities 
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can be detected easily from (A.3) and so the computations can be restricted to the 

interval παπ ≤<−  by making an appropriate change of variable. In the case 0=α , 

the series in (A.3) is divergent if 01 ≠c  else the expression for S(α) reduces to that 

given in [26], 
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Thus, a convenient computation scheme is obtained for the function S(α ). The given 

method can also be found in [21].  

When the Fourier sums are considered, the derived expressions may be used 

separately for the two sums in (A.10), which involve nf  and gn. However, the whole 

procedure may yield much simpler expressions for some special cases of nf  and gn. 

For example, if nn fg −=  the Kummer’s acceleration method gives up an expression: 
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or as an alternative, one can let ∞→M  and write 
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where )(xBm  denotes an m-th Bernoulli polynomial [24]. Here, the expressions are 

derived by establishing an identity 
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from the properties of the Bernoulli polynomials, and then using within the 

Kummer’s acceleration method. 

Alternatively, linear transformation methods such as a Levin-type sequence 

transformation method [28] are applicable to more general sums and generally they 

result in closed form analytic expressions or asymptotic expansions, which are more 

useful than the expression (A.22) we derived. However they are a bit sophisticated 

and may require some knowledge about how to treat the functions in the transformed 

domain. Our technique has an advantage that: it is computationally oriented and does 

not require too much analytic effort. 

To test the efficiency of the method, the sum in (A.4) is computed for some 

discrete values of x in the range 0)/(log3 10 ≤≤− πx  with 5.0=r . When (A.8) is 

expanded into inverse powers of n, the power series coefficients are 



 98

Table A.1 Comparison of the relative errors 

)/(log10 πx  Ilimit Relative error –  
direct summation 

Relative error-  
M=10, nmax=50, kmax=10. 

-3.0 6.649320131169 1.51*10-4 1.24*10-11 

-2.5 5.498030977387 1.81*10-5 3.39*10-13 

-2.0 4.346772357306 2.33*10-6 -4.09*10-16 

-1.5 3.195819043024 3.17*10-7 -1.53*10-15 

-1.0 2.047915630582 4.95*10-8 -1.30*10-15 

-0.5 0.930196772259 1.09*10-8 1.79*10-15 

 0.0 0.083974656992 1.21*10-8 2.13*10-10 

 

 0210 === ccc ; )2)(1()( 3
2

1 −−−= − mmrc m
m ; 3≥m . (A.30) 

In the numerical validations double precision arithmetic is used and the results are 

given in Table A.1. To obtain the limiting values, Ilimit , M is set to 10 and the infinite 

sums in our method are carried out until no digit change is observed. A relative error 

criteria defined as itit III limlim /)( −  is introduced to compare Ilimit values with the 

results that are obtained from the direct summations of the original series up to 410  

terms. Also the last column of the table shows the relative errors resulting from 

truncations of the infinite sums in our method. When the summations of )(xRM  are 

carried up to 50max =n  and those of )(xU m  are carried up to 10max =k , with 

10=M ; the relative errors are seen to be extremely small implying that the 

convergence speeds of the infinite sums are very high. The results in that case are 

obtained by using only about 650 terms for each x value (a table of the zeta functions 

at the integers was available).  

As the table shows, the relative error in our method increases as x increases. This 

is due to the truncations of the infinite sums in )(xU m  but, the errors can be avoided 

by using more terms. For example, the relative error can be reduced significantly 

(reduces from 1010*13.2 −  to 161096.4 −∗  for π=x ) by setting 15max =k . 
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According to the derived computation scheme, an infinite sum of the form (A.3) 

can be computed easily once the values of the zeta function at the integers are 

available from a table and the power series coefficients of fn are determined at the 

beginning. Only difficulty may be in finding the power series coefficients. 

