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ABSTRACT 

 
MODELLING OF FOUR-LINK GRÜBLER MECHANISM 

BY “IMAGINARY JOINTS” METHOD 
 

NACARKAHYA, Ekrem 
M.S. in Mechanical Engineering 

Supervisor: Prof. Dr. Sedat BAYSEÇ 
August 2006, 116 pages 

 

  

Machine designers require to see the dynamic behaviour of the mechanism 

they design before including them into their machines, and verify that the kinematics 

of the mechanisms are conformable and kinetics, realisable. For this purpose, motion 

equations of the mechanisms are required together with the actuation motors and 

control strategies used. Various general purpose simulation programs have been 

made and put forth to the use of design engineers. These programs separate the 

mechanism into free bodies and define the interaction between them. Responses of 

the free bodies are determined by Newton’s second law in accelerations. This thesis 

presents a method called “Imaginary Joints”, which is originally designed to model 

open chain planar robotic systems, and then describes how the tip of a robotic chain 

is fixed to the ground by appropriate constraint forces which can be generated by 

either a revolute or a prismatic joint and convert the open chain into a closed link 

loop. Motion equations are generated by Lagrange formulations. Two joints, a 

revolute and a prismatic are assumed to exist between each pair of link. Based on the 

type of mechanism being simulated, one of the two joints is allowed to function 

while other is constrained by appropriately shaped force profiles. By this method, a 

single system can be converted into anyone of the 4-link Grübler type mechanisms 

and motion equation is properly shaped up to model this particular mechanism. 

Compared to that of Newton’s Second Law, Lagrangian method allows fewer motion 

equations and hence numerical integration is simpler, with less tendency to 

numerical errors to build up. 

 

 

Keywords: Four-link Grübler mechanisms, imaginary joint, open chain planar, 

revolute joint, prismatic joint.  
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ÖZET 

 

DÖRT KOLLU GRÜBLER MEKANİZMALARININ “SANAL EKLEMLER” 
METODU İLE MODELLENMESİ 

 
NACARKAHYA, Ekrem 

Yüksek Lisans Tezi, Makine Mühendisliği 
Tez Danışmanı: Prof. Dr. Sedat BAYSEÇ 

Ağustos 2006, 116 sayfa 
 

  

Makine tasarımcıları tasarladıkları mekanizmaların dinamik davranışlarının, 

yani hareket profillerinin uygun olup olmadığını görmek isterler. Bunun için çeşitli 

genel amaçlı simülasyon programları hazırlanarak tasarımcıların kullanımına 

sunulmuştur. Bu programlar mekanizmayı oluşturan elemanların her birisini bir 

serbest cisim olarak kabul eder. Bu serbest cisimlerin aralarındaki etkileşim 

tanımlandıktan sonra dinamik davranışları, ivmeleri bulmak üzere Newton’un 2. 

kanunu ile modellenir. İvmeler daha sonra nümerik integrasyondan  geçilir ve hız ve 

konum profilleri elde edilir.  

 

 Bu tez çalışmasında önce robotik sistemleri oluşturan düzlemsel açık 

zincirleri modellemek için tasarlanmış “Sanal Eklemler” metodu tanıtılmış ve daha 

sonra bir açık zincirin uç noktasına toprağa bağlı bir döner yada kayar eklemin 

uygulayacağı kuvvet profili etki ettirilerek mekanizmaları modelleyerek bir kapalı 

zincir haline getirilmesi anlatılmıştır. Hareket denklemleri Lagrange formülasyonu 

ile oluşturulmuştur. Her peş peşe gelen eleman çifti arasında birisi döner, diğeri 

kayar olmak üzere iki eklem olduğu varsayılmış ve modellenmek istenen 

mekanizmanın tümüne göre bu eklemlerden birisi sabitlenip diğeri serbest 

bırakılmıştır. Bu metotla tek bir sistem her türlü 4 elemanlı Grübler mekanizmasını 

modelleye bilmekte ve hareket denklemlerinde gerekli değişiklikleri 

yapabilmektedir. Hareket denklemleri daha azdır, nümerik integrasyon daha kolaydır 

ve hesaplama hatalarının birikimi daha yavaştır. 

 

 

Anahtar kelimeler: Dört kollu Grübler mekanizmaları, sanal eklem, 

düzlemsel açık zincir, döner eklem, kayar eklem.  
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CHAPTER 1 

 

 DYNAMICS OF MECHANICAL SYSTEMS 

 

 The word “dynamic”, an adjective, often preceding nouns like “people”, 

“ideas” etc. means that they are in a state of change, hence embedding power. In 

mechanical systems, changing quantities are positions and variations of positions in 

time in various orders. These systems have masses and mass moments of inertia, and 

hence resist motion, so, to set a mechanical system into motion, there must be power 

and forces and torques must be acting for finite time durations.   

 

The “dynamics” of a system, this time a noun, is the relationship between 

various variations in its kinematics and also between the kinematic variables and the 

forces acting on it. Motion of celestial bodies has always fascinated human beings at 

all times. They have sought and some still are seeking hints about the future events 

trough their current positions, and vast amounts of time and position data had been 

gathered from observations of the sky, for making cross-match between them and the 

important events occurring. Contrary to what clergy had been claiming from 

Ptolemaic times, Nikolaus Capernicus had found out that the observable celestial 

bodies are not revolving about the earth but about the sun and put forth his famous 

heliocentric system (1514) which was later verified by the works of Galileo Galilei, 

and had been the initiation of the end of religious dogmas in science, and lead to the 

reformations, the renaissance, the scientific revolution and the industrial revolution 

successively. Tycho Brahe (1546-1601) the imperial astronomer of Emperor 

Rudolph II of Austria compiled a catalogue with positions for 1004 celestial bodies. 

 

The positions data recorded showed a cyclic variation in time, but the actual 

function had not been determined until Johannes Kepler (1571-1630), the apprentice 

astronomer-mathematician of Tycho, has noticed the error imposed on the data by 

the refraction of the light beams coming from planets by the atmosphere. Johannes 



 2 

Kepler, the gifted polish mathematician have than clarified the laws 

governing the planetary motion, as; The first correct definition of the principles 

governing rigid body dynamics was published by Newton and comprises the basis of 

classical mechanics. His deductions known as  “ Newton’s laws” are completely 

based on experimental observations and have no mathematical proof, but there has 

been no incident reported that does not follow these laws. Therefore they can be 

regarded as axioms. 

 

1.1 Newton’s Laws: 

 

 Written in three statements, they describe the dynamics of particle motion. 

The first indication that these laws could be used to define angular motion is due to 

Euler and hence the approach as a whole is known as the Newton-Euler formula. 

 

 First Law: 

 

 Newton’s first law states that every material body remains in its state of rest 

or uniform rectilinear motion unless a net non-zero force acts on it. In conjunction 

with the first law, Newton defines the quantity of motion as the product of two 

factors, the velocity and the quantity of matter, that is the linear momentum as: 

 

P mv=
�� ���

                                                                                                        (1.1) 

 

Where m is the mass of the body, v is its rectilinear velocity and P is the linear 

momentum. For a body having constant mass and velocity, momentum remains 

unchanged; hence the first law is generally known as the “law of the conservation of 

momentum”. 

 

 The first law can be applied to the angular motion of a rigid body as: 

 

 
.

K I w=

����

���

                                                                                                       (1.2)                                                                                                             
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 Where I is the mass moment of inertia of the body, ω is its angular velocity and K is 

the angular momentum. On a constant inertia body, if no external moments act, it 

conserves its angular velocity and hence angular momentum. 

  

 

 For static compatibility, i.e. for defining the state of a static body, its physical 

model and the accompanying mathematics must obey the first law. Application of the 

first law to a system of bodies require the setting up of some constraint equation, 

which describe the link dimensions and types of joints and the connectivities they 

provide. Static compatibility is based on kinematic compatibility described by the 

constraint equations. Equations 1.1 and 2.1 are vector equations, meaning that the 

expressions on both sides of the equations are equal in magnitude and direction. 

 

Second Law: 

  

 Newton’s second law describes the general motion of rigid bodies, stating 

that the change in the quantity of motion is equal to the net force acting on it and 

takes place in the direction of the straight line along which the force acts. Change is 

meant with respect to time and so: 

 

( ) ( )d P d mv dv
m ma F

dt dt dt
= = = =                                                                (1.3) 

 

where F is the resultant vector of all external forces acting. The idea can be extended 

for rotating bodies so that the rate of change of angular momentum is equal to the net 

moment acting as: 

 

( ) ( )d k d Iw dw
T I I

dt dt dt
α= = = =                                                                   (1.4) 

 

where T (τ) is the acting resultant moment or torque. 
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 The second law defines how the motion of a body proceeds in time under the 

effects of a given forcing system. For dynamic compatibility, a model must obey the 

second law. 

 

 Third Law: 

 

 Newton’s third law states that action always equals reaction. The forces that 

two bodies exert on each other are equal in magnitude and opposite in direction. The 

third law defining the nature of the force interaction between different bodies makes 

possible the transition from the mechanics of single bodies into compound systems. 

The third law incorporates both the kinematic and static compatibilities. 

 

 Newton’s laws completely define the motion of bodies or systems of bodies 

as a function of time. Application of the laws for planar linkages leads to the 

systematic free-body definition of system subsets. Each free body moving in a plane 

has 3 degrees of freedom and 3 equations can be derived for each movability. 

Between the 3N coordinates defined for the system having N bodies and n degrees of 

freedom. (3N – n) many are related with each other leaving only n independent 

generalised coordinates. Existence of constraints create two problems in application: 

holonomic constraints between the coordinates defined and time in some cases add 

that many algebraic equations to be solved with the differential equations of motion 

simultaneously. This difficulty can be overcome by deriving the motion equations 

using the generalised coordinates, resulting in fewer but more complicated equations. 

Secondly, the force and motion constraint at the joints appear in the form of non-

holonomic constraints, which can not be integrated alone, and thus, must be solved 

with the rest of the motion equations simultaneously. This process yields the forces 

interacting at the joints, which may or may not be required. 

 

 Starting with these fundamental laws, alternative techniques were developed 

to eliminate the necessity of obtaining explicit expressions for the constraint forces, 

such as Lagrange’s and Hamilton’s equations. 
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 1.2 Lagrange’s Equation 

 

 Lagrange’s equation for holonomic systems: 

 

 

 Equations of motion for dynamic systems can be specified in the form of 

Lagrange’s equation as: 

 

 

d

dt
 

.

.
j

L

q

 
∂ 

 ∂
 

 - 
j

L

q

∂

∂
 = jQ     

                                                                                                                  (1.5.) 

j  = 1 , .... n 

 

where L is the Lagrangian , jq  are the generalised coordinates jQ  is the generalised 

force acting on the j’th generalised coordinate. By definition the Lagrangian of the 

system is:    

 

 L T V= −                                                                                                (1.6) 

 

Where T is the total kinetic energy and V is the total potential energy of the system. 

Lagrange equation describes the dynamics of the associated coordinate only. 

Therefore for a system of n degrees of freedom, n equations are derivable which 

simultaneously define the dynamics of the whole system. 

 

 There is complete freedom in the choice of generalised coordinates as long as 

they are independent of the each other, so that the kinematics of the system are 

uniquely defined. 

 

 The Lagrangian of the system is the difference between the kinetic and 

potential energies, both of which are scalar quantities. Therefore the Lagrangian of a 

system will have the same value for a given condition as long as the same definition 
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is used in each case, because the Lagrangian of a system is not unique. If L (q, 
.

q , t) 

is an appropriate Lagrangian and F ( , )q t  is any differentiable function of the 

generalised coordinates and time , then 

 

 

 ' , , , , /L q q t L q q t dF dt
⋅ ⋅   

= +   
   

                                                                  (1.7) 

 

is also a Lagrangian of the system. For example the gravitational potantial energy is 

defined with respect to a reference datum. If the datum is changed for the same 

system, both the analytical form and the numerical value of the Lagrangian changes. 

 

 

 The generalised force jQ  is the net effect of all the external forces on the j’th 

generalised coordinate, thus, 

 

 

  jQ  = k
k

k j

x
F

q

∂

∂
∑                                                                                          (1.8) 

 

where x  are coordinates defining the position of the system in real and virtual 

displacements and kF  is the net external force applied on coordinate kx  . Generalised 

forces are composed of all the forces external to the system. These external forces 

can be arbitrary functions of the generalised coordinates and time. Physically, they 

may be forces involving an energy injection into the system such as actuator forces, 

or involving energy dissipation from the system such as the velocity dependent 

damping forces of viscous dampers and position, velocity and acceleration dependent 

forces due to Coulomb friction. They can further include forces exerted by potential 

fields not included in the Lagrangian such as weights and forces coming from energy 

storage devices like mechanical springs, air cylinders etc. 

 

 The concept of kinematic compatibility of mechanical networks is included in 

the Lagrangial and in the generalised forces. As Newton’s equations, Lagrange’s 
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equations can be derived for any number of coordinates resulting in that many 

differential equations of motion. In conjunction with the constraint equations, which 

are equal to the number of equations less the number of degrees of freedom of the 

system, the dynamics of the systems is fully definitive.  

 

 

 Lagrange’s Equation for non-holonomic systems:  

 

 Non-holonomic systems have constraints described by differential equations 

which can not be integrated independent of the system dynamics. Non-holonomic 

constraints apply constraint forces on the system to make it obey the constraints. 

With the inclusion of the constraint forces, Lagrange’s application becomes: 

 

  

 
d

dt
 

j

L

q

⋅

⋅

 
∂ 

  ∂ 

 - 
j

L

q

∂

∂
 = jQ  + 

( )m n

i
i

i l j

f

q
λ

−

=

∂

∂
∑                 

 (1.9) 

j = 1,2,.....m 

where if  are constraint equations , m is the number of coordinates and iλ are 

Lagrange’s undetermined multipliers. The constraints equations can be explicit 

function of the time , that is , rheonomous or may not be explicitly dependent on 

time, that is, scleronomous. 

 

 

 1.3 Hamilton’s Equations 

 

 

 Equation of motion for dynamic systems can be specified in the form of the 

canonical equations of Hamilton as: 

 

 

 
.

jq  = 
j

H

p

∂

∂
                                                                                                  (1.10) 
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.

jp  - jQ  =  - 
j

H

q

∂

∂
                                                                                      (1.11) 

 - 
L

t

∂

∂
 =  

H

t

∂

∂
                                                                                              (1.12) 

 

where jQ  are the generalised forces , H is the Hamiltonian , L is the Lagrangian and 

jp  are the conjugate momenta , functions of generalised coordinates jq  , generalised 

velocities 
.

jq  and time t as :  

 

 

  

j

L

q

∂

∂
 = 

.

jp                                                                                                   (1.13) 

 

 

 Hamiltonian H is defined as: 

 

 H ( q , p , t ) = 
.

jj

j

q p∑  - L ( q , 
.

q , t )                                                       (1.14)          

  

If Lagrangian is independent of time and the potential energy independent of 

velocities, the Hamiltonian becomes: 

 

 

 H T V= +                                                                                                  (1.15) 

 

 To apply the canonical equations of Hamilton to mechanical networks, first a 

set of generalised coordinates are defined and the Lagrangian is formulated. Then 

conjugate momenta are derived using equation 13. Once momenta and Lagrangian 

are known, the Hamiltonian is formulated and substituted into the canonical 

equations. 
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 Hamilton’s method produces 2n first order differential equations, n being the 

degrees of freedom. The first canonical equation is used to obtain velocities from 

momenta. The second equation incorporates the principles of dynamics. Hamiltonian 

formulations in the form of equations 1.10-1.12 can describe the conservative and 

holonomic systems. For non-conservative and non-holonomic systems, the constraint 

equations must also be included in the set of equations of motion. 

 

 In the forthcoming chapters, the mechanical systems whose dynamic 

behaviour is sought for and explanations are given how their motion equations are 

generated by the abovementioned methods. Also a comparison is given to display the 

relative adventages and disadvantages of each over the others.    
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CHAPTER 2 

 

FOUR LINK GRÜBLER MECHANISMS 

 

2.1 A Brief History 

 

Mechanisms are multi-body systems where each body is connected to some 

others by joints and developed for changing the type and extent of motion and the 

incorporated forces. Some mechanisms are very old. When man inverted the wheel is 

unknown for example. Levers have been used to magnify force or motion. Various 

mechanisms have been developed to get water from a deep well or be carry heavy 

objects up and down or in horizontal direction. As mechanisms are passive devices 

from power point of view, a human or an animal had been an integral part of any 

mechanism to provide power. Later we see means of getting power from flowing 

water and from wind. Very elaborate models of wind and water mills are still 

operational today. After the invention of the steam engine by James Watt in 1765, 

great amounts of cheap mechanical power became available and consequently 

building of machinery accelerated. Machines are composed of mechanisms. Each 

simple motion, comprising the more completed series of motions of a machine is 

generated by a single mechanism property designed. Techniques in mechanism 

design hence were developed starting from the beginning of 19. th century. Each new 

mechanism came up as a brilliant invention to solve a certain motion problem. As 

mechanisms pile up, some engineers tried to compile and classify them such that 

repetitive inventions or design work should be avoided. Roleaux and Chebyshev 

(1821 – 1894) have been the pioneers of mechanisms design. 

