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Scatterings from circular cylindrical structures comprising of free-standing or
dielectric shell backed metal strips are considered. When formulating the problem,
the scattered waves are written as infinite sums of cylindrical Floquet modes with
unknown weighting coefficients. The weighting coefficients are then determined by
using boundary conditions appropriate for the problem. Numerical results are
obtained by applying the Moment method (MM) techniques whereby entire domain
sinusoidal basis functions are used. The infinite sums appearing in MM solutions are
found to be slowly convergent. When solving the problem by a MM technique, the
infinite sums should be handled properly in order to circumvent slow convergence
difficulties. One approach in such a case is to use sub-domain basis functions in
conjunction with a conjugate gradient fast Fourier transform method. Another
approach is to use entire-domain basis functions together with a convergence
acceleration method. Here, we follow the second approach and give an appropriate
convergence acceleration method. It is shown that the resulting infinite sums of the
MM solutions can be very efficiently computed by employing a new convergence

acceleration technique based on Kummer’s method.
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Results reveal that the thickness of the dielectric shell strongly affects the
scattering properties of conducting strips. Moreover, resonances are detected at some
specific frequencies where the structure becomes almost invisible to an observer.
Such properties of cylindrical structures may be very useful in radar applications or

antenna applications.

Keywords: Cylindrical Frequency Selective Surface, Cylindrical Structures,
Cylindrical Floquet Modes, Convergence Acceleration, Kummer’s Method,

Scattering, Radar Cross Section.
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DUZLEMSEL DALGANIN METAL SERITLERDEN OLUSMUS BiR
SILINDIiRiK FREKANS SECICi YUZEYDEN SACILIMI

UZER, Ali
Doktora Tezi,.Elektrik Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Tuncay EGE
Mayis 2005, 128 sayfa

Boslukta duran yada dielektrik bir madde iizerine dizilmis metal seritlerden sagilan
elektromanyetik dalgalar incelendi. Formiillerde sacilan dalgalar Floquet modlarinin
bilinmeyen katsayili sonsuz toplamlar1 cinsinden yazildi. Daha sonra bu bilinmeyen
katsayilar sinir sartlar1 uygulanarak bulundu. Moment metot ¢oziimlerinde baz
fonksiyonlar1 olarak tiim bolge siniis fonksiyonlar1 kullanildi ve sayisal ¢oziimler
elde edildi. Moment metot matrislerinin hesaplamalar1 yapilirken sonsuz toplamlarin
yavas yakinsadig1 goriildii ve yakinsama hizlarinin arttirilmasi gerektigi anlagildi. Bu
tir durumlarda sorunu gidermenin bir yolu baz fonksiyonlar1 olarak alt bolge
fonksiyonlar1 kullanmaktir. Diger bir yol ise baz fonksiyonlar1 olarak tiim bolge
fonksiyonlar1 kullandiktan sonra sonsuz toplamlarin yakinsama hizlarimi arttiracak
bir hiz arttirict metot kullanmaktir. Caligmada ikinci yol secilerek uygun bir
yakinsama hizlandirict metot gelistirildi. Kummer metoduna dayali olan yeni
hizlandirici metot sayesinde Moment metot ¢dziimlerinde ortaya c¢ikan sonsuz

toplamlar rahatca hesaplanabilmektedir.

Elde ettigimiz sonuglarda dielektrik katman kalinhiginin metal seritlerden
elektromanyetik dala sacilma oOzelliklerini ¢ok etkiledigi goriildi. Ayrica katman
kalinliklariin sebep oldugu bazi rezonans frekanslari tespit edildi ki bu frekanslarda
silindirik yap1 neredeyse hi¢ sacilma yapmamaktadir. Boyle bir 6zellik radar yada

anten uygulamalarinda ¢ok kullanish olabilir.



Anahtar Kkelimeler: Silindirik Frekans Secici Yiizey, Silindirik Yapi, Silindirik
Floquet Modlari, Sonsuz Toplam Yakinsama Hizlandirici, Kummer Metodu,

Sag¢ilma, Radar Genisligi.
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NOMENCLATURE

List of Abbreviations

MM : Moment method
RCS : radar Cross Section

™ : transverse magnetic field mode
TE : transverse electric field mode
List of Symbols
Ay : vector potential for a transverse magnetic field mode
Arg : vector potential for a transverse electric field mode
B, : Bernoulli number
B,(x)  :Bernoulli polynomial of the argument x
b : width of a unit cell in ¢ direction
i : phase variation in z direction for dielectric rod problem
c : velocity of the light in the free-space, 3-10° m/sec
f : frequency
Jj : imaginary number J-1
Jy(2) : Bessel function of the first kind of order v and argument z

H'V(z) :Hankel function of the first kind of order v and argument z.

H'?(z) : Hankel function of the second kind of order v and argument z.

ko : wave number of the free-space, @,/ u,¢, .

K : propagation constant of a Bessel function in the free space
Kin : propagation constant of a Bessel function in the i-t4 region

/ : length of a strip

N : number of elements in the circumferential direction

w : width of a strip

Y,(z)  :Bessel function of the second kind of order v and argument z
Zy : intrinsic impedance of the free-space, 1207

Ty : periodicity of the cylindrical structure in the circumferential direction
T. : periodicity of the cylindrical structure in the axial direction
& : permittivity of the free-space, 10”/36 7 Farad/meter

& : relative permittivity of a dielectric material

Winn : Floquet mode

A : wavelength in the free-space

Lo : permeability of the free-space, 477107 H/m

yo, : radial variable of the cylindrical coordinate system

S(s) : zeta function of the argument s

: asymptotically equal to
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1. INTRODUCTION

Measurements demonstrate that periodic surfaces have band-pass and band-stop
characteristics when illuminated by an incident electromagnetic wave of variable
frequency. There are many important structures whose characteristics are periodic in
space. Examples are three-dimensional lattice structures for crystals, artificial
dielectrics consisting of periodically placed conducting pieces, and waveguides with
periodic loadings. The waves along these structures exhibit a unique frequency

dependence often characterized as stop-bands and pass-bands [1, 2].

Basically a Frequency Selective Surface may be of two types, either in the form of
periodically perforated screens (apertures), or in the form of an array of conducting
patches printed on a dielectric substrate. At a specific frequency, the surface exhibits
a total transmission for the screen problem, or a total reflection for the dual case.
Such specific frequencies are called as “resonant frequencies”. Resonant frequencies

depend on the shape of the elements (patches/slots).

1.1. Typical Applications of Frequency Selective Surfaces

Typical applications are many and varied. They range over much of the
electromagnetic spectrum. For example in the microwave region the frequency
selective properties of periodic screens are exploited to make more efficient use of
reflector antennas. As shown in Figure 1.1, a frequency selective surface may be
placed between two feeds, which are radiating at two different frequencies. The
resonant frequency of the surface is designed such that the surface becomes totally
reflective over the operating band of feed 1, but becomes transparent over the
operating band of feed 2. Hence with this configuration, two independent feeds may

share a single reflector simultaneously [3].

A next example for the exploitation of frequency selective properties of periodic
screens in the microwave region is the applications in radome designs. The main

function of a radome is to protect an antenna from environmental conditions such as



rain and snow. Although a radome covers the antenna, it must be transparent at the
antenna’s operation frequencies. The screens of the radome are designed such that it
gives band-pass transmission characteristics at the operating frequencies of the

antenna. At the out-of-band frequencies, the radome becomes totally reflecting [2].

In the far-infrared region, periodic screens are used as polarizes, beam splitters, as
well as mirrors for improving the pumping efficiency in molecular lasers [2]. A
polarizer can be constructed from a diffraction grating such that the fields polarized
parallel to the grating are reflected, while those with orthogonal polarizations are

transmitted.

< Parabolic

/ reflector

&~ FS8

Sub-reflector

Figure 1.1. An application of frequency selective surfaces. Two feeding antennas are
placed at front and back focus of the sub-reflector.

Another application in the far-infrared region is infrared sensors where the
frequency selective property of a frequency selective surface is used to absorb the
desired frequencies in the substrate material backing the screen, while rejecting the
out-of-band frequencies [2]. In the near-infrared and visible portions of the
electromagnetic spectrum, periodic screens are proposed as solar selective surfaces to
aid in the collection of solar energy. A screen is designed such that it is essentially
transparent in the frequency band where the solar cells are most efficient and is

reflecting at frequencies out of this band [2].



1.2. Previous Works for Planar Frequency Selective Surfaces

In 1961, a problem of scattering from a conducting screen perforated periodically
with apertures is analyzed by Keiburt and Ishimaru [4]. Later on, the scattering from
two-dimensional periodic array of rectangular plates is investigated by Oftt,
Kouyoumyjian, and Peters [5]. The given solution is restricted to the case of narrow
width plates arranged in a rectangular lattice and the incident field is assumed to be a
normally incident plane wave. In 1970, a general formulation technique for two-
dimensional periodic arrays is presented by C. C. Chen [6]. The field distributions
are expanded into a set of Floquet Mode functions, and an integral equation is
obtained. Then the equation is solved for the unknown induced currents by using a

Moment Method (MM).

In 1975, J. P. Montgomery [7] give solutions to unsymmetrical problems of
scattering of plane waves by the infinite periodic arrays of thin conductors. Later on,
Tsao and Mittra [8] in 1982 present an iterative procedure in spectral domain to solve
simultaneously for the current distribution and the aperture field of a frequency
selective surface. They derive a differential equation, based on the Floquet Mode
expansion and the electromagnetic boundary conditions. They also presented a full

wave analysis of both the cross shaped and Jerusalem type elements.

1.3. Previous Works for Cylindrical Frequency Selective Surfaces

In [9] Floquet Theorem is applied to a cylindrical phased array antenna problem
consisting of periodically arranged axial dipoles, which are excited by a matching
network at their centers. The far fields radiated from a dipole are determined by
employing cylindrical Floquet modes. Later on, Tom Cwik [10] considers circular
cylindrical structures covered periodically with metallic patches. He presents
formulations in terms of the cylindrical Floquet modes for calculating the induced
currents on the surfaces of free-standing strips. The numerical results are given for
infinitely long strips. References [11, 12] analyze dispersion characteristics of
circular waveguides made up of free-standing conducting strips or patches. In [13,
14] plane wave scattering from square patches is considered. When obtaining the

numerical the MM solutions, the references [10-14] use sub-domain basis functions



and a conjugate gradient fast Fourier transform method in order to circumvent the

slow convergence difficulties of infinite sums.

A. Freni [15] considers scattering of plane waves from circular cylinders loaded
periodically with groups of metallic rings along the longitudinal axes. Also, Ahmed
A. Kishk and Per-Simon Kildal [16] describe asymptotic boundary conditions that
are intended to be used to model grids of metal strips. But as stated by them, their
methods are restricted because the given boundary conditions lose accuracy if the

period of the grid is not small in terms of the wavelength.

The reference [17] analyzes a cylindrical wave incidence to a cylindrical
frequency selective surface comprising of metal strips and determine the reflection
and transmission coefficients of the problem. The results show that the reflection and
transmission coefficients are dependent on the problem geometry as in the planar
frequency selective surfaces. The MM solutions of periodic cylindrical structures
generally yield slowly convergent infinite sums. In [18], a convergence acceleration
technique is given for the MM solutions of periodic cylindrical structures. In [19] the
radiated far fields due to a current filament located inside a periodic cylindrical
structure are determined. Later on, [20] computes the radar cross sections (RCS) of
conducting circular cylinders perforated periodically with axial slots. More recently,
the convergence acceleration method in [18] is further improved and generalized

[21].

1.4. The Methods Utilized in this Study

A periodic excitation to a linear system produces a response that is also periodic. As
a consequence of this, Floquet theorem recognizes that the responses may be
represented by an infinite sum of periodic functions, which are called as Floquet
modes [10]. In Chapter 2, Floquet theorem will be described and the relevant modes

for periodic cylindrical structures are derived.

Periodic cylindrical structures comprising of free-standing conducting patches are
considered in the first part of Chapter 3. The scattered waves of the problem are
expressed in terms of the surface currents by using the Floquet Theorem. The

currents are then determined from the exciting wave and from the boundary



conditions of the problem. Also, the dual problem where the conducting circular
cylinders perforated periodically with axial slots is analyzed similarly in the second
part of Chapter 3. In the second problem, the Equivalence Principle is utilized to
replace slot fields with equivalent magnetic currents. Later on, boundary conditions
relevant to the problem are used to determine the scattered waves in terms of the
exciting wave. The numerical results in all problems are obtained by applying the
MM solution techniques. In MM solutions, the surface currents or the slot fields of
the problems mentioned above are expanded into entire domain sinusoidal basis
functions. A convergence acceleration method is given for efficient and accurate
computations of the infinite sums in MM solutions. In appendices A and B, the

acceleration method is explained in detail.

In Chapter 4, dielectric shell structures covered periodically with conducting
strips are analyzed. Problem is formulated by writing the scattered waves as infinite
sums of the Floquet modes. The scattered waves involve transverse magnetic (TM)
and transverse electric (TE) modes simultaneously. The unknown surface currents of
the problem are related to the incident wave and the resulting equations are solved by
MM techniques. It is important to note that the convergence acceleration methods of
Chapter 3 become applicable if a Kummer’s acceleration method is exploited in the

MM solution. This point is fully described in appendix C.

The numerical results for all of the problems considered in this thesis are given in
Chapter 5. RCS and the field couplings into the cylindrical structures are computed
against the problem parameters such as the strip/slot lengths, the number of
strips/slots, the dielectric shell thicknesses, etc. Also our results are compared with

those available in the literature [10].



2. FLOQUET THEOREM FOR PERIODIC CYLINDRICAL
STRUCTURES

In this chapter we concentrate on cylindrical wave solutions of periodic cylindrical
structures. When solving a periodic problem in the cylindrical coordinate system,
scattered fields are written as infinite sums of cylindrical waves, which are called as
cylindrical Floquet modes. Starting from the Helmhotz wave equation, the Floquet
modes are derived for a cylindrical wave excitation case in the following section. If
the incident wave is not cylindrical —as is a plane wave- it can be represented by
cylindrical waves as described in Section 2.2. Also in Section 2.3, the cylindrical

waves radiated from a line current located at the origin are given.

2.1. Derivation of the Floquet modes

Consider a periodic cylindrical structure as shown in Figure 2.1, which may consist
of periodically located elements. The periodicities of the structure are denoted by 7'
and 7. in ¢ and z directions, respectively. If the structure is excited by a cylindrical
wave, it can be shown that the scattered waves should also be periodic. Hence, the
scattered waves may be represented as infinite sums of periodic functions, which are
known as the cylindrical Floquet modes [10]. To obtain the cylindrical Floquet

modes, we start with a scalar Helmhotz wave equation in a source free region

(V2 + k) A, (p,,2) =0, 2.1)

where 4, denotes a vector potential and p indicates its polarization (the polarization

may be transverse magnetic (TM) or transverse electric (TE)). Here £ denotes the
wave number of the medium, k =,/ ue. Assume the structure is excited by a
cylindrical wave, which has a phase factor e /"¢ /" Since the scattered waves

should be periodic in the cylindrical coordinate variables ¢ and z, the solutions to the

wave equation should satisfy the periodicity requirements:
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Figure 2.1. (a) A cylindrical structure with two-dimensional periodicity. (b) A unit
cell of the problem at ¢=0. N denotes the number of periodic cells in ¢ direction.

A4,(p.4.2+T) = 4,(p. . 2)e """, (2.2)

A,(pp+T,,2) = 4,(p.g.2)e " . (2.3)

In the cylindrical coordinate system, the wave equation in (2.1) is expressed as in

[22]

2 2 2
O 1o Lo T ikl pgn=o. (2:4)
op- pop p 0p Oz

This partial differential equation can be solved by the separation of variables method.

For this, let us write the vector potential as a product of three functions

4,(p,9,2) = R(p)P(P)Z(z). (2.5)

Substituting this into (2.4) and dividing the resultant equation by R(0)®P(4)Z(z), we

get

! [azk('o)+aR(’O)J+L ! 62®(¢)+ ! azZ(Z)+k2:0. (2.6)
R(p)\ op>  pop ) p’ P 04>  Z(z) &’

That yields three ordinary differential equations



1 d’Z(z) _

-7, 2.7
Z(z) dz* p @7)
2

L d&0¢) ®£¢) =—v?, (2.8)

O(g) d¢

and

d’R(p) , dR(p)
2 + +lx?p? —v? =0. 2.9
p 0’ pdp (p )R(p) (2.9)

Here xis given by the dispersion relation
K'=k>-p°, (2.10)

and the eigenvalues v and £ denote real numbers. A general solution to (2.7) is

written as
Z(z) = C;e/ﬁz + C;e’jﬂz . (2.11)
Applying the condition (2.2), the eigenvalues £ are determined as follows:

C; o P | C: o T (C; . o o I )e—jﬂoTz ,

C;eﬂﬂz (ej(ﬂo+ﬂ)Tz _ 1): Cc* (1 _ ej(ﬁo-ﬂ)Tz ) (2‘12)

P
(2.12) is satisfied only if
C*eﬂﬂz (ej(ﬁo+ﬂ)T: _ 1): C+(1 _ e./'(ﬁo*ﬁ)T: ): 0 (2 13)
p 4 : '

When C; =C,, a trivial solution is obtained but that has no significance. There are

two  possibilities for satisfying the conditions in  (2.13): either
C,=0ande’ ™% =1, or /"% =landC; =0. A solution satisfying the
conditions in (2.13) is

B, =0, +2m/T, ;n=0,£1,£2,... (2.14)

and thus

Z (5)=% (2.15)

n \/T_z 4




where S, and Z, denote eigenvalues and normalized eigenfunctions, respectively.

Similarly, using the condition (2.3), the eigenvalues v and the corresponding

eigenfunctions are obtained as

v =v0+27zm/T¢;m=O,il,i2,..., (2.16)

m

AT

T

D, (4) =

(2.17)

In that case, the equation (2.9) becomes

2
p2 d Rmn(p)+dem11(p)

+ (k2 p? =2 =0. 2.18
i’ dp (np m)Rmn(p) (2.18)

This form of equations is known as Bessel’s differential equations [22]. A general

solution to (2.18) can be written in terms of the Hankel functions of the first kind

H™ and the second kind H® :

R, (p)=4,,,H, (k,p)+4,,,H” (x,p). (2.19)

p,mn

Here Hankel functions represent cylindrical traveling waves, as do the exponential

functions, H" representing an inward-traveling wave and H® representing an

outward-traveling wave. Alternatively, it is sometimes more convenient to express

the general solution of (2.18) in a form

Rmn (p) = ap,mn‘]vm (Kn p) + bp,mn va (Kn p) b (220)

where J and Y denote Bessel functions of the first kind and the second kind,
respectively. As emphasized in Appendix C, these functions exhibit oscillatory
behavior, as do the sinusoidal functions and so (2.20) can be used for the standing

wave solutions. Their relations to the Hankel functions are

H"(x,p)=J, (x,p)+ jY, (5,p), 2.21)

H? (x,p)=J, (k,p)=jY, (k,p). (2.22)

Hence the solution for 4, can be written as infinite sums of the traveling waves:



0 0

Ap (p’ ¢’ Z) = z z {A;,mnH\Erln) (Kn p) + A;vmnH\Ej) (Kn p)}l//mn (¢’ Z) > (223)

m=—00 n=—00

or whenever appropriate it may be written in terms of the standing waves:

0 0

4,(p.4.2)= ¥ _Z{ap,vam (K, P) by Y, (o P W (7). (2.24)

Here y,, are called as the Floquet modes, which involve the products of the

eigenfunctions @ (4) and Z, (z)

Y (9,2) _elre e (2.25)
mn \¥"> \/ﬁ
The propagation constants of the Floquet modes are given by
v, =V, +2mm/T; , (2.26)
p.=0,+2m/T, , (2.27)
K, =k’ =B . (2.28)

The roots for the double valued square-root function, “\/_ ”, in (2.28) should be

chosen properly with the conventions described in [22], that is

JEE =B when k7> p; (2.29)
K, = : :
—Jj B -k when B>k’

If the region under the consideration is lossy, the root choice should be such that
K, =K, — jK., (2.30)

where x/ and x| represent non-negative real numbers. Whenever the argument of a
Bessel function takes an imaginary value (x, p = —ja ) as may come across in using

(2.29), it is appropriate to use the modified Bessel functions. The modified Bessel

functions are related to the regular Bessel functions through

J, iey=e " (@), @31)

10



Y, (mja)y=~je ", (a)—zejV””/sz (a), (2.32)
m m 72. m

and
2i
HO (—ja)=J, (-ja)-jY, (—ja)="Le K (a), (2.33)
m m m 72- m

where 7, are known as the modified Bessel functions of the first kind and K, are

known as the modified Bessel functions of the second kind.

