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ABSTRACT 

 

 

SLIDING MODE CONTROL AND ITS APPLICATIONS 

 

 

AKINAL, Şule (Akşamoğlu) 

M. Sc. in Electrical and Electronic Engineering 

Supervisor: Assist. Prof. Dr. İlyas EKER 

July, 2005 

 

 

Sliding Mode Control (SMC) method is one of the robust control methods to 

handle systems with model uncertainties, parameter variations and input and output 

disturbances. In this study, a sliding mode control system with an integral (SMC+I) 

operation is adopted to control speed of an electromechanical system. The proposed 

sliding mode controller is chosen to ensure the stability of overall dynamics during 

the reaching phase and sliding phase. The stability of the system is guaranteed in the 

sense of the Lyapunov stability theorem. Chattering problem is overcome using some 

continuous functions such as saturation function, and hyperbolic function. 

Experimental results verify that the proposed SMC+I controller can achieve 

favorable tracking performance and is robust with regard to parameter variations and 

disturbances compared with the conventional sliding mode controller and PID 

controller . 

 

Keywords: sliding mode control, integral control, experimental application, 

electrical drive system, conventional control 
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AKINAL, Şule (Akşamoğlu) 

Yüksek Lisans Tezi, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Yrd. Doç.Dr. İlyas EKER 

Temmuz, 2005 

 

 

Kayan kip konum kontrol metodu doğrusal olmayan sistemlere uygulanan bir metot 

olup, parametre değişimlerini ve gürültüleri de ele alır. Bu çalışmada kayan kip 

konum kontrolüne integral eklenerek, elektromekanik sistemin hızı kontrol 

edilmiştir. Kayan kip konum kontrol sistemi, kayan fazda ve uygulanan darbe 

yüzeyine ulaşımda sistem kararlılığı sağlandığı için seçilmiştir. Lyapunov karalılık 

teoremi ile sistem kararlılığı güvenceye alınmıştır. Çıkış sinyalindeki çatırdama 

problem hyperbolic fonksiyon kullanılarak üstesinden gelinmiştir. Deney sonuçları, 

SMC+I kontrolün geleneksel PID ve SMC ile karşılaştırıldığında, gürültü ve sistem 

parametre değişimlerine karşın, kararlılığı sonuç performansı ile popüler çalşmalar 

arasındadır. Kontrol metodunun verimliliği ve esnekliği deneysel olarak gösterilmiş 

ve kapalı devre sürücü sistemlerin dinamik tepkilerinde sonuçlar, geleneksel PID ile 

karşılaştırılmıştır. 

 

Keywords: Kayan kip konum kontrolü, integral kontrol, deneysel uygulama, elektrik 

sürücü sistem, geleneksel kontrol. 
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CHAPTER 1 
 

INTRODUCTION 

 

1.1 Overview of Control Theory 
 

Automatic control Systems were first developed over two thousand years ago 

[1]. The first feedback control device on record is thought to be the ancient water 

clock of Ktesibios in Alexandria Egypt around the third century B.C. It kept time by 

regulating the water level in a vessel and, therefore, the water flow from that vessel. 

This certainly was a successful device as water clocks of similar design were still 

being made in ~Baghdad when the Mongols captured the city in 1258 A.D. A variety 

of automatic devices have been used over the centuries to accomplish useful tasks or 

simply to just entertain. The latter includes the automata, popular in Europe in the 

17th and 18th centuries, featuring dancing figures that would repeat the same task 

over and over again; these automata are examples of open-loop control. Milestones 

among feedback, or "closed-loop" automatic control devices, include the temperature 

regulator of a furnace attributed to Drebbel, circa 1620, and the centrifugal flyball 

governor used for regulating the speed of steam engines by James Watt in 1978.  

 

In his 1868 paper "On Governors", J. C. Maxwell (who discovered the 

Maxwell electromagnetic field equations) was able to explain instabilities exhibited 

by the flyball governor using differential equations to describe the control system. 

This demonstrated the importance and usefulness of mathematical models and 

methods in understanding complex phenomena, and signaled the beginning of 

mathematical control and systems theory. Elements of control theory had appeared 

earlier but not as dramatically and convincingly as in Maxwell's analysis [2]. 
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Control theory made significant strides in the next 100 years. New 

mathematical techniques made it possible to control, more accurately, significantly 

more complex dynamical systems than the original flyball governor. These 

techniques include developments in optimal control in the 1950's and 1960's, 

followed by progress in stochastic, robust, adaptive and optimal control methods in 

the 1970's and 1980's. Applications of control methodology have helped make 

possible space travel and communication satellites, safer and more efficient aircraft, 

cleaner auto engines, cleaner and more efficient chemical processes, to mention but a 

few. There are two kind of control techniques. These are ‘linear’ and ‘nonlinear’ 

control system. Sliding mode control is a kind of nonlinear control system[3]. 

 

1.2 Introduction to Linear Control Systems 
 

If you study about a system, which may be linear or nonlinear you should 

examine first mathematical description [4]. It is necessary therefore to analyse the 

relationship between the system variables and to obtain a mathematical model. The 

system considerations are dynamic in nature, the descriptive equations are usually 

differential equations. 

 

 If the mathematical equations can be linearised, then the Laplace transform 

can be appliable to simplify the method of solution. The transfer function of a linear 

system is defined as the ratio of the Laplace transform of the system output variable 

to the Laplace transform of the system input variable. But all initial values must be 

taken to be zero [2]. Linear control theory has been concerned with the study of 

linear time invariant (LTI) control systems. In a linear system, model simulation 

results are additive in their effects and satisfy the principle of superposition. In other 

words, the output is directly proportional to the input and two times of input leads to 

two times the output. In a non-linear model, the principle of superposition is not 

satisfied.  

 

Time invariance is a second important property that can provide a basis for 

classification of models of systems. A time invariant system is one in which 
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observed performance of the system is independent of the times at which the 

observations are made. 
  

1.3  Non-Linear  Control  System 

 

Non-linear systems can have more complex behavior than linear systems, 

therefore their analysis is much more difficult [4]. Mathematically, this is reflected in two 

aspects. First, non-linear equations, which is not like linear system, cannot be solved 

analytically and therefore a understanding of the behavior of  non-linear system is very 

difficult. Second, powerful mathematical tools like Laplace and Fourier transforms 

do not apply to non-linear systems. As a result, there are no systematic tools for 

predicting the behavior of non-linear systems, nor are there systematic procedures for 

designing non-linear control systems.  

 

No universal technique has been designed for the analysis of all non-linear control 

systems. In linear control, one can analysis a system in the time domain or in the 

frequency domain. In non-linear control systems, none of these standard approaches can 

be used. Direct solution of non-linear differential equations is generally impossible and 

frequency domain transformations do not apply. While the analysis of non-linear control 

systems is difficult. Many methods of non-linear control systems analysis have been 

proposed [6,7]. 

