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ABSTRACT 
 

ANALYSIS OF LINEAR TIME-VARYING SYSTEMS  
IN WAVELET DOMAIN 

 
 

KARC�, Hasari 
M.Sc. in Electrical and Electronics Engineering 

Supervisor:  Doç. Dr. Gülay TOHUMO�LU 
December 2005,   51 pages 

 
 
 

Analysis of linear time-varying systems is one of the important problems in 

engineering. In many solution methods there are some approximations such that the 

system is modeled as time-invariant system and/or the solution is obtained in steady-

state conditions without considering the transient response. The problem is to get a 

general analysis method for LTV systems is still continuing to investigate. 

 

In this thesis, time-varying systems are analyzed in wavelet domain. The system 

equations are described in a higher order differential equation or state-space 

representation. To solve these equations, they are transferred to wavelet domain by 

forming algebraic matrix-vector relations using the wavelet transform coefficients. 

These relations are achieved by defining operator matrices concerned with addition-

subtraction, multiplication, derivative and integral operators appear in system 

equations. Orthogonal and compact support wavelets provide a simple way to define 

these operator matrices. The operator matrices have been defined for orthogonal 

compactly supported wavelets. Linear time-varying system’s dynamic equations are 

expressed as into algebraic matrix-vector relations by using the operator matrices. In 

application, firstly, system analysis in wavelet domain method is theoretically 

applied to differential equation and state-space representation of LTV systems and 

then some illustrative examples are given. Their results are discussed in conclusion.  

 

This thesis consists of a literature survey on the linear time-varying systems and their 

solution techniques, the theoretical background of wavelets and wavelets transform, 
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the operational matrices of time domain operators and LTV system analysis with 

wavelets.  

 

Key Words: Wavelet domain system analysis, Wavelet transform, Linear time-

varying systems, Linear operators. 
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ÖZET 
 

ZAMANLA DE���EN L�NEER S�STEMLER�N DALGACIK ORTAMINDA 
ANAL�Z� 

 
 

KARC�, Hasari 
Yüksek Lisans Tezi, Elektrik ve Elektronik Mühendisli�i Bölümü 

Tez Yöneticisi: Doç. Dr. Gülay TOHUMO�LU 
Aralık 2005,  51   sayfa 

 
 
 

 Zamanla de�i�en lineer sistemlerin çözümü mühendislik uygulamalarında 

kar�ıla�ılan önemli problemlerden biridir. Birçok çözüm metodunda, zamanla 

de�i�meyen sistem modellemesi ve/veya geçici rejim analizini dikkate almadan 

kalıcı çözümü bulmak için bazı yakla�ımlar bulunmaktadır. Zamanla de�i�en lineer 

sistemlerin tümü için uygulanabilecek genel bir çözüm metodu arayı�ı halen devam 

etmektedir.  

 

Son zamanlarda bazı ara�tırmacılar dalgacık analizini zamanla de�i�en lineer 

sistemlerin çözümünü bulmak için belli sınırlamalarla uyguladılar Bu tezde, sistem 

denklemleri dalgacık katsayıları cinsinden dalgacık ortamına transfer edilir. Sistem 

denklemleri yüksek dereceli diferansiyel denklem  ya da durum denklemleri olarak 

tanımlanır. Bu denklemleri dalgacık ortamında çözmek için cebirsel matris-vektör 

denklemlerine dönü�türülür. Bu ifadeler, sistem denklemlerinde bulunan ekleme-

çıkarma, çarpma, türev ve integral operatörleri için tanımlanan operatör matrisleriyle 

ifade edilir. Dalgacıkların ortogonal ve lokal tanımlanabilirlik özelikleri, operatör 

matrislerinin basit bir �ekilde tanımlanmasını sa�lar. Operatör matrisleri ortogonal ve 

lokal tanımlı dalgacıklar için tanımlanır. Operatör matrisleri zamanla de�i�en 

do�rusal sistemlerin dinamik denklemlerini cebirsel matris-vektör ili�kisine 

dönü�türür. Uygulamada, ilk olarak, dalgacık ortamında sistem analiz metodu teorik 

olarak yapılan türetimlerle, zamanla de�i�en do�rusal sistemlerin diferansiyel ve 

durum denklemlerinde gösterilir.Daha sonra seçilen örnekler üzerinde pratik olarak 

uygulanır.Bu örneklerin çıktıları sonuç bölümünde tartı�ılır.  
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Bu çalı�mada, zamanla de�i�en do�rusal sistemlerin literatür taraması ve çözüm 

teknikleri verilmektedir. Dalgacık ve dalgacık ortamı teorisinden yararlanılarak 

zamanla de�i�en do�rusal sistemlerin analizi yapılmaktadır. Bunun için sistem 

denklemlerinde zaman ortamında kullanılan operatörler dalgacık operator matrisleri 

olarak tanımlanıp; sistem denklemleri dalgacık ortamına transfer edilmektedir. 

Böylece bu denklemler çözülerek zamanla zamanla de�i�en do�rusal sistemlerin 

analizi dalgacık ortamında gerçekle�tirilmektedir. 

 

Anahtar Kelimeler: Dalgacık ortamında sistem analizi, dalgacık ortamı, Zamanla 

de�i�en lineer sistemler, lineer operatörler. 
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CHAPTER 1 
 

INTRODUCTION 
 

In last two and a half decades, many researchers interest the wavelets. The 

early wavelets work was in the 1980’s by Morlet, Grossmann, Meyer, Mallat, and 

others, but it was the paper by Ingrid Daubechies [1] in 1988 that caught the attention 

of the large number of the scientist who works on theoretical and applied sciences. 

Some of the application areas of the wavelets are applied mathematics, mathematical 

physics, numerical analysis, communication systems, signal and image processing-

image and video coding, denoising, linear system analysis. 

 

System analysis with wavelets is a new application area of wavelets. There are a few 

works applying the wavelets to get solution of LTV systems [2,3]. These works give 

the solution of first order differential equation defining the integral operator for Haar 

wavelet. Naturally this approach is suitable for state-space representation of LTV 

systems. Xiangqian L. and Lin Z. [2] applied the Haar integral operator to state-space 

representation of linear time-varying systems. As for C.H. Lee used this operator for 

transient analysis of linear systems [3]. 

 

Linear time-varying system analysis based on operator matrices is not a new analysis 

technique. This method is used by G. Tohumoglu [4] to analyze periodically time-

varying linear systems. In this work, which is the main inspiration of us to do this 

thesis, operator matrices (didem, indem, modem, delay) for derivative, integral, 

multiplication and delay operation were introduced for Fourier series. The same 

matrices can be defined in wavelet domain in a similar way as in the spectral analysis 

method [4] 

 

In this thesis, it is aimed to give a different solution method of linear time-varying 

systems in wavelet domain by doing steady-state analysis. A comparative discussion 

of this method with the other solutions methods such as spectral analysis method is 

given. 
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Having noted the importance and the applications of linear time-varying systems in 

this section, general properties and representations of linear time-varying systems 

and their solution techniques are introduced in the subsequent sections. 

 

In chapter two, an introductory survey of wavelets and particularly, orthogonal 

wavelets and its properties will be given. Besides of theoretical aspects of wavelets, 

their applications will be mentioned. In chapter three, wavelet analysis of linear time-

varying systems is explained theoretically. It will be introduced operational matrices 

such as derivative, integral operational matrices in wavelet domain for time-domain 

operators. Besides of these, multiplication and addition matrices will be defined, too.  

 

Wavelet analysis method is suitable for computer programming; therefore, basically, 

MatLab functions for operational matrices are developed. Finally, in the last chapter; 

the results and conclusions are briefly summarized and some topics are proposed for 

further research. 

 

1.1 IMPORTANCE OF LINEAR TIME-VARYING SYSTEMS 

 

Time-varying systems take an important place in modern technology. They 

are widely used as in communication systems, power electronic circuits, electrical 

machinery and electronics. 

 

In communication system, the communication channels are time varying due to 

movement of the source, receiver or scatters. Therefore, the channel is acting like 

time varying filters.  Besides that, parametric amplifiers, parametric converters, time 

varying filters, switched capacitor networks, mixers and RF circuits are also different 

types of time-varying systems [5-8]. 

 

In power electronic circuits high power semiconductors devices such as thristors, 

diacs, triacs are used and these devices are either triggered externally or controlled 

by the response signals; in either case the controlling signal is periodic and these 

devices behave as periodically time-varying components. Because of time-varying 

nature of power systems, time-varying system analysis methods are used in the 
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systems as, power system protection, power quality, power system transients, partial 

discharges, load forecasting, power system measurement. 

 

In integrated circuits (IC) area, due to the heat generated by IC, circuit parameters 

are changing . The parameter variations need to be quantified in order to ensure a 

robust circuit. 