Alternatively, a linear transformation method could yield more useful expressions 

but, it would require some analytical effort. However the method given here is 

computationally oriented and does not involve too much effort.  
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APPENDIX B. BERNOULLI POLYNOMIALS AND BERNOULLI 

NUMBERS 

In Appendix A, it is shown that some forms of the infinite sums are related with the 

Bernoulli polynomials. Here, we present those polynomials and give some useful 

identities. The generating function for the Bernoulli polynomials is given as 

 ∑
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where Bn(x) denote a Bernoulli polynomial of degree n. A few of the Bernoulli 

polynomials are given as 
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and the remaining polynomials, 5 6 7( ),  ( ),  ( ),  . . .B x B x B x  can be found in [24]. There 

are many interesting properties for these polynomials. Some of those are 

 ∑
−

=

− +=
1

0

1 )()(
m

k
m
k

n
n

n xBmmxB ; m=1, 2, 3, . . .  (B.7) 

 ∑
=

−

−
=+

n

k

kn
kn hxB

kkn
nhxB

0

)(
!)!(

!)( ; n=0, 1, 2, 3, . . .  (B.8) 

 )0()21()( 1
2
1

n
n

n BB −−−= , (B.9) 

 )1()1()0( n
n

n BB −= , (B.10) 



 101

 )0(
)!(

!!)1()()( 1
1

0
nm

n
mn B

nm
nmdttBtB +

−

+
−=∫ . (B.11) 

Also the following infinite sums are expressible in terms of the Bernoulli 

polynomials 
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The Bernoulli numbers are obtained from the special values of the Bernoulli 

polynomials [24].The Bernoulli numbers are denoted by Bn and are defined as 

 )0(nn BB = . (B.14) 

There are many ways to determine the Bernoulli numbers [24]. One practical way is 

to use a recurrence relation. A recurrence relation for the Bernoulli numbers can be 

obtained from the identity in (B.8). Letting x=0 and h=1, we obtain a recurrence 

formula 
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Once B0 is known, the other Bernoulli numbers B1, B2, B3, . . . can be determined 

easily by using the recurrence relation (B.15). A few of the Bernoulli numbers are 
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The Bernoulli numbers are closely related with the values of the zeta functions ζ, 

which are defined and used in Appendix A. The relation between them is 
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Once the Bernoulli numbers are computed from the recurrence relation (B.15) and 

tabulated, the convergence acceleration method discussed in the Appendix A 

becomes very efficient for numerical computations. 



 103

APPENDIX C. ASYMPTOTIC FORMS FOR THE EXPRESSIONS 

INVOLVING BESSEL FUNCTIONS 

Formulations of the problems considered in Chapter 2, Chapter 3, and Chapter 4 all 

involve cylindrical functions that are called as the Bessel functions. In this appendix, 

we focus on the behaviors of those functions for the limiting values of their orders 

and arguments. Specifically, the asymptotic form of a matrix, which is obtained in 

Chapter 4 is determined. 

Let ( )vR z  be a solution of the Bessel’s differential equation 
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where v denotes an integer that is called as the order of the Bessel function. The 

function ( )vR z  may be: a Bessel function of the first kind Jv(z), a Bessel function of 

the second kind Yv(z), a Hankel function of the first kind )()1( zH v , and a Hankel 

function of the second kind )()2( zHv . Any two of these functions are linearly 

independent solutions of the Bessel’s differential equation (C.1); so they are related 

to each other by the expressions 

 )()()()1( zjYzJzH vvv += , (C.2) 

 )()()()2( zjYzJzH vvv −= , (C.3) 

and wronskian relations of them are given by 

 
z

zYzJzYzJ vvvv π
2)()()()( =′−′ , (C.4) 

 
z

jzHzHzHzH vvvv π
4)()()()( )2()1()2()1( −

=′−′ , (C.5) 

 
z

jzHzJzHzJ vvvv π
2)()()()( )2()2( −

=′−′ . (C.6) 
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Insight into the behavior of solutions to Bessel’s differential equation can be gained 
by noting their asymptotic forms for the limiting values of their arguments. For large 
arguments (as z→∞), the asymptotic forms of the Bessel functions are given in terms 
of the sinusoidal or exponential functions [24] 