 

Simplest mechanisms are composed of four links. One of them is the ground 

and remaining three are moving. One very important problem of technology was the 
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generation of exact straightline profiles, be it a plinth surface like a machine table or 

a rail like the slideways of a machine tool. Making geometrically good cylinders on a 

lathe had been the most important problem to solve to make better steam engines and 

internal combustion engines later. Roleaux tried to find an exact straightline 

generation mechanism but could not succeed. It was French engineer Peaucellier and 

Chebychevs student Lipkin who separately found 8 link exact straight line 

generators. Though complicated mechanisms were required for more intricate 

motions, basic four-link systems have been used much extensively in building 

machines, as still the case is today. 

 

Mechanisms are multi-body systems and hence each moving link does its 

own predetermined motion which is unique for itself, hence observing a mechanism 

in motion is surely fascinating. Motion of every link is under control and beach link 

is powered by a single crank , which also turns the cranks of all the mechanisms 

comprising the machine. This we call now as “single degree of freedom” 

mechanisms, which are driven by a single “prime mover”. Greater movabilities 

require more drives, which is not desirable.  

 

2.2  Grübler’s Equation 

 

Movabilities of mechanisms were discussed by Grübler and Kutzbach in 

detail first, though Roleaux, Kennedy and Chebshev [1] have considered movability 

in classifying mechanisms. Artobolevsky’s compilation [2] is now an important 

reference for designers of machinery. Grübler has considered the mechanisms which 

h are in practical usage in making machines. They were all planar and single degree 

of freedom mechanisms composed of revolute and prismatic joints only. Grübler has 

found that all such mechanism satisfy the following criterion[3]:  

 

   3 2 4 0L J− − =                                                                                             (2.1) 

 

where L and J are the number of links and joints in the mechanism respectively. This 

equation consider only single degree of freedom joints only. Later, Kutcbach put 

forth the following formula: 
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( ) 1 23 1 2F L J J= − − −                                                                                 (2.2) 

 

where F is the total movability or degree of freedom of the mechanism, J1 and J2 are 

the number of one and two degree of freedom joints respectively. With his formula, 

Kutcbach says that a mechanism having L links have (L-1) many movingh links, 

each having 3 degrees of freedom without joints. A single degree of freedom joints 

constrains 2 and a two degree of freedom joint constrains 1 degree of freedom, 

remaining F movabilities free. A 3 degree of freedom joints is no joint at all. With 

this formula, Kutcbach puts forth the idea of multi-degree-of freedom mechanisms. 

 

Spatial mechanisms, that is, mechanism working in three dimensional space 

are also possible and they provide more intricate input-output functions. In 3 

dimensional space, degree of freedom is 6 and hence joints up to 5 degree of freedom 

are allowable. A list of possible joints will degrees of freedom ranging between 1 and 

5 can be found is the “Mechanism” book of Eres Söylemez [4]. Kutcbach criterion 

for spatial mechanisms can be represented as  follows: 

 

( ) 1 2 3 4 56 1 5 4 3 2F L J J J J J= − − − − − − -                                                   (2.3) 

 

and if the mechanism is of Grübler type, the composed of only revolute and prismatic 

pairs and having only 1 degree of freedom, Grübler equation becomes: 

 

6 5 7 0L J− − =                                                                                             (2.4) 

 

The Kutcbach criterion is later put into a more suitable form as: 

 

( )
1

1
J

i

i

F L J fλ
=

= − − +∑  

 

where λ is the degree of freedom space, i.e. λ = 3 for planar and λ = 6 for spatial 

mechanisms, if is the degree of freedom of joints i . 
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Some Further Characteristic of The Grübler Mechanisms: 

 

In Grübler equation for planar mechanisms, 

 

3 2 4 0L J− − =  

3 4 2L J= +                                                                                                  (2.5) 

 

J, the number of joints can be  even or odd. Whether it is even or odd, twice that 

number ie 2J is even. 4 is also even and sun of two even numbers make an even 

number. So 3L is even. As 3 is odd, l must be even. From here, one can conclude that 

all Grübler Mechanisms have even number of links. With 2 links, a movable link 

loop is not possible. So, simplest Grübler mechanism contains 4,6,8 or higher even 

number of links. 

If a number of links contain k kinematic elements, let us denote this number 

of links by kl . We can not have 1l (since there can be no link with one kinematic 

element). The total number of links, l l, in the mechanism will then be equal to: 

 

 

              2 3 4 5 ....... nl l l l l l= + + + +                                                                            (2.6) 

or 

 2 3 4 53 3 3 3 3 .......3 nl l l l l l= + + + +                                                                (2.7) 

 

(Where 2l  is the number of binary links, 3l  is the number of ternary links, etc. in the 

mechanisms) 

 

The number of kinamatic elements in the mechanism will be equal to:  

 

 

2 3 4 52 3 4 5 ....... nl l l l nl+ + + + = # of kinematic elements.                              (2.8) 

 

Since two kinematic elements, when paired, will form a joint: The number of 

kinematic elements is equal to twice the number of joints in the mechanism:  
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2 3 4 52 2 3 4 5 ....... nj l l l l nl= + + + +                                                              (2.9) 

 

Substituting equations 2.3. and 2.4. in to Grübler’s equation, we obtain: 

 

2 4 5 6( 2 3 .......( 3) 4nl l l l n l− + + − =  

or  

 

 2 4l P= +   

 

where 4 5 62 3 .......( 3) nP l l l n l= + + −  

 

            

              P is always a positive quantity. It can at must be zero, if all the links in the 

mechanism are binary or ternary links. Hence, the number of binary links can at least 

be 4 if P=0, otherwise it is greater than 4. 

Consider of link (a) with I kinematic elements and let this number of 

kinematic elements be the maximum that a link can have. A kinematic chain using 

this link can be formed if we attach links of type (b), and if we join these links with 

links of type (c). In this case the number of the kinematic elements on link (a) will be 

a maximum. The number of link will be: 

 

1 ( 1)l i i= + + −  

or 

/ 2i l=  

 

 

Simplest Grübler Mechanism has four links. Machine must be simple. So four 

links Grübler Mechanisms are the most widely used mechanism. 
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Cases Where Grübler Equation does not Hold True: 

 

Grübler equation does not take link dimensions and combinations of joints types into 

consideration. There are cases where mechanism produces more movabilities than 

the Grübler equation suggests. These cases are as follows: 

 

i) If a link has two prismatic elements only, their axes should not be parallel. 

If so, another degree of freedom comes up, which is the sliding of the link along the 

prismatic axes. This movability does not interfere with the rest of the mechanism 

motion and hence is redundant. It must be avoided. 

 

ii) Binary links of a kinematic chain having only prismatic elements can not 

be connected to each other. If so, an extra movability comes up, redundant. 

 

iii) No closed link loop can have less than 2 revolute joints. 

 

So, 4 links Grübler mechanisms can be in R-R-R-R, RRRP, RRPP and RPRP 

types only, R standing for Revolute and P for Prismatic pairs. 

 

2.3 Isomers of 4-Link Grübler Mechanisms 

 

Isomer of a mechanism is synonymous to an isomer molecule. Two isomer 

mechanism have topologically the same structure, that is same number of links and 

joints, same joints types and sequencing, but look completely different, to different 

motions and hence used for different purposes. Releasing the fixed link, such that it 

becomes a movable link and fixing one of the originally moving links into a 

stationary state can obtain isomers of a link loop. This process is called “inversion”. 

  

2.3.1 Isomers of The 4R Chain 

 

4R or RRRR chain is the “four bar mechanism”. Movability of the four bar 

mechanism was first examined by Grashoff. (See fig. 2.1 and 2.3). 
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2

R R

R R

1

4

3

Figure 2.1  Topological map of the 4R chain. 

 

If the length of the longest link is denoted as l, the shortest as s and two 

intermediary length links as p and q. As seen in figure (2.2) and Grashoff ’s theorem 

says that four different 4-bar mechanisms exist if  

L+S <p+q, as: 

s

p

l

q

 

Figure 2.2 A Four-bar mechanism. 

 

i) If one link adjacent to S is made the ground, a crank-rocker type 

mechanism is formed. S is a crank, which does full rotation. The link opposite to S is 

a rocker, which does a limited rotation in a to and    manner. The link adjacent to the 
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moving end of S is the coupler. This mechanism converts a full rotation into a 

limited rotation and is a useful mechanism, widely used in machines. 

 

ii) If the other link adjacent to S is made the ground, another crank rocker 

mechanism is formed. 

 

iii) If S is made the ground, the mechanism formed becomes a “double 

crank”. As its name implies, both links connected to the ground can do full rotation. 

Both cranks complete a full rotation with in the same time duration and hence their 

arrange velocities within a cycle are equal, but their instantaneous speeds are not 

equal. Output crank sometimes run faster and sometimes slower than the input crank, 

which is supposedly running at constant speed by the actuation of a drive motor. It is 

also a useful mechanism which can be directly coupled to a motor.  

 

iv) If the link opposite to S is made3 the ground, the mechanism formed is a 

“double rocker”. Name of the links connected to the ground can do full rotation, but 

instead to a limited rotation or rocking. This mechanism can not be directly coupled 

to a rotating shaft and so is generally not a preferred mechanism. If the motion is 

essential the input rocker is made the output rocker of a crank rocker mechanism 

with the inclusion of two more links, in form of a 6 links Watt type Linkage. 

 

According to Grashoff theorem if r + L = p + q, the same mechanisms as 

above come up but mechanisms will all have a cross over problem when the links are 

all aligned. When the mechanism is passing through the cross over position, it can 

change closure as governed by the instantaneous velocities and accelerations of the 

links at that moment. This is something not preferred and mechanisms of this sort are 

never operated in full cycle. If r + L > p + q, only double rocker mechanisms come 

up, in four different types. 
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A
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D

C

1

2

3

4

Figure 2.3: A Four-bar mechanism. 

 

 

 

2.3.2 Isomers of The RRRP Chain 

 

Topological map of the RRRP chain is seen figure (2.4) and its isomers can 

be obtained by fixing one of the links at a time and releasing all the others. 

2

R R

R P

1

4

3

Figure 2.4: Topological map of the RRRP chain. 

 

i) If link number 1 of the chain in figure 2.4 is fixed, the mechanism obtained 

is a “slider crank” mechanism. A crank, that is link number 2 is connected to the 

ground via a revolute joints. A P-R link, that is link number 4 is connected to the 
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ground via a prismatic pair. Other kinematic pairs of links 2 and 4, both revolute, are 

coupled to each other by a coupler link, that is link 3. 

 

This mechanism can be driven from either the crank or the slider end. Output 

motion then is obtained from anyone of the remaining two moving links. Links 

proportions can be made such that the crank is capable of doing full rotation. Then 

the mechanism can coupled directly to the rotating shaft of a motor. Output motion 

then, that of the slider, becomes a complicated, multi harmonic motion of the crank 

angle θ, or seen in figure (2.5). 

4

3

2

1

θ

Figure 2.5  An off-set Slider-crank mechanism. 

a
b

c

d

Figure 2.6  vector loop. 
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Obtain able by solving the vector loop equation. 

 

a b c d+ = +
� � � ��

                                                                                             (2.10) 

 

vector as defined in figure 2.6. The length of link 4 can be made zero without 

altering the motion characteristics of the mechanism, thus making d = 0 in equation 

(2.10). This not only simplifies equation (2.10) and its derivatives, but also makes the 

mechanism is called as an “In line slider crank mechanism” contrary to the “Off-set 

mechanism” of figure (2.5). Slider crank mechanism is very useful as it can convert a 

continuous rotation into a reciprocation, in the design of machinery.  

B

C
4

3
2

1

A

Fig 2.7: An in-line slider crank mechanism 

 

 

ii) If the number 2 in Fig (2.4) is fixed, the mechanism obtained is a 

“Whitworth Quick Return Mechanism”. Link number 1 and 3 are connected to the 

ground via revolute joints and link number 4 coupler the two with a revolute joints at 

one end and a sliding joint at the other. Mechanism can be driven by link 3 or link 1. 

The output motion can be obtained from anyone of the remaining two moving links. 

Mechanism dimensions are so made that generally link 3 is rotated continuously by a 

motor shaft and output motion is from 1. when link 3 rotates with a constant speed, 
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motion of link 1 becomes a to and pro swinging, stopping at two points and speed 

harmonically varying. Such a mechanism can be made to do work with its output link 

1 while it is moving slowly and no work, but return fast in the completing motion as 

its name implies. A vector loop equation similar to that of Equation (2.10), which 

defines the position of the links. This equation can be differentiated with respect to 

time once and twice to obtain equations describing the velocities and accelerations of 

the mechanism. 

4

1
3

2
Figure 2.8  A Wtihworth Quick-Return Mechanism. 

 

 

 Length of link 4 can be made zero without altering the motion characteristics 

of the mechanism, hence a more familiar and simpler form of the mechanism is 

obtained. Due to the “Quick Return” action, this mechanism is also one of the very 

familiar mechanisms in machine design. Quick-return mechanisms are used in 

machine tools such as shapers and power-driven saws for the purpose of giving the 

reciprocating cutting tool a slow cutting stroke and a quick-return stroke with a 

constant angular velocity of the driving crank. 

  

 

 iii) If link number 3 in figure (2.4) is fixed, the mechanism obtained is a “ 

Swinging Block”. As seen in figure (2.9), the links connected to the ground are 2 and 
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4. Link number 2 can be made the input link, and then the multi harmonic swinging 

of link 4 becomes the output link. Revere order operation is not feasible.  

 

 

1

3

2
4

 Figure 2.9  A “Swinging-Block” mechanism. 

 

 

The relative motion between links 1 and 4 at the sliding joint can also be used 

to actuate the mechanism as an alternative, but still is not a very common mechanism 

in machine design. Length of link 4 can be made zero without altering the motion 

characteristics of the system and puts the mechanism into a simpler form physically 

and mathematically.   

 

iv) If link number 4 in figure (2.4) is fixed, the mechanism obtained is called 

the “Slider- Crank Mechanism of the Second Type”. As seen in figure (2.10), it is a 

peculiar mechanism not used very widely. Generally link 1 is made the input link and 

driven by a linear actuator, hydraulic, pneumatic or solenoid. Output motion can be 

obtained from either of link 2 or 3.  
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3
2

1
4

 

Figure 2.10  A Slider-Crank mechanism of the second type. 

 

Similarly, length of link 4 can be made zero without altering the motion 

characteristics of the mechanism.   

 

2.3.3  Isomers of the RRPP Chain 

 

 

 Figure (2.11) shows the topological map of the RRPP closed link loop, and its 

isomers can be obtained by fixing one of the links at a time and releasing all the 

others. 
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R P

R P

1

4

3

Figure 2.11  Topological map of the RRPP closed link loop. 

 

i) If link number 1 of the chain in figure (2.11) is fixed, the 

mechanism obtained is a “Scotch Yoke” mechanism. Link number 2 is 

connected to the ground via a revolute joint and 4 by a prismatic, and these 

two links are coupled to each other by link 3 from their other ends. Link 4 is a 

PP link and hence axes of the prismatic pairs should hot be parallel. 

2

3

1

4

θ

 Figure 2.12  Basic topology of a “Scotch Yoke” mechanism. 
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 Generally this mechanism is driven from the crank end, and the output motion 

is obtained from link number 4 as the projection of the motion of the crank tip in the 

horizontal plane if the prismatic pair axes are displaced by 90 degrees. So, output 

motion becomes a single harmonic pure sine of the crank angleθ . Length of link 

number 3 can be made zero without altering the motion characteristics. A more 

familiar form of the mechanism is shown in figure (2.13). 

o2

B

3

1

4

2

 

Figure2.13  Familiar form of the “Scotch Yoke” mechanism. 

 

 

ii) If link number 2 of the chain in figure (2.11) is fixed, the mechanism 

obtained is an “Oldham Coupling”. As seen in figure 2.14, links 3 and 1 are 

connected to the ground via revolute pairs. The prismatic pairs at the other end are 

coupled by the PP link number 4.  
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2

13

2

4

O O

Figure 2.14  An Oldham Coupling. 