 

Traditionally, a nonlinear process has to be linearized first before an 

automatic controller can be effectively applied. This is typically achieved by adding 

a reverse nonlinear function to compensate for the nonlinear behavior, so that input-

output relationship becomes linear. It is difficult application to match the nonlinear 

curve; and process uncertainties can easily disturb the effort. 

 

The following trends show the nonlinear controller is able to control a 

severely nonlinear process with the entire operating range (linear and nonlinear). PID 

is appliable control solution for linear range but fails to control in the nonlinear range 

[8]. 
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1.4 Historical Development  of Sliding Mode Control 
 

A several number of reserchers study about Variable Structure Systems 

(VSS) based on SlidingMode Control (SMC) strategy [7,9,10,11,12]. Typically, 

SMC is used to compansate against the modeling uncertainties and the unknown 

disturbances. These control strategies are shown to be detailed stable and robust 

despite the presence of the difficult result provided their upper bounds are known a 

priori to the controls. However, it may be difficult or sometimes impossible to obtain 

these upper bounds.  

 

In SMC, the control task is to guide and keep the system state toward a 

hyperplane in the state space. This hyperplane, also referred to as sliding surface, 

represents a reduced order stable dynamics. Therefore, once the nonlinear system 

starts “sliding”, it assumes the behavior of that stable dynamics. One problem 

associated with SMC is the well known control chatter, which consists of infinite 

frequency of actuation. This phenomenon occurs as soon as the sliding motion starts. 

In order to keep the ideal sliding motion it is necessary to actuate with infinite 

bandwidth due to the destabilizing properties of the perturbations. Therefore ideal 

sliding mode an impractical achievement. A remedy to this problem was proposed by 

[7].  

 

The concept of boundary layer thickness was introduced as a way to eliminate 

control chatter. This way, instead of ideal sliding mode, a quasi-sliding mode was 

achieved. A target various is defined in the state space. In this case the objective 

various surrounds the origin, which is the excellent target state to reach. In order to 

achieve the desired tracking, the state is first driven towards a sliding hyper surface. 

Next the control maintains the states within an acceptable proximity of the sliding 

surfaces (so called sliding manifold) despite the present perturbations. It is shown 

that the state, when within the sliding manifold, perfectly reaches the target manifold. 

It is a basic theory of the robust control application [14]. 
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1.5  Advantages of Sliding Mode Control 

 

The major advantage of sliding mode is low sensitivity to plant parameter 

variations and disturbances which eliminates the necessity of exact modeling. Sliding 

mode control enables the decoupling of the overall system motion into independent 

partial components of lower dimension. So that, it is reduced the complexity of 

feedback design. Sliding mode control implies that control actions are discontinuous 

state functions which may easily be implemented by conventional power converters 

with “on-off” as the only admissible operation mode. Due to these properties the 

intensity of the research at many scientific centers of industry and universities is 

maintained.  

 

1.6 Industrial Application of Sliding Mode Control 

 

 Sliding mode control has been widely studied in recent years and has started 

to play an important role in the application of control theory to practical problems 

[16].  It has been successfully applied to underwater vehicles [17], automotive 

transmissions and engines, and power systems [7], induction motor [18], robots 

[19,20], electric drives [12,21], human neuromuscular process [22], electrical servo 

drive [43] and elevator velocity [23]. Sliding mode control has also been applied to 

dc motors using simulations [12,23,24] and experimental applications [8,Eker, 2005]. 

Firstly, input-output relation with pid surface is applied motor speed system in this 

study. Also PID+P sliding surface had applied motor position system. [43] 

 

1.7 Structure of This Thesis 

  

In this study, a theoratical study and application are performed such that a SMC+I 

controller is designed for the speed control of an electromechanical plant, a dc motor 

connected to a load using a belt mechanism via a shaft. The feasibility and 

effectiveness of the proposed sliding mode controller is experimentally demonstrated 

and the system is controlled using a computer. The results obtained from the present 

study are compared with the traditional PID control in dynamic responses of the 

closed-loop control system. 
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Chapter 2 is included to define the DC motor system, plant description and 

mathematical model.  

  

Chapter 3, the structure of SMC controller is presented and introduced details. 

This chapter also includes the SMC and SMC+I controller mathematical model and 

presents the advantages these controllers. 

  

In chapter 4, the responses of speed control of electrical drive system for, P, 

PD, PI, PID and SMC,SMC+I controllers and related actuated signals are shown. 

Additionally we compare the conventioal controllers P, PD, PI, PID with the SMC 

and SMC+I.  

 

 Conclusions are given in Chapter 5 to summarize the work achieved. 
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CHAPTER 2 

PLANT DESCRIPTION 

 

2.1 DC Motor Principles

 

In the late 1800s, several inventors built the first working motors, which used 

direct current (DC) power. After the invention of the induction motor, alternating 

current (AC) machines are used some application. However, DC motors still have 

many use DC motors consist of rotor-mounted windings (armature) and stationary 

windings (field poles). In all DC motors, except permanent magnet motors, current 

must be conducted to the armature windings by passing current through carbon 

brushes that slide over a set of copper surfaces called a commutator, which is 

mounted on the rotor. The commutator bars are soldered to armature coils. The 

brush/commutator combination makes a sliding switch that energizes particular 

portions of the armature, based on the position of the rotor. This process creates 

north and south magnetic poles on the rotor that are attracted to or repelled by north 

and south poles on the stator, which are formed by passing direct current through the 

field windings. It's this magnetic attraction and repulsion that causes the rotor to 

rotate[3,15]. 

 

 The greatest advantage of DC motors may be speed control. Since speed is 

directly proportional to armature voltage and inversely proportional to the magnetic 

flux produced by the poles, adjusting the armature voltage and/or the field current 

will change the rotor speed. Today, adjustable frequency drives can provide precise 

speed control for AC motors, but they do so at the expense of power quality, as the 

solid-state switching devices in the drives produce a rich harmonic spectrum. The 

DC motor has no advers effects on power quality [24,25]. 

 

2.1.1 Permanent magnet motors 
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Here, permanent magnets instead of armature windings are mounted on the 

rotor [26]. Since the magnetic field produced on the rotor is limited in strength and 

isn't controllable, permanent magnet motors are typically small and produce little 

horsepower.  

 

2.1.2 Series motors 

 

Series motors connect the field windings in series with the armature [24]. 

Series motors lack good speed regulation, but are well-suited for high-torque loads 

like power tools and automobile starters because of their high torque production and 

compact size. 

 
2.2 Model Identification 

 

Dynamic model identification has been a major topic of interest in control 

engineering, motivated by the new achievements in control systems theory and 

requirements of new industrial and military applications.  System identification can 

be performed in open loop or closed loop. However, open-loop identification is not 

applicable or is difficult to apply to plants which are open-loop unstable, have 

integrator behavior, or subject to significant drift in open-loop operation [27]. Some 

systems may contain inherent feedback mechanisms, which make open-loop methods 

inapplicable [28].  The fundamental problem in closed-loop identification is that the 

input signal and the immeasurable noise are correlated for any nonzero feedback 

mechanism [28].  Therefore, the subspace and nonparametric methods fail in closed 

loop unless special measures are taken. However, the prediction error approach to 

identification of plants operating in closed loop has proven to be safely applicable 

[4,28]. 