 ( )ππ
π 4

1
2
1cos2)( −−≅ vz

z
zJ v  as z→∞, (C.7) 

 ( )ππ
π 4

1
2
1sin2)( −−≅ vz

z
zYv  as z→∞, (C.8) 

 ( )ππ

π
4
1

2
12)()1( −−≅ vzj

v e
z

zH  as z→∞, (C.9) 

 ( )ππ

π
4
1

2
12)()2( −−−≅ vzj

v e
z

zH  as z→∞. (C.10) 

It is obvious from these expressions that the functions Jv(z) and Yv(z) exhibit 

oscillatory behavior, as do the sinusoidal functions. Hence, these solutions represent 

cylindrical standing waves. However, )()1( zH v  and )()2( zH v  represent traveling 

waves, as do the exponential functions. They therefore represent cylindrical traveling 

waves, )()1( zH v  representing inward-traveling waves and )()2( zH v  representing 

outward-traveling waves [22]. This direction of wave travel is as a consequence of 

the choice of tje ω  time variation. If it was chosen tje ω− , then the interpretations of 

)()1( zH v  and )()2( zH v  would be reversed. When the argument z tends to zero, the 

asymptotic forms of the Bessel functions are given as 

 
!
)(

)( 2
1

v
z

zJ
v

v ≅  as z→0, (C.11) 

 
π

v

vvv
zv

zjHzjHzY
−−

−≅≅−≅
)()!1(

)()()( 2
1

)2()1(  ; 0≠v ; as z→0, (C.12) 

 zzjHzjHzY ln2)()()( )2(
0

)1(
00 π

≅≅−≅  as z→0. (C.13) 

On the other hand if the order of a Bessel function tends to infinity, the function 

decays or grows exponentially as illustrated in the following equations. It is supposed 

that v→∞ and the argument z is fixed. The asymptotic forms in that case are [24] 
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v

v ez
v

v
zJ

−

⎟
⎠
⎞

⎜
⎝
⎛≅

2
2
1)(
π

 as v→∞, (C.14) 

 
v

v ez
v

v
zY ⎟

⎠
⎞

⎜
⎝
⎛−≅

22)(
π

 as v→∞, (C.15) 

 
v

v ez
v

v
jzH ⎟

⎠
⎞

⎜
⎝
⎛−≅

22)()1(

π
 as v→∞, (C.16) 

 
v

v ez
v

v
jzH ⎟

⎠
⎞

⎜
⎝
⎛≅

22)()2(

π
 as v→∞. (C.17) 

When the argument of a Bessel function is imaginary ( αjz −= ), it is 

conventional to use the modified Bessel functions. The modified Bessel functions are 

related to the regular Bessel functions by [24]  

 )()( 2/ αα π
v

jv
v IejJ −=− , (C.18) 

 )(2)()( 2/2/ α
π

αα ππ
v

jv
v

jv
v KeIjejY −−=− − , (C.19) 

 )(2)(2)()()( 2/2/)1( α
π

αααα ππ
v

jv
v

jv
vvv KejIejjYjJjH −=−+−=− − , (C.20) 

 )(2)()()( 2/)2( α
π

ααα π
v

jv
vvv KejjjYjJjH =−−−=− , (C.21) 

where Iv and Kv are known as modified Bessel functions of the first kind and the 

second kind, respectively. Asymptotic formulas for the large arguments of the 

modified Bessel functions are [24] 

 
πα

α
α

2
)( eIv ≅  as α →∞, (C.22) 

 α

α
πα −≅ eKv 2

)(  as α →∞. (C.23) 

These expressions illustrate the evanescent character of the modified Bessel 

functions. It is apparent that the modified Bessel functions are used to represent 

evanescent-type waves. When the argument α  tends to zero, the asymptotic forms of 

the modified Bessel functions are given as 
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!
)(