 

1.2 LINEAR TIME-VARYING SYSTEMS 

 

The system approach is a widely used in modeling electronic and mechanical 

systems. Linear systems are highly popular models due to their simplicity and 

convenience for mathematical analysis. Thus, many systems can be modeled as 

linear time-varying systems at least for a limited range of operation. Figure 1.1 

describes the general notion of an input-output system in a block diagram. The input 

is u  and the output is y  to describe physical quantities and their relations. 

 

 
Figure 1.1 Input-Output System 

 

To classify the system, let us define important qualifiers for a system. 

A system is linear if it is satisfies the property of superposition, that is, for any 

couple of inputs and outputs 1 1( )y f u=  and 2 2( )y f u= , the equation 

1 2 1 2( ) ( )ay by af u bf u+ = +  must be satisfied for any couple of scalars a and b . 

 

A system is time-varying, if a system parameters changes with time, otherwise it is 

called a time-invariant system. If a system satisfies linearity property and it has at 

least a time-varying component, it is called a linear time-varying system (LTVS), 

otherwise linear time-invariant system (LTIS). A small class of LTVS is called 

periodically time-varying system, whose components change periodically with time. 
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1.2.1 Linear Time-Varying Systems Representation 

 

The relation between the input and the output of a time-varying system can be 

expressed in a variety of ways. This forms “characterization” (representation) of the 

system. Basically, the input-output relation of a linear time-varying system is 

described by differential equation as  

 

1 0 1 0( ) ... ( ) ( ) ( ) ( ) ... ( ) ( ) ( )
n m

n mn m

d y dy d u du
a t a t a t y t b t b t b t u t

dt dt dt dt
+ + + = + +  (1.1) 

 

where ( )na t and ( )mb t  are known continuous functions of time. This equation is 

referred to as the fundamental equation of the system [9]. If there are more than one 

input and/or output in the system then, in general, we have more than one high order 

simultaneous differential equations containing multi-input, multi-output variables. 

 

The classical differential equation solution techniques can be applied successfully to 

a small class of systems and corresponding basis functions can be found in [10]. This 

small class contains the systems, which are characterized by the following equations: 

Bessel equations, Weber equations, Hypergeometric equations, Airy equations and 

others.  

 

The equation (1.1) defines a periodically time-varying linear system if the 

coefficients of functions ( )na t  and ( )mb t  are periodic with the system’s fundamental 

period 0T . For periodically time-varying systems, the periodicity makes it possible to 

apply some special techniques such as Floquet theory [11] and spectral analysis [4]. 

In spectral analysis fundamental differential equation of linear LTV system is 

expressed in terms of algebraic matrix-vector relation by defining operational 

matrices for derivative, integral, and any time-varying component behavior. The 

system equations are transferred to spectral domain. Thus, solution of the system 

equation can be easily obtained by using the matrix operations. The solution is 

computed in spectral domain in term of Fourier coefficients. Then it is carried to the 

time domain by applying inverse Fourier Transform. This method gives the steady-
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state analysis of periodically time-varying system. However the general analysis 

methods of LTV systems are still continuing to investigate. 

 

Due to above mentioned difficulties of system representation by a single high order 

differential equation; state-space representation, has been developed. In modern 

system theory, it is preferred and found very convenient methods especially for 

computer simulations to use a set of N first order linear differential equations of the 

form Eq. (1.2a) together with the expression Eq. (1.2b) for the output. 

 

( ) ( ) ( ) ( ) ( )x t A t x t B t u t′ = +       (1.2a) 
( ) ( ) ( ) ( ) ( )y t C t x t D t u t= +       (1.2b) 

 

In these equations ( ) nx t R∈ , ( ) nu t R∈ , ( ) my t R∈  are the state, input and output 

respectively, at time t R+∈ ; ( )A t , ( )B t , ( )C t , ( )D t  are matrices of order compatible 

with ( )x t , ( )u t  and ( )y t , and their elements are known and they are piece-wise 

continues functions defined on R+ . It is well known that the state solution of Eq. 

(1.2a) is given by, 

 

0

0 0( ) ( , ) ( ) ( , ) ( ) ( )
t

t

x t t t x t t B u dτ τ τ τ= Φ + Φ�     (1.3) 

 

where 0( , )t tΦ is called the state transition matrix [10]. The 0( , )t tΦ is the key to the 

solution of Eq. (1.2a). Some solution techniques are given in [10] for different 

classes of linear system equations. The common one is commutative class. State-

space representation of LTV system can be transformed into time-invariant 

representation through the commutative class by using transformation as, 

 

( ) ( ) ( )x t T t x t=        (1.4) 

 

Here, ( )T t  is the transformation matrix, which transforms the system representation 

into commutative or even a linear time-invariant system representation. 
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Although, It is concluded in [12], [13] that, the commutative property is not an 

inherent property of a dynamic system, but rather is just a system representation 

property it is difficult to find transformation matrix ( )T t in Eq. (1.4). Therefore it is 

not easy to get the solution of system if it is not in commutative class. Spectral 

analysis method [4] can be applied efficiently for this representation, if ( )A t , ( )B t , 

( )C t , ( )D t  matrices are periodically time varying.  

 

A LTV system is excited by an impulse function, that is the delta function, ( )tδ  and 

the system’s response to the impulse function is called “impulse response” and 

denoted as 0( , )h t t . The system response ( )y t  to the input ( )u t  applied at the 0t t=  is 

given by the superposition integral 

 

0

( ) ( , ) ( )
t

t

y t h t u dτ τ τ= �        (1.5) 

 

This superposition is expressed as convolution of input-output, that is 

 

0( ) ( , ) ( )y t h t t u t= ∗        (1.6) 

 

However, a method for analytic expression of 0( , )h t t  is generally unknown and same 

difficulties mentioned in differential equation are valid for this representation. 

 

Frequency domain approach for analysis of LTV is first developed by L.A. Zadeh 

[9]. Zadeh’s approach is essentially an extension of the frequency analysis 

techniques commonly used in LTI systems. He defines a time-variable system 

function ( , )H s t , for a variable linear network. This function possesses most of the 

fundamental properties of the transfer function of a fixed network. For this reason it 

is conveniently used to interpret the frequency domain behavior of systems and to 

realize the given frequency domain requirements in design problem. Further, once 

( , )H s t  has been determined, the response to any given input can be obtained by 

treating ( , )H s t  as if it were the transfer function of a fixed network.  
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For a single-input, single-output time-varying linear system, which is initially, 

relaxed, the time-varying system function is defined by the relation 

 

( )( , ) ( , ) s tH s t h t e dττ τ
∞

− −

−∞

= �       (1.7) 

 

The response of linear system to any input ( )u t , 0 0t t≥ ≥ , can be derived by  

 

1
( ) ( , ) ( )

2
sty t H s t U s e ds

jπ

∞
−

−∞

= �      (1.8) 

 

where ( )U s is the Laplace transform of ( )u t . 

 

However, There are similar difficulties to determine ( , )H s t  involved in solving the 

fundamental equation or the state equations of the system. To overcome some of 

difficulties the system equations transformed to spectral domain to use the spectral 

analysis techniques [4]. The spectral analysis method basically uses Fourier series 

expansion of variables in linear periodically time-varying systems. 
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CHAPTER 2 

 

INTRODUCTION TO WAVELET TRANSFORM 
 

In this chapter, it is introduced that the wavelets and the discrete wavelet 

transform from the classical viewpoint, based on the concept of multi-resolution 

analysis. It will not be given all deep details, but it will be limited to the topics that 

are the more relevant important parts for this thesis. For the details we refer to 

references [14-18]. 

 

A short history of wavelets and their practical applications are introduced in the 

following sections. It can be found that the brief explanation for what the wavelets 

are. Multiresolution analysis forms the backbone of the wavelet analysis, which is 

shortly given in section 2.5. In order to calculate the wavelet transform in an efficient 

way, the fast wavelet transform (FWT) is used that is given in the last part of this 

chapter. 

 

2.1 HISTORY OF WAVELETS 

 

The appearance of wavelets is a relatively recent development in 

mathematics. The name wavelet or ondelette was coined some ten years ago by 

French researchers, including Morlet, Arens, Fourgeau and Giard [19], Morlet [20], 

and Grossman and Morlet [21]. The existence of wavelet like functions has been 

known since the early part of the century (notable examples being what are now 

known as the Haar wavelet and the Littlewood- Paley wavelet) and many of the ideas 

now embodied in wavelets originated from work in subband coding in engineering, 

coherent states and renormalization group theory in physics and the study of 

Calderon-Zygmund operators in mathematics. However, it was not until recently that 

the unifying concepts necessary for a general understanding of wavelets were 

provided by researchers such as Mallat [22], Stromberg [23], Meyer[24], Daubechies 

[18], Battle [25] and Lemarié [26]. Since then, the growth of wavelet research in 
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mathematics and their applications in different areas has been explosive with 

numerous authors contributing significantly.  