 

 In usage either of 1 or 3 is the input and the other the output link. As the 

joints in between are all prismatic, the motion of the input and output links are 

exactly the same, that is with the same velocity and acceleration. The lengths of the 

PR links of 1 and 3 can be made zero without altering the motion characteristic of the 

system and hence the mechanism reduces into a simpler and more familiar form seen 

in figure (2.15). This from of the mechanism is the familiar coupling to couple 

parallel –but- offset shafts, an essential system used in every motor coupling. 

  

 

Figure 2.15  Familiar form of the “Oldham Coupling”, which is used to couple 

parallel-offset shafts. 
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iii) If link number 3 of the chain in figure (2.11) is fixed, the mechanism is a 

“Double Slider”. It converts a translation in same other direction. The prismatic pair 

axes on link 3 should not be parallel. The lengths of the PR links 2 and 4 can be 

made zero without altering the motion characteristic of the mechanism.  

3

4

2

1

Figure 2.15  A Double Slider Mechanism. 

 

 

If the prismatic axes are made perpendicular, the mechanism takes a special 

name, the “Elliptic Trammel”. Each point on the coupler link traces exact ellipses, as 

shown in figure 2.16. It has been used in various calculating mechanisms, still usable 

whenever an elliptic motion is required. 



 28 

y

O

a

b 

Y

X

A

3

B

P

1

4
O

x

2

 

Figure 2.16  An Elliptic Trammel. Every paint on the coupler link AB of this 

mechanism traces an exact ellipse.  

  

 The elliptic trammel is an instrument for drawing ellipses. Link 3 is pivoted to 

sliders 2 and 4, which slide in link 1 and point P describes an ellipse. From the figure 

(2.16) 

 

 x = a cos θ 

  

 y = b sin θ  

Then   

                       
2 2

2 2

2 2
cos sin 1

x y

y b
θ θ+ = + =                                                         (2.11) 

 

which is the equation of an ellipse with center at the origin. Length a is half the 

major axis and b is minor axis. When the device is used as a drawing instrument, a 

pen or pencil carried at P and both lengths a and b are adjustable. If P is placed at 

point C, which is midway between A and B, then a and b are equal and Equation 

(2.11) becomes, 

 2 2 2x y a+ =  
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which is the equation of a circle of radius a. 

 

iv) If link number 4 of the chain in figure 2.11 is fixed, the mechanism obtained is 

again a “Scotch Yoke”. 

 

2.3.4  Isomers of the RPRP Chain 

 

Figure 2.17 shows the topological map of the RPRP closed link loop and its isomers 

can be obtained by fixing one of the links at a time and releasing all the others. 

2

P R

R P

1

4

3

 

Figure 2.17: Topological map of the RPRP closed link loop. 

 

 

Every link is RP and mechanism is symmetrical. So every isomer obtainable is the 

same. The resulting mechanism is called the conchoidal motion mechanism. An 

example of a mechanism based on the crossed double-slider linkage is as seen in 

figure (2.15) used to provide, conchoidal motion (fig. 2.18), occasionally used in the 

steering of ships. Frame 1 is a guide fixed to ship’s deck, link 2 is the tiller, and link 

3 and link 4 are sliding blocks, pin-connected at A.  
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Figure 2.18: Conchoidal Motion mechanism. 
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CHAPTER 3 

 

MECHANISM DYNAMICS 

 

3.1 The Two Basic Problems of Dynamics 

 

Dynamics of moving bodies are defined by Newton-Euler equations. For a single 

body of mass m and centroidal mass moment of inertia GI , 

 

F ma=∑
�� �

 

G
M I α=∑
��� ��

                                                                                     (3.1) 

 

where a  is the acceleration of the mass center and  a  is the angular acceleration of 

the body. Mechanisms are composed of several moving and fixed bodies which 

transfer force and motion to each other via joints in between. The interacting forces 

at the joints are clarified by Newton’s third law, or namely the “Law of Action-

Reaction”. The inertial properties in equation (3.1) are mechanism parameters. Mass 

can be measured by a balance and inertia by experimental techniques know as the 

“Compound Pendulum”, “Torsional Pendulum” and “Filar Pendulum”. In each, the 

mechanism component is made a pendulum and set into free vibrations by an intial 

displacement. Period of natural oscillations, measured by a stop-watch, is definitive 

of the mass moment of inertia. 

Knowing the inertial properties, equation (3.1) can be used to solve only two types of 

problems: 

 

i) The forward dynamics problem: Accelerations are given and forces to 

generate these accelerations are required. This problem is simply solved by 

multiplying the masses with accelerations, or rather, in more technical terms, by pre-



 32 

multiplying the acceleration vector with mass matrix. Mathematics involved is 

simple. 

 

ii) The inverse dynamic problem: Forces are given and resulting motion are 

divided into masses or rather, in more technical terms, pre-multiplying both sides of 

equation (3.1) by the inverse of the mass matrix. This problem requires the inversion 

of the mass matrix, hence more elaborate than the first problem. Further, resulting 

accelerations are not too much meaningful for designers and velocities and positions 

must be known in time. To obtain velocities and positions, accelerations found must 

be integrated along time once and twice respectively. Accelerations and controlled 

forces of actuation are often too complicated and hence no closed form solutions for 

the differential motion equations are obtainable. In such cases, solution is obtained 

by numerical integration. 

 

3.2 Mechanism Kinematics  

 

The “forward dynamics problem” is the basic problem encountered in machine 

design, while the “inverse dynamics problem” provides an analysis. Actually at the 

end of each synthesis problem, an analysis comes to see if the synthesis done is 

correct or not. Also as analysis is simpler to understand than synthesis, in formal 

education, it is thought before synthesis. In general, it is not possible to do 

mechanisms design by using only the forward or inverse dynamics solutions, and 

solutions are often repeated in a cyclic manner.  

 

Whether the dynamics problem is forward or inverse, the kinematics or motion 

geometry of the mechanism must be known. Kinematics or kinematic equations 

describe the relationship between the positions of the links comprising the 

mechanism. Once position equations are described, they can be differentiated with 

respect to time once and twice to obtain equations describing the relationship 

between the velocities and accelerations of the links. 

 

Mechanisms are highly non-linear systems, hence their kinematic equations 

are also complicated and non-linear equations. Kinematic position equation for each 

of the mechanisms described in Chapter 2 is a problem unique in itself. A revolute 
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joint providing a rotational motion always impose a harmonic component, 

comprising of the sine and cosine of the joint angle. A translational motion at a 

prismatic joint is linear on the contrary. With this simple definition in mind, the 

position equation for a four-bar mechanism is the most difficult, and the mechanisms 

containing two prismatic pairs is the simplest.   

 

In kinematic analysis, each link is represented by a vector ranging between 

the points or axes representing the joints. As joints never disengage, these vectors 

form a closed link loop. For example, in case of a four-bar mechanism as shown in 

figure (3.1), 

a

d

c

b

O2 O4

O3

 

Figure 3.1  A four-bar mechanism and its vector representation. 

 

 

The vector loop equation is as: 

 

b c a d+ = +
� � � ��

                                                                                        (3.2) 

 

 

and is always valid. This equation has 4 vectors and each vector has two arguments, 

namely a magnitude and a direction. A vector has one or both of its arguments 

varying or fixed. In case of a four –bar mechanism, the magnitudes of the vectors in 

equation (3.2) are all constant. Angle of vector a
�

 is constant. Angle of vector b
�

, that 



 34 

is 2θ  is an independent variable, angles of c
�

 and d
��

 are dependent variables. So, 

equation (3.2) normally has two result calculable, 3θ  and 4θ . A vector equation is 

solvable for up to a maximum of two unknowns and hence, when 2θ  is given, 

equation (3.2) is solvable. 

 

To solve a vector equation, various methods exist. A purely graphical 

technique is merely a scaled drawing of the mechanism. Once the mechanism is 

drawn to scale, angles 3θ  and 4θ  are measured directly from the figure by using a 

protractor. An analytical solution is difficult as simultaneous equations describing the 

x  and y components of equation (3.2) are highly non-linear. A closed form solution 

has been obtained by Ferdinand Freundenstein and is known as Freundenstein’s 

equation. In the first form 3θ  is eliminated and a closed form solution for 4θ  is 

obtained as: 

 

2 4 4 0
2 2

A Tan B Tan C
θ θ

+ + =                                                                   (3.3) 

 

where  

 

( )2 2 3 1os 1A C K K Kθ= − + −  

22B Sinθ= −  

( )2 2 3 1s 1C Co K K Kθ= + + +                                                                      (3.4) 

 

Coefficients A,B and C are variables. K’s in them are parameter and hence are 

constant as: 

1

a
K

b
=  

2

a
K

d
=   

2 2 2 2

2
2

a b c d
K

ad

+ − +
=                                                                                       (3.5) 
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A very similar set of equations can be derived for 3θ , the coupler link angle 

when 4θ  is eliminated from the companent equations of equation (3.2). resulting 

equation is known as “Freundenstein’s equation of the second Type”. 

 

All isomers of the RRRP closed link loop has one prismatic joint in them and 

hence their position equations are simpler than that of the four-bar equation. For 

example, the slider-crank mechanism shown figure (3.2) has the following loop 

equation. 

 

a b c d+ = +
� � � ��

                                                                                                (3.6)   

 

                                                                                                         

4

3

2

1

θ



 36 

a
b

d

c
Figure 3.2  An off-set slider mechanism and its vector representation. 

 

 

a
�

, b
�

, d
��

 has constant magnitudes, magnitude of  c
�

 is variable. Angles of a
�

 

and b
�

 are variables and angles of c
�

 and d
��

 are constant. This equation hence has 

three variables in all, namely magnitude of c
�

 and angles of a
�

 and b
�

. A decent input 

/ output function will relate crank angle to slider position, eliminating the coupler 

link angle. The resulting position equation comes up as: 

 

 

( )
22sC aCo b aSin dθ= + − −                                                                   (3.7) 

 

 

which is much simpler to derive and use than Freundenstein’s equation. 

 

All isomers of 2R-2P closed link loop has two prismatic joints in them and 

hence their position equations are even simpler than equation (3.7). For example, the 

elliptic trammel shown in figure (3.3) has the following loop equation: 
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y l x+ =
�� � �

                                                                                                       (3.8) 

 

where only variables are magnitudes of x  and y  vectors. Solution reduces to 

Pythogora’s theorem as: 

 

 

2 2 2x y l+ =                                                                                                           (3.9) 

l

y

x x

l
y

 

Figure 3.3  An elliptic trammel and its vector representation. 

 

 

3.3  Mechanism Kinetics 

 

3.3.1  Motion Equations by Newton-Euler Formulation 

 

Mechanisms are composed of several rigid bodies and Newton-Euler laws 

given by equation (3.1) are valid for each moving body. Each moving body is 

considered by itself with all the external motor and loud forces and the constraint 

forces coming through the joints should be taken into consideration. A diagram of a 

single link with all the acting forces shown is called a “Free Body Diagram” and is 

very helpful in generating the differential motion equations. External actuation and 
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load forces are arbitrarily definable and hence require their own individual definition. 

Joint forces obey Newton’s third law, such that the force exerted by one link onto 

another is equal in magnitude and opposite in direction to the force that particular 

link exerts onto the former. Within this framework, differential motion equations can 

be derived. In case of the four-bar mechanism shown in figure (3.4) for example, 

active forcing can well be an arbitrary profile load torque on output crank CD and on 

accordingly calculated motor torque on input link AB. Motor torque must be at a 

level at least to overcome the load and friction forces and gravity forces if any and 

bring the mechanism to static equilibrium. A marginally greater motor torque will 

generate a marginal acceleration on all the moving links. 

 

Types of joint forces depend on joint types. Söylemez has generated all the 

possible joints with degrees of freedom between 1 and 5 systemmatically in his book 

[4]. Shigley and Vicker have examined these joints from a force transmission point 

of view in their books. 

 

This work takes only the 4-link Grübler mechanisms into consideration and 

hence only the revolute and prismatic joints will be considered. Degrees of freedom 

in planar motion is 3, two of which are translations along two mutually perpendicular 

directions and the remaining a rotation about an axis perpendicular to the plane of 

motion. A revolute joint can transmit forces in any direction, but it can not transmit 

any moments. That is why a revolute joint does not allow any relative translation, but 

allows a rotation only. Forces transferable at a revolute joint hence can be separated 

into two components, presumably x  and y , and specified like that in free body 

diagrams and motion equations. A prismatic joint on the other hand allows 

translation along the joints axis. This is because it can not transmit any forces along 

the joint axis, but it can transmit a force in a direction perpendicular to the joint axis. 

Also it can transmit a moment and so presents any relative rotation of the links it is 

joining.   

 

With this simplistic definition of joint forces, the free body diagram of the 

moving links are shown in figures (3.5), (3.6), and (3.7) showing characteristic 

external forcing, an arbitrary load torque on input link CD and an accordingly 
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calculated motor torque must be at least at a level enough to bring the mechanism to 

static equilibrium.   

      

A

B

D

C

FAy

FAx

 

Figure 3.4  A four bar mechanism 
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Figure 3.5  Free body diagram of the input crank of the mechanism of figigure (3.4) 

 

 



 40 

Motion equations for the input crank AB hence become: 

 

 

..

22x cx Bx
F F F m x= − =∑                                                                                        (3.10) 

 

..

2 2y cy ByF F F m y= − =∑                                                                                       (3.11) 

 

..

2 2 2 2A By Bx AF bCos F bSin Iτ θ θ θ= − =∑                                                                  (3.12) 

 

FCy

FCx

C

FBy

FBX

B
c

03

 

Figure 3.6  Free body diagram of the coupler link of the mechanism of figure (3.4) 

 

 

Note the opposed directions of forces at joint B: 

 

..

33x Cx BxF F F m x= − =∑                                                                                      (3.13) 

 

..

3 3y Cy ByF F F m y= =∑                                                                                           (3.14) 
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..

3 3 3 3c c y c y BF dSin F dCos Iτ θ θ θ= + =∑                                                                  (3.15) 

 

 

D

C

FCy

FCx

FDy

d

FDx

Load 
Torque

 

Figure 3.7  Freebody diagram of the output crank of the mechanism of the 

figure(3.4). 

 

 

Note the opposed directions of forces at joint C and for output crank CD : 

 

 

..

4 4x Dx CxF F F m x= − =∑  

(3.16) 

 

..

4 4y Dy CyF F F m y= − =∑  

(3.17) 

 

..

4 4 4 4D Cx Cy DF dSin F dCos Iτ θ θ θ= − =∑  

(3.18) 
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Resulting 9 differential equations in all. System has only one degree of freedom, so 

there must be 8 constraint equations in algebraic nature. 

 

 

3.3.2 Motion Equation by Lagrange Formulation without Multipliers 

 

Generating differential motion equations there times as many as the number 

of link is one extreme of the kinetics problem. Another extreme is generating a single 

equation describing the motion in the single degree of freedom, 2θ . This is done by 

Lagrange Formulation without multipliers. Lagrangian by definition, is the difference 

between the kinetic and potential energies of the system. Lagrange equation, re-

written again as: 

 

d

dt
.

i

L

q

 
∂ 

 
∂ 

-
i

L

q

∂

∂
 =  iQ  

 

For i = 1,2,….,n                                                                                         (3.19) 

 

where   

 

 L     the Lagrangian, 

 iq    the th
i  generalised coordinate, 

iQ   the th
i  generalised torque or force directly acting on coordinate iq               

                    

 

The Lagrangian of the system is defined as: 

 

 L = T – V                                                                                                   (3.20) 

 

where 

 T     the kinetic energy of the system, 

 V     the potential energy of the system, 
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The crank-rocker mechanism shown in Figure (3.1) has a single degree of 

freedom resulting in one generalised coordinate as: 

 

1q  = 2θ                                                                                                       (3.21) 

 

 

L T V= −∑ ∑  

23 3.
2

1 1

1 1

2 2
ii Gi Gi i Gi

i i

L m v I m gyθ
= =

= + −∑ ∑  

(3.22) 

 

 

2
Giv = ( )2 2

ix iy
v v+                                                                                          (3.23) 

 

where 
.

iθ  is the angular velocity of link i, ixV  and  iyV  are the velocity components of 

its centre of mass.  
 

The positions in Lagrange formulation should be found by using 

Freudenstein’s equation of the first and second type, coordinate velocities are found 

from the time derivative of Freudenstein’s equation. Using Lagrange formulation in 

deriving the motion equation of a four-bar mechanism is a laborious task and 

possibility of making mistakes is great. Resulting equation is large. A complete 

derivation of the motion equation of a four-bar mechanism has been done in [5]. 