The weighting coefficients 4, and 4, in (2.23) or a,,

n p.mn

and b,,, in the

n n

alternative expression (2.24) should be determined from the boundary conditions in
the radial direction. When the outermost region of the cylindrical structure in Figure
2.1.b is considered, the expression (2.23) should be utilized because the waves travel
in the radial direction. Furthermore, inward-traveling waves should not exist and that

leads to 4., =0. However, when the innermost region of the cylindrical structure

p.mn
is considered, the expression (2.24) should be exploited because the standing waves
are expected in that region. Also the wave amplitudes should be finite at p=0.

Among the solutions of Bessel’s differential equation, only J, (k,p) are

nonsingular at p=0 as shown in Appendix C. Thus the boundary condition in that

region requires b, =0.

p.mn

Once the vector potential of the problem is written in terms of the Floquet modes,
the corresponding electric and magnetic fields can be determined from the curl

equations written in the cylindrical coordinate system [23]

E:;VxanzATM -Vxa_ A,, (2.34)
joe

1
H=Vxa 4, ——VxVxa_ 4,. (2.35)
JOH

which result in the electric and magnetic field expressions

I 24y, oy

= , (2.36)
jwep 0oz  Op

¢

11



2
E. :L(é—wcszm, (2.37)

2
= L O Ay (2.38)

op  joup 0¢oz

1 (8>
Ho=— |9 k|4, (2.39)
 joul oz’ T

Here, no attention is paid to p components of the electric and magnetic fields since

they are normal to the surface.

TM and TE vector potentials in a region are expressed as infinite sums of the

Floquet modes

M = Z z aTM,mann (Knp)l//mn (¢’ Z) 2 (240)

Are = DD g Ry (6,00, (8,2) 5 (2.41)

m n

where R may be any of the Bessel functions H.", H”, J, , or Y, . The partial

differentiations with respect to p, ¢, and z in (2.36)-(2.39) simplify to the algebraic

expressions. That is

8—2{22% (oW, z)} ST vty Ro (e, p W (6.2). (242)

m n

%{ZZ%W (P9 z)} S sty K, PV (2. 243)

m n

%{ZZ% o (K0 PV 1 (B, z)} ZZKnap,,m L, W ($,2) . (2.44)

Then the corresponding electric and magnetic fields can be written as

E

;= ZZaTM iV BaR o (6, PW 1 (6,2) +

Joep T

S Ky R (5, W 1 (8, 2) (2.45)

12



1
Ez = jﬂzzaTM,mnK‘:Rmn (Knlo)y/mn (¢9Z) s (246)

H¢ = _Z Z aTM,mn K, Rr;m (Kn p)l//mn (¢7 Z) -

1
. Z Z aTE,mnvmﬂann (Knp)Wmn (¢, Z) 7(247)
JOHP ™ n
1
Hz = Ja)/,l zzaTE,mnKsRmn (Knp)lr//mn (¢9 Z) . (248)

Here a prime (°) means a differentiation with respect to the whole argument of a

Bessel function, that is: R) (x,p)=0R,, /0(x,p). Once the vector potential in a

region is specified and written as infinite sums of the Floquet modes, the expressions
given in (2.45)-(2.48) can be used to obtain the corresponding electric and magnetic
fields in that region. Later, boundary conditions can be applied to determine
unknown coefficients of the infinite sums. This procedure is followed in the

subsequent chapters.

In the MM solutions, a suitable inner product has to be defined. In this thesis the

following inner product is used as defined in [10]

1,72 T;/2

<f@ed)>= [ [f($.2)g ($2)dgdz, (2.49)

~T./2-T;/2

where (*) denotes a complex conjugate. It may easily be shown that the Floquet

modes v, (@,z) are orthogonal to each other, that is,

1 forp=mandg=n
< l//mn (¢7Z)’qu (¢7 Z) >= . (250)

0 otherwise

2.2. Decomposition of a plane wave into cylindrical waves

If plane wave incidence is assumed, the incident wave should be decomposed into
cylindrical wave components. Then the responses (scattered waves) of the problem
should be determined separately for each of the cylindrical wave components. The

total response can then be obtained by summing the individual responses [10].

13



In this section a plane wave propagating in free-space in a direction (8",4") is
considered. If the incident plane wave has a unit amplitude vector potential, its vector

potential can be written as

_ jko(sin 6™ cos g™ x+sin 6™ sin ¢ y—cos 0™ z)
A,(x,y,z)=e" , (2.51)

where p denotes the polarization of the plane wave (may be TM or TE). It is
convenient to transform the rectangular variables x, y, and z into the cylindrical

coordinate system variables p, @, and z by using x = pcosg and y = psing. That

gives
_ L Jkopcos(g=4") =Pz
4,(x,y,z)=e"™” e "=, (2.52)
where
By =k, cos6™, (2.53)
Ky = k,sin@™ . (2.54)
Then a useful identity given in [23] may be utilized, which is
ejrcopcosw—ww) — Zejvo(z/2+¢i”‘—¢)Jv0 (Kop) , (2.55)

Vo=—0

where J, denotes the Bessel function of the first kind of order v;. By using the

identity, the incident wave is decomposed into the cylindrical waves of the form

o0

A, (x,y,2)= D A (p.¢,2), (2.56)

Vp=—%0

where the cylindrical wave components are

A (p,$,2) = " TS (1 pe e @57)

The corresponding electric and magnetic fields can be obtained using (2.57) in

(2.45)-(2.48). For a TM incidence case, the electric and magnetic fields are given as,

inc -1 inc —vod —iBoz
Ey =———anv S, (kyp)e e 7 (2.58)
Jw&EP

14



Er =g, (p)e e (2.59)

JweE,
HY =—aif (k) e 260
H. =0, (2.61)
where
4 zTnA; _ oM@ (2.62)

For a TE incidence case, the corresponding electric and magnetic fields are

B =t (kyp)e e .63
E;’nc — O , (264)
inc -1 inc —vo® ,—iBoz
HJ =———apv,fJ, (K,p)e e ™", (2.65)
JOHP
) 1 - ; -
=L, e e 2:66)
J O,
where
a = M D, (2.67)

An important parameter in scattering studies is the electromagnetic scattering by a
target which is usually represented by its echo area or radar cross section (RCS). The
RCS is defined as “the area intercepting the amount of power that, when scattered
isotropically, produces at the receiver a density that is equal to the density scattered
by the actual target” [23]. For a cylindrical structure, the RCS is also referred to as

the “scattering width”. The RCS of a cylindrical structure is calculated using

2

ES

RCS = lim 27zp

p—>®© E,‘

(2.68)

2 2

where E* represents the scattered electric field and E' represents the incident electric

field. Another way of determining the RCS is to use the scattered magnetic fields

15



w

RCS =1lim2mp—--.
ST

(2.69)

The magnitudes of the terms appearing in the denominators of (2.68) and (2.69) can
be determined from the vector potential given in (2.50). For a TM incidence, the

corresponding electric and magnetic fields are obtained as
H'|=|Vxa,4,, (x,,2) = k, = k,sin 0™, (2.70)
[E'| = 1202|H'| = 1207x, = 1207k, sin 6™, (2.71)
but for TE incidence, we have

‘Ei‘ = |-V xa A4y (x,y,2) = k, = k,sin 0", (2.72)

- E _fysin0™ 273)

1207 1207 1207
where 1207 stands for the intrinsic impedance of the free-space. In the subsequent
chapters, the RCS of cylindrical structures are determined by using these
expressions. When computing the fields scattered from a cylindrical structure in the
far field region (as p—>), the asymptotic forms for the Hankel functions for large

arguments [24] are used. That is,

H? (kp) ~ /—2 e/ MITI2TIP ag pyoo, (2.74)
K
1(2) . 2 jr/4+jvr /2 _—jkp
H "W (kp)=—j | —e’"""""e™ ™ as p—>oo. (2.75)
TKP

2.3. The electromagnetic field couplings into the cylindrical structures

Electromagnetic field couplings into the cylindrical structures have some importance
in antenna applications. The coupling is defined as the total power measured at the
center of a cylindrical structure when a plane wave is incident on the structure. That

is to say, the coupling is defined as

16



2

\E" +E*

Coupling = lirré (2.76)
p—>

[

‘2 |

where E’ denotes the incident electric field and E* denotes the scattered electric field.
However, making use of the Reciprocity Theorem the coupling can be determined
more easily by considering the fields radiated from a line current located at the origin
[10]. According to the Reciprocity Theorem the response of a system to a source is

unchanged when source and measurer are interchanged [22].

Suppose that the incident plane wave of the original problem is due to a line
current (a transmitter) located at the infinity. Furthermore, let a receiver located at
the origin of the cylindrical structure measures the scattered fields. According to the
reciprocity theorem, the locations of the line current and the receiver can be
interchanged. In that case, we evaluate the radiated fields at the infinity and
normalize these with respect to the fields that would exist at the infinity if the

cylindrical structure were not present. That is,

2

' . ‘Einc + Es
Coupling = }Jl_r)lgo — (2.77)
E
or if the magnetic fields are used
. 2
‘ ‘Hl}’l(, + H_S
Coupling = lim , (2.78)

p—© ‘H inc|?

where E* and H® denote the fields in the presence of the cylindrical structure; E”™ and
H" denote the fields in the absence of the cylindrical structure. In this section, we

shall determine the fields E™ and H” appearing in (2.77) and (2.78).

When a line current is located at the origin of a cylindrical structure and radiates
into the free-space (in non-existence of the cylindrical structure), the radiated electric
and magnetic fields can be derived from a vector potential 4, or 45, depending on
the type of the line current. For an electric type current, the fields are derived from a
vector potential 45, and for a magnetic type current, the fields are derived from a

vector potential A .

17



Consider an electric type line current carrying a current /, is located at the origin

and it is represented by

I = azloei/ﬁoz , (2.79)

where [, denotes a linear phase variation along z axis. Since the line current is

directed along the z axis, the fields radiated by the line current can be obtained by

letting

Ay = alis HE (kyp)e " (2.80)

where a; denote an unknown to be determined, H{” denote a Hankel function of

the second kind, and

Ko =\ko = Bs (2.81)

denotes the propagation constant of the wave in p direction. The corresponding

electric and magnetic fields can be derived by using (2.80) in (2.45)-(2.48)

E;nc — O , (282)

B = (o) @.5)
J &,

HE = —afi i Hi (e, e 284

H™ =0. (2.85)

The unknown a;* is determined in the limit as p—>0

—iboz _ 13 . _1; inc | _1: inc
Ie —lplil’éiH dl—}}g%_J;(%qu )(a¢pd¢)_1p133£H¢ odg.  (2.86)
Since the integration of (2.86) must be performed in the limit as p—0, it is
convenient to represent the Hankel function by its asymptotic expansion for small
arguments. By using a small argument approximation for the derivative of the

inc

Hankel function [24], the unknown ay,, is determined as follows

18



—iPoz _ 13 inc
I,e = lplgé J-H g Pdg
= lin(} J‘ —al ki, H® (k,p)e”"" pdp
p—>

T

. ; -j2
=lim | —ay, K, J e pdg

P—0 el 727(0/0
i
=—a;,K, el e P o
7Z'K'0
inc 10
a =—. .
= dry . (2.87)
4j

Thus, the radiated electric and magnetic fields for the line current considered are

E;”‘ =0, (2.88)
inc 1 Io 277(2) —jpyz
B =——-L ik HY (k,pe 7, (2.89)
jos, 4
inc ]0 1(2) —jBoz
H, =—4—j/(0H0 (x,p)e ™, (2.90)
H;”C =0. (2.91)

When a magnetic type line current is located at the origin then the corresponding
electric and magnetic fields can be determined similarly. But, more simply, duality
principle may be utilized and the radiated fields can be determined from the
expressions in (2.87)-(2.91). Assume a magnetic type line current carries a current

MO’

M=a_Mye """, (2.92)

According to the duality principle, the variables appearing in (2.87)- (2.91) should be

replaced as follows:

I, >M,, (2.93)
E™ > H™, (2.94)
H"™ ——-E™, (2.95)
My —> Eg» (2.96)

19



£y = M-

The radiated electric and magnetic fields for the magnetic line current are

inc MO
Arg = A
H™ =0,
H:w =— 1 _OK.éH(gZ) (K.Op)e*./ﬂoz ,
Jou, 4j

E;nc — _(‘)K.OH(')(Z) (K.Op)e—]ﬁoz ,
4j

E™ =0.

20
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3. SCATTERING FROM CYLINDRICAL SURFACES
CONSISTING OF FREE-STANDING STRIPS OR SLOTS

Periodic cylindrical structures consisting of free-standing conducting patches or slots
are analyzed. When formulating the problem, the scattered waves are written as
infinite sums of the Floquet modes with unknown weighting coefficients. The
weighting coefficients are related to the surface currents (aperture fields) of the
conducting patches (slots) by applying the appropriate boundary conditions. Later
on, an integral equation is obtained for the surface currents (aperture fields) and
solved numerically by using the MM techniques. The infinite sums appearing in the
MM solutions are seen to be slowly convergent. The infinite sums should be handled
properly in order to circumvent slow convergence difficulties. One approach in such
a case is to use sub-domain basis functions in conjunction with a conjugate gradient
fast Fourier transform method as suggested in [10]. Another approach is to use
entire-domain basis functions together with a convergence acceleration method that
1s based on a Kummer’s series acceleration method, as described in [18, 21]. Here,

we follow the second approach to accelerate the infinite sums.

3.1. Determination of the scattered waves from the free-standing strips

Consider a cylindrical structure consisting of free-standing periodically located
rectangular strips of dimension /xw as shown in Figure 3.1. The periodicities in ¢ and

z directions are denoted by T4 and T, respectively. The cylindrical surface is located

at p= py.

When a plane wave is incident on the structure, the incident plane wave can be
decomposed into cylindrical waves. This procedure is described in section 2.2. If the
incident plane wave has a unit amplitude vector potential and its polarization is TM,

its cylindrical wave components are of the form
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Figure 3.1. a) A cylindrical structure consisting of free-standing rectangular strips
that are periodically located on a cylindrical surface. A cylindrical TM wave is
incident on the structure (b) A unit cell at ¢=0, showing the parameters of the
problem. N denotes the number of strips in ¢ direction.

A5 =t e 3
where
gt = o -l2) (3.2)
B, = k,cos0™, (3.3)
K, = k,sin 0™, (3.4)

v, denotes an integer, ¢" and ¢W denote propagation directions of the incident wave.

The corresponding electric fields are obtained as

inc -1 —jvod =Bz
E, =.—aTMVOﬂOJVO (kop)e”’ Lo, (3.5)
Jw&,p
‘ 1 -
ET = alTnAfngJvm (Kopo)e_jvwe_moz- (3.6)
J W&,
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Such an excitation induces surface currents on the conducting strips. In turn, these
currents radiate giving rise to scattered waves. In accordance with the Floquet
Theorem described in Chapter 2, the scattered waves are represented as infinite sums
of the Floquet modes. If the strip widths are very small compared to the free-space
wavelength, then ¢ components of the surface currents may be ignored. As a

consequence, the scattered fields can be derived from the vector potentials;

Ao =2 g omHE (6, P, (8,2) for p, < p, (3.7)

A;M,l = ZZGTM,lanvm (Knp)l//mn (¢’ Z) for p < pO 4 (38)

where the weighting coefficients armom» and agmgim, denote unknowns to be

determined from boundary conditions of the problem. The Floquet modes are given

in Chapter 2:
o n? o ibE
l//mn (¢’ Z) = > (39)
JT,T.
B, =0, +2m/T_, (3.10)
Vv, =V, +2mm/Ty, (3.11)
K, =\k; =B, . (3.12)

Here v,and B, denote the phase constants of the exciting wave in the
circumferential and longitudinal directions, respectively. In the summations, J, and
H'® respectively denote the Bessel functions of the first kind and the Hankel

functions of the second kind, both of order v, . Note that in the external region, the

Hankel functions of the second kind are chosen to represent the outward traveling
waves. But for the internal region, the Bessel functions of the first kind are used due

to the standing wave nature of the waves in this region.

In order to determine the unknown coefficients in (3.7) and (3.8), boundary

conditions are applied. The boundary conditions of the problem are:
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a. Tangential components of the total electric field should be continuous at p = p,,

b. Tangential components of the total magnetic field should be discontinuous at

p = p, by an amount equal to the induced current density J..

The tangential electric and magnetic fields are obtained from the vector potentials in
(3.7) and (3.8) by using the expressions (2.45)-(2.48).The fields in the external

region are therefore

E(;(/ﬁ (pa ¢a Z) = zzaTM,OmnvmﬂnH\Ej) (Knp)l//mn (¢7 Z) H (313)
]a)gop m n
E(;z(p5¢’z) - a) zzaTM Omn nH(Z)(K p)l//mn(¢ Z) (314)
0 m n
H(;qﬁ (p’¢3 Z) = _zzaTM,OmnK‘nH\Z,EZ) (Knp)l//mn (¢7 Z) H (315)
H; (p.$,2)=0. (3.16)

The fields in the internal region are expressed similarly. However in this case all

Hankel functions of the second kind (H”) are replaced by the Bessel functions of

the first kind (Jv,,, ), that is,

ES 27 = a mnvm nJv Kn mn ’Z > 317
16(0-9,2) ja)«?op;‘g 1 amn VB, (K PV 1 (D52) (3.17)
Elz(p’¢ Z)_ ZzaTM lmnK Vin (Knp)l//mn(¢’z)’ (318)

0 m n
H1S¢ (p’ ¢’ Z) = _ZZaTM,lmnKn J\Cm (Kn p)l//mn (¢7 Z) b (319)
H.(p,$,2)=0. (3.20)

The boundary conditions are then applied

zzam lmnvmﬂn"]\/ (K, PV 1 (9,2) =

Jog,py G
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-1
Z Z aTM,OmnvmﬁnH\Ej) (Knpo )l//mn (¢7 Z) 5(32 1)

Jog,py T 5

1
Z Z aTM,lmn Kj‘]vm (Kn pO )Wmn (¢’ Z) =

ja)go m n

1
o 2o D nam R L (5, 00y (8,2) (3.22)
0O m n

z z aTM,lmn Kn J;m (Kn 100 )l//mn (¢7 Z) =

m n

Jz + zzaTM,OmnK’nH;n(lz) (Kn pO )y/mn (¢9 Z) (323)

m n

If the inner product operation described in Chapter 2 is employed, the equations that
hold for doubly-infinite sums simplify. By taking the inner products of both sides of

the equations with the Floquet modes, the boundary conditions become

aTM,lmn‘]vm (KnpO) = aTM,OmnH\Ej) (Knpo) > (324)
aTM,lanvm (Kn pO) = aTM,OmnH\Ej) (Kn pO) ’ (325)
aTM,lmnKnJ\,zm (KnpO) = aTM,OmnKnH{):,Z)(KnpO)—l— < Jz’l//:zn (¢5Z) > (326)

The resultant equations can then be solved for the coefficients azuom, and azsimn-

The coefficients for the fields in the external region are
aTM,Omn = __zjﬂ.p()']vm (Kn pO) < Jz b Wr*nn (¢’ Z) >. (327)
In obtaining the expression (3.27), the Wronskian relation

J, (6, YH! P (6, 0) = I, (6, Y (k, p) = — 2=, (3.28)

n

1s utilized [24].