 

2.2 WAVELET’S APPLICATIONS 

 

There is an extensive wavelet literature within a variety of applications in 

several disciplines, e.g., Digital Signal and Image Processing in particular 

application, Medical and Biomedical Signal and Image Processing, fingerprint 

classification, remote sensing, target recognition, denoising etc, Numerical Solution 

to Partial Differential Equations, Seismic and Geophysical Signal Processing, The 

main focus in the literature has been on identification and classification methods 

from the analysis of measured signals, few works use wavelet transform as an 

analysis technique for the solution of voltages and currents which propagate 

throughout the system 

 

2.3 WHAT ARE WAVELETS? 

 

Real-world signals usually have the features that they are both limited in time 

and limited in frequency (band-limited). Time limited signals can be represented 

efficiently using a basis of block function. But block signals are not limited in 

frequency. Band-limited signals can be represented efficiently using a Fourier basis, 

but sines and cosines are not limited in time. 

 

What we need is a compromise between the pure time-limited and band-limited basis 

that combines the best of both worlds: wavelets (“small wave”). 

 

The goal of most wavelet research is to create a set of basis functions and transform 

that will give an informative, efficient and useful description of a function or signal. 

Thus, a signal ( )f t decomposes into a basis of functions iΨ   

 

( ) i i
k

f t a= Ψ�         (2.1) 
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To have an efficient representation of the signal ( )f t using only a few coefficients ia , 

it is very important to use a suitable family of functions iΨ . The functions iΨ should 

match the features of the data we want to represent. 

 

If the signal is represented as a function of time, wavelets provide efficient 

localization in both time and frequency or scales. Hence, they can easily detect local 

features in a signal. Another central idea of wavelets is that of multiresolution 

analysis where the decomposition of a signal is in terms of the resolution of detail. 

Therefore the wavelet decomposition allows to analyzing a signal at different 

resolution levels (scales).  

 

2.4 WAVELET TRANSFORM 

 

The fundamental idea of the transform techniques is to transform signal from 

time domain to frequency domain. As it is known that the commonly used transform 

techniques in the signal compressions are the Fourier transform (FT), Short-time 

Fourier transform (STFT), Discrete Cosine transform (DCT) and Wavelets transform 

(WT). In the last two decades, the researchers interest the wavelets transform and its 

applications more precisely. The wavelets transform overcomes some resolution 

problems -which will be explained in the following paragraphs- arising in the Fourier 

and/or Short-time Fourier transform. 

 

One of the commonly used transform techniques is the Fourier transform in signal 

frequency analysis [27]. The Fourier transform gives what frequency components 

exist in the signal, but it doesn’t tell when these frequency components exist. Both of 

time and frequency information is not required when the signal is statinary whose 

frequency doesn’t change with time. Therefore, FT is not suitable technique for 

nonstationary signals. However, the Fourier transform is suitably applied  for 

windowed nonstationary signals which is called Short-time Fourier transform [28]. 

Once a window is chosen for the STFT, then the time-frequency resolution is fixed 

over entire time-frequency plane. This causes resolution problems. To overcome 

some resolution problems of the STFT, it is necessary that the new or modified 
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transformation techniques. The wavelets transform (WT) emerged as a new 

transformation method. 

 

Multiresolution analysis mainly deals with the problem of adjusting time and 

frequency resolution [29]. Considering Heisenberg inequality defined as the 

multiplication of time resolution τ∆ and frequency resolution f∆  is a fixed constant 

i.e. 
1

4
tτ

π
∆ ∆ ≥ , the time resolution decreases when frequency resolution increases or 

vice-versa, shortly, the time and scale resolutions are bounded (can not be arbitrarily 

small). In practical applications, high frequencies appear from time to time as short 

bursts, or spikes, however low frequencies are usually present during the entire 

duration of the signal. The WT are based on the multiresolution analysis which 

allows analyzing a signal at different resolution levels [30]. Wavelets can also be 

stretched or compressed to obtain low and high frequency components to be 

analyzed any signal at different resolutions. This provides multiresolution analysis in 

the frequency domain representation of signal.  

 

The Continuous Wavelet Transform (CWT) of a signal 2( ) ( )x t L R∈  is defined as 

 

1
( , ) ( ) ( )x

t
CWT s x t dt

ss

ττ ψ −= ∗�     (2.2) 

 

( , )CWT s τ  is a function of two variables,τ  and s, the translation and scale 

parameters, respectively. ( )tψ is the transforming function-usually a bandpass filter- 

called the mother wavelet. The wavelet function has oscillatory property. The large 

scales ( 1)s >>  correspond to long basis functions, and will identify long-term trends 

in the signal to be analyzed. The small scales (0 1)s< <  lead to short basis functions 

in order to define the short term behaivor of the signal. Thus the scale parameter 

interpreted as inversely proportional with the frequency of the signal. The wavelet 

transform is a reversible transform and the reconstruction is possible if admissibility 

and regularity conditions are satisfied [29, 30].  
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For the discretization of wavelets transform, the scale and translation parameters are 

discritized as 0
js s−= and 0 0

jksτ τ−=  with an index j and k and substituted into the 

mother wavelet to define discrete wavelet transform basis as  

 
/ 2

, 0 0 0( ) ( )j j
j k t s s t kψ ψ τ= −       (2.3) 

 

The most convenient value is found to be “2” for 0s  and “1” for 0τ . This equation is 

carried into the Eq. (2.2) in order to define the Discrete Wavelet Transform (DWT). 

The multiresolution wavelet algorithm decomposes a signal x(t) by the help of 

scaling functions ( )tϕ  and wavelet functions ( )tψ . These functions together resolve 

the signal into its coarse and detail components. Thus, by using the multiresolution 

idea, the signal x(t) is defined in terms of scale and wavelet coefficients, ( )c k  and 

( , )d j k , respectively. That is 

 

,
0

( ) ( ) ( ) ( , ) ( )k j k
k j k

x t c k t d j k tϕ ψ
∞ ∞ ∞

=−∞ = =−∞

= +� ��     (2.4) 

 

First summation gives a function that is low resolution or coarse approximation of 

( )x t , the second one represents the higher or finer resolution to give detail 

information of the signal. 

 

The signal is split first via a two channel filter bank, then the lowpass version is split 

again using the same filter bank and so on. The filters used in multiresolution 

decomposition are called a constant-Q filter bank since the bandwidth at each 

channel, divided by its center frequency is constant. The wavelet functions and the 

scaling function, that represent any signal in Eq. (2.4) can be obtained by the process 

of the digital filtering and down sampling. The scale j (cj) coefficients are filtered by 

two finite impulse response of lowpass and highpass digital filters with coefficients 

0 ( )h n  and 1( )h n , respectively. After this operation, down sampling gives the next 

coarser j-1 scaling ( 1jc − ) and wavelet ( 1jd − ) coefficients. This process is illustrated in 

Figure 2.1, where 2↓ denote a down sampling by 2.  
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Figure 2.1. Subband Filtering Scheme for One Step Decomposition. 

 

In Figure 2.1, the synthesis process is shown where in j-1 coarse scaling ( 1jc − ) and 

wavelet ( 1jd − ) coefficients are filtered and then upsampled to form the j-coarse scale 

value. The process denoted by 2↑  is the upsampling by a factor 2. The filters used in 

analysis part 0h (n)  lowpass and 1h (n) highpass filters and in synthesis part 0g (n)  

lowpass and 1g (n)  highpass filters are Quadrature mirror filters [30, 31] and they 

have relations as  

 

0 0 1 1( ) (- ) ( ) (- )g n h n and g n h n= =        (2.5) 

 

2. 5 DISCRETE WAVELETS AND MULTI-RESOLUTION ANALYSIS 

 

The goal of multiresolution analysis is to developed representation of a 

function ( )f t  at various levels of resolution. To achieve this, the given function is 

expanded in terms of basis functions ( )tϕ , which can be scaled to give 

multiresolution of the original function.  

 

In order to develop a multiresolution analysis [32, 33] 2 ( )L R  is decomposed in 

nested sub-spaces jV  such that the closure of their unions is 2 ( )L R  and their 

intersection contains only the zero function. 