 

3.3.3 Motion Equation by Hamilton Formulation 

 

Canonical formulations of Hamilton generate two first order equations for 

each assumed movability shown by equations (1.10) and (1.11). The former of these 

describe time rate of change of the generalised momenta. A description of the 

Hamiltonian function is given by equations (1.12) and (1.15). Number of generalised 

coordinates defined need not be equal to the degrees of freedom, but can be greater. 

If no of generalised coordinates is equal to degrees of freedom, then Hamilton 
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formulation ends up with first order differential equations twice in number of the 

degrees of freedom. If m  many coordinates are defined for an n  degrees of freedom 

systems, formulation by equation (1.9) generates m  second order differential 

equations, which in turn require ( ),m n  many constraint equations, generally 

algebraic in nature.    

 

3.4 Comparison of the Motion Equation Generation Methods   

 

Motion equations are differential in nature and equations for linkage 

mechanisms are highly non-linear. Their closed form solutions are never available. 

They can be integrated by numerical integration routines. Assuming movabilities 

greater than the degree of freedom simplifies the appearance of the degree of 

freedom simplifies the appearance of the equations and reduces the labour in their 

generation, but as number of equations increase, their simultaneous integration 

becomes more difficult and rounding off errors build up faster, hence results of 

numerical integration becomes unreliable as time goes on. 

 

Also there is the problem of solving algebraic constraint equations together with 

the differential equations. This is a difficult task in itself. There are no known 

software to the writer of this dissertation other than the software developed by L. 

Changgao of Beijing institute of Post and Telecommunications [6] named “difalg”. 

One shortcut method is to take the derivatives of the algebraic constraint equations 

and make them differential equations too. This method increaser the number of 

differential equations to integrate, hence worsens the accuracy problem.   

 

3.5 Automatic Simulation Programs  

 

As generation of motion equations for mechanisms is a difficult process, some 

researchers have generated computer programs, which upon description of the 

mechanism, form the motion equations automatically and once the load and actuation 

forces and initial conditions are described, integrates them accordingly. 

 



 45 

From 1968, a general purpose program called DAMN (Dynamic Analysis of 

Mechanical Networks) was developed to simulate planar linkages by D.A. Smith and 

M.A. Chace at the University of Michigan. This program can handle dynamic or 

kinematic, constrained or unconstrained systems undergoing finite or infinitesimal 

displacements. System up to 30 links connected to each other by lower kinematic 

pairs can be modelled. Chonggao indicates a similarity between the way DAMN 

defines the linkage topology and Branin’s technique for the automatic modelling of 

electrical networks in his 1981 study. Equations of motion are derived using 

Lagrange’s formulation with multipliers. The number of equations developed is 

equal to the number of joints in the system. The constraint forces are calculated by an 

iterative determination of lagrange multipliers. The program has a facility to 

accommodate user-defined forcing functions. Results of integration can be printed 

out or presented in form of graphs or simple mechanism stick diagrams drawn at a 

certain position. 

 

DRAM (Dynamical Response of Articulated Machinery) is the second 

generation of DAMN. It uses D’alambert’s principle to define the equations of 

motion. DAMN and DRAM are powerful dynamic program which are commercially 

available. At the Central Electricity Generating Board of Britain. DRAM has been 

further modified and divided into 2 sections called AMP2D and AMP3D which can 

simulate planar and spatial mechanisms respectively. These programs can 

accommodate user-defined forcing functions and impact type forces, which are very 

difficult to integrate digitally. They both can solve forward and inverse dynamics 

problems. 

 

Another commercially available program originating from the University 

Michigan is ADAMS: Almost during the same period, between 1968 and 1971 

another general purpose program to simulate mechanical networks named IMP 

(Integrated Mechanisms Program) was developed by J.J. Uicker Jr., D.F. Livermore 

and P.N. sheth at the University of Wisconsin. IMP is based on the earlier work of 

Livermore, concisely described in his paper published in 1967. It was further 

developed by Sheth as a Ph. D. thesis and finally put into a commercially available 

multi-purpose program as reported by Sheth and Uicker in their paper published in 

1972. IMP can handle planar or spatial, multi-degrees of freedom , multi-loop chains. 
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 The program uses the concepts of freedom, multi-loop chains. The program 

uses the concepts of Graph Theory to define the mechanical network and formulates 

the constraint equations from the network topology. Constraint equations are used to 

generate a stiffness matrix, which is substituted into the Hamilton’s equations. The 

program can work in kinematic, static and dynamic modes, and hence can do static 

force analysis of structures as well. It can calculate joint forces using virtual work. 

Springs and dampers can easily be included into the simulation. Any other forcing 

functions can be defined externally. IMP has a powerful graphics package, which can 

draw graphs or pictures of the network simulated and is commercially available. 

 

Many other general purpose computer programs exist such as MEDUSA 

prepared by T.J. Lehman at the Illinois Institute of technology, VECNET developed 

by G.C. Andrews and H.K. Kesavan at the University of Waterloo, SKINAL 

developed by Paul and Hud at the University of Pennsylvania, KIDYAN developed 

by Brat at the Czech Technical University, DAPL developed by G.T. Rooney and 

J.S. Rai at Liverpool Polytechnic and CADOM developed by H. Rankers at Delft 

University of Technology. 

 

CATIA is an intricate and voluminous general purpose mechanisms simulation 

software prepared by a team of researchers in 1983, at Dassault Systems, France. It 

can handle both open and closed loop linkages. It has a graphics package which can 

present mechanisms in wire frame or detailed polyhedra representation and is 

graphically interactive. Basic robot tasks and related operations can also be 

implemented onto the simulation. While in motion, continuous checking of 

geometric incompatibilities and collisions are carried out and avoided. It can 

accommodate revolute and prismatic pairs. Any other joint types required are 

represented by a combination of these. Robot simulations allow up to 20 joints and 

robot systems up to 20 robots. 

 

Another general purpose dynamic software prepared by Görür as an M.Sc. 

dissertation in 1989 [7], initially aiming the simulation of internationally accepted 

commissioning tests of electric towers, can simulate the small and large scale 

displacements of structures due to external loads and material failure. In this software 

the topology is described by the initial positions of the joints and stiffness between 
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them. System equations are automatically generated using Newton’s laws. Moment 

equations for links are eliminated by converting the system into equivalent masses 

concentrated at the joints. This layout enables the simulation of mechanisms and 

open chain linkages composed of all revolute binary links also. 

 

 Most of those programs are either more complicated for 4-link Grübler 

mechanisms or already outdated now. Among newer software, “Simulink” and 

“Camlinks” can be referred to. 

 

 Simulink is a platform for multi-domain   simulation and Model-based design 

for dynamic systems. It provides an interactive graphical communication 

environment and a customisable set of libraries by which users can modify them for 

their on application problems, including the dynamics of the mechanical system and 

the systems. Produced by “The Mathworks” it is commercially available in market. 

Components of the simulated system are embedded in blocks, which are shaped by 

the user. Interaction between the blocks are again defined by the user. The software 

can be coupled to any other software, such as Matlab for the generation of filters, 

windows etc. and for required more extensive arithmetic. 

 

 Camlinks is an interactive software, developed by the Camlinks company. It 

is an effective way of designing high-speed machines. Concentrating on the dynamic 

aspects of the machine, mechanisms and motions can be designed and analysed in 

detailed. It can design cam and linkage mechanisms, gives an animated motion and 

motion profiles. After design is completed, produces CAD drawing outlines. Both of 

these final two softwares act in form of interacting system blocks are similar to the 

free-bodies of the Newton method, and interaction of the blocks are similar to what 

Newton’s third law defines. So, when one such program is used to simulate a 

mechanism, it spontaneously utilises Newton’s laws to model. Equation numbers are 

spontaneously elevated, solution becomes time consuming and costly, accuracy 

lacking in time. 

 

This dissertation presents the use of Lagrange formulation in a systematic 

definition of the system and generation of its motion equations in the forthcoming 

chapters.           



 48 

CHAPTER 4 

 

 

A GENERALISED APPROACH FOR THE MODELLING OF 

ARTICULATED OPEN CHAIN PLANAR LINKAGES; FICTITIOUS 

DEGREES OF FREEDOM 

 

4.1 Introduction 

 

 This chapter explains a method developed by Bayseç and Jones [7] which 

they call “The Method of Fictitious Degrees of Freedom”. This method was intended 

to model 4 link, planar open chain linkages composed of revolute and prismatic pairs 

only. These systems are parts of industrial robots. First link is the ground and the 

three links connected to it in articulation are moving and hence comprise a 3 degree 

of freedom motion. The aim of this dissertation has been to apply constraint forces 

and or moments to the tip of the last moving link either to keep that point fixed, as if 

there is a revolute joint there or to make it possible to move along a certain prismatic 

axis with fixed angular orientation, as if there is a prismatic joint there, to connect the 

last moving link to the ground and hence convert the open chain robotic system into 

a closed chain mechanism.  

     

4.2 Definition of the 3-Degrees of Freedom Articulated Open Chain Planar 

Robotic System  

  

This generalised chain is used to model any configuration of three degrees of 

freedom planar robot manipulators. Two of the movabilities locate the tip link to the 

required point in plane, third movability puts it to the correct angular orientation. 

Four links connected in an articulated manner by three joints form the generalised 

chain. 
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Ground is stationary, which is the first link. Main links are powered or actuated by 

intermediary links, which stretch between main link pairs. 

 

 In simulation of the mechanical systems, simulation must be compatible with 

the real system simulated. The compatibility must hold kinematically, statically 

dynamically. Kinematic compatibility requires that the motion of all bodies in the 

simulation must be same as the real system. The joint types, their degrees of freedom 

and ranges of these degrees must be defined and dimensions of the moving links 

must be specified in accordance to the real system. For static compatibility, all 

external, bearing and actuation forces appearing in the simulation must be the same 

as the real forces occurring in the real system, defining a static entity, when the 

system is static. All subsets of the static entity must also be static. Dynamic 

compatibility requires that the inertial properties of the simulation such as masses, 

mass moments of inertia, must be the same as that of the real system simulated, 

hence the dynamic forces such as actuator, friction, damping forces and inertia forces 

appearing in the simulation becomes the same as the real forces occurring in the 

system. Static compatibility is a subset of dynamic compatibility. 

 

 To provide static and dynamic compatibility between the model and the 

system, first a suitable Cartesian frame is selected, y axis upward, opposite to the g 

vector. Then the open chain is defined on this Cartesian frame by placing the joints 

first placement also describes the initial position of the chain. A joint can be either a 

revolute or a prismatic. Location of a revolute joint is described by the Cartesian 

coordinates of the point where revolute axis pierces the manipulator plane. A 

prismatic joint on the contrary, is described by the prismatic axis. Prismatic axis is a 

straight line its slope and y intercept should be known. Three such joints must be 

described in consecutive order, starting from the ground, ending at the tip point. 

Ground link or link number 1 starts from the origin of the coordinate frame and ends 

at the first joint. First moving link starts from the first joint and extends up to the 

second joint. Second moving link starts from the second joint and extends up to the 

third joint. Third moving link or link number 4 starts from the third joint and ands at 

the end point. 
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 Vectors are used to model the three moving links and the ground link. There 

are possible 4 different links according to the type of joint. 

 

 

On

An

On

An

Bn
revolute joint
       n + 1

revolute joint n
          

prismatic joint
       n + 1

prismatic joint
       n + 1

                           An RR link                                     A RP link 

 

On

An

On

An

Bn

Bn-1 Bn-1

revolute joint
      n+1

prismatic joint
      n+1

prismatic joint n
      

prismatic joint n
      

                                 A PR link                             A PP link 

 

Figure 4.1 Four possible different links with revolute and / or prismatic elements on.   
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 An R-R link is represented by vector A
��

, which star from the centre of the 

revolute joint nearer to the ground and ends at the next one. It has a changing 

argument but a constant modulus. An R-P link is shown by two or orthogonal vectors 

A
��

and B
��

. A stars from the centre of the revolute joint and extends up to the prismatic 

axis perpendicular to it. Its argument is variable, but its modulus is constant. The 

prismatic joint is represented by a B
��

 vector. Its minimum magnitude is zero, 

maximum value is the range of sliding motion. Angle of B
��

 is a right angle ahead of 

the preceding A
��

 vector. A P-P link has a prismatic joint at the beginning. Its starts 

form the tip of the 1nB −

��

, the B
��

 vector of the preceding link and ends at the centre of 

the revolute joint. Its modulus is constant. It has the same angular velocity and 

acceleration as the preceding link. A P-P link starts from the tip of the 1nB −

��

 vector 

and extends up the succeeding prismatic pair, perpendicular to it. Modulus of A is 

constant, but its angular velocity and acceleration are the same as that of preceding 

link. Its B vector starts at the tip of A and represents the succeeding prismatic joint. 

These links are shown in figure (4.1). 

 

 This definition of links leads to an assumption that, each link is starting at a 

revolute joint and ending at a prismatic. Therefore each link has 2 degrees of 

freedom to form the generalized chain. Three of these freedoms are in excess for 

plane positioning and are constrained. Totally 8 different combinations, which are R-

R-R, R-R-P, R-P-P, R-P-R, P-R-R, P-R-P, P-P-R, P-P-P are obtainable. But P-P-P 

combination does not provide a rotational degree, hence is not used for robotics 

applications. 

 

 This model satisfies kinematic compatibility and dynamic compatibility 

unless friction forces are included. The formulation friction forces are included in 

following chapters. The generalised chain is shown in figure (4.2). 
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4.3 Equations of Motion for the Generalised 6-Degrees of Freedom Model 

 

 The structure of the generalised 6 degrees of freedom manipulator model is 

shown in Figure (4.2)  
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Figure 4.2 The generalised 6 degrees of freedom planar system. 

 

 

The equations of motion for the generalised chain are derived using 

Lagrange’s formulation that results six second order ordinary differential equations. 

Generalised coordinates used are 1B , 2θ , 2B , 3θ , 3B  and 4θ . 

 

The coordinates of the mass centres of the moving links are: 

 

2 1 1 1 1 2 2 2 2x ACos B Sin p Cos q Sinθ θ θ θ= − + −  

2 1 1 1 1 2 2 2 2y A Sin B Cos p Sin q Cosθ θ θ θ= + + +                                                (4.1) 

 

 

3 1 1 1 1 2 2 2 2 3 3 3 3x ACos B Sin A Cos B Sin p Cos q Sinθ θ θ θ θ θ= − + − + −  

3 1 1 1 1 2 2 2 2 3 3 3 3y A Sin B Cos A Sin B Cos p Sin q Cosθ θ θ θ θ θ= + + + + +                (4.2) 



 53 

 

 

 4 1 1 1 1 2 2 2 2 3 3 3 3x ACos B Sin A Cos B Sin A Cos B Sinθ θ θ θ θ θ= − + − + −  

         4 4 4 4p Sin q Cosθ θ+ +  

  

 4 1 1 1 1 2 2 2 2 3 3 3 3y A Sin B Cos A Sin B Cos A Sin B Cosθ θ θ θ θ θ= + + + + +  

         4 4 4 4p Cos q Sinθ+ −                                                                              (4.3) 

 

 

 The expressions for the components of the velocity of mass centers are found 

by differentiating equations (4.1), (4.2) and (4.3) with respect to time. Substituting 

them into the Lagrangian and doing the necessary arithmetic operations of the 

Lagrange formulation. We get the final form of the six equations of motion as: 

 

Equation of motion for the coordinate 1B  is: 

 

[ ] ( ) ( ){ } ( ) ( ){ }
.. ..

1 22 3 4 1 2 2 2 2 3 4 1 2 2 2 2 3 4B m m m Sin m q B m m Cos m p A m mθ θ θ θ θ + + + − + + + − + + + 
 

( ) ( ) ( ){ } ( ){ }
.. ..

2 33 4 1 2 1 3 3 3 4 3 1 3 3 3 4 3B m m Cos Sin m q m B Cos m p m Aθ θ θ θ θ θ θ+ − + − + + − + +      
 

( ) ( ) ( ){ }
.. ..

3 44 1 3 4 4 1 4 4 1 4osB m C m q Sin p Cosθ θ θ θ θ θ θ − + − + − =    

( )1 1 2 3 4BF gCos m m mθ− + + −  

( ) ( ) ( ) ( )
2 2 2. . . . . .

22 2 2 2 21 2 2 2 2 3 4 1 2 2 2 2 3 42Sin m p A B m m Cos m q B m mθ θ θ θ θ θ θ θ θ
    

− + + + + − + + −    
    

 

( ) ( ) ( )
2 2. . . . .

33 3 3 31 3 3 3 4 3 1 3 3 3 4 32Sin m p m A B Cos m q m Bθ θ θ θ θ θ θ θ
    

− + + + − + −    
    

 

 

( ) ( )
2 2. .