So far, the scattered fields are expressed in terms of the surface current J..
However, it is still an unknown quantity in the formulation above and has to be
determined using the additional boundary condition that the total tangential electric
field has to be zero at the surface of a strip. Note that the surface current is also
related to the incident wave. Then the surface current can be computed numerically
by using the MM technique.
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3.2. An integral equation for the surface currents and the MM Solution

As mentioned, an integral equation for the problem considered in this chapter is
obtained by equating total tangential electric fields to zero across a strip surface.
Since the strips are oriented in z direction and their widths are very narrow, only z

components of the electric fields are taken into consideration. So starting with

E} (py»#,2)+ E"™ (p,,4,2) =0 on the strip, (3.29)

where E denotes the exciting and E;. the scattered electric field respectively.

From the expression (2.46), we have

; 1
Ebz(p9¢7z): < ZZaTM,OmnKjH\E:)(Knp)wmn(¢9z):

ja)o m n

1 -7 *
— 3> L apyd, (8,00 < Wi ($.2) > K2HE (i, 00, ($.2) (3.30)
joe, 757 2

E™ is obtained from the vector potential of the incident wave as in (3.1). Therefore

the exciting electric field is

B (0..2) = ——afii], (ko) e . 331
joe !

0

An integral equation is then obtained as follows

E;.(py,$,2)=—E (py.$.2)

1 -7 #
— > "L, (k,00) < W (2) > K2HD (K, p W, (6,2) =
.] a)go mn 2

_1 inc 2 j i
—ivo# =Bz
; ) Jvm (i, pp)e e 5

JO&,
and finally
Y7, <J W $2)>y,,(4,2) = f—la;fA;KOZJV (1, 05)e ""?e " on 8S ,(3.32)
mn ! _]0)80 "
where
= P2, (K, p)HE (K, py). (3.33)
2we,
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Here 0S denotes the strip surface. That is,

aS={p=p,;—wl2a<p<w/2a;-1/2<z<1/2}. (3.34)

This integral equation may be solved numerically by using a MM technique. For
obtaining a numerical solution, the current is expanded into entire domain sinusoidal

basis functions for narrow strips [25]

J. = icqfq , (3.35)
where
f, =sin{i (z+ 1)}, (3.36)

and ¢, denote unknown expansion coefficients. Substituting the expansion of the

current into the integral equation, one obtains
Q kS

Zcqzzzﬂo < f‘I’l//Wm (¢’Z) > y/mn (¢’Z) =
=

1 m n

—]; KoapJ, (K,py)e e on 68 (3.37)
0

In accordance with the Galerkin’s method, by taking inner products of both sides of
(3.37) with basis functions f, a new equation

0
Y D ey < S W $.2) < o ($2) > =

m n

-1 - . .
——koamJ, (Kypy) < f,.e”""e > (3.38)
J &, '
is obtained. This is performed for p=1, 2, . . ., Q. This results in a set of equations
that can be written in matrix form
A4, 4, ... ¢ B,
SR R (3.39)
Ago | €0 B,

where
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= Zzzzzo < f;’W:‘nn(¢9Z) >< fp’l//mn(¢’z) >

m

= SN2, (e, 00 H P (k,00)ClCS2 (3.40)
e, 575 " "
1 inc —ivod =Bz inc Kg
Bp:_.—Ko TMJ”,(KOPO)<fp>e Ye T >=—ap, — Jv,,,(Kopo) LTS, COP’
jwe, J0&,
(3.41)
1/2 —jB,z l( l)p /ﬂ,,l/Z_ejﬂ,,l/Z
C = [ sinfz(z+ i< - PZ , (3.42)
’ j f Z}J_ JT. B - (pr)
, 2 -iBz Y Q)4 PlI2 _ pmifil)2
c, = | sin{g(ﬂg)}(e | o0 ( Vel el G
_1/2 \/T_Z \/T_z (ﬂnl) —(qrm)
g - 2 e—jvm¢ _ w Sll’l(i Vo ) . (344)

In the computations of the matrix elements 4,, in (3.40), the infinite sum with
respect to the summation index m is seen to be slowly convergent. Therefore we use
a convenient computation method that is based on a Kummer’s series acceleration

method to circumvent the slow convergence difficulty.

As the summation index m in (3.40) tends to infinity, it is noted that the products

of the Bessel functions asymptotically equal to

J,. (&, p)HE (i, py) 2 as v, [=| v, + 22m/ T, |=] v, + mN |-> 0, (3.45)

[V |

where

‘6||’7

means an absolute value and N denotes the number of strips in ¢ direction

such that 7, =27/ N . Then it is convenient to compute 4, as follows:

pq

0
26080 Z Z K qu P o J"m (K" Po )H‘Ei) (Kn Po )qu Cnp sz
0 m n

—7TP, N
= Y KCLCy X L, (e H ()
0 n= m=—x
—70, 2 O o2 2) J < o2 J
=— K:C C S 1J (x H " (x - + S
2(080 ,,:Z_OO n"nqg "np {m_z_w Vi [ vm( npO) Vi ( npO) P | Vm |] m;m Vi P | Vm |}
Y RCLCo X S| () ) -1
20e, = R Pt a | Vo |
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71 = i —7y
po Z ananp Z szm (‘]vm (Knpo)H\Ej) (Knpo) - J J_I_ po I Z }ananp s

2w, = s v,|) 2wg, —
(3.46)
where
D Q2 . o
I:L Z Svm ]W2 Z Slnz((VO/N-i-m)ﬂW/b) (3.47)
TV, ] 7er0 =, (aw/b)* | v,/ N +m|’

Now, the infinite sum with respect to m in (3.46) converges more rapidly. However,
the infinite sum in (3.47) converges slowly as shown in [18, 21]. In Appendix A, a
computation scheme for slowly convergent infinite sums is described. Also, as an

example, the computation of (3.47) is provided in the same appendix.

Once the MM solution of the problem is obtained for the surface current, the

coefficients ay, ,,, in (3.27) are expressed in terms of the current coefficients ¢, as
follows :

_j N
aTM,Omn = Tﬁpo‘]vm (Knpo) < Jz > Wmn (¢9 Z) >

—7 Q
B TJﬂ-pOJvm (Knp())ch < f;]’l//m" (¢’Z) >

q=1
=7’npoJ (%,£,) {Zcq } (3.48)

By using these coefficients, the scattered fields are determined by using the

expressions in (2.45)-(2.48)

Ejy = ZZ{Z%CW }S v, B, (i, p) H P (5, 000, (8,2),  (3.49)

2we, 75

(s}

. —7p, .
EOz = ° ZZ{Z chnq }Svm ijvn, (Knpo )ngj) (Knp)Wmn (¢7 Z) (350)

e, 5

m n

Hiy(p.d,2) == zpoZZ{ZchW}S K, J, (&, p)H, P (k, P, (¢,2) (3.51)

H; (p,4,2)=0. (3.52)
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The scattered fields obtained so far correspond to a single cylindrical wave
excitation of the form given in (3.1). However, if the excitation is a plane wave then
the scattered fields are determined separately for each cylindrical wave components
of the incident plane wave. Using the superposition principle, the total scattered
fields are then obtained by summing the individual scattered fields. The
decomposition of a plane wave into the cylindrical wave components has already

been considered in Section 2.2. The RCS of the problem is therefore

2

S H (p.4.2)

Vy=—0

RCS = 1lim27zp

p—>0 Hi

(3.53)

‘2

Here the infinite sum in the numerator indicates the total scattered magnetic field and
H' denotes the magnetic field of the incident plane wave. As shown in Chapter 2,
when the vector potential of the incident plane wave has unit amplitude, the absolute

value of the magnetic field is given by

[H'| =, =k, sin 0™ (3.54)

On the other hand, the scattered magnetic fields in the far field region are determined
from the expression (3.51) by using the asymptotic form for the Hankel functions

[24],

2
7[’(71 p

H‘:(Z) (Knp) ~ _] Lejﬂ/4+jvmﬁ/2e—jk”p ;as p 5w, (356)
" 7K, P

Thus the absolute value of the total scattered magnetic field in the far field region is

im !4+ jv,m/2 —JK,
e] JVm e JKnP

H (k,p) ~ as p - o0, (3.55)

obtained as follows

2 2
S H'(p.4,2) =| Y. Hyy(p.9.2)
0 ) J OQ * 5
-1y 2y » {Z e }Svm x,J, (1,0 H "> (x, P, (4,2)
Vo=—00 m n gq=1
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Z Z ZZC C S \/7J (c,p,)e” Jup+Vul0=/2)+,2)

Vo =—00 m=—00 n=-00 g=1

,as p—wo  (3.57)

B ZpT T

and the RCS is determined from

2

27p
RCS = hm— bz
p® (k Sll’lﬁmc (p ¢ )
2_2
i Ky PV (0= 2 )+ B2,
B (k Sin;in0)2TT Z Z ZZC qu Vi V J (K po)e SOy v (0= 2)+ B, 2) (3 58)
0 ¢z |Vo=—00 m=—0 n=-0q= 1

Electromagnetic field couplings into the cylindrical structures have some practical
importance in antenna applications. The coupling is defined as the total power
measured at the center of a cylindrical structure when a plane wave is incident on the
structure. As discussed in section 2.3, the coupling can be determined by considering
the far fields radiated from an electric type line current located at the center of the

cylindrical structure shown in Figure 3.1. The coupling is determined using

. 2
mnc N
\H¢ +H,,

Coupling = lim

—, (3.59)
pP—>0 ‘H;m

where H® denotes the scattered magnetic field in the presence of the cylindrical
structure; H" denotes the incident magnetic field in the absence of the cylindrical
structure, as given in section 2.3. As p — oo, the limiting value of the expression in

(2.84) is obtained as

inc _ i 1(2) —iboz
HJ* =—ap, k,Hy " (k,p)e ™

. 2 ) » .
_a;'n}\[//[K() (_]) e./”/4e /KOPe JBoz
7Ky P

2k,

7p

inc

= jalke e/ eI ag p—3 o0, (3.60)

and the coupling is determined by using this expression and the corresponding

asymptotic expression of the scattered magnetic field in (3.57).
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3.3. Determination of the scattered waves from axial slots and the Equivalence

principle

Now consider a periodic cylindrical structure as shown in Figure 3.2, which consists
of a perfectly conducting circular cylinder perforated periodically with axial slots.
The periodicities in the circumferential and longitudinal directions are denoted by 7'
and 7. respectively as shown in the unit cell of the problem. In the figure, the slot

dimensions are taken as wx/ .

When a plane wave is incident on the structure, the incident plane wave can be
decomposed into cylindrical waves. This procedure has already been described in
Chapter 2. If the incident plane wave has unit amplitude vector potential and its

polarization is TE, its cylindrical wave components are of the form

Ay = aged, (kop)e e (3.61)
where
B, =k,cos0™, (3.62)
K, = k,sin @™, (3.63)
ale = /T (3.64)

v, denotes an integer, ¢" and ¢im denote propagation directions of the incident wave.

The corresponding magnetic fields are obtained as

inc 1 inc - ~Jboz
H, =_.—aTEV0:B0Jv0 (ko p)e”’ Pe e, (3.65)
J Oty P
H!" =——xpajsJ, (,p)e e (3.66)
J OH,

Such an excitation induces aperture fields across the slotted regions of the
conducting cylinder. Scattered fields of the problem are assumed to be radiated by
those aperture fields. In accordance with the Floquet Theorem described in Chapter
2, the scattered fields are represented as infinite sums of the Floquet modes. If the
slots are very thin compared to the free-space wavelength, then z components of the
aperture fields may be ignored. As a consequence of this the scattered fields can be

derived from the vector potentials
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sl S\ MAS ’\/\'\&Eg, Hg
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. i ~ ~ S'\/\/Emc’ Hmc'

mce mc
E P} H ~ ~ ~ ~
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Figure 3.2. A perfectly conducting circular cylinder perforated periodically with
axial slots. A cylindrical TE wave is incident on the structure (a) Array geometry. (b)
A unit cell of the problem at ¢=0. N denotes the number of slots in ¢ direction.

Perfect
conductor Perfect Es H s

conductor
}nc , Hm K \ jﬂ Ezm Hlm
=H =0
S T y
Perfect

E (;l”’ conductor
a) Top view of the b) Equivalent problem ¢) Equivalent problem
original problem for the internal region for the external region

Figure 3.3. Application of the Equivalence Principle for the conducting circular
cylinder with the slots. a) The original problem, b) The equivalent problem for the
internal region. The aperture field in the original problem is replaced by a magnetic

current M, which radiates the fields E;,H;. ¢) The equivalent problem for the

external region. A magnetic current M, = —M, radiates the fields E;, H; .
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Apg = zzaTE,Omn‘]vm (K, PV (9, 2) for p < p, , (3.67)

m

A7S"E,l = ZZ“TE,lmnHéj) (K, P 1 (9, 2) for py<p (3.68)

where the weighting coefficients a,,,, and a;,,, denote unknowns to be

determined from boundary conditions of the problem. Note that for the external
region, the Hankel functions of the second kind are chosen to represent outward
traveling waves. But for the internal region, the Bessel functions of the first kind are

used because the waves should be purely standing.

Before applying the boundary conditions of the problem, the Equivalence
principle [23] is utilized. In accordance with the Equivalence Principle, the slots on
the conducting cylinder are replaced by equivalent magnetic currents denoted by M,
and M, for the external and internal regions as shown in Figure 3.3. An equivalent
magnetic current in the external region is defined as

M, =a,E;" xa, =-a_E}", (3.69)

P

while the current for the internal region is defined as
M, = a¢E;’”’ x(-a,)= aZE(;l”’. (3.70)

Here E;I"’ denote ¢ component of the electric field on the slotted region. In that case,

the scattered fields for the external region are determined from the magnetic current
M, , while the scattered fields for the internal region are determined from the

magnetic current M.

Consider the equivalent problem for the external region of the cylindrical
structure shown in Figure 3.3.b. The current source M, is backed by a perfectly

conducting cylinder. In that case, a boundary condition for the scattered fields is

a,Egxa =M, at p=p,. (3.71)

The scattered electric and magnetic fields are obtained from the vector potentials in
(3.67) and (3.68) and by using the expression (2.45)-(2.48).The fields in the external

region are therefore
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E(;¢ = ZzaTE,OmnKnH\I/LZ) (Knp)wmn (¢7 Z) ) (372)

E;. =0, (3.73)
s 1 &)
H0¢ - _]wﬂop ;;aTE’OVﬂnvmﬂnva (Knp)l//mn (¢’Z) > (374)
o
HOZ :.—zzaTE,OmnKjH\(/:)(Knp)l//mn(¢9Z)' (375)
JOHy “wm

Similarly, the scattered fields in the internal region can be inferred from these

expressions by replacing all occurrences of the Hankel functions (H v(:)) with the

Bessel functions (J, ). The scattered fields in the internal region are

Eyy =2 g, (6, PV 0 (8,2), (3.76)
E), =0, (3.77)
s 1
H1¢ =T ]Q)IU P zzaTE,lmnvmﬂn‘]vn, (Knp)l//mn (¢a Z) 5 (378)
0 m n
s 1
le = z z aTE,lmn Kj']vm (Kn p)l/jmn (¢’ Z) : (379)
]a)ﬂo m n

Performing the cross product operations in (3.71), a scalar equation involving

infinite sums of Floquet modes is obtained. Taking the inner product of both sides of

the resulting equation with Floquet modes, the unknown coefficients a,,,, are

determined in terms of the slot field £ ;lm ;

< E;lot , l//:m (¢’ Z) >

a = . 3.80
e ) -

Next, the equivalent problem for the internal region as shown in Figure 3.3.c is
considered, where the current source M, is backed by a perfectly conducting

cylinder. In this case, the boundary condition requires that
aE/x(-a )=M, at p=p,. (3.81)
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Similarly, using the expression (3.76), the unknown coefficients for the internal

region are determined as

o _<EM @)
TE 1mn K'nJ;m (Knpo) ‘

(3.82)

Note that, the scattered fields are all expressed in terms of the slot field E;l‘”.

However, it is still an unknown quantity and has to be determined from an additional
boundary condition. In the next section, an integral equation will be obtained for the
slot field by using the fact that the total tangential magnetic fields are continuous on

both sides of the slot.

3.4. An integral equation for the aperture fields and the MM Solution

The slot field is an unknown quantity and should be determined in terms of the
exciting wave of the problem. The vector potential of the exciting wave is given in
(3.61), and the corresponding magnetic field is given in (3.65). Since there is no
electric current at the slotted region and the slots are narrow, we require that z
components of the magnetic fields should be continuous across the slot. This

requirement is written in a mathematical form
H' =H) +H"™+H, ondS. (3.83)

Here 0S refers to the slotted region, H" denote the magnetic field of the exciting
wave, and H; denote the magnetic field that would have been scattered by the
conducting cylinder if the slots were not present. To determine H:, consider a

conducting cylinder without slots of radius py. Since the incident field is known, H* ,

can be determined from TE fields

Ay = a;EH§j> (r,p)e e P (3.84)

The unknown coefficient is determined by writing a boundary condition for the
corresponding electric fields of the vector potential. Since the tangential electric field
must vanish on the surface of a conductor, the ¢ component of the total electric field

should be equal to zero across the cylinder. That is,
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E;(py)+E;(p,) =0,
K-Oa;”E"JLO (KO Do )e—jVo¢e—jﬂoZ + Koa;EHLSZ) (KO 2o )e—jvo¢e—jﬂoz =0 ,

and so

e _a;gjéo (K400)

Arp = : (3.85)
" HVSZ)(KOPO)
The corresponding electric fields are therefore
. - J (x . 4
El =—ale Uo20) Ko H ! (i, ple e (3.86)

" HLSZ)(KOPO)

Substituting (3.75), (3.79), (3.80), and (3.82) into (3.83) yields

! <E".,.(8.2) >
: ZZ ’ ' Krvam (Knpo)l//mn(¢’ Z) =
]a)/’lo m n KnJvm (Kn pO)

1 <E w,.($,2)> , _
v K H Y (K, 00, ($:2) + HY + H
ja)ﬂo hzlg KnH\ZiZ) (KnpO) ! ’

Z Z = E;lm 4 lr//:m (¢3 Z) > Kn l//mn (¢’ Z)

— : U, (e, 00 HI (1, 00) = T, (6, p)H? (1, 9,)]
m o JouJ, (K, )Hviz) (K, p) o)y, 0 . o)L, 0

=_(Hinc +H§)’

Y, <ES v, ($.2)>w,,($,2)=—(H! + H ) on 85, (3.87)

m n

where

2 1

- , - . (3.88)
a)ﬂOﬂ.pO ']vm (KnpO)va (KnpO)

mn

In obtaining (3.87), the Wronskian relation given in (3.28) is used

To solve (3.87) the slot field is expanded into entire domain sinusoidal basis

functions as in the previous section,

0
E=Xc.f., (3.89)
q=1
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where
(3.90)

f, =sintf(z+ D)},

and ¢, denote unknown expansion coefficients. When (3.90) is substituted into the

equation (3.87) one gets

Y e c
eSSV, < f Wb 2) > W, ($2)=—(H" +H ) on 8S.  (3.91)
q=1 m n

In accordance with the Galerkin’s method, taking inner products of both sides of

(3.91) with a basis functions f,, a new equation is obtained

D Y < SV ($.2)>< [0, ($,2) > =< f,,~(H! + H.) > on 05 .(3.92)

g ~
2.5,
gq=1

If this is performed for p=1, 2, . . ., Q, a new set of equations is obtained in matrix
form
A, A, ... ¢, B,
c B
’ 2 (3.93)

A4, 4, ... B
AQQ Co BQ

that can be solved by a matrix inversion, [c, ] = [A - 1"'[B ,]- The matrix elements are

> * 2 C* C S2
Ay =22 0 < S V(8.2 >< f.1,,($,2) > = e,
rq ; n 1 P WL, TTP, ;Z,,: Jvm (K”p())Hv,iZ)(Knpo)
(3.94)
2 T,T.S, C
e Ko NotiTv 70 (3.95)

B =<f  ~(H™ +H)>=a ' .
! ! " W, TP, HVO(Z)(KOpO)

Here C,,,C,, ,and S, are given by (3.42)-(3.44).