)( 2
1

v
I

v

v
α

α ≅  as α→0, (C.24) 

 v
v vzK −−≅ )()!1()( 2

1
2
1 α  ; 0≠v ; as α →0, (C.25) 

 αα ln)(0 −≅K  as α →0. (C.26) 

If the argument α  is fixed but the order tends to infinity ( v → ∞ ), the corresponding 

asymptotic forms are  

 
v

v e
v

v
I

−

⎟
⎠
⎞

⎜
⎝
⎛≅

απ
α 2

2
1)(  as v→∞, (C.27) 

 
v

v e
v

v
K ⎟

⎠
⎞

⎜
⎝
⎛≅

α
πα 2
2

)(  as v→∞. (C.28) 

In Chapter 4, an integral equation is obtained for a cylindrical dielectric shell 

covered periodically with conducting patches. The integral equation is given in terms 

of a 2x2 matrix, whose entries involve various kinds of Bessel functions. Here, an 

asymptotic form of the matrix is determined by using large order asymptotic forms 

for the Bessel functions appearing in it. The asymptotic form obtained in this 

appendix is used in a convergence acceleration technique, which is described in 

Chapter 4. The matrix is given by the expressions  

 { } 11
0 0 0 0 0( )[ ( )]Q mn mn mnZ Y h eρ ρ

−−= − , (C.29) 

where 

 { }{ } 11 1
0 1 0 1 0 1 0 1 0 0 0( )[ ( )] ( )[ ( )]mn mn mn mn mn mn mnY h e h e Iρ ρ ρ ρ ζ ζ −− − − + + −= + + , (C.30) 

 1 1
0 1 0 1 1 1 1 1 1 0( )[ ( )] ( )[ ( )]mn mn mn mn mn mne e e eζ ρ ρ ζ ρ ρ+ + − − − −= , (C.31) 

{ } 11 1
1 1 1 1 1 2 1 2 1( )[ ( )] ( )[ ( )]mn mn mn mn mnh e h eζ ρ ρ ρ ρ

−+ + − −= −  

{ }1 1
2 1 2 1 1 1 1 1( )[ ( )] ( )[ ( )]mn mn mn mnh e h eρ ρ ρ ρ− − − −− , (C.32) 

e and h are as given in (4.30)-(4.37). It can easily be shown that if the dielectric shell 

were not present, ZQ would simplify to an expression given in [10] and here we 

denote it as 
0QZ  



 107

)()(
2

1
00

)2(
00

0
0

ρκρκπ
ωε nvnvQ mm

HJj
j

Z =  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

′′
−

0
2
0

2

0000
)2(

00

00
)2(

00
0

2
0

1
)()(
)()(

                       

ρκβ

β
κ

β
ρρκρκ

ρκρκ
ρ

nnm

nm
n

nm

nvnv

nvnv

v

vv
HJ
HJ

k
mm

mm

.(C.33) 

After that, we show that QZ  and 
0QZ  both have the same asymptotic form as 

mv → ∞ . The proof starts by considering the large order asymptotic values of Bessel 

functions. The order of Bessel functions appearing in the matrices are given by 

 φπ Tmvvm /20 += . (C.34) 

If vm tends to infinity, the asymptotic forms of the Bessel functions and their 

derivatives are given by [24] 

 
m

m
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in

m

m
inv e

v
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J
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅

ρκπ
ρκ
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2
1)(  as ∞→mv , (C.35) 
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⎛
≅′

m

m

v
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m

m
inv e

v
v

eJ
ρκπ

ρκ  as ∞→mv , (C.36) 

 
m

m

v
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m

m
inv e

v
v

Y ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≅

ρκπ
ρκ

22)(  as ∞→mv , (C.37) 

 
1

22
2

)(
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅′

m

m

v

in

m

m
inv e

v
v

eY
ρκπ

ρκ  as ∞→mv , (C.38) 

 
m

m

v

in

m

m
inv e

v
v

jH ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅

ρκπ
ρκ

22)()2(  as ∞→mv , (C.39) 