4 41 4 4 4 1 4 4 4Sin m p Cos m qθ θ θ θ θ θ
   

− + −   
   

                                                   (4.4) 
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 Equation of motion for the coordinate 2θ  is: 

 

( ) ( ){ } ( ) ( ){ }
..

1 1 2 2 2 2 3 4 1 2 2 2 2 3 4B Sin m q B m m Cos m p A m mθ θ θ θ − + + + − + + +   

( ) ( )( )
..

2 2 2 2
2 2 2 2 2 3 4 2 2I m p q m m A Bθ  + + + + +  + 

( )
.. ..

2 32 3 4B A m m θ+ +   [ ( )2 3Sin θ θ− ( ) ( ){ }3 2 3 2 3 4 2 3 2 3m A q B p m A B B A− + − + 

 

( ) ( ) ( ){ }2 3 3 2 3 2 3 4 2 3 2 3Cos m A p B q m A A B Bθ θ− − + + ]+ 

( ) ( ){ }
..

3 4 2 2 3 2 2 3B m A Cos B Sinθ θ θ θ − − − +   

( ) ( ) ( ) ( ){ }
..

4 4 2 4 2 4 2 4 2 4 2 4 2 4m A q B p Sin A p B q Cosθ θ θ θ θ − − + − − =   

( ) ( ) ( )
. .

2 22 3 4 2 2 2 2 2 2 2 2 2 22m m B B g A Cos B Sin m g p Cos q Sinθτ θ θ θ θ θ 
− + + − − − −    

 

( ) ( ) ( )
2 2. . . .

33 3 32 3 3 2 3 2 3 4 2 2 3 2 32Sin m A p B q m A B A A B Bθ θ θ θ θ
  

− − + + + −  
  

 

( ) ( ) ( )
2 2. . . .

33 3 32 3 3 2 3 2 3 4 2 2 3 2 32Cos m A q B p m B B A B B Aθ θ θ θ θ
  

− − − + − − −  
  

 

 

( ) ( ) ( ) ( )
2 2. .

4 42 4 4 2 4 2 4 2 4 4 2 4 2 4Sin m A p B q Cos m A q B pθ θ θ θ θ θ
   

− − − − −   
   

             (4.5) 

 

 

 Equation of motion for the coordinate 2B  is: 

 

( ) ( ) ( ) [ ]
.. .. ..

1 223 4 1 2 2 3 4 3 4B m m Cos A m m B m mθ θ θ+ − + + + + +        

( ){ } ( ){ }
..

3 2 3 3 3 4 3 2 3 3 3 4 3Sin m q m B Cos m p m Aθ θ θ θ θ− + + − + +    

( ) ( ){ } ( ){ }
.. ..

3 44 2 3 2 4 4 4 2 4 4 4B m Cos Sin m q Cos m pθ θ θ θ θ θ θ− + − + − =        
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( ) ( )
2 2 2. . . . .

32 3 3 32 3 4 2 2 2 3 3 3 4 32 2BF m m B gCos Sin m p m A Bθ θ θ θ θ θ θ
    

+ + − + − − − + +    
    

 

( ) ( ) ( ) ( )
2 2 2. . .

3 4 42 3 3 3 4 3 2 4 4 4 2 4 4 4Cos m q m B Sin m p Cos m pθ θ θ θ θ θ θ θ θ
     

− + + − − + −     
     

 

(4.6) 

 

Equation of motion for the coordinate 3θ  is: 

 

( ){ } ( ){ }
..

1 1 3 3 3 4 3 1 3 3 3 4 3B Sin m q m B Cos m p m Aθ θ θ θ− + + − + +    

( ) ( ) ( ){ } ( ) ( ) ( ){ }
..

2 2 3 3 2 3 2 3 4 2 3 2 3 2 3 3 2 3 2 3 4 2 3 2 3Sin m A q B p m A B B A Cos m A p B q m A A B Bθ θ θ θ θ − − + − + − + + + + 

 

( ){ } ( ){ }
..

2 2 3 3 3 4 3 2 3 3 3 4 3B Sin m q m B Cos m p m Aθ θ θ θ− + + − + +    

( ) ( ) [ ]
.. ..

2 2 2 2
33 3 3 3 3 4 3 3 4 3I m p q m A B B m Aθ  + + + + + +   

( ) ( ) ( ) ( ){ }
..

4 4 3 4 3 4 3 4 3 4 3 4 3 4m A q B p Sin A p B q Cosθ θ θ θ θ − − + + − =   

( ) ( )
. .

3 33 3 3 3 3 3 4 3 3 3 3 32m g p Cos q Sin m B B g A Cos B Sinθτ θ θ θ θ θ 
− − − + − +  

 

( ) ( ) ( )
2 2. . . . . .

2 22 2 2 22 3 3 3 2 3 2 3 4 3 2 3 2 32 2Sin m p B A p B q m A B A A B Bθ θ θ θ θ θ
    

− + + + + + −    
    

 

( ) ( ) ( )
2 2. . . . . .

2 22 3 2 22 3 3 3 2 3 2 3 4 3 2 3 2 32 2Cos m q B A q B p m B B A B B Aθ θ θ θ θ θ
    

− − − + + − −    
    

 

( ) ( ) ( ) ( )
2 2. .

4 43 4 4 3 4 3 4 3 4 4 3 4 3 4Sin m A p B q Cos m A q B pθ θ θ θ θ θ
   

− − + − −   
   

              (4.7) 

 

 

Equation of motion for the coordinate 3B  is: 

 

( ) ( ) ( ){ } ( )
.. .. ..

1 224 1 3 4 2 2 3 2 2 3 4 2 3B m Cos m A Cos B Sin B m Cosθ θ θ θ θ θ θ θ θ − + − − − + − +       
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[ ] [ ] ( ) ( ){ }
.. .. ..

33 44 3 4 4 4 3 4 4 3 4m A B m m q Sin p Cosθ θ θ θ θ θ + + − + − =   

( )
2 2. . . .

23 2 23 4 3 3 2 3 4 2 2BF m B gCos Sin m A Bθ θ θ θ θ θ
    

+ − + − + +    
    

 

( ) ( ) ( )
2 2 2. . .

2 4 42 3 4 2 3 4 4 4 3 4 4 4Cos m B Sin m p Cos m qθ θ θ θ θ θ θ θ θ
     

− + − − + −     
     

        (4.8) 

 

 

Equation of motion for the coordinate 4θ  is: 

 

( ) ( ){ } ( ) ( ) ( ) ( ){ }
.. ..

1 4 4 1 4 4 1 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4B m q Sin p Cos m A q B p Sin A p B q Cosθ θ θ θ θ θ θ θ θ   − + − + − − + + − +   

 

( ) ( ){ } ( ) ( ) ( ) ( ){ }
.. ..

2 4 4 2 4 4 2 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4B m q Sin p Cos m A q B p Sin A p B q Cosθ θ θ θ θ θ θ θ θ   − + − + − − + + − +   

 

( ) ( ){ } ( )
.. ..

2 2
3 44 4 3 4 4 3 4 4 4 4 4B m q Sin p Cos I m p qθ θ θ θ θ   − + − + + + =     

( ) ( ) ( )
.. .

2
2 24 4 4 4 4 4 4 2 4 4 2 2 4 2 42m g p Cos q Sin m Sin p B A p B qθτ θ θ θ θ θ θ

 
− − + − + + − 

 
 

( ) ( ) ( ) ( )
2 2. . . . . .

2 32 2 3 34 2 4 4 2 4 2 4 4 2 3 4 3 4 3 42 2m Cos q B A q B p m Sin p B A p B qθ θ θ θ θ θ θ θ
   

− + − + − + + −   
   

( ) ( )
2. . .

3 3 34 3 4 4 3 4 3 42m Cos q B A q B pθ θ θ θ
 

− + − 
 

                                                      (4.9) 

 

 

Equation of motions of [(Equation (2.4) – (4.9)] are arranged in a matrix from 

that is given as: 
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(1,1) (1, 2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3, 4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5, 4) (5,5) (5,6)

(6,1) (6,2) (6,3) (

M M M M M M

M M M M M M

M M M M M M

M M M M M M

M M M M M M

M M M M 6,4) (6,5) (6,6)M M

 
 
 
 
 
 
 
 
 
 

 * 

..

1

..

2

..

2

..

3

..

3

..

4

B

B

B

θ

θ

θ

 
 
 
 
 
 
 
 
 
 
 
 
 

 = 

1 1

2 2

2 2

3 3

3 3

4 4

B B

B B

B B

F

F

F

θ θ

θ θ

θ θ

τ

τ

τ

+ Φ 
 

+ Φ 
 + Φ
 

+ Φ 
 + Φ
 

+ Φ  

 (4.10) 

 

 

Where [ ]M  is the symmetric mass matrix, F and τ’s are the generalised external 

forces and torques acting arbitrarily. Φ’s are the generalised velocity dependent 

forces. 

 

 4.4 The Generalised Constraint Forces and Torques 

 

 The generalised constraint forces and torques, which are acted on the system 

like external forcing functions are added on each element of the force vectors. 

Generalised constraint force of each degree of freedom is equal in magnitude 

opposite in direction to the sum of all external and velocity dependent forces. Each 

generalised constraint force is a activated or kept inactive by an Existence Factor, 

that is a binary information bit defining the actual type of joint. If degree is real its 

EF is 1, if not its EF is 0, EF’s 1 to 6 denote the existence of coordinates 

1 2 2 3 3 4, , , , ,B B Bθ θ θ  respectively and 

 

 1EF  = 
______

2EF  . OR .  2EF  = 
______

1EF  

3EF  = 
______

4EF  . OR . 4EF  = 
______

3EF   

 5EF  = 
______

6EF  . OR . 6EF  = 
______

5EF                                                       (4.11)

   

   are always true. 
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 Angular degrees of freedom are defined as counter-clockwise from the 

positive x axis, and reactions of rotary actuators are acted on the preceding link. That 

is, the inclusion of reaction torques and generalised constraint forces convent 

equation (4.10) into the following form: 

 

 

 
M

 
 
 
 
 
 
 
 
 
 
 
 
 

 * 

..

1

..

2

..

2

..

3

..

3

..

4

B

B

B

θ

θ

θ

 
 
 
 
 
 
 
 
 
 
 
 
 

 = 

1 1 1

2 2 2 3 3

2 2 2

3 3 3 4 4

3 3 3

4 4 4

. 2

. 1 . 3

. 4

. 3 . 5

. 6

. 5

B B B

B B B

B B B

F GCF EF

GCF EF GCF EF

F GCF EF

GCF EF GCF EF

F GCF EF

GCF EF

θ θ θ θ θ

θ θ θ θ θ

θ θ θ

φ

τ φ φ

φ

τ φ φ

φ

τ φ

 
+ + 

 
+ + − − 

 
+ + 

 
 + + − −
 
 + +
 
 

+ + 

 

(4.12) 

 

where GCF’s are the Generalised Constraint Force. Inclusion of existence factors and 

starting from the outermost coordinate yield equations that are given below: 

 

 4θ  equation is: 

 

( ) ( ) ( ) ( ) ( )
.. .. .. ..

1 2 3
2

6,1 . 6 6,2 . 6 6,3 . 6 6,4 . 6 6,6 . 5B M EF M EF B M EF M EF M EFθ θ+ + + − +              

 

( ) ( ) [ ]
.. ..

43 4 46,1 . 6 6,2 . 6B M EF M EFθ θθ τ φ+ = +                                                  (4.13) 

 

 3B  equation is: 

 

( ) ( ) ( ) ( )
.. .. .. ..

1 2 3
2

5,1 . 5 5, 2 . 5 5,3 . 5 5, 4 . 5B M EF M EF B M EF M EFθ θ+ + + +                

( ) ( ) [ ]
.. ..

43 3 35,5 5,6 . 5B BB M M F EFθ φ+ = +                                                           (4.14) 
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3θ  equation is: 

 

( ) ( ){ }
..

1 4,1 6,1 . 5 . 4B M M EF EF + +   

( ) ( ){ } ( ) ( ) ( ){ }
..

2 4,2 6,2 . 5 . 4 4, 4 . 3 4,2 6,2 . 5 3M M EF EF M EF M M EF EFθ  + − − + + 
 

( ) ( ) ( )
.. ..

2 36,3 . 6 6, 4 . 6 6,6 . 5B M EF M EF M EFθ+ − +      

( ) ( ){ } ( )
.. ..

3 44,5 6,5 . 5 . 4 4,6 . 4B M M EF EF M EFθ + + =   

[ ]3 3 3 4. 6 . 5 . 4EF EF EFθ θ θ θτ φ τ φ+ − +                                                                     (4.15) 

 

 2B equation is: 

 

( ) ( ) ( ) ( )
.. .. .. ..

1 2 3
2

3,1 . 3 3,2 . 3 3,3 3,4 . 3B M EF M EF B M M EFθ θ+ + + +                

( ) ( ) [ ]
.. ..

43 2 23,5 . 3 3,6 . 3 . 3
B B

B M EF M EF F EFθ φ+ = +                                         (4.16) 

 

2θ  equation is: 

 

( ) ( ) ( ){ }
..

1 2,1 4,1 6,1 . 5. 3 . 2B M M M EF EF EF + + +   

( ) ( ) ( ) ( ) ( ) ( )){ }
..

2 2, 2 4,2 4,4 6,2 6, 4 6,6 . 5 . 3M M M M M M EF EFθ  + + + + +   

( ) ( ) ( ) )({ } ( )
.. ..

2 32,3 4,3 6,3 . 5 . 3 . 2 2,4 . 2B M M M EF EF EF M EFθ + + + +     

( ) ( ) ( ) ){ } ( ) ( ){ }
.. ..

3 42,5 4,5 6,5 . 5 . 3 . 2 2,6 4,6 . 3 . 2B M M M EF EF EF M M EF EFθ   + + + + =   
 

[ ]2 3 4 2 3 3. 4 . 3. 6 . 3 . 3. 5 . 2EF EF EF EF EF EF EFθ θ θ θ θ θτ τ τ φ φ φ− − + + +                    (4.17) 

 

1B  equation is: 

( ) ( ) ( ) ( )
.. .. .. ..

1 2 321,1 1, 2 . 1 1,3 . 1 1,4 . 1B M M EF B M EF M EFθ θ+ + + +                
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( ) ( ) [ ]
.. ..

43 1 11,5 . 1 1,6 . 1 . 1B BB M EF M EF F EFθ φ+ = +                                            (4.18) 

 

 If equations (4.13), (4.14), (4.15), (4.16), (4.17), and (4.18), are used whith 

proper existence factors, the motion of any 3 degrees of freedom open loop chain is 

defined excepting friction. The portion of the original model, which is presented here 

does not contain the dynamics of intermediary links such as actuators, balance 

springs, dashpots etc. The model in full can be found in [8].     

 

4.5 Checking for Correctness 

 

The derivations of motion equations are generally laborious and the 

possibility of making mistakes in the mathematics and computation is great. Once the 

computer implementation is done, results should be checked for correctness and 

accuracy. Checking should never be done by using the same arithmetic approach 

used in the derivation of the motion equation to prevent any possible repetition of 

mistakes. A kineto- static solution based on the D’alambert’s principle with graphical 

solution of position, velocity, acceleration and force equations is probably the best 

means of checking. This method is easy to understand and apply, and as in the well-

illustrated books by J. Shgley, fist published in 1961 and by R. Norton, published in 

1992 are textbook materials now. A scaled stick-diagram of the mechanism 

comprises the position analysis. Velocity and acceleration polygons enable to grasp 

and get an insight into how the coordinated motion of each link is developing at that 

instant. As mathematics involved is minimum, the possibility of making human 

mistakes is negligible. Sample solutions must be carried out as many times as 

possible, enough to prove that the outputs of the computer simulation are correct. 

 

Another way of checking for correctness is giving the conditions, which will 

produce a known and expected motion profile. Examples to this are numerous. 