 
2

2 1 0 1 2{0}.... .... ( )V V V V V L R− −⊂ ⊂ ⊂ ⊂ ⊂     (2.6) 
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In the dyadic case, each subspace jV  is twice as large as 1jV − , and then a function 

( )f t  that belongs to one of these subspaces has the following properties: 

 

1( ) (2 )j jf t V dilation f t V +∈ ⇔ ∈     (2.7) 

( ) ( 1)j jf t V translation f t V∈ ⇔ + ∈     (2.8) 

 

If it can be found a function 0( )t Vϕ ∈  such that its translation forms a Riesz basis for 

the space 0V , it is called scaling function or father function. That is, 

 

0 { ( ) , } ( ) ( )k kV span t k Z where t t kϕ ϕ ϕ= ∈ = −    (2.9) 

 

Then , ( )j k tϕ form a basis for the space jV , i.e, 

 

/ 2
, ,{ ( ) , } ( ) 2 (2 )j j

j j k j kV span t k Z where t t kϕ ϕ ϕ= ∈ = −  (2.10) 

 

The nesting of the spans of , ( )j k tϕ , denoted by jV  and shown in Eq. (2.6), is 

achieved by requiring that 1( )t Vϕ ∈ , which means that if ( )tϕ  is in 0V , it is also in 

1V , the space spanned by (2 )tϕ . This means ( )tϕ  can be expressed in terms of a 

weighted sum of shifted (2 )tϕ  as 

 
1

0
0

( ) 2 ( ) (2 )
L

k

t h k t kϕ ϕ
−

=
= −�       (2.11) 

 

The coefficients 0h  are a sequence of real or perhaps complex numbers called the 

scaling function coefficients (or the scaling filter or the scaling vector) and 2  

maintains the norm of the scaling function with the scale of two. The equation is 

referred to by different names to describe different interpretations or points of view. 

It is called the refinement equation, the multiresolution analysis equation, or dilation 

equation. 
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Now let us investigate the differences between subspaces 1jV −  and jV . It can be 

defined a new subspaces 1jW −  such that it is the orthogonal complement of 1jV −  in jV  

 

1 1 1 1;j j j j jV V W V W− − − −= ⊕ ⊥      (2.12) 

 

where ⊕  represents a direct sum. jW  spaces are called as wavelet spaces. It follows 

that the spaces jW  are orthogonal and that  

 
2

2 1 0 1 2( )L R W W W W W− −= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕� �    (2.13) 

 

Another way to describe the relation 0V  to the wavelet spaces is noting  

 

1 0W W V−∞ −⊕ ⊕ =�        (2.14) 

 

which again shows that the scale of the scaling space can be chosen arbitrarily. 

 

If it is introduced a function 0( )t Wψ ∈  that obeys the properties Eq. (2.7) and (2.8), 

and its integer translates form a basis for the space 0W , it is called wavelet function 

or mother wavelet function. 

 

0 { ( ) , }W span t k k Zψ= − ∈       (2.15) 

 

Then , ( )j k tψ is a Riesz basis for jW , i.e, 

 

/ 2
, ,{ ( ) , } ( ) 2 (2 )j j

j j k j kW span t k Z where t t kψ ψ ψ= ∈ = −  (2.16) 

 

Since these wavelets reside in the space spanned by the next narrower scaling 

function, 0 1W V⊂ , they can be represented by a weighted sum of shifted scaling 

function (2 )tϕ  as, 
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1

1
0

( ) 2 ( ) (2 )
L

k

t h k t kψ ϕ
−

=
= −�       (2.17) 

1 0( ) ( 1) ( 1) 0,1,...., 1k Lwhere h k h k k L= − − − = −      

 

Due to the multi-resolution analysis, the relations Eq.(2.11) and Eq.(2.17) are also 

valid between 1jV + , jV  and jW  for arbitrary j . The 0h  and 1h  are the filter 

coefficients that uniquely define the scaling function ( )tϕ  and the wavelet ( )tψ . The 

0h  and 1h  are lowpass and highpass filter coefficients respectively.  

 

The subspaces jV  are nested, and each of them can be split in two subspaces 1jV −  and 

1jW − . This means that jV  is a “coarse-resolution” representation of 1jV + , while jW  

carries the “high-resolution” difference information between 1jV +  and jV . The Figure 

2.2 pictorially shows the nesting of the scaling function spaces jV  for different scales 

j  and how the wavelet spaces are the disjoint differences (expect for the zero 

element) or, the orthogonal complements. 

 

 
Figure 2.2: Scaling Function and Wavelet Vector Spaces 
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Now, by using ( )k tϕ and , ( )j k tψ  functions it is possible to span the space 2 ( )L R . 

Any function 2( ) ( )f t L R∈  is written as a series expansion in terms of the scaling 

functions and wavelets. 

 

,
0

( ) ( ) ( ) ( , ) ( )k j k
k j k

f t c k t d j k tϕ ψ
∞ ∞ ∞

=−∞ = =−∞

= +� ��     (2.18) 

 

In this expansion, the first summation gives a function that is a low resolution or 

coarse approximation of ( )f t . For each increasing index j  in the second summation, 

a higher or finer resolution function is added, which adds increasing detail. This is 

somewhat analogous to a Fourier series where the higher frequency terms contain the 

detail of the signal. 

 

It is stated that the subspaces jV  and jW  are orthogonal, which means, the basis 

functions , ( )j k tϕ  and , ( )j k tψ  are orthogonal to each other. Then  

 

, ,( ), ( ) 0j k j kt tϕ ψ< >=        (2.19) 

, ,( ), ( )j k j k k kt tϕ ϕ δ′ ′−< >=       (2.20) 

, ,( ), ( )j k j k j j k kt tψ ψ δ δ′ ′ ′ ′− −< >=       (2.21) 

 

Therefore, the ( )c k  and ( , )d j k  coefficients in Eq. (2.18) can be found by taking 

inner products of ( )f t  with the scaling and wavelet functions respectively, 

 

( ) ( ), ( )kc k f t tϕ=< >        (2.22) 

,( , ) ( ), ( )j kd j k f t tψ=< >       (2.23) 

 

In Eq. (2.18) range of j  extends to infinity but for a real application this wide range 

may not be required. For any practical signal that is bandlimited, there will be an 

upper scale j J= , above which the wavelet coefficients ( )jd k  are negligibly small 

[29]. Then high resolution description of ( )f t  in terms of the scaling coefficients Jc  

is like that, 
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,( ) ( ) ( )J J k
k

f t c k tϕ
∞

=−∞
= �       (2.24) 

 

Wavelets and scaling functions are compact support functions. These functions 

satisfy the following relations. 

 

, ,

1
0

2 2
( ) , ( )

0

j j

j k j k

k k
for t

t t

otherwise

ψ ϕ

+� �≠ ≤ <� �
� �

= � �
� �
� �
� 	

   (2.25) 

 

and   0 ( ) 1A t dtϕ
∞

−∞

= =�      (2.26) 

 

These relations give a chance to express the system equations in wavelet domain in a 

simple manner. 

 

2.6 THE FAST WAVELET TRANSFORM 

 

 In many applications one never has to be deal with the scaling function or 

wavelets. Only the filter coefficients 0h and 1h  in the defining Eq. (2.11), (2.17) and 

kc , ,j kd  in the expansion Eq. (2.18) need to be considered. 

 

In order to work directly with the wavelet transform coefficients, it is needed the 

relationship between the expansion coefficients at a lower scale level in terms of 

those at a higher scale. A function 1( ) jf t V +∈  is expressible at scale 1j +  with 

scaling functions. 

 

1 1,( ) ( ) ( )j j k
k

f t c k tϕ+ +=�       (2.27) 
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At one scale lower resolution, wavelets are necessary for the detail not available at 

scale of 1j + .  

 

, ,( ) ( ) ( ) ( ) ( )j j k j j k
k k

f t c k t d k tϕ ψ= +� �     (2.28) 

 

The relations between 1( )jc k+  and ( )jc l , ( )jd l  are defined in [29] as  

 

0 1( ) ( 2 ) ( )j j
k

c k h m k c m+= −�       (2.29) 

1 1( ) ( 2 ) ( )j j
k

d k h m k d m+= −�       (2.30) 

 

In these equations, it is shown that the scale 1j +  coefficients are “ filtered ” by two, 

lowpass and highpass FIR digital filters with coefficients 0 ( )h n  and 1( )h n , 

respectively.  

 
Figure 2.3: Two-Stage Two-Band Analysis Tree 

 

This operation is known as the Fast Wavelet Transform (FWT). The FWT is 

implemented as two stage two-band Analysis Tree, which is shown in Figure 2.3.  