 

There are three different approaches to identification of systems working in 

closed loop: (1) Direct identification neglects the existence of feedback and uses the 

input–output data to identify the open-loop system.  The feedback law, whether 

inherently present in the system or intentionally introduced for control purposes, is 

disregarded. Consequently, this approach is especially suitable for systems with 
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nonlinear or unknown feedback mechanisms. This method which is called reaction 

curve method is applied in this thesis. Ziegler and Nichols have developed PID 

tuning methods back in the early forties based on open loop tests (less known than 

for example the Cohen-Coon formulas) and also based on a closed loop test, which is 

may be their most widely known achievement [8]. (2) Indirect identification is based 

on the assumption that the feedback law is known. The closed-loop system is 

identified and the open-loop system is determined using the identified system and the 

known feedback law [29]. (3) Joint input–output identification is carried out 

regarding the recorded input and output as outputs of a multivariable system in 

response to an external signal, for example noise. Open-loop parameters are obtained 

using the identified multivariable system [30]. 
 

2.3 Electromechanical System Model 
 

The problem of controlling electromechanical plant is very important in many 

industrial applications [31]. DC motors have a wide range of profile in their motions 

that is required to follow a predetermined speed or position under load [32,33]. The 

main advantages of these motors are of easy speed or position control and wide 

adjustable range [32,33]. These motors have been extensively used in several 

industrial applications and control systems such as position control of robotic 

manipulators [33], disk motion control [34], liquid pumping [35]. Controller 

parameters of a dc motor have usually been calculated using linear fixed motor 

parameters at an operating point. However, fixed parameter controllers may not give 

desired performance under different operating conditions. There have been 

considerable developments in nonlinear control schemes for the dc motors 

[35,33,36]. This has attracted extensive researches in the field of control engineering. 

 

The rough diagram of the system studied is shown in Fig. 1.  
DC motor

belt

+ av Gear box- Load

ωL
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Figure 2.1 Diagram of the DC motor system 

 

The electrical and mechanical equations representing a dc motor can be given 

as: 

LmKaiaRaidt
d

aLtav ωω +++=)(        (2.1) 

1)()()( dtmmRtmdt
d

mJtaimK ++= ωω     (2.2) 

)()()( tTsCtt beltLm =−ωω             (2.3) 

LLRLdt
d

LJdtbeltT ωω +=− 2)(                            (2.4) 

( 3)( drtL Lo += )ωω                         (2.5) 

  

Block diagram of dc motor; Ra and La are the armature coil resistance and 

inductance, ia armature current Km is torque coefficient, Jm is moment of inertia, Rm 

is coefficient of viscous friction, JL and RL load inertia and coefficient of viscous 

friction Tbelt represents belt coefficient, d1, d2 and d3 relates to system friction, 

disturbance, external load disturbance, nonlinear friction, and unmodelled dynamics, 

backlash friction e.t.c. The system equation is obtained from Eqs. (2.1)-(2.5) 

 

The plant of block diagram; 

 

 

                 
 
                d1 
Ref    usw ueq      -                                                ia                      Tm        -                                   
 
          Va       - ωL       ωm 

 

 

 

 

    -ωL                      -d3 

ωm           

 

    Tbelt     -d2         ωL                  ωL0   

 
  

Km 

SMC 

RasLa +

Km 1
RmsJm +

1

1/C 1/s 
LRLsJ +

1 1/r 
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Figure 2.2 Plant Block Diagram 

ωωωω −−−−=

 

)()()()()(
..........

tDtCtBtAt LLLLL ω   )()( tftVa ++         (2.6) 

where A, B, C, D, E are constants associated with the system parameters he , )(tf  is t

function that presents external load disturbance, nonlinear friction, and u delled 

dynamics, and unknown but bounded 

nmo

max)( ftf ≤ . The modelling procedure is given 

in Appendix A. 

 

The system model is fourth order. The problem with this system model is that 

the system parameters are needed. It is difficult to define all these parameters. To 

simplify the modeling process, the model of the system can be approximated using 

the direct identification approach with Process Reaction Curve Method based on the 

experimental test. Step input signal change is applied to the system and the output is 

recorded. Based on the output data and using the output plot, the system model can 

be approximated as [37]. 

 

)1)(1(1
)(

TssT
K

Ts
eKsG

d

sTd

++
≅

+
≅

−

                    (2.7) 

 

here  is the time delay,  is the time constant, K is the steady-state gain. Then, 

tdtuCt

w  dT  T

the output can be given as: 

)()( BtAt )()()( rLrLrL −−= ωωω &&& ++       (2.8) 

 

here the constants are w )/()( TTTTA ddr += , )/(1 TTB dr = , )/( TTKC dr = , and 

oad disturbance, nonlinear friction, and unmodelled )(td  presents external l

mics, and other uncertainties. It is is bounded but unknown, dyna max)( dtd ≤ .  
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    CHAPTER 3 

 

SLIDING MODE CONTROL 
 

3.1   Introduction 

Sliding Mode Control is a robust control scheme based on the concept of 

changing the structure of the controller in response to the changing state of the 

system in order to obtain a desired response [10,39,40,41]. A high speed switching 

control action is used to switch between different structures and the trajectory of the 

system is forced to move along a chosen switching manifold in the state space. The 

behavior of the closed loop system is thus determined by the sliding surface. The 

biggest advantage of SMC is its insensitivity to variation in system parameters, 

external disturbances and modeling errors. 

           

Sliding mode control enables separation of overall system motion into 

independent partial components of lower dimensions and low sensitivity to plant 

parameter variations and disturbances [42]. These properties make sliding mode an 

efficient tool to control high order dynamic plants operating under uncertainty 

conditions which is common for control in a wide range of modern technology 

processes. For example, the gains in each feedback path switch between two values 

according to a rule that depends on the value of the state at each instant. The purpose 

of the switching control law is to drive the nonlinear plants state trajectory onto a 

prespecified (user-chosen) surface in the state space and to maintain the plants state 

trajectory on this surface for subsequent time. This surface is called the switching 

surface. When the plant state trajectory is above the surface, a feedback path has one 

gain and a different gain if the trajectory drops below the surface. This surface 

defines the rule for proper switching. This surface is also called a sliding surface 

(sliding manifold). Ideally, once intercepted, the switched control maintains the 
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plants state trajectory on the surface for all subsequent time and the plants state 

trajectory slides along this surface Fig. [3.1]. 

            e&

e&                        ee  
    
    
    
    e

s 

e

Figure 3-1: State Trajectories in Sliding Mode Control  

 

SMC is the dynamic behavior of the system may be tailored by the particular 

choice of switching function, and insensitivity to variation in system parameters, 

external disturbances and modeling errors. Also, the ability to specify performance 

directly makes sliding mode control attractive from the design perspective. The 

motion of a SMC includes the reaching phase and the sliding phase. During the 

reaching phase, the system state is pushed towards the switching surface. During this 

period, however, the tracking error cannot be controlled directly and the system 

response is sensitive to parameter uncertainties and noise. Thus, one ideally would 

like to shorten the duration or even eliminate the reaching phase. One way to 

minimize the reaching phase and hence the reaching time is to employ larger control 

input. This however may cause extreme system sensitivity to unmodelled dynamics, 

actuator saturation etc [3]. 

