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ABSTRACT 
 
 

A NEW APPROACH FOR ELASTOPLASTIC ANALYSIS 
OF STRUCTURES: 

NEURAL NETWORKS 
 
 

Abdulkadir ÇEVİK 
PhD in Mechanical Engineering 

Supervisor: Assoc. Prof. Dr. İbrahim H. GÜZELBEY 

June 2006, 212 pages 
 
 

This thesis investigates the applicability of Neural Networks (NN) for elastoplastic 

analysis of structures by means of a wide range of case studies. All case studies are 

specific examples of elastoplastic behaviour of structures. Case studies considered in 

this thesis can be categorized as FEM-based and experimental-based in terms of the 

origin of training patterns i.e. how they are obtained for the NN modeling. Required 

training and test data for the FEM-based NN modeling is obtained using ANSYS and 

from literature. Required training and test data for the experimental-based NN 

modeling are obtained from literature as a result of a comprehensive literature 

survey. The experimental based NN modeling consists of several types of materials 

such as steel, aluminum and composites used in various types of structural members 

such as beams, columns and plates. Matlab NN Toolbox is used for the NN modeling 

of case studies. A flexible Matlab program has been developed to select the optimum 

NN architecture directly. Moreover, the developed program also gives the explicit 

form of the proposed NN models. The accuracy of the NN results when compared 

with either FE or experimental results is found to be quite high. In some case studies 

the NN results are compared with existing design codes and are found to be by far 

more accurate. As a result of this thesis, it can be concluded that NNs can be 

effectively used to model elastoplastic behaviour of structures for a wide range of 

material type and structural members. 

 

Keywords: Neural Networks, Elastoplasticity, Web Crippling, Rotation Capacity, 

Shear Capacity, Strength Enhancement,Aluminum Alloy Columns, Flexural Buckling, 

Structures.  
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ÖZET 
 
 

YAPILARIN ELASTOPLASTİK ANALİZİ İÇİN YENİ BİR YAKLAŞIM: 
 YAPAY SİNİR AĞLARI 

 
 

Abdulkadir ÇEVİK 
Doktora Tezi, Makine Mühendisliği 

Tez Yöneticisi: Doç Dr. İbrahim H. GÜZELBEY 

Haziran 2006, 212 sayfa 
 
Bu tez Yapay Sinir Ağlarının (YSA) geniş aralıklı örnekler kullanılarak yapıların 

elastoplatik analizi için kullanılabilirliğini incelemektedir. Bütün örnek çalışmaları, 

yapıların elastoplastik davranışına ilişkin özgün örneklerdir. Bu tezde verilen 

örnekler, YSA için eğitim setlerinin elde edilişine göre Sonlu Elemanlar ya da 

deneysel tabanlı olmak üzere sınıflandırılabilir. Sonlu Elemanlar tabanlı YSA 

modellemesi için gereken eğitim ve test setleri, ANSYS kullanılarak ya da 

literatürden sağlanmıştır. Deneysel tabanlı YSA modellemesi için gereken eğitim ve 

test setleri ise çok kapsamlı bir literatür taraması sonucu literatürden elde edilmiştir. 

Deneysel tabanlı YSA modellemesi çelik, alüminyum, kompozit gibi çeşitli malzeme 

tiplerini ve kiriş, kolon ve plak gibi çeşitli yapı elemanlarını içermektedir. Örnek 

çalışmaların YSA modellemesi için Matlab NN Toolbox kullanılmıştır. Doğrudan 

optimum YSA mimarisini seçen esnek bir Matlab programı geliştirilmiştir. Bunun 

ötesinde geliştirilen program, önerilen YSA modelinin açık formunu da 

verebilmektedir. YSA sonuçları Sonlu Elemanlar ya da deneysel sonuçları ile 

karşılaştırılmış ve doğruluğu çok yüksek bulunmuştur. Bazı örnekler için ise YSA 

sonuçları mevcut tasarım standartları ile de karşılaştırılmış ve onlardan çok daha 

doğru sonuçlar verdiği görülmüştür. Bu tezin sonucunda YSA larının yapıların 

elastoplastik analizinde etkili bir şekilde kullanılabileceği görülmüştür. 

 

Anahtar Kelimeler: Yapay Sinir Ağları, Elastoplastisite, Gövde ezilmesi, Dönme 

kapasitesi, Kesme kapasitesi, Dayanım artışı, Alüminyum alaşımlı kolonlar, Eğilme 

burkulması, Yapılar. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 General Introduction 

 

The interest in transferring of methods developed in one discipline to the analysis of 

problems in other disciplines has evidently increased in recent years. This concerns 

especially the biologically inspired methods of information processing (soft 

computing techniques). Among those methods Artificial Neural Networks (ANNs) 

are worth emphasizing. ANNs have been applied to the analysis of a great amount of 

problems in science and technology (Waszczyszyn and Ziemanski 2001). This 

concerns also mechanics of structures and materials (Waszczyszyn, 1999, 

Waszczyszyn, 2000a). 

 

1.2 Research Objectives and Tasks 

 

NNs have been widely used for modeling of material and structure behaviour so far. 

However up to now no scientific research has been carried out in a general sense to 

prove the applicability of NNs to model the elastoplastic behavior of structures. This 

thesis investigates the feasibility of Neural Networks for elastoplastic analysis of 

structures by means of a wide range of case studies. Case studies considered in this 

thesis can be categorized under two headings in terms of origin of training patterns 

i.e. how they are obtained for the NN modeling: 

 

1. FEM based NN Modeling 

2. Experimental based NN modeling. 

Besides several types of materials and corresponding case studies are modeled and 

given as follows: 
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1. Steel Structures: 

• Web Crippling 

• Rotation Capacity 

• Strength Enhancement of Corner Regions in cold-formed steel 

 

2. Aluminum Structures: 

  

� Flexural Buckling Load Prediction of Aluminum Alloy Columns 

� Prediction of Buckling Parameters Of  Hollow Aluminum Columns 

 

3. Composite Structures 

� Shear Capacity Of RC Beams Without Web Reinforcement 

� Strength Enhancement For CFRP Confined Concrete Cylinders 

 

A comprehensive literature review has been carried out to determine the types of 

case studies to be modeled. All the case studies above are particularly preferred as 

they were related with elastoplastic behaviour. 

 

Matlab NN Toolbox has been used as software due to its flexibility. Thus a new and 

efficient algorithm has been developed for the selection of optimal NN architecture 

which has always been a time consuming and cumbersome task in NN studies. NN 

models are referred as black box models as the neural process can be modeled 

mathematically in closed-form solution in general. In this thesis however all 

proposed NN models are presented in explicit form in order to be used for further 

practical application.  

 

The results of this PhD thesis are very promising: The proposed NN models are by 

far more accurate compared to current design codes or existing analytical functions 

related for each case study.  
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1.3 Thesis Layout 

 

 A literature review for NN applications in elastoplastic analysis of structures is 

summarized in chapter 2. 

 

Fundamental principles of plasticity theory are presented in Chapter 3. 

 

A general background on Finite Element Method with historical remarks is 

introduced in Chapter 4. 

 

Background information on NNs are given in chapter 5 with a brief historical 

remark. Basic concepts of NNs are explained (Definition of NNs, Models of a 

neuron, learning process, backpropagation). Matlab NN Toolbox is shortly reviewed. 

A Matlab computer program developed for the optimal NN selection process is also 

explained. 

 

In chapter 6 cases studies of NN applications are presented in details with their 

results and discussions. Explicit NN formulations of each case study are derived in 

this chapter.  

 

Final Conclusions are summarized in Chapter 7. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 

2.1 Engineering Analysis 

 

Engineering analysis is the process of taking given "input" information defining the 

physical situation at hand and, through an appropriate set of  manipulations, 

converting that input into a different form of information, the “output,” which 

provides the answer to some questions of interest (Gallegher, 1995 ). The purpose 

of any engineering analysis is to predict the behavior of an engineering system under 

specified conditions. In other words: given the input to the system what is the 

output from the system? The engineering system under analysis could be, for 

example, a simple elastic beam, a complex nonlinear three-dimensional structure, 

mechanical equipment or a hydraulic network  

Irrespective of what the engineering system (the physical system) is, it is, first 

converted into a mathematical model and the mathematical model is then analyzed 

to predict its behavior whether the mathematical model is a simple one or a complex 

one and whether the analysis is a simple hand calculation or an elaborate 

computerized analysis, results of the analysis will always have a certain amount of 

uncertainty associated with it. Uncertainties arise because of the approximations 

and assumptions made in the conversion of the physical system to a mathematical 

model in the analysis procedure. Traditionally the uncertainty is not quantified 

but is recognized and accounted for in designs through safety factors (Ayyub, 1997). 

The process of mechanical engineering analysis whether using sophisticated 

computer software or closed-form calculations often involves .several fundamental 

steps, such as properly posing a problem in engineering terms, generating a 

mechanical idealization, and solving the resulting differential equations. In general, 

analyzing stress and structural problems often requires posing a problem in 



 5 

engineering terms developing a mechanical idealization, and solving the differential 

equations that evolve from the idealization. If the differential equations are 

simple enough, they can be solved by closed-form methods; for more 

complicated situations, a numerical solution, perhaps using finite elements, is 

required (Lepi,1998). 

 

The process of making engineering assumptions to convert a physical problem 

into mathematical terms is defined as idealization. The idealization process renders 

an equation (or system of equations) that is solved by either closed-form methods or 

a numerical method, such as the finite element method. To further investigate 

mechanical idealization, consider six categories of assumptions and 

simplifications associated with the process of mechanical idealization in solid 

mechanics problems: 

• Linearity 

• Boundary condition assumptions 

• Stress-strain assumptions 

• Geometric simplification 

• Material assumptions 

• Loading assumptions 

Idealization often allows the essence of an intractable problem to be expressed in 

simplified mathematical form such that analysis can be performed. Without 

idealization, analyzing many structural problems would be impractical due to 

difficulties in replicating complex geometry, storing vast amounts of data, and 

implementing complicated mathematical principles to simulate many subtle 

responses that would not significantly affect an engineering design decision. Note that 

idealization is independent of the finite element method, it is used to initiate problems 

that may be solved by either closed-form methods or numerical means (Lepi,1998). 

The ability to properly pose a problem relies upon an understanding of loads, stress 

metrics, boundary conditions, and material behavior. The problem statement above 

focuses upon the maximum value of von Mises stress that develops in the 

structure with the given loading and restraints. It also clearly states the purpose of the 
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analysis, and the metric that will be used to evaluate the strength of the structure 

(Lepi, 1998). 

 

The scope of an engineering analysis must often be narrow and well defined in order 

to be efficient and effective. Using finite clement analysis, one cannot typically 

build a model and then "see what it will tell you." Considerable thought is needed 

to properly pose an analysis problem, conceive a model that will yield relevant 

results, and use the results to effect an engineering decision (Lepi, 1998). 

 

There exist two major categories of idealizations used in association with the solid 

mechanics problems, namely, idealizations based upon the presumption of 

linearity and those that account for non-linear behavior. At the outset, it is 

important for the analyst to identify which type of idealization is applicable to a 

particular problem since there are major differences in the way each type is 

approached (Lepi,1998). This thesis focuses on non-linear behavior or so called 

elastoplastic behavior of structures. The engineering analysis for this kind of 

problems is quite complex and time consuming. The advent of computers has 

shown a significant impact on the way in which engineering analysis is 

performed introducing two robust techniques: 

1. Numerical Techniques, 

2. Artificial Intelligence Techniques, 

Among numerical techniques, Finite element method has been widely used in the 

analysis of structures because of the power of the technique and also because of the 

availability of many commercial finite element programs. Finite element analysis is a 

numerical analysis of the mathematical models used to represent the behavior of 

engineering structures. Therefore, mathematical assumptions concerning the 

representation of the geometry and behavior of the structures have to be made in 

finite element models. In order to efficiently and accurately perform the finite 

element analysis of a composite structure, it is necessary to have a qualitative 

knowledge of the structure behavior and its finite element model (Suong et al, 1998). 
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The Finite Element Method is an approximate technique. This means that the 

continuous structure is discretized into a number of continuous elements connected 

together at a number of nodes. As the number of elements increases, the 

approximation of the structure becomes more and more accurate approaching the 

exact solution. The solution obtained from the finite element method therefore is an 

approximate solution. In general, finite element analysis of structures is performed by 

following six steps: discretizing the structure, deriving element equations, assembling 

elements, imposing essential boundary conditions, solving primary unknowns, add 

calculating secondary quantities (Suong et al, 1998). 

On the other hand, Artificial Intelligence (AI) techniques serve as another robust 

alternative technique for engineering analysis problems. Artificial intelligence 

emerged as a computers science discipline in the mid 1950s. Since then, it has 

produced a number of powerful tools, many of which are of practical use in 

engineering to solve difficult problems normally requiring human intelligence (Pham 

and Pham, 1999). AI can be defined as the simulation of human intelligence on a 

machine, so that the machine efficiently to identifies and uses the right piece of 

“Knowledge” at a given step of solving a problem. Thus, AI alternatively may be 

stated as a subject dealing with computational models that can think and act rationally. 

The subject of AI spans a wide horizon.  It deals with the various kinds of knowledge 

representation schemes, different techniques of intelligent search, various methods for 

resolving uncertainty of data and knowledge, different schemes for automated 

machine learning and many others (Konar,1999). 

 

Some AI tools that are most applicable to engineering problems can be given as 

knowledge-based systems, fuzzy logic, inductive learning, neural networks and 

genetic algorithms (Pham and Pham, 1999). Among these tools Neural Networks are 

worth to emphasize. 

 

2.2 Neural Networks 

 

Over the past few years, interest in artificial neural networks has grown rapidly. 

Professionals from such diverse fields as engineering, philosophy, physiology, and 
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psychology recognize the potential offered by this technology and are seeking 

applications within their disciplines. Recently, the artificial neural network has 

experienced a surge in popularity and is now one of the most rapidly expanding areas 

of research across many disciplines. The main reason is in its powerful and adaptive 

abilities to treat various complex problems. One can be sure that with its further 

developments, neural networks will strongly impact many conventional disciplines 

from the standpoint of methodology. In the field of mechanics, the research and 

application of both neural network and revolutionary computing are especially active 

and successful. The back propagated multilayered network is one of the main types 

applied to engineering (Zeng,1998). 

 

2.2.1 NNs in structural mechanics 

The application of NNs in structural mechanics has been gaining support in the 

recent years. The NN models adopted for structural mechanics may have different 

architectures and may possess different patterns of connectivity. NNs have been used 

as computational tools in various areas of structural mechanics, amongst them, 

identification, simulation, assessment, optimization, analysis and design. The range 

of applications of Backpropagation neural networks in computational structural 

mechanics may include design, optimization, identification, mesh generation and 

analysis (Topping and Bahreininejad, 1997).  It seems that a paper by Adeli and Yeh 

(1989) was the first to be published in 1989 in an archival journal. During the last 15 

years, ANNs applications in mechanics grew so rapidly that now it would be 

difficult to point out those problems of mechanics in which ANNs have not been 

used yet. ANNs have been widely used as an alternative tool for both civil and 

mechanical engineering disciplines during the last 15 years and have been applied to 

almost every type of problem in the field of engineering mechanics (Yagawa and 

Okuda, 1996, Zeng, 1998, Waszczyszyn, 1999, Waszczyszyn, 1998, Waszczyszyn, 

1996, Topping and Bahreininejad, 1997).  

 

In the first structural engineering application of neural networks published in an 

archival journal, Adeli and Yeh (1989) presented a model of machine learning in 

engineering design based on the concept of self-adjustment of internal control 
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parameters and perceptron. The problem of structural design was cast in a form to 

be described by a perceptron without hidden layers (Adeli and Park, 1995) 

 

Vanluchene and Sun (1990) discuss the use of back-propagation learning algorithm 

in structural engineering. Hung and Adeli (1991) present a two-layer neural 

network learning model for engineering design by combining the perceptron with a 

single-layer AND neural net. They reported improvement in the rate of learning 

compared with the single-layer perceptron learning model. Several other 

researchers have applied neural networks, mostly back-propagation algorithms, in 

structural engineering and mechanics and related engineering problems (Hajela and 

Berke 1991; Ghaboussi et al. 1991; Masri et al. 1993; Kang and Yoon 1994, Adeli 

and Park, 1995) 

 

An excellent literature review on application of NNs in structural analysis and design 

can be found in Lu (2000) given as follows: 

 

Due to the high efficient non-linear mapping capacity with incomplete and noisy 

input, the BPNN is used in areas such as structural analysis and design, material 

behaviour and damage identification and assessment. In these applications, the 

training patterns are provided either by finite element analysis or by the test results. 

On the other hand, the trial and error characteristic of BPNN leads the application to 

improve the techniques of training neural networks. In the following paragraphs, the 

application of BPNN is briefly described from these two aspects. 

 

 

As far as structural analysis and design are concerned, Hajela et al. (1991) used 

BPNN to represent the force-displacement relationship in static structural analysis. 

Such models provide computationally efficient capabilities for reanalysis and appear 

to be well suited for application in numerical optimum design. In the aspect of 

simulating structural analysis, Lu et al (1994) have introduced Kolmogorov's 

mapping neural network existence theorem into the approximation analysis of a 

structure. The research results show that three-layer ANNs can be applied to 

implement exactly the function between the stresses, displacements, and the design 
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variables of any elastic structure. [3]. Jenkins (1995) considered the application of 

neural nets to approximate structural analysis and especially to a comparatively 

simple structure. Chuang et al. (1998) modeled the complicated non-linear 

relationship between the various input parameters associated with reinforced 

concrete columns and actual ultimate capacity of the column. Messner (1994) has 

shown that a neural network may be the best alternative to develop an accurate 

decision-making system for the preliminary selection of structural systems. Rogers 

(1994) used a promising technique to simulate a slow, expensive structural analysis 

with a fast, inexpensive neural network and presented an application of an ANN to 

the problem of behavior modeling or prediction of behavior instead of a more 

complicated and time-consuming finite-element-based structural analysis procedure. 

Yeh (1999) presented a method of optimizing high-performance concrete mix 

proportioning for a given workability and compressive strength using artificial neural 

Networks and non-linear programming. Kang and Yoon (1994) described the 

configuring and training of neural network for truss design application and explored 

the possible roles for neural network in structural design problems. Mukherjee et al. 

(1996) mapped the relationship between the slenderness ration, the modulus of 

elasticity and the buckling load for columns. As the input is taken directly from the 

experimental results, factors affecting the buckling load of columns are 

automatically incorporated in the model to a great extent. Mukherjee and Deshpande 

(1995) developed a neural network for the initial design of reinforced-concrete 

rectangular single-span beams. Further, Ghaboussi et al. (1991) modeled the 

behavior of concrete in the state of plane stress under monotonic biaxial loading and 

compressive uniaxial cyclic loading. In order to improve the performance of neural 

networks, Adeli and Hung (1994) developed an adaptive conjugate gradient learning 

algorithm for training a multilayer feed forward neural network.  

 

 

2.2.2 NNs in elastoplastic analysis of structures 

 

In recent years, there has been significant improvement in engineering mechanics 

studies in order to reach high accuracy analysis and reduce computation time. 

Particularly for nonlinear analysis in engineering mechanics, reducing the 

computation time of the structural analysis is significantly important. Elasto-plastic 
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analysis in this field is the basis of many complex mechanical behaviors. Analysis of 

elastoplastic problems by means of FEM programs is numerically much more 

laborious than the analysis of elastic problems because of constitutive equations of 

plasticity. They are not only nonlinear but history dependent and it is difficult to 

make mathematical manipulations with them, e.g. to invert them. That is why 

changes of numerical procedures related to plasticity models into neural procedures 

seem to be very prospective (Mucha and Waszczyszyn ,1994) 

 

Due to the  nonlinear relationship between stress and strain in plasticity, many 

iterations are needed in terms of stress and loading which lead  the computing 

process to become too complicated and the computation time to increase 

dramatically especially for complex analysis (Sun et al, 2000) . In this sense, ANNs  

are applied as an alternative tool for  the simulation of constitutive equations which 

was originally proposed by Ghaboussi et al (1991). Neural Network-Based 

Constitutive Modeling has been emphasized well so far in various   state of the art 

reviews (Yagawa and okuda ,1996 , Waszczyszyn, 1998, Kortesis and 

Panagiotopoulos,1993  , Waszczyszyn,2000) and PhD thesis (Wu,1991, Sidarta,2000, 

Basheer,1998) 

 

A constitutive relation stands for a set of curves in stress space, for given set of 

strains paths. ANN can be trained to reproduce these curves and to interpolate 

between them (Lefik and Schreffler, 2003) NN constitutive models, unlike 

commonly-used plasticity models, do not require special integration procedures for 

implementation in FE analysis. The learning potential of NN material models is 

realized using an innovative analysis technique known as Autoprogressive Training 

(Ghaboussi et al, 1998). This technique allows the numerical model, for the first 

time, to extract the material constitutive relationship from structural systems by using 

the measurements of loads and displacements. No prior knowledge of the exact 

variation of stresses and strains within the boundary value problem is required. A NN 

material model does not use a material stiffness matrix in its formulation. This is 

considered a basic advantage of this class of models, but represents a potential 

disadvantage for implementation in implicit FE analysis. On the other hand, Hashash  

and co-workers (2004) derived a stiffness matrix for  NN material models  dependent 

on the current state of the material and the strain increment. In this sense, the NN 
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material model and proposed stiffness matrix can be adapted in general FE analysis 

codes using implicit methods such as Newton–Raphson method.  

 

The implementation of neurocomputation in FE programs was first introduced by 

Mucha and Waszczyszyn (Mucha and Waszczyszyn,1994). In hybrid systems, ANNs 

are combined with other non-neural tools like FEM where ANN is trained off line 

and embedded into the FE program. This procedure is called Hybrid NN/FEM 

approach and has been widely used by Waszczyszyn and coworkers for the analysis 

of the elastoplastic plane stress problem, elastoplastic bending of beams and plates 

(Waszczyszy, and Pabisek,1999a, Waszczyszy and Pabisek, 2000, Lukaszyk, and 

Waszczyszy,1999, Waszczyszy  and Pabisek,1999b, Waszczyszy et al,1999, Mucha 

and Waszczyszy,1997, Waszczyszyn and Ziemianski,2001, Waszczyszyn, 2000, 

Waszczyszyn,2003, Kaczmarczyk and Waszczyszyn, 2003).     

 

Neural networks can be efficiently applied for massive computing of samples needed 

in the optimum design or reliability analysis of structures (Hajela and Berke,1991, 

Papadrakakis et al,1996). In cases when the FE computation of the samples is 

complex or time consuming, FEM is used for the preparation of neural solvers which 

could be used instead of the corresponding FE programs. This problem was analyzed 

in (Kaliszuk Waszczyszyn, 2003), where neural solvers were used for computing 

trials in the reliability analysis of elastoplastic frames. New possibilities are 

associated with neural procedures which are trained and tested off line and then they 

are incorporated in standard FE programs. This approach, related to implementation 

of FEM/NN hybrid programs, can be more efficient than standard FE programs . 

This concerns especially the analysis of problems associated with materials of 

nonlinear characteristics. That is why the author and his associates have been 

developing the FEM/NN hybrid systems for the analysis of elastoplastic structures 

since 1996 (Waszczyszyn, 1996). An interesting application of this approach was 

discussed in (Waszczyszyn and Pabisek, 1998) where a multilayer forward neural 

network (called also BPNN, i.e. Back-Propagation Neural Network) was used in the 

simulation of RMA (Return Mapping Algorithm). A corresponding hybrid 

FEM/BPNN program was efficiently explored there in the analysis of an elastoplastic 

plane stress problem. An extension of the above approach is related to the 

formulation of hybrid systems in which FE programs (or their moduli) interact with 
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neural networks. A good example of such a system is discussed in (Szewczyk and 

Noor,1996), where a BPNN was used for predicting partial information about the 

nonlinear response of FE systems. Another approach was proposed in papers by P.D. 

Panagiotopoulos and his associates (Kortesis and Panagiotopoulos, 1993 Theocaris 

and Panagiotopoulos,1993) for the analysis of elastic deformable bodies with 

unilateral constraints. The main idea of Panagiotopoulos’ approach lies in using the 

FE matrices for calibration of a HTNN (Hopfield-Tank Neural Network) and then 

interacting of HTNN with a FE program. This approach was generalized in (Pabisek 

and Waszczysyn,2001)for the analysis of an elastoplastic plane stress problem with a 

contact frictionless boundary zone. An efficient application of neurocomputing and 

FEM was explored for structural updating. An FE program is used for computing 

patterns with structural imperfections which correspond to the predicted 

characteristics of the tested material models (laboratory models or full scale real 

structures). A  BPNN is used for inverse analysis and after training the network is 

applied for calibrating the imperfection parameters in FE models exploring 

corresponding measurements on the material model (Ziemianski,1999, 

Waszczyszyn,2003) 

 

From FEM point of view, the analysis of constitutive equations is relatively time-

consuming and complicated as it requires the computation of the actual stress vector 

and consistent stiffness matrix at each Gauss point of plane finite elements which is 

performed by return mapping algorithm (RMA). In this sense, the NN is trained for 

the simulation of a generalized RMA (Return Mapping Algorithm) and used for 

elastoplastic plane problems. On the other hand, Waszczyszyn and co-workers also 

applied hybrid NN/FDM (Finite difference Method) techniques for the elastoplastic 

bending analysis of beams where the trained NNs were used in FDM equations 

(Lukaszyk and Waszczyszy 1999, Waszczyszyet al 1999, Waszczyszyn 2000b).  

 

In all studies above related with elastoplastic analysis of structures, NNs are used as 

so called black box tools. This is often criticized as being their major disadvantage as 

no understanding of the underlying relationship between inputs and outputs can be 

gained and no explicit relationship between inputs and outputs can be obtained. 

Furthermore, NNs are not capable of explaining in an understandable form the 

process through which a given decision was made. 
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2.2.3. NNs in modeling of material constitutive behaviour 

 

Another important application of NNs is in the field of material modeling of 

constitutive behavior. In these studies, a conceptually different approach based on 

artificial neural networks is used for modeling the mechanical behavior of 

materials. An important advantage of the NN material model is that it can easily be 

implemented in the finite element (FE) analysis similar to any other mathematical 

constitutive model and used in the analysis of any type of boundary value problem. 

As an integrated part of a structural analysis procedure, material modeling becomes 

increasingly important as the need increases to investigate complex structural 

behavior with the availability of sophisticated computational method and powerful 

computational hardware. A material model, conventionally described as a 

mathematical model that represents the constitutive law of the material behavior, is 

becoming complicated as it is required to represent complex material behavior 

(Sidarta, 2000). An excellent Literature review can be found in (Sidarta, 2000, 

Basheer, 1998) 

Research concerning the application of NN to problems in computational 

mechanics, in particular the constitutive modeling of the material behavior, started 

in the early 1990's by Ghaboussi and his co-workers (Ghaboussi et al. 1990, 1991; 

Wu 1991). Since then research in this field has expanded (Penumadu et al. 1994; 

Ellis et al. 1995; Penumadu and Chameau 1997; Zhu etal. 1998). The NN material 

modeling approach offers a fundamentally different approach to modeling the 

constitutive behavior of materials. The NN material model is developed through 

learning from examples, which are obtained from experimental test data. During the 

learning process (training), the NN adapts to the new environment and self-

organizes to eventually learn the underlying constitutive material behavior present 

in the material data. The discovered knowledge is stored in NN connection weights. 

An advantage of using the NN material modeling approach is the NN model's 

flexibility to adapt to new environments, which allows the NN model to be further 

trained to learn new information or behavior previously unexplained by the model 

when new experimental results are available. The development of NN material 

models, which is very attractive for modeling complex material behavior, has a 
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fundamentally different approach. First, the representation of the material behavior 

has to be determined. In the finite element (FE) analysis, a strain-controlled material 

model, which relates the states of strains in the input level to the states of stresses as 

the output of the model with possible inclusion of any other important parameters 

in the input vector, is of interest. A comprehensive set of states of strains and 

stresses has to be provided for the training, since the development of a NN material 

model is through learning from examples and in turn the quality of the trained NN 

model is greatly dependent upon the quality of the examples (Sidarta, 2000). 

 

Ghaboussi et al. (1991) used standard backpropagation with automatic node 

generation for network structure optimization. The stress-strain data of uniform 

plain concrete specimens were digitized in stress-controlled mode and represented 

in one-point scheme in which the future stress-strain state was expressed as function 

of the immediately preceding state. The input layer of the constitutive network 

contained states of stress and strain in the two principal directions, and the 

corresponding required stress increments in both directions. The output layer 

contained the corresponding two incremental strains. The predictions of the 

monotonic model was relatively good; however, there is no indication whether the 

predicted stress-strain curves were simulated by generating strain increments or by 

using experimental strain increments. In the second investigation Ghaboussi et al. 