 

 
Figure 2.4: Two-Stage Two-Band Synthesis Tree 
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Similarly, the synthesis part is depicted in Figure 2.4. The 1jc + coefficients are 

obtained from the relation  

 

1 0 1( ) ( ) ( 2 ) ( ) ( 2 )j j j
m m

c k c m h k m d m h k m+ = − + −� �    (2.31) 

 

which is called the Inverse Wavelet Transform implementation. It is worth to note 

that the coefficients are upsampled before filtered. 
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CHAPTER 3 

 

SYSTEM ANALYSIS 
 

The general information about linear time-varying systems and their solution 

methods were given in chapter 1. But as mentioned before the analysis of LTVS is 

more complicated than the analysis of linear time-invariant systems. There are 

different analysis methods in time domain and frequency domain. Particularly, the 

spectral analysis method using Fourier domain is one of the well-known methods to 

find steady-state solution of periodically time-varying system [4]  

 

In two and a half decades, the wavelet transform (WT) attracts the attention of 

scientists and its many different applications are seen in literature. The compact 

supportness and orthogonality properties of wavelets [1] make them a suitable tool 

for the analysis of LTVS. In literature, the solution of system equation in state-space 

representation is restrictively defined for integral operator using only Haar wavelets 

[2,3]. In this study, a general solution method in the wavelet domain for the analysis 

of linear time-varying systems is introduced 

 

Dynamic equations of LTV systems can be converted to algebraic matrix-vector 

relations by operator matrices. It is possible and easy to define operator matrices for 

orthogonal wavelet series. Besides, compact support property gives us an opportunity 

to define a signal, which has local abrupt variation, in wavelet series expansion. 

Other orthogonal functions like Fourier or Bessel series are insensitive for this type 

of signals because of their global support. 

 

In this chapter, the system equations will be expressed in wavelet domain as 

algebraic relations in terms of matrix-vector relations. The method computes the 

steady-state solution from the system equations whether in differential equation or 

state-space representation. In order to define time-variance of a signal in wavelet 
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domain, firstly, wavelet modem matrix is formed. Then, operator matrices for 

different operators such as derivative, integral, multiplication and addition are 

presented. The method is illustratively applied on simple examples. The result is 

compared with the analytical solution. 

 

3.1 OPERATOR ANALYSIS IN WAVELET DOMAIN 

 

Let us first make a general observation about the representation of a linear 

operator T  and wavelets. Suppose that ( )x t has the representation  

 

,( ) ( ) ( )J j k
k

x t x k tϕ=�       (3.1) 

 

Then, the operator effect on ( )x t  is written as 

 

,( ) ( ) ( )J j k
k

Tx t x k T tϕ=�       (3.2) 

 

and, using the wavelet representation of the function , ( )j kT tϕ , the equation becomes 

 

, , ,( ) ( ) ( ), ( ) ( )J j k J l J l
k l

Tx t x k T t t tϕ ϕ ϕ= < >� �       

, , ,( ( ), ( ) ( )) ( )j k J l J J l
l k

T t t x k tϕ ϕ ϕ= < >� �            (3.3) 

 

In other words, the action of the operator T on the function ( )x t  is directly translated 

into the action of the infinite matrix , , ,{ ( ), ( ) }T J k J l Jl JkA T t tϕ ϕ= < >  in the sequence 

( )Jx k . This representation of T as the matrix TA is often referred to as the “standard 

representation ” of T  [34] The effect of the operator T  on the orthogonal series is 

written in terms of the operator matrices. The main concept around these properties 

is the fact that the integral or derivative of an orthogonal series may be also 

expressed as an orthogonal series. All these properties provide a way to transform 

system dynamic equations into algebraic equations. The concept may be in fact 

related to similar property observed in Laplace transform. In recent years many 

papers have written to define the operator matrices in several domains. [4], [35-37] 
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Generally, depends on the LTV system structure, the system equation may contain 

different linear operators such as derivative, integral, time delay. 

 

Any linear operator on a signal or algebraic relations of signals can be transferred to 

matrix-vector relation by using the operator property of orthogonal series. In order to 

show this transformation approach, let us assume that the signals ( ),x t  and 2( )y t L∈  

has a relation given as, 

 

( ) { ( )}y t T x t=         (3.4) 

 

where T is a linear operator. In wavelet domain, this relation can be expressed 

algebraically as 

 

Y = TX         (3.5) 

 

or explicitly 

 

1,1 1,2 1,3 1,4 1,50 0

2,1 2,2 2,3 2,4 2,51 1

3,1 3,2 3,3 3,4 3,51 1

2 24,1 4,2 4,3 4,4 4,5

2 25,1 5,2 5,3 5,4 5,5

t t t t ty x
t t t t ty x

t t t t ty x

y xt t t t t
y xt t t t t

− −

+ +

− −

+ +


 �
 � 
 �
� �  � 
� �  � 
� �  � 

= � �  � 
� �  � 
� �  � 
� �  � 

�  � � � � � �� �

�

� ��

   (3.6) 

 

where Y and X  are wavelet coefficient vectors of ( )y t  and ( )x t , respectively and 

T  is the wavelet modem matrix corresponding to time operator. If operator T  

represents an nth order derivative or integral of ( )x t , then the wavelet domain 

relation can be found recursively. 

 
nY = T X         (3.7) 

 

where nT operator matrix of nth order integral or derivative. 
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This theoretical approach will be shown on the specific operators to derive different 

operator matrices in the following subsections. 

 

3.1.1 Wavelet Modem Matrix 

 

In a time-varying network, if a signal ( )x t  is multiplied by a scalar function 

( )m t , and the new signal ( )y t  is calculated by the relation 

 

( ) ( ) ( )y t m t x t=        (3.8) 

 

Then, The relation is expressed in a wavelet expansion by using the Eq. (2.24)  

 
/ 2 / 2 / 2( )2 (2 ) ( ( )2 (2 ))( ( )2 (2 ))J J J J J J

J J J
n l k

y n t n m l t l x k t kϕ ϕ ϕ− = − −� � �   (3.9) 

 

It is known that the scaling functions are compact support functions, thus the 

multiplications of scaling functions can be written as, 

 

(2 ) (2 ) 0J Jk l for k lϕ ϕ− − = ≠       

2(2 ) (2 ) (2 )J J Jk l k for k lϕ ϕ ϕ− − = − =      

 

Thus the Eq. (3.9) is simply written as, 

 
/ 2 2( )2 (2 ) ( ) ( )2 (2 )J J J J

J J J
n k

y n t n m k x k t kϕ ϕ− = −� �   (3.10) 

 

In this equation the wavelet coefficients ( )Jy n are obtained by inner product 

 

,( ) ( ) ( ), ( )J j ny n m t x t tϕ=< >       (3.11) 

 

Hence 

2 / 2( ) ( ) ( )2 (2 )2 (2 )J J J J
J J J

k

y n m k x k t k t nϕ ϕ
∞

−∞

= − −��     
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2 / 2( ) ( ) 2 (2 )2 (2 )J J J J
J J

k

m k x k t k t n dtϕ ϕ
∞

−∞

= − −� �   (3.12) 

 

After the change of variable as 2J t kτ = −  , it becomes 

 

/ 2 2( ) 2 ( ) ( ) ( ) ( )J
J J J

k

y n m k x k k n dϕ τ ϕ τ τ
∞

−∞

= + −� �    (3.13) 

 

The compact supportness of scaling function ( )tϕ  provides the following 

expressions. 

 

2 ( ) ( ) 0k n d for k nϕ τ ϕ τ τ
∞

−∞

+ − = ≠�     (3.14) 

2 3( ) ( ) ( )k n d d A for k nϕ τ ϕ τ τ ϕ τ τ
∞ ∞

−∞ −∞

+ − = = =� �   (3.15) 

 

It is clearly seen that in order to get ( )Jy n  the value A  must be computed. It is 

necessary some mathematical manipulation for A  computation. The Eq. (3.15) is 

rewritten as 

 

( ) ( ) ( ) ( ) ( )m n d A m nϕ τ ϕ τ ϕ τ τ δ δ
∞

−∞

+ + =�     (3.16) 

 

where ( )δ ⋅  represents knocker delta function. Summing both sides over ,m n  gives 

 

( ) ( ) ( )
m n

m n d Aϕ τ ϕ τ ϕ τ τ
∞

−∞

+ + =�� �      (3.17) 

 

after reordering, which is  

 

( ) ( ) ( )
m m

m n d Aϕ τ ϕ τ ϕ τ τ
∞

−∞

+ + =� ��     (3.18) 
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The relation given in [29] is 

 

0( ) ( )
m

m d Aϕ τ ϕ τ τ+ = =� �       (3.19) 

 

and using ( ) 1dϕ τ τ =� , therefore, it is easily seen that 3
0 1A A= =   

Hence, the wavelet coefficients ( )Jy n  is computed as, 

 
/ 2( ) 2 ( ) ( ) , 0, 1, 2,J

J J Jy n m n x n n= = ± ± �    (3.20) 

 

Therefore the time domain relation ( ) ( ) ( )y t m t x t=  is transferred to wavelet domain 

by using the wavelet coefficients of ( )y t , ( )m t  and ( )x t  signals, that is  

 

Y = MX         (3.21) 

 

where Y  and X  are the wavelet coefficients vectors of ( )y t  and ( )x t , respectively, 

M  is the wavelet modem matrix of ( )m t . 