As in the conducting strips problem considered in Section 3.2, numerical
computations of the matrix elements have convergence difficulties. The convergence

acceleration method discussed for the strips problem is also applicable to the slot
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problem of this Section. The asymptotic value of the products of Bessel functions
[24] is
vl

”(Kn pO )2

It is therefore more convenient to write A g 38 follows:

J, (K,P, )H:}iz) (k,p,) = as v, [Hv,+2zm/ T |5 v, +mN |[> 0. (3.96)

C C, S’

22 RYTE)
Pq

WOHTPy m J' (x, po)H'(z)(’f Po)

& 20.C, & N
—:Z 2 T )

n=—o0 luoﬂ-p() m=—wo
nq /1p SZ 1 +”(Knp0)2 _ i SZ ”(KnPO)z
ﬂo”po m=—0o " Jvm (Knp())H\f) (Knpo) ]|Vm| m=—0n " ]|Vm|
nq np S2 1 +7Z-(Knp0)2
lLlOﬂ.pO m=—o0 " Jvm (KnpO)H\Ej)(Knpo) .] vm
_& 2C. C

)y *(3.97
n:Z_OO C()‘Lloﬂ'po (KnPO) ( )

)
Il

I
u MS

I
H M8

where

2
S,

o[V |

=-7°1. (3.98)

~ T &
==
2
Here 7 is given by (3.47) and it can be computed as described in Appendix A.

Once the matrix equation is solved for the coefficients ¢, , the scattered electric

and magnetic fields are determined easily. For the external region of the structure,
the coefficients a,; ,,, are determined as follows

0
<E;lut’l//:m(¢’z)>_ch<f;]’Wmn(¢’Z)> {ZQ: } S

q=1
x,H,” (x,p,) K, H!” (k,p,) H ’(2’(K Po)
(3.99)

aTE,Omn =

Then the fields in (3.76)-(3.79), which are given for the external region become

ZZ{ZchW} e O o, (8,2, (3.100)

]a)ﬂop m n KnH\:nEZ)(KnpO)
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s
HOZ

0 . .S, )
ZZ{Z@CM}—"‘ H®(k, P, (#,2),  (3.101)

.]wluo m n q=1 ’(2)( n 0)

Y S
Esy(p.6,2) = { ,C. },#H;“’ (K, W (,2),  (3.102)

n

E.(p.$,2)=0. (3.103)

As before, the scattered fields are determined separately for each cylindrical wave
components of the incident plane wave. The RCS of the surface is determined from

(2.76);

S UE (p.6.2) +E (p.4.2)

RCS = lim 2zp—
‘o

(3.104)

where E’ refers to the scattered electric fields given in (3.102), E* refers to the
electric fields corresponding to (3.84), and E' refers to the electric field of the
incident wave. According to Section 2.2 of Chapter 2, the absolute value of a unit

amplitude TE plane wave is

[E'| =, = k,y sin 0™ (3.105)

In the far field region, the scattered electric fields that are due to the magnetic
currents are determined from the expression (3.102) using the asymptotic form of the

Hankel functions in (2.75)

0 S
ES(Pa¢,Z)=aZZZ{Z ¢, nq}w D (K, PV (852)

m n q=1

=2 zz z Svm (_]) 2 ej/r/4+jvm7r/26—jl(”p e—jvm¢e—jﬂ,,z
m n q " ,(2)(Kn 0) 72']('10 VY;ITZ
S e*/lfp Jvm (=7 2)=jp,z
_ —jﬂ'/4
- = ) ' as p—w.  (3.106)
G {ql “ "} \/TT\/—HQ)(K‘ 2,)

Similarly, the electric fields E” that are scattered from the conducting cylinder when
the slots were not present are determined from the expression (3.85) using the
asymptotic form of the Hankel functions in (2.75), that is

E‘(p,4.2) =a_k,a,H P (k. p,)e " e
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ainc KOJVO( OpO)
zTE (2)
H, 7 (k0p0)

!
_ me Koy, (Ko Po) . 2 aaijnr2 —jkep b —ifr
=a_a,, ——(—j).[—e e e e
T H (ke py) K P
Vo 0P 0

inc
—jxl4 2 Az VKo J"o (50 P9) e K0P (=71 D)=z
o '(2) (K4P0)

—Jvo# e*jﬂoz

2
;0( )(Kop)e

=a..e

z

as p— . (3.107)

The RCS of the cylindrical structure can be determined by using the far field region
expressions of the scattered electric fields established in (3.106) and (3.107) in
(3.104). That s,

© inc
4 3 g\ Ko Sy, (Ko p0) o TK0P= o D)= ifyz
!(2)
k,sin@™ Bt (409)

0 S e*/lfp T (P=7/2)=jB,z ?
.(3.108
zzn:{qz_: ! nq}\/TT \/—H'(z)(K‘ £o) ( )

Electromagnetic field penetrations into the conducting cylinders perforated with

RCS =

the slots have also important consequences in antenna applications. The amount of
penetration is measured by a quantity that is called as “the coupling”. The coupling is
defined as the total power measured at the center of a cylindrical structure when a
plane wave is incident on the structure. As discussed in section 2.3, it can be
determined by considering the far fields radiated from a magnetic type line current

located at the center of the cylindrical structure. The definition of the coupling is

12

£,
Coupling = lim ——

pP—>0 ‘Emc

(3.109)

2

inc

where E' denotes the scattered electric field in the far field region (as p—x); E
denote the electric field radiated from a magnetic type line current located at the
center of the cylindrical structure, and is given by (2.101). As p — oo, the limiting

value of the expression for £ is obtained as

inc inc !(2) —JjPoz ~ ,inc 2 jrl4 _—jxop —jbByz
Ej" =an Kk H, (,p)e = A K ( ]) —e’ e e
7Ky P

2 . - ;
~ _jaészc KO eﬂr/4e*_/l<npe*./ﬂoz as p —> 0, (31 10)
\ 7o
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4. SCATTERING FROM A CYLINDRICAL SURFACE
CONTAINING A DIELECTRIC SHELL

A cylindrical structure consisting of a dielectric shell covered periodically with
conducting patches is analyzed by considering the TE and TM modes
simultaneously. When formulating the problem, the scattered waves are written as
infinite sums of the Floquet modes with unknown weighting coefficients. The
weighting coefficients are then related to the surface currents of the conducting
patches by using boundary conditions of the problem. Later on, an integral equation
is obtained for the surface currents and solved numerically by using MM techniques.
The formulation technique given in this Chapter can be extended to multiple

dielectric layer problems.

As in the problems considered in the previous chapters, the infinite sums
appearing in this chapter are found to be slowly convergent. When solving the
problem by a MM technique, the infinite sums should be handled properly in order to
circumvent slow convergence difficulties. One approach in such a case is to use sub-
domain basis functions in conjunction with a conjugate gradient fast Fourier
transform method as in [10]. Another approach is to use entire-domain basis
functions together with a convergence acceleration method as described by us in [18,
21] which is based on a Kummer’s series acceleration method. Here, we followed the
same approach and derived the appropriate convergence acceleration method for the

problem.

4.1. The scattered waves from a dielectric shell covered by conducting strips

A periodic cylindrical structure consisting of conducting patches printed on a
dielectric shell is shown in Figure 4.1. The scattered waves in three different regions

are illustrated in Figure 4.2. The strips are periodically located on a surface at p = p,

with periodicities 74 and 77 in the directions ¢ and z. When a plane wave is incident

on the structure, the incident wave can be decomposed into cylindrical waves as
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described in Section 2.2. If the incident plane wave has unit amplitude vector

potential and its polarization is TM, the cylindrical wave components are given by

A[nc ainc p p
( TM] :( TMJJ (kp)e e, 4.1)
A Arg
where
region 2
region 1
1y=27n/N region 0
e
\J‘ ———

R W \v
Scattered wave ‘ =po- P - -

\

Ef) R HS ~
M SoW
= ¢
<~
inc inc l
E™ H . i 0
Incident wave S
~ . L _
~ -
~
= ~
SO b
~ ~
(@) (b)

Figure 4.1. a) A periodic cylindrical structure consisting of rectangular strips on the
surface of a dielectric shell. A cylindrical wave is incident on the structure (b) A unit

cell at ¢=0, showing the parameters of the problem. N denotes the number of periodic
strips in ¢ direction.

. region 0
) region 1
region 2 .
Po __---7"
l P1 - ”_—‘\
-<2I[7y ES JHS L < ETJ — 7
TELH L >
~~“~1___~\ ':‘ Eo aHo
‘t\"\“*\

Figure 4.2. The top view of the unit cell of the problem. Scattered waves in regions
0, 1, and 2 are radiated by a current, J, which is induced due to the incident wave.
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(am j = [ljew‘“””) : (4.2)
apy 0

B, =k,cos0™, (4.3)
Ky =k, sin 0™, (4.4)

vo denotes an integer, 8" and ¢ denote propagation directions of the incident
wave. Such an excitation induces a surface current, J;, on a patch surface as seen in
the unit cell of the problem. In turn, those currents radiate the scattered waves. In
accordance with the Floquet Theorem described in Chapter 2, the scattered waves are
represented as infinite sums of the Floquet modes. The scattered waves involve TM
and TE modes simultaneously, and they can be derived from vector potentials A7y,
and Arg. According to the conventions discussed in Chapter 2, the appropriate

expressions for the three distinct regions are

AYS"M,O = Z ZaTM,OmnH\Ej) (Kow P (9, 2) inregion 0, (4.5)
Apg o = zzaTE,OWIHHIEj) (Kou Wy (#,2) in region 0, (4.6)

m n

By =S S amy o (K0,0) + @Y, (610 P) W ($,2) inTegion 1, (4.7)

m n

A;E,l = ZZ{a;E,]anvm (Klnp)"'a;E,lmanm (Klnp)} ¥, ($,2) inregion 1, (4.8)

AZS"M,Z = Z Z aTM,Zmn Jvm (KZn p)l//mn (¢7 Z) in region 25 (49)
AIS'E,2 = Z Z aTE,Zanvm (K2np)l”mn (¢’ Z) in region 29 (4 10)

where J, , Y, , and H” denote the cylindrical Bessel functions of order v, . The
weighting coefficients a;, ,,, and a;,,, denote the unknowns to be determined from

boundary conditions. The Floquet modes denoted by , ~are given in Chapter 2,
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e—jvm¢ e—jﬁnz
Yo (9,2) = T (4.11)
B, =P, +2mlT,, (4.12)
Vv, =V, +2mm/Ty, (4.13)
Kk, =~k =B (4.14)

Here v, and f, denote the phase constants of the exciting wave in (4.1) and

k, = w\/u,&; denotes the wave-number of i-th region. Since purely standing waves

exist in the innermost region of the cylindrical structure (region 2), Bessel functions
of the first kind J, are used in the relevant expressions. For the external region, the
waves should be propagating in +p direction and so Hankel functions of the second

kind H® are used in the expressions. However, the waves in the dielectric shell
region are represented by using the functions J, and Y, because there should exist

forward and backward traveling waves in that region. It is shown in Appendix C that

the functions J, and Y, exhibit oscillatory behavior, as do the sinusoidal functions

[22]. Hence, the waves in the dielectric shell are represented by cylindrical standing

waves.

If there is no current at an interface, boundary conditions require that the
tangential components of electric and magnetic fields should be continuous.
Otherwise the fields should be discontinuous by amounts equal to the magnitudes of

the surface currents. Consider the boundary at p = p, as shown in Figure 4.2. Since

there is no current at the boundary, the tangential components of the electric and

magnetic fields should be continuous

E.(p)=E.(p), (4.15)
E(p)=E,(p), (4.16)
H3y(p) = Hyy(p), (4.17)
H;.(p)=H.(p,). (4.18)
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On the other hand, there exists a surface current J, at the boundary p = p, and so

EL(py) = Ey.(po) (4.19)
Ey (o) = Eoy(py) (4.20)
Hyy(py) =~J. +Hy,(py), (4.21)
Hi.(py)=J;+H;.(py) (4.22)

where J p and J_ denote the components of the surface current J,, that is,

J,=a,J,+a_J_. (4.23)

The electric and magnetic fields can be obtained from the vector potentials A7y,
and Arg as discussed in Chapter 2. To simplify the application of the boundary
conditions, we use matrix representations for the tangential components of electric

and magnetic fields. The expressions for distinct regions are written as follows

oS Vel SUETE ORI

m n

T e rrno. 29

m n

[Ei} (p,¢,z)J _
E.(p.9,2)

ZZ{&_’”" (P){a;_M’lm"] +ep., (P)(aiM’lan}l//mn (d,z) forregion 1, (4.26)

m n aTE,lmn TE Imn

H.(p.¢,2) | _
_H15¢(p9¢az)

e

TE ,1mn

J +ht (p)[aﬂM’“’” J}wm (4,z) for region 1, (4.27)

TE 1mn

Feravedo > ) CLE LI
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where e and 4 stand for 2x2 square matrices that are obtained from the expressions

given in (2.45)-(2.48) as;

e (p) _ 1 _vmﬂnngj) (KOnp) ja)gopKOnH;,EZ)(KOnP) (4 30)
T josyp| Ko,pH LY (Ko, p) 0 ’ '
1 0 Ko,PH, (0,P)
hOmn (p) =" . 1(2) ‘ (’3) 0 ) (43 1)
.]a)/uop .]a)lquKOnva (KOnp) vmﬂnva (KOnp)
e_ (p) _ 1 _Vmﬂn‘]vm (K]np) ja)g pKan\t (Klnp) (4 32)
T jesp| Kkpd, (K,p) 0 ’ |
0 K2 pJ, (i, p) ]
B (P) = , A (4.33)
.]a)ltlop ]a)/’lOpKanv (K]np) vmﬂn"]vm (Klnp)_
€+ (,0) _ 1 _vmﬂanm (K]np) ja)g pK Y, (Klnp) (4 34)
T jeep| w,pY, (k,p) 0 | |
0 x.,0Y, (K,,0)
lmn (p) - 1 " 1 5 (435)
]a)/“lop ]wﬂopK1;7Y (Klnp) vmﬂanm (Klnp)
1 |-v,B.J, (k,, 08, PK,,J | (K,
e, (p)=~— 2ﬂ iy, p)  Jog,pKy, T, (i, P) , (4.36)
]wgop Kan]vm (KZVIIO) 0
0 K2 K
Ry (P) = = 1 . , 0y, (K20f) , (4.37)
Ja)ﬂop .]a)/l’l()pKZn‘]vm (Kan) vmﬂn‘]vm (Kan)

and a prime over a Bessel function implies the derivative of that function with

respect to the argument, that is

OR(xp)

R'(xkp )_8( )

(4.38)

By using the matrix representations for the electric and magnetic fields, the

boundary conditions in (4.15)-(4.22) are expressed as
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> en(p )(“TM~2"“" }wm (4,2) =

TE ,2mn

D> e (p )( i ]w (¢,2) + Zzelm (p) (;;M*lm" ]w (4,2), (4.39)

TE 1mn TE 1mn

> ooy )(“TM’Z'"" me ($,2) =

TE,2mn

222 (1 )( e }// wmn ($52) + Z Z Py (P1) (aZM’lmn jwmn (¢,2), (4.40)

TE Jmn TE ,1mn

ZZelm (P,) ( [t jwm ($,2) + Zzelm (po) ( T }// ($,2) =

TE Jmn TE 1mn

D2 o (P ){aTM’O'"” jwmn (4,2), (4.41)

TE,Omn

DD (P )L i }ﬂm ($,2) + Zth (Py) (“Ti”’“"" }// ($,2) =

TE lmn TE 1mn

J
( fj + 2.2 1o (P )Lam”’”" men (4,2). (4.42)

TE ,Omn
An inner product for the Floquet modes is defined in (2.49) and it was shown in
Chapter 2 that the modes y, (¢,z) are orthogonal to each other. Taking the inner

products of both sides of equations (4.39)-. (4.42) with the Floquet modes one

obtains:
aTM,Zmn - ai_"M,lmn + a;:M,lmn
e2mn (pl) - elmn (pl) _ + elmn (pl) + H (443)
ATE 2mn ArE 1mn ATE 1mn
Aragomn | 4 - Arpg 1mm + a;M,lmn 4.44
h2mn (pl) - hlmn (pl) — + hlmn (pl) + ’ ( . )
AT 2mn A7E 1mn ArE 1mn
— a;M,lmn + a;M,lmn aTM,Omn
()| +e,,(0) . = €y, () ) (4.45)
aTE,lmn TE 1mn aTE,Omn
: Sy W o ($:2)
Ary Ay Ay o < #> Yo (P >
hlmn ( 0) " + hlern (pO) + " = hOmn (/OO) " + « 7(446)
aTE Lmn TE Imn aTE,Omn <Jz’l//mn (¢, Z)>

where the brackets “<>” represent the inner products, that is,
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[<J¢,w:m ) z)>} SR [J¢l//:m 4.2)

" - " ddds . 4.47
(T (8.2) Vo) z)j " (47

~T./2-T,; /2

Next, the unknown coefficients ay, ,,, and ag,,, of the scattered waves are

expressed in terms of the surface currents by solving the set of equations

algebraically. For example, the unknowns a,,,,, and a;,,, can be eliminated

from the equations (4.43)-(4.46) by writing

+

Arr 2mn - Arrg 1 S ATr 1mn
( | ]:[e2mn(pl)] elmn(pl)[ _ ]+[e2mn(pl)] elmn(pl)( . ]a (4.48)

ArE 2mn ATE 1mn TE 1mn

and similarly remaining unknowns can be eliminated. The solution for a,, . and

Argome €aN be written in the matrix form:

J,, ::m . Z
[aTM,Omnj:[eOmn(pO)]_IZQ < y ‘//* (¢ )> ’ (4.49)
ArE omn <Jz,‘//m,,(¢a Z)>

where

Z, Z }
ZQ:[ZW Zw}{YOmn—homn(po)[eomn(po)]1} , (4.50)

z¢ zz

Yo = (00 (PO + 15 (PO PO S | s + S} 5 (451)
§0m;z = el+mn (po )[e1+mn (pl )]_1 §1mnel_mn (;01 )[el_mn (po )]_1 5 (4.52)

-1

G = (M (PO (AT = sy, (P)Les,, (2T}
o (P2 (2T = B (P, ()] - (4.53)

Here I, , denotes an identity matrix,

o= 4.54
2=y 1| (454)

However, the surface currents J4 and J. appearing in (4.49) are still unknown

quantities. To determine these quantities we equate total tangential electric field on a
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strip to zero, as described in the next section. This will allow us to express the

surface current density in terms of the incident wave.

4.2. An integral equation for the surface currents

An integral equation for the problem can be obtained from the requirement that the
total tangential electric field should be zero across a conducting patch surface. This
condition has already been applied to the problems of the previous chapters, where
there was no dielectric shell. For the problem of this chapter, the requirement can be

expressed as

(E¢ (o, z)j N (E(;j (o, z)J N [E(; (P9, Z)J 0 on 2 455)
E"(py,9,2) E;.(py.9,2) Eq.(py.9.2) ’

reion 0
Scattered wave reion: 1
reion c ¢ c c
< He El’Hl E09H0
25 2 AN AA~AS>
<A S NN EAAN] <
ElnC , HlﬂC pl ElnC , Hl}’lC
Incident wave
0
(@) (b)

Figure 4.3. (a) The incident and scattered waves when the conducting strips were not
present in Figure 4.2. (b) Top view of the problem showing three different regions.

where Os refers to the surface of the conducting patch. Here E; denotes the electric

fields scattered by the conducting patches, E; denotes the fields that would be

scattered if the conducting patches were not present, and E™ denotes the exciting

electric field.
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Initially, E; is determined by using appropriate expressions for TM and TE waves

in absence of the conducting patches. Assume a cylindrical wave E™ is incident on

the cylindrical structure shown in Figure 4.3.a. Referring to three different regions

seen in Figure 4.3.b, the scattered TM and TE waves may be derived from vector

potentials:

AC’

™, 1 —

AC

TE,1

c — € (2) —vo# ,—iBoz ; :
Ao = aTM,OOOHV0 (ky0p)e "e ™ inregion 0,

¢ (2) —vo# =iz 3 :
A = aTE,OOOHVO (kpp)e e ™ inregion 0,

= a;;d,lOOJvo (Kp)e

*jVo¢e*jﬂoZ +act

™ ,100

c — A€ o ,—iBoz :
ATM,z = aTM,2OOJv0 (yp)e e in region 2,

c

TE2 —

c A4
aTE,zokon (kyyp)e e

J oz

in region 2.