(1991) used one experimental stress-strain curve representing behavior of plain 

concrete in uniaxial cyclic loading. In order to model the hysteresis, the 

experimental data were digitized (coded) into three-point scheme of 

representation. The input layer contained three successive states of stress and strain 

and the single stress increment, while the output layer included the next (i.e. 

fourth) state of strain represented by the incremental strain. The results of the three 

training/testing episodes indicated that the larger the number of cycles used in 

training, the better the prediction of subsequent cycles. Overall, the degree of 

accuracy was much lower than that found in monotonic loading model 

(Basheer,1998). 
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2.3. Conclusion 

 

As a results of the comprehensive literature survey, the following outcomes are 

obtained: 

 

Although NNs are widely applied in structural engineering applications, the specific 

field of NN application for elastoplastic analysis of structures needs further 

contributions. Applications of NNs in this field are scarce. Moreover, there is no 

study covering all aspects of NN applications of elastoplastic analysis of structures 

for different material types based on real experimental results. Thus this thesis aims 

to present a comprehensive study in this specific area. 

 

Studies performed in analysis of structures by NNs are in general material specific 

i.e. a single material type is investigated. There is no study covering behaviour of 

various material types at the same time. Thus there is no comparative study of NNs 

for different material types. 

 

NNs are treated as black box in structural analysis problems. There is no study that 

presents the proposed NN model in explicit form for practical use. 

 

One of the major tasks in NN studies is obviously the determination of the optimum 

NN architecture which is based on trial and error processes. This is the most difficult 

and time consuming part of the study. However, there is no well established study in 

the fields of structural analysis by NNs covering the automatic selection of the 

optimum NN architecture.This will save much more time and simplify NN 

applications to a great extent. 
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 CHAPTER 3 

THEORY OF PLASTICITY 

 

3.1 Introduction 

 

Theory of plasticity is the name given to the mathematical study of stress and strain 

in plastically deformed solids, especially metals. This follows the well-established 

precedent set by the 'theory of elasticity', which deals with methods of calculating 

stress and strain in elastically deformed solids, and not, as a literal interpretation 

suggests, with the physical explanation of elasticity (Hill,1998). 

 

Both the theory of elasticity and the theory of plasticity are phenomenological in 

nature. They are the formalization of experimental observations of the macroscopic 

behavior of a deformable solid and do not inquire deeply into the physical and 

chemical basis of this behavior (Chen and Han, 1988). 

 

A complete account of the theory and application of plasticity must deal with two 

equally important aspects: (1) the general technique used in the development of 

stress-strain relationships for elastic-plastic materials with work hardening as well as 

strain softening; and (2) the general numerical solution procedure for solving an 

elastic-plastic structural problem under the action of loads or displacements, each of 

which varies in a specified manner (Chen and Han, 1988). 

 

The first task of plasticity theory is to set up relationships between stress und strain 

under a complex stress state that can describe adequately the observed plastic 

deformation. This is a difficult task. However, deformational rules for metals that, in 

general, agree well with experimental evidence have been firmly established and 

successfully used in engineering applications. Moreover, in recent years, plasticity 

theories have also been extended and applied to study the deformational behavior of 
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geological materials, such as rocks, soils, and concretes. The extension of plasticity 

theory to non-metallic materials is probably the most active research subject in the 

field of mechanics of materials at present, and various material models have been 

developed (Chen and Han, 1988). 

 

The second task of the theory is to develop numerical techniques for implementing 

these stress-strain relationships in the analysis of structures. Because of the nonlinear 

nature of the plastic deformation rules, solutions of the basic equations of solid 

mechanics inevitably present considerable difficulties. However, in recent years, the 

rapid development of high-speed computers and modern techniques of finite-element 

analysis has provided engineers with a powerful tool for the solution of virtually any 

nonlinear structural problem. It has also provoked newer developments and wider 

applications of the classical plasticity theory. Research activities in this field have 

increased tremendously during the last decade and it is obvious that it will continue 

to do so in the future (Chen and Han, 1988). 

 

Any material body deforms when it is subjected to external forces. The 

deformation is called elastic if it is reversible; that is, if the deformation vanishes 

instantaneously as soon as forces are removed. A reversible but time-dependent 

deformation is known as viscoelastic; in this case, the deformation increases with 

time after application of load, and it decreases slowly after the load is removed. 

The deformation is called plastic, if it is irreversible or permanent. A brittle 

material such as glass, concrete, or rock under low hydrostatic pressure can only 

have elastic deformation before it fails under ultimate load. On the other hand, 

metals and rocks under high confining pressure can undergo substantial plastic 

deformation before failure and therefore are known as ductile materials (Akhtar 

and Sujian, 1995). 

 

The theory of plasticity deals with the stress-strain and load-deflection relationships 

for a plastically deforming ductile material or structure. The establishment of these 

relationships should follow two steps: (1) the experimental observation and (2) 

the mathematical representation. The stress states that are normally achieved in 

any experiment are simple and uniform, but the ultimate goal of any plasticity 

theory is a general mathematical formulation that can predict the plastic 
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deformation of materials under complex loading and boundary condition (Akhtar 

and Sujian, 1995). 

 

The theories of plasticity can be established into two categories: One group is known 

as mathematical theories of plasticity, and the other is physical theories of plasticity. 

Mathematical theories are formulated to represent the experimental observations as 

general mathematical formulations. This group of theories does not require a deep 

knowledge of the physics of plastic deformation and is based on hypotheses and 

assumptions from experimental results. Therefore the mathematical theories are 

phenomenological in nature and are referred to as phenomenological theories. The 

physical theories, on the other hand, attempt to quantify plastic deformation at the 

microscopic level and explain why and how the plastic deformation occurs, the 

movements of atoms and the deformation of the crystal; and grains are important 

considerations. The responses of metals, viewed as aggregates of single crystals or 

polycrystals, to applied loads are derived from those of their building blocks, namely 

single crystals and single-crystal grains (Akhtar and Sujian, 1995). 

 

 

3.2 Historical Remarks 

 

It is generally regarded that the origin of plasticity, as a branch of mechanics of 

continua, dates back to a series of papers from 1864 to 1872 by Tresca on the 

extrusion of metals, in which he proposed the first yield condition, which states that a 

metal yields plastically when the maximum shear stress attains a critical value. The 

actual formulation of the theory was done in 1870 by St. Venant, who introduced the 

basic constitutive relations for what today we would call rigid, perfectly plastic 

materials in plane stress. The salient feature of this formulation was the suggestion of 

a flow rule stating that the principal axes of the strain increment (or strain rate) 

coincide with the principal axes of stress. It remained for Levy later in 1870 to obtain 

the general equations in three dimensions. A generalization similar to the results of 

Levy was arrived at independently by von Mises in a landmark paper in 1913, 

accompanied by his well-known, pressure-insensitive yield criterion (y2-theory, or 

octahedral shear stress yield condition) (Chen and Han,1988). 
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In 1871, Levy, adopting Saint Venant's conception of an ideal plastic material, 

proposed three dimensional relations between stress and rate of plastic strain. 

There seems to have been no further significant advance until the close of the 

century when Guest investigated the yielding of hollow tubes under combined 

axial tension and internal pressure, and obtained results broadly in agreement with 

the maximum shear-stress criterion. During the next decade, many similar 

experiments were performed, mainly in England with slightly differing 

conclusions. Various yield criteria were suggested, but for many metals, as later and 

more accurate work was to show, the most satisfactory was that advanced by von 

Mises (1913) on the basis of purely mathematical considerations; it was interpreted by 

Hencky some years afterwards as implying that yielding occurred when the elastic 

shear-strain energy reached a critical value. Von Mises also independently proposed 

equations similar to Levy's (Hill, 1998). 

 

In 1924, Prandtl extended the St. Venant-Levy-von Mises equations for the plane 

continuum problem to include the elastic component of strain, and Reuss in 1930 

carried out their extension to three dimensions. In 1928 von Mises generalized his 

previous work for a rigid, perfectly plastic solid to include a general yield function 

and discussed the relation between the direction of plastic strain rate (increment) and 

the regular or smooth yield surface, thus introducing formally the concept of using 

the yield function as a plastic potential in the incremental stress-strain relations of 

flow theory. As is well known now, the von Mises yield function may be regarded as 

a plastic potential for the St. Venant-Levy-von Mises-Prandtl-Reuss stress-strain 

relations. The appropriate flow rule associated with the Tresca yield condition, which 

contains singular regimes (i.e., corners or discontinuities derivatives with respect to 

stress), was discussed by Reuss in 1932 and 1933 (Chen and Han, 1988). 

 

Since greater emphasis was placed on problems involving flow or perfect plasticity 

in the years before 1940, the development of incremental constitutive relationships 

for hardening materials proceeded more slowly. For example, in 1928, Prandtl 

attempted to formulate general relations for hardening behavior, and Melan, in 1938, 

generalized the foregoing concepts of perfect plasticity and gave incremental 

relations for hardening solids with smooth (regular) yield surface. Also, uniqueness 

theorems for elastic- plastic incremental problems were discussed by Melan in 1938 
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for both perfectly plastic and hardening materials based on some limiting 

assumptions. The nearly twenty years after 1940 saw the most intensive period of 

development of basic concepts and fundamental ingredients in what is now referred 

to as the classical theory of metal plasticity. Independently of the work of  Melan in 

1938, Prager, in a significant paper published in 1949, arrived at a general 

framework (similar to that discussed by Melan in 1938) for the plastic constitutive 

relations for hardening materials with smooth (regular) yield surfaces. The yield 

function (also termed the loading function) and the loading-unloading conditions 

were precisely formulated. Such conditions as the continuity condition (near neutral 

loading), the consistency condition (for loading from plastic states), the uniqueness 

condition, and the condition of irreversibility of plastic deformation were formulated 

and discussed. Also, the interrelationship between the convexity of the (smooth) 

yield surface, the normality to the yield surface, and the uniqueness of the associated 

boundary-value problem was clearly recognized. In 1958, Prager further extended 

this general framework to include thermal effects (nonisothermal plastic 

deformation), by allowing the yield surface to change its shape with temperature. 

(Chen and Han , 1988). 

 

A very significant concept of work hardening, termed the material stability postulate, 

was proposed by Drucker in 1951 and amplified in his further papers. With this 

concept, the plastic stress-strain relations together with many related fundamental 

aspects of the subject may be treated in a unified manner. We may note here that 

Drucker in 1959 also extended his postulate to include time-dependent phenomena 

such as creep and linear viscoelasticity. Based on this postulate, uniqueness of 

solution for perfectly plastic and work-hardening solids has been proved, and various 

variational theorems have been formulated (Chen and Han ,1988). 
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3.3 Review of Basic Governing Equations of Linear Elasticity  

 

3.3.1 Compatibility equations 

 

Using Cauchy's strain for small strain problems, the strain tensor is expressed in terms 

of displacement components as follows: 

 
1

2
ji

ij

j i

uu

x x
ε

 ∂∂
= +  ∂ ∂ 

 (3.1) 

Alternatively it can be expressed in a matrix form for three dimensional analyses as 

follows:  

 

x xy xz

yx y yzij

zx zy z

= 

ε ε ε

ε ε ε ε

ε ε ε

 
 
 
  

 (3.2) 

Because of the symmetry of the strain matrix, it can be represented in terms of the 

engineering strains as the strain vector which is: 

 { }     
x y z xy yz zxε ε ε ε γ γ γ=  (3.3) 

where 

 zx2  2  2
xy xy yz yz zx

γ ε γ ε γ ε= = =  

since Equation (3.1) represents 6 strain components, defined in terms of 3 displacement 

components, differential operations can be used to eliminate displacement components, 

and the resulting equations, known as the compatibility equations, can be expressed as 

follows: 

 
2 22

2 2
2

jj ijii

j i i jx x x x

ε εε ∂ ∂∂
+ =

∂ ∂ ∂ ∂
 (3.4) 

and 
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 (3.5) 
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3.3.2 Constitutive equations 

 

Linear elastic behavior of homogeneous and isotropic materials can be defined in terms 

of material properties such as Young's Modulus (E) and Poisson's ratio (ν), and Shear 

Modulus (G) by means of the generalized Hooke's law expressed as follows: 

 

 
1 1

[ - ( )],
x x y z xy xy

  
E G

ε σ ν σ σ γ τ= + =  

 
1 1

[ - ( )],
y y z x yz yz

  
E G

ε σ ν σ σ γ τ= + =  (3.6) 
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[ - ( )],
z z x y zx zx

  
E G

ε σ ν σ σ γ τ= + =  

Equation (3.6) can be represented in the following matrix form: 

  C  ε σ=  (3.7) 

which can be inverted as follows: 

  D  σ ε=  (3.8) 

where  

 -1
D C=  

The stress components can be written in a matrix form as follows: 

 
x xy xz

ij yx y yz

zx zx z

σ τ τ

τ τ σ τ

τ τ σ

 
   =   
  

 (3.9) 

 { }     x y z xy yz zxσ σ σ σ τ τ τ=  (3.10) 

 

3.3.3 Equilibrium equations 

 

The requirements of equilibrium in a body should satisfy two conditions, the moment 

and force (including surface traction) equilibrium conditions. If the stress tensor is 

symmetric, it will satisfy moment equilibrium, i.e. 
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ij ji

τ τ=  (3.11) 

and from force equilibrium it can be shown that 

 0 , 1, 2,3
ji

j

i i

X    j
x

τ∂
+ = =

∂
∑  (3.12) 

where 
j

X  represents the components of body force. 

 

3.4 Plastic Analysis 

 

Computational plasticity requires to describe the plastic strain and stress increments. 

This can be preceded by means of the following conditions in the associated 

plasticity; the instantaneous yield surface must be convex, the plastic strain 

increment vector must be on the outward normal to the instantaneous yield surface 

and the rate of change of plastic strain must be a linear function of the rate of change 

of the stress (Guzelbey, 1992). These conditions can be satisfied under the 

assumption of the elasto-plastic behavior of a given material under multiaxial 

stresses obtained in terms of its uniaxial behavior. Due to the classical theory of 

plasticity, elasto-plastic equations are derived based upon the yield criteria, flow 

rules and hardening rules (Erklig, 2003). 

 

3.4.1 Yielding criteria 

 

The term yield refers to the onset of inelastic behavior. There have been many 

different yield criteria suggested by different researchers and engineers. Coulomb set 

down the first useful yield criterion in 1773. It forms one of the cornerstones of our 

understanding of the way soils behave. On the other hand, the yield criteria suggested 

for ductile metals is a bit simpler than geomaterials, and many of the basic ideas can 

be developed in a simpler context (David, 2002) 

 

A yield criterion is a necessary condition to know whether a material is in elastic region 

or not. A yield criterion can be visualized as a mathematical function and can be 

defined by the yield surfaces. Yield surface is generally expressed as follows: 
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 ( , ) 0F kσ =  (3.13) 

where k is the hardening vector, which is generally a function of the plastic strain
p

ε and 

a scalar hardening parameter κ , i.e. 

 ( , , ) 0
p

F σ κε =  (3.14) 

There are several yield criteria in the literature, the most popular ones for metals and 

alloys can be summarized as follows:  

 

3.4.1.1 Tresca criterion 

 

The first yield criterion for metals was suggested by the French engineer H. Tresca in 

1864. His experiments suggested that plastic behavior would commence when the 

maximum shear stress reached a critical value which is the maximum shear stress in 

uniaxial loading (David,2002).Tresca's criterion takes the maximum shear stress as the 

decisive factor for yielding. If the principal stresses are in the following order 

(Guzelbey, 1992): 

 1 2 3σ σ σ≥ ≥  (3.15) 

then Tresca's yielding condition is given by: 

 1 3| - | Yσ σ =  (3.16) 

i.e. Tresca's equivalent stress can be defined as follows 

 1 3

T

σ σ σ= −  (3.17) 

and yield surface equation can therefore be expressed as 

 0
T

F Yσ= − =  (3.18) 

where Y is the yield stress. 

 

3.4.1.2 Von Mises criterion 

 
The second yield criterion of general interest for metals was suggested by R. von 

Mises in 1913. He suggested that yield will occur when the value of the deviatoric 

stress reaches a critical value (David, 2002)  
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This criterion suggests that a component under multiaxial stress state will yield when its 

distortion energy reaches the value of the distortion energy of uniaxial tension at yield 

(Guzelbey, 1992). 

 

Distortion energy for multiaxial-stress is 

 21

2
t

s

J
U S

G
ε= ≡  (3.19) 

Where S is the deviatoric stress vector and J2 is the deviatoric stress invariant. 

 

Uniaxial distortion energy at yield is expressed as follows: 

 Y
6G

1
=U 2  (3.20) 

From the equality of distortion energies, it can be deduced that the condition for yield is 

 23Y J=  (3.21) 

This leads to the definition of the following Von Mises equivalent stress 

 23Jσ =  (3.22) 

which can be expressed explicitly in terms of stress components as follows: 

 ( ) ( ) ( ) ( )
1

2 2 2 22 2 21
6

2
x y y z z x xy yz zx

σ σ σ σ σ σ σ τ τ τ = − + − + − + + +  
 (3.23) 

Hence, the corresponding Von Mises yield surface can be defined in terms of the 

following equation: 

 - 0F Yσ= =  (3.24) 

 

An alternative explanation for Mises’ criterion was supplied by the German engineer 

H. Hencky in 1924. When a ductile metal yields on a microscopic level, 

displacements occurring between the atoms that make up the crystal lattice are 

observed. These are called dislocations. A dislocation can move through the lattice, 

displacing one atom after another producing a small, irrecoverable deformation. Very 

large numbers of dislocations may occur as the applied stress reaches the yield 
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criterion, and they will be manifest on a macroscopic level as a plastic deformation. 

This is not exactly the situation one envisions in a soil as it approaches failure, but 

some similarities may exist. On a macroscopic level both a ductile metal and a soft 

clay may appear to flow when the stresses become severe. Both metals and soils 

often exhibit localisation of deformation within relatively narrow regions or bands 

when failure is imminent. Workers in geotechnical engineering have often attempted 

to adapt aspects of metal plasticity theories for use in soil mechanics. The reverse, 

however, is also true since the very first practical yield criterion was derived 

specifically for soil. It was the work of the great French engineer Charles Augustus 

Coulomb (David,2002). 

 

3.4.1.3 The Mohr-Coulomb yield criterion 

 

Coulomb wrote his first scientific paper in 1773. In it he considered a number of 

problems involving the strength of building materials prevalent in his day, namely 

wood, stone, masonry and soil. His interest in soil stemmed from the design of 

retaining walls. As a military engineer he had been involved in the construction of 

several large earth-retaining structures. He began by observing that all the materials 

derived strength from two sources: cohesion and friction. His observations of real 

soils suggested that failure will usually be associated with a surface of rupture within 

the soil mass. (David,2002) Coulomb's equation relates the normal and shear stresses 

on a failure plane (Gao and Davies, 2002):  

 

φστ tannC −=       (3.25) 

 

where τ  is the shear stress, nσ  is the normal stress, C  is the cohesion, and φ  is the 

angle of internal friction. Both C and  are φ  experimentally determined material 

constants. This criterion may be written for  321 σσσ ≥≥  as 

φ
σσ

φ
σσ

sin
2

cos
2

3131 +
−=

−
c     (3.26) 

For frictionless materials (φ = 0), the Mohr-Coulomb criterion reduces to the Tresca 

criterion. 
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3.4.1.4 The Drucker-Prager Criterion 

 

This yield criteria  was proposed in 1952 by two of the most prominent researchers 

from the field of both metal and soil plasticity: D. C. Drucker and W. Prager. They 

suggested that the von Mises yield criterion could be modified easily by introducing 

a dependence on the mean stress. In order to represent the experimental data located 

between the Tresca and Mises yield surfaces. Drucker proposed the following 

criterion (Banabic et al,2000): 

                                      FJCJ D =′−′ 2
3

3
2     (4.88) 

where 2J ′  and 3J ′   are the second and third invariants of the stress tensor, respec-

tively, and DC  is a constant. Eq. 4.25 may be generalized in the form 

    FJCJ
p

D
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2     (4.89) 

p being an integer. Under plane-stress conditions ( 03 =σ ), the Drucker yield 

criterion becomes: 

(((( )))) (((( ))))
6/1

232

2

27
23

3
1

1

}27/)1)(21)(2{(}3/)1{( 











++++−−−−−−−−−−−−++++−−−−

−−−−
====

p

D

p

p

D

p

u C

C

ααααασ

σ

  (3.26) 

where uσ  is the uniaxial yield stress and 12 /σσα =  

 

Eq. 3.26 is reduced to the Von Mises yield criterion when p tends to infinity. Due to 

the restrictions related to positive definiteness and convexity, there are some 

limitations for the value of  DC  . In order to have a positive definite form, it is 

necessary that 
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3.4.1.5 Hill’s Yield Criterion 

 

In 1948 Hill proposed an anisotropic yield criterion as a generalization of the Von-

Mises criterion. The material is supposed to have an anisotropy with three orthogonal  

symmetry planes. The yield criterion is expressed by a quadratic function of the 

following type: 
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=
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Here f is the yield function; F, G, H, L, M and N are constants specific to the ani-

sotropy state of the material, and x, y, z are the principal anisotropic axes. 

When describing the anisotropy of metals, the Hill 1948 yield criterion has the 

advantage that its basic assumptions are easy to understand. This explains its wide use 

in practice (Banabic et al,2000). 

 

 

3.4.2 Flow rule 

 

Von Mises suggested that the plastic strain increment is related to the yield surface. 

This relationship is written by Zienkiewicz (1971) as follows: 

 
p

F
d d d aλ λε

σ

∂
= =

∂
 (3.29) 

where dλ is a proportionality constant, F is the yield surface function and 

 ....
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σ σ σ τ

 ∂ ∂ ∂ ∂
= =   ∂ ∂ ∂ ∂ 

 (3.30) 

 

3.4.2.1 Associated and non-associated flow rule 

 

The classical theory of plasticity was originally developed based on the observed 

mechanical behavior of metals. Therefore, the fundamental plasticity principles or rules, 



 30 

such as normality, consistency, and stability, describe the behavior of metals 

successfully. However, the behavior of concrete or soil is considerably different from 

that of metals, rendering some of the fundamental rules of the classical theory 

inappropriate for describing its mechanical behavior (Lade, 1988, Iswandi, 1994) 

 

One of the distinguishing characteristics of metals is that their yielding behavior is 

insensitive to the applied hydrostatic pressure. This implies that yielding or plastic 

flow in the material is controlled solely by the deviatoric component of the stress 

state. As a result, the plastic volumetric change in the material can be assumed 

negligible during the occurrence of plastic flow (it is only the deviatoric components 

of the strain that contribute to the plastic flow). This yielding behavior of metals can 

be well described by either the von Mises or the Tresca yield criteria combined with an 

associated flow (or normality) rule (Chen and Han, 1988, Iswandi, 1994). 

 

On the other hand, the yielding behaviour of concrete (and in general, that of 

frictional materials) is profoundly influenced by the presence of hydrostatic pressure 

(Chen, 1988; Desai and Siriwardane, 1984). The strength of these materials is known 

to be generated from the friction and cohesion between their material constituents. It is 

well established that the strength of frictional mechanisms is sensitive to the 

presence of normal (or confining) stresses. Hence, for frictional materials, the higher 

the applied normal compressive stresses (or confining stresses), the higher the 

resulting strength; however, it is also known that the rate of strength increase due to 

confinement decreases with increasing normal stresses (Iswandi,1994, Chen, 1988). 

 

Another distinguishing characteristic of concrete and other frictional materials is that 

they exhibit volume and, therefore, density change when they are subjected to 

compressive or shear loading (Lade, 1988). When concrete is subjected to this type of 

loading, it initially undergoes volume contraction. However, just prior to failure, 

concrete invariably exhibits a volume increase (or dilatancy), caused by the 

propagation of microcracks in the material microstructure. Therefore, in order to get 

realistic results for stresses and deformations in concrete, the expansive behaviour of 

this material under mechanical loads ought to be considered in the nonlinear analysis 

of concrete structures, particularly for structures subjected to triaxial states of stress. 

As has been mentioned earlier, the classical theory of plasticity combining an 
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associated flow rule can facilitate inclusion of this dilatancy behaviour in the 

constitutive description of the material. However, reported experimental and 

analytical results have shown that the use of associated flow rules results in an 

unrealistically high estimate for the plastic volumetric expansion of concrete test 

specimens (Iswandi, 1994, Hu and Schnobrich, 1989). 

 

For some plane-stress problems, such as in modelling concrete beams, accurate 

representation of the dilatancy may not be necessary because in this problem, 

dilatancy of the material during loading can be released through the nearby free 

boundaries or surfaces of the beams without generating any internal stresses 

(Vermeer and de Borst, 1984). Therefore, in such cases, out-of-plane expansion will 

have no significant effect on strength. On the other hand, for kinematically restrained 

problems (such as plane-strain problems, and confined columns) or other three-

dimensional problems, such as floating vessels, offshore platforms etc., inaccurate 

representation of dilatancy behaviour in the analysis may result in incorrect 

estimation of the strength and deformability of the material, especially in the case of 

pressure sensitive materials like concrete (Iswandi,1994).Thus, to characterize the 

dilatancy behavior of concrete in a reliable way, it is necessary to use a non-

associated flow rule, which assumes that the plastic strain increment vector is not 

normal to the yield surface. Such a rule is adopted in this study; note that application 

of a non-associative rule requires defining a function that relates the plastic strain 

increment in the material with the associated stress increment. As has been mentioned 

in the previous section, this function is referred to as "plastic potential". Because the 

amount of plastic dilatancy in the material is controlled through this function, selection 

of an appropriate plastic potential for the material being considered is a very important 

step towards the successful development of a constitutive model using plasticity theory 

(Iswandi,1994). 

 

3.4.3 Hardening rules 

 

A hardening rule is usually employed so as to define the instantaneous yield surface 

during plastic deformation. In this work, the yield surfaces can be formulated as 

follows: 
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3.4.3.1 Isotropic hardening 

 

This rule states that the instantaneous yield surface will deform uniformly during plastic 

deformation. In this case, the yield surface can be formulated as follows (Guzelbey, 

1992): 

 ( , ( )) 0F Y kσ =  (3.31) 

where k is a function of the plastic strain history. If the history of the process is taken 

into account throughout the effective plastic strain, pε , then this type of hardening is 

called as strain hardening. If the hardening parameter depends on the total plastic work, 

this is known as work hardening. Throughout this work, work hardening will be used in 

the analysis in which case k may be defined as the amount of plastic work done during 

plastic deformation as follows (Guzelbey, 1992): 

 t

p p
dk ddW σ ε= =  (3.32) 

In the case of simple tension test, the work hardening may be found by 

 p pdk = dW = Y dε  (3.33) 

These two equations are accepted as equivalent to each other, i.e.  

 t t

p p
dk Y d d d aε σ λ σε= = =  (3.34) 

From yield surface function, applying the Euler's theorem (Nayak and Zienkiewicz, 

1972) and using Equation (3.40), the hardening and flow parameters are defined as 

follows: 
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and 
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Although the yield surface is given by Equation (3.37), the physical problems force us 

to use the following explicit form as a special case of the implicit form: 

 ( , ) ( ) 0F Y f Yσ σ= − =  (3.37) 

Applying Euler's theorem to Equation (3.43)  the following form is obtained: 

 0

t
F

Yσ
σ

 ∂
− = 

∂ 
 (3.38) 

so 
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 ( )d f dκ σ λ=  (3.39) 

and 

 pd dλ ε=  (3.40) 

The parameter A can be represented in the following form for isotropic hardening: 
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where 
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For the yield surface defined by means of Equation (3.43), the parameter A is given by: 

 A H ′=  (3.42) 

The parameter H` can be defined in terms of the tangential modulus as follows: 
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where 

 t

d
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d

σ

ε
 (3.44) 

 

3.4.3.2 Kinematic hardening 

 
The Bauschinger effect can be represented by the kinematic hardening model and for 

this case, it is assumed that the yield surface translates in the stress space as a rigid body 

(Guzelbey, 1992). 

 

The yield surface for kinematic hardening is expressed as follows: 

 0( , ) 0F Yσ α− =  (3.45) 

whereα is a shift vector for the translation of the initial yield surface and 

     0Y is the initial yield stress. 

 

The shift vector increment is given by Prager (1955) as follows: 

 
p

d Cdα ε=  (3.46) 
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The Ziegler's modification (Zeigler, 1959) of the Prager hardening rule has been given 

as follows: 

 ( - )d dα µ σ α=  (3.47) 

where C is a parameter which characterises the hardening behaviour of material. 