 

0 00

1 11

11 1/ 2

22 2

2 22

2

0

0

J

y xm
y xm

my x
my x

y xm

− −−

++ +

−− −

+ ++

� �
 � 
 �
� ��  � 
� ��  � 
� ��  � 
� �=�  � 
� ��  � 
� ��  � 
� ��  � 
� ��  � � � � �� �� ��

   (3.22) 

 

Similarly, if ( ) ( ) ( ) ( )y t m t n t x t=  relation, the corresponding wavelet domain relation 

becomes 

 

Y = MNX         (3.23) 

 

It is seen that for individual multiplication functions, the wavelet modem matrices 

are multiplied. 
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3.1.2 Wavelet Derivative Matrix  

 

Consider two signals ( )y t  and 2( ) ( )x t L R∈ . If the signals ( )y t  is derivative of ( )x t , 

i.e, 

 

( ) ( ( ))
d

y t x t
dt

=        (3.24) 

 

In order to find the corresponding equation in wavelet domain, the discrete wavelet 

expansions of the signals are carried into the above equation, such that 

 

/ 2/ 2( )2 (2 ) ( )2 (2 )
JJ J J

J J
n k

d
y n t n x k t k

dt
ϕ ϕ− = −� �    (3.25) 

 

The wavelet coefficients ( )Jy n  can be obtained by inner product of ( )x t′  and 

, ( )J n tϕ , where ` (prime) represents time derivative; that is  

 

2( ) ( )2 (2 ) (2 )J J J
J J

k

y n x k t k t n dtϕ ϕ
∞

−∞

′= − −� �    (3.26) 

 

By change of variable 2J t kτ = −  

 

( ) ( )2 ( ) ( ( ))J
J J

k

y n x k n k dϕ τ ϕ τ τ
∞

−∞

′= − −� �     (3.27) 

 

Let us call the integral part of the equation as ir , 

  

( ) ( )ir i dtϕ τ ϕ τ
∞

−∞

′= −�        (3.28) 

 

Then the ( )Jy n  becomes 
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( ) ( )2 , 0, 1, 2,J
J J n k

k

y n x k r n−= = ± ±� �     (3.29) 

 

which is the discrete wavelet coefficient relations of ( )y t  and ( )x t′ . Therefore, the 

representation of 
d
dt

 is completely determined from ir . If the Eq. (3.29) is written in 

matrix-vector relation, it is obtained that 

 

Y = DX  with 

0 1 1 2 2

1 0 2 1 3

1 2 0 3 1

2 1 3 0 4

2 3 1 4 0

2J

r r r r r

r r r r r

r r r r r

r r r r r

r r r r r

+ − + −

− − + −

+ + + −

− − − −

+ + + +

� �
� �
� �
� �

= � �
� �
� �
� �
� �
� �

D
�

�

  (3.30) 

 

where, Y  and X  are the wavelet coefficients vectors. The matrix D  is called the 

wavelet derivative matrix. Note that the derivative operator has higher order 

derivative such as n, then the matrix-vector relation in wavelet domain for nth order 

derivative is like that 

 
nY = D X         (3.31) 

 

In order to compute the coefficients ir , the condition 

 
2

1

1
L

i
i

ir
−

=
= −�         (3.32) 

 

must be satisfied [34]. The relation for ir  coefficients are given as 

 
/ 2

2 2 1 2 2 1 2 2 1
1

1
2[ ( )]

2

L

i i k i k i k
k

r r a r r− − + + −
=

= + +�     (3.33) 
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It is stated in [34] that finite numbers of ir  are different from zero, that is 

0 2 2ir for L i L≠ − + ≤ ≤ −  and i ir r−= − . The Eq.(3.33) can be solved iteratively 

with setting ir  coefficients initial values as, 

 

[ 0 0.5 0 0.5 0 ]ir = −� �        

 

The na  coefficients are the autocorrelation coefficients of 1
0{ }k L

k kH h = −
== given in the 

form of 

 
1

0

2 ( ) ( ) 1,... 1
L n

n
i

a h i h i n n L
− −

=
= + = −�     (3.34) 

 

Thus the system of equations for ir  will be solved. 

 

3.1.3 Wavelet Integral Matrix 
 

Suppose that ( )x t  and ( )y t  2 ( )L R∈  and ( )y t is integral of ( )x t , 

 

( ) ( )
t

y t x t dt
−∞

′ ′= �        (3.35) 

 

This equation is expressed by using the discrete wavelet expansion of signals ( )y t  

and ( )x t  as  

 

/ 2 / 2( )2 (2 ) ( )2 (2 )
t

J J J J
J J

n k

y n t n x k t k dtϕ ϕ
−∞

′ ′− = −� ��    (3.36) 

 

The wavelet coefficients of ( )y t  are derived by inner product of ( )y t  with , ( )J n tϕ .  

 

/ 2 / 2( ) ( ( )2 (2 ) )2 (2 )
t

J J J J
J J

k

y n x k t k dt t n dtϕ ϕ
∞

−∞ −∞

′ ′= − −�� �   (3.37) 
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Since the , ( )J n tϕ  is a compact support in 
1

[ , ]
2 2J J

n n +
, the boundaries of inner integral 

can be changed as  

 
1

2
/ 2 / 2( ) ( ( )2 (2 ) )2 (2 )

J
n

J J J J
J J

k

y n x k t k dt t n dtϕ ϕ

+
∞

−∞ −∞

′ ′= − −�� �   (3.38) 

 

This equation is modified by change of variable as 2Ju t k= −  

 
1

/ 2 / 2( ) ( ( )2 ( ) )2 (2 )
n k

J J J
J J

k

y n x k u du t n dtϕ ϕ
∞ + −

−

−∞ −∞

= −�� �   (3.39) 

 

In this relation ( )uϕ  is also compact support and it is nonzero in [0,1] . Thus the inner 

integral is nonzero for only k n≤ . Therefore the equation becomes 

 
1

/ 2 / 2

0

( ) ( ( )2 ( ) )2 (2 )
n

J J J
J J

k

y n x k u du t n dtϕ ϕ
∞

−

−∞

= −�� �    (3.40) 

 

Using the previously given relation ( ) 1dϕ τ τ
∞

−∞

=� , the equation is simply written as 

 

( ) ( ) (2 )
n

J
J J

k

y n x k t n dtϕ
∞

−∞

= −� �      (3.41) 

 

In more compact form, by change of variable 2J t nτ = − , it is easily obtained, that 

 

( ) ( )2 , 0, 1, 2,
n

J
J J

k

y n x k n−= = ± ±� �     (3.42) 

 

If the integral expression ( ) ( )
t

y t x t dt
−∞

′ ′= �  is written in wavelet domain in matrix-

vector form as, 
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1 0 0 0 0
1 1 0 0 0
1 1 1 0 0

with 2
1 1 1 1 0
1 1 1 1 1

J−

� �
� �
� �
� �

= � �
� �
� �
� �� �
� �

Y = PX P
�

�

   (3.43) 

 

where Y  and X  are the wavelet coefficients vectors. The matrix P  is called the 

wavelet integral matrix. The nth order integration is expressed in wavelet domain as 

 
nY = P X         (3.44) 

 

 It is seen that the nth order integral corresponds to nth power of wavelet integral 

matrix. 

 

3.1.4 Addition Matrix 

 

It is previously spoken that the wavelet and scaling functions are compact-

support functions. Using this property, the wavelet expansion of two additional 

functions is simply defined by the addition of wavelet and scaling coefficients, 

correspondingly. Let ( )a t , ( )b t  and ( )c t  be 2 ( )L R∈  and by the relation 

( ) ( ) ( )a t b t c t= + . The discrete wavelet expansion of this relation is given, 

 

, , ,( ) ( ) ( ) ( ) ( ) ( )J J k J J k J J k
k k k

a k t b k t c k tϕ ϕ ϕ= +� � �    (3.45) 

 

It is obviously seen that ( )Ja k  wavelet coefficients are the addition of ( ) ( )J Jb k c k+  

wavelet coefficients. Therefore the wavelet addition matrix is given as  

 

, , ,[ ] , 0, 1, 2i j i j i jwhere a diag b c for i j= + = ± ±A = B + C �   (3.46) 

 

All operator matrices that are defined are computerized by writing functions and 

subprograms in MatLab. These functions and subprograms are given in Appendix A1 
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3.2 SOLUTION OF LTV SYSTEMS IN WAVELET DOMAIN 

 

Consider the differential equation of linear time-varying system  

 

1 0 1 0( ) ... ( ) ( ) ( ) ( ) ... ( ) ( ) ( )
n m

n mn m

d y dy d u du
a t a t a t y t b t b t b t u t

dt dt dt dt
+ + + = + +   

 

This equation can be written in wavelet domain using the operator matrices. By using 

the previously defined wavelet derivative matrix and wavelet modem matrices, the 

wavelet domain expression for the LTV system differential equation is expressed as 

 

1 0 1 0... ...n m
an a a bm b b+[M D + M D + M ]Y = [M D + + M D + M ]U  (3.47) 

 

where iD  is the ith order wavelet derivative matrix, aiM , and biM  are wavelet 

modem matrices of the functions ( )ia t , and ( )ib t  respectively. The wavelet 

coefficients vector Y represents the output function ( )y t  and similarly U  is the 

wavelet coefficients vector of input function ( )u t . By assuming that the coefficient 

matrix of Y  is nonsingular, the output vector can be computed from the relation 

 
-1

1 0 1 0...n m
an a a bm b b+Y = [M D + M D + M ] [M D + ... + M D + M ]U  (3.48) 

 

Theoretically, the dimensions of these matrices are infinite but for a practical 

application the system solution can be obtained by considering significant wavelet 

coefficients. Therefore the actual dimension of matrices depends on the number of 

wavelet coefficients considered in the solution.  