 

Thus, the transient motion of a Sliding Mode Control System (SMCS) consists 

of two independent stage a (preferably rapid) motion bringing the state of the system 

to the manifold in which sliding occurs; and a slower sliding motion during which 

the state slides towards the origin of the state space while remaining in the sliding 

sub space. Once the state trajectory intercepts the surface, it remains on the surface 

for all subsequent time [10]. 

      

 

 

3.2 Sliding Surfaces 
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This section investigates Sliding Mode Control System (SMCS) as a high-

speed switched feedback control resulting in sliding mode. The purpose of the 

switching control law is to drive the nonlinear plant’s reference trajectory onto a 

prespecified (user-chosen) surface and to maintain the plants state trajectory on this 

surface for subsequent time. The surface is called a switching surface. When the 

plant trajectory is “above” the surface, a feedback path has one gain and a different 

gain if the trajectory drops “below” the surface. This surface defines the rule for 

proper switching. This surface is also called a sliding surface (sliding manifold). 

Ideally, once intercepted, the switched control maintains the plant’s trajectory on the 

surface for all sebsequent time and the plant’s trajectory slides along this surface. 

The most important task is to design a switched control that will drive the plant to the 

switching surface and maintain it on the surface upon interception.    

 

A Lyapunov approach is uesd to characterize this task. Lyapunov method is 

usually used to determine the stability properties of an equlibrium point without 

solving V(0)=0 and V(t)>0 for t. It is said to be negative definite if V(0)=0 and 

V(t)>0 for t. Lyapunov method is to assure that the function ispositive definite when 

it is negative and function is negative definite if it is positive. In that way the stability 

is the equation. Let V(t) be a continuously differentiable scalar function defined in a 

domain D that contains the origin. A function V(t) is said to be positive definite if 

assured . 

 

A generalized Lyapunov function, that characterizes the motion of the 

trajectory to the sliding surface, is defined in terms of the surface. For each chosen 

switched control structure, one chooses the “gains” so that the derivative of this 

Lyapunov function is negative definite, thus guaranteeing motion of the trajectory to 

the surface. After proper design of the surface, a switched controller is constructed so 

that the tangent vectors of the output trajectory point towards the surface such that 

the output is driven to and maintained on the sliding surface. Such controllers result 

in discontinuous closed-loop systems [28]. 

 

  

3.3 Principle and Properties of Sliding Mode Control 
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3.3.1  Conventional SMC 

     

Sliding surface,  in the conventional SMC depends on the the error signal, 

and derivative(s) of the error signal as [3.1]: 

)(ts

)(te

   )()(
1

te
dt
dts

n−
⎟
⎠
⎞

⎜
⎝
⎛ += λ                  (3.1) 

 

where n is the order of uncontrolled system, λ  is a positive constant, ,  is 

the space of positive real constants. 

+∈ Rλ +R

      

The sliding surface given in (3.1), however, causes steady-state error at the 

controlled output if the uncontrolled system does not include inherent integral action. 

The zero steady-state error is important in control system such as servo and 

regulation problems [3]. 

 

3.3.2SMC with Integral Action (SMC+I) 

   

  The sliding surface can be improved to overcome steady-state error problem 

by introducing integral action into the sliding surface for the present problem  as: 

 

   ∫
∞−

+⎟
⎠
⎞

⎜
⎝
⎛ +=

0

1
)()()( tekte

dt
dts i

n
λ                 (3.2) 

 

where  is the integral gain,  ik +∈Rki

 

3.4 Stability 

     The control objective is to determine a control law,  such that the 

tracking error,  should converge to zero. The process of sliding mode control can 

be divided into two phases, that is, the sliding phase with 

)(tu

)(te

0)( =ts , , and the 

reaching phase with . Corresponding to two phases, two types of control law 

can be derived separately [1,13]. Conceptually, in sliding mode the equivalent 

0)( =ts&

0)( ≠ts
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control is described when the trajectory is near 0)( =ts , while the switching control 

is determined in the case of 0)( ≠ts  [10]. 

    Derivative of the sliding surface in (3.2) can be given as (n=2): 

 

  )()()()( tektetets i++= &&&& λ                  (3.3) 

 

A necessary condition for the output trajectory to remain on the sliding 

surface  is  [1,3,13]:  )(ts 0)( =ts&

 

0)()()( =++ tektete iλ&&                   (3.4) 

 

If the control gains λ  and  are properly chosen such that the characteristic 

polynomial in (3.4) is strictly stable, that is, roots of the polynomial are in the open 

left half of the complex plane, it implies that 

ik

0)(lim =
∞→

te
t

 meaning that the closed-

loop system is globally asymptotically stable [21].   

   

   If the system parameters are inserted into (3.3), it becomes 

 

)()()()()( tuCtBtAtts rLrLrr −++= ωωω &&&&   )()()( tektetd i++− &λ          (3.5) 

 

where )(trω  is the set-point speed. A necessary condition for the output to remain on 

the sliding surface  is )(ts 0)( =ts&  [10,13,24]. The equivalent control law is obtained 

when in the case of  unknown : 0)( =ts& )(td

 

( )()()(1)( tBtAt
C

tu LrLrr
r

eq ωωω ++= &&&  ))()( tekte i++ &λ           (3.6) 

 

If the initial output trajectory is not on the sliding surface , or there is a 

deviation of the representative point from  due to parameter variations and/or 

disturbances, the controller must be designed such that it can drive the output 

trajectory to the sliding mode 

)(ts

)(ts

0)( =ts . The output trajectory under the condition that 
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will move toward and reach the sliding surface is said to be on the reaching phase. 