Parameters dλ, A, dµ and C can be defined as follows for kinematic hardening: 
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 t
A Ca a=  (3.49) 
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For a uniaxial case it can be proven that: 

 
2

3
C H ′=  (3.51) 

3.4.3.3 Mixed hardening 

 
Allen (1980) gives a combination of isotropic and kinematic work hardening rules, 

which has been used by Guzelbey (1992) as mixed hardening for the correctness of 

isotropic hardening with kinematic hardening to predict the Bauschinger effect during 

cyclic loadings (Erklig,2003). 

  

Mixed hardening model simulates the yield surface’s deformation (isotropic hardening) 

and translation (kinematic hardening) in space, and the yield surface equation is given 

by: 

 ( , ) 0
r

F Yσ α− =  (3.52) 

whereα is the translation of the centre of the yield surface.  

rσ α σ− =  is the reduced stress vector which is measured from the centre of the 

translated yield surface. Yr is the current reduced yield stress in simple tension. 

 

The plastic strain increment is expressed as follows: 

 ( ) ( )i k

p p p
d d dε ε ε= +  (3.53) 

where the superscripts show the isotropic and kinematic models contribution, and 

 ( )i

p p
d Mdε ε=  (3.54) 
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 ( ) (1- )k

p p
d M dε ε=  (3.55) 

where M is a material parameter in the range -1 M 1≤ ≤ which defines the share of 

isotropic hardening in the total amount of hardening. The yield surface for mixed 

hardening can be written in following form (Guzelbey, 1992): 

 ( )( , ( , )) k

rp
F F Yσ α ε= −  (3.56) 

and the hardening parameters are given by: 
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where 
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For the special case of a material with an idealised stress-strain diagram, 
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and dµ of Ziegler's model is 
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 CHAPTER 4 

 FINITE ELEMENT METHOD 

 

 

4.1 Introduction 

 

 

Numerical methods are extremely powerful tools for engineering analysis. 

With the advent of computers, there has been a tremendous explosion in the 

development and use of numerical methods. Of these, the finite element method 

and its variants are the most commonly used methods in the analysis of 

practical engineering problems. The finite element method is based on the idea 

that every system is physically composed of different parts and hence i ts  solution 

may be represented in parts. In addition, the solution over each part is 

represented as a linear combination of undetermined parameters and known 

functions of position and possibly time. The parts can differ from each other in 

shape, material properties, and physical behavior. Even when the system is of 

one geometric shape and made of one material, it is simpler to represent its 

solution in a piecewise manner (Reddy, 2004). 

 

4.2 Basic review of Finite Element Method 

 

4.2.1 Generalised equations of equilibrium 

 

Consider an engineering structure in equilibrium under an initial mechanical loading. 

A virtual displacement is applied and according to the principle of virtual work: 

 0d dU dWχ = − =  (4.1) 

where d χ , dU  and dW  represent the variations of total potential energy, strain 

energy and work done by external force, due to the applied virtual displacement. 
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An equivalent nodal force vector F  may be defined such that: 

 t
dW d Fδ=  (4.2) 

where dδ  represents the variation of the nodal displacement vector, and the variation 

of strain energy can be expressed as follows: 

  t
dU d dxdydzε σ

Ω

= ∫∫∫  (4.3) 

where Ω represents the domain of the component 

 

Displacement components can be interpolated over each finite element, and it is 

possible to derive a matrix B such that: 

 d Bdε δ=  (4.4) 

over every finite element. 

 

If the domain Ω is discretised into n finite elements, then Equation (4.3) may be 

rewritten, using Equation (4.4), as follows: 

 
1

e

n

e

t t
dU d  dx dy dzB σδ

= Ω

 
=  

  
∑∫∫∫  (4.5) 

Substituting from Equation (4.2) and (4.5) into (4.1),  it can be shown that: 

 
1

- 0
e

n

e

t t
d d  dx dy dz FBχ σδ

= Ω

 
= = 

  
∑∫∫∫  (4.6) 

Since Equation (4.6) is valid for any arbitrary virtual displacement, it can be deduced 

that: 

 0=F-dzdy  dx B
t

n

=1e
e

σ∫∫∫∑
Ω

 (4.7) 

which represents the generalised equation of equilibrium. 
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4.2.2 Derivation of the B matrix for two-dimensional problems 

 

It should be noted in advance that the following derivation of the B matrix is valid 

both for elastic and plastic cases. From the definition of Green's strain tensor given in 

Chapter 3, the engineering strain components for two-dimensional problems may be 

expressed in terms of the following vectors: 

 S Lε ε ε= +  (4.8) 

where 

 { }  
x y xy

ε ε ε γ=  

and Sε represents, of course, the Cauchy's or small strain vector and Lε  represents the 

complementary or higher order terms in Green's strain components. 
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 (4.10) 

The variation of the above vectors can be expressed in terms of displacement 

components (u, v) and their variations as follows. 
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and  
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 (4.12) 

Defining a slope vector θ such that: 
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then Equation (4.12) may be rewritten as follows: 

 
L

d Ad d A  θ θε = ≡  (4.14) 

where 
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 (4.15) 

Notice that the A matrix can be expressed in terms of θ components as follows: 
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Writing displacement components at any point inside an element in terms of nodal 

values and shape functions, i.e.  
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where 
i

N  represents Lagrangian shape functions in terms of intrinsic coordinates , ξ η , 

then it can be proved that: 

 
SS

d dB δε =  (4.18) 

 d Gdθ δ=  (4.19) 

 δδε dB=d G  A=d LL
 (4.20) 

where 

 

.. 0 ..

.. 0 ..

.. ..

i

iS

i i

N

x

 B N

y

N N

y x

 
 

∂ 
 ∂
 = ∂
 

∂ 
 ∂ ∂
 

∂ ∂  

 (4.21) 
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L

A  GB =  (4.23) 

Hence, it can be deduced from equations (4.4), (4.8), (4.18) and (4.20) that: 

 
S L

B  B B= +  (4.24) 

Notice also that, the variation of the B matrix due to a virtual displacement is: 

 
L

d B d B=  (4.25) 

and the total strain vector is: 
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Generally speaking, Equation (4.7) represents a non-linear system of equations. If an 

approximate solution is found, in terms of , , ,Bδ σ  then: 

  
e

e

t
R F  dxdydzB σ

Ω

= −∑∫∫∫  (4.27) 

represents the residual force vector from such an approximation. If the exact solution 

is represented by 

 
ex

σ σσ = +∆  (4.28) 

 
ex

B BB = +∆  (4.29) 

then from Eq. (4.7): 
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Ω

+∆ +∆ − =∑∫∫∫  

i.e. by neglecting t
B σ∆ ∆  term: 
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∑ ∫∫∫ ∫∫  (4.30) 

The value of σ∆  may be approximated as follows: 

  t t B D Dσ ε δ∆ = ∆ = ∆  (4.31) 

where tD  may represent a tangential stress-strain matrix, and eptD D=  for elasto-

plastic analysis. 

 

The term t
B σ∆ ∆  may be simplified as follows: 

 
L

tt t
      A  GB Bσ σ σ∆ = ∆ = ∆  

i.e. 

 tt
    S  G  GB σ δ∆ = ∆  (4.32) 

where 

 

0 0

0 0

0 0

0 0

x xy

x xy

xy y

xy y

S   

σ τ

σ τ

τ σ

τ σ

 
 
 =
 
 
 

 (4.33) 



 42 

Using Equations (4.31) and (4.32), then Equation (4.30) may be rewritten in the 

following matrix form: 

 ( )
t

RK K σ δ+ ∆ =  (4.34) 

where 

 
e

e

t

t
DBdx dy dzK B

Ω

=∑∫∫∫  (4.35) 

  
e

e

t
= S Gdx dy dzGK σ

Ω

∑∫∫∫  (4.36) 

Equation (4.34) represents the linearised finite element equations of equilibrium, and an 

iterative algorithm is required in order to obtain an accurate solution. 

 

 

4.3 The Finite Element Method and ANSYS 

 

In recent years, the use of finite element analysis as a design tool has grown rapidly. 

Easy-to-use comprehensive packages such as ANSYS have become a common tool 

in the hands of design engineers. ANSYS is a comprehensive general-purpose finite 

element computer program which is released in 1971. ANSYS has been a leading 

FEA program for well over 20 years being capable of performing static, dynamic, heat 

transfer, fluid flow, and electromagnetism analyses. Today, one will find ANSYS in 

use in many engineering fields, including aerospace, automotive, electronics, and 

nuclear. In order to use ANSYS or any other FEA computer program intelligently, 

the user should first fully understand the underlying basic concepts and limitations of 

the finite element method. There are various sources of error that can contribute to 

incorrect results which include the following (Moaveni, 2003): 

 

• Wrong input data, such as physical properties and dimensions 

• Selecting inappropriate types of elements 

• Poor element shape and size after meshing 

• Applying wrong boundary conditions and loads 
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A typical analysis in ANSYS involves three distinct steps (Moaveni, 2003): 

 

1.Preprocessing: Using the PREP7 processor, you provide data such as the geometry, 

materials, and element type to the program. 

2.Solution: Using the Solution processor, you define the type of analysis, set 

boundary conditions, apply loads, and initiate finite element solutions. 

3.Postprocessing: Using POST1 (for static or steady state problems) or POST26.  

A general organization of ANSYS is presented in Fig 4.1 

 

The simplest way to communicate with ANSYS is by using the ANSYS menu 

system, called the Graphical User Interface (GUI). The GUI provides an interface 

between you and the ANSYS program. The program is internally driven by ANSYS 

commands. However, by using the GUI, you can perform an analysis with little or 

no knowledge of ANSYS commands. This process works because each GUI function 

ultimately produces one or more ANSYS commands that are automatically executed 

by the program (Moaveni, 2003). 

 

 

Fig 4.1 General Organization of ANSYS (Moaveni, 2003) 
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There are three processors that are used most frequently: (1) the preprocessor 

(PREP7), (2) the processor (SOLUTION), and (3) the general postprocessor 

(POST1). The preprocessor (PREP7) contains the commands needed to build a 

model (Moaveni, 2003); 

 

• Define element types and options 

• Define element real constants 

• Define material properties 

• Create model geometry 

• Define meshing controls 

• Mesh the object created. 

ANSYS provides more than one hundred various elements to be used to analyze 

different problems. Selecting the correct element type is a very important part of the 

analysis process. A good understanding of finite element theory will benefit you the 

most in this respect, helping you choose the correct element for your analysis. In 

ANSYS, each element type is identified by a category name followed by a number. 

For example, two-dimensional solid elements have the category name PLANE. 

Furthermore, PLANE42 is a four-node quadrilateral element used to model structural 

solid problems. The element is defined by four nodes having two degrees of freedom 

at each node, translation in the x and y directions (Moaveni, 2003). 

The solution processor (SOLUTION) has the commands that allow the user to apply 

boundary conditions and loads. For example, for structural problems, you can 

define displacement boundary conditions and forces, or for heat transfer problems, 

you can define boundary temperatures or convective surfaces. Once all the 

information is made available to the solution processor (SOLUTION), it solves for 

the nodal solutions. The general postprocessor (POST1) contains the commands that 

allow you to list and display results of an analysis (Moaveni, 2003): 

• Read results data from results file 

• Read element results data 
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• Plot results 

• List results 

There are other processors that allow you to perform additional tasks. For example, 

the time-history postprocessor (POST26) contains the commands that allow the user 

to review results over time in a transient analysis at a certain point in the model. The 

design optimization processor (OPT) allows the user to perform a design 

optimization analysis (Moaveni, 2003). 
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CHAPTER 5 

NEURAL NETWORKS 

 

 

5.1 Introduction 

 

Artificial Intelligence (AI) comprises methods, tools, and systems for solving 

problems that normally require the intelligence of humans. The term intelligence is 

always defined as the ability to learn effectively, to react adaptively, to make proper 

decisions, to communicate in language or images in a sophisticated way, and to 

understand. The main objectives of AI are to develop methods and systems for 

solving problems, usually solved by the intellectual activity of humans, for example, 

image recognition, language and speech processing, planning, and prediction, thus 

enhancing computer information systems; and to develop models which simulate 

living organisms and the human brain in particular, thus improving our 

understanding of how the human brain works (Kasabov, 1996). 

 

The main AI directions of development are to develop methods and systems for 

solving AI problems without following the way humans do so, but providing similar 

results, for example, expert systems; and to develop methods and systems for solving 

AI problems by modeling the human way of thinking or the way the brain works 

physically, for example, artificial neural networks (Kasabov, 1996). 

 

Artificial Neural Networks (ANN) can be defined as computer models that mimic the 

biological nervous system in general.  There are many definitions of NNs in 

literature which can be summarized as follows: 

 

A Neural Network is a ‘machine’ that is designed to  model the way in which the 

brain performs a particular task or function of interest, the network is usually 
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implemented using electronic components or simulated in software on  a digital 

computer (Hecht-Nielsen,1990). 

Haykin (1994) defines a neural network as a massively parallel distributed processor 

that has a natural propensity for storing experiential knowledge and making it 

available for use. It resembles the brain in two respects:  

• Knowledge is acquired by the network through a learning process.  

• Interneuron connection strengths known as synaptic weights are 

used to store the knowledge.  

On the other hand according to  Nigrin (1993); a neural network is a circuit 

composed of a very large number of simple processing elements that are neural 

based. Each element operates only on local information. Furthermore each element 

operates asynchronously; thus there is no overall system clock.  

Another widely accepted definition of NNs is given by  to  Zurada (1992) as follows: 

Artificial neural systems, or neural networks, are physical cellular systems which can  

acquire, store, and utilize experiential knowledge. 

 

5.2 History of Neural Networks 

 
The first step toward artificial neural networks came in 1943 when Warren 

McCulloch, a neurophysiologist, and a young mathematician, Walter Pitts, wrote a 

paper on how neurons might work. They modeled a simple neural network with 

electrical circuits. In 1949, Donald Hebb proposed `Hebb rule' which states that nets 

can learn from their experience in a training environment. `Hebb rule' has always 

played a striking role in the field of ANN studies (Hebb, 1949). Throughout 1950s 

scientists implemented models called perceptrons based on the work of McCulloch 

and Pits. In 1957, Rosenblatt invented the Perceptron which has been a milestone in 

ANN studies. Widrow and Hoff developed the models called ADALINE and 

MADALINE in 1959 which was the first neural network to be applied to a real world 

problem. In 1968, Marvin Minsky published some intrinsic limitations of neural 

Networks which slowed down the implementations of ANN drastically (Minsky, 

1969). The studies in the field ANN almost stopped for more than a decade until 
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Hopfield invented The Hopfield network in 1982 whose dynamics were guaranteed 

to converge. After this novel invention, ANN studies have raised again. 

Backpropagation was invented in 1986 by Rumelhart, Hinton and Williams which 

opened a new era in ANN applications (Rumelhart,1986). 

.  

5.3 Elements of Neural Networks 

 

The basic element of a neural network is the artificial neuron as shown in Figure 3 

which is actually the mathematical models of biological neuron model shown in 

Figure 5.1. A biological neuron is made up of four main parts: dendrites, synapses, 

axon and the cell body. The dendrites receive signals from other neurons. The axon 

of a single neuron serves to form synaptic connections with other neurons. The cell 

body of a neuron sums the incoming signals from dendrites. If input signals are 

sufficient to stimulate the neuron to its threshold level, the neuron sends an impulse 

to its axon. On the other hand, if the inputs do not reach the required level, no 

impulse will occur. The analogy between a biological neuron model and an artificial 

neuron model is shown in Figure 5.1 and Figure 5.2.  

 

 

 

Fig 5.1 A biological neuron. (Wasserman, 1989)   
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Fig 5.2 Artificial neuron model 
 

The artificial neuron consists of three main components namely as weights, bias, and 

an activation function (Fig 5.3). Each neuron receives inputs
nxxx ,...,, 21 , attached 

with a weight wi which shows the connection strength for that input for each 

connection. Each input is then multiplied by the corresponding weight of the neuron 

connection. A bias ib  can be defined as a type of connection weight with a constant 

nonzero value added to the summation of inputs (Fig 5.3) and corresponding weights 

u, given in Equation (5.1) .  
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     (5.1) 

The summation iu  is transformed using a scalar-to-scalar function called an 

"activation or transfer function", )( iuF  yielding a value called the unit's "activation", 

given in Equation 5.2.  
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Fig 5.3 Basic elements of an artificial neuron . 

 

Activation functions serve to introduce nonlinearity into neural networks which 

makes NNs so powerful. The activation function is also referred to as a squashing 

function. There are a number of different types of activation function and some 

common examples are provided below: 

 

Fig 5.4: Threshold activation function. 

 

 

Fig 5.5: Piecewise-linear function 
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Fig 5.6: Sigmoid (logistic) function. 

 

 
Fig 5.7: Hyperbolic tangent function. 

 

 

 

5.4 Classification of Neural Networks 

 

Neural Network models can be classified in a number of ways. Using the network 

architecture as basis, there are three major types of neural networks:  

• Recurrent networks - the units are usually laid out in a two-dimensional array 

and are regularly connected. Typically, each unit sends its output to every 

other unit of the network and receives input from these same units. Recurrent 

networks are also called feedback networks. Such networks are "clamped" to 

some initial configuration by setting the activation values of each of the units. 

The network then goes through a stabilization process where the network 

units change their activation values and slowly evolve and converge toward a 

final configuration of "low energy". The final configuration of the network 

after stabilization constitutes the output or response of the network. This is 

the architecture of the Hopfield Model (www.comp.nus.edu.sg) 

• Feed forward networks – these networks distinguish between three types of 

units: input units, hidden units, and output units. The activity of this type of 

network propagates forward from one layer to the next, starting from the 

input layer up to the output layer. Sometimes called multilayered networks, 

feed forward networks are very popular because this is the inherent 

architecture of the Backpropagation Model.  



 52 

• Competitive networks– these networks are characterized by lateral inhibitory 

connections between units within a layer such that the competition process 

between units causes the initially most active unit to be the only unit to 

remain active, while all the other units in the cluster will slowly be 

deactivated. This is referred to as a "winner-takes-all" mechanism. Self-

Organizing Maps, Adaptive Resonance Theory, and Rumelhart & Zipser's 

Competitive Learning Model are the best examples for these types of 

networks (www.comp.nus.edu.sg). 

The network architecture can be further subdivided into whether the network 

structure is fixed or not. There are two broad categories:  

• Static architecture – most of the seminal work on neural networks were based 

on static network structures, whose interconnectivity patterns are fixed a 

priori, although the connection weights themselves are still subject to 

training. Perceptrons, multi-layered perceptrons, self-organizing maps, and 

Hopfield networks all have static architecture.  

• Dynamic architecture – some neural networks do not constrain the network to 

a fixed structure but instead allow nodes and connections to be added and 

removed as needed during the learning process as adaptivity. Some examples 

are Grossberg’s Adaptive Resonance Theory and Fritzke’s “Neural Gas”. 

Some adding-pruning approaches to Multi-Layered Perceptron networks have 

also been widely studied.  

Yet another basis for classifying neural network models is according to the mode of 

learning adapted. In this case, there are two major categories 

(www.comp.nus.edu.sg):  

• Supervised learning – these are generally the learn-by-example methods 

where user-supplied information are provided with each training pattern. 

These guide the neural network in adjusting its parameters. The perceptrons 

and backpropagation networks are classic examples of supervised learning 

models.  
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• Unsupervised learning – some neural network models do not need category 

information to accompany each training pattern, although such information 

would still be required in the interpretation and labeling of the resultant 

networks. Classical examples of these are Kohonen’s self-organizing maps 

and Grossberg’s Adaptive Resonance Theory.  

It also makes sense to classify neural network models on the basis of their over-all 

task:  

• Pattern association – the neural network serves as an associative memory by 

retrieving an associated output pattern given some input pattern. The 

association can be auto-associative or hetero-associative, depending on 

whether or not the input and output patterns belong to the same set of 

patterns.  

• Classification – the network seeks to divide the set of training patterns into a 

pre-specified number of categories. Binary-valued output values are generally 

used for classification, although continuous-valued outputs (coupled with a 

labeling procedure) can do classification just as well.  

• Function approximation – the network is supposed to compute some 

mathematical function. The network's output represents the approximated 

value of the function given the input pattern as parameters. In certain areas, 

regression may be the more natural term.  

There are other bases for classifying neural network models, but these are less 

fundamental than those mentioned earlier. Some of these include the type of input 

patterns that can be admitted (binary, discrete valued, real values), or the type of 

output values that are produced (www.comp.nus.edu.sg).  
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5.5 Backpropagation Algorithm   

 

Back propagation algorithm is one of the most widely used supervised training 

methods for training multilayer neural networks due to its simplicity and 

applicability. It is based on the generalized delta rule and was popularized by 

Rumelhart and coworkers (1986). As it is a supervised learning algorithm, there is a 

pair of inputs and corresponding output. The algorithm is simply based on a weight 

correction procedure shown schematically in Fig. 5.8. It consists of two passes: a 

forward pass and a backward pass. In the forward pass, first, the weights of the 

network are randomly initialized and an output set is obtained for a given input set 

where weights are kept as fixed.  The  error between the output of the network and 

the target value is propagated  backward during the backward pass and  used  to  

update  the  weights  of  the  previous  layers as shown in Fig 5.9 (Zupan,1993). 

 

 

 

 
Fig 5.8 Schematic presentation of weight correction in BPNN  
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Fig 5.9 Backpropagation algorithm 
 

The main goal of BPNN is mapping of input, i.e. vector x into output, i.e. vector y.: 

This can be written in short: 

i

BPNN

i YX  →     (5.3) 

For the output layer the error last

jδ  can be given as the difference between the target 

value iY  and the network output last
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The weight correction is given as 
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Combining Equations 5.4 and 5.5 the weight correction in a hidden layer can be 

generalized as follows: 
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where η  is the learning rate and µ  is the momentum constant . 

Equation 5.5 can be also be expressed in condensed form as: 

   1−=∆ l

i

l

j

l

ji outw ηδ  +   )( previousl

jiw∆µ           (5.7) 

 

5.6 Matlab NN Toolbox 

 
In this thesis, Matlab NN toolbox is used for NN modeling. Matlab NN toolbox is 

preferred due to its flexibility. As a result, an optimal NN selection algorithm 

program has been developed which is almost impossible for other NN software 

available in market. 

 

The toolbox consists of a set of functions and structures that handle neural networks, 

so the user does not need to write code for all activation functions, training 

algorithms. The toolbox is based on the network object. This object contains 

information about everything that concern the neural network, e.g. the number and 

structure of its layers, the connectivity between the layers, etc. Matlab provides high-

level network creation functions, like newlin (create a linear layer), newp (create a 

perceptron) or newff (create a feed-forward backpropagation network) to allow an 

easy construction (www.igi.tugraz.at). 

 

A graphical user interface has been added to the toolbox. This interface allows you 

to: 

• Create networks 

• Enter data into the GUI 

• Initialize, train, and simulate networks 

• Export the training results from the GUI to the command line workspace 

• Import data from the command line workspace to the GUI (www.igi.tugraz.at) 

 

The User can handle almost all main parameters related with NN model and obtain 

them very easily. Architecture parameters and the subobject structures given by the 

Toolbox are as follows: 
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inputs: {1x1 cell} of inputs 

layers: {1x1 cell} of layers 

outputs: {1x1 cell} containing 1 output 

targets: {1x1 cell} containing 1 target 

biases: {1x1 cell} containing 1 bias 

inputWeights: {1x1 cell} containing 1 input weight 

layerWeights: {1x1 cell} containing no layer weights 

 

In this thesis, by the aid of these NN parameters, closed form solutions of the 

proposed NN models are also derived and presented. This will open the black box as 

NNs are often referred to as. The analytical form of the NN models will enable them 

to be used for further practical applications. 

 

 

5.7  Optimal NN Model Selection 

 

The performance of a NN model mainly depends on the network architecture and 

parameter settings.  One of the most difficult tasks in NN studies is to find this 

optimal Network architecture which is based on determination of numbers of optimal 

layers and neurons in the hidden layers by trial and error approach. The assignment 

of initial weights and other related parameters may also influence the performance of 

the NN in a great extent. However there is no well defined rule or procedure to have 

optimal network architecture and parameter settings where trial and error method still 

remains valid. This process is very time consuming. 

 

Various Backpropagation Training Algorithms are used in this thesis given in Table 

5.1. Matlab NN toolbox randomly assigns the initial weights for each run each time 

which considerably changes the performance of the trained NN even all parameters 

and NN architecture are kept constant. This leads to extra difficulties in the selection 

of optimal Network architecture and parameter settings. To overcome this difficulty, 

a program has been developed in Matlab which handles the trial and error process 

automatically. The program tries various number of layers and neurons in the hidden 

layers both for first and second hidden layers for a constant epoch for several times 

and selects the best NN architecture with the minimum MAPE (Mean Absolute % 
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Error) or RMSE (Root Mean Squared Error) of the testing set, as the training of the 

testing set is more critical. For instance, NN architecture with 1 hidden layer with 7 

nodes is tested 10 times and the best NN is stored where in the second cycle the 

number of hidden nodes is increased up to 8 and the process is repeated. The best NN 

for cycle 8 is compared with cycle 7 and the best one is stored as best NN. This 

process is repeated N times where N denotes the number of hidden nodes for the first 

hidden layer. This whole process is repeated for changing number of nodes in the 

second hidden layer. Moreover, this selection process is performed for different back 

propagation training algorithms such as trainlm, trainscg and trainbfg given in Table 

5.1. The program begins with simplest NN architecture i.e. NN with 1 hidden node 

for the first and second hidden layers and ends up with optimal NN architecture as 

shown in Figure 5.10. The flowchart is of the whole process is shown in Figure 5.11. 

 

Table 5.1.  Back propagation training algorithms used in NN training. 
 
MATLAB 

Function name  
Algorithm  

trainbfg  BFGS quasi-Newton back propagation  

traincgf Fletcher-Powell conjugate gradient back propagation  

traincgp  Polak-Ribiere conjugate gradient back propagation  

traingd  Gradient descent back propagation  

traingda  Gradient descent with adaptive lr back propagation  

traingdx  Gradient descent w/momentum & adaptive linear back propagation  

trainlm  Levenberg-Marquardt back propagation  

trainoss  One step secant back propagation  

trainrp  Resilient back propagation (Rprop)  

trainscg  Scaled conjugate gradient back propagation  
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Fig 5.10 Optimal NN selection process 
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Fig 5.11 Flowchart of optimal NN selection 
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CHAPTER 6  

CASE STUDIES 

 
 
 

6.1 Introduction 

 

 

In this chapter, the feasibility of NNs to be used for elastoplastic analysis of 

structures is investigated by means of a number of case studies. These case studies 

can be categorized under 2 headings with respect to the databases used for the NN 

training. 

 

a) FEM based NN Training 

b) Experimental based NN Training 

 

The experimental based case studies consist of different material types given as 

follows: Steel, aluminum, concrete and composite materials. Case studies can be 

categorized as follows: 

 

a) FEM based NN Training 

 

• The Prediction Of Ultimate Strength Of Metal Plates In Compression 

• Explicit Formulation of Elastoplastic Bending By Neural Networks 

 

b) Experimental based NN Training 

 

Steel Structures: 

• Prediction Of Web Crippling Strength Of Cold-Formed Steel Sheetings Using 

Neural Networks 

• Prediction Of Rotation Capacity Of Wide Flange Beams Using Neural 

Networks 
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• Strength Enhancement of Corner Regions in cold-formed steel 

 

Aluminum Structures: 

  

• Flexural Buckling Load Prediction of Aluminium Alloy Columns 

• Prediction of Buckling Parameters Of Hollow Aluminium Columns 

 

Composite Structures 

 

• Shear Capacity Of RC Beams Without Web Reinforcement 

• Strength Enhancement For CFRP Confined Concrete Cylinders 

 

 

 

6.2 Case Studies 

 

6.2.1 The prediction of ultimate strength of metal plates in compression 

 

6.2.1.1 Introduction 

 

This case study presents two plate strength formulations applicable to metals with 

nonlinear stress strain curves, such as aluminium and stainless steel alloys 

obtained by Neural Networks (NN). The proposed NN models are based on well-

defined FE results available in literature. The proposed formulations enable to 

determine the buckling strength of rectangular plates in terms of Ramberg-

Osgood parameters. The strength curves obtained by the proposed NN 

formulations show perfect agreement with FE results. The formulations are later 

compared with related codes and results are found to be quite satisfactory.  