 

Consider the state-space representation of a LTV system. 

 

( ) ( ) ( ) ( ) ( )x t A t x t B t u t′ = +         

( ) ( ) ( ) ( ) ( )y t C t x t D t u t= +         
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The wavelet domain counterparts of these equations are  

 

= +A BDX M X M U        (3.49) 

= +C DY M X M U        (3.50) 

 

The state vector of LTV system is easily obtained as  

 
1[ ]−= − A BX D M M U        (3.51) 

 

where it is assumed that matrix 1[ ]−− AD M  is nonsingular. 

 

By putting the state solution wavelet vector into the response equation, then the 

output of system is found as 

 
1[ [ ] ]−= − +C A B DY M D M M M U      (3.52) 

 

It is seen that the output wavelet coefficient vector Y is defined in terms of algebraic 

matrix relations. The time domain expression of ( )y t can be computed from, 

 
/ 2( ) ( )2 (2 )J J

J
l

y t y l t lϕ= −�       (3.53) 

 
Thus, all necessary fundamental derivations to analyze a linear time –varying system 

in wavelet domain is completed. All these theoretical derivations are applied on the 

following examples. 
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Example 1: Consider the linear time-varying RC circuit shown in Figure 3.1.  

 

 
Figure 3.1: Time varying RC circuit. 

 

The network equation is defined in differential equation form as 

 

0
0 0

1
( ) with the initial condition (0) 0

1
dv

v u t v
t dt

+ = =
+

  (3.54) 

 

This first order time-varying differential equation is solved and the analytical 

solution is 
2

0
2( ) 1
t t

v t e
− −

= − . System differential equation is transferred to wavelet 

domain, and it is expressed as a matrix-vector relation in the form of 

 

1 1(M D + I )V = U        (3.55) 

 

where 1M  and I  are the wavelet modem matrices of time function 1/ 1t +  and 

constant coefficient 1, respectively. The 1U  is the input wavelet coefficients vector 

of input function ( )u t . The response vector V can be simply written as  

 
-1

1 1V = (M D + I ) U        (3.56) 

 

Particularly, in this example the wavelet matrix coefficients have been calculated 

using fourth order Daubechies (db4) wavelet and for 2J =  resolution value, given as 
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3.172 0.768

3.172 3.172

0.768 3.172

0
0

0
−

−

−


 �
� 
� =
� 
� 
� �

D
�

�

, 

1 0
0.8

0.67
0


 �
� 
� =
� 
� 
� �

1M

�

,

1 0
1

1
0


 �
� 
� =
� 
� 
� �

I

�

, 

 

For the input wavelet coefficient vector  

 

[ ]1 0.5 0.5 0.5
T=U �         

 

The response wavelet coefficient vector is computed as 

 

[ ]0.083 0.19 0.28 0.35
T=V �       

 

Then, the sampled response vector as capacitor voltage in steady state is obtained 

from Eq. (3.53) as  

 

[ ]( ) 0.17 0.37 0.55
T

v n = �        

 

The analytical solution and wavelet domain solutions are depicted in Figure 3.2. In 

this figure the efficiency of the method is clearly observed. The error between 

analytical solution and the wavelet domain solution is very small. 

 

In order to compute the total percentage error between the exact solution and the 

approximate solution, the error is defined by the relation 

 

1

1

( ) ( )
100

( )

N

exact approx
n

total N

exact
n

f n f n
e

f n

=

=

−
=
�

�
     (3.57) 

 

where N is the total number of sampling points. The sequences ( )exactf n  and 

( )approxf n  are the exact and approximate solutions, respectively.  
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In this example, the total percentage error is computed 0.67 for the capacitor voltage 

with N=81 sample points. 

 

 

Figure 3.2:Analytical and Wavelet Domain Solutions of 0 ( )v t  

 

 

Example 2: Consider the state-space representation of a LTV system 

 

1 1

2 2

3 0 1 0 0
with the initial condition

0 2 1 1 0

x x t

x xt t

′ −
 � 
 �
 � 
 �
 � 
 �
= + =�  � �  � �  � ′ −� � � �� � � �� � � �

x(0)  (3.58) 

 

The analytic solution of this system is expressed for 1( )x t  and 2 ( )x t  

 

23
1 2

1 1 1 1
( ) and ( )

3 3 2 2
t tx t e x t e− −= − = −     (3.59) 

 

The wavelet domain counterpart of Eq.(3.58) is as follows, 
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11 13

22 2

00
0 0 t t

−

−


 � 
 �
 � 
 �
 �
= +�  � �  � � 

� �� � � �� � � �

UX XD M
M UX XD

    (3.60) 

 

In this expression tU  and 1U  are the wavelet coefficients vectors of ( )f t t=  and 

constant 1, respectively. The wavelet coefficients vectors 1X  and 2X can be found as, 

 

1
11 3

1
22 t t

−

−


 �
 �
 �
= � � � 

� � � �� �

-

-

0 UX [D - M ]
[D - M ] UX 0

    (3.61) 

 

therefore 

 

1
1 3 1

1
2 2

[ ]
[ ]t t

−
−

−
−


 �−
 �
= � �  −� � � �

X D M U
X D M U

      (3.62) 

 

The wavelet matrix coefficients for 1( )x t  and 2 ( )x t  have been calculated using 

fourth order Daubechies (db4) wavelet and for 2J = resolution value. 

 

3.172 0.768

3.172 3.172

0.768 3.172

0
0

0
−

−

−


 �
� 
� =
� 
� 
� �

D
�

�

, 3

3 0
3

3
0

−

−
 �
� −� =
� −
� 
� �

M

�

, 1 [0.5 0.5 0.5 ]T=U �  

[ ]2

0 0
0.5

0 0.125 0.25
1

0

T

t t


 �
� −� = =
� −
� 
� �

M U �

�

,   

 

The wavelet coefficients vectors of 1X  and 2X are computed as 

 

[ ]
[ ]

1

2

0.07 0.12 0.15

0.01 0.01 0.05

T

T
−

=

=

X

X

�

�

       

 

Time domain sampled values of 1( )x t  and 1( )x t  are computed from Eq. (3.53) as, 
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[ ]
[ ]

1

2

( ) 0.14 0.24 0.29

( ) 0.02 0.02 0.09

T

T

x n

x n −

=

=

�

�

       

 

The analytic and wavelet domain solution of 1( )x t  and 2 ( )x t  is shown in Figure 3.3. 

It is seen that there are minor differences between the exact and wavelet domain 

solutions of state variables. The total percentage error of 1( )x t  and 2 ( )x t  are 1.03 % 

and 0.16 %, respectively. 

 

 

Figure 3.3 Analytical and Wavelet Domain Solutions of 1( )x t  and 2 ( )x t  

 

The MatLab functions related with the example 1 and example 2 are given in 

Appendix A2 
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CHAPTER 4 

 

RESULTS AND CONCLUSION 
 

In this thesis we have introduced a new method to do analysis of LTV 

systems in wavelet domain. To solve system equations having the form differential 

equation or state equation, they are transferred to wavelet domain by forming 

algebraic matrix-vector relation using the wavelet transform coefficients. 

 

In application of this new method, many examples have been solved and just two of 

them were put in this work, illustratively. The steady-state solutions of the chosen 

examples are compared by the exact solutions. It is seen that the error between the 

analytic solution and wavelet domain solutions is around 1% in total sampling points. 

 

MatLab programs are prepared for all of the matrices related with the time domain 

operators such as wavelet modem matrix, wavelet derivative matrix, wavelet integral 

matrix, and wavelet addition matrix. The simulations for the studied examples are 

also used the MatLab toolbox together with the what we have contribute for them. 

 

This thesis was presented in 11. Elektrik–Elektronik ve Bilgisayar Mühendisli�i 

Ulusal Kongresi (�stanbul 2005) and the paper is published in the conference 

proceeding [38]. 