(4.56)

(4.57)

Y, (k,,p)e e /"* inregion 1, (4.58)

— ¢ —vd ,=ibz + —vo# ,—iBoz 3 ;
_a;E,IOOJVO(KIOP)e e +a;E,100Yv0 (kpp)e ™e”"" inregion 1, (4.59)

(4.60)

(4.61)

Here ay,, ,, and a;,,,, denote the unknown coefficients to be determined in terms of

the exciting wave and x,, is given by (4.14), which denotes the propagation

constants of cylindrical modes. The boundary conditions of the problem require that

the tangential components of the electric and magnetic fields should be continuous

across the cylindrical interfaces at p = p, and p = p,, that is:

an, 1200 - Ay 100 + a
e . =en(p)| .- +e0(0))
TE,200 TE.100 a
a; as, a
™M200 | - M 100
Mo (P)| . =h(p)| .- + Ml (P)
ArE 200 TE,100 a
aC* aC+ ac
- M ,100 ™10 | M 000
e100 (,00) c— + el+00 (100) c+ - eOOO (100) c
TE.100 Arg 100 Arg 000
ac— aC+ ac
- M ,100 + ™00 | M ,000
Mo (0) P + Iyoo (0) ot = Nyoo (o) ¢
TE,100 ArE 100 ArE 000
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o+
™ ,100
c+

TE,100

|
|

+e" (py) (

o+
T™ ,100
c+

TE,100

inc
™
inc
TE

|
|

inc
™
inc

TE

+h" (,00)(

(4.62)

(4.63)

(4.64)

(4.65)



inc inc

where e, and £, are given by (4.30)-(4.37) with m=n=0. Here a;,, and a,

denote the coefficients given in (4.2) and the matrices " and 4™ are given by

ine 1 By, (KpP)  j@E Ky, (KeP)
e" (p) =— ) , (4.66)
JO&P| Kyop, (Kyp) 0
A 0 Koo, (Koo )
W (p) =——| , 0P Kbl (4.67)
Joup | jo,pkyd, (Knp)  vofo, (KoupP)

Next, the set of equations are solved algebraically for the coefficients

. . o o : .
Apyr 000 @0 azy o - An expression is obtained in matrix form;

ac - ¢ _inc ainc
[ iM"“’"j =Ly (2] C5e <p0>[ n J (4.68)
Arg 000 Ay,
where
- - c = c inc inc —
o= {hOOO(pO)[eooo (P)] 1 _Yooo} {Yooo —h"(py)le™ (py)] 1} 5 (4.69)

Yoo = (i (P01 + iy (P et ()] Cigo | 1o + i)+ (470)
Cooo = €100 (20 elno (2, )]_l C100€00 (P[00 (20 )]_l 5 4.71)

Cioo = Ui (POl (POT = hag (Pl esnn (2T}
{ oo (P)[es00 (P =Py (P (P} - (4.72)

In that case, the electric fields E™ and E{ in (4.55) are established as follows:

Einc +Ec ac ) ) ) ainc ) )
@ 0g | _ TM ,000 — Vo —JjPoz inc ™ —vo? —JBoz
( =eu0(L)| . e"e " +e" (p,) o e e

inc c
Ez +E0z TE,000 TE

=<§§+12Xz)ef"f<po>(afﬁi]e’V°¢efﬂ°2- (4.73)
a

TE

Recall that in the previous section, the unknown coefficients a;, ,,, and a;,,

of the scattered electric field E; in (4.55) is expressed in terms of the surface

currents. Substituting the expression (4.49) into (4.24), the tangential components of

the scattered electric field outside the cylindrical structure are obtained as
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( Fogln 4 ] D> Com(Py) ( TM°’””JV/W(¢ 2)

E,.(py:9,2) A7E 0mn
<J¢7l//::m (¢, Z)>

= o () €0 (P N'Z *
22 ovn@.2)

Yo ($52)

<J¢: W:;m (¢, Z)>

. W, (#,2). (4.74)
(1w, (,2)

(4.55) can therefore be written as

E}(0y:$,2) + Egy(py, 2 J (Jy 00 (8.2)) 0 om 2 (475
[Ei""(po,¢,z)+E o0 2 [<JZ,V/;;”(¢,Z)> Vi (,2) =0 on 65.,(3.73)

or as

(J oW (8.2)) [Ef"C(p,¢,z)+EC (p ,¢,z)j
z : (pr)=—] e Po 00 85 .(4.76
> Q[<Jz,wm<¢,z>> VoD oy B o) O

m n

If the constitutive parameters of the dielectric shell were equal to that of the free-

space (g =¢,) or if its thickness were zero (p, = p,), one can easily show that the
expressions given for Zp (denoted by Z, in this case) in (4.50)-. (4.53) would

simplify to those given in [10]. That is,

i ! 2

. 2p ']vm (KOnpO)Hv,iZ) (KOnpO) +i[vmﬂn j —v ﬂ

Zg, = 2we ., (KOnPO)H\Ej)(KOnpO) e g, (Konpo)Héj)(Koﬂpo) Po o
_vmﬂn K(?HPO

(4.77)

KOn

Furthermore, if the conducting patches were infinitely long in z direction, Zy would

then simplify to

— ki py | I, ko o) H Y (g ) 0 } 478)

20¢, 0 J, (ko p)H P (ko py) |

The problems involving free-standing and infinitely long strips are analyzed in [10],
where the surface currents of the problems are expanded into sub-domain basis
functions in MM solutions and a “conjugate gradient fast Fourier transform method”
is utilized. It is shown in Chapter 3 that the direct computations of the matrix
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elements in MM solutions are difficult because the resultant infinite sums are slowly
convergent with respect to the summation index m. It is also the case for the problem
considered in this chapter, where a dielectric shell is involved. The infinite sums
should be handled properly in order to circumvent slow convergence difficulties.
One approach is to use sub-domain basis functions in conjunction with a conjugate
gradient fast Fourier transform method as done in [10]. Another approach is to use
entire-domain basis functions together with a convergence acceleration method based
on a Kummer’s series acceleration method, as described in [18, 21]. Here, we go

along with the second approach and use a convergence acceleration method.

In Appendix C, it is shown that the matrices Z, and Z, both have the same

asymptotic form. That is,

Zo=Zy =Z, as|v,|[>x, (4.79)
where Z, is given as
2
Ly, Zy jou, | 2w v
_ a a | _ 0 ml~n
Z, = 7 7 =5 Lo . (4.80)
o 2] 2] 2
" vmﬂn - KOn pO

The integral equation (4.76) can be solved more easily by rearranging its terms as

follows;

<J¢a l//:m (¢, Z)>
(1w, (8,2)

_[E;"C(Poa(ﬁaz)+E§¢(Po>¢az)} on & (4.81)
E(py::2)+ By (P :2)

J b ::1}1(¢7 )
S5 (2,2, ) Y-

mn(¢’z) Z
men <Jz,l//;n(¢,z)> Y +;an “

Now the first part on the left hand side in .(4.81) converges more rapidly because

both Z, and Z, asymptotically equal to Z, as m—»0. However, the second part

should be computed by employing an appropriate acceleration method as will be

given in the following section.
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4.3. The MM Solution of the problem

For the problem considered in this chapter, the numerical results are obtained by
assuming that the patches are narrow rectangular strips oriented in z direction. In that

case, ¢ components of the surface currents may be ignored, that is J,=0.

Accordingly, the current in the z direction is expanded into entire domain sinusoidal

basis functions of the form

0
J.=Dc,f,, (4.82)
g=1
where the basis functions are
f, =sin{ (z+ 4. (4.83)

Here / denotes the strip length and ¢, denote unknown expansion coefficients. By

substituting the expansion (4.82) into the integral equation (4.76), one obtains

m n

o
D, X2V ) (8.2 = B2 (py.6.2) + i (py.6.2)) on 05.(4.84)

where Z_. is the element in the second row and second column of the 2x2 matrix Zp
given in (4.50). When both sides of the above equation is inner producted by a basis

function f,, the following equation is obtained

o
D6, LD < Sy Vo ($.2)>< S0 ($,2) > =

q=1 m n

< [~ (EX (g8 2) + Es.(py.:.2)) > (4.85)

When the process is repeated for p=1, 2, . . ., Q, a system of equations is obtained.

The equations can be put into a matrix form

4, 4, ... ¢ B,
A4, 4, ... & B, (4.86)
Aoo | o B,

where
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=2 < [V ($:2)>< [, W, ($2) >= D> Z.C,.C,S] , (4.87)

Bp :<fp’_(E;'nc(p0,¢,z)+Egz(p0,¢,z))>, (4.88)
1/2  —jk, z —jk. 1/2 Jk, 112
e’ ,, pa (—)’e " T -
C, = sin[£%(z + $)]dz = , (4.89)
’ I N L k) -(pay
172 jk, z ko 172 k. 1/2
* e " . ju q7d (—l)qe @t o
C, = | ——sin[L(z+4)]dz = (4.90)
’ I JLo T T L kD= (gn)
w/2a —jV ¢
w  sin(v,w/2a) (4.91)

w-[za \/7 \/7) v w/2a

Now the unknown coefficients can be determined by an inversion; [c, ]= [qu]’l[Bp] .

As discussed in Section 4.2, the infinite sums in (4.87) are slowly convergent with
respect to the index m. However the convergence can be accelerated by employing

Kummer’s acceleration method as follows:

= Z z ZZZ qu Cnp SV2
- z qu np ZS Z
= z qu np ZSZ (Zzz _Zzz“)—i_ z qu np ZS Z

n=—0

z qu np ZS (Zzz Zzza)+ Z qu np Z S2 ]a;luo Kgnpo

m

- 2

S
= z qu np ZS (Zzz _Zzza) Ja)/uopo Z qu np On z -

n=—o0 m=—o0 Vm

= Z qu np ZSz (Zzz zz ﬂ-a;tliopo I zcnq )1pKOVl s (492)

0 n=—o0

where I involves a slowly convergent infinite sum

2
_J o~ O,
=13
T }w‘vm

and Z_ is given in (4.80), which denotes the asymptotic value of Z_,

(4.93)
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—JOU,
= KonPo > (4.94)
2k§ ‘vm‘ om0

zz,

The first part on the right hand side in (4.92) converges rapidly because,

Z,=Z_ asl|v,|[>wx, (4.95)

as shown in Appendix C. The second part in (4.92) can be computed with the same
c,.cC.

2z ? np? ~ng?

approach considered in Chapter 3, since the expressions for Z and §, 1in

this chapter are exactly the same as that given in Chapter 3. Note that the expression
for I is also identical to the expression that was given in Chapter 3, (3.47). So, the

infinite sum in / is can be computed as described in Appendix A.

The MM solutions formulated so far correspond to a single cylindrical wave
excitation given in (4.1). The solutions have to be determined separately for each
individual cylindrical wave component of the incident plane wave. Using the
superposition principle, the total solution is obtained by summing the individual
solutions. The decomposition of a plane wave into the cylindrical wave components
is considered in Chapter 2. Once the MM solutions for the coefficients ¢, are

obtained, RCS of the structure as defined in (2.68) is determined using

i {Ej(p.0.2)+E(p.4.2)]

RCS = lim 27p—— — . (4.96)
|

Here E; denotes the electric field due to the surface currents on the conducting

patches, E; denotes the field that is scattered by the dielectric shell when the

conducting patches are not present and E’ denotes the electric field of the incident
plane wave. As discussed in Chapter 2, if the incident plane wave has a unit

amplitude vector potential then the denominator of (4.96) is

[E'|=1207,,., (4.97)

where «,, is given by (4.14). The scattered electric fields of the problem are written

in terms of the coefficients c, by using (4.24), (4.49), and (4.82)
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g¢ (p:¢ .
(Eoz (p.¢- 2)] 2. 2. um (Plewm (2 ( ZZJ<J Vo B2, (8.2)

0
—ZZeOmn<p) [Comn (P6)] ( “’ijcq (¥ $:2) ¥, (8:2)
=2 o (P o (POT ( “js Vo (4, z)ch (4.98)

Here, the matrix e,,,(p) as p—oo is computed using the large argument asymptotic

forms of the Hankel functions (2.74) and (2.75), that is

2 e : 0 —jows
eomn (p) ~ : 1 KOnpe]ﬂ'/4+]vmﬂ'/2€jKOnp|: .] 0:| as p_)w. (4.99)
jos,p\ 7« Ky 0

Using (4.73), the fields E; are written as

E -1 #c mc amC —ivd —ifBz
(E‘?] = €00 (2)[ €000 ()] (po)[ je fibg Iz, (4.100)
aTE

where €™(p,) and ¢ o are given in (4.66)- (4.72) and the matrix ey ,(p) is

determined asymptotically as

o . 0 —jwe
€00 (P) = — ! ,f2K°°pe’”/4+’v°”/ze”’“°°p{ / 0} as p—oo.  (4.101)
J&E,p 4 Koo 0

Finally, the RCS (4.96) is determined by combining the expressions (4.98)-(4.100).

The coupling for the cylindrical structures is described in section 2.3. When a
plane wave is incident on a cylindrical structure, the coupling is defined as the total
power measured at the center of the structure. For the cylindrical structure of this

chapter, we use the definition given in (2.77) that is

B (e 0+ Ei(pg2) + Ei(p.d2)
Coupling = lim

m B (p.p Z)‘ : (4.102)

where E™ denotes the electric field that would be radiated by a line current if the
cylindrical structure was not present. Those fields are established in section 2.3 and
the electric field E”™ is given by (2.88) and (2.89). When p — oo, the limiting value

of it is obtained as
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inc __ inc .2 (2) —jByz
E™ =a, iwE an Kool (Kop)e ™
0

1 o 2 . » »
JOE, Koo P
—a 1 aint K_Z 2 ej”/4e*./"oope’jﬂoz as —> (4 103)
= Zja)g ™ 00 Ky p p ’ '
0 00

Then the coupling is determined by using this expression and the corresponding

asymptotic expressions of the scattered fields appearing in (4.102).

In order to test the accuracy and the validity of our methods, a cylindrical
structure that was previously analyzed in the literature [10] is reconsidered and the
numerical results are given in Chapter 5. In [10], a cylindrical structure consisting of
infinitely long strips is analyzed by using sub-domain basis functions together with a
conjugate gradient fast Fourier transform method in MM solutions. But here, we also
include a dielectric shell inside the cylindrical structure and use entire domain basis
functions in MM solutions. Since the structure is uniform in z direction, the induced
currents and the scattered fields can be assumed to be uniform in z direction. The two

dimensional Floquet modes of the problem simplify to

v, (9) = (4.104)

and the propagation constants in that are

B,=0, (4.105)
Vv, =V, +2mm/Ty. (4.106)

The matrix elements in MM solutions are determined from the expression given in

(4.87). For a TM wave excitation, we set J,;~0 and expand the axial current J: as

0 0
J. = Zcqfq = ch cos{@(gfﬁ — 5 }, for TM excitation. (4.107)
q=0 q=0

In that case, the corresponding matrix elements of the MM solution are accelerated

as follows
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Ay = D2 < [ ) < S, @) >

SN2 =2 )< fs @) >< forn @) >+ X 2 < L @) >< £ (@) >

m=—x m-—oo

['e]

SN2 =2 )< £ (@) >< £ 0 () >+ Ly (4.108)

m=-o0

where the inner products are determined as

< foWn @) >< [0, () >=

*

T () T aonlom(g e
Jcos{ (¢ zpo)} J.COS{T(gb—m)} d¢

: 7
Yl e

S GG

/i (vi—(q’;%) ) (V;_(wao)z)

(1 (=) = (=) e P —(=1)te T )v2

- -, (4.109)
T

a-(=))m =)

and the function /7y is given in terms of the asymptotic form Z_ in (4.80)

_ i < oW (D) >< W, () >

o0

Z ijfruo‘ Ké”'oo <fq’l//r:(¢) >< fp’l//m(¢)>

1V (P o q,  m¥n
joup, < (1+( D7 (1) (“1)e )
Hooim (=) -2

On the other hand, when the excitation is a TE wave: we set J, =0 and expand the

(4.110)

current Jy as

0 0
= Zcqfq = ch sin{%’"@—ﬁ }, for TE excitation. (4.111)
g=1 q=1

In that case, the corresponding matrix elements of the MM solution are accelerated

as follows:
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=2 < LD < (@) >

—00

i(z 2y )< VB < S D Y < LD > ()

m=—owo

i( Z¢¢a)<fq,wf;(¢)><f,,,v/m(¢)>+lm, (4.112)

m=—ow

where

<V (@) >< [, (9) >

*

zism{qﬂpo (¢ - )}( *fvﬂ) ZJP'O Sln{pﬂpo (¢_2_M;0)} e\/T*’; s

vao(ejzzovm — (-1 e"-’ﬁvm ) pfvapo (e—szovm _ (_I)Pe-/ﬁv"’ )
Fli-(2y)  JE(e-())
(1 e =y e = 1y gp ()

= , (4.113)
T

a2y

and the function /7 is given in terms of the asymptotic form Z,, in (4.80)

Iy = i_z¢¢a < WD <L) >

— Z ]a)ﬂo Vm
2k p

0

RSB >< S, (8) >
i » 1+ (=D?" — (-1 Fogm —1)? j[‘)gv,,,)
__Jouy (@2 (*U (=D’ (-1)e v,

"o ) 2 () )2 - (222

Note that, both the functions /7, and I7z are given in terms of an infinite sum, which

(4.114)

can be decomposed into various infinite sums of the form

ieia(vnﬂnz;r/Tq,)fm or _Zooleia(vo+n12n/T¢)fm , (4115)

m=1 m=—1

where
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fo = 0+ m27 /) . (4.116)

((VO +m27z/T,)’ —(qiff‘) )2)((\/0 +m27/T,)? _(l”;ﬂo)z)

A convergence acceleration method for infinite sums of this type is given in

Appendix A. So, the infinite sums are calculated as described in the appendix.
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5. NUMERICAL RESULTS

Numerical results given in this chapter are obtained by using entire domain basis
functions in MM solutions. The currents on the narrow rectangular strips or the
electric fields on the slots are expanded into seven basis functions. The resulting
slowly convergent infinite sums are accelerated as described in the previous chapters.
For cylindrical structures involving infinitely long strips, the problems become one
dimensional and the MM solutions of the currents are obtained as described in

Section 4.3.

An important parameter in scattering studies is the electromagnetic scattering by a
target which is usually represented by its radar cross section (RCS). The RCS is
defined as “the area intercepting the amount of power that, when scattered
isotropically, produces at the receiver a density that is equal to the density scattered
by the actual target” [23]. Another important parameter for the cylindrical structures
is the electromagnetic field couplings into the cylindrical structures. The coupling is
defined as the total power measured at the center of a cylindrical structure when a
plane wave is incident on the structure. So, the couplings and the RCS are
determined for several types of cylindrical structures and the numerical results are

plotted versus the frequency or the observation angle in the circumferential direction.