 

Although studies on buckling of columns go back to the end of 19th century, viable 

theoretical solutions for plastic buckling of plates have been proposed throughout 

late 1930s and 1940s. (Singer, 2004). The theory of plastic buckling of columns is 

well developed however, several aspects in the theory of plastic buckling of plates 



 63 

are still controversial. Determination of plastic buckling load of a plate is 

significantly more difficult than its elastic counterpart as the stress-strain 

relationship beyond the proportional limit is more complex. In the case of plastic 

buckling of columns, the stresses are uniaxial whereas in the case of plates the 

stresses are two or three dimensional which brings extra difficulties in the proper 

representation of the stress-strain relationship. Thus numerical methods are strongly 

recommended for stability analysis of plates in plastic region (Szilard, 2004).This 

study offers an alternative novel approach for the formulation of plate strength using 

NNs. NNs are used for closed-form solution of plate strength applicable to metals 

with nonlinear stress strain curves, such as aluminium and stainless steel alloys. The 

formulation is based on well-established FE results from literature. The formulation 

is proposed in terms of Ramberg-Osgood parameters. Results of the Soft computing 

formulations agree well with FE results. The proposed NN model is seen to be more 

accurate than the related codes.  

 

6.2.1.2 Inelastic buckling of plates 

 

The phenomenon of buckling can be categorized (by plasticity) into three classes, 

namely elastic buckling, elastic-plastic buckling and plastic buckling where the last 

two are called inelastic buckling. Elastic-plastic buckling occurs after a local region 

inside the plate deforms plastically. Plastic buckling refers to buckling that occurs in 

the regime of gross yielding, i.e., after the plate has yielded over large areas (Paik 

and  Thayamballi, 2003). 

 

Plastic buckling analysis of plates may be based on three classes namely incremental 

(flow) theory of plasticity, deformation theory and slip theory. The successes of these 

methods are still controversial. For example, the deformation theory gives a better 

prediction of critical buckling loads for long, simply-supported plates; the 

incremental theory gives better results for cylinders under compression and torsion. 

On the other hand, hybrid methods are also available based on both the deformation 

theory and the incremental theory (Wang and Reddy, 2004). 
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6.2.1.3 Strength of Metal Plates With Non-Linear Mechanical Properties 

 
Metals with non-linear mechanical properties, such as stainless steel, aluminium or 

brass do not have a yield plateau as do ordinary hot-rolled carbon structural steels, 

which for compression design purposes can be modeled as elastic-perfectly-plastic. 

However, the mechanical response of many modern cold-formed structural shapes of 

carbon steel, including tubulars, is becoming increasingly nonlinear because of 

residual stresses introduced during cold-forming. The strength of the component 

plates of such sections can also be determined using the strength curve formulation 

developed by Bezkorovainy et al. (Bezkorovainy,2002). 

 

In the absence of a yield plateau, it is common practice to define an equivalent yield 

stress for nonlinear metals. This is usually chosen as the 0.2% proof stress, defined as 

the stress with a plastic strain of 0.2%. It is also common practice to represent the 

stress-strain curve by a Ramberg-Osgood curve (Ramberg and Osgood 1943), which 

is defined in terms of the initial elastic modulus (Eo), a proof stress, and a parameter 

n that defines the sharpness of the knee of the stress-strain curve. If the proof stress is 

chosen as the 0.2% proof stress ( 2.0σ ), the Ramberg-Osgood function takes the form 

(Bezkorovainy et al, 2003) 

n

E 







+=

2.00

002.0
σ

σσ
ε      (6.1) 

The proportionality stress for such metals is defined as the 0.01% proof stress ( 01.0σ ). 

Thus the parameter n can be defined as: 

)/ln(

)20ln(

1.02.0 σσ
=n        (6.2) 

Thus it is possible to define the strength of a plate which depends on the stress-strain 

curve in terms of the  Ramberg-Osgood parameters (E0, n, 2.0σ ) as the stress-strain 

curve can be defined in terms of the Ramberg-Osgood parameters. Based on this 

approach, Rasmussen and Rondall (1997a) developed equations for the strength of 

metal columns, which was later modified design curves for stainless steel 

(Rasmussen and Rondal, 1997b) and aluminum columns (Rasmussen and 

Rondal,2000). 
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The study of Bezkorovainy et al (2003) is based on a similar study of Rasmussen and 

Rondall (1997a) for uniformly compressed metal plates simply supported along four 

edges. Bezkorovainy et al (2002) have first performed FE analysis to obtain strength 

curves for large number Ramberg-Osgood parameters. The FE model produced 

agreement with tests on stainless steel plates to within a few percent. The FE model 

can therefore be expected to be accurate. The width of the plate was 100 mm in all 

analyses, while the thickness was varied to produce a set of predetermined plate 

slenderness values, 

 

crσ

σ
λ 2.0=       (6.3) 

Where crσ  = elastic critical stress 
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 Strength curves were determined for all (n,e)-permutations of the n- and e-values 

given in Table 6.1 where e is defined as: 

0

2.0

E
e

σ
=        (6.5) 

For each (n,e)-combination, the plate strength was determined for the slenderness 

values, λ  = 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3 given in Table 6.1. 

 The plate strength (s) is given as the average ultimate stress ( uσ ) 

nondimensionalised with respect to the 0.2% proof stress ( 2.0σ ), where the ultimate 

stress is the maximum load obtained in the FE analysis divided by the cross-sectional 

area. S is expressed as: 

S = uσ / 2.0σ       (6.6) 

Having obtained plate strength curves for a wide range of n- and e-values, 

Bezkorovainy et al (2002)  derived analytical approximations to these curves i.e., a 

nondimensional plate strength ( χ )   by adopting a generalized Winter-curve given in 

the following form: 

)()( 2λ
β

λ
αχ −=       (6.7) 
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Where λ  is the plate slenderness and α  and β  are calculated functions of the 

Ramberg-Osgood parameters derived by Bezkorovainy et al (2002) given as follows: 

 

103 ≤≤ n    (6.8) 

10010 ≤< n   (6.9) 

  

 

103 ≤≤ n  (6.10) 

                                                        10010 ≤≤ n      (6.11)     
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Table 6.1 Values of (S / χ ) for complete cet of Finite Element analyses. 
 
    e=0.001         e=0.0015        e=0.002          e=0.0025      e=0.003    

 λ   n=3    n=5    n=10  n=100  n=3    n=5    n=10  n=100  n=3    n=5    n=10  n=100  n=3    n=5    n=10  n=100  n=3    n=5    n=10  n=100 

 0.5    0.97   1.01    0.98    0.98    1.00   1.04    1.00    0.99    0.99   1.01    1.02    0.99    0.98   0.99    1.02    1.00    0.95   0.97   1.02    1.01   

 0.75   0.98   0.97    0.98    1.00    1.04   1.01    1.00    1.00    1.05   1.01    1.00    1.01    1.04   1.00    1.00    1.01    1.03   1.00   1.00    1.02   

 1    0.94   0.93    0.99    1.04    1.00   0.95    0.99    1.04    1.00   0.96    0.99    1.03    1.00   0.96    0.99    1.04    0.98   0.96   0.98    1.04   

 1.25   0.96   0.909    0.98    1.00    1.00   0.95    0.97    0.99    1.01   0.95    0.96    1.00    0.98   0.95    0.96    1.01    0.98   0.95   0.95    1.01   

 1.5    0.98   0.913    0.97    0.99    1.02   0.95    0.97    0.99    1.02   0.96    0.97    0.99    1.01   0.97    0.97    0.99    0.98   0.95   0.96    1.01   

 2    1.03   0.94    1.00    1.01    1.06   0.99    1.01    1.01    1.06   1.00    1.01    1.00    1.05   0.99    1.00    1.03    1.02   0.99   1.00    1.04   

 2.5    1.07   0.97    1.02    1.02    1.12   1.04    1.02    1.03    1.09   1.03    1.03    1.06    1.13   1.06    1.04    1.03    1.09   1.05   1.03    1.06   

 3    1.08   1.01    1.06    1.06    1.13   1.04    1.06    1.06    1.07   1.03    1.05    1.00    1.09   1.04    1.03    1.08    1.06   1.02   1.04    1.06   

 
 

Table 6.2 FE results for (
2.0σ

σ u
) 

    e=0.001         e=0.0015        e=0.002          e=0.0025      e=0.003    
 

 n=3    n=5    n=10  n=100  n=3    n=5    n=10  n=100  n=3    n=5    n=10  n=100  n=3    n=5    n=10  n=100  n=3    n=5    n=10  n=100 

0.500 0.970 1.118 1.083 0.976 0.971 1.110 1.082 0.967 0.934 1.041 1.081 0.950 0.899 0.986 1.060 0.942 0.848 0.935 1.039 0.935 

0.750 1.267 1.237 1.214 1.174 1.289 1.245 1.213 1.151 1.250 1.204 1.188 1.140 1.191 1.155 1.164 1.118 1.136 1.120 1.141 1.108 

1.000 1.516 1.417 1.451 1.471 1.539 1.400 1.421 1.442 1.471 1.370 1.392 1.400 1.409 1.328 1.364 1.386 1.324 1.288 1.324 1.359 

1.250 1.863 1.629 1.683 1.672 1.846 1.648 1.631 1.621 1.778 1.596 1.581 1.605 1.649 1.548 1.549 1.589 1.579 1.502 1.503 1.559 

1.500 2.227 1.890 1.918 1.916 2.201 1.903 1.878 1.877 2.096 1.863 1.839 1.839 1.980 1.826 1.802 1.803 1.838 1.736 1.749 1.804 

2.000 3.029 2.478 2.510 2.496 2.955 2.526 2.482 2.445 2.808 2.473 2.431 2.372 2.650 2.375 2.358 2.394 2.458 2.306 2.312 2.371 

2.500 3.866 3.112 3.111 3.073 3.830 3.231 3.045 3.039 3.539 3.101 3.012 3.064 3.492 3.097 2.980 2.918 3.213 2.979 2.893 2.945 

3.000 4.629 3.821 3.808 3.771 4.581 3.810 3.728 3.692 4.115 3.658 3.617 3.413 3.988 3.584 3.477 3.612 3.698 3.414 3.441 3.476 

 

λ
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6.2.1.4 Numerical application 

 

The main focus of this study is to obtain closed-form solutions of plate strength 

given schematically in Fig. 6.1 by means of NNs Data needed for the training 

process is obtained from Bezkorovainy et al (2002) who have performed a wide 

range of FE analysis on plate strength in terms of e, n, and λ  and have compared 

these FE results with the results of analytical equation they have derived given in 

Equations 6.8-6.11. They have presented the (S / χ )  values  in table 6.1.  Thus to 

obtain the FE results, Equations 6.8-6.11 have been used to find the 

nondimensional χ  values and in return the FE results have been obtained from Table 

6.1. This study is based on the soft computing modeling of these FE results given in 

Table 6.2. Among the FE results, a number of cases have been randomly selected as 

test and training sets. 

 

 

 

Fig 6.1 Buckling of rectangular plate under uniform compression (traction) 

(Bezkorovainy,2003) 

 

 

6.2.1.5 Results of NN models  

 

The optimal NN architecture in this part was found to be 5-3-1 NN architecture with 

logistic sigmoid transfer function (logsig). The training algorithm was quasi-Newton 

back propagation (BFGS). The optimum NN model is given in Figure 6.2. Statistical 

parameters of learning and training sets of NN model are presented in Table 5.3. The 

% errors and Prediction of NN and actual values of learning and testing sets and their 

corresponding correlation are given in Figures 6.3-6.6. The overall comparison of the 
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proposed NN model results with FE results and results obtained from Equations 6.8-

6.11 is given in Table A.1. The overall accuracy and correlation of NN models are 

quite satisfactory compared to FE results.  

 

Table 6.3 Statistical parameters of the proposed NN models 
 
 MSE RMSE SSE MAPE (%) 
NN Train Set 0.0015 0.039 0.224 1.65 
NN Test  Set 0.0116 0.108 0.163 3.22 

 

 

Fig 6.2 Proposed NN model for the prediction of uσ  

 

Fig 6.3 Performance of NN model for 
test set 

 
Fig 6.4 Performance of NN model for 
training set 
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Fig 6.5. % Error for test set  
 

Fig 6.6 % Error for training  set  
 
 
 
6.2.1.6 Explicit Formulation of NN Models  

 

The explicit formulation for the proposed NN model is obtained by using the well 

trained NN parameters which are biases, and weights for the input and hidden layer 

and the normalization factors both for inputs and output proposed NN model. Related 

weights in the derivations of NN based formulations are given in Tables 6.4. Each 

input is multiplied by a connection weight. Thus the main focus is to obtain the 

explicit formulation as follows: 

 

2.0σ

σ u
=   f ( λ , e, n)      (6.12) 

Revisiting Eqn 5.1               ∑
=

+=
H

j

ijiji bxwu
1

      

Where each input is multiplied by its corresponding weight and its bias is added.  

wij 
 is the weight matrix of the first hidden layer in Table 6.4.  

Table 6.4 Weights between inputs and hidden layer 
 

Weights                                           Number of  hidden layer neurons (i)  
 1                2                 3                4                5  
w1i 1.3448  −1.3696  −2.2788  2.6218  −0.5745  
w2i  −2.9353  −3.2153  −6.0831  −6.4065  7.6174  
w3i  6.2338  −5.5639  1.4444  1.8013  4.4988  
 

and Xj  is the corresponding parameter vector given as  
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X = [ λ , e, n] where 

ib  is the bias matrix to the first hidden layer given as 

b = [221.3   -4.37   -5.42   -2.82   -2.85] 

 The summation iu  is transformed using a scalar-to-scalar function called an 

"activation or transfer function", )( iuF  yielding a value called the unit's "activation". 

)( ii ufY =  

Following the steps above leads to: 

u1 =  (-222.8* λ ) + (-18.6 *e ) + (-306.3*n ) + 221.3 

u2 =  (-1.73* λ ) + (1.38 *e ) + (332.1*n )  - 4.37 

u3 =  (-1.8* λ ) + (0.19 *e ) + (0.08*n )  - 5.42 

u4 =  (-6.44* λ ) + (-0.56 *e ) + (-73.8*n )  - 2.82 

u5 =  (-4.74* λ ) + (0.20 *e ) + (-0.55*n )  - 2.85 

The activation function used in this study is logistic transfer function (logsig)  

)( iuf = 








+ − )(1

1
iu

e
 performed for each hidden node in the first hidden layer 

Thus the output is 

 

O =1/ (1+exp - ( Σ  (w2 i * )( iuf )   +   b2)) 

Where w2i  is the weight vector to the output layer given as 

w2i =[  0.028  -13.37 -16.92  -34.49  -0.33 ] 

and b2 is the bias added which is  

b2= 30.7 

It should be noted that the inputs entering the network have been normalized before 

the training as 

λ *= λ / 3      e
*
 = e /0.003    n

*
 = n/100 

 

These steps given so far may seem to be too complex particularly for those who do 

not have a neural network background. The same steps can be given in a simpler 

form as follows: 
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2.0σ

σ u
=   f ( λ , e, n)  
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U1=  (-74.25* λ ) + (-621.4 *e ) + (-3.063*n ) + 221.3 

U2 =  (-0.576* λ ) + (45.9 *e ) + (3.32*n )  - 4.37 

U3=  (-0.6* λ ) + (6.37 *e ) + (0.0008*n )  - 5.42 

U4=  (-2.148* λ ) + (-18.6 *e ) + (-0.738*n )  - 2.82 

U5=  (-1.58* λ ) + (6.74 *e ) + (-0.0055*n )  - 2.85 

 

 

It should be noted that the proposed explicit formulation of the NN models presented 

above are valid only for the ranges of training set. 

 

6.2.1.7 Conclusion 

 

This case study presents an alternative NN based approach for the prediction of 

nondimensional ultimate strength of metal plates in compression with non-linear 

mechanical properties. The proposed NN model is based on well-defined FE results 

of nondimensional ultimate strength of metal plates in compression with non-linear 

mechanical properties from literature.  The ultimate plate strength is obtained in 

terms of λ , e, n being plate slenderness ratio, 
0

2.0

E

σ  and Ramberg Osgood parameter. 

The closed-form solutions are also presented for the NN models. The results of the 
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proposed NN model are quite satisfactory compared to FE results. A very high 

accuracy and a perfect correlation which are better than existing analytical 

formulations  has been obtained for the NN model since a new optimum NN 

selection algorithm has been used for the selection of optimum NN architecture. This 

study presents the robustness NNs for the explicit formulation and analysis of 

various engineering problems where it is difficult to obtain an analytic expression 

from experimental and numerical results. 

 

 
 
6.2.2 Explicit Formulation of Elastoplastic Bending By Neural Networks 

 

 

6.2.2.1 Introduction 

 

 

In this study, an application of Neural Networks on nonlinear mechanics problems is 

presented by the neurocomputation of the elastoplastic analysis of a cantilever beam 

based on Back Propagation Artificial Neural Networks (BPNN). BPNN is proposed 

as a tool for analysis and formulation of the elastoplastic behaviour of the cantilever 

beam in the plastic range. The training patterns for BPNNs are prepared by ANSYS. 

All necessary processes for neural networks are conducted using MATLAB tools. 

Explicit formulations for maximum plastic deflection and maximum plastic normal 

stresses are obtained by using the parameters of the trained NNs. It is shown that 

there is a good agreement with the neurocomputed results, explicit formulation and 

those of theoretical analyzed solution of the elastoplastic problem. Parametric case 

studies are performed to show the generalization capability of the trained NNs. Thus, 

this study aims to open the Neural Networks’ Black box and to present a pioneering 

work in this field. 

 

The maximum plastic deflection and normal stress for a uniformly loaded cantilever 

beam are formulated explicitly by utilizing trained NN parameters.  

 

Assuming δθρδ ≈s  and  ρ = ds/dθ  given in Fig 6.7 
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The ‘curvature’ of the beam, κ, is given as: 

 

ds

dθ

ρ
κ ==

1
    (6.13) 

 

where  

 

 

 

 

 

 Fig 6.7 Moment-Curvature relationship 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.8.Bilinear strain hardening material model 
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6.2.2.2 Numerical application 

 

The training patterns for NNs have been obtained by ANSYS. The cantilever beam 

cross section is rectangular with unit thickness and it is uniformly distributed loaded 

(Fig 6.7). A  Bilinear strain hardening material model (Fig 6.8 ) with a strain 

hardening parameter EE p=χ  =0.1 is chosen where, pE  , E being the plastic 

tangential modulus and the elasticity modulus respectively. The maximum plastic 

deflection  maxδ  and maximum plastic Von Mises stresses maxVσ are obtained. The 

variables taken are E ∈  [210GPa, 30GPa],  
yσ  ∈  [350MPa, 50 MPa] and the plastic 

load ratio L r  ∈ [1, 10] being a dimensionless parameter. To generalize the training 

case, L r  =q/q y  is taken where q and q y  being the uniformly distributed  load applied 

and uniformly distributed  yield load to reach yield stress respectively. The 

calculations are done for the case where L/H=10. 

 

Afterwards, a simple relationship between different L/H ratios for the maximum 

plastic deflection and maximum plastic normal stress are derived which enabled the 

explicit formulation to be generalized for all cases i.e. for various L/H values. A wide 

range of variables are chosen to represent a general model for NN with a data set of 

348 training patterns and 65 testing patterns. All necessary neural procedures are 

performed by MATLAB NN Toolbox. The optimal network architectures for both 

cases are given in Figures 6.9a and 6.9b with hyperbolic sigmoidal transfer function 

and the learning algorithm used is Levenberg–Marquardt (LM) learning algorithms 

for both cases. The training test set errors for maximum plastic deflection and 

maximum plastic Von Mises stress are given in figures 6.10-6.17 for both cases. As 

seen, the errors are quite satisfactory for each case for test set and training sets. 

Results of the network training show a perfect match between target output and the 

NN output. Other statistical parameters are presented in Table 6.5. 
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Fig 6.9a Optimum NN model for maxVσ  

 

 

Fig 6.9b Optimum NN model for maxδ  

 
Table 6.5 Statistical parameters of the NN used for maxδ and maxVσ  

 MSE RMSE SSE MAPE (%) 
NN Train Set ( maxδ ) 7.82E-06 0.002797 0.002652 5.929 
NN Test  Set ( maxδ ) 5.32E-05 0.007293 0.003404 6.860 
NN Train Set ( maxVσ ) 56.734 7.5322 19573 1.295 
NN Test  Set ( maxVσ ) 272.42 16.505 17707 4.451 
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Fig 6.10 Performance of NN model for 
test set ( maxδ ) 

Fig 6.11 Performance of NN model for 
training set ( maxδ ) 

Fig 6.12. % Error for training set ( maxδ ) Fig 6.13 % Error for test  set ( maxδ ) 

Fig 6.14 Performance of NN model for 
test set ( maxVσ ) 

Fig 6.15 Performance of NN model for 
training set ( maxVσ ) 
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Fig 6.16 % Error for training set ( maxVσ ) Fig 6.17 % Error for test  set  ( maxVσ ) 

 
6.2.2.3 Explicit formulation of NN models 

 

The trained NN in this case, does not serve as a black box subroutine of a computer 

program for the calculation of a step like hybrid ANN/FE applications anymore. It is 

itself an independent program to compute maximum plastic deflection and maximum 

plastic normal stress for a given set of E, yσ , L r  and L/H values as shown in Figures 

6.18-6.19. 

 

  

Fig 6.18 NN model for maximum plastic Von Mises stress 
 

 

NN 
yσ

 
Lr 

E 

maxVσ  

 

χ  
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Fig 6.19 NN model for maximum plastic deflection 
 

Furthermore, it is actually an explicit formulation that computes directly maximum 

plastic deflection, maxδ  and maximum plastic Von Mises stress maxVσ  given as 

 

maxδ  = f ( χ ,
yσ , E, L r )  

maxVσ = f ( χ , yσ , E, L r ) 

 

The explicit formulation of maximum plastic Von Mises stress maxVσ   obtained by 

the same way following the same steps in the previous case study and using the 

weights of the corresponding trained NN. The same steps can be given in a simpler 

form as follows: 

maxVσ =1500 * 







−

+ −
1

1

2
2W

e
     

Where W= (-3.3)*








−

+
−

1
1

2
12U

e

+ (2.6)*








−

+
−

1
1

2
22U

e

 - 0.713 

 

U1=   (0.27 * χ  ) + (-0.0006 * yσ  ) + (0.00002 * E ) + (0.26* L r  ) – 1.76   

U2=   (0.31* χ  ) + (0.00045* 
yσ  ) + (-0.00001 * E ) + (0.28* L r  ) – 1.7  

  

Following the same steps can be for maxδ given as follows leads to: 

maxδ = 







−

+ −
1

1

2
2W

e
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(0.35)* 







−

+ −
1

1

2
42U

e
+ (3.0)* 




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


−

+ −
1

1

2
52U

e
+   (-0.065)* 








−

+ −
1

1

2
62U

e
+ 

(4.5)* 







−

+ −
1

1

2
72U

e
 - 4.35 

 

U1=   (0.86 * χ  ) + (0.002 * 
yσ  ) + (-0.014 * E ) + (0.26* L r  ) – 2.31    

U2=   (81.36* χ  ) + (-0.066* yσ  ) + (-0.047 * E ) + (-5.35* L r  ) + 37.3   

U3=   (5.3 * χ  ) + (-0.002 * yσ  ) + (0.007 * E ) + (-0.2* L r  ) + 2.17    

U4=   (-0.99* χ  ) + (-0.003* yσ  ) + (-0.005 * E ) + (0.33* L r  ) – 1.51    

U5=   (79 * χ  ) + (-0.06 * yσ  ) + (-0.05 * E ) + (-5.2* L r  ) + 36.25    

U6=   (-1.2* χ  ) + (0.002* 
yσ  ) + (-0.004 * E ) + (0.41* L r  ) – 1.03   

U7=   (-4.2* χ  ) + (0.002 * yσ  ) + (-0.007 * E ) + (0.033* L r  ) – 1.67    

The NN results for the test sets for both cases are given in Tables 6.6 and 6.7 

respectively. 

 

Table 6.6 NN vs ANSYS for test set ( maxVσ ) 

 

χ   
yσ (MPa)  E(GPa)  L r 

 NN 
(MPa) 

ANSYS 
(MPa) 

0.1 70 210 0.87 59.06 67.30 

0.35 180 90 0.87 176.64 185.00 

0.1 180 210 0.87 153.62 176.00 

0.1 350 150 0.87 296.81 340.00 

0.1 280 210 0.87 238.01 272.00 

0.1 220 130 0.87 187.59 214.00 

0.1 100 130 0.87 84.92 96.60 

0.2 140 190 0.87 126.45 138.00 

0.2 350 130 0.87 313.28 340.00 

0.2 180 110 0.87 162.41 176.00 

0.2 280 190 0.87 251.33 272.00 

0.5 350 170 0.87 367.73 340.00 

0.5 250 70 0.87 265.09 244.00 

0.5 140 70 0.87 150.13 138.00 

0.5 220 150 0.87 233.82 214.00 

0.5 100 150 0.87 107.92 96.60 

0.5 70 190 0.87 76.07 67.30 

0.35 140 70 1.37 172.15 167.00 

0.5 280 130 1.37 371.40 347.00 

0.5 140 210 1.37 188.04 175.00 

0.5 250 210 1.37 332.20 309.00 

0.5 180 130 1.37 240.79 223.00 
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Table 6.6 Cont’d     

0.2 220 70 1.53 268.29 265.00 

0.35 140 210 1.53 185.69 182.00 

0.5 100 190 1.53 145.22 135.00 

0.2 220 210 1.70 289.00 286.00 

0.35 100 190 1.70 142.54 139.00 

0.5 350 110 1.70 535.35 520.00 

0.2 180 190 1.87 254.62 255.00 

0.5 280 70 1.87 463.02 455.00 

0.5 310 90 1.87 511.27 503.00 

0.1 220 210 1.87 294.86 330.00 

0.2 140 170 2.03 212.55 217.00 

0.5 280 210 2.03 496.43 492.00 

0.2 100 150 2.20 161.89 164.00 

0.35 70 170 2.20 123.54 123.00 

0.5 250 190 2.20 476.64 474.00 

0.2 250 90 2.37 439.52 447.00 

0.2 350 150 2.37 612.50 624.00 

0.5 220 170 2.37 450.43 448.00 

0.2 280 110 2.53 526.97 536.00 

0.2 310 130 2.53 582.53 594.00 

0.5 180 150 2.53 395.62 393.00 

0.2 70 130 2.70 138.09 141.00 

0.5 140 130 2.70 329.80 329.00 

0.1 350 110 2.87 715.83 721.00 

0.5 100 110 2.87 252.01 245.00 

0.1 280 70 3.03 612.91 615.00 

0.1 310 90 3.03 677.68 680.00 

0.5 70 90 3.03 187.87 181.00 

0.1 280 210 3.20 652.02 649.00 

0.5 350 70 3.37 1010.50 1020.00 

0.1 250 190 3.37 619.14 612.00 

0.1 220 170 3.53 577.55 567.00 

0.35 350 70 3.53 1006.20 1010.00 

0.1 180 150 3.70 498.66 490.00 

0.35 350 210 3.70 1056.80 1060.00 

0.1 140 130 3.87 406.12 403.00 

0.35 280 170 3.87 891.41 886.00 

0.35 310 190 3.87 984.35 981.00 

0.1 220 210 3.87 642.20 715.00 

0.1 100 110 4.03 299.23 296.00 

0.35 250 150 4.03 831.95 826.00 

0.1 70 90 4.17 209.62 214.00 

0.35 220 130 4.17 755.49 752.00 
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Table 6.7 NN vs ANSYS for test set ( maxδ ) 

 

χ  yσ (MPa)  E(GPa) L r 
NN 
(m) 

ANSYS 
(m) 

0.5 310 210 2.700 -0.026 -0.030 

0.5 310 190 1.533 -0.015 -0.016 

0.5 310 190 3.700 -0.050 -0.050 

0.5 310 170 2.533 -0.030 -0.034 

0.5 310 150 1.367 -0.017 -0.017 

0.5 310 150 3.367 -0.055 -0.056 

0.5 310 130 2.200 -0.034 -0.037 

0.5 310 130 4.167 -0.087 -0.085 

0.5 310 110 3.033 -0.064 -0.067 

0.5 310 90 3.867 -0.112 -0.111 

0.5 310 70 2.700 -0.087 -0.090 

0.5 350 210 1.533 -0.015 -0.016 

0.5 350 210 3.533 -0.046 -0.048 

0.5 350 190 2.367 -0.028 -0.031 

0.5 350 170 0.867 -0.013 -0.011 

0.5 350 170 3.200 -0.050 -0.052 

0.5 350 150 2.033 -0.030 -0.032 

0.5 350 150 4.033 -0.081 -0.079 

0.5 350 130 2.867 -0.057 -0.059 

0.5 350 110 3.700 -0.097 -0.097 

0.5 350 90 2.533 -0.071 -0.072 

0.5 350 70 1.367 -0.047 -0.042 

0.5 350 70 3.367 -0.133 -0.135 

0.1 70 210 0.867 -0.003 -0.002 

0.1 70 90 4.167 -0.079 -0.075 

0.1 100 110 4.033 -0.084 -0.084 

0.1 140 130 3.867 -0.090 -0.095 

0.1 180 150 3.700 -0.090 -0.096 

0.1 220 170 3.533 -0.087 -0.094 

0.1 250 190 3.367 -0.103 -0.087 

0.1 280 210 3.200 -0.132 -0.080 

0.1 280 70 3.033 -0.211 -0.214 

0.1 310 90 3.033 -0.183 -0.185 

0.1 350 110 2.867 -0.144 -0.151 

0.2 70 130 2.700 -0.015 -0.015 

0.2 100 150 2.200 -0.013 -0.013 

0.2 140 170 2.033 -0.015 -0.014 

0.2 180 190 1.867 -0.015 -0.014 

0.2 220 210 1.700 -0.015 -0.013 

0.2 220 70 1.533 -0.032 -0.033 

0.2 250 90 2.367 -0.064 -0.063 

0.2 280 110 2.533 -0.066 -0.066 

0.2 310 130 2.533 -0.062 -0.062 

0.2 350 150 2.367 -0.054 -0.053 

0.35 70 170 2.200 -0.007 -0.007 

0.35 100 190 1.700 -0.007 -0.006 

0.35 140 210 1.533 -0.008 -0.007 

0.35 140 70 1.367 -0.020 -0.017 



 83 

Table 6.6 Cont’d     

0.35 180 90 0.867 -0.013 -0.011 

0.35 220 130 4.167 -0.077 -0.073 

0.35 250 150 4.033 -0.072 -0.068 

0.35 280 170 3.867 -0.067 -0.064 

0.35 310 190 3.867 -0.066 -0.063 

0.35 350 210 3.700 -0.062 -0.061 

0.35 350 70 3.533 -0.169 -0.170 

0.5 70 90 3.033 -0.017 -0.018 

0.5 100 110 2.867 -0.019 -0.020 

0.5 140 130 2.700 -0.020 -0.022 

0.5 180 150 2.533 -0.020 -0.022 

0.5 220 170 2.367 -0.019 -0.022 

0.5 250 190 2.200 -0.017 -0.020 

0.5 280 210 2.033 -0.016 -0.019 

0.5 280 70 1.867 -0.049 -0.050 

0.5 310 90 1.867 -0.042 -0.043 

0.5 350 110 1.700 -0.035 -0.035 

 
 

 
6.2.2.4 Conclusion 

 

This case study proposes a novel approach of explicit formulation for elastoplastic 

analysis of structures by NNs. However, Neural Networks are often treated as "black 

box" modeling tools; they can be explicitly formulated as carried out in this study. A 

simple uniformly loaded cantilever beam problem is chosen as a case study with 

bilinear isotropic hardening. The aim is to find the explicit formulation of maximum 

von Mises stress and maximum plastic deflection by NNs. Results of the network 

training show that there is a perfect match between target output and the NN output 

both for maximum von Mises stress and maximum plastic deflection. Thus, novel 

explicit formulations of the problem are derived for the maximum normal stress and 

maximum plastic deflection by using the weights of the trained NNs.  
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6.2.3 Prediction of Web Crippling Strength of Cold-Formed Steel Sheetings 

Using Neural Networks 

 

6.2.3.1 Introduction 

 

This section considers the use of neural networks to predict the web crippling 

strength of cold-formed steel decks. Web crippling is critical for slender webs as in 

the case of trapezoidal sheetings which are widely used in roofing applications. The 

elasto-plastic behaviour of web crippling is quite complex and difficult to handle. 