For this purpose, the Lyapunov function can be chosen as 

 

)(
2
1)( 2 tstV =                       (3.7) 

 

with  and  for 0)0( =V 0)( >tV 0)( ≠ts . A sufficient condition to guarantee that the 

trajectory of the error will translate from reaching phase to sliding phase is to select 

the control strategy, also known as reaching condition [10]: 

 

0)()()( <= tststV && ,                 (3.8) .0)( ≠ts

 

To satisfy the reaching condition, the equivalent control  given in (13) is 

augmented by a hitting control term, , to be determined. Consider the system 

given in (7) with uncertainties and disturbances and the sliding mode controller is 

designed such that; 

)(tueq

)(tu sw

 

)()()( tututu sweq +=                      (3.9) 

 

If (14) is rewritten, it is obtained: 

 

    

[ )()()()()( tBtAtststs LrLrr ωωω ++= &&&& ])()()())()(( tektetdtutuC isweqr ++−+− &λ    

 

(3.10) 

The switching control is chosen as 

 

)sgn()( sktu swsw =                  (3.11) 

where  is a positive constant, , sgn(.) denotes signum function defined 

as [10] . 

swk +∈ Rksw
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              (3.11) 
⎪
⎩

⎪
⎨

⎧

<−
=
>+

=
0)( if1
0)( if,0
0)( if,1

))(sgn(
ts
ts
ts

ts

 

Derivative of the Lyapunov function is 

 

)()())(( tssstsV && =  

))(sgn()( tsCkts rs−=  

0)( ≤−= tsCk rs                  (3.12) 

 

This implies that  is a negative semi-definite function. Define the following 

term: 

))(( tsV&

 

   )()( tsCktX rs=                 (3.13) 

therefore 

))(()( tsVtX &−≤                  (3.14) 

then 

          (3))(())0(()(
0

tsVsVdX
t

−≤∫ ττ        .15) 

 

Since  is bounded and  is non-increasing and bounded, the following 

result can be concluded 

))0((sV ))(( tsV

 

               (3.16) ∞<∫∞→

t

t dX
0

)(lim ττ

 

Also,  is bounded, and it can be shown that  by the 

Barbalat’s Lemma [1]. That is,  as 

)(tX& 0)(lim =∞→ tXt

0)( →ts ∞→t . By applying this switching control 

law, the sliding mode control system can be guaranteed to be stable in the Lyapunov 

sense. 
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3.5  Sliding Signal 

      

The continuous sliding mode control has been selected commonly in SMC 

problems to avoid chattering of the control force and to achieve the exponential 

stability [13]. Instead of signum function given in Eq. (18), a saturation function has 

been used via introducing a thin boundary layer around the sliding surface to avoid 

chattering [1,32]. For a more smooth change of the switching signal, a hyperbolic 

tangent function has also been used to improve the switching control effort and it is 

given as [10] 

⎟
⎠
⎞

⎜
⎝
⎛
Ω

=
)(tanh)( tsktu swsw                    (3.17) 

where Ω are positive constants, +∈Ω R , and it defines the thickness of the boundary 

layer. 

 

3.6   Design of Sliding Mode Controller 

 

The second stage of the design procedure involves the selection of the control 

which will ensure that the chosen sliding mode is attained. For this reason, the 

problem of determining a control structure and associated gains, which ensure the 

reaching or hitting of the sliding mode, is called the reachability problem-. 

 

The solution of the reachability problem is dependent on the switching 

hyperplanes, and so cannot be achieved until the existence problem has been solved. 

The condition under which the state will move towards and reach a sliding surface is 

called a reaching condition. The system trajectory under the reaching condition is 

said to be in the reaching mode, or reaching phase. Three approaches for specifying 

the reaching condition are available :- 

 

3.6.1     The Direct Switching Function Approach 

 

The earliest condition proposed was: 

 

miisis ...3,2,1    0
.

. =<        (3.18) 
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where m is number of inputs. 

 

This reaching condition is global but does not guarantee a finite reaching 

time. Also, it is very difficult to use for multiple input VSCS. Even with a simplifying 

assumption, such as adopting fixed order switching, the approach remains difficult. 

 

3.6.2    The Reaching Law Approach 

 

The crux of the reaching law approach is a new method called the reaching 

law method. It directly specifies the dynamics of the switching function. Let the 

dynamics of the switching function be specified by the differential equation : 

 

)(f )sgn( sKsQs −=         (3.19) 

 

where gains Q and K are diagonal matrices with positive elements.Equation (3.6) 

is called the ‘reaching law’.   Various choices of Q and K specify different rates 

for s and yield different structures in the reaching law. Three examples are : 

 

a. The constant rate reaching law 

    s = -Qsgn{s)        (3.20) 

 

b. The constant plus proportional rate reaching law 

     s = -Qsgn{s)- Ks       (3.21) 

 

c. The power rate reaching law 

    

  iiis ssKs sgn
. α−=        (3.22) 

 

where, 0    <  a< 1y. and    i =1 to m   (3.23) 
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3.7 Basic Theorem of Lyapunov 

 

Let V (x,t) be a non-negative function with derivative V along the trajectories 

of the system. 

&

 

1. If is locally positive definite and  ≤ 0 locally in x and for all t,  ),( txV ),( txV

    the the origin of the system is locally stable (in the sense of Lyapunov). 

 

2. If  is locally positive definite and decrescent, and V (x, t) ≤ 0 locally in x   ),( txV &

     and for all t, then the origin of the system is uniformly locally stable (in the sense     

     Lyapunov). 

 

3. If is locally positive definite and decrescent, and V  (x, t) is locally positive  ),( txV &

    definite, then the origin of the system is uniformly locally asymptotically stable. 

 

4. If is positive definite and decrescent, and V  (x, t) is positive definite,  ),( txV &

     then     the origin of the system is globally uniformly asymptotically stable. 

 

      This situation  gives sufficient conditions for the stability of the origin of a 

system. It does not, however, give a prescription for determining the Lyapunov 

function V (x, t). Since the theorem only gives sufficient conditions, the search for a 

Lyapunov function establishing stability of an equilibrium point could be arduous. 

However, it is a remarkable fact that the converse of (4) also exists: if an equilibrium 

point is stable, then there exists a function V (x,t) satisfying the conditions of the 

theorem. However, the utility of this and other converse theorems is limited by the 

lack of a computable technique for generating Lyapunov functions. 

 

Asymptotically stable situation  also stops short of giving explicit rates of 

convergence of solutions to the equilibrium. It may be modified to do so in the case 

of exponentially stable equilibria.  
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3.8 Barbarat’s Lemma 

 

A function tends toward a finite limit. Barbarat’s lemma indicates that the 

derivative itself should have some smoothnes. To apply barbarat’s lemma to the 

analysis of dynamics systems, one typically uses the following immediate corollary, 

which looks very much like an invariant set theorem in Lyapunov analysis: 

Lemma:If  a scalar satisfies the following conditions, ),( txV

 

1. is lower bounded ),( txV

2. V (x,t) is negative semi-define  &

3. V (x,t) is uniformly continous in time. &

 

Then (x,t)  a tV& 0→ ∞→ indeed V then approaches a finite limiting value 

V∞  such that  V V (x(0),0. (this does not require uniform continuity).  ∞ ≤

 

3.9 Properties of Sliding Mode Control 

 

The design of VSC can proceed with the structure of the control u(x) free or 

preassigned at the outset. In either case, the objective is to satisfy a reaching 

condition. In the free structure approach, generally, the control u(x) can be solved by 

constraining the switching function to any one of the following conditions. 

 

1. <0        (Direct switching approach) ss&

2. 0)( <= ss
dt
dV &&       (Lyapunov function approach) 

3.      (Reaching law approach). )()sgn( iiiiii sfksqs −−=

 

Additional forms of constraint exist, including 

 

4. V = -q – kV  V =  & ssT

5. = -F(s) [16] s&
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The latter forms are seldom used in practice. In some cases, it is convenient to 

preassign the structure of the VSC and then determine the values of the controller 

gains such that the desired reaching law is satisfied. Three popular types of 

preassigned structures are given here. 