5.1. Comparisons with the results found in the literature

To test the accuracy and validity of our methods and techniques, a cylindrical
structure that was previously analyzed in the literature [10] is reconsidered. In [10], a
cylindrical structure consisting of infinitely long strips oriented in z direction is
analyzed by using sub-domain basis functions together with a conjugate gradient fast
Fourier transform method in MM solutions. But here, we also include a dielectric
shell inside the cylindrical structure and use entire domain basis functions in MM
solutions. Since the structure is uniform in z direction, the induced currents and the

scattered fields can be assumed to be uniform in z direction. The resulting infinite
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Figure 5.1 The field couplings at the origin versus the electrical length of the radius
for infinitely long strips located on a dielectric shell. A TE plane wave is normally
incident (¢ "™=0°) and the scattered fields are computed at the origin (p=0) of the

cylindrical structure. The curve for =0 case matches to the result given by [10].
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Figure 5.2 The field couplings at the origin versus the electrical length of the radius
for infinitely long strips located on a dielectric shell. A TM plane wave is normally
incident (¢ "™=0°) and the scattered fields are computed at the origin (p=0) of the
cylindrical structure. The curve for =0 case matches to the result given by [10].
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sums in the MM solutions are accelerated by using the expressions (4.104)-(4.116)
and the electromagnetic field couplings (the total fields at p=0) are determined as

described in Section 4.3.

For the results given in Figure 5.1 (TE excitation case) and Figure 5.2 (TM
excitation case), it is assumed that four strips (N=4) are located on the outer
surface of a dielectric shell having radius py=1000mm. The strip widths are chosen
such that the angular extend of a strip equals to one half of the periodicity of a unit

cell, that is ', =0.5T;, where T, denotes the periodicity of the structure in ¢

direction, Ty=27/ N=m/2. The results are obtained by using nine basis functions in the
MM solutions. For a TE excitation case, the couplings are plotted versus kopp (the
electrical length of the radius) as in Figure 5.1. The plot given for the case =0
corresponds to a free-standing strips structure, which is considered in [10] and the
agreement between them is excellent. In that plot, resonances are detected at
kopo=5.32 and kopy=9.28 where the coupling almost vanishes. Note that those
resonances occur at the cut-off frequencies of the circular waveguide modes TE4;
and TE, respectively. As the dielectric shell thickness (¢) is varied from =0 to
=0.1py, it is seen from the plots that the resonances are moved toward left. If a TM
excitation case is considered, the couplings become as shown in Figure 5.2. As in the
previous figure, the plot for the case =0 corresponds to a result given in [10] and the
agreements between them is excellent. A resonance that is corresponding to cut-off
frequency of TMy4; mode is detected at ko0p=7.59 where the coupling vanishes. Also,
the coupling makes a sharp peak at kypy=2.2 and reaches to a value 20.3 in the
vicinity of the cut-off frequency of TMj; mode. While the shell thickness ()
increases, the resonances are shifted toward left on the figure. Furthermore, the plots

become more oscillatory and extra resonances are observed.

When thickness (¢) and radius (pop) of the dielectric shell are fixed (=0.05p and
£o=1000mm) but the number of strips (N) around the shell is varied, the numerical
results are obtained as shown in Figure 5.3 and Figure 5.4. The other parameters of
the structure are as given in the inset and the plots are given for a TE excitation case.
It is assumed that the angular extend of a strip equals to one half of the periodicity of

aunit cell, thatis , =327/N =z/N. When N is varied from N=4 to N=32, the
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Figure 5.3 The field couplings at the origin versus the electrical length of the radius
(kopo) for infinitely long strips located on a dielectric shell. The number of elements
(N) in the circumferential direction is varied. The cylinder radius (py) is kept
constant. A TE plane wave is normally incident (¢ "“=0°) and the scattered fields are
computed at the origin (p=0) of the cylindrical structure.
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Figure 5.4 The field couplings of the structure considered in Figure 5.3 when the
number of elements (V) in the circumferential direction is further increased.
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strip width (w) decreases since the radius is fixed (p=1000mm). That’s why; one can
predict that the magnitudes of ¢-directed currents decrease as N is increased. This
prediction is verified by the plots given in the two figures, which reveal that the
strips become less prominent as N is increased. Specifically, the plot corresponding
to the case N=32 in Figure 5.4 is in close proximity to a plot corresponding to the

non-existence of strips.

ol [H

5
4.5t N 1
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Figure 5.5 The magnitude of the currents induced on the conducting wall of a
cylindrical cavity that is located on a dielectric shell. The slit region subtends an
angle of 772 and other parameters are as given in the inset. A TE plane wave is
normally incident (¢™=180") on the cylindrical structure. The curve for /=0 case
matches to the result given by [10].

=0, - ---=0.05p, ------ =0.1p.
In Figure 5.5, the magnitude of currents induced on the conducting wall of a

cylindrical cavity is given. On the cylinder surface, a slit subtends an arc length
0.574 and the conducting wall subtends an arc length w=1.574, where A denotes the
wavelength. For a TE excitation case, the MM solutions of the induced currents
are obtained by using the expressions (4.111)- (4.114). Since the arc length of the
conductor is rather large in terms of the wavelength (w=1.571), accurate results are
achieved after expanding the currents into 15 sinusoidal basis functions. When the
number of basis functions is further increased, the current profile is not influenced
significantly. Note that the plot for the case =0 corresponds to non-existence the

dielectric shell, which is considered in [10] and the agreement between the plots is
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excellent. As the thickness is increased, the currents become more oscillatory and

also are amplified appreciably.

5.2. Numerical results for free-standing axial strips

In Figure 5.6, RCS of free-standing and infinitely long strips are plotted versus
frequency. The radius and the width of strips are fixed but, the number of elements
(N) in the circumferential direction is varied as seen in the inset. It is assumed that a

inc

TM polarized plane wave is normally incident (¢ =0) on the cylindrical structure

and the scattered fields are observed in the back side (¢ =180°) of the structure. The

results show that, as N increases, the scattered field magnitudes increase in average.
The small ripples on the plots occur very close to the TM cut-off frequencies of

circular waveguides as labeled in the figure.
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Figure 5.6 RCS versus frequency for free-standing and infinitely long strips. The
number of elements (N) in the circumferential direction is varied. A TM plane wave
is normally incident (¢™=0") and the scattered fields are computed in the back side
(¢=180°) of the structure.

— N=16,-___N=24, ...... N=32, Conducting circular cylinder.
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RCS/A

In Figure 5.7, RCS of the cylindrical structure considered in the previous figure

are plotted versus frequency for the case where the observations are made in the front
side (¢=0") of the cylindrical structure. As N increases, the scattered field

magnitudes increase. The small ripples at the lower frequencies occur very close to
the TM cut-off frequencies of circular waveguides. We see from the figure that the
scattered wave amplitudes in the front side of the structure are very small compared
to the fields at the back side of the cylinder. See plots in Figure 5.6 and Figure 5.7.
Furthermore, there are too many fluctuations with respect to frequency. These effects
are reasonable since the currents induced on the strips should have some small phase
progressions in the propagation direction of the incident plane wave. In that case, the
fields radiated from those current will be in-phase in the back side of the structure.
However this does not happen in the front side of the cylindrical structure and the

field magnitudes rapidly vary due to the cancellations.
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Figure 5.7 RCS of the structure considered in Figure 5.6 when the scattered fields
are computed in the front side (¢=0").

— N=16,-___N=24, ...... N=32, Conducting circular cylinder.

Figure 5.8 shows the variation of the RCS versus frequency of a cylindrical
structure having finite length strips. The number of strips in the circumferential
direction is fixed to N=32 and the strips are assumed to be free-standing. The plots

are given for various lengths of the strips. A TM polarized plane wave is assumed to
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RCS/A

be normally incident (#"“=0°) on the cylindrical structure and the scattered fields are
observed in the back side (#=180°) of the structure. As / decreases, the magnitudes of
the induced currents decrease as well and that causes reductions on the scattered field

amplitudes.

10

N 32
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Figure 5.8 RCS versus frequency for free-standing rectangular strips. The length of
strips (/) is varied and other parameters are as shown in the inset. A TM plane wave
is normally incident (¢™=0") and the scattered fields are computed in the back side
(#=180°) of the cylindrical structure.

— [=90mm, - - - - /=60mm, ---- .. [=30mm.

In Figure 5.9, the RCS of the cylindrical structure considered in Figure 5.8 are
plotted versus frequency but this time, the observations are made in the front side
(¢=0°) of the structure. The figure shows that the scattered wave amplitudes in the
front side of the structure are very small and fluctuating when compared with those
in the back side given in the previous figure. The small ripples at the lower

frequencies occur very close to the TM cut-off frequencies of circular waveguides.

In Figure 5.10, the electromagnetic field couplings into a cylindrical structure
made up of free-standing strips are plotted versus frequency. The length (/) of strips
is varied. The parameters of the structure assumed are given in the inset. A TM
polarized plane wave is assumed to be normally incident (¢"=0") on the cylindrical

structure and the fields are computed at the origin (0=0) of the cylindrical structure.

70



RCS/A

|(E1+ ES)/ E1|2

TMm| TM1|| |TMz| N 32
1 045 0.72 0.96 1
10 F p(mm) | 254
Ty(rad) | 27/N
10° | T(mm) | 100
/(mm) 90,60,30
107
w(mm) 4mm
107k
107F
5
10-4 | fs incidence
::—Mb .
. I : E By . . observation
0 0.5 1 15 2 25 3
frequency, f(GHz)

Figure 5.9 RCS of the structure considered in Figure 5.8 when the scattered fields
are computed in the front side (¢=0").
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Figure 5.10 The field couplings at the origin versus frequency for free-standing
rectangular strips. The length of strips (/) is varied and other parameters are as shown
in the inset. A TM plane wave is normally incident (¢ ”“=0") and the scattered fields
are computed at the origin (p=0) of the cylindrical structure.

— =90mm, - - - - /=60mm, ---- - [=30mm.
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When /=90mm, the plot reveals that a resonance appears at 1.82GHz and the
coupling shows a null. The total field inside the cylindrical structure almost vanishes
at that frequency. This is attributed to the fact that the fields of the incident plane
wave are cancelled by the fields due to the surface currents on the strips. For the case
/=60mm, the same phenomena is observed at a higher frequency, 2.55GHz. If the
length is further decreased, namely for the case /=30mm, a null in the field is not
detected in the frequency range of interest (from 0 to 3GHz). However it may be
possible to have a null at a higher frequency. “For I=30mm case, it is recognized that
the structure becomes totally transparent at low frequencies”. Another interesting
result observed from the plots is that the couplings equal unity at several frequencies.
When the coupling equals unity, it means that the fields due to the surface currents
on the strips cancel themselves and only the incident plane wave is detected at the
origin. It is seen from the figure that the corresponding frequencies of this
phenomenon are very close to the TM cut-off frequencies of circular waveguides.

This phenomenon is also discussed in [19].

5.3. Numerical results for conducting cylinders perforated with axial slots

In Figure 5.11, RCS of a conducting circular cylinder perforated periodically with
rectangular slots are given. This cylindrical structure is the dual of the structure
where strips are freely standing. The length (/) of the slots on the conducting cylinder
is varied. The assumed parameters of the structure are as given in the inset. It is
assumed that a TE polarized plane wave is normally incident (¢"=0") on to the
cylindrical structure and the scattered fields are observed in the back side (¢=180") of
the cylinder. When /=90mm the plot reveals that a resonance occurs at 1.82GHz and
the RCS show a null. Close to that frequency the structure becomes almost invisible
at that frequency. This is due to the fact that the far fields radiated by the “magnetic
currents” flowing on the slotted regions of the cylinder are cancelled by the fields
due to the “electric currents” flowing on the conducting parts of the cylinder. Such a
property may be very useful in radar applications. However, the same effect is not
observed when /=60mm. However a dip is observed at a higher frequency, at 2.5
GHz. The small ripples at the lower frequencies occur very close to TE cut-off
frequencies of circular waveguides, which are labeled in the figure. If the slot length

is further decreased to /=30mm, the resonance disappears (or at least it is shifted

72



RCS/A

toward higher frequencies) and the corresponding curve of this case becomes

indistinguishable from the curve of a smooth conducting circular cylinder.
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Figure 5.11 RCS versus frequency for a conducting circular cylinder perforated
periodically with rectangular slots. The length of slots (/) is varied and other
parameters are as shown in the inset. A TE plane wave is normally incident (¢ "“=0°)
and the scattered fields are computed in the back side (¢=180°) of the cylindrical
structure.

—— [F90mm, --_-_- [=60mm, ---... [=30mm, /=0 (Conducting circular

cylinder).

In Figure 5.12, the RCS are determined in the front side (¢=0°) of the slotted
conducting cylinder. The results are plotted for various lengths of slots. The incident
plane wave and the other parameters of the cylindrical structure are the same as in
the previous figure. The results show that the scattered wave amplitudes in the front
side of the structure are very small and fluctuating when compared with those in the
back side given in the previous figure. It is since the aperture fields on the slotted
regions have small phase progressions in the propagation direction of the incident
plane wave. In that case, the fields radiated from the slotted regions will be in-phase
in the back side of the structure. However this does not happen in the front side of
the cylindrical structure and the field magnitudes become smaller due to the

cancellations of the scattered fields from the slotted regions. A similar phenomenon
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was discussed for the cylindrical structure of Figure 5.7. The small ripples at the
lower frequencies occur very close to TE cut-off frequencies of circular waveguides,
which are labeled in the Figure. As the slot length (/) decreases, the “magnetic
current” magnitudes on the slotted regions reduce and that causes reductions on the
scattered field amplitudes. That’s why, the plot for /=30mm case is almost
indistinguishable from the plot for a smooth conducting circular cylinder. This

problem is also considered in [20].
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Figure 5.12 RCS of the structure considered in Figure 5.11 when the scattered fields
are computed in the front side (#=0").

— F90mm, --__ /=60mm, -..... [=30mm, /=0 (Conducting circular

cylinder).

The numerical results for electromagnetic field penetrations (couplings) into the
slotted conducting cylinder are given in Figure 5.13. The incident plane wave and the
other parameters of the cylindrical structure are the same as in the previous figures
but here the observations are made at the origin (p=0). The numerical results are
plotted for various slot lengths (/). When /=90mm, the corresponding plot reveals
that a resonance occurs at a frequency 1.65GHz, where the coupling curve makes a
sharp peak. This is attributed to the internal resonances in the cylindrical structure.
Note that the resonant frequency is very close to the cut-off frequency of TE(; mode

and similar resonances also occur at higher frequencies. As the slot length is varied,
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the resonant frequencies do not change significantly but the peaks become sharper.
When the slot length is very small (namely for the case /=30mm), the coupled field
amplitudes are extremely weak on out-of-resonant-frequencies. It is concluded from
the results that the resonances in cylindrical structures are not dependent on the
length of slots but they occur near the cut-off frequencies of circular waveguide
modes. Hence, the resonant frequencies are dependent on the curvature of the
cylindrical surface. On the other hand, the resonant frequencies of planar structures

involving periodically located slots are dependent on the length of slots.
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Figure 5.13 The field couplings at the origin versus frequency for a conducting
circular cylinder perforated periodically with rectangular slots. The length of strips
(/) is varied. A TE plane wave is normally incident (¢ ¢=0% and the scattered fields
are computed at the origin (p=0) of the cylindrical structure.

— [=90mm, - - -~ /=60mm, ---- .. [=30mm.

5.4. Numerical results for the axial strips backed by a dielectric shell

Figure 5.14 gives the RCS of a dielectric shell covered periodically with infinitely
long strips. The parameters assumed for the structure are given in the inset. The
relative dielectric constant of the shell is denoted by ¢. The plots are given for

varying N values, where N denotes the number of strips around the cylinder. A TM

1NC.

polarized plane wave is normally incident (¢"=0°) on the structure and the
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observations are made in the back side (¢=180"). For N=16, a weak resonance occurs
near 1.5GHz but as N increases, the resonant frequency shifts toward higher
frequencies and the resonances become deeper. At a resonant frequency, the fields
due to the currents on the strip surfaces are cancelled by the fields due to the
polarization currents inside the dielectric and so null fields are observed. When too
much strips are placed on the dielectric shell (as in the case N=64), a resonance is not
detected in the given frequency range. Possibly a resonance occurs at a higher
frequency. The small ripples at the lower frequencies are due to TM cut-off

frequencies of circular waveguide modes.
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Figure 5.14 RCS versus frequency for infinitely long strips located on a dielectric
shell. The number of elements (N) in the circumferential direction is varied. A TM
plane wave is normally incident (¢™“=0") and the scattered fields are computed in
the back side (¢#=180°) of the cylindrical structure.

—— N=16,---_N=24, ...... N=32, N=64.

The effects of the dielectric shell thickness (¢) on the scattering characteristics of
the cylindrical structure are visualized in Figure 5.15. The parameters of the problem
are given in the inset. When obtaining the numerical results, the number of infinitely
long strips is taken as N=32 but the shell thickness (7) is varied. As in the previous
figure, a TM polarized plane wave is normally incident (¢"°=0") on the cylindrical

structure and the scattered fields are computed in the back side (¢=180°) of the
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structure. The results show that the thickness of the dielectric shell affects the
resonant frequencies at which the scattered field amplitudes vanish. The case /=0 in
the figure corresponds to a plot given in Figure 5.6. As the thickness of the dielectric
shell increases, a resonance occurs at a high frequency and move toward the lower
frequencies. Specifically for the case =4mm, a resonance occurs at 2.65GHz and the
structure becomes almost invisible at that frequency. At lower frequencies, all plots
are indistinguishable from each other. So the numerical results have shown that the
thickness of the dielectric shell has no effect on the scattered field magnitudes at
lower frequencies. The small ripples on the plots are close to the TM cut-off

frequencies of circular waveguide modes.
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Figure 5.15 RCS versus frequency for infinitely long strips located on a dielectric
shell. The dielectric thickness (7) is varied and other parameters are as shown in the
inset. A TM plane wave is normally incident (¢”“=0°) and the scattered fields are
computed in the back side (¢=180") of the cylindrical structure.

—— =0, - - - - ~2mm, - - .- .. =4mm, =8mm.

In Figure 5.16, the plots are given for a case =4mm but, the relative dielectric
constant (&) of the dielectric shell is varied. It is assumed that a TM polarized plane
wave is normally incident (#"“=0°) on the cylindrical structure involving infinitely
long strips and the RCS are determined in the back side (¢=180") of the structure.

Other parameters are as given in the inset. When the relative dielectric constant of

71



RCS/A

the shell (g is greater than unity, the polarization currents in the dielectric makes
additional radiation into the free-space and at a resonant frequency those fields
cancel the fields radiated from the currents on the strips. The results show that the
resonant frequencies are dependent on &; as it increases, the resonances are shifted
toward lower frequencies and become deeper. Specifically for g =8.5, a resonance
occurs at 1.8GHz and the structure becomes almost invisible. However at low
frequencies, all plots are almost indistinguishable and it means the dielectric material
has no influence at those frequencies. That has also been recognized from the plots
given in the previous figures. The small ripples at the lower frequencies are close to

the TM cut-off frequencies of circular waveguide modes.
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Figure 5.16 RCS versus frequency for infinitely long strips located on a dielectric
shell. The relative dielectric constant (¢&,) is varied and other parameters are as shown
in the inset. A TM plane wave is normally incident (¢ "“=0") and the scattered fields
are computed in the back side (¢=180") of the cylindrical structure.

&=1,-___g=2,...... & =4.25, & =8.5.

The numerical results given in Figure 5.17 and Figure 5.18 are obtained for a case
when the axial strips are of finite length. The RCS are plotted versus frequency for
different values of the dielectric shell thickness (f). As in the previous figures, the

cylindrical structure is illuminated by a normally incident TM polarized plane wave.
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Figure 5.17 RCS versus frequency for rectangular strips located on a dielectric shell.
The dielectric thickness (¢) is varied. A TM plane wave is normally incident
(¢™=0") and the scattered fields are computed in the back side (¢=180°) of the
cylindrical structure.
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Figure 5.18 RCS of the structure considered in Figure 5.17 when the dielectric
thickness (¢) is further increased.
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The scattered fields are computed in the back side (¢=180°) of the structure. If the
thickness of the dielectric shell is varied from 0 to 0.05p) as in Figure 5.17, the
resonances become deeper and the resonant frequencies are shifted toward the lower
frequencies. Specifically for /=0.05p) a resonance occurs at 1.76 GHz and the
structure becomes almost invisible at that frequency. The resonances are due to the
cancellations between the fields radiated from two different types of currents that are
induced on the cylindrical structure: one is the polarization currents inside the
dielectric shell and the other is the surface currents on the conducting strips. When
the dielectric thickness is further increased, the resonances become weaker as shown
by the plots in Figure 5.18. The plot for /=py corresponds to a case when the inside of

the cylindrical surface is completely filled with the dielectric material.
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Figure 5.19 RCS versus observation angle (¢) for rectangular strips located on a
dielectric shell. The length of strips (/) is varied and other parameters are as shown in

the inset. A TM plane wave is normally incident (¢

inc:OO

computed at the resonant frequency (/~=1.76GHz) of Figure 5.18.
1=0.