There is no well established analytical solution due to complex plastic behaviour. 

This leads to significant errors in various design codes. The objective of this study is 

to provide a fast and accurate method of predicting the web crippling strength of 

cold-formed steel sheetings and to introduce this in a closed-form solution which has 

not been obtained so far. The training and testing patterns of the proposed NN are 

based on well established experimental results from literature. The trained NN results 

are compared with the experimental results and current design codes (NAS 2001) 

and found to be considerably more accurate.   Moreover, a trained neural network 

gives the results significantly more quickly than the design codes and FE models. 

The web crippling strength is also introduced in closed-form solution based on the 

parameters of the trained NN. Extensive parametric studies are also performed and 

presented graphically to examine the effect of geometric and mechanical properties 

on web crippling strength. 

 

 

Structural steel is mainly used in two forms as hot-rolled and cold-formed. Hot-rolled 

members are more widely used than cold-formed steel members but cold-formed 

steel members have various advantages such as: high strength/weight ratio, ease of 

transportation and construction, mass production, and faster installation. Thus the use 

of cold-formed steel members may enable a more economic design than hot-rolled 

steel structural members. 

 

In spite of the fact that use of cold-formed steel members go back to 1850s, it has not 

found an extensive application until 1940s. The flexibility in usage, size and shape of 

cold-formed steel members enabled them to be effectively and increasingly used in 
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almost every structural application throughout 1980s and 1990s.  This extensive and 

increasing use necessitates comprehensive research in this field. Detailed information 

can be found in Yu (2000) and Hancock (2001).  

 

Web crippling is a significant failure type for cold-formed steel members which is a 

form of localized buckling that occurs at points of transverse concentrated loading 

and supports. In general cold-formed steel members are unstiffened against 

transverse loading which leads to web crippling or so called web crushing as in the 

case of sheetings shown in Fig 1. Cold formed members are more susceptible to web 

crippling than hot-rolled sections as their depth-to-thickness ratios of the webs are 

higher and the webs are inclined rather than vertical. Moreover the load acting 

eccentric to the web causes initial bending in the web even before crippling takes 

place (Fig. 6.20).  

 

 

Fig 6.20 Web crippling of thin-walled cold-formed steel members (Reinsch, 1983)  

 

The theoretical analysis of web crippling of sheetings is cumbersome due to various 

factors such as initial imperfection of web element which affects web buckling, local 

yielding in the region of load application, instability of the web element which leads 

to a complex elastoplastic behaviour of the member. This difficulty in theoretical 

based analysis leads research in this field to be experimentally based and thus the 

design codes to be empirical being valid for the range of variables tested (Young and 

Hancock, 2001). 
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 Finite element modeling has been used to model web crippling behaviour as well. 

On the other hand some authors have also proposed so-called mechanical models for 

web crippling strength predictions. The main focus of this study is to propose an 

alternative novel approach in this field using NNs. The prediction and the closed 

form solution of ultimate concentrated load for trapezoidal sheetings are presented by 

means of NNs followed by extensive parametric studies for the first time in 

literature.  

 

 

6.2.3.2 Web Crippling of Sheetings 

  

Web crippling studies of Cold-Formed Steel Decks can be categorized under 3 

groups: Experimental studies, FE modeling and Mechanical Models. 

 

a) Experimental studies 

 

In USA Winter and Pian (1946) conducted the first research on web crippling. Their 

studies were developed by Hetrakul and Yu (1978) and Yu (1981) at Missouri-Rolla 

which was used in specifications in USA. The experimental studies (Zetlin 

andWinter,1952, Andersson and Bergfors,1973, Keulers,1981, Wing,1981, 

Santaputra,1986, Tsai and Crisinel,1996, Studnicka,1990, Tomà and Stark,1973, 

Tomà and Stark,1974, Wu et al ,1998, Bakker,1992, Hofmeyer,2000) on sheetings, 

sheet sections, and hat sections can be divided into three groups: 

1. Members loaded by a pure concentrated load and a negligible small 

bending moment.  

2. Members loaded by pure bending moment.  

3. Members loaded by combined concentrated load and bending moment. 

 

b) FE modeling  

 

FE models have also been widely used for the modeling of sheetings and offer many 

advantages compared to experimental work as they are inexpensive, flexible and can 

simulate impractical experimental situations (Santaputra,1986, Sharp,1991, 
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Talja,1992, Landolfo and Mazzolani,1995, Vaessen,1995, Schafer and Peköz,1997, 

Davies and Jiang,1997, Landolfo and Mazzolani,1994) although FEA is time 

consuming approach. On the other hand how realistic FEA results are compared to 

experimental values can be scope of another study.  

 

c) Mechanical Models 

 

Some researchers have also proposed so-called mechanical models as an alternative 

method for the modeling of sheetings. (Reinsch,1983, Tsai and 

Crisinel,1996,Bakker,1992,Vaessen,1995,RSD,1974, Park and Lee,1996,Lindner et 

al,1996, Schafer and Peköz, 1998,Davies et al,1999, Rhodes and Nash,1999 ). These 

mechanical models are based on mechanics rather than curve fitting of experimental 

results and describe the behaviour of sheetings 

 

6.2.3.3 Current design codes 

 

Current design codes for sheeting are based on the prediction of the concentrated 

load and bending moment separately and the   maximal allowable interaction of load 

and moment. The case study in this section deal with the prediction of ultimate 

concentrated load acting on the sheeting. The prediction of the ultimate concentrated 

load (web crippling strength) of sheetings in current design codes is based on 

experiments results. The sheet sections are subjected to a concentrated load with a 

small bending moment which does not have a significant effect on the value of 

concentrated load. The ultimate load is recorded finally. Four loading conditions are 

introduced in The United States and Canadian code namely as : Exterior Two Flange 

(ETF), Exterior One Flange (EOF), Interior Two Flange (ITF), and Interior One 

Flange (IOF) loading. On the other hand Eurocode introduces one category for ETF, 

EOF, and ITF loading and one category (category 2) for IOF loading (Hofmeyer et 

al, 2001). 

 

Current design rules for sheeting are not precise. As various codes are compared, (the 

code used in the United States of America (AISI,1996), the code used in Europe 

(ENV,1993), and the code used in Canada (CSA,1995) the ultimate concentrated 

load prediction Ru, can differ between +18 and -58 % which indicates that design 
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codes do not give realistic results for prediction of web crippling strength of 

sheetings (Hofmeyer,2000) 

 

 

 6.2.3.4 Plastic web crippling behaviour of sheetings 

 

The web crippling behaviour of sheetings is quite complex due to its complicated 

plastic behaviour. Hofmeyer (2000) has performed three point bending tests on  

sheetings where he defined the elastic, elastoplastic and plastic behaviour of 

sheetings in detail shown in Fig. 6.21. If a sheet section is loaded in a three point 

bending test, the entire sheet section will first behave elastically. If the sheet section 

is deformed further, a local part of the sheet section will behave plastically which 

means that if the section is unloaded, this local part will remain deformed. The 

behaviour from the start of loading until first local plastic behaviour is defined as 

elastic behaviour. During further increase of deformation, increasingly local parts 

will become plastic until no other parts will become plastic. The behaviour from first 

local plastic behaviour until no other parts will become plastic is defined as elasto-

plastic behaviour. Further increase of the deformation leads to more plastic 

deformation in all local plastic parts. However, no new local plastic parts will occur. 

At that moment, further sheet section behaviour is defined as plastic behaviour. For 

elasto-plastic and plastic behaviour, elastic deformations still can increase in elastic 

areas of the section. For plastic behaviour however, these elastic deformations are 

negligible compared to plastic deformations. The ultimate concentrated load can be 

obtained as the maximum load on the curve. However the prediction of the plastic 

behaviour of sheet section becomes a cumbersome task. Various methods have been 

proposed to overcome this difficulty such as ultimate load simplifications for the 

description of elastic and plastic curves (Hofmeyer, 2000).  Hofmeyer (2000) has 

observed  three different yield line patterns after ultimate load during his experiments 

on web crippling behaviour of sheetings. Before ultimate load, no yield lines were 

visible. These yield line patterns all have their own specific load versus web 

crippling deformation curve which are used to define post-failure modes. Three post-

failure modes are defined as rolling post-failure mode, yield arc post-failure mode 

and yield eye post-failure mode shown in Fig 6.22.  
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Fig 6.21 Elastic, elastoplastic and plastic behaviour of a sheet section 

(Hofmeyer,2000) 

 
  

Fig 6.22 Types of failure modes for sheetings (Hofmeyer, 2000) 

 

 

6.2.3.5 Numerical application 

 

The main focus of this section is to predict the web crippling strength of cold-formed 

steel decks and its closed–form solution by means of NNs based on experimental 

results from literature. Therefore an extensive literature survey has been performed 

for experimental results on sheeting, sheet sections, and hat sections (Zetlin 

andWinter,1952, Andersson and Bergfors,1973, Keulers,1981, Wing,1981, 

Santaputra,1986, Tsai and Crisinel,1996, Studnicka,1990, Tomà and Stark,1973, 

Tomà and Stark,1974, Wu et al ,1998, Bakker,1992, Hofmeyer,2000). 

 

Among these experimental studies on members loaded by pure concentrated load or 

a pure concentrated load and a negligible small bending moment were examined and 
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Wing’s (1981), Tsai and Crisinel (1996) and Toma and Stark’s (1973)  experimental 

results were selected and used as training and test sets for NN training.  The variables 

in these test set up were practical variables whereas there were impractical variables 

in the remaining test set ups. The sheet section variables used in these experimental 

studies is given in Fig 6.23 and the ranges of variables are presented in Table 6.8. 

The most comprehensive one of these studies is found to be Wing’s (1981) study 

conducted by 241 experiments for varying section variables.  Wing’s test set up and 

profiles used in his study are given in Figs 6.24-6.26. Tsai and Crisinel (1996) and 

Toma and Stark’s (1973)   each performed 12 experiments. Among these 265 tests 37 

test were used as test set and the remaining as training set for NN training. 

 
Table 6.8 Minimum and maximum values for cross-section variables. 
 

Variable  
Minimum 
value  

Maximum value  

Angle (Θ) 45 deg.  90 deg.  
Steel plate thickness (t)  0.6 mm  1.57 mm  
Web height (bw)  24.1 mm  197 mm  
Bottom flange width  (bbf ) 38.9 mm  134.9 mm  
Span length (Lsp)  318 mm  3556 mm  
Top flange width (btf ) 21.8 mm  119 mm  
Load-bearing plate width 
(Lp)  

25.4 mm  
 

160 mm  
 

Corner radius (r) 1.92 mm  11.9 mm  
Yield stress (Fy)  231 MPa 372 MPa 

 

Fig 6.23  Cross-sectional paramaters   
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Fig 6.24 Wing’s test set up. 
 

 
 
Fig 6.25 Sections for Wing's experiments I (Wing,1981). (a) Waterloo profiles; (b) 
Waterloo radius profiles 
 
The patterns used in test set are randomly selected among the experimental database. 

Among these 265 tests 37 tests were used as test set and the remaining as training set 

for NN training. The optimal NN architecture in this study was found to be 9-5-1 NN 

architecture with hyperbolic tangent sigmoid transfer function (tansig). The training 

algorithm was quasi-Newton backpropagation (BFGS). The optimum NN model is 

given in Fig 6.27. Statistical parameters of normalized values of learning and training 

sets are presented in Table 6.9. The % errors and Prediction of NN and actual values 

of learning and testing sets are given in Figs 6.28-6.31. The prediction of the 

proposed NN model vs. actual experimental values and a comparison with calculated 

values according to NAS 2001 (North American Specification for the Design of 

Cold-Formed Steel Structural Members)  are given in Table 6.10. The performance 

of the proposed NN model vs. experimental result is shown in Fig 6.32. 
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Fig 6.26 Sections for Wing's experiments II (Wing, 1981) 
 

Table 6.9 Statistical parameters of optimum NN model 

 

 

Fig 6.27 Optimum NN model 

 
 
MSE 

 
RMSE 

 
SSE 

 
MAPE(%) 

Correlation  
Coefficient (R) 

Test Set 0.00054959 0.023443 0.020335 7.0011 0.995 
Training set 0.00034346 0.018533 0.099947 6.946 0.996 
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Table 6.10 NN prediction of Ru and experimental results of test set with geometric 
and mechanical variables 

Exp. 
 btf 
(mm) 

r 
(mm) 

bbf 
 (mm) 

 bw 
(mm) 

θ  
(o) 

 Lsp 
(mm) 

Lp 
(mm) t (mm) 

 

Fy 

(MPa) Rtest 
(N) 

RNN 
(N) 

Rtest/ 
RNN 

NAS 
2001 

 
RNN/ 
NAS  
2001 

 Tsai  35.2 6.4 56.4 100.6 78.7 560 100 0.83 294 4363 4871.7 0.9 3555 1.37 

 Tsai  62.5 8.4 55.4 61.6 75.4 1200 100 0.85 306 2690 2733.9 0.98 3807 0.72 

 Toma 119 4.6 42.1 40 72 1080 55 0.72 317 1688 1725.7 0.98 2722 0.63 

 Toma 77 6.6 70.9 70 81 1080 100 0.71 333 2830 2846.4 0.99 3084 0.92 

 Wing 95.5 2.69 100.4 95.8 90 940 50.8 0.61 265.4 2447 2347.7 1.04 1660 1.41 

 Wing 96.5 2.87 63.8 98.6 50 508 25.4 0.97 274.4 3229 3959.1 0.82 2656 1.49 

 Wing 94.5 3.15 99.4 97 90 775 25.4 1.52 231 9902 10572 0.94 7014 1.51 

 Wing 95 3.15 106.5 98.8 70 1003 25.4 1.52 231 9012 9110.5 0.99 6580 1.38 

 Wing 94.5 3.15 54.3 98.8 70 516 25.4 1.52 231 8790 9883.4 0.89 6580 1.50 

 Wing 95 3.15 66.6 100.3 50 521 25.4 1.52 231 8452 9463.5 0.89 5356 1.77 

 Wing 97 2.69 50.6 97 90 1727 25.4 0.61 265.4 890 881.25 1.01 1337 0.66 

 Wing 97.5 3.15 100.3 97.8 90 318 127 1.52 231 23753 22411 1.06 11010 2.04 

 Wing 95 2.69 100.3 95.5 90 2337 76.2 0.62 269.6 1388 1477 0.94 1999 0.74 

 Wing 94.5 2.69 101.5 96 90 1016 50.8 0.62 269.6 2242 2337 0.96 1741 1.34 

 Wing 95.5 2.69 74.7 96.3 90 1016 50.8 0.61 269.6 2019 1924.9 1.05 1684 1.14 

 Wing 95.5 2.68 75 96.3 90 711 76.2 0.61 269.6 2402 2601.7 0.92 1934 1.35 

 Wing 96 2.68 74.4 196.6 90 584 152.4 0.6 337.8 3825 4707.6 0.81 2588 1.82 

 Wing 96 2.71 74.9 197.1 90 432 76.2 0.66 317.8 4048 3788.5 1.07 2292 1.65 

 Wing 88.4 6.33 83.7 89.4 90 1321 50.8 1.54 302 8229 8578 0.96 10406 0.82 

 Wing 98.6 5.09 104.9 94.7 70 2946 50.8 0.63 317.8 1219 1279.2 0.95 1774 0.72 

 Wing 94.5 7.13 105.4 91.4 70 1321 50.8 1.54 302 9795 9486.1 1.03 9587 0.99 

 Wing 97.5 7.92 125.2 98 50 1321 50.8 1.55 288.2 10987 10056 1.09 7381 1.36 

 Wing 96.5 10.3 130.2 91.9 50 1321 50.8 1.54 302 9724 10283 0.95 7323 1.40 

 Wing 93 5.28 82.4 91.9 90 1321 101.6 1 299.2 4777 4484.9 1.07 5632 0.80 

 Wing 92.5 11.9 103.3 87.9 70 1321 101.6 1.54 302 10871 10642 1.02 10732 0.99 

 Wing 93 6.78 84.2 87.1 90 508 101.6 0.85 284.1 5560 5420.4 1.03 3719 1.46 

 Wing 43.7 4.76 75.9 76.5 85 1334 76.2 1.57 293 8505 8451.6 1.01 12326 0.69 

 Wing 35.1 3.56 77.6 128.5 81.5 3556 50.8 0.76 282 1139 968.63 1.18 2468 0.39 

 Wing 35.1 3.56 77.6 128.5 81.5 1588 101.6 0.76 282 2616 2496.3 1.05 3113 0.80 

 Wing 32 4.35 38.9 75.4 70 1702 38.1 0.79 291.6 1032 1072.3 0.96 2510 0.43 

 Wing 32 4.35 38.9 75.4 70 1651 38.1 0.79 291.6 1165 1103.9 1.06 2510 0.44 

 Wing 32 4.35 38.9 75.4 70 368 38.1 0.79 291.6 3318 3088.1 1.07 2510 1.23 

 Wing 21.8 1.92 61 24.1 45 1626 38.1 0.65 336.5 916 1122.9 0.82 1867 0.6 

 Wing 95 2.71 100 96 70 508 25.4 0.64 265.4 2847 2867.8 0.99 1386 2.07 

 Wing 95 2.69 100.6 95.8 90 1016 76.2 0.61 269.6 2642 2534.6 1.04 1935 1.31 

 Wing 101.1 6.85 126 99.1 50 1321 50.8 1 299.2 4653 4637.2 1 3264 1.42 

 Wing 32 4.35 38.9 75.4 70 699 50.8 0.79 291.6 1886 2150.5 0.88 2740 0.78 
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Fig 6.28 Prediction of NN and actual values  
for learning set 

 
Fig 6.29 Prediction of NN and actual 
values  for testing set 

 
Fig 6.30 % Error of training set 

 
Fig  6.31 % Error of test set 

 

It is obvious from statistical results (R=0.995) above that the proposed ANN model 

accurately learned to map the relationship between the ultimate concentrated load Ru 

and its geometric and mechanical properties. Thus the trained ANN proposed in this 

study was used to conduct an extensive parametric study to investigate the effect of 

changing geometric parameters and yield strength on the ultimate concentrated load 

of sheetings. The trend Of Ru for various parameters is shown in Figs 6.33-6.44. 

Interesting outcomes are observed on the graphs of trends. The relationship of 

geometric parameters with yield strength (FY) is found to be directly proportional and 

linearly dependent which was as expected. The trend of geometric parameters with 

each other shows a parabolic relationship in general. One of the most striking result 

is that top flange width (btf) does not have a significant effect on ultimate 

concentrated load and can be neglected which is also indicated in Eurocode 
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(ENV,1993). A detailed parametric study should perhaps be the scope of another 

article. 
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Fig 6.32 Actual experimental results/ NN predictions 
 
 

Fig 6.33 Trend of r vs.  Fy 

 

 
Fig 6.34 Trend of t vs. Fy 

  

 
Fig 6.35 Trend of r vs. Lsp 
 

 
Fig 6.36 Trend of btf vs. Fy 
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Fig 6.37 Trend of  btf  vs. r 
 

 
Fig 6.38 Trend of  bbf  vs. r 

Fig 6.39 Trend of bbf vs.  Fy 

 

Fig 6.40 Trend of θ  vs. bbf 

Fig 6.41 Trend of t vs. Lp 
 

 

Fig 6.42 Trend of Lp  vs. Fy 
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Fig 6.43 Trend of θ    vs.  Fy 

 
 

 

Fig 6.44 Trend of bw   vs.   Fy 

 

6.2.3.6   Closed-Form Solution of Ultimate Concentrated Load ( uR ) 

The aim of this study is to obtain the concentrated Load uR  in explicit form as 

uR = f ( tfb , r , bfb , wb ,θ , spL , pL ,t , yF ) 

Using trained NN parameters. Following the same procedure given in previous case 

studies one can get 

1u =(-6.3992* tfb )+( 0.064638*r)+ (-7.004* bfb )+ (5.9736* wb )+(-4.6755*θ ) 

+(1.291* spL )+ (-2.0631* pL )+( -6.2691*t)+(-1.9978* yF )+19.91 

2u =31305* tfb )+(0.60695*r)+(-0.60872* bfb )+(-1.6494* wb )+(0.7681*θ )+ 

( 9.7193* spL )+(-1.4085* pL )+( -2.7943*t)+(1.1545* yF )+1.05 

3u = (-0.10556* tfb )+( 2.9594*r)+( 5.4054* bfb )+(-0.87409* wb  )+(0.96795*θ )+ 

(-0.32996* spL )+(-1.6918* pL )+(-.5065*t)+(1.7634* yF )-0.26 

4u =(-0.07071* tfb )+(0.0559*r)+(-0.50931* bfb )+(-0.3624* wb )+ 

(-0.03758*θ )+(1.2201* spL )+(-0.47406* pL )+(-2.2025*t)+(-.0226* yF )+2.82 

5u =(-4.0521* tfb )+(1.6647*r)+(-2.3898* bfb )+(-4.9121* wb )+(3.6499*θ )+ 
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 (15.952* spL )+(-1.8613* pL )+(-2.3345*t+2.7774* yF )+3.91 

 

Where the activation function is hyperbolic tangent sigmoid transfer function (tansig) 
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Hence the output  
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It should be noted that the inputs entering the network have been normalized before 

the training as 

tfb = tfb
*  / 100 ;  r = r * /10; bfb =  bfb

*  /150; wb =  wb
*  /200;θ =  θ *  /90;  

spL =  spL * /5000; pL =  pL *  /200;t =  t *  /2; yF =  yF *  /500 

And the output before the training has been normalized by 20000 thus the final 

output should be 

 uR = O*20000 
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6.2.3.7 Conclusion 

 

This case study reports findings of a novel NN application to model web crippling 

strength of trapezoidal sheetings as a function of various influencing parameters. 

There is no well established mathematical formulation of web crippling strength as 

the plastic behaviour is too complicated leading 3 different types of failure modes. 

There have been attempts to model this complex web crippling behaviour of sheeting 

either by FE modeling or so called mechanical models but current design codes in 

this field remain still inaccurate. This study not only proposes a new NN approach 

for the prediction of web crippling strength of sheetings but also presents a closed 

form solution of web crippling strength of sheetings with a very high correlation (R= 

0.995) with experimental results from literature. It opens the so called black box 

which NNs are often indicated as.  The proposed NN approach is quite fast compared 

to FE modeling and mechanical models and very practical for use. The results of the 

proposed NN are compared with NAS (2001) and are found to be quite more 

accurate. Another advantage of the proposed ANN model is its wide range of the 

input parameters which enables the NN model to be used in practical applications. 

The well trained NN model is also used to conduct parametric studies. The effect of 

geometric and mechanical parameters on web crippling strength of sheetings is 

graphically presented in details. It is found that top flange width does not have a 

significant effect on web crippling strength consistent with various design codes. The 

results of this study are very promising. 

 

 

6.2.4 Prediction Of Rotation Capacity Of Wide Flange Beams Using Neural 

Networks 

 

 

6.2.4.1 Introduction 

 

 This study proposes Neural Networks (NN) as a new approach for the estimation 

and explicit formulation of available rotation capacity of wide flange beams. 

Rotation capacity is an important phenomena which determines the plastic behaviour 
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of steel structures.  Thus the database for the NN training is directly based on 

extensive experimental results from literature. The results of the NN approach are 

compared with numerical results obtained by a specialized computer. Available 

rotation capacity is also introduced in a closed form solution based on the proposed 

NN model. The proposed NN method is seen to be more accurate than numerical 

results, practical and fast compared to FE models. 

 

The behavior of a wide flange beam can be generalized into; Elastic, Inelastic and 

Plastic categories as shown in Figure 6.45.   In any case the failure of beam will be 

due to one of the following: local plate buckling of the compression flange, local 

plate buckling of the web in flexural compression, or lateral-torsional buckling. The 

plastic behaviour category is of special concern in this study as it permits moment 

redistribution in indeterminate structures (Yura et al, 1978). 

 

Fig 6.45. General beam behaviour (Yura et al, 1978). 

 

Plastic analysis and design enables the full cross sectional capacity of a beam to be 

used by notionally allowing a plastic hinge to form. This hinging occurs when the 

plastic moment strength, Mp, is reached at a discrete point along the beam (i.e. the 

entire cross section has yielded). At such a location, the cross section can no longer 

resist increasing moment and hence large rotations occur, with constant resistance, 

Mp, being maintained. In the case of an indeterminate structure, such a scenario 

allows for moment re-distribution to occur. However, it is critical that in addition to 

the cross section reaching its plastic moment capacity, the beam must also be ductile 
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enough to maintain Mp while continuing to deform (rotate) through a sufficient angle 

so that moment redistribution can take place. A common structural ductility or 

deformation capacity measure is termed plastic rotation capacity (Steven, 2000). 

 

The estimation of plastic rotation capacity is of significant importance for plastic and 

seismic analysis and design of steel structures. Similarly the moment redistribution in 

a steel structure also depends on the rotation capacity of the section.  Thus the 

determination of rotation capacity of steel structures becomes an important task. 

 

This case study focuses on the prediction of available rotation capacity of wide 

flange steel beams. Theoretical, empirical and approximate methods have been 

proposed for the determination of available rotation capacity of wide flange steel 

beams in literature which have been reported by Gioncu and Petcu (1997a, 1997b). 