 

3. 10 Chattering Reduction 

 

The term “chattering” describes the phenomenon of finite frequency, finite-

amplitude oscillations appearing in many sliding mode implementations. These 

oscillations are caused by the high-frequency switching of a sliding mode controller 

exciting unmodeled dynamics in the closed loop. ‘Unmodeled dynamics’ may be 

those of sensors and actuators neglected in the principal modeling process since they 

are generally significantly faster than the main system dynamics. 

 

However, since ideal sliding mode systems are infinitely fast, all system 

dynamics should be considered in the control design. Fortunately, preventing 

chattering usually does not require a detailed model of all system components. 

Rather, a sliding mode controller may be first designed under idealized assumptions 

of no unmodeled dynamics. The solution of the chattering problem is of great 

importance when exploiting the benefits of a sliding mode controller in a real life 

system. To some extend, chattering, without proper treatment in the control design, 

has been a major obstacle for implementation of sliding mode to a wide range of 

applications. It should be noted that the switching action itself as the core of a 

continuous-time sliding mode system is not referred to as chattering since in the ideal 

case, the switching is intended and its frequency tends to infinity; chattering, in the 

terminology used here, describes undesired system oscillations with finite frequency 

caused by system imperfections. 

 

An ideal sliding mode exists only when the state trajectory x(t) of the 

controlled plant agrees with the desired trajectory at every  for some  . This 

may require infinitely fast switching. In real systes, a switched controller has 

imperfections which limit switching to a finite frequency. The representative point 

1tt ≥ 1t
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then oscillates within a neighborhood of the switching surface. This oscillation, 

called chattering, is illustrated on Figure 3.2 

e(t)
.

e(t)

Sliding surface

Desired final value

Reaching surface

reaching mode

Sliding mode s(t)=0
 

l laws which satisfying sliding condition (3.4) and lead to “perfect” 

inated) for the controller to 

erform properly. This can be achieved by smoothing out the control discontinuity in 

a thin boundary layer neighborin

 

Figure 3.2: Chattering as a result of imperfect control switchings 

 

Contro

tracking in the face of model uncertainty, are discontinuous across the surface S(t), 

thus causing 

control chattering. Chattering is undesirable, since it involves extremely high control 

activity, and furthermore may excite high-frequency dynamics neglected in the 

course of modeling. Chattering must be reduced (elim

p

g the switching surface 

}{  0            ),(,)( 〉≤= φφtxsxtB        (3.24) 

where f is the boundary layer thickness, and 1/ −= nλφε is the boundary layer width. 

In  other words, outside of B(t), we choose control law as before which guarantees 

that the boundary layer is attractive, hence invariant; all trajectories starting inside 

B(t=0) remain inside B(t) for all t rpolated inside B(t). For 

example, sgn(s) in (3.18

>0 ; and then u is inte

) can be replaced by
φ
s  inside B(t). 

This approach leads to tracking to within a guaranteed precisione (rather than 

tracking), and more generally guarantees that for all trajectories starting 

inside 

B(t=0) 

perfect 
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1-.n0,........i                ) 2()(~,0 )( =≤≥∀ ελ ii txt     (3.25) 

ties involved in the design of a braking control algorithm: 

.  The performance of the system depends strongly on the knowledge of the 

tire/roa

, sliding controller design provides 

p control system, the vehicle and brake system are highly nonlinear and 

me-varying systems. That makes sliding mode controller ideal candidate for the 

ution: a continuous approximation of the discontinuity. 

ut      

trol structure. 

.The disturbance rejection solution: generating integral  sliding mode in an auxiliary     

 

3.12  B

h 

approximates the sgn(s) term in a boundary layer of the sliding manifold s(t) = 0. 

Numerous types of saturation functions sat(s) have been proposed in the literature. 

 

Due to its robustness properties, sliding mode controller can solve two major 

design difficul

1. The vehicle system is highly nonlinear with time-varying parameters and 

uncertainties; 

2

dsurface condition; 

 

For the class of systems to which it applies

a systematic approach to the problem of maintaining stability and consistent 

performance in the face of modeling imprecision. 

For wheel sli

ti

application. 

 

3.11  Chattering Suppression Methods 

 

1.  The boundary layer sol

2.  The observer-based solution: generating sliding mode in a observer loop witho

     unmodeled dynamics. 

3. The regular form solution: limiting sliding mode to an inner control loop of a  

    cascaded con

4

   control loop. 

oundary layer solution 

 

The boundary layer solution, proposed e.g. by [Slotine and Sastry 1983] and 

[Slotine 1984], seeks to avoid control discontinuities and switching action in the 

control loop. The discontinous control law is replaced by a saturation function whic
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“In the large”, i.e. for s (t) >ε , sat(s)=sgn(s). However, in a small e -vicinity of the 

origin, the so-called boundary layer, sat(s) sgn(s) is  continuous. As an illustrative 

example, consider a simple linear saturation function. 

 

⎪⎩

⎪
⎨
⎧

<

>
= ε

ε

ε

s(t)for               )(

s(t)for       (s(t))sgn   
)( tsM

M
tu       (3.26) 

 

Control loop with actuator dynamics neglected in ideal control design. Sliding 

mode does not occur since the actuator dynamics are excited by the fast switching of 

the discontinuous controller, leading to chattering in the loop with linear proportional 

feedback gain 
ε
M within the boundary layer in the vicinity of the origin, s(t) ε≤ , and 

symmetrically saturated by M for s(t) >ε outside the boundary layer. One of the 

benefits of the boundary layer approach is that sliding mode control design 

methodologies can be exploited to derive a continuous controller. The invariance 

property of sliding mode control is partially preserved in the sense that the system 

trajectories are confined to a s(ε )vicinity of the sliding manifold s (t) = 0, instead of 

exactly to s(t) = 0 as in ideal sliding mode. Within the s(ε ) vicinity, however, the 

system behavior is not determined, i.e. further convergence to zero is not guaranteed. 

This type of control design is part of a class of robust controllers which satisfy the 

“globally uniform ultimate boundedness” condition proposed by [Leitmann 1981]. 

Note that no real sliding mode takes place since the switching action is replaced by a 

continuous approximation. 

 

 Instead of achieving ideal sliding mode, the system trajectories are confined 

to a boundary layer of the manifold s (t) = 0. 