 
1

)2( 22
2

)(
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≅′

m

m

v

in

m

m
inv e

v
v

ejH
ρκπ

ρκ  as ∞→mv . (C.40) 

By using these expressions, the asymptotic forms of the matrices )(ρimne  appearing 

in (C.29)-, (C.32) for different regions are obtained as 

 ⎥
⎦

⎤
⎢
⎣

⎡−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅

−

0
2

2
11)( 2
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0

00
2 ρκ

ωεβ
ρκπρωε

ρ
n

mnm
v

n

m

m
mn

vjv
e

v
vj

e
m

 as ∞→mv , (C.41) 
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ρκπρωε

ρ
n

mnm
v

n

m

m
mn

vjv
e

v
vj

e
m

 as ∞→mv , (C.42) 
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Similarly, the asymptotic forms of the matrices )(ρimnh  for different regions are 
obtained as 
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Then the products 1)]()[( −ρρ imnimn eh  of the matrices become 
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By using the asymptotic forms given above, the matrix 1mnζ  in (C.32) is determined 

as follows: 

{ } 11 1
1 1 1 1 1 2 1 2 1( )[ ( )] ( )[ ( )]mn mn mn mn mnh e h eζ ρ ρ ρ ρ

−+ + − −= −  

{ }1 1
2 1 2 1 1 1 1 1( )[ ( )] ( )[ ( )]mn mn mn mnh e h eρ ρ ρ ρ− − − −−  

{ }{ } 111 1
1 1 1 1 2 1 2 1    2 ( )[ ( )] ( )[ ( )]mn mn mn mnI I h e h eρ ρ ρ ρ

−−− − − −⎧ ⎫= − − +⎨ ⎬
⎩ ⎭
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 as ∞→mv .  (C.53) 

For substituting into the matrix 0mnζ  in (C.31), we establish the following asymptotic 

expressions 
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and proceed as: 

1 1
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 110

Subsequently, 0mnY  is determined from 

{ }{ } 11 1
0 1 0 1 0 1 0 1 0 0 0( )[ ( )] ( )[ ( )]mn mn mn mn mn mn mnY h e h e Iρ ρ ρ ρ ζ ζ −− − − + + −= + +  

 { }{ }11
1 0 1 0 0 0( )[ ( )] 2mn mn mn mnh e I Iρ ρ ζ ζ −− − −≅ − +  
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 as ∞→mv . (C.57) 

Finally, the asymptotic value of the impedance matrix is obtained as 

{ } 11
0 0 0 0 0( )[ ( )]

aQ mn mn mn QZ Y h e Zρ ρ
−−= − ≅  as ∞→mv , (C.58) 
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Next, it will be shown that the asymptotic form of the matrix 
0QZ  in (C.33) equals 

aQZ  as ∞→mv . This is proved by obtaining asymptotic expressions for the products 

Bessel functions, 
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0 0( ) ( )

m mv n v n
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jJ H
v
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Then substituting into (C.33), we obtain 
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 as mv → ∞ . (C.62) 
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When mv → −∞ , one can use identities [24] 

 ( ) ( 1) ( )v
v vJ z J z− = − , (C.63) 

 ( ) ( 1) ( )v
v vY z Y z− = − , (C.64) 

 (2) (2)( ) ( 1) ( )v
v vH z H z− = − , (C.65) 

and subsequently show that 

 
aQ QZ Z≅  as mv → −∞ , (C.66) 

 
0 aQ QZ Z≅  as mv → −∞ , (C.67) 

where 
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 as mv → −∞ . (C.68) 

Hence, the proof is completed and it is shown that both QZ  and 
0QZ  have the same 

asymptotic form  

 
aQ QZ Z≅  as mv → ±∞ , (C.69) 

 
0 aQ QZ Z≅  as mv → ±∞ , (C.70) 

where 
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 as mv → ±∞ . (C.71) 
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