Motion along a vertical slideway for example is a free fall. Free motion of a link 

about a revolute joint is harmonic, with the natural frequency of the link. To hinder a 

dynamic link from moving in a multi degree of freedom system, it can be brought to 

its minimum potential energy state and assigned a very large mass, which is initially 

at rest. This converts that particular link to a virtual ground. A conservative system 
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keeps the level of its total energy, that is its Hamiltonian, constant. Kinetic and 

potential energy of individual links come up with complicated profiles, but the total 

kinetic and potential energies will vary in equal amounts but of opposite polarity, 

such that the total energy is conserved. If there are not any prismatic movements to 

infinite displacements, variation in total kinetic and potential energies will be 

periodic at a frequency equal to the system fundamental frequency. Energy injection 

or dissipation complicates the problem and therefore should be avoided in the first 

stages of the tests for correctness. 
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CHAPTER 5 

 

CONVERSION OF THE 4 LINK OPEN CHAIN INTO A 4 LINK CLOSED 

LOOP AND EMULATION OF 4 LINK GRÜBLER MECHANISMS 

 

5.1 Conversion Of The 4 Link Open Chain Into A 4 Link Closed Loop 

 

5.1.1 Nature Of The Constraint Forces And Moments 

 

The first link of the open chain is the ground and is not movable. Remaining 

three links are connected to one another in an articulated manner to form an open 

chain, one end of which is connected to the ground by a prismatic and a revolute 

joint in succession.  When the tip point of the last moving link is connected to the 

first link, that is the ground, a closed loop is farmed. If the joint in between is a 

revolute, it transmits a force in appropriate direction and magnitude to keep the tip 

point fixed at a certain location, but capable of rotating about it. So, emulate a 

revolute joint there, a constraint force must be applied in the required direction and 

magnitude. As neither of these variable are known, it has to be under an appropriate 

control strategy. For simplicity, the constraint force can be examined in Cartesian 

components. Control strategy must definitely be aiming position control. If the 

location of the revolute joint needs be rx  and ry  defined with respect to the primary 

coordinate frame, which are constant numbers and Tx  and Ty  are the coordinates of 

the tip point of the open chain, which are variables, the position dependent constraint 

forces will be: 

 

( )1Tx r TF G x x= −  

( )2Ty r TF G y y= −                                                                                         (5.1) 
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where the terms in parentheses are errors in x  and y  directions, 1G  and  2G  are 

gains, most simply constant numbers. They are large numbers in N/m, Newtons of 

force-per metre of positional error. 

T (xT, yT)

FTx

y error

x error
R (xr, yr)FTx

FTy

FTy

 

Figure 5.1 Tip point T of the open chain and constraining forces acting on it to more           

it towards R, where the revolute joint is located. 

 

Position of the tip point can be calculated from: 

 

1 1 1 1 2 2 2 2 3 3 3 3 4 4Tx ACos B Sin A Cos B Sin A Cos B Sin A Cosθ θ θ θ θ θ θ= − + − + − +  

1 1 1 1 2 2 2 2 3 3 3 3 4 4Ty A Sin B Cos A Sin B Cos A Sin B Cos A Sinθ θ θ θ θ θ θ= + + + + + +            (5.2) 

 

 

For positional accuracy gains 1G  and 2G  must be large numbers but stiff positional 

control often goes out of control and starts to generate non-decaying limit cycles, 

which can only be eliminated by velocity dependent damping forces. So, a better 

constraint force should include damping terms on top of what is shown equation 

(5.1), such as: 

 

 ( )
.

1 1Tx r T TF G x x C x= − −  

( )
.

2 2Ty r T T
F G y y C y= − −                                                                                      (5.3) 
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.

Tx  and 
.

Ty  are the components of the velocity of the tip point, calculable and 

derivable from equation (5.2), by faking their time derivatives. 1C  and 2C  are 

constant damping coefficients with unit N/m/sec. 

 

 A prismatic joint allows only a translation along the sliding axis and a 

constraint moment in the mechanism plane, in proper magnitudes and polarities. 

 

T (xT, yT)

FTy

y error

R (xr, yr)

τ

θ

FTx

 

Figure 5.2 Tip point T  of the open chain, dislocated from the prismatic details at P , 

being driven to correct location and orientation by the constraint force TyF  and τ  

 

 

A simplified problem is shown figure (5.2), where the tip point T  is dislocated from 

the prismatic joint at P  by a distance ( )P Tx x−  and twisted from its proper angular 

orientation by ( )4ψ θ− . As a prismatic pairs can not transmit any forces along the 

slideway, there are no position errors in horizontal direction and hence: 

 

( )
.

2 2Ty P T TF G y y C y= − −  

( )
.

3 4 3 4G Cτ ψ θ θ= − −                                                                                              (5.5) 
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ψ , the required angular orientation of the tip most link is a constant number, 3G  is a 

positional gain in N-m/rad, a high number and 3C  again a damping coefficient in N-

m/rad/sec. The prismatic axis can be in any angular position, so, the simple problem 

illustrated in figure (5.2) and resulting constraint forces of equation (5.5) should be 

written to emulate any direction for the prismatic axis. 

 

 

5.1.2 Effect of Constraint Forces and Moments on the Generalized open Chain 

 

τext

β

R3

R4

T

x

y

 

Figure 5.3 Effect of an arbitrary external force and arbitrary external torque on the 

generalized coordinates of the open chain. 

 

Any external force extF  and torque extτ  applied onto the tip point T  has effects on all 

the six joints on the generalized chain, and hence, must be added onto the 

generalized forcing functions. 

 

 Generalized force components to be added onto the prismatic joint forces are: 

  

11 extB extF b F=
� ��

 

 22 extB extF b F=
� ��

 

 33 extB extF b F=
� ��

                                                                                          (5.4) 
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where nb
�

 is a unit vector along the n th prismatic axis, or simply, projection of the 

external force along the prismatic axes. Note that “dot product” of two vectors is a 

scalar and arithmetic of equation (5.4). Describe the magnitudes only. Directions of 

these forces are the same as the generalized coordinates themselves. Similarly, the 

generalized torque components to be added onto the revolute joint generalized 

torques are: 

 

 22 ext extext R Fθτ τ= +
�� �� �

 

 33 ext extext R Fθτ τ= +
�� �� �

 

 44 ext extext R Fθτ τ= +
�� �� �

                                                                                     (5.5) 

 

where nR
��

 is the vector connecting the nθ
�

 revolute joint to the tip point. Transfer of 

these components from link to link is then done by the existence factors and 

generalized force arrangements in the force vector of equation (4.12). 

 

5.2 Examples 

 

 To demonstrate the versatility of the method, several examples are presented 

in this section. 

 

5.2.1 The Triple Pendulum  

 

 In this example, the generalized chain is converted into a triple pendulum. 

Shown in figure (5.4). Vector of Existence Factors is: [ ]101010
T

. Link lengths are 1 

m. each, masses are 1 kg. each, with zero centroidal mass moments of inertia. There 

are no external forces and moments, no motor forces and system released from a 

horizontal position at rest. Motion develop, as shown in figure (5.4), with a 

complicated nature as expected. Figure (5.5) shows the kinetic and potential energy 

profiles of each link, which are also complicated, but when total kinetic and total 

potential energies are calculated, but when total kinetic and total potential energies 

are calculated, they show equal profiles of opposite polarity, as seen in figure (5.6), 
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hence total energy being zero all the time, as system is conservative. This is a very 

common approach in verifying the equations of motion of a system are derived 

correctly or not.  
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Figure 5.4 The triple pendulum of  example 5.2.1 at initial conditions and its motion 

profile. Link lengths are 1 metre and masses 1 kg. all. 

 

 

2 3 4 
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Figure 5.5 Kinetic and potential energies of the links of the triple pendulum whose 

motion profile is given in figure (5.4) 
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Figure 5.6 Total of kinetic and potential energies of the moving links of the triple 

pendulum whose motion profile is given in figure (5.4), and their sum. Note that the 

total energy is zero always as the system is conservative. 

 

 

 

5.2.2 The 4-Bar Mechanism  

 

 When the tip of a triple pendulum is constrained not to more by two 

constraint forces, the system reduces into a 4-bar mechanism. In the first example, a 

triple pendulum whose first link is 0.3 meters long, second 0.8 meters and third 0.6 

meters, with 1 kg. masses each, mass centers located at the joints is constrained to act 

like a 4-Bar mechanism whose second fixed pivot is displaced from origin by 1 

meter. Crank is brought to zero degrees position and released from rest. As there are 

no external motor action or friction, system is conservative and displays non-ending 

oscillations.  
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C

m3

D

m4

m2

A B

AD=1m
AB=0.3m
BC=0.8m

CD=0.6m
m2=1kg
m3=1kg
m4=1kg

Figure 5.7 The tip of a triple pendulum is constrained not to move, converting it into 

a 4-Bar mechanism. 

 

To bring the system to rest, a small amount of damping is provided onto the first 

revolute joint, that is the crank pivot with damping coefficient 0.25 N-m/rad/sec. 

Resulting motion profile is shown in figure (5.8). Due to damping, motion settles 

down after some time and system comes to rest at the position where 2θ = -11.98569 

degrees, 3θ = 43.62593 degrees and 4θ = 332.7809 degrees. If the dynamic motion 

equations are derived correctly, the 4-Bar must be in balance of the static forces 

acting at this position as “static equilibrium” is a subset of “dynamic 

equilibrium”.
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Figure 5.8 Motion profile of the 4-Bar mechanism whose initial position, dimensions 

and inertial properties are shown in figure (5.7). 

 

 There are two masses under the action of gravity only. Figure (5.9) shows the 

free body diagrams of the 4-Bar mechanism. Coupler link BC is a two forces 

member and hence is under a compressive load of 9.384 N. 

A

B

A

43.24

C

D

0.3m 112.96

43.63

FBC

27

  

Figure 5.9 Free body diagrams of cranks of the 4-Bar mechanism at the rest position, 

acted upon by gravity only. 
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The coupler force BCF  required to keep the output crank CD in static equilibrium is 

also 9.384 N. constraint force components at D, as DxF =-6.8365 N and DyF N. The 4-

Bar mechanism under consideration can be driven by an arbitrary constant or 

variable motor torque applied onto crank AB. In the second example a constant 

motor torque of 3 N-m is applied and mechanism is released from the rest position it 

attained in the previous example. Motor powers the mechanism into a continuous 

motion. Crank angle increases with increasing velocity, coupler link BC and output 

crank CD oscillates within their motion ranges as seen in figure (5.10). 
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Figure 5.10 The input crank AB of the 4-Bar mechanism described in figure (5.7) 

and at initial conditions described in figure (5.9) is acted upon by a constant motor 

torque of 3 N-m. Resulting motion profile is as seen here. 

 

 

 In the third example, again a 4-Bar mechanism is considered in shape of a 

parallelogram, as shown in figure (5.11) each link is of a 1 meter long and have a 

mass of 1 kg., concentrated at the link tips. The system is released from rest, while 

the cranks are 30 degrees from the vertical.  
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m2

AD=1m
AB=1m
BC=1m
m2=1kg
m3=1kg
m4=1kg

C

Figure 5.11 A parallelogram mechanism. When this mechanism is released from the 
initial condition shown here while at rest, generates the motion under the action of 

gravity only, shown in figure (5.12). 
 

The resulting motion will be that of two identical simple pendulums of natural 

frequency 3.132 rad/sec or period 2.006 seconds as seen in figure (5.12). Coupler 

link BC of course does only circular translation and its angle never changes. 
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Figure 5.12 Motion profile of the parallelogram mechanism whose initial position 
and mechanism parameters are shown in figure (5.11). 
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 In the fourth example, to be able to see how the program behaves in case of a 

dead center position, 

C

m3

D

m4

m2

A

B AD=1m
AB=0.3m
BC=0.8m

CD=0.6m
m2=1kg
m3=1kg
m4=1kg

θ2

 

Figure 5.13 A 4-Bar mechanism, at rest at the position shown, where output crank 

CD is at horizontal position. 

 

Mechanism is assigned the dimensions, inertial properties and initial conditions 

shown in figure (5.13) and allowed to more under the action of gravity and a 50 N-m 

motor torque on crank AB in counter-clockwise direction. Profile of the motion is as 

shown in figure (5.14). 
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Figure 5.14 Motion of the 4-Bar mechanism whose parameters and initial conditions 

are shown in figure (5.13), under the action of a 50 N-m motor torque on crank AB 

and gravity. 

 

 In the fifth example, for the motion to settle down, a damping torque on crank 

AB of the previous example is applied. Damping coefficient is 10 N-m/rad/sec. 

Resulting motion profile is shown in figure (5.15). As seen there, all the links come 

to a stop at the extended dead center position. Angular positions when settled down 

are: 2θ = 77.7 degrees, 3θ = -44.74 degrees and 4θ = -28.51 degrees. At this position, 

a force analysis shows that the mechanism is in static equilibrium under the action of 

gravity and the 20 N-m motor torques on crank AB. 20 N crank torque stretches the 

dyad of the coupler link and the output crank, but the two never attain the same angle 

due to gravity. 
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Figure 5.15 Motion of the 4-Bar mechanism shown in figure 5.13 under the action of 

gravity, 20 N-m of constant motor torque and damping of coefficient 10 N-m/rad/sec 

on crank AB. Links come to rest at the extended dead center position. 

 

 

5.2.3 The Slider –Crank Mechanism 

 

 The next set of examples are on the slider-crank mechanism, well known 

member of the RRRP closed link loop. This mechanism requires the vector of 

existence factors as [ ]101010
T

if the sliding R-P link is of finite dimensions. If the 

sliding link of zero length, it can still be considered a double pendulum, a special 

version of the triple pendulum, a special version of the triple pendulum used to 

model the 4-Bar mechanisms described in the previous five examples, with the 

length of the sliding link is zero, it will not require any external torque for 

constraining any rotation. 

 

In the sixth example, the mechanism considered is an in-line slider-crank, 

whose the dimensions, inertial properties and the initial condition is shown in figure 

(5.16). No motor torques are applied and the mechanism is released from rest, while 



 77 

the crank angle is at zero degrees. The system moves under the action of gravity only 

and to settle down, a damping is applied onto the crank with coefficient 9N-

m/rad/sec.  

A B
m3 m4

m2

AB=1m
BC=1m

m2=1kg
m3=1kg
m4=1kg

C ,

All centroidal inertias are zero

Figure 5.16 An in line slider-crank mechanism, initially at its extended dead center 

position. Mechanism parameters are shown aside. 

 

 

Resulting motion profile is shown in figure (5.17), motion actuated by gravity 

only settles down at its minimum potential energy position where crank angle 

becomes -90º, coupler angle becomes 19.471º and slider position from crank pivot 

3.1622 m. 
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Figure 5.17 Motion profile of the slider-crank mechanism shown in figure (5.16). 

There is damping but no motor torque on the crank, hence system moves under the 

action of gravity only and settles down at minimum potential energy position. 

 

 Next example, the seventh one shows how can the slider-crank of the 

previous example be driven by a motor connected to point A in figure (5.16). An 

arbitrary torque of 9 N-m is applied, without any damping. Resulting motion profile 

is shown in figure 5.18, starting from the minimum potential energy position 

described in figure (5.17).  
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Figure 5.18 Motion profile of the slider-crank mechanism described in figure (5.16), 

generated by a 9 N-m crank torque. Motion starts from the settled down conditions 

shown in figure (5.17). 

 

 

5.2.4 The Elliptic Trammel 

 

 To show how the method deals with two sliding joints, the elliptic trammel is 

emulated in two examples here. In the eight example of the chapter, the mechanism 

shown in figure (5.19) used. Vector of existence factors is [ ]100101
T

, indicating that 

joint between the ground and first moving link is a prismatic, joint between the 

second moving link and third is a revolute too. The third is constrained to move on a 

vertical slideway by proffer constraint forces. Mechanism is released from the 

position shown in figure (5.19), while at rest. Normally it has to display non-ending 

oscillations under the action of gravity if no friction or damping acts. 
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A
B

m3 m4

m2

AB=0.8m m2=1kg
m3=1kg
m4=1kg

,

All centroidal inertias are zero

 

Figure 5.19 The Elliptic Trammel referred to in example 8 of section 5.2.4 in its 

initial condition, together with system parameters. 

 

For the motion to settle, a damping force is applied onto the first prismatic joint with 

coefficient 10 N-m/rad/sec. Resulting motion profile is shown in figure (5.20). 1S  in 

the legend stands for coordinate 1B , that is position of point A, initially at zero, 

moves right as the mass at B moves down under the action of gravity, displays a 

slight overshoot to the other side of the vertical slideway and then settles at 0.8 

meters. 

 

 Similarly, slider at point B  is initially at origin moves down under the action 

of gravity. Displacement of slider B  from origin is indicated by 2S  in the legend of 

figure (5.20). At max, it attains a 0.8 meter displacement, equal to the length of the 

coupler link, displays a rebounce and then settles down at o.8 m. displacement. As 

motion is in direction of gravity, mathematically it comes up with negative valves of 

displacement. Angle of the coupler link BC, as measured counterclockwise from the 

positive x  axis, origin being at A, starts from zero degrees and end, its motion at –90 

degrees. Motion profile is correct dynamically and the static position attained in the 

end is also static position attained in the end is also statically correct. 
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Figure 5.20 Motion profile of the elliptic trammel shown in figure 5.19 under the 

action of gravity only. Due to damping, motion settles down at the minimum 

potential energy position.  