 
3.13 PID Based Sliding Mode Controller 

 

We propose to overcome the problems associated with SMC and SMC with 

boundary layer in process control settings by introducing a sliding mode controller 

based on a PID design. (PIDSMC). The original SMC structure is retained in the 

proposed a sliding mode controller based on a PID design, except that the 
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discontinuous switching control input is replaced with a continuous input determined 

by a PID algorithm. The PID controller in the sliding mode controller based on a PID 

design, takes the sliding surface function s as the input, not the controlled variable as 

in a conventional PID control-loop. The resulting over-all control input of the 

proposed  sliding mode controller based on a PID design.is: 

∫++= −
t

i
n

ppid tekte
dt
dku

0

1 d(t)  )()()(λ )     (3.27) 

 where kp ,ki and  λ   are the PID proportional gain, integral time constant and 

derivative time constant, respectively, and s is the sliding surface function. The order 

of the system n=2 so results in a PID controller in terms of s : 

 

∫ ++=
dt

tdekkteu pipid
)(dt e(t))(λ        (3.28) 

 

The sliding surface  choosen like this, the 0=s& ,[11]  

 

)()()()()( tuCtBtAtts rLrLrr −++= ωωω &&&& )()()( tektetd i++− &λ  (3.29) 

  

The PID proportional term drives the states to the neighbourhood of the 

sliding surface. The PID integral action forces the states onto the sliding surface 

irrespective of the bounds of the uncertainties and disturbances, while the PID 

derivative action provides a stabilizing effect to counter the possible excessive 

control produced by the integral action. The integral term and the derivative term 

play important roles in ensuring that the states move onto the sliding surface. 

 

( )()()(1)( tBtAt
C

tu LrLrr
r

eq ωωω ++= &&& ))()( tekte i++ &λ   (3.30) 

 

The working principle of the PID SMC may be briefly explained as follows. 

Assume that the system is initially in the region of s > 0 and that the PID 

proportional action term is not sufficient to drive the states toward the sliding 

surface. This will result in an increasing s and the process states will move away 

from the surface. The integral action will increase the control action accordingly and 
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become sufficient after a period of time to force the states to move toward the sliding 

surface, satisfying the reachability condition 0<ss& . As s approaches the sliding 

surface, the control action will automatically be reduced because that  is negative 

and s is decreasing. The reachablity condition can be ensured by a proper selection of 

the integral and derivative gains. An on-line adaptive strategy is proposed in the next 

section to tune automatically these two parameters to ensure the reachability 

condition 

s&

0<ss&  

 

[ )()()()()( tBtAtststs LrLrr ωωω ++= &&&& ])()()())()(( tektetdtutuC isweqr ++−+− &λ  

          (3.31) 

 

   The proposed PID SMC control as shown in consists of three major 

components: a nonlinear state feedback control that transforms the process into a 

simpler equivalent form, a linear state feedback control that completes the design of 

the set-point tracking, and a PID feedback control of the sliding surface function that 

makes the system robust and eliminates the disturbances. In terms of the control 

system structure, the PID SMC may be viewed a special case of the generalized 

feedback linearizing controller. The particularities of the PID SMC are in the use of 

the set-point and the controller tuning. The outer-most loop of the PID SMC system 

onto the sliding surface.  

 

For a more smooth change of the switching signal, a hyperbolic tangent 

function has also been used to improve the switching control effort and it is given as 

[10] 

 

⎟
⎠
⎞

⎜
⎝
⎛
Ω

=
)(tanh)( tsktu swsw                     (3.32) 

 

where Ω are positive constants, +∈Ω R , and it defines the thickness of the boundary 

layer. 
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CHAPTER 4 

EXPERIMENTAL SET-UP AND LABORATORY 

RESULTS 

  

 

4.1  Experımental Set-Up and Test Results 

 

   Diagram of the experimental set-up is shown in Fig. 1. A computer (Pentiun 

II MMX, 300 MHz, 256 MB RAM) is used to implement proposed adaptive sliding 

mode controller. The output shaft speed is measured from an optical sensor (as rev/s) 

and a tachogenerator (as volts) connected to the motor shaft. The slotted opto sensor 

consists of a gallium-arsenide infra-red L.E.D. and silicon phototransistor mounted in 

a special plastic case which is transparent to light of the wavelenght. A series of 

pulses is generated when the slotted disk, that is mounted on the motor shaft, is 

rotated. When the shaft of the dc motor is turned, a voltage is induced at the 

tachogenerator terminals which is directly proportional to shaft speed. The motor to 

be studied operates with a maximum output shaft speed of 1500 rev/min. The motor 

drives a shaft that carries disks which operate various transducers, and a 

tachogenerator. Motor speed is reduced by 9:1, that means r=9. A low pass filter is 

used to filter the output speed signal from high frequency noise components. The 

motor speeds at different input armature voltages are measured to obtain the 

tachogenerator characteristics. The tachogenerator has a linear characteristics with a 

calculated gain of 2.5 volt/rad/sec. The measured output data are transferred to the 

computer by a Data Acquisition card (Advantech, Model: PCL-1800, 330 kHz in 

speed, a conversion time of 2.5 µsec., and 0.01% accuracy).  The sampling period is 

taken to be 3 msecs for all cases. All control solutions and calculations are performed 

in matlab environment, in Simulink of Matlab. The measured signal is transferred to 

the simulink by the Data acquisition card. The measured output signal is compared 
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with the reference signal and the other calculations are performed to produce the 

hitting signal and the equivalent signal. The overall control signal (switching signal + 

equivalent signal) is produced and sent to the power amplifier by the Data acquisition 

card to control the real plant. 
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d
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Figure 4.1 Diagram of the experimental set-up (SMC) 
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Figure 4.2. Diagram of the experimental set-up (SMC+I) 

As a preliminary work, the plant should be tested to define the plant gain 

coefficients, Ar, Br and Cr. This process is needed to obtain the equivalent control 

signal,  and should be performed before the closed-loop operation is allowed. In 

open-loop conditions, a step input signal, amplitude of 2.5 volts, that corresponds to 

)(tueq
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1500 rpm is applied to the electromechanical plant from the computer. The 

approximate plant model that is based on the process reaction curve method is 

obtained  as [36]: 

 

)26.01)(02.01(
8.0)(

ss
sG

++
≅        (4.1) 

 

4.1.1 Model Validation 

 

The graph for the model validation is illustrated in Fig. 4.3 such that solid line 

presents the approximated model response and the dotted line is the real system 

output, and the speed error is illustrated in Fig. 4.4. The output speed settles down 

after 0.6 sec and the error is about ±6 rpm at the steady-state. Mean error in Fig. 4.4 

is zero, that is, steady-state modeling error is -0.5. Using the approximate plant 

model, the plant gain coefficients are calculated to be 84.53=rA ,  and 

. Conventional PID controller parameters are determined using Process 

Reaction Curve Method and the gain coefficients are calculated to be 

3.192=rB

84.153=rC

5.7=pK , 

 and . Heuristic method is used in general to choose the 

sliding mode controller parameters. There are certain guidelies here. First of all, the 

sliding mode controller parameters must be all positive real. Second, the polynomial, 

given in Eq. (3.3), must be stable. Third, the switching signal should be minimized 

not to hurt the actuator. The overshoot is not desired. From all these, to satisfy the 

requirements the parameters are selected to be

533.0=iT 0115.0=DT

120=λ , 1=ik , 30=Ω  and  6=swk .    
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    Fig. 4.3. Response of the actaul system and approximated system. 