— F90mm, - - - - /=60mm,

[=30mm,

) and the scattered fields are

The RCS versus observation angle (¢) are plotted in Figure 5.19 for the case of

=0.05p, f=1.76 GHz. The other parameters of the cylindrical structure are given in
the inset. The assumed parameters correspond to the case where the strong resonance

in Figure 5.18 occurred at 1.76GHz. The plots are given for decreasing lengths of
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strip (/). As [ decreases, the total scattered field amplitudes increase in average.
However the currents induced on the strips become weaker as / shrinks. So the fields
radiated from the strips can not cancel the fields radiated from the polarization
currents inside the dielectric shell and the resultant effect is observed as a net
increase in RCS. The plot for the case /=0 corresponds to the RCS of a dielectric
shell having no strips on its surface. It is interesting to note that the two plots namely
for the cases /=0 and /=30mm almost coincide in the shadow region of the cylindrical
structure (between 120° and 180°). It is also remarkable that when /=90mm there
exists some angles regularly spaced along the ¢-axis at which the surface becomes

almost invisible.
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Figure 5.20 RCS versus observation angle (¢) for rectangular strips located on a
dielectric shell. The width of strips (w) is varied and other parameters are as shown
in the inset. A TM plane wave is normally incident (¢ "“=0°) and the scattered fields
are computed at the resonant frequency (~=1.76GHz) of Figure 5.18.

— w=2mm, - - - - w=4mm, - --- - w=6mm.

In Figure 5.20, the effect of the width on the RCS is investigated. The RCS are
plotted versus observation angle ¢, for the case =0.050, f/=1.76 GHz, and /=90mm.
The plot for w=4mm corresponds to the case, where the strong resonance occurs in
Figure 5.18. The numerical results reveal that if the strip width is varied (that is: if
w # 4 mm), the scattered field amplitudes increase in average. It is since; a variation

in w causes variations on the currents induced on the strips. As a result, the above-
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mentioned cancellation phenomenon between the fields radiated from the
polarization currents inside the dielectric shell and the fields radiated from the strip
currents are broken down. Thus the RCS increases if the widths (w) of the strips are

decreased or increased.

It is noticed from the numerical results that the dielectric shell thickness (7) also
influences the RCS. Plots of the RCS in Figure 5.21 are given versus observation
angle ¢for the case w=4mm, f=1.76GHz, and /=90mm as the shell thickness
changes. The parameters are chosen to reflect the resonance at 1.76GHz in Figure
5.18 (=0.05pp). The plots reveal that if the dielectric thickness is varied, the total
scattered field amplitudes increase in average. It is since, changes in the dielectric
thickness causes variations in the polarization currents inside the dielectric and so the
cancellation phenomenon discussed in the preceding figures is broken down. As a

result, the RCS increases if the dielectric shell thickness is decreased or increased.
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Figure 5.21 RCS versus observation angle (¢) for rectangular strips located on a
dielectric shell. The dielectric thickness (¢) is varied. A TM plane wave is normally

incident (¢ ™=0°) and the scattered fields are computed at the resonant frequency
(=1.76GHz) of Figure 5.18.

—— =0.01p9, - ---=0.05p9, - - - --- =0.1py.

The plots given in Figure 5.22 show that the resonant frequencies are changed if

the number of strips in the circumferential direction (N) is varied. It is assumed that a
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TM polarized plane wave is normally incident (¢"°=0°) on the cylindrical structure
and the scattered fields are computed in the back side (#=180°) of structure. No
resonances are detected and a smooth curve is obtained when there are no strips. The
other plots reveal that as N is increased, the resonant frequencies are shifted from
lower to higher frequencies. Specifically for N=32, the resonance occurs at 1.76 GHz
and the structure becomes almost invisible at that frequency. However, a clear
resonance is not detected when N=8. It is recognized that the fields radiated from the
currents on the strips for the case N=8 are so weak that they can not cancel the fields

radiated from the polarization currents inside the dielectric shell.
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Figure 5.22 RCS versus frequency for rectangular strips located on a dielectric shell.
The number of elements (V) in the circumferential direction is varied. A TM plane
wave is normally incident (¢ "“=0") and the scattered fields are computed in the back
side (¢#=180") of the cylindrical structure.

—— without strips, - - - - N=8, ... ... N=16, N=32.

In Figure 5.23, the effects of small variations in the strip lengths (/) are illustrated.

RCS are plotted versus frequency for the case when a TM polarized plane wave is

inec__

normally incident (¢"°=0°) on the cylindrical structure and the scattered fields are
observed in the back side (¢=180°) of the structure. The plots reveal that a change in

the strip length causes a shift in the resonance frequency: if the strip length is
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increased, the resonance occurs at a lower frequency. In addition, the scattered field

amplitudes are raised at low frequencies.
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Figure 5.23 RCS versus frequency for rectangular strips located on a dielectric shell.
The length of strips (/) is varied. A TM plane wave is normally incident (¢ ”=0°)
and the scattered fields are computed in the back side (¢=180°) of the cylindrical
structure.

— [=85mm, - - -~ /=90mm, ... .. [=95mm.

Figure 5.24 shows the variation of RCS as the incidence angle (¢'™) is varied. The
observation angles (¢) are measured from the incidence direction of the plane wave
such that the directions ¢=0° and ¢=180" respectively correspond to the front side
(#™) and the back side (180%+¢") of the cylindrical structure. The number of strips
(N) in the circumferential direction is 20 and the frequency is 1.76GHz. The other
parameters of the cylindrical structure are as given in the inset. The incidence angle
of the plane wave is varied from 0° to 0.57, s where Ty denotes the periodicity in the
circumferential direction: T4=22/N=18°. For the case ¢" =0.5T}., the cylindrical
structure becomes invisible near the observation angles at ¢=10° and ¢=70°. The
plots reveal that the scattered field amplitudes in the shadow region of the cylindrical

structure are not affected (for ¢>120°) as the angle of incidence changes.
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Figure 5.24 RCS versus observation angle (¢) for rectangular strips located on a
dielectric shell. The circumferential angle of incidence (¢ ") is varied. The number
of elements (V) in the circumferential direction is 20. The scattered fields are
computed at the resonant frequency (/~=1.76GHz) of Figure 5.18.
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Figure 5.25 RCS of the structure considered in Figure 5.24 when the number of
elements in the circumferential direction is increased (N=26).
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In the case of oblique incidence numerical investigations have revealed that if the
number of strips in the circumferential (V) direction is large enough (such as if
N>26), the incidence angle (#") becomes insignificant. This is demonstrated in
Figure 5.25, where N=26 and the frequency is 1.76 GHz. The radius of the structure is
(po=254mm). The plots show that the scattered fields are not affected with the

variations in the incidence angle.
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Figure 5.26 RCS versus frequency for rectangular strips located on a dielectric shell.
The elevation angle of incidence (6") is varied. The scattered fields are computed in
the back side (6=180°-0"; #=180°) of the cylindrical structure.

einc :900’ o einc :600’ ______ Hinc :300-

In the figures given so far, plane waves are assumed to be incident on the
cylindrical structures in directions perpendicular to the z axis (on x-y plane) and the
scattered fields are observed on the same plane. Those directions correspond to an
elevation angle 90° for both the incident waves and the scattered waves. Variation of
RCS versus incidence angle (6") is given in Figure 5.26. The observation angles ()
in that cases are aligned at 6=180°—0". Moreover the scattered fields are computed
in the back side of the cylindrical structure (¢=180"). The data of the problem is
given in the inset. The plots reveal that if the angle #is decreased, the resonance at
the frequency 1.76GHz shifts toward lower frequencies. Furthermore, the scattered

fields’ amplitudes are typically decreased in the frequency range from 0 to 3GHz.
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Such an assessment is also detected in Figure 5.27, where the RCS are computed in
the front side (¢=0°) of the same structure. The plots in that figure are very
oscillatory on the high frequency portion.
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Figure 5.27 RCS of the structure considered in Figure 5.26 when scattered fields are
computed in the front side (9=180"—0"; ¢=0") of the cylindrical structure.

0™ =90 degrees, - - - - 0™ =60 degrees, - - - - 0™ =30 degrees.

The numerical results on the electromagnetic field penetrations (the couplings)
into a dielectric shell covered with the strips are given in Figure 5.28. It is assumed
that a TM polarized plane wave is normally incident (6”=90% ¢"“=0") on the
cylindrical structure and the scattered fields are computed at the origin (p=0) of the
structure. The dielectric thickness (¢) is varied and the other parameters of the
structure are as given in the inset. Note that the /=0 corresponds to the free-standing
strips case, which was previously considered (namely, it corresponds to a plot given
in Figure 5.10). When =0, the fields inside the cylindrical structure almost vanishes
at a resonant frequency 1.82GHz. It is recognized that the incident fields and the
scattered fields cancel themselves at that frequency. As the shell thickness is
increased the resonance at 1.82GHz disappears and the plots become smoother.
However, very sharp ripples are detected in the vicinity of 1GHz. Those ripples may
be due to the TM cut-off frequencies of circular waveguide modes. Note that, the two

cut-off frequencies (at 0.96GHz and 1.04GHz) corresponding to the modes TM»; and
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TMy, are very close to each other and so the remarkable ripples are possibly due to

that proximity.
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Figure 5.28 The field couplings at the origin versus frequency for rectangular strips
located on a dielectric shell. The dielectric thickness (7) is varied. A TM plane wave
is normally incident (¢"“=0") and the scattered fields are computed at the origin
(p=0) of the cylindrical structure.

=0, _=0.01pp, .- =0.05 =0.1p.

When the elevation angle of the incident wave (") is varied, the couplings are
plotted as shown in Figure 5.29. The shell thickness is fixed (==0.05p) and the
scattered fields are computed at the origin (0=0) of the structure. The other
parameters of the structure are the same as in the previous figure. While the
incidence angle varies from 8"“=90° to 8"“=60°, the sharp ripples are shifted toward
higher frequencies. But if the incidence angle is further decreased (namely for

0™=30" case), the coupling approaches unity and the sharp spikes are not detected.
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Figure 5.29 The field couplings at the origin versus frequency for rectangular strips
located on a dielectric shell. The elevation angle of incidence (8") is varied. The

scattered fields are computed at the origin (0=0) of the cylindrical structure.

— 0™=90 degrees, - - - =60 degrees, - - -- .- 0"°=30 degrees.

89



6. CONCLUSION

6.1. Conclusions on the numerical result

Numerical results are obtained by using entire domain basis functions in MM
solutions. The resulting slowly convergent infinite sums are accelerated. An
important parameter in scattering studies is the electromagnetic scattering by a target
which is usually represented by its radar cross section (RCS). The RCS is defined as
“the area intercepting the amount of power that, when scattered isotropically,
produces at the receiver a density that is equal to the density scattered by the actual
target” [23]. Another important parameter for the cylindrical structures is the
electromagnetic field couplings into the cylindrical structures. The coupling is
defined as the total power measured at the center of a cylindrical structure when a
plane wave is incident on the structure. So, the couplings and the RCS are
determined for several types of cylindrical structures and the numerical results are

given in Chapter 5. The numerical analyses have shown that:

In free-standing rectangular strips structures, the scattered field magnitudes are
seen to be dependent on the surface periodicities and the strip dimensions. As the
strip length decreases, the magnitudes of the induced currents decrease as well and
that causes reductions on the scattered field amplitudes. Some weak resonances are
detected near the TM cut-off frequencies of circular waveguide modes. Amplitudes
of the scattered fields in the front side of the structure are seen to be very small and

fluctuating when compared with those in the back side.

For cylindrical structures involving a conducting cylinder perforated by the
rectangular slots, resonances are detected at some specific frequencies. Close to such
a frequency the structure becomes almost invisible. A resonance occurs when the far
fields radiated by the “magnetic currents” flowing on the slotted regions of the
cylinder are cancelled by the fields due to the “electric currents” flowing on the
conducting parts of the cylinder. Such a property of the slotted cylinder may be very

useful in radar applications. Amplitudes of the scattered fields in the front side of the
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structure are seen to be very small and fluctuating when compared with those in the
back side. The resonant frequencies depend on the slot length and the curvature of
the cylindrical surface. On the other hand, the resonant frequencies of planar

structures involving periodically located slots are dependent on the length of slots.

The numerical analysis on dielectric shell structures that are covered periodically
with the rectangular strips have shown that the scattered filed amplitudes vanish at
some resonant frequencies. The resonances occur when the fields due to the currents
on the strip surfaces are cancelled by the fields due to the polarization currents inside
the dielectric. By the way null fields are observed at a resonant frequency. The
resonant frequencies are seen to be dependent on many parameters of the structure
such as the dielectric constant of the shell, the shell thickness, the strip dimensions,
the incident angle of an exciting wave etc. As the dielectric constant of the shell
increase, the resonances are shifted toward lower frequencies. But if the strip length
is decreased, the resonances are shifted toward lower frequencies. It is also seen that
if the number of strips in the circumferential (N) direction is large enough (such as if
N>26), the scattered fields are not affected from the variations of the circumferential

angle of incidence.

6.2. Future Work

In this study, we considered a simple dielectric shell inside a cylindrical structure.
However, the formulations given in this dissertation can be easily extended to
analyze multiple concentric shells made up of different dielectric materials.
Furthermore, the problems involving lossy dielectrics or anisotropic materials such
as a chiral material can also be investigated after some modifications in the

formulation.

Numerical results require computations of slowly convergent infinite sums as
discussed in this study. Here the acceleration method is applied to the formulation
involving narrow rectangular strips. As a future work one should attempt to apply the

acceleration techniques to other geometries such as conducting patches.
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APPENDIX A. THE CONVERGENCE ACCELERATION OF
SLOWLY CONVERGENT INFINITE SUMS INVOLVING
OSCILLATING TERMS

In this appendix, an acceleration technique based on a Kummer’s transformation
method is developed for some kind of slowly convergent sums. An infinite sum is
decomposed into two parts; one part being rapidly convergent and the other part
being slowly convergent. Then the sum in the slowly convergent part is expressed as
integrals of some auxiliary functions and subsequently they are written in terms of
polynomials whose coefficients are given by the zeta functions. The given method is
very general and does not involve too much analytic effort. A numerical example is

provided to illustrate the usage and the efficiency of the method.

The MM solutions of Chapter 3 yield slowly convergent infinite sums of the form

0

.2 )
S, ((”fm)”W/f), <r<l, (A1)
NP Ty =y (7w /b)” | r+m|

where r =v,/ N . The constants N, vy , b, w, py, and Ty are as seen in the unit cell of

the problem in Figure 3.1.b. Direct computations has shown that the series in (A.1)
converges slowly for small values of zw/b. Particularly, in the limiting case
w/b — 0, the series is divergent. However, the sum can be decomposed into
rapidly convergent sums by applying a Kummer’s acceleration method as in [18, 21].
In this manuscript, we consider more general sums and develop a computation
scheme. At the end, computations of the sum in (A.1) are provided in a numerical

example.

The method that will be given is a generalization of a method discussed by

Flojolet et. al. [26]. According to [26] one can write

if,, = Z[f -> ¢, (%)m} Zcmam), (A.2)

n=1 n=l1 m=2
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where {(m) denote the values of the zeta function at the integers, ¢, denote the
power series coefficient of f, when it is expanded into inverse powers of n. The
coefficients f, in the original sum (A.2) is assumed to be such that
f, > 0and nf, — 0 as n — . The series on the left hand side of (A.2) may or may

not be slowly convergent but, the one on the right hand side is, evidently, a rapidly
convergent series. Such an expression is very useful for the computation once the
values of the zeta function are available from a table. However, the difficulties may

be encountered in finding the power series coefficient of f, .

As in [21], we extend this method to the sums of the form

S@)=Ye" f,, (A3)

where « denotes a real variable f, -0 as n— . The sum in (A.l) can be

expressed in terms of the sums of the form (A.3) as follows

i sin® ((r+m)zw/b)
= (zwl/b) | r+m [

sin2 (rfrw/b i sin” (r + n)fzw/b) N Z“’: sin’ ((r - n)ﬂw/b)
(IZW/b) \r = (IZW/b) \r+nl %5 (zw/b)’ |r—nf
_sin® (rzw/b) i (n+r)7zw/b)+Z'°:sin2((n—r)7zw/b)
(IZW/b) \rP = (aw/b)Y(n+r)Y S (zw/b)Y(n—r)
_sin *(rawlb) L2 Z:{l—cos{(n+r)27rw/b} .\ 1—cos{(n—r)27rw/b}}
(zw/b)’ |r[  (Qaw/b) % (n+ry (n—r)

sinz(rfrw/b i{l cos (n+r)x}+1—cos{(n—r)x}}

ew/bY [r[ (n+ry (n—r)’

_sin (rizw/b ii 1—Ree™ e™ Jr1 Ree /™

(7Z'W/b) |r x4 (n+ry (n-ry

sm (r;rw/b ii 1—-Ree’ ™ 1 Ree /™ e™

(7Z'W/b) r X (n+ry (-n+r)

sin I’7Z'W/b 2 & e ine rx nx
m ?Z{f —Ree™e’ f f +Ree e’ fn}

sm (l"ﬂ'W/b 3 if Ree]r\:zejnxf Zf +Ree” ]r‘czejmcf }
(aw/b) |r P x2 = pr !
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in’ /b
_m irwin) (mzw 3)+%{ ‘I (A4)
(zw/b) |r|  x
where
= an —Reejerej”"fn , (A.5)
n=1 n=l1
= —Zf +Ree” ’”‘Ze"”‘fn , (A.6)
n=1
x=2mw/b, (A.7)
1
= i (A.8)

In deed, lots of sums can be represented in the form (A.3), for example a Fourier

series

N(x) :%’+Zan cosnx+2bn sin nx, (A.9)

n=1 n=l1

can be re-expressed as

N(x)_“—0 %Z f Z Mo o f =g —ib g =a +ib . (A.10)
=] n=l1

In order to compute an infinite sum of the form (A.3) easily, a computation

scheme is derived. Initially, the sum in (A.3) is decomposed into two parts

S@) =Y ", = Ry (@) +0, (@), (A1)

where
0 (@)= " Y e, ()" (A12)
R, (@)= Ze[f DXL ] (A13)

and ¢,c,,...,c,, denote the constant coefficients coming out in a power series

expansion
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fﬁicm(%)’" asn—>w; ¢, =f,=0. (A.14)

If ¢, #0, a final result for S() would involve impulse functions, which can be

determined easily by an analytical approach, and that case is not considered here.

Note that the function R,,(«) can be computed conveniently because; the expression
in (A.13) is rapidly convergent. But, this is not the case for the function Q,,(«). The
computation of Q,, (o) can be aided by defining an auxiliary function and

establishing a recurrence relation

0

h(a)= zle’”“ ; h (@)= Thm_l(t)dt sm>2. (A.15)

n=1

After that, O, («) 1s expressed as

0 (@)=Y e, > " ()" —Zc ("'h, (@) + P,(a)), (A.16)

m=1 n=l1

where

P ()= Z(l“) (A.17)

are polynomials of degree m-2 and ¢ denotes a zeta function defined as

((s):i ls ; Res>1, (A.18)

n=1 n

whose values at the integers are tabulated in [24]. Also its values at the even integers
can be expressed in terms of the Bernoulli numbers, which are considered in

Appendix B.