  

 

An elliptic trammel is a special form of a “double-slider” mechanism, where 

the angle between the sliding axes is 90 degrees. A double-slider is used to convent a 

rectilinear motion in one direction into another rectilinear motion in some other 

direction. As points on the coupler link of an elliptic trammel traces exact ellipses, 

this mechanism has been the part of mechanical calculating machines for solving 



 83 

second order equations. Normally, it is operated only in the first quadrant due to 

space limitations, by moving one of the sliders, manually in case of a computing 

machine or by a hydraulic actuator. Output is the motion of either the other slider or 

a coupler point. This mechanism often is not operated in all four quadrants. For that, 

the sliding axes should be crossing each other and so are made in different planes. 

Prismatic axes are in parallel but offset planes, and the coupler link operates in 

between. In such a construction, the system can be driven by a continuously rotating 

motor placed an one of the sliders and coupler connected to the motor shaft. In the 

ninth example of the chapter, a continuous operation of the mechanism is observed in 

all four quadrants. Motion starts from the final conditions of the motion of previous 

example, where mechanism has attained its minimum potential energy and staying 

still in stable static equilibrium. As seen in figure (5.21), motion needs some time to 

build up, and then sliders show to and fro oscillations in their slideways within a 

range of 1.6 meters, twice the length of the coupler link and coupler link, starting its 

motion from –90 degrees, displays an ever increasing angular position, rotating 

counterclockwise. Driving torque of the motor is constant and arbitrarily chosen to 

be 11.38 N-m. 
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Figure 5.21 Motion profile of an elliptic trammel working in all 4-quadrants 

Actuation is done by a motor on the first sliding link, rotating counterclockwise and 

the coupler link connected to its shaft. After the motion builds up both sliders 

oscillate within a range of 1.6 meters each, twice the length of the coupler and the 

coupler displays an ever increasing angular position in counterclockwise or positive 

sense. 

 

5.3 Tuning Up Of The Motion Equations 

 

 To tune up the motion equations to model a particular mechanisms, existence 

factors, mechanism dimensions and location of mass centers, the masses and 

centroidal   mass moments of inertias must be declared. Tuning may seem difficult at 

the beginning and therefore, for the completeness of the dissertation, sample tunings 

for all possible 4-link Grübler mechanisms are given in this section. Nomenclature is 

as follows: 

 

 Often symbols come up with subscripts. Subscript is a number and indicates a 

particular link. There are 4 links in total, enumerated starting from the ground. Link 1 
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is the ground, immovable with infinite dimensions and inertial properties. Links 2,3 

and 4 are the first, second and third moving links in succession, hence: 

 

nm , n = 2,3,4 : mass of nth link. 

nmi , n = 2,3,4 : mass moment of inertia of nth link. 

np , n = 2,3,4 : relative coordinate of mass nth link along vector nA
��

. 

nq , n = 2,3,4 : relative coordinate of mass center of nth link perpendicular to vector 

nA
��

. 

 na , n = 1,2,3,4 : magnitude of vector nA
��

 of nth link, all constants. 

Theta 1 : Angle of vector 1A
��

, a constant value. 

flx : x coordinate of the point where tipmost point of the open chain is to be fixed at,           

a constant number. 

Fly : y coordinate of the point where tipmost point of the open chain is to be fixed at,           

a constant number. 

gain : position gain of the constraint force fixing the tip of open chain. 

cgain : velocity gain of the constraint force fixing the tip of open chain. 

 

 y functions are as follows : 

y(1) : 1B  (Prismatic joint between the ground and link 2) 

y(2) : 
.

1B  Joint velocity 

y(3) : 2θ  (Revolute joint between the ground and link 2) 

 y(4) : 
.

2θ  Joint velocity 

y(5) : 2B  (Prismatic joint between links 2 and 3) 

y(6) : 
.

2B  Joint velocity 

y(7) : 3θ  (Revolute joint between links 2 and 3) 

y(8) : 
.

3θ  Joint velocity 

y(9) : 3B  (Prismatic joint between links 3 and 4) 

y(10) : 
.

3B  Joint velocity 

y(11) : 4θ  (Revolute joint between links 3 and 4) 
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y(12) : 
.

4θ  Joint velocity 

nef , n = 1….6 : existence factors 

fx : x component of the constraint force closing the open chain    

fy : y component of the constraint force closing the open chain    

tt : constraint torque closing the open chain 

 

 Sample values for different 4-link Grübler mechanisms are as follows: 

 

5.3.1 The Four Bar Mechanism 

 

Masses; 

m2 = 1 kg. (for link2) 

m3 = 2 kg. (for link 3) 

m4 = 3 kg. (for link 4) 

 

Mass moment of inertias; 

mi2 =0. 1 (for link2) 

mi3 = 0.2 (for link 3) 

mi4 = 0.3 (for link 4) 

 

P;  

p2 =0. 1 m. (for link2)  

p3 = 0.4 m. (for link 3) 

p4 = 0.4 m. (for link 4) 

 

q ; 

q2 =0  (for link2)  

q3 = 0 (for link 3) 

q4 = 0 (for link 4) 

 

length of links; 

a2 = 0.2 m.(for link2)  

a3 = 0.8 m. (for link 3) 



 88 

a4 = 0.8 m. (for link 4) 

 

Theta 1 = 0 

flx = 1 m.(position of end of  link 4) 

fly = 0 (position of end of  link 4) 

gain = 10000 

cgain = 100 

 

Initial valves for displacements and velocities; 

y(1) = 0 

y(2) = 0 

y(3) = 0 

y(4) = 0 

y(5) = 0 

y(6) = 0 

y(7) = pi / 3 

y(8) = 0 

y(9) = 0 

y(10) = 0 

y(11) = - pi / 3 

y(12) = 0 

 

Joints ; 

ef 1  = 0 

ef 2  = 1





 Revolute joint  

ef 3  = 0 

ef 4  = 1





 Revolute joint  

ef 5  = 0 

ef 6  = 1





 Revolute joint  

forces for end of link 4 (joint 4); 

fx = - gain * (dx – flx) – cgain * vx (for end of link 4) 

fy = - gain * (dy – fly) – cgain * vy (for end of link 4) 
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Torque; 

tt = 0 

joint 4 is revolute joint. 

 

 

5.3.2 The Slider-crank mechanism 

  

Masses; 

m2 = 1 kg. (for link2) 

m3 = 2 kg. (for link 3) 

m4 = 3 kg. (for link 4) 

 

Mass moment of inertias; 

mi2 = 0 (for link2) 

mi3 = 0 (for link 3) 

mi4 = 0 (for link 4) 

 

P; 

p2 = 0.25 m. (for link2)  

p3 = 1 m. (for link 3) 

p4 = 0 (for link 4) 

 

q ; 

q2 =0  (for link2)  

q3 = 0 (for link 3) 

q4 = 0 (for link 4) 

 

length of links; 

a2 = 0.25 m. (for link2)  

a3 = 1 m. (for link 3) 

a4 = 0 (for link 4) 

 

Theta 1 = 0 

flx = 2.35 m. (position of end of  link 4) 
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fly = 0.2 m. (position of end of  link 4) 

gain = 10000 

cgain = 100 

 

Initial valves for displacements and velocities; 

y(1) = 0 

y(2) = 0 

y(3) = 0 

y(4) = 0 

y(5) = 0 

y(6) = 0 

y(7) = 0 

y(8) = 0 

y(9) = 0 

y(10) = 0 

y(11) = 0 

y(12) = 0 

 

Joints ; 

ef 1  = 0 

ef 2  = 1





 Revolute joint  

ef 3  = 0 

ef 4  = 1





 Revolute joint  

ef 5  = 0 

ef 6  = 1





 Revolute joint  

 

Forces for end of link 4 (joint 4); 

fx = 0 

fy = - gain * (dy – fly) – cgain * vy (for end of link 4) 

 

Torque; 

tt = - gain * (y(11) - pi) –cgain * y(12), 

joint 4 is prismatic joint. 



 91 

5.3.3 The Quick-return mechanism 

 

Masses; 

m2 = 1 kg. (for link2) 

m3 = 2 kg. (for link 3) 

m4 = 3 kg. (for link 4) 

 

Mass moment of inertias; 

mi2 = 0 (for link2) 

mi3 = 0 (for link 3) 

mi4 = 0 (for link 4) 

 

P; 

p2 = 0.1 m. (for link2)  

p3 = 0.4 m. (for link 3) 

p4 = 0.4 (for link 4) 

 

q ; 

q2 =0  (for link2)  

q3 = 0 (for link 3) 

q4 = 0 (for link 4) 

 

length of links; 

a2 = 0.2 m. (for link2)  

a3 = 0.8 m. (for link 3) 

a4 = 0.8 m. (for link 4) 

 

Theta 1 = 0 

flx = 0.6 m. (position of end of  link 4) 

fly = 0.7 m. (position of end of  link 4) 

gain = 20000 

cgain = 100 

 

 



 92 

Initial valves for displacements and velocities; 

y(1) = 0 

y(2) = 0 

y(3) = 0 

y(4) = 0 

y(5) = 0 

y(6) = 0 

y(7) = pi / 3 

y(8) = 0 

y(9) = 0 

y(10) = 0 

y(11) = - pi / 3 

y(12) = 0 

 

 

 

Joints ; 

ef 1  = 0 

ef 2  = 1





 Revolute joint  

ef 3  = 0 

ef 4  = 1





 Revolute joint  

ef 5  = 1 

ef 6  = 0





 Prismatic joint  

 

Forces for end of link 4 (joint 4); 

fx = - gain * (dx – flx) – cgain * vx (for end of link 4) 

fy = - gain * (dy – fly) – cgain * vy (for end of link 4) 

Torque; 

tt = 0 

joint 4 is revolute joint. 

 

 

 



 93 

5.3.4 The Swinging-block mechanism 

 

Masses; 

m2 = 1 kg. (for link2) 

m3 = 1 kg. (for link 3) 

m4 = 1 kg. (for link 4) 

 

Mass moment of inertias; 

mi2 = 0 (for link2) 

mi3 = 0 (for link 3) 

mi4 = 0 (for link 4) 

 

P; 

p2 = 0.1 m. (for link2)  

p3 = 0.4 m. (for link 3) 

p4 = 0.4 (for link 4) 

 

q ; 

q2 =0  (for link2)  

q3 = 0 (for link 3) 

q4 = 0 (for link 4) 

 

length of links; 

a2 = 0.2 m. (for link2)  

a3 = 0.6 m. (for link 3) 

a4 = 0 (for link 4) 

 

Theta 1 = 0 

flx = 1 m. (position of end of  link 4) 

fly = 0 (position of end of  link 4) 

gain = 15000 

cgain = 100 
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Initial valves for displacements and velocities; 

y(1) = 0 

y(2) = 0 

y(3) = 0 

y(4) = 0 

y(5) = 0 

y(6) = 0 

y(7) = - pi / 3 

y(8) = 0 

y(9) = 0 

y(10) = 0 

y(11) = pi / 3 

y(12) = 0 

 

Joints ; 

ef 1  = 0 

ef 2  = 1





 Revolute joint  

ef 3  = 0 

ef 4  = 1





 Revolute joint  

ef 5  = 1 

ef 6  = 0





 Prismatic joint  

 

Forces for end of link 4 (joint 4); 

fx = - gain * (dx – flx) – cgain * vx (for end of link 4) 

fy = - gain * (dy – fly) – cgain * vy (for end of link 4) 

Torque; 

tt = 0 

joint 4 is revolute joint. 
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5.3.5 The Scotch- yoke mechanism 

 

Masses; 

m2 = 1 kg. (for link2) 

m3 = 1 kg. (for link 3) 

m4 = 1 kg. (for link 4) 

 

Mass moment of inertias; 

mi2 = 0 (for link2) 

mi3 = 0 (for link 3) 

mi4 = 0 (for link 4) 

 

P; 

p2 = 0.1 m. (for link2)  

p3 = 0.4 m. (for link 3) 

p4 = 0.4 (for link 4) 

 

q ; 

q2 =0  (for link2)  

q3 = 0 (for link 3) 

q4 = 0 (for link 4) 

 

length of links; 

a2 = 0  (for link2)  

a3 = 0 (for link 3) 

a4 = 0.4 (for link 4) 

 

Theta 1 = pi / 2 

flx = 1 m. (position of end of  link 4) 

fly = 0 (position of end of  link 4) 

gain = 10000 

cgain = 100 
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Initial valves for displacements and velocities; 

y(1) = -0.6  

y(2) = 0 

y(3) = 0 

y(4) = 0 

y(5) = 0 

y(6) = 0 

y(7) = 0 

y(8) = 0 

y(9) = 0 

y(10) = 0 

y(11) = 0 

y(12) = 0 

 

Joints ; 

ef 1  = 1 

ef 2  = 0





 Prismatic joint  

  

ef 3  = 1 

ef 4  = 0





 Prismatic joint  

 

ef 5  = 0 

ef 6  = 1





Revolute joint  

 

Forces for end of link 4 (joint 4); 

fx = - gain * (dx – flx) – cgain * vx (for end of link 4) 

fy = - gain * (dy – fly) – cgain * vy (for end of link 4) 

Torque; 

tt = 0 

joint 4 is revolute joint. 
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5.3.6 The Oldham-coupling mechanism 

 

Masses; 

m2 = 1 kg. (for link2) 

m3 = 2 kg. (for link 3) 

m4 = 3 kg. (for link 4) 

 

Mass moment of inertias; 

mi2 = 0.1 (for link2) 

mi3 = 0.2 (for link 3) 

mi4 = 0.3 (for link 4) 

 

P; 

p2 = 0.1 m. (for link2)  

p3 = 0.4 m. (for link 3) 

p4 = 0.4 (for link 4) 

 

q ; 

q2 =0  (for link2)  

q3 = 0 (for link 3) 

q4 = 0 (for link 4) 

 

length of links; 

a2 = 0.2 m.  (for link2)  

a3 = 0.8 m. (for link 3) 

a4 = 0.8 m. (for link 4) 

 

Theta 1 = 0 

flx = 1 m. (position of end of  link 4) 

fly = 0 (position of end of  link 4) 

gain = 10000 

cgain = 100 
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Initial valves for displacements and velocities; 

y(1) = -0.6 (B1) 

y(2) = 0 

y(3) = 0 

y(4) = 0 

y(5) = 0 

y(6) = 0 

y(7) = pi / 3 

y(8) = 0 

y(9) = 0 

y(10) = 0 

y(11) = - pi / 3 

y(12) = 0 

 

Joints ; 

ef 1  = 0 

ef 2  = 1





 Revolute joint  

 

ef 3  = 1 

ef 4  = 0





 Prismatic joint  

 

ef 5  = 1 

ef 6  = 0





Prismatic joint  

 

Forces for end of link 4 (joint 4); 

fx = - gain * (dx – flx) – cgain * vx (for end of link 4) 

fy = - gain * (dy – fly) – cgain * vy (for end of link 4) 

Torque; 

tt = 0 

joint 4 is revolute joint. 
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5.3.7 The Double slider mechanism 

 

Masses; 

m2 = 9 kg. (for link2) 

m3 = 1 kg. (for link 3) 

m4 = 1 kg. (for link 4) 

 

Mass moment of inertias; 

mi2 = 0 (for link2) 

mi3 = 0 (for link 3) 

mi4 = 0 (for link 4) 

 

P; 

p2 = 0.01 m. (for link2)  

p3 = 0.4 m. (for link 3) 

p4 = 0.01 (for link 4) 

 

q ; 

q2 =0  (for link2)  

q3 = 0 (for link 3) 

q4 = 0 (for link 4) 

 

length of links; 

a2 = 0  (for link2)  

a3 = 0.8 m. (for link 3) 

a4 = 0 (for link 4) 

 

Theta 1 = pi / 2 

flx = 0.8 m. (position of end of  link 4) 

fly = 0 (position of end of  link 4) 

gain = 10000 

cgain = 100 

 

 



 100 

Initial valves for displacements and velocities; 

y(1) = 0 

y(2) = 0 

y(3) = 0 

y(4) = 0 

y(5) = 0 

y(6) = 0 

y(7) = 0 

y(8) = 0 

y(9) = 0 

y(10) = 0 

y(11) = 0 

y(12) = 0 

 

Joints ; 

ef 1  = 1 

ef 2  = 0





 Prismatic joint  

 

ef 3  = 0 

ef 4  = 1





 Revolute joint  

 

ef 5  = 0 

ef 6  = 1





 Revolute joint  

 

Forces for end of link 4 (joint 4); 

fx = - gain * (dx – flx) – cgain * vx (for end of link 4) 

fy = 0 (for end of link 4) 

Torque; 

tt = - gain * (y(11) - pi) –cgain * y(12), 

joint 4 is prismatic joint. 
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5.4.8 Conchoidal motion mechanism 

 

Masses; 

m2 = 1 kg. (for link2) 

m3 = 1 kg. (for link 3) 

m4 = 1 kg. (for link 4) 

 

Mass moment of inertias; 

mi2 = 0 (for link2) 

mi3 = 0 (for link 3) 

mi4 = 0 (for link 4) 

 

P; 

p2 = 0.1 m. (for link2)  

p3 = 0.4 m. (for link 3) 

p4 = 0.4 (for link 4) 

 

q ; 

q2 =0  (for link2)  

q3 = 0 (for link 3) 

q4 = 0 (for link 4) 

 

length of links; 

a2 = 0.4 m.  (for link2)  

a3 = 0 (for link 3) 

a4 = 0 (for link 4) 

 

Theta 1 = pi / 2 

flx = 0.4 m. (position of end of  link 4) 

fly = 1 (position of end of  link 4) 

gain = 10000 

cgain = 100 
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Initial valves for displacements and velocities; 

y(1) = 0 

y(2) = 0 

y(3) = 0 

y(4) = 0 

y(5) = 1  

y(6) = 0 

y(7) = 0 

y(8) = 0 

y(9) = 0 

y(10) = 0 

y(11) = pi / 2 

y(12) = 0 

 

Joints ; 

ef 1  = 0 

ef 2  = 1





 Revolute joint  

 

ef 3  = 1 

ef 4  = 0





 Prismatic joint  

 

ef 5  = 0 

ef 6  = 1





 Revolute joint  

 

Forces for end of link 4 (joint 4); 

fx =0 (for end of link 4) 

fy = - gain * (dy – fly) – cgain * vy (for end of link 4) 

 (for end of link 4) 

Torque; 

tt = - gain * (y(11) - pi) –cgain * y(12), 

joint 4 is prismatic joint. 
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5.4 Verification Of Simulation Results For Correctness 

 

 Simulation results come up from a series of mathematical operations. If 

correctly prepared and executed, simulation programs should produce motion 

profiles, which can be obtained by experiments, that is they should define the natural 

motion of the system they are simulating. In preparing a simulation program for 

mechanical systems, the following points may be found important: 

 

i) Often researchers find applying Lagrange Equation laborious. Firstly the 

kinetic and potential energy expressions must be derived correctly. Energies are 

scalar quantities and are meaningful to many calculated and checked for correctness. 