 

As a further study, the method can be modified in order to do the transient analysis of 

LTVS besides of steady-state analysis. In application, it is possible to derive all 

necessary operator matrices for a class of biorthogonal wavelets. 
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APPENDIX A1 
 

MATLAB FUNCTIONS 

 

******************************************************************** 

Mmatrix      Wavelet Modem Matrix  

        M = Mmatrix(s1,J) constructs n dimensional wavelet modem matrix 

        at resolution level J.  

        s1 is the wavelet coefficients vector with related to signal m(t) 

        n is the length of the vector s1 

        n=length(s1) 

****************************************************************** 

 

function M = Mmatrix(s1,J) 

n=length(s1); 

for m = 1 : n 

    M(m,m)=(2^(J/2))*s1(m); 

end 

 

 

******************************************************************** 

Dmatrix        Wavelet Derivative Matrix  

        D = Dmatrix(n,J,wname) constructs n dimensional wavelet derivative matrix 

        at resolution level J with respect to a particular wavelet 'wname',  

        'wname' is a string containing the wavelet name. 

****************************************************************** 

 

function D = Dmatrix(n,J,wname)  

 

r = rcoef( wname );%rcoef('wname') computes the non-zero value of r 

lr=length(r); 
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r = [wrev(-r) 0 r]; 

T = ( 2^J ) * convmtx(r',n+1); 

for l = 1 : n + 1 

    for k = 1 : n + 1 

        D(l,k) = T(l+lr,k); 

    end 

end 

 

 

********************************************************************

rcoef   Recursive function of Wavelet Modem Matrix 

        r=rcoef(wname) computes the entries of Wavelet Derivative Matrix 

        recursively with respect to particular wavelet 'wname', 

        wname' is a string containing the wavelet name. 

******************************************************************** 

 

function r=rcoef(wname) 

ea = .000000000001; 

s = 10; 

a = autocorrelation( wname ); 

L = length(a) + 1; 

n = L - 2; 

rold = r_old( n );%Takes the initial values of r vector. 

rnew = r_new( n ); 

N = length( rold ); 

while ( s > ea ) 

for i = 1 : N 

    j = 2 * i; 

    if ( j > N ) 

        u = 0; 

    else 

        u = rold( j ); 

    end 

        temp = 0; 
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    for k = 1 : L / 2 

        v = (2 * i) - (2 * k) + 1; 

        z = (2 * i) + (2 * k) - 1; 

        if ( ( v < -N ) | ( v > N )) 

            v = 0; 

        elseif ( ( v < 0 ) & ( v > -N ) ) 

            v = -rold( -v ); 

        else 

            v = rold( v ); 

        end 

         

        if ( ( z < -N ) | ( z > N )) 

            z = 0; 

        elseif ( ( z < 0 ) & ( z > -N )) 

            z = -rold( -z ); 

        else 

            z = rold( z ); 

        end 

        temp = temp + a( 2 * k - 1 ) * ( v + z ); 

    end 

    rnew( i ) = 2 * u + temp;   

end 

s = abs ( ( rnew( 1 ) - rold( 1 ) ) / rnew( 1 ) ) * 100; 

rold = rnew; 

end 

 

 

****************************************************************** 

autcorrelation   Autocorrelation function of wavelets. 

                 a = autocorrelation( wname ) computes the autocorrelation coefficiensts of  

                 lo_d with respect to particular wavelet 'wname', 

                 [lo_d,hi_d,lo_r,hi_r]=wfilters(wname) 

                 'wname' is a string containing the wavelet name. 

******************************************************************** 
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function a = autocorrelation( wname ) 

[lo_d,hi_d,lo_r,hi_r]=wfilters(wname); 

for n = 1:length(lo_d)-1 

    t = 0; 

    for i = 1:length(lo_d)-n 

        t = t + lo_d( i ) * lo_d( i+n ); 

    end 

    a(n) = 2 * t;     

end 

u = floor( length( a ) / 2 ); 

i = 1:u; 

a( 2 * i ) = 0; 

 

 

function rold = r_old(n) 

rold = [-0.5 0];%Initial values of r vector. 

for i = 1 :n-2 

    rold = [rold 0]; 

end 

 

 

function rnew = r_new(n) 

rnew = 0; 

for i = 1 : n-1 

    rnew = [rnew 0]; 

end 

******************************************************************** 

Pmatrix Wavelet Integral Matrix  

        P=Pmatrix(n,J) constructs n dimensional wavelet integral matrix 

        at resolution level J.  

******************************************************************** 

function P=Pmatrix(n,J) 

for k=1:n+1 
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    for l=1:k 

        P(k,l)=2^(-J); 

    end 

end 

 

********************************************************************

Amatrix Wavelet Addition Matrix  

        A = Amatrix(s1,s2) constructs n dimensional wavelet addition matrix 

        s1 is the wavelet coefficients vector with related to signal a(t) 

        s2 is the wavelet coefficients vector with related to signal b(t) 

        n is the length of the vector s1 

        n=length(s1) 

        Length of s1 and s2 vectors must be same. 

******************************************************************** 

function A = Amatrix(s1,s2) 

sum = s1 + s2; 

lsum = length( sum ) 

for i = 1 : lsum 

    for k = 1 : lsum 

        if (i == k) 

            A(i,k) = sum( i ); 

        else 

            A(i,k) = 0; 

        end 

    end 

end 
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APPENDIX A2 
 

MatLab function for example 1 

 

function [vww,va,D,M1,M2,U1,etp]=example1(t) 

 

J=2;%Resolution level 

n = 0 : 1 / (2^J) : t; 

u = 0 : 1 / (2^J) : t + t * 0.2; 

ln = length( n ); 

lu = length( u ); 

 

for i = 1 : lu; 

    s1( i ) = 0.5 * ( 1 / ( u( i ) + 1 ) ); 

end 

 

D = Dmatrix( lu-1, J, 'db4' ); 

M1 = Mmatrix( s1, 2 ); 

m = 1 : lu; 

s2( m ) = 0.5 * 1; 

M2 = Mmatrix( s2, J ); 

U1( m ) = 0.5 * 1; 

 

vw_temp = inv( M1 * D + M2 ) * U1';%wavelet coefficients vector 

vww = vw_temp( 1:ln ); 

vw =( 2^(J/2) )*vww;%time domain value of v(t) 

va = 1 - 1 * exp( ( -n .* n ) / 2 - n ); 

 

% Total percentage error between analytical and wavelet domain solutions 

num = 0; 
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den = 0; 

 

for i = 1 : ln 

    num = num + abs( va( i ) - vw( i ) ); 

    den = den + abs( va ( i ) ); 

end 

etp = ( 100 * num ) / den;%Total percentage error 

MatLab function for example 2 

 

function [D,U1,M3,x1w,Ut,M2t,x2w,etp1,etp2]=example2(t) 

 

J = 2; 

n = 0 : 1 / ( 2^J ) : t; 

ln = length( n ); 

n_temp = 0: 1 / ( 2^J ) : t + t * 0.2; 

ln_temp = length( n_temp ); 

 

s1( 1 : ln_temp ) = ( 2^( -J/2 ) ) * 1; 

U1 = s1'; 

s2 = -3 * s1; 

M3 = Mmatrix( s2,J ); 

D = Dmatrix( ln_temp-1,J,'db4' ); 

 

x1w_temp = inv( D-M3 ) * U1;%wavelet coefficients vector of x1(t) 

x1w = ( 2^(J/2) ) * x1w_temp( 1 : ln );% Time domain values of x1(t) 

x1a = ( 1 / 3 ) - ( 1 / 3 ) * exp( -3 * n );%Analytical values of x1(t) 

 

D = Dmatrix( ln_temp-1,J,'db4' ); 

s1 = ( 2^(-J/2) ) * n_temp; 

Ut = s1'; 

s2 = -2 * ( n_temp ) * ( 2^( -J/2 ) ); 

M2t = Mmatrix( s2,J ); 

x2w_temp = inv( D-M2t ) * Ut;%wavelet coefficients vector of x2(t) 

x2w = ( 2^(J/2) ) * x2w_temp( 1:ln );% Time domain values of x2(t) 
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x2a = 0.5 - 0.5 * exp( -( n .* n ) );%Analytical values of x2(t) 

 

%Total percentage errors between Analytical and Wavelet Domain Solutions 

num1 = 0; 

num2 = 0; 

den1 = 0; 

den2 = 0; 

 

for i = 1 : ln 

    num1 = num1 + abs( x1w( i ) - x1a( i ) ); 

    den1 = den1 + abs( x1a( i ) ); 

    num2 = num2 + abs( x2w( i ) - x2a( i ) ); 

    den2 = den2 + abs( x2a( i ) ); 

end 

 

etp1 = ( 100 * num1 ) / den1;%Total percentage error for x1(t) 

etp2 = ( 100 * num2 ) / den2;%Total percentage error for x2(t) 