The real and imaginary parts of 4,(«) can be written as [27 — Appendix A.6 |

h(a) :%(ﬂsgna —a) —%lnoz2 +U(a); 0<|la <27, (A.19)

where
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U () = —ln(Mj; 0<al2r, (A.20)
(04

and the Taylor series expansion of U, (&) is

U,(a)= i $Ch) o o gaiar. (A21)

Substituting (A.21) into (A.19) and then carrying out the recurrence relation defined

in (A.15) for each 4, (), the expression in (A.16) is converted into a numerically

convenient form and S( ) is written as

S(@) =3¢ f, =3 e (fn e, w} (@)

icm{((;f)j;,( ((wsgna—,)-Yina® +H, ) +i"'U (a)+Pm(a)} (A.22)

where U («) denote rapidly convergent sums

m

v ¢@hH @hlm-D!

U ()= ; 0<la k2, A.23

(@)= —1)'2(27r)2kk(2k+m 1)v o] (A8.23)
and H, are known as harmonic numbers [24]
21

H,=—. (A.24)

The constraint 0 <| « |< 27 in the expressions is due to branch point singularities of

the function /,(«) at a =0, £2x, +4x, .... But, the identities

S(a+2r)=8(a) and/or S(r+a)=S(-7+ ), (A.25)

can be detected easily from (A.3) and so the computations can be restricted to the
interval — 7 < a < 7 by making an appropriate change of variable. In the case o =0,

the series in (A.3) is divergent if ¢, # 0 else the expression for S(«) reduces to that

given in [26],

S0 =31 = Z(f Zc % j&cm:(m). (A.26)

n=1
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Thus, a convenient computation scheme is obtained for the function S(« ). The given

method can also be found in [21].

When the Fourier sums are considered, the derived expressions may be used

separately for the two sums in (A.10), which involve f, and g,. However, the whole
procedure may yield much simpler expressions for some special cases of f, and g,.

For example, if g, = f~, the Kummer’s acceleration method gives up an expression:

NG =%+ 4 Y. el‘"{fﬂ —Z_cm)'"j—%z_cm BT g, (4305 x< 27, (A27)

n#0

or as an alternative, one can let A — oo and write

(27)”

m:

N(X)=%4 -1 icm B, (%.); 0<x<2r, (A.28)

where B, (x) denotes an m-th Bernoulli polynomial [24]. Here, the expressions are

derived by establishing an identity

> = (27”,) B,(%.); 0<x<2x, (A.29)
m:

n=-o
n#0

from the properties of the Bernoulli polynomials, and then using within the

Kummer’s acceleration method.

Alternatively, linear transformation methods such as a Levin-type sequence
transformation method [28] are applicable to more general sums and generally they
result in closed form analytic expressions or asymptotic expansions, which are more
useful than the expression (A.22) we derived. However they are a bit sophisticated
and may require some knowledge about how to treat the functions in the transformed
domain. Our technique has an advantage that: it is computationally oriented and does

not require too much analytic effort.

To test the efficiency of the method, the sum in (A.4) is computed for some

discrete values of x in the range —3 <log,,(x/7) <0 with » =0.5. When (A.8) is

expanded into inverse powers of n, the power series coefficients are
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Table A.1 Comparison of the relative errors

10g10 (x/7) Liimie Relative error — Relative error-
direct summation  M=10, 1, =50, kpnax=10.
3.0 6.649320131169 | 1.51*%10™ 1.24*10"
2.5 5.498030977387 | 1.81¥107 3.39%10™"
2.0 4346772357306 |2.33*10° -4.09%107"
-1.5 3.195819043024 |3.17%107 -1.53*10°"
-1.0 2.047915630582 | 4.95%10°® -1.30%10°"
0.5 0930196772259 | 1.09%10°® 1.79%10°"
0.0 0.083974656992 | 1.21*10°® 2.13*107°
co=c,=c,=0;¢, =h(=r)""(m-1)(m-2); m>3. (A.30)

In the numerical validations double precision arithmetic is used and the results are
given in Table A.1. To obtain the limiting values, j;;; , M is set to 10 and the infinite
sums in our method are carried out until no digit change is observed. A relative error
-10)/1

criteria defined as (/ is introduced to compare Ij;,; values with the

lim it lim it
results that are obtained from the direct summations of the original series up to 10*
terms. Also the last column of the table shows the relative errors resulting from

truncations of the infinite sums in our method. When the summations of R,, (x) are
carried up to n_, =50 and those of U, (x) are carried up to k_, =10, with

M =10; the relative errors are seen to be extremely small implying that the
convergence speeds of the infinite sums are very high. The results in that case are
obtained by using only about 650 terms for each x value (a table of the zeta functions

at the integers was available).

As the table shows, the relative error in our method increases as x increases. This

1s due to the truncations of the infinite sums in U, (x) but, the errors can be avoided

by using more terms. For example, the relative error can be reduced significantly

(reduces from 2.13*107" to 4.96 %107 for x = ) by setting k_, =15.
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According to the derived computation scheme, an infinite sum of the form (A.3)
can be computed easily once the values of the zeta function at the integers are
available from a table and the power series coefficients of f, are determined at the
beginning. Only difficulty may be in finding the power series coefficients.
Alternatively, a linear transformation method could yield more useful expressions
but, it would require some analytical effort. However the method given here is

computationally oriented and does not involve too much effort.
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APPENDIX B. BERNOULLI POLYNOMIALS AND BERNOULLI
NUMBERS

In Appendix A, it is shown that some forms of the infinite sums are related with the
Bernoulli polynomials. Here, we present those polynomials and give some useful

identities. The generating function for the Bernoulli polynomials is given as

text 0 tn
=>» B (x)—, B.1
1 Z:; 4 ( )n! (B.1)

where B,(x) denote a Bernoulli polynomial of degree n. A few of the Bernoulli

polynomials are given as

B,(x)=1, (B.2)

B (x)=—1+x, (B.3)
B,(x)=1-x+x’, (B.4)
Bi(x)=1x-3x*+x°, (B.5)
B,(x)=-%x+x?-2x" +x*, (B.6)

and the remaining polynomials, B,(x), B,(x), B,(x), ... can be found in [24]. There

are many interesting properties for these polynomials. Some of those are

B, (mx) = m"*f‘:Bn(Hg); m=1,2,3, ... (B.7)

L n! k. _
Bn(x+h)—k:om8k()oh :n=0,1,2,3,... (BS)
B,(3)=-(1-2"")B,(0), (B.9)
B,(0)=(-D"B,1), (B.10)
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m!n!

(m+n)!

[B,®)B, (0)dt = (1) B, (0). (B.11)

Also the following infinite sums are expressible in terms of the Bernoulli

polynomials
D o1 _1\" 2n-1
Zs1222klﬂx _( (1; (271r))'2 B,, (x);n=1,2,3,4,...,x#0, (B.12)
k=1 n—1)!

cos2km _ (-1)"'(27)*"
kY 2n)12

s

B, (x);n=1,2,3,4,..., x#0. (B.13)

=~
1l

The Bernoulli numbers are obtained from the special values of the Bernoulli

polynomials [24].The Bernoulli numbers are denoted by B, and are defined as

B, =B, (0). (B.14)

There are many ways to determine the Bernoulli numbers [24]. One practical way is
to use a recurrence relation. A recurrence relation for the Bernoulli numbers can be

obtained from the identity in (B.8). Letting x=0 and A=1, we obtain a recurrence

formula
" (n
B, =(-1)">|  |B,;n=0,1,2,3,... (B.15)
im0\ k
Once By is known, the other Bernoulli numbers B;, B>, B3, . . . can be determined

easily by using the recurrence relation (B.15). A few of the Bernoulli numbers are

Bo=1, B, = -1 , B, = 1 ,B,=0, B, = _—1 They satisfy the inequality
2 6 30
2(2n)! 22n)! 27!

< < n=1,2,3,... B.16
(2”)2,, | 2n | (27[)2,, (22,,_1 _1) ( )

The Bernoulli numbers are closely related with the values of the zeta functions &

which are defined and used in Appendix A. The relation between them is

' en)”

cCm = o

B, . (B.17)
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Once the Bernoulli numbers are computed from the recurrence relation (B.15) and
tabulated, the convergence acceleration method discussed in the Appendix A

becomes very efficient for numerical computations.
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APPENDIX C. ASYMPTOTIC FORMS FOR THE EXPRESSIONS
INVOLVING BESSEL FUNCTIONS

Formulations of the problems considered in Chapter 2, Chapter 3, and Chapter 4 all
involve cylindrical functions that are called as the Bessel functions. In this appendix,
we focus on the behaviors of those functions for the limiting values of their orders
and arguments. Specifically, the asymptotic form of a matrix, which is obtained in

Chapter 4 is determined.

Let R (z) be a solution of the Bessel’s differential equation

(z? -v)R,(2)=0, (C.1)

2
ZZ d RVZ(Z)+Zde(Z)+
dz z

where v denotes an integer that is called as the order of the Bessel function. The

function R (z) may be: a Bessel function of the first kind J,(z), a Bessel function of
the second kind Y,(z), a Hankel function of the first kind H'"(z), and a Hankel

function of the second kind H”(z). Any two of these functions are linearly

independent solutions of the Bessel’s differential equation (C.1); so they are related

to each other by the expressions
H"(z)=J,(2)+jY,(2), (C.2)

H(2)=J,(2) = jY,(2), (C.3)

and wronskian relations of them are given by

1Y) -T2, () ==, (C.4)
Tz
HOY(H® (2) - BV ()HP ()= 2, (C.5)
Tz
J.(DH P (2) - T (H ()= 2| (C.6)
Tz

103



Insight into the behavior of solutions to Bessel’s differential equation can be gained
by noting their asymptotic forms for the limiting values of their arguments. For large
arguments (as z—»), the asymptotic forms of the Bessel functions are given in terms
of the sinusoidal or exponential functions [24]

J,(2)= icos(z—%wz—%;r) as z—»0, (C.7)
z
2 .
Y,(z) = | =sin(z —Lvz—17) as z—w, (C.8)
=
Oy~ |2 ile-tva-ta)
H(z)=,—e " *" * asz—n, (C.9)
ez
@Dy~ |2 ile-tva-ix)
H7(z)=,—e " * *’asz—omo. (C.10)
nz

It is obvious from these expressions that the functions J,(z) and Y,(z) exhibit

oscillatory behavior, as do the sinusoidal functions. Hence, these solutions represent
cylindrical standing waves. However, H"(z) and H'”(z) represent traveling
waves, as do the exponential functions. They therefore represent cylindrical traveling
waves, H"(z) representing inward-traveling waves and H'”(z) representing
outward-traveling waves [22]. This direction of wave travel is as a consequence of

—jot

the choice of ¢/ time variation. If it was chosen e ’“, then the interpretations of

H"(z) and H® (z) would be reversed. When the argument z tends to zero, the
asymptotic forms of the Bessel functions are given as

(;2)

J (@)=

as z—0, (C.11)

Y,(2)=—jH"(2) = jH" (z) = -

DItz
O=DGD L 0iasz0.  (C12)
T

Y,(2)=—jH\" (2) = jH (2) = glnz as z—0. (C.13)
V4

On the other hand if the order of a Bessel function tends to infinity, the function
decays or grows exponentially as illustrated in the following equations. It is supposed

that v—o0 and the argument z is fixed. The asymptotic forms in that case are [24]
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J (2) = F(Zj as Vo0, (C.14)
Y (z2)=- %(g]v as v—oo, (C.15)
HV(z)=~j %(gjv as v—o, (C.16)
HP(z)=j %(g]v as v—oo. (C.17)

When the argument of a Bessel function is imaginary (z=—ja ), it is

conventional to use the modified Bessel functions. The modified Bessel functions are

related to the regular Bessel functions by [24]
J,(—ja)y=e"""1 (a), (C.18)

Y,(—ja)=—je "I (a) - 2 g (), (C.19)
T
HY(—ja)=J,(—ja)+ jY,(—ja)=2e"""1 (a)- - 2] greir g (a), (C.20)

H (mja)=J,(=ja) = jY,(- Ja)— - Lok (@), (C.21)

where /, and K, are known as modified Bessel functions of the first kind and the
second kind, respectively. Asymptotic formulas for the large arguments of the

modified Bessel functions are [24]

I,(a) =

as a —w, (C22)

\/_
T  _a
K (a)= Ze as o —o. (C.23)

These expressions illustrate the evanescent character of the modified Bessel
functions. It is apparent that the modified Bessel functions are used to represent
evanescent-type waves. When the argument ¢ tends to zero, the asymptotic forms of

the modified Bessel functions are given as
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Ga)

I (a)=-2 — as a0, (C.24)

V!
K,(2)=3(v-D!Ga)”" ; v#0;as a—0, (C.25)
K,(a)=-Ina as a —0. (C.26)

If the argument « is fixed but the order tends to infinity (v — ), the corresponding

asymptotic forms are

1 (2v)"
I (a)z2—| — | asv—ow, C.27
(@) oy (M) (C.27)
z(2vY
KV(Q)E ; Z as y—»00, (CZS)

In Chapter 4, an integral equation is obtained for a cylindrical dielectric shell
covered periodically with conducting patches. The integral equation is given in terms
of a 2x2 matrix, whose entries involve various kinds of Bessel functions. Here, an
asymptotic form of the matrix is determined by using large order asymptotic forms
for the Bessel functions appearing in it. The asymptotic form obtained in this
appendix is used in a convergence acceleration technique, which is described in

Chapter 4. The matrix is given by the expressions

ZQ = {Y;)mn _hOmn (po)[eOmn (pO)]71}71 > (C29)

where
YOmn = {h;mz1 (po)[e;mn (pO )]71 + hlern (pO)[elern (pO )]71 é/Omn } {] + é,Omn }_1 ’ (C30)
Somn = € (PE (P, ) S (P, (P 0N, (C.31)

-1

o = {0 (PO (AT = Py, (P, (2T}
{Bn (P2 (PO =, (e, (PDT ] (C32)

e and 4 are as given in (4.30)-(4.37). It can easily be shown that if the dielectric shell
were not present, Zp would simplify to an expression given in [10] and here we

denote it as Z o
0
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1 i
Zy, = ——2ZJ, (k) H (K0u0)
jowsg, 2

TG H D Kep) 1 (vmﬁnf Ny
’ Jvm(KOnpo)Hii)(KOnpo) Po\ Kon o (C33)
vmﬂn _K(izpo

After that, we show that Z, and Z, both have the same asymptotic form as

v, — oo . The proof starts by considering the large order asymptotic values of Bessel

functions. The order of Bessel functions appearing in the matrices are given by

Vv, =Vo+2m/Ty. (C.34)

m

If v, tends to infinity, the asymptotic forms of the Bessel functions and their

derivatives are given by [24]

as v, — o, (C.35)

as v, — o, (C.36)

2 vm
Y, (k,p)=- /Wi(e;’”p} as v, — o, (C.37)

v, +1
) m
Y (x,,p) =¢ i( Y j as v, - o, (C.38)
! 2 ﬂvm eKinp
v "
H\EZ) (Kinp) = .] i{ Vm J as Vm - OO’ (C39)
w,, \ eK,, P

v, +1
2 m
" 2 m}m eKinp

By using these expressions, the asymptotic forms of the matrices e, (p) appearing

mn

in (C.29)-, (C.32) for different regions are obtained as

2 oy e,V
e, (p)=— ! ( U J { ;’ﬁ" @0 m}as v w, (CAl)
Ja)gop '\, eKOnID KOnp 0
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M

e, (p)=

Jjog p

v'ﬂ
2, J [— v,B,
2
eKln p Kln p

eOmn (p) =

JOE,p

v”Y
2vm ] {_ vm ﬂﬂ
2
eKOn p KOn p

JWEV,

2v,, ]_Vm {— v, B,

eKlnp Klnp

- ja)glvm
0

— joeyv

0

0

}as v, —> 0,
}as v, —> 0,

m
}as v, —> 0.

(C.42)

(C.43)

(C.44)

Similarly, the asymptotic forms of the matrices #4,,, (p) for different regions are

obtained as

o (P) =
" Jjou,p 2

eKOn p ]a)ﬂo Vm

V)=
1 Jjou,p J27v

[ 2v j_vm {
eK,pP) OV,

hy () 2

J O, p

hOmn (p) = .

Then the products . (p)le, ()]

P (P €3, (P!

(P er,, (]

By (P er, (O]

~

vmﬂn

L s

~

a)ﬂovm Vm ﬂ n

2

1 Klnp

a)ﬂovm Vm ﬂ n

Kz o Vv ﬂ
1n mln
—v) | ==h. (Pl (p)] " as v, > o, (C.51)

P
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2, ” 0
exo,p) |- jony,

of the matrices become

2
KouP

o }as v, —> 0,
vmﬁn

2
Ko P

i }as v, —> 0,
vm n

-
K

lnp as Vm—)oo,
vmﬂn_

-

KouP

"7 lasv, — o,
vmﬂn_

as v, — o,

as v, — o,

(C.45)

(C.46)

(C.47)

(C.48)

(C.49)

(C.50)



|k B,

hOmn (p)[eOmn (p)]il ]a)ﬂ v v ﬂ B V’i as Vm —> 0. (CSZ)
0" m mi=n
P

I

By using the asymptotic forms given above, the matrix ¢, in (C.32) is determined

as follows:

-1

o = (PO, (PO = Py ()3, (PO}
(P (P2 (P =i, (PN (PDT}

__ { -2 { I+{h, (P, (POT'} B (P (DT }1}

M 0 as v, — . (C.53)

For substituting into the matrix ¢, in (C.31), we establish the following asymptotic

expressions

1 P A 0

€ (P (P = {—1] 2o as v, — o, (C.54)
Po 0 1
1 P ’ _& 0_

€ (PLE1, (P)] %(—Oj ) as v, — o, (C.55)
P 0 1

and proceed as:

Com = efmn (2 )[elern 02 )]71 i€ (O (00 )]71

v | P 2_ g2 1 0 v | P
;[&J oo |(k-k) (&] £

Po B.p Py
N Y Gy il NC VA A
10
_(E-K) B.p as v, —> oo (C.56)
(K k) =20 " ' '

m
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Subsequently, ¥, is determined from

mn

Yo = { s (PO (PO + 15 (23 (PO s T+ S}
= D (i (P {1 =28 {1+ i}

Kénpo vmﬂn
-2 [as v, > o. (C.57)

£

1
- ja)/’lOVm Vmﬂn

Finally, the asymptotic value of the impedance matrix is obtained as

-1
ZQ = {YOmn - hOmn (pO)[eOmn (pO )] : } = ZQa as vm —> o s (C58)
where
2 2 -1
KOnpo vmﬂn KOnpo vmﬂn
1 2 —1 2
Zy, = V| Y

ja)ﬂovm Vmﬂn

ja)/uovm vmﬂn
Lo Po
VZ
~ ja)ﬂo p_’" vmﬂn
- 2kavm ’ 2
vmﬂn _KOnpO

as v, — . (C.59)

Next, it will be shown that the asymptotic form of the matrix Z, in (C.33) equals

Z, as v, — . This is proved by obtaining asymptotic expressions for the products

Bessel functions,

J, (x,,p)H? (x,,p) = 7 as v, —>0, (C.60)
v,
! 1(2) ~ _.jvm
J, (&,P)H, " (K,,p)=—"—= Vv, > 0. (C.61)
7s (KOnp)

Then substituting into (C.33), we obtain

=Z, asvy, —>©. (C.62)
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When v, — —o0, one can use identities [24]

J_,(2)=(=1)"J,(2),

Y (2)=CD"Y,(2),

H?(z)=(-1)H?(2),

and subsequently show that

Zy=Z, as v, > —o,

Lo =2, AV, —>—0,

where

2
_ja)/"o —

/, =——
% 2k§vm Po

vmlgn

asy, — —o.

2
Vmﬂn _KOnpo

(C.63)
(C.64)

(C.65)

(C.66)

(C.67)

(C.68)

Hence, the proof is completed and it is shown that both Z, and Z, have the same

asymptotic form

0 0,
Zo =2y
where
. Vo
JOHy | —~
Z, =
% =2k v, 1| P

as v, — fowo,

, as v, — oo,

asy, — foo.

2
_KOnPO
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