Once they are formulated correctly, a correct definition of the Lagrangian will be at 

hand, with which Lagrange formulation can advance. 

 

ii) Intermediary steps in the application of the Lagrange equation is often 

found not too much meaningful. So in general the formulation must be done twice. If 

both derivations end up with the same formulas, they can be assumed correct. In case 

of discrepancy, a third and perhaps more derivations are required until derivation 

errors are detected and corrected. 

 

iii) Programming may require a knowledge on how rounding-off errors 

accumulate. Program often contains many sine, cosine and logarithm function taker 

several hundred times greater cpu time than a summation. So, assigning variable 

names for them and using the values stored under these names will greatly improve 

computation efficiency and reduce solution time. A lengthy series of arithmetic 

should not be done as all multiplications first and all divisions next or vice versa. 

This may bring the calculated numerical value to too large or too small values where 

rounding-off errors becomes relatively important. 

 

iv) The best way of testing the correctness of a simulation is repeating the 

same event at the laboratory and recording the data. If simulation results fit to that of 

experiments, simulation program can be assumed to be correctly working. If not, 

both simulation and experimentation must be checked through. This may be a very 

tiring and time consuming process.    
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 v) Simulation programs may be made to solve for problems whose solutions 

are already known, like a free fall, static equilibrium, constant acceleration motions, 

linear oscillations etc. For example, the static equilibrium tests carried out in section 

(5.2) are aiming a verification of correctness. Solving statics problems are always 

simpler than that of dynamics problems and static condition is a sub set of dynamic 

condition. 

 

 Similarly in one of the examples in section (5.2), the system is put into the 

form of a simple pendulum and is allowed to display free oscillations of small 

amplitude. Formulas for linear oscillations are often well known and reliable. 

 

 vi) Static state is a subset of dynamic state, but dynamic forces are not 

existant. Being statically correct is a requirement but not a sufficient one. All the 

accelerations are calculated. Whether on inverse solution is correct or not, the best 

way to see is to solve the problem in reverse order, that is by forward dynamics. The 

resulting accelerations from the inverse dynamics solution are used in a forward 

dynamics solution and forces required are calculated. If the calculated forces come 

up equal to the forces we started with, this means that the simulation program and 

formulas incorporated are correct. The forward dynamics problem should be solved 

by the D’Alambert’s approach. Position, velocity and acceleration analyses should be 

done first, the linear accelerations of all mass centers and angular accelerations of all 

moving bodies should be calculated. Then D’Alambert forces and moments must be 

calculated and added onto each moving link and the system forces must be solved 

statically. Correctness for dynamic forces of the formulation presented in this work 

has been checked many times. As the D’Alambert’s quasi-static forward dynamics 

solution is not directly a part of the thesis, a sample solution is given in Appendix 1. 

for the dynamic force analysis of a 4-Bar mechanism. 

 

 Finally, a motion profile, in form of an animated graphics of the mechanism 

is very meaningful to experienced eyes. An experienced person can judge whether an 

animated motion is correct or not, whether the developing motion look, natural or 

not. In this final point, there is no mathematics, no solid rules. No such a thing is 
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taught as part of a formal engineering education. Such a judgement, feeling of the 

motion is very important and equally valuable tool for a designer.     

 

 

5.5 Programming Language 

 

 Programming language for this simulation program is QBasic. QBasic (a 

name derived from QuickBASIC, BASIC being an acronym for Beginner’s All-

purpose Symbolic Instruction Code) is a variant of the BASIC programming 

language. The source code is compiled to an intermediate form within the integrated 

development environment (IDE), and this intermediate form is immediately 

interpreted on demand within the IDE.    

 

  Like QuickBASIC, but unlike earlier versions of Microsoft BASIC, QBasic 

was a structured programming language, supporting constructs such as named 

subroutines and while loops. Line numbers, a concept often associated with BASIC, 

were supported for compatibility, but were not necessary and not considered good 

form, having been replaced by descriptive line labels. QBasic has limited support for 

user-defined data types (structures), and several primitive types used to contain 

strings of text or numeric data. 
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CHAPTER 6 
 

CONCLUSION AND PROPOSAL FOR FUTURE STUDY 
 

 

6.1 Conclusions  

This dissertation presents software to simulate the dynamic behaviour of any 

kind of planar open or closed link chains, containing revolute or prismatic joints. 

From utility point of view, this is nothing new. There are many computer programs 

who can do this job available in the market. What is new is how a system is defined 

and formulated. All the programs known to the author of this dissertation separate a 

system into simpler and smaller units, which have their own transfer functions and 

interact with each other. In a linkage system, the indivisible unit is the link. Transfer 

function is Newton’s second law and interaction between the individual units is 

governed by Newton’s third law. This approach, which is totally so great, so correct, 

so systematic and so nice, generates three times degrees of freedom of the system. 

But main difficulty lies not in the number of equations, but in maintaining the correct 

interactions. In this dissertation Lagrange formulation is used and two different joint 

types assumed between each successive pair of links. This approach doubles the 

degree of freedom and one equation is generated for each movability. So, to simulate 

a 3 degree of freedom open chain 6 equations are required in contrast to 9 equations 

of other programs. This is an important contribution, but the more important 

contribution is the closed-from calculation of constraint forces accruing at the joints. 

As their exact values are known, solution of motion equations digitally becomes easy 

and fast. 

 

The method presented here is novel. It was originally designed to model 

robotic manipulators, which are open loop linkages. What is done in this dissertation 

is to join the tip of the open chain to the ground by constraint forces calculated 
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according to Newton’s third law and convert the open chain into a closed link loop to 

model mechanisms. Application of this novel method to mechanisms is novel too. 

 

As indicated in paragraph (vii) of section (5.4), mechanisms and machines are 

dynamic systems, highly mobile and difficult to control. In order to control 

something, we must know its dynamics. Machine designers must appreciate and feel 

the dynamics and preferable must have reached the perfection of correctly guessing 

how a motion will develop. Machines are complex systems composed of many 

mechanisms and hence, dynamics of a complete machine is surely much more 

complex than that of a mechanism. Fortunately, there is the friction-solid or liquid to 

calm down every sort of harsh motion and powerful motors to drive any sort of 

inertial load, such that machine design and control becomes simpler with them. This 

dissertation presents only a method and supports its applicability by examples. At 

this stage can not compete with commercially available programs. Never the less, it 

can be improved by further work as listed in the next section. 

 

6.2 Proposal For Future Study   

 

6.2.1 Minor Amendments 

 

i) This program in the present form is not vary easily understandable and 

hence applicable. A user interface to get data from the user will be very helpful. Also 

the data outputting is not well organized. Required graphs can be selected from a 

menu, graphs can be labeled and scaled for proper presentation in a better user 

interface. An animated output displays the mechanism in motion, but the problem of 

scaling the figure to the screen of the computer still unsolved. A good user interface 

for data in and outputting is necessary and will greatly improve the program.  

 

ii) This program in the present form does not contain the dynamics of motors. 

A mechanism must be driven by hydraulic, pneumatic or electric motors. Simulation 

of motors should also be included in the system if it should help in a larger area of 

the design work.  
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iii) This program in the present form neither contains any well known control 

strategies nor allows any control system to be designed and implemented. Modules 

containing the transfer functions of widely used and well known control strategies 

must be added. This will improve the usefulness of the program greatly. Further, 

there must be a user definable control module where not so much widely used 

control strategies can be implemented and used to control and drive the mechanisms 

under consideration. Also modules concerning transducers can be made. Various 

characteristics of the transducers can be put in there and measurement errors and 

their effect on control can be seen. 

 

6.2.2 Major Amendments   

 

The three proposals listed above are only amendments to the existing 
linkage simulation and are not major contributions or rather, need less effort. Some 
major changes can also be thought of as follows.  

 

i) This programs in its present state can simulate only 4-link mechanisms. 4-

link Grübler mechanisms are the most widely used systems in machine design, but 

incases where more complicated motion profiles are required, 6-link mechanisms 

become necessary. A 6-link Watt mechanism can be made as shown in figure (6.1).  

Figure 6.1 An all-revolute 6-link Watt mechanism 

 

This is a really enjoyable task as if using a folding yard-stick to make a 

mechanism. Similarly, a 6-link Stephenson mechanism can be made as seen in figure 
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(6.2) by using and an articulation of 6 moving links. The program in its present state 

can handle only 3 moving links. With the some theory and some procedure of 

formula derivation, new formulas, capable of simulating 6 moving links can be 

made. This would be a major contribution to the presented work. 

 

 

 

Figure 6.2 An all-revolute 6-link Stephenson mechanism 

 

ii) The program in its present state can handle only planar mechanisms. Most 

of the mechanisms used in constructing machines are of 4-link planar mechanisms, 

because of simplicity in design, construction, manufacture and maintenance, but as 

indicated in paragraph (i) above, sometimes more intricate motion profiles are 

required. Such a problem is primarily attacked by introducing 6-link mechanisms. 8-

link are not preferable at all. Second solution is that we can think of using spatial or 3 

dimensional mechanisms. Three dimensional mechanisms are much more complex in 

kinematics and dynamics, though the systemacy in generating motion equations are 

not different. Some more joint types may be required to include like cylindrical and 

spherical joints, and a systemacy in defining positions in 3-dimensions are required. 

Denavit-Hartenberg representation of links and joints [9] can well be used as we see 

in robotics applications [10]. For a software handling 3 dimensional mechanisms, 

some further data input-output routines will be required as perspective appearance 

and animation of the mechanism.   
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APPENDIX  

 

1. Data of simulation 

2θ  = - 0,11929 rad.         
.

2θ  = 2,2714     rad/sec          
..

2θ  = - 21,93  rad/sec²  

3θ  = 1,0711      rad.        
.

3θ  = - 0,51486 rad/sec          
..

3θ  = 3,82267 rad/sec² 

4θ  = - 1,01924 rad.         
.

4θ  = - 0,61032 rad/sec         
..

4θ  = 6,55760 rad/sec² 

 

Linkage parameters: 

 

2m  = 1 kg.                       2a  = 0,2 m.                           2I  = 0,1 kg-m² 

3m  = 2 kg.                       3a  = 0,8 m.                           3I  = 0,2 kg-m² 

3m  = 3 kg.                       4a  = 0,8 m.                           4I  = 0,3 kg-m² 

flx = 1 and fly = 0 

 

Degree as: 

2θ  = - -6,835 deg.            

3θ  =     61,37 deg. 

4θ  = - 58,398 deg. 
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A
B

C

Dθ2
θ3

−θ4

 

Figure A.1 Position of four bar mechanism in simulation (t=3 sec.). 

 

 

 

2. Velocities 

VC/B

VB

VC

 

Figure A.2 velocity analysis of figure (A.1) 
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BV  = |AB| * 2W  = 0.45428 m/sec 

/C B C BV V V= +  

CV = 0,488 m/sec (obtained from graphical solution) 

/C BV = 0,41 m/sec (obtained from graphical solution) 

/C BV  = |CB| * 
.

3θ  

.

3θ = 0,41 / 0,8 = 0,5125 rad/sec (cw) 

.

4θ = CV  / |CD| = 0,41 / 0,8 = 0,61 rad/sec (cw) 

 

 

3. Accelerations 

n

Ba

n

Ca

/
n

C Ba

t

Ba

/
t

C Ba

t

Ca

G2

aG4

G3

G4

aG3

aG2

 

Figure A.3 Acceleration analysis of figure (A.1) 

  

 

n

Ca  + t

Ca  = n

Ba  + t

Ba  + /
n

C Ba  + /
t

C Ba  

n

Ba  = 2
2w  *  |AB| = (2,2714)² * 0,2 = 1,032 m/sec² 

t

Ba  = 2α  *  |AB| = 21,93 * 0,2 = 4,386 m/sec² 

/
n

C Ba  =  2
3w  *  |CB| = (0,5125)² * 0,8 = 0,21 m/sec² 

n

Ca  = 2
4w  *  |CD| = (0,61)² * 0,8 = 0,298 m/sec² 
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/
t

C Ba  = 3,05  m/sec² (obtained from graphical solution) 

 

t

Ca  = 5,2 m/sec² 

3α  = /
t

C Ba  / |CB| = 3,05 / 0,8 = 3,8125  rad/sec² (ccw) (data is 3,82267) 

4α  = t

Ca  /  |CD| = 5,2 / 0,8 = 6,5 rad/sec² (ccw) (data is 6,5576) 

 

 

4. D’alembert Forces 

 

2Ga  = 2,25 m/sec² (obtained from graphical solution) 

3Ga  = 4,6 m/sec²   (obtained from graphical solution) 

4Ga  = 2,6  m/sec²  (obtained from graphical solution) 

 

 

 

- 2m  2Ga  = 1 * 2,25 = 2,25 N 

- 3m  3Ga  = 2 * 4,6 = 9,2 N 

- 4m  4Ga  = 3 * 2,6 = 7,8 N 

 

 

5. D’alembert Moments 

 

- 2I  2α  = 0,1 * 21,93 = 2,193 Nm (ccw) 

- 3I  3α  = 0,2 * 3,8226 = 0,7652 Nm (cw) 

- 4I  4α  = 0,3 * 6,5576 = 1,96728 Nm (cw) 

 

 

2e  = 2I  2α  /  2m  2Ga  =  2,193 / 2,25 = 0,9746 m 

3e  = 3I  3α  /  3m  3Ga  =  0,7652 / 9,2 = 0,083 m 
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4e  = 4I  4α  / 4m  4Ga  = 1,96728 7,8 = 0,252 m 

7,8 N

FD

F43

7,8 N

D

FD

C F43

F23

9,2 N

 

                                           (a)                      (b)                             (c) 

Figure A.4 Force polygons of figure (A.1) 

 

43F  = 7,215 N     

23F  = 9,706 N 

BF  = 2,25 N 

 

 

7,8 N

7,8 Ne4

2,25 N 2,25 N

e2
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Figure A.5 inertia forces of figure (A.1) 
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( )1 7,8
τ  = 43F  *  3d  = 7,215 * 0,183 = 1,320345 Nm (cw) 

 

( )2 9,2
τ  = 23F  * 2d  = 9,706 * 0,182 = 1,7665 Nm (ccw) 

 

( )3 2,25
τ  = BF  * 1d  = 2,25 * 0,2 = 0,45 Nm (cw)  

where d1, d2 and d3 are the moment arms of the forces. 

 

Total τ  = (1,320345 + 0,45) – 1,7665 = 1,7703 – 1,7665 = 0,0038 N-m. 

Initial torque value was zero, and the discrepancy is within tolerable limits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