In order to find how realistic results are, these studies should be compared with 

experimental tests. Thus an alternative approach for the prediction of rotation 

capacity of wide flange steel beams using NNs is presented for the first time in 

literature. Backpropagation NNs are used for the training of the NN model. The 

results of the proposed NN model based on experimental studies are compared with 

numerical results and are seen to be very accurate. Moreover an explicit solution of 

rotation capacity for wide flange beams in terms of geometric and mechanical 

parameters will be introduced by using the well trained NN parameters. The 

proposed NN approach is quite accurate, fast and practical compared to FE approach. 

 

6.2.4.2 Rotation Capacity 

 

There are various definitions of Rotation Capacity in literature as a non-dimensional 

parameter. Salmon and Johnson defined rotation capacity as a method of quantifying 

deformation capacity within a cross-section prior to instability eroding the cross-

sectional capacity (Salmon and Johnson, 1996).According to Lay and Galambos 

(1965) rotation capacity is, phR θθ /= , in which pθ  is the elastic rotation at the 

initial attainment of the plastic moment Mp and hθ  is the plastic rotation at the point 

when moment drops below Mp. 
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A widely used definition for rotation capacity is proposed by ASCE (1971) (Fig 

6.46): 

R = 12 /θθ  where 1θ  refers to the theoretical rotation at which the full plastic 

capacity is achieved and 2θ  is the rotation when the moment capacity drops below 

Mp on the unloading portion Kemp (1985) defined rotation capacity as R = θ
hm

/θ
p 

in 

which θ
hm 

is the plastic rotation up to the maximum moment on the moment rotation 

curve.  

 

Fig 6.46 Definition of rotation capacity (ASCE, 1971) 

 

The behaviour of laterally restrained beams is commonly divided into three or four 

classes of behaviour as illustrated in Fig 6.47. The Australian Standard AS 4100 

(1998) and AISC (1997) have three classes (compact, non-compact, and slender). A 

compact or Class 1 section is suitable for plastic design, and can sustain the plastic 

moment (Mp) for a sufficiently large rotation capacity (R) to allow for moment 

redistribution in a statically indeterminate system (Wilkinson and Hancock,2002)  

On the other hand Eurocode 3 (2003) defines 4 classes of cross-sections to 

identify the extent to which the resistance and rotation capacity of cross sections is 

limited by its local buckling resistance as follows: 

 – Class 1 cross-sections are those which can form a plastic hinge with the 

rotation capacity required from plastic analysis without reduction of the resistance. 

 – Class 2 cross-sections are those which can develop their plastic moment 

resistance, but have limited rotation capacity because of local buckling. 

 – Class 3 cross-sections are those in which the stress in the extreme 

compression fibre of the steel member assuming an elastic distribution of stresses 
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can reach the yield strength, but local buckling is liable to prevent development of 

the plastic moment resistance. 

 – Class 4 cross-sections are those in which local buckling will occur before 

the attainment of yield stress in one or more parts of the cross-section. 

 

 

 

Fig 6.47.  Classical definition for rotation capacity based on normalised moment-

rotation relationship. 

 

  

6.2.4.3 Numerical Application 

 

The main focus of this study is the prediction of rotation capacity of wide flange steel 

beams using NNs and its closed –form solution by means of NNs based on 

experimental results from literature Therefore an extensive literature survey has been 

performed for experimental results shown in Table1. The experimental results in this 

field are dispersed. Standard beams are used in experimental studies (SB1, SB2) 

shown in Fig 6.48a-6.48b. SB1 is used in the experimental studies given in Table 

6.11. The geometry of cross-section variables of tested beams is shown in Fig. 6.49. 

The ranges of variables i.e. the maximum and minimum values of crossection 

variables where the proposed NN model will be valid are given in Table 6.12. 
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Table 6.11 Experimental database 
 Ref. Exp No  b (mm)  d(mm)  tf  (mm) tw   (mm)  L   (mm)  Fyf(MPa) Fyw (MPa) 

Lukey and Adams (1969)(i ) 1 36.95 191.3 5.28 4.45 1036 371 395 

  2 43.05 191.3 5.28 4.45 1254 371 395 

  3 47 191.3 5.28 4.45 1396 371 395 

  4 48.4 191.3 5.26 4.45 1448 371 395 

  5 50.95 241.2 5.26 4.6 1372 371 350 

  6 36.85 241.2 5.26 4.6 960 371 350 

  7 42.95 241.2 5.26 4.6 1168 371 350 

  8 44.45 241.2 5.26 4.6 1280 371 350 

  9 46.75 241.2 5.26 4.6 1296 371 350 

  10 51.3 191.3 5.28 4.45 1554 371 395 

  11 88 235.1 10.8 7.65 2946 283 308 

  12 101.75 235.1 10.8 7.65 3480 283 308 

Kuhlman (1986,1989) (ii) 13 70.5 278 8 5 3404 236 217 

  14 75 278 8 5 3704 236 217 

  15 80 277 8.5 5.5 4000 449 217 

  16 80 261 8 6 2540 287 260 

  17 80 258 8 5 2636 287 252 

  18 80 259 8 4 2716 287 252 

  19 80 280 8 5 1796 287 252 

  20 80 280 8 5 2196 287 252 

  21 80 275 8 5 2598 287 252 

  22 80 237.2 10.4 5.5 3508 333 709 

  23 80 148.6 10.2 5.5 2304 333 709 

  24 80 200 10 5.5 2204 333 709 

  25 80 278 10 6 2000 333 341 

  26 80 279 10 6 2804 333 349 

  27 80 279 10 6 2402 333 349 

  28 85 279 8 5 2802 236 217 

  29 85 279 10 6 2406 333 349 

  30 91 278 8 5.5 3002 236 217 

  31 91.5 278.4 10.3 6 2500 333 349 

  32 95 278 8 5.5 3400 236 217 

  33 95 278.6 10.2 6 2700 333 349 

  34 70.5 239.6 10.2 5.5 3000 333 709 

  35 75 239 10 5.5 3200 333 709 

  36 80.5 269 10 5.5 2100 333 709 

Spangemacher (1991) (iii ) 37 109.2 185.2 16.1 9.4 3500 278 286 

  38 109.3 186.5 16.3 9.8 3500 486 532 

  39 109.3 184.9 16.2 9.4 3500 486 532 

  40 109.5 186.1 16.3 9.6 3500 278 286 

  41 110 188 10.5 7.5 3000 282 308 

  42 110.5 189 11 7.4 4000 282 308 

  43 111 192.6 10.7 7.5 4000 420 437 

  44 117.8 185.4 10.3 7.25 4000 275 302 

  45 117.8 186.1 11.1 7.65 4000 430 448 

  46 139.5 246.6 17.7 10.8 4000 248 252 

  47 139.7 241.2 17.8 10.9 3000 248 252 

  48 140 243.4 12.8 7.5 4000 276 311 
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Table 6.11 cont’d         

  49 140 240.8 12.6 8 3000 276 311 

  50 140.5 250.4 12.6 9 3000 504 535 

  51 140.5 249.6 12.7 9.3 4000 504 535 

  52 141.5 246.9 17.3 11.35 3000 489 535 

  53a 141.6 249.9 17.4 11.5 3000 489 535 

  54a 141.7 246.4 17.3 11.3 3000 489 535 

  55a 112.8 188.3 11 7.5 3000 420 437 

  56 150.3 320 15 10 3000 817 813 

  57 150.3 320 15 10 3000 486 990 

  58 150.3 320 15 10 3000 248 323 

  59 142 249.7 17.4 11.5 4000 489 539 

  60 141.7 246.4 17.4 11.4 3000 489 539 

Boreave et al. (1993) (iv) 61 100 159.5 14.9 9.4 3000 409 426 

  62 100.1 153.9 14.7 9.5 3000 375 421 

  63 100.2 156.6 14.6 9.6 3000 261 291 

  64 100.3 155.1 14.1 8.8 3000 303 342 

  65 100.7 154.4 15.1 9.5 3000 445 462 

Kemp (1985,1991) (v) 66 75 217.8 8.09 6.65 3660 340 358 

  67 72.5 217.4 10.57 6.82 3660 285 329 

  68 74.5 217.9 8.56 6.78 1830 340 353 

  69 74.5 217.1 1.44 6.78 1830 294 300 

  70 77 120.3 9.83 7.44 3660 313 300 

  71a 53 273.9 7.05 5.85 3660 332 388 

  72a 70 209.5 10.77 6.76 1830 288 329 

Suzuki et al (1994) (vi) 73 75 132 9 6 1200 291 340 

  74 75 132 9 6 1200 527 340 

  75 75 132 9 6 1200 291 509 

  76 75 132 9 6 1200 526 509 

  77 75 132 9 6 1800 291 340 

  78 75 132 9 6 1800 291 509 

  79 75 132 9 6 1800 291 686 

  80 75 132 9 6 1800 526 509 

  81a 75 132 9 6 1200 291 340 
  

a     Eliminated experiments from statistical analysis due experimental deficiencies 
(i)    Tested on 12 specimens (rolled wide-flange beams  
(ii)      24 specimens (built-up welded wide-flange sections) are tested              

(iii) Tested 34 rolled wide flange beams, where 24 of these are used as the remaining 10                  
specimens were not used on which shear failure is observed.  
(iv)   Five hot rolled section were tested.  
(v)    12 built-up welded I-beams was tested, but only 7 beams due to missing data  
(vi)   9 built-up welded hybrid beams are tested.  

 

 
 
Fig 6.48a. SB1       Fig 6.48b. SB2 



 106 

 

 
Fig 6.49 Cross-sectional paramaters 
 

Table 6.12. Minimum and maximum values for cross-section variables. 
 

Variable  Minimum value  Maximum value  

Half length of flange b (mm) 36.95 150.4 

Height of web d(mm) 120.3 320 

Thickness of flange tf  (mm) 1.44 17.3 

Thickness of web tw   (mm) 4 11.5 

Length of  beam L   (mm) 960 4000 

Yield strength of flange  Fyf(MPa) 236 817 

Yield strength of web Fyw (MPa) 217 990 

 

  

The NN model of this study is shown in Fig 6.50.The optimal NN architecture was 

found to be 7-17-1 NN architecture with hyperbolic tangent sigmoid transfer function 

(tansig). Back-propagation Neural networks are adopted in this work, as they have a 

high capability of data mapping The training algorithm was quasi-Newton 

backpropagation (BFGS). The optimum NN model is given in Figure 6.51 Statistical 

parameters of learning and training sets for normalized outputs are presented in 

Table 6.13. The % errors and Prediction of NN and actual values of learning and 

testing sets are given in Figures 6.52-6.55. The performances of NN model and 

DUCTROT in overall are given in Figures 6.56 and 6.57. The prediction of the 

proposed NN model, actual experimental values and numerical results are given in 
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Table 6.14. The numerical results are obtained by a specialized computer program 

(DUCTROT) developed by Petcu and Gioncu (2003) which is based on local plastic 

mechanism. The main factors influencing the rotation capacity are included in 

program: section type, material properties, member dimensions, moment variation, 

buckling type, influence of strain rate, influence of cyclic loading, etc. The validation 

of computer program is performed by Petcu and Gioncu comparing the obtained 

values with experimental and numerical results. The result accuracy is confirmed by 

this comparison. The performance of NN model and numerical results are presented 

in Fig 6.58. The results indicate that the proposed NN model performs quite well 

compared to numerical results.  

 
Table 6.13 Statistical parameters of optimum NN model 

 

 

Fig 6.50 NN model 

 
 
MSE() 

 
RMSE 

 
SSE 

 
MAPE(%) 

Correlation  
Coefficient (R) 

Test Set 0.0005 0.0233 0.0054 6.959 0.990 
Training set 0.0003 0.0171 0.019 5.293 0.997 
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Fig 6.51 Optimum NN model 
 
 

Table 6.14 Comparative analysis of NN results with experimental and numerical 
results 
*Bold Sets are test sets 
 

 Ref. Exp No  RE RNN RDUCTROT  RDUCTROT/RE  RNN/RE  
Lukey and Adams (1969) 
 1 10.4 10.501 8 0.77 1.01 

  2 6.7 5.8913 7.6 1.13 0.879 

  3 3.4 3.8415 7.4 2.17 1.13 

  4 3.2 3.2257 7 2.19 1.008 

  5 4.2 3.8324 6.8 1.62 0.912 

  6 13.7 13.556 7.9 0.58 0.989 

  7 8 7.8534 7.3 0.91 0.982 

  8 6.5 5.9556 6.9 1.06 0.916 

  9 4.2 5.2793 7.1 1.68 1.257 

  10 2.9 2.3847 7.2 2.48 0.822 

  11 13.6 13.256 10.7 0.79 0.975 

  12 11.8 11.666 7.9 0.67 0.989 
Kuhlman (1986,1989)  
 13 8 8.1781 7.9 0.99 1.022 

  14 7 6.8058 11.9 1.7 0.972 

  15 1 1.0461 3.3 3.3 1.046 

  16 12.7 11.978 12.3 0.97 0.943 

  17 8.6 7.8664 16.5 1.92 0.915 

  18 4.6 4.2461 5.2 1.13 0.923 

  19 13.5 13.623 13.2 0.98 1.009 
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Table 6.14 cont’d       

  20 11.5 10.801 10.1 0.88 0.939 

  21 7.8 7.9685 8.3 1.07 1.022 

  22 3.6 3.8928 3.8 1.05 1.081 

  23 10.5 10.549 13.3 1.27 1.005 

  24 9.5 9.1749 7.8 0.82 0.966 

  25 12 12.336 11.2 0.93 1.028 

  26 7.2 7.7291 4.1 0.57 1.073 

  27 8.7 9.9222 9 1.03 1.14 

  28 5.5 7.4625 8.2 1.49 1.357 

  29 10 8.7757 9.7 0.97 0.878 

  30 8.9 7.828 6.8 0.76 0.88 

  31 6.7 6.9439 10.2 1.52 1.036 

  32 7.6 7.2833 13.5 1.78 0.958 

  33 5.2 5.4081 4 0.76 1.04 

  34 5.1 5.15 4.69 0.92 1.01 

  35 3.8 3.44 3.8 1 0.91 

  36 6.6 6.66 5.21 0.79 1.01 

Spangemacher (1991) 37 19.8 19.103 15.4 0.78 0.965 

  38 6.4 7.3038 9.1 1.42 1.141 

  39 7.8 6.9657 9.3 1.19 0.893 

  40 18.9 19.385 11.5 0.61 1.026 

  41 12 11.851 7.7 0.64 0.988 

  42 9.3 9.641 6.2 0.67 1.037 

  43 1.5 1.456 3.9 2.6 0.971 

  44 10.3 10.326 19.6 1.9 1.003 

  45 2.6 2.1458 3.7 1.44 0.825 

  46 20.5 20.506 14.1 0.69 1 

  47 34.1 34.022 19.8 0.58 0.998 

  48 6.4 6.4972 7.6 1.18 1.015 

  49 19 19.145 9.3 0.49 1.008 

  50 6.4 6.1561 5.8 0.9 0.962 

  51 4.1 4.328 3.1 0.76 1.056 

  52 10.4 9.9356 9.4 0.9 0.955 

  56 0.9 0.89634 4.3 4.78 0.996 

  57 2.7 2.8713 5.1 1.88 1.063 

  58 16.9 16.966 14.9 0.88 1.004 

  59 8.3 8.19 7.06 0.85 0.99 

  60 9.5 9.9 9.41 0.99 1.04 

Boreave et al. (1993) 61 9.2 10.663 10.8 1.17 1.159 

  62 12.1 12.549 11.7 0.97 1.037 

  63 24.3 24.436 16.5 0.68 1.006 

  64 16.8 16.645 13.6 0.81 0.991 

  65 10 9.2012 9.9 0.99 0.92 

Kemp (1985,1991)  66 2.7 3.1854 2.7 0.99 1.18 

  67 6.6 6.5085 9.5 1.44 0.986 
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Table 6.14 cont’d       

  68 15.2 15.976 12.2 0.8 1.051 

  69 14.8 14.755 10.4 0.7 0.997 

  70 8.4 8.261 6.2 0.74 0.983 

Suzuki et al (1994)  73 33.4 33.75 30.06 0.9 1.01 

  74 19.2 19.09 26.88 1.4 0.99 

  75 22.3 21.67 13.6 0.61 0.97 

  76 9.4 9.47 11.75 1.25 1.01 

  77 27.2 27.13 25.3 0.93 1 

  78 18.5 19.04 19.61 1.06 1.03 

  79 15.7 15.87 17.43 1.11 1.01 

  80 7.7 6.99 3.85 0.5 0.91 

 
 
 

 
Fig 6.52 % Error of test set 
 

 
Fig 6.53 % Error of training set 

 
Fig 6.54 Prediction of NN and actual 
values  for testing set 

 
Fig 6.55 Prediction of NN and actual 
values  for learning set 
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Fig 6.56 Overall performance of 
DUCTROT vs. experimental results  

Fig 6.57 Overall performance of  NN vs. 
experimental results  

 

 
Fig 6.58 Comparison of NN and DUCTROT Results 
 (NN Results/Experimental Results) vs.  (DUCTROT results/experimental results) 

 
  
6.2.4.4 Closed Form Solution of Available   Rotation Capacity 

 

The main focus is to obtain the explicit formulation of available rotation as a 

function of geometric and mechanical properties of a steel beam as follows: 

 

R = f ( b,  d, tf,  tw, L,  Fyf, Fyw )   
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R = 30* 
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And the values for Ui are given as 

 

U1 =  (-0.0030*b) + ( -0.0069*d) + ( -0.0446*tf) + ( -0.1268*tw) + ( -0.0064*L) + ( -

0.0057*Fyf)  + (0.0216*Fyw) + (7.7055 ) 

U2 =  (0.0118*b) +  (-0.0087*d) + ( -0.1200*tf) + ( 0.2558*tw) + ( 0.0042*L) + ( 

0.0020*Fyf)  + (-0.0182*Fyw) + (-4.0409) 

U3 =  (0.0164*b) +  (-0.0079*d) + ( 0.0216*tf) + ( 0.1022*tw) + ( -0.0049*L) + ( -

0.0009*Fyf)  + (-0.0350*Fyw) + (1.0284) 

U4 =  (-0.0068*b) +  (0.0111*d) + ( -0.0763*tf) + ( 0.2126*tw) + ( -0.0026*L) + ( -

0.0018*Fyf)  + (-0.0391*Fyw) + (1.4254) 

U5 =  (0.0197*b) +  (-0.0007*d) + ( 0.1097*tf) + ( -0.0679*tw) + ( 0.0077*L) + ( -

0.0009*Fyf)  + (0.0058*Fyw) + (-4.3808) 

U6 =  (0.0215*b) +  (0.0088*d) + ( 0.1084*tf) + ( 0.1463*tw) + ( 0.0101*L) + ( -

0.0008*Fyf)  + (0.0038*Fyw) + (-9.5772) 

U7 =  (-0.0198*b) +  (-0.0032*d) + ( 0.0735*tf) + ( -0.1733*tw) + ( -0.0055*L) + ( -

0.0039*Fyf)  + (0.0148*Fyw) + (6.3085) 
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U8 =  (0.0159*b) +  (0.0002*d) + ( 0.1253*tf) + ( 0.0094*tw) + ( 0.0052*L) + ( -

0.0048*Fyf)  + (-0.0317*Fyw) + (0.32208) 

U9 =  (-0.0137*b) +  (0.0009*d) + ( 0.1260*tf) + ( 0.2475*tw) + ( 0.0054*L) + ( -

0.0005*Fyf)  + (0.0183*Fyw) + (-3.6989) 

U10 =  (0.0134*b) +  (-0.0058*d) + ( 0.1183*tf) + ( -0.2687*tw) + ( 0.0063*L) + ( -

0.0025*Fyf)  + (-0.0136*Fyw) + (2.9629) 

U11=  (-0.0214*b) +  (0.00001*d) + ( -0.0104*tf) + ( -0.2379*tw) + ( -0.0034*L) + ( -

0.0025*Fyf)  + (0.0329*Fyw) + (1.5795) 

U12 =  (-0.0149*b) +  (0.0066*d) + ( -0.1811*tf) + ( 0.0459*tw) + ( 0.0050*L) + ( 

0.0030 *Fyf)  + (0.0046*Fyw) + (-3.0545) 

U13 =  (-0.0059*b) +  (0.0020*d) + ( -0.1195*tf) + ( 0.2602*tw) + ( 0.0047*L) + ( 

0.0006*Fyf)  + (-0.0310*Fyw) + (-2.4884) 

U14 =  (0.0166*b) +  (.0118*d) + (0.0131*tf) + ( -0.2199*tw) + ( -0.0024*L) + ( -

0.0038*Fyf)  + (-0.0087*Fyw) + (2.6819) 

U15 =  (0.0270*b) +  (-0.0004*d) + ( -0.1223*tf) + ( 0.1090*tw) + ( 0.0034*L) + ( 

0.0010*Fyf)  + (0.0177*Fyw) + (-2.087) 

U16 =  (-0.0011*b) +  (0.0041*d) + ( 0.1165*tf) + ( 0.1084*tw) + ( 0.0092*L) + ( 

0.0041*Fyf)  + (-0.0070*Fyw) + (-7.7875) 

U17 =  (-0.0149*b) +  (-0.0144*d) + ( 0.1253*tf) + ( 0.1583*tw) + ( 0.0019*L) + ( -

0.0005*Fyf)  + (-0.0144*Fyw) + (-0.53283) 

It should be noted that the proposed explicit formulation of the NN model presented 

above is valid for the ranges of training set given in Table 6.12. 

 

6.2.4.5 Conclusion 

 

This case study presents a new and efficient approach for the prediction of available 

rotation capacity of wide flange beams using NNs. The database used for NN 

training is based on experimental results from literature. Backpropagation NNs are 

used for training process. The proposed NN model shows perfect agreement with 

experimental results (R = 0.997) where its accuracy is also quite high 

(MAPE=%5.1). Numerical results of the same database are obtained by a specialized 

computer program (DUCTROT) and are used for comparative analysis. The 

correlation and accuracy of numerical results with experimental results is found to be 

quite poor (R = 0.0819 and MAPE= % 35). Thus NN results are seen to be by far 
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more accurate compared to numerical results. The proposed NN model is valid for 

the ranges of the training set.   The explicit formulation of available rotation capacity 

based on proposed NN model is also obtained and presented. As a result the 

proposed NN model and formulation of the available rotation capacity of wide flange 

beams is quite accurate, fast and practical for use compared to FE models. 

 

6.2.5 Strength Enhancement of Corner Regions in cold-formed steel 

 

 

6.2.5.1 Introduction 

 

This case study presents an alternative NN approach for predicting the enhanced 

strength of the corner regions of cold-formed stainless steel sections. Strength 

enhancement of the corner regions is primarily due to plastic strains that occur during 

cold-forming process of stainless steel. Neural networks are proposed as a soft 

computing technique for the prediction of strength enhancement. Training and test 

sets for the NN models are collected from test results available in literature. The 

results of the NN models are compared with previous experimental and statistical 

studies from literature and found to be quite satisfactory. The explicit formulations of 

the proposed NN models are also presented.    

 

The use of stainless steel tubular sections in structural applications is increasing day 

by day. There are various codes concerning the design of cold-formed stainless steel 

sections (ASCE, 1991, AUST/NZS, 2001, EUROCEODE 3, 1996) 

 

The plastic behaviour of stainless steel is quite complicated to be modeled. Several 

models exist for the modeling of plastic behaviors of steel which are valid for simple 

load cases in general. However for more complicated loading cases simple models 

can not depict the plastic behaviour of stainless steels as in the case of cold-working 

process (Gozzi, 2003). Cold-working process of the virgin material causes significant 

enhancement of mechanical behaviour of stainless steel.  Stainless steel shows 

significant strain hardening which leads to strength enhancement   in the corner 

regions of cold-formed sections having 0.2% proof strengths much higher than that 
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of the flat material. In spite of the fact that utilization of strength enhancement in 

corner regions   may lead to an economic design in stainless steel structural 

applications, it is not allowed to use it without testing, if material is welded after cold 

working (EUROCEODE 3, 1996). Therefore the load carrying capacity is in general 

underestimated. In these situations the load carrying capacity should be modified by 

a correction factor considering the effect of strength enhancement in corner regions. 

For instance strength enhancement in corner regions may have significant effect on 

load carrying capacity as in the case of stocky sections since they have larger 

proportion of corner area. 

 

Various statistical models have been proposed in literature (Van der Berg and Ven 

der Merwe, 1992, Ashraf et al., 2005) for the prediction of 0.2% proof strength and 

ultimate strength of corner regions.  

 

This case study proposes an alternative method for the strength enhancement in 

corner regions based Neural Networks. In cases where a structural problem is too 

difficult to be modeled mathematically, NNs may serve as a robust alternative for the 

solution of such problems. 

 

6.2.5.2 Strength Enhancement of Corner Regions 

 

Karren (1967) has performed the first study on strength enhancement of Carbon 

steel. Karen performed a series of tests and observed 2 important parameters 

effecting the strength enhancement at corners: ri /t and σ u/σ y of the virgin material 

where ri , t, σ u   andσ y  are  radius ,thickness , corresponding strength values.The 

first study on strength enhancement of stainless steel sections has been performed by 

Coetzee et al. (1990). They studied the corner effect on lipped channel section 

formed by press barking.  

 

As a result of an extensive study Van den Berg and Van der Merwe (1992) proposed 

the following equations for the prediction of corner 0.2% proof strength as follows: 

c,2.0σ  =  
m

i

vc

t

r

B










,2.0σ
        (6.16) 
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Where 

cB =3.289 
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where 

v,2.0σ  = 0.2% proof strength of virgin material 

 vu ,σ   = ultimate strength of virgin material 

c,2.0σ = 
194.0

,2.0881.1
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         (6.19) 

Experimental studies on strength enhancement at corners of stainless steel hollow 

sections have been performed by Gardner (2002), Rasmussen and Hancock (1993). 

Tests on cold-worked austenitic (Grade 1.4318) stainless steel RHS have been 

continued by Gardner and Talja (2003). All available test results are given in Table 

6.15. The soft computing models in this study are based on these experimental results 

given in Table 6.15. 

 

Table 6.15 Available test results 
*Bold values are test sets 
 

Virgin Material   Corner Material 

 Reference 

 

 

(MPa) 

 

 

(MPa)  ri / t 

 

 

(MPa) 

 

 

(MPa) 

  224 395 1.8 370 431 

  224 395 1.87 374 431 

  224 395 3 365 424 

  224 395 3.26 353 418 

 224 395 4.2 350 420 
  224 395 4.31 334 412 

  224 395 5.36 328 409 

  224 395 5.97 317 403 

  224 395 6.24 322 405 

  224 395 7.09 305 399 

  277 435 1.61 423 508 

v,2.0σ vu ,σ c,2.0σ cu ,σ
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Table 6.15 cont’d      

  277 435 2.25 450 518 

  277 435 3.08 437 506 

  277 435 3.16 420 497 
  277 435 4.09 409 496 

  277 435 4.33 392 493 

  277 435 5.1 371 482 

  277 435 5.64 379 484 

  277 435 6.25 396 486 

  277 435 6.7 371 487 

  295 671 1.99 452 775 

  295 671 2.22 425 762 

  295 671 3.4 407 759 

  295 671 3.43 397 744 
  295 671 4.43 398 753 

  295 671 4.47 374  –   
  295 671 5.75 362 730 

  295 671 5.85 358 725 

  295 671 6.63 366 732 

 295 671 7.03  –    –   

  304 518 1.94 471 574 

  304 518 2.39 488 583 

  304 518 3.12 458 564 

  304 518 3.53  –    –   

  304 518 4.32 451 560 
  304 518 4.61 442 553 

  304 518 5.3 435 551 

  304 518 6.09 415 547 

  304 518 6.54 418 548 

 (Van der Berg and Ven der Merwe,1992) 304 518 7.27 407 548 

  277 621 1.37 487 710 
  277 621 1.42 486 700 

  277 621 2.05 445 676 

  277 621 2.13 444 685 

  296 685 1.15 552 836 

  296 685 1.28 520 811 
  296 685 2.23 471 795 

  296 685 2.24 464 793 

  299 462 1.35 519 532 

  299 462 1.38 528 541 

  299 462 2.2 486 525 

Coetzee et al. (1990). 299 462 2.25 482 523 

  291 628 1.2 594 820 
  275 6230 0.68 587 820 

 304 613 1.6 563 844 

 318 612 0.92 631 802 

Gardner (2002) 289 600 1.46 572 809 

Rasmussen and Hancock (1993) 297 614 0.83 580 805 

 361 755 2.09 614 941 

Gardner and Talja (2003). 548 986 1.8 807 1162 
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In a recent study Ashraf et al. (2005) compared available test results with predictions 

of Van den Berg and Van der Merwe’s model and   proposed alternative power 

models based on test results given in Table 6.15. He proposed a general expression 

for the relationship given as: 
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Ashraf also proposed a relationship for the prediction of  
cu ,σ  given as follows: 

cu ,σ  =0.75 c,2.0σ 

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6.2.5.3 Numerical Application 

 
The main focus of this study is to predict the enhanced strength of the corner regions 

of cold-formed stainless steel sections and its closed –form solution by means of 

NNs based on experimental results from literature. Therefore an extensive literature 

survey has been performed for available experimental results. Experimental results in 

Table 6.15 were and used as training and test sets for NN training.  