 

Fig. 4.4. Modeling error 
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4.5 Tracking Response for SMC and SMC+I 

 

Tracking performance of conventional sliding mode controller (SMC) and 

proposed controller (SMC+I) are shown in Fig.4.11. The related control signals are 

given in Fig. 4.12. Square wave speed set-point signal change, 0 rpm to 1500 rpm 

and 1500 rpm to 0 rpm, is applied to the system. The performance of the system with 

the proposed sliding mode controller (SMC+I) is much beter than the system with 

the SMC controller. 

The switching signals are shown in Fig.4.13 such that it is clearly seen that 

magnitudes of the variations are smaller in SMC+I control. 

 

 
Figure 4.11 Tracking response of SMC and SMC+I control system. 
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Fig. 4.12. Control  signal response for  SMC and SMC+I control system 

 
4.13 Switching Signal Response for SMC and SMC+I control system. 
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4.1.2 Step test for P,PI,PD,PID  
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Figure 4.5  P, PD, PI, PID  output signals 

 

 

 Figure 4.5 step set point test for P,PI,PD and PID . P and PD system 

have  steady state. PID and PI sytem have no steady-state error. PID system gives  so 

smooth response than others.  
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Figure 4.6  P, PD, PI, PID  control 

 

 Related control signals are given in Figure 4.6. Response of the 

system to step set-point speed change (0-1500 rpm) are illustrated in Figure 4.5 

Figure 4.5 for conventional P, PD, PI, PID controllers. PID controller is given 

smaller response than P, PD, PI. 

 

 

 

 

 

 

 

 

 

 

 

 

 37



4.5.3 Step test for SMC, SMC+I 

 

 
 Fig 4.6 Step test  for  SMC and SMC+I response 

 

 The performance of the system with the proposed sliding mode controller 

(SMC+I) is much better than the system with the SMC controller and conventional 

sliding mode controller such that no overshoot, smaller rise time, and smaller settling 

time in magnitude were obtained from the proposed controller. 

 

Table 1 

Controller  

type 

Rise  

time 

(sec)  

Settling  

time 

(sec) (5%) 

Overshoot 

(%) 

Output  

deviations 

(rpm) 

PID   0.3 2.5 50.9 ±5.3 

SMC 0.15 0.2 29.0 ±3.8 

SMC+I 0.18 0.18 0.0 ±4.0 
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Fig. 4.7. Control signal response for SMC and SMC+I control system 

 

Control signal response for SMC and SMC+I control system is given in 

Figure 4.7. SMC+I system gives higher response than the SMC system, but the 

settling time is changed with±  0.5 in SMC+I.  

 

. 
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Fig.4.8 Switching signal response for  SMC and SMC+I control system 

 

Switching signal response for SMC and SMC+I control system is given in 

Figure 4.8. SMC+I system gives higher response than the SMC system, but the 

settling time is changed with±  0.4  in SMC+I.  
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Figure 4.9 Sliding surface s(t) 

 

Variation of the sliding surface  during the control is illustrated in Fig. 

4.9. It can be noted that the sliding function is 

)(ts

0)( ≠ts  when the error signal is not 

zero. This means that the sliding mode is in the reaching surface up to about 0.18 sec 

and then arrives sliding surface. When it reaches to sliding surface, theoretically it is 

expected the sliding function to be zero, 0)( =ts . In practical applications, there are 

always some small deviations and fluctuations at the output measured variable 

because of uncertainties and disturbances. Here, the average value of the sliding 

function is zero, . Variations in the sliding function occur due to errors or the 

disturbances and uncertainties. 

0)( =ts

 

Pulse generator is connected the system and SMC and SMC+I  response is 

taken to system. 
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4.1.4 Tracking Response for SMC, SMC+I 

 
Fig. 4.10. Output signal response of  SMC and SMC+I control system 

 
  

 The performance of the system with the proposed sliding mode controller 

(SMC+I) is much better than the system with the SMC controller. First pulse is  

given to system then SMC+I  response is reach the 0 values rapidly.  So, SMC+I 

system response is faster than SMC response.  
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Fig. 4.11. Control  signal response for  SMC and SMC+I control system 

 
Figure 4.12  Switching Signal Response for  SMC and SMC+I control system 
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 It is clearly seen that magnitudes of the variations are smaller in SMC+I 

control. (Figure 4.11-12) 

 

4.1.5 Load test 

 

The load is connected the system at 1.5 sec. Then the output response is given 

in Figure 4.11-4.12. 

 
Fig. 4.13. Output response of SMC system with load. 

 

 Load test properly using the manually operated load called break system. 

When the system is running 1200  rpm, it is loaded using the manually brake system 

and the response are shown Fig.4.12. 

  

The figure confirms the fact that, the magnitudes of the applied loads for  

SMC and SMC+I are same. 

 

 44



 
Fig. 4.14. Control response of SMC+I system with load 

 
Fig. 4.15. Switching signal  response of SMC+I system with load 
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It is clearly seen that magnitudes of the variations are smaller in SMC control 

(Fig. 4.14,4.15)but  the system of SMC+I is reach steady state values rapidly  . 
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CHAPTER 5 

 CONCLUSIONS 

 

In this study, a sliding mode control with integral action has been adopted to 

control the speed of a computer-controlled electromechanical system while the 

nominal system is assumed to be known. Approximated second order system model 

is used in the present design, since many of the industrial plants can be modeled 

using a second order model. The practical application is associated with the sliding 

mode controller as a computational-intelligence approach to the engineering 

problems. Experimental application was carried out to test the effectiveness of the 

present sliding mode controller (SMC+I). From the experimental results the 

proposed SMC+I controller is more suitable to be applied for the speed control of the 

dc motor due to the uncertainty handling capabilities and disturbance rejection of the 

SMC design method. In order to avoid the chattering phenomena, a hyperbolic 

function has been used. The proposed controller ensures the invariance property 

against parameter uncertainties, compared with traditional PID controller and 

conventional SMC controller, without sacrificing the tracking accuracy. The closed-

loop system is in the sliding mode at all times and the tracking error converges to 

zero exponentially under the existence of parameter uncertainties and disturbances. 

The closed-loop system has been shown to be globally exponentially stable in the 

sense of Lyapunov theorem. 

      Based on the experimental results and the time domain specification presented in 

Table 1, it can be concluded that the control performance of the electromechanical 

system was significantly improved with SMC+I controller compared with the 
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conventional PID and SMC controllers. Experimental results also confirm the fact 

that the sliding mode controllers are reasonable condidates to use in industrial 

applications and these can be considered to be an alternative to usual PID controllers, 

since it is simple to use and easy to understand with its straightforward solution 

algorithm, and the computational task is not a problem any more because of high-

speed computers and application tools to use in industrial applications.  
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APPENDIX A 
 

Mathematical solution of this plant diagram; 
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Denominator is shown that Dn function which is expanded; 
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where Assume that d is not known exactly but can be written as , where 

is the nominal part and 

ddd ∆+′=

d ′ d∆ is the uncertain part, which is bounded by a known 

function d, [38] 

max)()( dsdsd ≤→  
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