 

 

6.2.5.3 a) Results of NN and Models  for the Prediction of 
c,2.0σ   

 

The optimal NN architecture in this part was found to be 3-5-1 NN architecture with 

hyperbolic tangent sigmoid transfer function (tansig). The training algorithm was 

quasi-Newton back propagation (BFGS). The optimum NN model is given in Fig 

6.59. Statistical parameters of learning and training sets of NN model are presented 

in Table 6.16. The prediction of the proposed NN model vs. actual experimental 
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values is given in Table 6.17. The % errors and Prediction of NN and actual values 

of learning and testing sets and their corresponding correlation are given in Figs 

6.60-6.63. The % errors and. The overall comparison of the proposed NN model 

results with various statistical models is given in table 6.18.  

 

Table 6.16 Statistical parameters of the proposed NN models 
 
 MSE RMSE SSE MAPE (%) 
NN Train Set 144.66 12.027 7232.8 2.1014 
NN Test  Set 207.49 14.404 1659.9 2.4525 

 

 

 

Fig 6.59 Proposed NN model for the prediction of 
c,2.0σ   

 
 
 
 



 120 

Table 6.17 Results of NN models for the prediction of 
c,2.0σ   

*Bold values are test set 

 Reference  

(MPa) 

 

(MPa)  r/t 

 

(Exp.) 

 

(NN) 

 

NN/Exp. 

  224 395 1.8 370 369.46 1.00 

  224 395 1.87 374 369.03 0.99 

  224 395 3 365 359.82 0.99 

  224 395 3.26 353 357.11 1.01 

  224 395 4.2 350 345.99 0.99 

  224 395 4.31 334 344.62 1.03 

  224 395 5.36 328 332.18 1.01 

  224 395 5.97 317 325.43 1.03 

  224 395 6.24 322 321.85 1.00 

  224 395 7.09 305 298.56 0.98 

  277 435 1.61 423 437.57 1.03 

 277 435 2.25 450 427.96 0.95 

  277 435 3.08 437 415.78 0.95 

  277 435 3.16 420 414.61 1.05 

  277 435 4.09 409 401.27 0.98 

  277 435 4.33 392 397.98 1.02 

  277 435 5.1 371 388.53 1.05 

  277 435 5.64 379 383.75 1.01 

  277 435 6.25 396 381.3 0.96 

  277 435 6.7 371 381.75 1.03 

  295 671 1.99 452 464.86 0.99 

  295 671 2.22 425 449.65 1.03 

  295 671 3.4 407 406.11 1.06 

  295 671 3.43 397 405.45 1.00 

  295 671 4.43 398 384.69 1.00 

  295 671 4.47 374 383.84 1.02 

  295 671 5.75 362 361.28 1.03 

  295 671 5.85 358 360.57 1.00 

          295 671 6.63 366 366.67 1.01 

  304 518 1.94 471 490.78 1.03 

  304 518 2.39 488 481.62 1.04 

  304 518 3.12 458 465.42 0.99 

  304 518 4.32 451 437.52 1.00 

  304 518 4.61 442 431.51 1.02 

  304 518 5.3 435 420.6 0.98 

  304 518 6.09 415 416.03 0.97 

 304 518 6.54 418 416.17 1.00 

 (Van der Berg and Ven der Merwe,1992) 304 518 7.27 407 411.7 1.00 

  277 621 1.37 487 512.2 1.05 

  277 621 1.42 486 506.7 1.04 

  277 621 2.05 445 441.14 0.99 

  277 621 2.13 444 433.54 0.98 

  296 685 1.15 552 533.22 0.97 

c,2.0σ

v,2.0σ vu ,σ
c,2.0σ c,2.0σ
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Table 6.17 cont’d       

  296 685 1.28 520 520.53 1.00 

  296 685 2.23 471 460.47 0.98 

  296 685 2.24 464 460.12 0.99 

  299 462 1.35 519 517.44 1.00 

  299 462 1.38 528 516.65 0.98 

  299 462 2.2 486 495.77 1.02 

Coetzee et al. (1990). 299 462 2.25 482 494.54 1.03 

  291 628 1.2 594 568.91 0.96 

  275 623 0.68 587 581.79 0.99 

  304 613 1.6 563 563.71 1.00 

  318 612 0.92 631 616.03 0.98 

Gardner (2002) 289 600 1.46 572 545.44 0.95 

Rasmussen and Hancock (1993) 297 614 0.83 580 609.05 1.05 

  361 755 2.09 614 616.56 1.00 

Gardner and Talja (2003). 548 986 1.8 807 808.85 1.00 

 

 
Fig 6.60 Performance of NN model for test 
set 

 
Fig 6.61 Performance of NN model for 
training set 

 
Fig 6.62 % Error for test set (NN Model) 

 
Fig 6.63 % Error for training set (NN 
model) 
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Table 6.18 Comparison of the proposed NN models for the Prediction of 
c,2.0σ  with 

previous statistical models  
 
Reference No. Of 

Exp 

Model 

Van der 

berg  

Eqn 1-3 

Std dev 

Pred./Test 

Model 

Van der 

berg  

Eqn 1-3 

Simple 

Power 

Model 

Eqn. 4 

Std dev 

Pred./Test 

Model 

Eqn. 4 

Power 

Model  

Eqns 5-7 

using uσ  

Std dev 

Pred./Test 

Model 

Eqns 5-7 

using uσ  

Avg of 

Pred./Test 

NN 

Model 

Std dev 

Pred./Test 

NN 

Model 

Coetzee et 

al. (1990) 

12 0.92 0.02 1.01 0.01 0.99 0.02 1.00 0.03 

Van der 

Berg and 

Van der 

Merwe, 

(1992) 

40 1.00 0.03 1.01 0.06 1.00 0.04 1.01 0.03 

Rasmussen 

and 

Hancock 

(1993) 

1 0.94 - 1.00 - 1.01 - 1.00  - 

Gardner 

(2002) 

5 0.87 0.04 0.92 0.04 0.93 0.04 0.98 0.02 

Gardner 

and Talja 

(2003) 

2 1.00 - 1.05 - 1.06 - 1.03 - 

 All test 
results   

60 0.97 0.05 1.00 0.06 1.00 0.04 1.00 0.03 

 

  

6.2.5.3 b) Results of NN models for the prediction of  
cu ,σ  

 

The optimal NN architecture in this part was found to be 3-7-1 NN architecture with 

hyperbolic tangent sigmoid transfer function (tansig). The training algorithm was 

quasi-Newton back propagation (BFGS). The optimum NN model is given in Fig 
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6.64. Statistical parameters of learning and training sets of NN training are presented 

in Table 6.19. The prediction of the proposed NN model vs. actual experimental 

values is given in Table 6.20. The % errors and Prediction of NN model and actual 

values of learning and testing sets and their corresponding correlation are given in 

Figs 6.65-6.68. The overall comparison of the proposed NN model results with 

various statistical models is given in Table 6.21.  

 

 

Fig 6.64 Proposed NN Model for the prediction of 
cu ,σ  

 

Table 6.19 Statistical parameters of the proposed NN models 
 MSE RMSE SSE MAPE (%) 
NN Train Set 83.527 9.1393  4176.3  0.96626 
NN Test  Set 329.89  18.163  2309.3  2.4476 
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Table 6.20 Results of NN models for the Prediction of 
cu ,σ  

*Bold values are test set 
 

 Reference 

 
 
(MPa) 

 
 
(MPa)  r/t 

 
 
(Exp) 

 
 
(NN) NN/Exp. 

  224 395 1.80 431.00 445.56 1.03 

  224 395 1.87 431.00 445.14 1.03 

  224 395 3 424 421.48 0.99 

  224 395 3.26 418 419.81 1.00 

  224 395 4.20 420 413.59 0.98 

  224 395 4.31 412 412.84 1.00 

  224 395 5.36 409 405.49 0.99 

  224 395 5.97 403 401.03 1.00 

  224 395 6.24 405 399.01 0.99 

  224 395 7.09 399 392.47 0.98 

  277 435 1.61 508 514.65 1.01 

  277 435 2.25 518 513.06 0.99 

  277 435 3.08 506 505.96 1.00 

  277 435 3.16 497 494.78 1.00 

  277 435 4.09 496 491.52 0.99 

  277 435 4.33 493 490.85 1.00 

  277 435 5.10 482 488.64 1.01 

  277 435 5.64 484 487.04 1.01 

  277 435 6.25 486 485.18 1.00 

  277 435 6.70 487 483.77 0.99 

  295 671 1.99 775 775.75 1.00 

  295 671 2.22 762 774.59 1.02 

  295 671 3.40 759 768.42 1.01 

  295 671 3.43 744 768.26 1.03 

  295 671 4.43 753 753.03 1.00 

  295 671 5.75 730 738.32 1.01 

  295 671 5.85 725 737.71 1.02 

  295 671 6.63 732 732.86 1.00 

  304 518 1.94 574 575.99 1.00 

  304 518 2.39 583 574.91 0.99 

  304 518 3.12 564 573.11 1.02 

  304 518 4.32 560 553.36 0.99 

  304 518 4.61 553 552.59 1.00 

  304 518 5.30 551 550.71 1.00 

  304 518 6.09 547 548.48 1.00 

  304 518 6.54 548 547.18 1.00 

v,2.0σ vu ,σ c,2.0σ c,2.0σ
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Table 6.20 cont’d       

Van der Berg and Ven der Merwe  (1992) 304 518 7.27 548 545.01 0.99 

  277 621 1.37 710 690.11 0.97 

  277 621 1.42 700 689.76 0.99 

  277 621 2.05 676 685.87 1.01 

  277 621 2.13 685 685.38 1.00 

  296 685 1.15 836 836 1.00 

  296 685 1.28 811 790.71 0.97 

  296 685 2.23 795 770.23 0.97 

  296 685 2.24 793 770.18 0.97 

  299 462 1.35 532 528.18 0.99 

  299 462 1.38 541 528.13 0.98 

  299 462 2.20 525 526.66 1.00 

Coetzee et al. (1990) 299 462 2.25 523 526.57 1.01 

  304 613 1.60 820 811.75 0.99 

  318 612 0.92 844 829.16 0.98 

  289 600 1.46 802 795.32 0.99 

  291 628 1.20 820 790.17 0.96 

Gardner (2002) 275 623 0.68 820 819.98 1.00 

Rasmussen and Hancock (1993) 297 614 0.83 809 811.33 1.00 

  361 755 2.09 805 835.34 1.04 

Gardner and Talja (2003) 548 986 1.80 941 941 1.00 
 
 

    

Fig 6.65 Performance of NN model for 
test set 

 
Fig 6.66 Performance of NN model for 
training set 
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Fig 6.67 % Error for training  set  
(NN model) 

Fig 6.68 % Error for test set (NN model) 

 

Table 6.21 Comparison of the proposed NN models for the prediction of 
cu ,σ    with 

previous statistical models   
 
Reference No. 

Of 
Exp 

Pred./Test 
Model 
based on 
Eqn 4 

Std dev 
Pred./Test 
Model 
Based on Eqn 4 

Pred./Test 
Model 
based on 
Eqn 5 

Std dev 
Pred./Test 
Model 
Based on Eqn 5 

Avg of 
Pred./Test 
NN 
Model 

Std dev 
Pred./Test 
NN 
Model 

Coetzee et al. 
(1990) 

12 1.11 0.05 1.09 0.06 1.00 0.03 

Van der Berg 
and Ven der 

Merwe (1992) 
40 0.98 0.07 0.98 0.08 1.00 0.03 

Rasmussen and 
Hancock (1993) 

1 1.11 – 1.13 – 1.05 – 

Gardner (2002) 5 1.04 0.09 1.05 0.10 0.98 0.02 

Gardner and 
Talja (2003) 

2 1.14 0.09 1.13 0.07 1.00 0.003 

All test results 60 1.02 0.09 1.02 0.09 1.00 0.03 

 

6.2.5.4 Explicit Formulation of NN Models  

 

The main focus is to obtain the explicit formulation of strength enhancement of   

0.2% proof and ultimate strength of virgin material due to cold-working as follows: 

 

c,2.0σ  =  f ( v,2.0σ , vu ,σ ,ri / t )  

cu ,σ  =  f ( v,2.0σ , vu ,σ ,ri / t )  
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6.2.5.4 a) Explicit Formulation of Enhanced 0.2% Proof Strength 

 

wij 
 is the weight matrix of the first hidden layer given in  table 7 and  Xj  is the 

corresponding parameter vector given as  

X = [( v,2.0σ , vu ,σ ,ri / t ] where 

ib  is the bias matrix to the first hidden layer given as 

b = [4.4358 -11.743   4.1495   3.9927   2.8927   -1.7135 -6.8101   ] 

 The summation iu  is transformed using a scalar-to-scalar function called an 

"activation or transfer function", )( iuF  yielding a value called the unit's "activation". 

Following the steps above leads to: 

 

u1 =  (-10.443 *
v,2.0σ ) + (7.2253 *

vu ,σ ) + (1.046 * ri / t ) 

u2 = (3.8411  * v,2.0σ ) + (4.2688 * vu ,σ ) + (1.8934  * ri / t ) 

u3 = (6.0138  *
v,2.0σ ) + (-9.1724  *

vu ,σ ) + (-3.5332  * ri / t ) 

u4 = (5.9001  * v,2.0σ ) + (-9.1399  * vu ,σ ) + (-3.0234 * ri / t ) 

u5 = (2.6697  *
v,2.0σ ) + (-5.5196  *

vu ,σ ) + (-0.39746 * ri / t ) 

u6  = (-2.1414  * v,2.0σ ) + (-3.8593  * vu ,σ ) + (5.1458  * ri / t ) 

u7  = (-3.0475  *
v,2.0σ ) + (3.4746  *

vu ,σ ) + (5.0314 * ri / t ) 

 

The activation function used in this study is hyperbolic tangent sigmoid transfer 

function (tansig)  

)( iuf = 







−

+ −
1

1

2
)(2 iu

e
 performed for each hidden node in the first hidden layer 

Thus the output is 

O = Σ  (w2 i * )( iuf )   +   b2 

where w2i  is the weight vector to the output layer given as 

w2i =[ -0.83853 -5.8502   -2.9442   3.9058   -1.7232   -0.80867   7.8143] 

 and  b2 is the bias added which is  

b2= 3.1659  
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It should be noted that the inputs entering the network  have been normalized before 

the training as 

v,2.0σ = v,2.0σ * /400   vu ,σ  = vu ,σ */800  ri / t = (ri / t)
*  /10 

And the output before the training has been normalized by 700 thus the final output  

is  

R = 







−

+ −
1

1

2
2O

e
*700 

The proposed NN models are valid for the range of variables given in table 6.15 

 
Table 6.22 Weight matrix of the first hidden layer of the proposed NN model 
 
 [i,j]  1  2  3 
 1 -10.443 7.2253 1.046 
 2 3.8411 4.2688 1.8934 
 3 6.0138 -9.1724 -3.5332 
 4 5.9001 -9.1399 -3.0234 
 5 2.6697 -5.5196 -0.39746 
 6 -2.1414 -3.8593 5.1458 
 7 -3.0475 3.4746 5.0314 
 
6.2.5.4 b)  Explicit Formulation of Enhanced Ultimate Strength  

 

wij 
 is the weight matrix of the first hidden layer given in  table 7 and  Xj  is the 

corresponding parameter vector given as  

X = [( v,2.0σ , vu ,σ ,ri / t ] 

ib  is the bias matrix to the first hidden layer given as 

b = [   -33.35 14.505 275.47 13.019 1.4697] 

Following the steps above leads to: 

u1 = (-26.323 * v,2.0σ ) + (-25.018 * vu ,σ ) + (-2.4366 * ri / t ) 

u2 = (13.022 * v,2.0σ ) + (-312 * vu ,σ ) + (52.037 * ri / t ) 

u3 = (-243.69 * v,2.0σ ) + (-138.21 * vu ,σ ) + (0.031021 * ri / t ) 

u4 = (-47.705 * v,2.0σ ) + (-103.11 * vu ,σ ) + (245.64 * ri / t ) 

u5 = (4.0463 * v,2.0σ ) + (-1.8046 * vu ,σ ) + (-0.25829 * ri / t ) 
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The activation function used in this study is hyperbolic tangent sigmoid transfer 

function (tansig)  

)( iuf = 







−

+ −
1

1

2
)(2 iu

e
 performed for each hidden node in the first hidden layer 

Thus the output is 

O = Σ  (w2 i * )( iuf )   +   b2 

where w2i  is the weight vector to the output layer given as 

w2i =[ -35.279   -38.721   -0.15546   -08331   15.748] 

 and  b2 is the bias added which is  

b2= -11.596 

It should be noted that the inputs entering the network have been normalized before 

the training as 

v,2.0σ = v,2.0σ * / 400   vu ,σ  = vu ,σ */ 800  ri / t = (ri / t)
*  / 10 

And the output before the training has been normalized by 1000 thus the final output   is  

R = 







−

+ −
1

1

2
2Oe

*1000 

 

It should be noted that the proposed NN formulations are valid for the range of 

variables given in the experimental database in Table 6.15. 

 

Table 6.23. Weight matrix of the first hidden layer of the proposed NN model 
 

 [i,j]  1  2  3 

 1 -26.323 -25.018 -2.4366 

 2 13.022 -312 52.037 

 3 -243.69 -138.21 0.031021 

 4 -47.705 -103.11 245.64 

 5 4.0463 -1.8046 -0.25829 
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6.2.5.5 Conclusion 

 

This case study proposes NN approach for strength enhancement at corner regions of 

stainless steel structures. Experimental data used for the training of soft computing 

models are obtained from literature. The proposed NN models are later compared 

with previous statistical models. NN results are found to be more accurate than 

statistical models. Proposed NN models are based on experimental training data from 

literature where they are further verified by test data from literature that they have 

not been trained before. This is significantly important as the use of training and test 

set is an important indicator of the reliability and generalization capabilities of the 

proposed soft computing models. The reliability of such models actually depends on 

the presence of test sets. Furthermore the NN models are presented in explicit 

formulation which enables them to be used fast and practically.  The results of this 

study are very promising and show that the impact of NN techniques will be felt 

increasingly in the field of plastic behaviour and modeling of structures in coming 

years.  

 

 

 

6.2.6 Flexural Buckling Load Prediction of Aluminium Alloy Columns 

 

6.2.6.1 Introduction  

 

This study presents the application of NNs for strength prediction of heat-treated 

extruded aluminium alloy columns failing by flexural buckling.  The training and test 

sets for soft computing models   are obtained from experimental results available in 

literature. The proposed NN model is presented in explicit form to be used in 

practical applications. The accuracy of the proposed NN model is compared with 

existing codes and is found to be more accurate. 

 

The structural applications of aluminium members have experienced a fast growth in 

the last few years, mostly because these members exhibit several distinct advantages, 

namely high strength/weight ratios, corrosion resistance, pleasing appearance, ease 



 131 

of maintenance, fabrication versatility and, last but not least, increasingly 

competitive prices (Galambos,1998, Mazzolani,2002, Goncalves and 

Camotim,2004). 

 

These advantages enable aluminium columns to be widely used in structural 

applications. The buckling phenomenon for aluminium columns is a complex task 

which involves various failure types and leads to difficulties in the prediction of 

critical buckling load. Particularly for cases where plastic buckling is observed the 

process becomes too complicated. As in the case of flexural buckling of aluminium 

alloy columns, the behaviour of the aluminium section is determined by the stress-

strain curves of the material. The stress–strain curves of aluminium alloys are 

nonlinear which can be modeled closely using the Ramberg-Osgood expression. 

Apart from the material nonlinearity, the production process also strongly affects the 

flexural buckling of aluminium alloy columns i.e. heat-treated aluminium alloys have 

significantly higher proof stresses yield strength than non-heat-treated aluminium 

alloys (Rasmussen and Rondal,2000). 

 

This case study aims to present an alternative approach for flexural buckling load 

prediction of heat treated aluminium alloy columns by using NNs which has not been 

evaluated yet in this field so far. The accuracy of the proposed soft computing 

models are compared with available analytic expressions and related codes and are 

presented as explicit formulations. 

 

 

 

6.2.6.2 Buckling of Aluminium Alloy Columns 

 

There has been significant experimental research on aluminium column testing in 

literature. A review of these studies can be found in Chou and Rhodes (1997) and 

Singer et al. (2002) .The flexural strength of aluminium alloy columns has been the 

scope of extensive experimental and numerical research conducted during the 1960s 

and 1970s at the European Convention for Constructional Steelwork (ECCS). As e 

result of these tests, reference column curves were proposed referred to as the ECCS 

a-, b- and c-curves for aluminium alloys where a- and b-curves were adopted by the 
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(ECCS, 1978) , applying to heat-treated and non-heat-treated alloys respectively. The 

reason why different curves were adopted for heat-treated and non-heat-treated 

alloys respectively is the greater softening of non-heat-treated alloys compared to 

heat-treated alloys. Since the ECCS column curves were not suitable for design as 

they were in tabular form, An analytic expression was presented by Frey and Rondal 

(1978) and Rondal and Maquoi (1979) and adopted by ECCS. Rondal (1980) 

expressed another simple expression based on a Perry-type column curve using an 

imperfection parameter given as: 

 

 2/12
0

2 ))(( λλλβαη −−=         (6.22) 

 

For columns failing by flexural buckling, the pre-standard Eurocode9 (1998) uses the 

same Perry-type curve as that specified in Eurocode3 (1992) and the same linear 

form of the imperfection parameter given as 

              )( 0λλαη −=      (6.23) 

Eqn. 6.23 has also been adopted in the ISO (1992) Recommendations. Moreover 

Rasmussen and Rondal (1996) described a general design procedure applicable to 

metals and presented an appropriate form for round-house type materials given as: 

 

 00 )( λλλαη β −−=        (6.24) 

 

 This design procedure is subsequently applied to aluminium alloy columns by 

Rasmussen and Rondal (2000). The mechanical properties are firstly assumed in 

terms of the Ramberg–Osgood parameters, involving the initial Young’s modulus 

(E0), the 0.2% proof stress (σ 0.2) and the parameter (n) which controls the sharpness 

of the knee of the stress–strain curve. The Ramberg–Osgood parameters are assumed 

to have been obtained from curve fits of measured stress–strain curves obtained from 

stub column tests of the finished product. Secondly, a Perry curve is adopted as 

strength curve by modifying the imperfection parameter to be expressed by Eqn 6.24 

where the constants  0,, λβα   and  1λ  can be expressed in terms of Ramberg–

Osgood parameters (E0 , 2.0σ , n) (Rasmussen and Rondal ,2000). Thus, the non-

dimensional column strength is calculated using 
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22

1

λϕϕ −+
=X     (6.25) 

                                                   )1(
2

1 2ληϕ ++=      (6.26) 

 

Where the constants  0,, λβα   and  1λ  can be expressed in terms of material 

parameters i.e. in terms of   e, 2.0σ / E0   and  n as follows: 
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In Eqns (6.26) and (6.27) χ  and λ  are defined as: 

 

                                                            
2.0σ

σ
χ u=      (6.31) 

                                                            
0E

u

σ

σ
λ =      (6.32) 

                                                            
( )2

0
2

0
rL

E
E

π
σ =     (6.33) 

 

Where 2.0σ , L and r are the ultimate stress, effective length and radius of gyration 

respectively (Rasmussen and Rondal, 2000). The accuracy of the procedure applied 

to aluminium alloys is demonstrated by comparisons with established numerical 

solutions. This study presents a significant contribution in this field by using soft 

computing techniques for the flexural buckling load prediction of aluminium alloy 

columns. 
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6.2.6.3 Numerical Application 

 

The main focus of this study is strength prediction of heat-treated extruded 

aluminium alloy columns failing by flexural buckling and its closed –form solution 

by means of NNs based on experimental results from literature. Therefore an 

extensive literature survey has been performed for available experimental results on 

flexural buckling load of heat-treated aluminium columns. Experimental results (104 

tests) in Table 6.24 given with related material parameters were used as training and 

test sets for NN training. The datasets for test and training are randomly selected 

among experimental results. 

 
Table 6.24 Material parameters of test specimens 
 

Reference  
Ref. 
no.  

Type (axis)  Production  Alloy   E0 

(MPa)  
2.0σ  

(MPa)  
n  

Djalaly and Sfintesco 
[25]  1  I (minor)  France  2017  72 600  310  7.15  
 2  I (minor)  France  7020  70 630  320  18.12  
 3  I (minor)  France  6081  68 670  288  16.16  
Bernard et al. [26]  4 I (minor)  Switzerland  7020  75 880  335  24.15  
 5  I (minor)  Switzerland  7020  78 264  325  26.56  
 6  CHS  Belgium  7020  72 170  340  35.78  
 7  CHS  Switzerland  6082  67 300  299  29.45  
 8  CHS  Norway  6082  74 650  245  19.94  
Kloppel and Barsch [27]  9  I (major)  Germany  7020  72 100  330  33.6  
 10  I (major)  Germany  6082  72 100  293  29.9  
 11  CHS  Germany  7020  72 100  330  33.6  
 12  CHS  Germany  6082  72 100  293  29.9  
Arnault [28]  13  I (minor)  France  2017  73 575  312  11.9  
 14  I (minor)  France  6081  68 670  288  66.3  
 15  I (minor)  France  6082  68 670  315  22.5  
 16  I (minor)  France  7020  71 120  322  37.3  

 
 
The optimal NN architecture in this part was found to be 5-13-1 NN architecture 

with hyperbolic tangent sigmoid transfer function (tansig). The training algorithm 

was quasi-Newton back propagation (BFGS). The optimum NN model is given in 

Fig 6.69. Statistical parameters of learning and training sets of NN model are 

presented in Table 6.25.  The prediction of the proposed NN model vs. actual 

experimental values and their comparison with previously proposed formulation by 

Rasmussen and Rondal (2000)  for α =0.3 & α =0.4 and EC9 and ISO is given in 

Table A.2. The % errors and Prediction of NN and actual values of learning and 

testing sets and their corresponding correlation are given in Figs 6.70-6.73. The 
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results of  proposed NN model are more accurate compared to existing models  

proposed by Rasmussen and Rondal  (2000) and related codes (Eurocode9 (1998) 

and ISO (1992)).  

 

Fig 6.69 Proposed NN model for the prediction of uσ  

 
Table 6.25 Statistical parameters of the proposed NN model 
 
 MSE RMSE SSE MAPE (%) 
NN Train Set 105.24 10.26 3578 3.79 
NN Test  Set 210.5 14.51 9050 6.84 

 

 

Fig 6.70 Performance of NN model for test 
set 

 
Fig 6.71. Performance of NN model for 
training set 
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Fig 6.72 % Error for test set (NN Model) 
 

Fig 6.73. % Error for training  set (NN 
model) 

 
 

6.2.6.4 Explicit Formulation of NN Models  

 

The main focus is to obtain the explicit formulation as follows: 

uσ  =   f (E0 , 2.0σ , n , L / r , λ  )  

wij 
 is the weight matrix of the first hidden layer given in  table 6 and  Xj  is the 

corresponding parameter vector given as  

X = [E0 , 2.0σ , n , L / r , λ ] where 

ib  is the bias matrix to the first hidden layer given as 

b = [-24.08 -5.217 -18.96 15.814  -6.951 -22.23 0.823 -21.384  3.941 -5.958 28.886 -

16.49  10.17] 

 The summation iu  is transformed using a scalar-to-scalar function called an 

"activation or transfer function", )( iuF  yielding a value called the unit's "activation". 

)( ii ufY =  

Following the steps above leads to: 

u1 = (16.78*E0) + (7.60 * 2.0σ ) + (19.13 *n ) + (9.56*(L / r)) +(24.04 * λ ) 

u2 = (16.00*E0) + (-1.83* 2.0σ ) + (6.16*n ) + (-20.92*(L / r)) +(-89.58* λ ) 

u3 = (19.88*E0) + (-7.80 * 2.0σ ) + (19.33*n ) + (11.05*(L / r)) +(-86.48* λ )  

………. 

……….. 

u13 = (0.5 *E0) + (3.47* 2.0σ ) + (2.42 *n ) + (-4.08*(L / r)) +(-165.25* λ ) 
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The activation function used in this study is hyperbolic tangent sigmoid transfer 

function (tansig)  

)( iuf = 







−

+ −
1

1

2
)(2 iu

e
 performed for each hidden node in the first hidden layer 

Thus the output is 

O = Σ  (w2 i * )( iuf )   +   b2 

Where w2i  is the weight vector to the output layer given as 

w2i =[-1.762  -0.0646  -3.697  -3.0086  5.65  1.062  0.1079  -0.522  -1.1177  3.74  

6.066  7.195  7.203] 

and b2 is the bias added which is  

b2= 3.86 

It should be noted that the inputs entering the network have been normalized before 

the training as 

E0 
*= E0 /100000    2.0σ * = 2.0σ /100 n * = n / 500        (L / r)

*
 = (L / r) / 500     

λ *= λ / 100 

And the output before the training has been normalized by 3000 thus the final output     

R = 







−

+ −
1

1

2
2O

e
*3000 

It should be noted that the NN formulation above is valid for the range of variables 

given in Table 6.26. 

 

Table 6.26 Weight matrix of the first hidden layer of the proposed NN model 
 
 [i,j]  1  2  3  4  5 
 1 16.78 7.60 19.13 9.56 24.04 
 2 16.00 -1.83 6.16 -20.92 -89.58 
 3 19.88 -7.80 19.33 11.05 -86.48 
 4 -23.77 13.90 13.39 9.67 -52.45 
 5 9.15 -0.82 7.31 -16.98 91.21 
 6 27.60 -6.24 20.51 4.99 72.65 
 7 -2.06 0.37 -3.73 -8.86 -0.67 
 8 16.27 -10.41 -3.80 15.13 99.69 
 9 -15.91 0.35 -7.25 -11.32 -86.20 
 10 8.64 -7.36 -19.16 5.14 -157.93 
 11 20.83 11.34 -17.09 -4.23 -165.58 
 12 18.27 -13.79 26.13 -10.45 32.91 
 13 0.50 3.47 2.42 -4.08 -165.25 
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6.2.6.5 Conclusion 

 

This case study presents NNs for strength prediction of extruded aluminium alloy 

columns failing by flexural buckling. Experimental data used for the training of soft 

computing models are obtained from literature. The proposed NN model is later 

compared with existing models proposed by Rasmussen and Rondal (2000) and 

related codes (EC9 and ISO). NN results are found to be more accurate than previous 

analytic expression and codes. Furthermore the NN models are presented in explicit 

formulation which enables them to be used fast and practically. The results of this 

study are very promising. 

 

 

6.2.7 Prediction of Buckling Parameters of Hollow Aluminium Columns using 

NNs 

 

6.2.7.1 Introduction 

 

 

In this case study NNs are proposed as an alternative tool for the prediction of  

buckling parameters of Hollow Aluminium Columns, namely as ultimate buckling 

load and normalized buckling strain being valid both for elastic and plastic ranges. 

The NN models for both parameters are based on experimental results from 

literature. The closed form solutions of the buckling parameters are also derived 

based on the well trained NN parameters. The prediction of normalized of NN model 

is compared with existing formulation and is found to be by far more accurate. The 

prediction accuracy of the proposed NN models are both satisfactory. 

 

Applications of aluminum can be divided as structural and nonstructural. Structural 

applications are those for which the size of the part is driven primarily by the load 

which it must support; Nonstructural applications are the rest where half the 

transportation and building and construction of aluminum applications are structural. 

The forms of aluminum used in structural components include extrusions, flat-rolled 

products, castings and forgings where the most widely used forms are extrusions and 

the flat-rolled products (Kissel and Ferry, 2002). 
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Aluminium extrusions used in structural applications are in general thin-walled with 

complex cross-sectional shapes which may lead to several types of instability 

including overall and cross-sectional instability modes as well as mode interactions. 

Thus the prediction of buckling behaviour of these complex cross-sections is 

complicated where the case of buckling in plastic range adds extra difficulties. 

Current design rules do not provide an accurate description of the actual buckling 

behaviour of arbitrary cross-sections in plastic range (Mennink, 2002).  This  study 

aims to obtain a unified explicit formulation of 2 main buckling parameters namely 

as ultimate buckling load and normalized buckling strain of RHS and SHS 

aluminium columns being valid for elastic and plastic ranges at the same time using 

NNs. NN applications are treated as black-box applications. However this study 

opens this black box and introduces the NN application in a closed form solution. 

The prediction of ultimate buckling load and normalized buckling is of significance 

importance for hollow section aluminum columns as it will provide an accurate 

description of the actual buckling behaviour. 

 

 

6.2.7.2 Buckling of Axially Compressed Aluminium Extrusions 

 

With only a third of the weight and a self-protecting surface, the material has clear 

advantages over steel but it also behaves very differently with a high buckling 

tendency, no yield plateau and complex strain-hardening characteristics (Mazzolani, 

2001). The ultimate load and deformation capacity of an extruded aluminium column 

is often determined by instability a (buckling) phenomenon which is in general 

observed as local and distortional buckling. Existing design rules for instability are 

limited with respect to cross-sectional instability; only a very limited range of cross-

sections is covered and only with a limited accuracy. The contrast with the 

complexity of cross-sections used in practice is manifest. Without validated and 

conservative design rules, daily practice might lead to disturbingly inaccurate and 

even unsafe results. The actual cross-sectional instability behaviour (local and 

distortional buckling) of aluminium extrusions with arbitrary cross-sectional shapes 

is unknown (Mennink, 2002).   
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On the other hand the material characteristic also plays a significant role on the 

buckling behaviour aluminum alloy columns. The stress-strain curve of aluminum 

alloys is non-linear or so-called horse type which can be modeled by a bi- or tri-

linear curve.  This approach has been allowed in different codes, for example the 

Eurocode 9 (CEN, 1999). It is usually convenient to identify three separate regions, 

see Figure 6.74: (1) Elastic behaviour, (2) Inelastic behaviour, and (3) Strain-

hardening behaviour (Faella et al., 2000, Mazzolani, 1995, Dwight, 1999). 

 

  

Fig 6.74 Stress-strain curve of aluminum alloy 
 

The Ramberg-Osgood law is the most widely used model that represents stress-strain 

relationship of aluminum alloys in the following form: 

 

ε  = 
E

σ
 + 0.002

n

f 








2.0

σ
       (6.34) 

Where n refers to the strain hardening rate and f0.2  is the  2   is 0.2% proof strength of 

the material characteristic, E is the elasticity modulus and fp is the proportional limit 

of the material characteristic.In the case of buckling in the elastic-plastic range, the 

critical stress can be computed by properly modifying the Eulerian value through a 

factor h depending on the stress-strain relationship of the material; i.e., in the case of 

plastic local buckling, the critical stress can be computed as  
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ecrpcr ,, ησσ =           (6.35) 

 

where the nondimensional factor η  is dependent on the stress-strain curve of the 

material. On the basis of a review of all formulations for the factor proposed in the 

technical literature by different researchers the following relationship has been 

considered (Faella et al., 2000): 

 

η = 
E

Es [0.50 + 0.50
s

t

E

E
75.025.0 + ]      (6.36) 

Which is based on the study of Li and Reid  (1992) 

 

where Et = tangent modulus; and Es  = secant modulus. In spite of the fact that Eqn 

6.36 gives satisfactory results when applied for predicting the ultimate loadbearing 

capacity of aluminum alloy SHS (Langseth and Hopperstad, 1995, Mazzolani et al., 

1996a) members subjected to local buckling, it should be noted that to computation 

of  the  η factor given by Eqn 6.36 requires the stress-strain curve of the material that 

is which is obviously a difficult  task . 

 

Effective width method is also used effectively for the ultimate load capacity of  SHS 

(Langseth and Hopperstad, 1995, Mazzolani et al., 1996a) and RHS (Mazzolani et 

al., 1996b) aluminum alloy columns subjected to local buckling under uniform 

compression..  

 

Faella et al (2000) have presented a practical formulation for normalized buckling 

strain of aluminum SHS and RHS columns based on normalized elastic buckling 

strain of plates. The normalized elastic buckling strain of a plate with a geometry of 

b and t being  plate width and thickness, respectively; and  pλ  = plate slenderness 

ratio,  ν  = 0.3 and the case which edges are simply supported is given as: 

 

2

0

2

2

0

2

2

0

62.3

652.1
β

ε

π

ελ

π

ε

ε

ρ

=









==

t

b

cr       (6.37) 

Where 
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0)( εβ tb=          (6.38) 

and 

0ε  = f 0.2 / E          (6.39) 

 

Based on experimental results on SHS the empirical relationship for evaluating the 

normalized buckling strain has been formulated as: 

 

        (6.40)  

 

where ( ) aba tta 0εβ −=  is the plate slenderness parameter  of the elements 

constituting the member section. The coefficients C1, C2, and C3 have been derived 

directly from the experimental data by using a regression analysis carried out by 

means of the least squares method. Finally with reference to all profiles (i.e., 

including RHS members), the relationship for evaluating the normalized buckling 

strain has been derived according to the following mathematical structure (Faella et 

al., 2000): 

 

45.0

16.028.2
0

62.3 −

+
= χ

βε

ε
βa

a

LB         (6.41) 

Where χ  =  
a

b

β

β
          (6.42) 

and  

( ) bab ttb 0εβ −=          (6.43) 

 

 

6.2.7.3 Numerical Application  

 

The main focus of this study is the prediction of buckling parameters of RHS and 

SHS Aluminium Columns, namely as ultimate buckling load and normalized 

buckling strain and their closed–form solution by means of NNs based on 

experimental results. The experimental database used for the NN training is obtained 

from Faella et al. (2000) which presents, an extensive experimental program devoted 

aCC

a

LB C
ββε

ε
32

1

0
+

=
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to the evaluation of the ultimate resistance of aluminum alloy hollow members 

subjected to local buckling under uniform compression within the activities of CEN-

TC250/SC9, the technical committee charged with the preparation of Eurocode 9 on 

Aluminum Structures. The experimental database consists of both rectangular hollow 

sections and square hollow sections made of 6000-series alloys and produced by the 

major European aluminum industries. A total of 80 tests have been carried out: 24 

tests regarding 12 different SHS profiles and 56 tests concerning 27 different RHS 

profiles. The tests have been performed at the Material and Structure Laboratory of 

the Department of Civil Engineering of Salerno University (Faella et al., 2000). A 

simple sketch of the test set up is given in Fig 6.75. With reference to the profiles 

used for specimen preparation, the material characteristics and geometry of tests 

specimens are given in Table 6.27. The test and training set are selected randomly 

form the experimental database. As usual, the exponent n has been calibrated 

according to the values of f 0.1 and f 0.2, Ultimate Strength, ft  is used in the model 

instead of f 0.2 as n already reflects the effect of f 0.2. 

 

 

Fig 6.75 Test set-up and cross-section of tested RHS and SHS aluminium columns 
 

P 

L 

 a1 

b1 

a2 

b2 

ti 

Cross-section 
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Table 6.27 Experimental database  
 

Specimen Alloy Country E F0. f0.1 n ft anom b(nom) Ta Tb Anom A B Ta’ Ta” Tb’ Tb” A 
SHS1 6060 T6 D 67.52 214.4 207.8 22.4 241.3 15 15 2 2 104 15 15 1.9 1.9 1.9 1.9 100 
SHS2 6060 T6 D 72.27 223.6 215.6 19.1 244.3 40 40 4 4 576 40.1 40.05 4.05 4.15 4.1 4.05 588 
SHS3 6060 T6 D 64.86 222.5 217.2 28.9 244.8 50 50 3 3 564 51.15 50 3.1 3.1 3.05 3.15 582 
SHS4 6060 T6 D 64.09 202.6 198.1 30.6 225.2 50 50 4 4 736 50.4 50.35 4.45 4.1 4.2 4.3 786 
SHS5 6060 T6 D 70.21 175.7 169.9 20.6 202.9 70 70 4 4 1,056 70.15 70.1 4.1 4.2 4.2 4 1,089 
SHS6 6060 T6 D 71.73 194.2 189.2 26.8 220.3 80 80 4 4 1,216 79.9 79.85 4.3 4.2 4.35 4.2 1,289 
SHS7 6060 T6 D 70.76 209.8 204.8 28.4 228.3 100 100 4 4 1,536 100 99.8 3.9 4 3.95 3.85 1,507 
SHS8 6060 T6 I 71.96 158.2 149.3 12 186.6 60 60 2 2 464 60.4 60.35 2.3 2.25 2.25 2.25 526 
SHS9 6060 T6 I 65.13 186.7 182.1 27.5 203.9 80 80 2 2 624 80.4 80.2 2.1 2.1 2.1 2 649 

SHS10 6060 T6 D 65.32 293.5 286 26.9 323.7 100 100 6 6 2,256 100.3 99.9 6 5.95 6 6.1 2,263 
SHS11 6060 T6 D 75.25 208.9 186.5 11.3 252.1 150 150 5 5 2,900 150.2 150.1 5.2 4.75 5 4.7 2,854 
SHS12 6082 T6 N 68.37 258.4 245.5 13.4 300.1 150 150 5 5 2,900 149.9 149.9 5.2 5 5 5.25 2,961 
RHS1 6060 T6 D 62.81 218.7 212.4 23.6 250.9 34 20 3 3 288 34 20 3 3 3 3 288 
RHS2 6060 T6 D 69.75 202 197.5 31.1 214.3 40 30 4 4 496 39.9 29.9 4.1 3.9 4 4 494 
RHS3 6060 T6 D 68.44 210.7 205.3 26.5 233.3 50 20 4 4 496 50.1 20 3.9 4.2 4.4 3.9 505 
RHS4 6060 T6 D 70.87 217.4 209.8 19.5 242.5 50 30 3 3 444 50 30.25 3 3.05 3.25 2.9 451 
RHS5 6060 T6 D 69.7 221.6 218.4 48.4 244.5 50 40 3 3 425 50.25 40.3 2.8 2.6 2.6 2.8 460 
RHS6 6060 T6 D 77.76 212.5 204.8 18.6 235 60 34 3 3 528 60.2 34.1 3 3 3 3 530 
RHS7 6060 T6 D 62.76 234.6 229.4 31.3 258.9 60 40 3 3 564 60.2 40.1 2.6 2.5 2.6 2.5 486 
RHS8 6060 T6 D 63.51 222 216.3 26.6 258.6 80 40 4 4 896 80.25 40.1 4 4 3.9 3.9 892 
RHS9 6060 T6 D 70.2 216.6 213.3 45.2 242.2 100 40 4 4 1,056 99.8 40.1 4 4 4 3.9 1,052 
RHS10 6060 T6 D 68.95 215.8 209.8 24.7 227.3 120 50 4 4 1,296 120.3 50.6 4.15 4.15 4.3 4.25 1,360 
RHS11 6060 T6 D 68.8 224.6 213.4 13.5 255.5 150 40 4 4 1,456 150.5 40.8 4.1 4.1 4 4.1 1,498 
RHS12 6060 T6 D 74.54 212.3 204.6 18.7 246.8 180 40 4 4 1,696 181.2 40.8 4.2 4.2 3.9 4.3 1,787 
RHS13 6060 T6 D 68.5 216 211.5 33.3 236.6 100 50 4 4 1,136 100.1 50.25 4 3.9 3.9 4 1,125 
RHS14 6060 F 62.45 219.6 215.2 34.7 242.8 60 40 2 2 384 60.1 40.1 2 2.3 2 2.1 405 
RHS15 6060 F 69.33 188.9 184 26.8 212.4 80 40 4 4 896 79.9 40 4 3.9 3.9 3.9 882 
RHS16 6060 F 60 225.4 222.4 53 260.5 80 40 2 2 464 80.2 40.25 2.3 1.85 2.15 2 483 
RHS17 6060 T6 I 69.26 234.3 230 37.5 253.3 60 40 2 2 384 59.9 40 2 1.9 2 2 378 
RHS18 6082 N 68.04 264.8 258.3 27.8 285 100 25 2 2 484 100.3 25.7 2.3 2.3 2.3 2.3 558 
RHS19 6060 N 69.32 209.7 205.5 33.7 229.4 120 60 2.5 2.5 875 119.9 61 2.7 2.7 2.6 2.6 937 
RHS20 6060 N 65.23 235.2 224.2 14.6 282.8 200 100 5 5 2,900 200 99.9 5 4.7 4.8 5 2,824 
RHS21 6082 N 67.49 251.3 246 32.9 276.9 47 40 2.5 2.5 410 47 40 2.8 2.95 2.95 2.8 467 
RHS22 6082 T6 N 72.04 320 317.3 83.7 353.4 180 70 4.5 4.5 2,169 179.5 70 4.5 4.65 4.65 4.65 2,208 
RHS23 6082 TF GB 71.85 309.2 306.7 90.7 329.9 153 70 4.5 6.5 2,147 153 71.6 4.35 5.35 6.85 6.85 2,309 
RHS24 6082 T6 GB 71.36 340 336.9 77.4 362.1 200 180 15.1 9 8,519 200.5 179.2 15.3 15.3 9.15 9.3 8,660 
RHS25 6082 TF GB 68.84 323 315.7 30.3 342.8 120 100 4.5 6.5 2,156 120.5 100.35 4.6 4.9 6.7 6.85 2,268 
RHS26 6082 GB 71.6 132.7 131.6 84.4 184.8 200 180 6 6 4,272 201 181.5 6 6.2 6.5 5.7 4,373 
RHS27 6061 T6 GB 69.05 297.9 294.1 53.2 325 219 68 4.5 6 2,941 219.8 68 4.4 5 6 6 3,070 
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6.2.7.3 a) Results of NN Model for Ultimate resistance  

 

 The optimal NN architecture in this part was found to be 4-17-1 NN 

architecture with hyperbolic tangent sigmoid transfer function (tansig). The training 

algorithm was quasi-Newton back propagation (BFGS). The optimum NN model is 

given in Fig. 6.76. Statistical parameters of learning and training sets of NN model 

are presented in Table 6.27.   The % errors and Prediction of NN and actual values of 

learning and testing sets and their corresponding correlation are given in Figs 6.77-

6.80. Statistical parameters of the proposed NN model are presented in Table 6.28. 

Results of NN model is presented in Table A.3. 

 

 
Fig 6.76 Optimum NN model for ultimate buckling resistance ( uσ )  
 

 
Fig 6.77 % Error for test  set Fig 6.78 % Error for training set 



 146 

 
Fig 6.79 Performance Of NN model for 
test set 

Fig 6.80 Performance Of NN model for 
training  set 

 
Table 6.28 Statistical parameters of the proposed NN model 
 
 MSE RMSE SSE MAPE (%) 
NN Train Set 257.07 16.034 17995  6.6151 
NN Test  Set 958.11  30.953  9581.1 12.948 

 
6.2.7.3 b)  Results of NN  Model for Normalized Buckling strain  

 

The optimal NN architecture in this part was found to be 4-10-1 NN architecture 

with hyperbolic tangent sigmoid transfer function (tansig). The training algorithm 

was quasi-Newton back propagation (LM). The optimum NN model is given in Fig. 

6.81. Statistical parameters of learning and training sets of NN model are presented 

in Table 6.29. The % errors and Prediction of NN and actual values of learning and 

testing sets and their corresponding correlation are given in Figs 6.82-6.85. Results 

of NN model is presented in Table A.3. 

 

Fig 6.81 Optimum NN model for normalized buckling strain (
0ε

ε LB ) 
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Fig 6.82 % Error for Test  set 
 

Fig 6.83 % Error for Training set 

 
Fig 6.84 Performance Of NN model for 
test set 

Fig 6.85 Performance of NN model for 
training set 

 
 
Table 6.29 Statistical parameters of the proposed NN model 
 
 MSE RMSE SSE MAPE (%) 
NN Train Set 0.031129 0.17643 2.179  2.263 
NN Test  Set 1.3191  1.1485  13.191  14.845 

 
 

It should be noted that the Proposed NN models are valid within the ranges of the 

training set as given in table 6.30 
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Table 6.30 Range of variables 
 

  E Ft n 

Max Value 57.73 77.8 362.1 91 

Min Value 19.86 60 184.8 11 

 

6.2.7.4 a) Closed Form Solution Of  Ultimate Buckling resistance ( uσ ) 

 

The main aim of this part of the case study is to obtain the closed form solution of  

Ultimate Buckling resistance ( uσ ) based on the trained NN parameters as a function 

slenderness ratio, Elasticity Modulus, Yield stress and Ramberg-Osgood parameters 

that reflects the sharpness of stress-strain diagram given as follows: 

 

uσ = f( λ , E, ft, n) 
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And the values for Ui are given as 

 

U1 =  (-0.030* λ ) + (-0.236*E) +(0.001*Ft) + (-0.035*n)+ 20.953 

U2 =(0.053* λ ) + (-0.037*E) +(0.030*Ft) + (0.098*n)+ -6.526 

U3 =(0.023* λ ) + (0.087*E) +(0.027*Ft) + (-0.200*n) -13.108 

U4 =(0.011* λ ) + (0.181*E) +(-0.012*Ft) + (0.060*n) -2.930 

λ
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U5 =(-0.170* λ ) + (0.160*E) +(-0.003*Ft) + (0.017*n) -3.160 

U6 =(-0.016* λ ) + (-0.284*E) +(-0.004*Ft) + (-0.005*n)+ 17.809 

U7 =(-0.061* λ ) + (0.072*E) +(-0.004*Ft) + (0.102*n) -4.184 

U8 =(-0.086* λ ) + (-0.018*E) +(0.016*Ft) + (-0.008*n) -12.770 

U9 =(-0.108* λ ) + (0.297*E) +(0.015*Ft) + (-0.133*n) -18.143 

U10 =(-0.072* λ ) + (0.040*E) +(-0.024*Ft) + (0.018*n) + 9.373 

U11 =(0.085* λ ) + (-0.191*E) +(0.013*Ft) + (-0.096*n) 15.781 

U12 =(0.075* λ ) + (0.319*E) +(-0.005*Ft) + (0.008*n) -20.803 

U13 =(-0.071* λ ) + (-0.189*E) +(-0.006*Ft) + (-0.161*n) 18.455 

U14 =(-0.056* λ ) + (0.015*E) +(0.021*Ft) + (-0.026*n) -15.517 

U15 =(-0.105* λ ) + (0.265*E) +(0.010*Ft) + (-0.134*n) -14.906 

U16 =(-0.062* λ ) + (0.204*E) +(0.014*Ft) + (0.021*n) -20.346 

U17 =(-0.083* λ ) + (0.063*E) +(0.015*Ft) + (0.071*n) -13.171 

 

 

6.2.7.4 b)  Closed Form Solution Of  Normalized Buckling Strain (
0ε

ε LB ) 

 

The main aim of this part of the study is to obtain the closed form solution of  

Normalized Buckling Strain (
0ε

ε LB ) based on the trained NN parameters as a function 

slenderness ratio, Elasticity Modulus, Yield stress and Ramberg-Osgood parameters 

that reflects the sharpness of stress-strain diagram given as follows: 

0ε

ε LB = f( λ , E, ft, n) 

0ε

ε LB  =  40* 







−

+ −
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2
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e
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2
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e
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2
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e
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e
+ 
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(-5.686* 







−

+ −
1

1

2
102U

e
+ 6.25 

 

U1 =  (0.075* λ ) + (-0.26*E) +(0.076*Ft) + (-0.224*n)+ 6.872 

U2 =(0.011* λ ) + (-0.097*E) +(-0.019*Ft) + (0.002*n)+ 9.147 

U3 =(0.062* λ ) + (-0.21*E) +(0.048*Ft) + (-0.062*n) -3.478 

U4 =(0.232* λ ) + (-0.095*E) +(0.122*Ft) + (-0.052*n) -28.243 

U5 =(0.05* λ ) + (0.147*E) +(-0.224*Ft) + (0.034*n) -7.53 

U6 =(0.019* λ ) + (0.12*E) +(-0.023*Ft) + (0.015*n) – 4.019 

U7 =(-0.019* λ ) + (0.023*E) +(-0.002*Ft) + (-0.017*n) + 2.037 

U8 =(0.42* λ ) + (0.072*E) +(0.04*Ft) + (-0.115*n) -22.9 

U9 =(-0.021* λ ) + (-0.207*E) +(0.019*Ft) + (-0.01*n) + 10.8 

U10 =(0.114* λ ) + (0.356*E) +(-0.008*Ft) + (0.114*n) – 24.11 

 

 

6.2.7.5 Conclusion 

 

This case study presents a novel approach for the prediction of buckling parameters 

of RHS and SHS aluminum columns based on NNs.  The NN approach in the 

prediction of ultimate load capacity and normalized buckling strain of RHS and SHS 

aluminum columns is quite new which has not been proposed in literature so far. The 

NN models are based on well established experimental data from literature. The 

closed form solutions for ultimate load capacity and normalized buckling strain 

based on the well trained NNs are also presented. The results of the NN model for 

the prediction of normalized buckling strain is also compared with results obtained 

from existing formulation proposed in literature and are found to be by far more 

accurate. The results of the NN model for the prediction of ultimate load capacity are 

quite satisfactory as well. 
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6.2.8 Shear Capacity of RC Beams Without Web Reinforcement 

 

6.2.8.1 Introduction 

 

This case study addresses the availability NNs for the prediction of shear capacity of 

RC beams without web reinforcement. The proposed NN model is based on a wide 

range of experimental data gathered from literature. The accuracy of the proposed 

NN model is compared with current design codes (ACI-318, EC2, LRFD) and found 

to be by far more accurate. Moreover the proposed NN model is also given in 

explicit form for practical use. 

 

The shear strength of RC beams without web reinforcement has been an important 

phenomena in structural engineering and tremendous amount of research has been 

performed throughout the 20th century. Thus the knowledge of shear behavior and its 

failure mechanism has improved significantly. However the subject still needs 

further study due to the complexity of the shear transfer mechanism and affecting 

parameters. For reinforced concrete beams without shear reinforcement, the 

provisions for shear design in current codes are based on empirical equations, due to 

the complex mechanism of shear transfer, various failure types and interdependent 

internal forces in beams. The use of these empirical equations to predict the shear 

strength is not satisfactory. Thus several models based on rational approach are 

proposed (Peng, 1999). 

 

6.2.8.2 Shear Strength of RC Beams  

 

The purpose of web reinforcement in RC beams (Fig 6.86) is to ensure that shear 

failure does not occur and that the full flexural capacity can be used. Prior to inclined 

cracking, the strain in the stirrups is equal to the corresponding strain in the concrete 

and, therefore, the stress in the stirrups prior to inclined cracking will be relatively 

small. Stirrups do not prevent inclined cracks from forming as they come into play 

only after cracks have formed (Cladera, 2003). 

 

Numerous approaches have been proposed in literature to model the shear behavior 

of RC beams. Among these, the plastic theory is effectively used. The application of 
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plastic theory to shear in reinforced concrete has now been studied for more than 30 

years(Nielsen and Braestrup,1975, Ashour and Morley,1994,Miller,1976,Ibell,1998). 

The theory of plasticity offers useful tools for establishing the carrying capacity of 

structural members. Application of the theory of plasticity to structural engineering is 

based on the following two theorems: 

 

Fig 6.86 Shear Force in RC beam without web reinforcement 
 

1. If a load path can be found where equilibrium is satisfied, the boundary conditions are 

fulfilled and the material does not exceed the yield condition anywhere, then the structure is 

safe. This is the lower bound theorem of the theory of plasticity.  

2. On the other hand, the load that causes a failure mechanism compatible with the 

geometrical constraints of the structure is an upper bound of the strength of the structure 

(Duthinh and Carino, 1996). 

 

For many years the application of plastic theory in practical design was restricted to 

Denmark and Switzerland. Now the interest in other countries is growing and plastic 

methods have been adopted in the Eurocode 2, the future common concrete code in 

Europe. The problem to be overcome is not to find the plastic solutions, although this 

is not always easy. The difficult problem is the pronounced softening of unconfined 

concrete which renders the perfectly plastic material model a rather crude one. What 

has been shown in the past decades is that by introducing empirically determined 

reduction factors, the so-called effectiveness factors, on the concrete strengths the 

theoretical solutions may be brought into close agreement with experiments (Hoang 

and Nielsen, 1998). 
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Empirical equations are of special concern in the design of shear strength of RC 

beams without web reinforcement. Current design codes in this field are summarized 

in Table 6.31. 

 

Table 6.31 Current Design Codes 
 
2002 Final 

Draft Of 

EC2 (2002) 

VRd,c = 0.18 k (100 lρ f c )
1/3

bW d ≥  

0.035 k
3/2

fc
1/2

 bW d   (6.44) 

 

fc ≤ 100(MPa), 

k=1+ d/200 lρ ≤  2.0,  lρ = 
db

A

w

l ≤  

0.02 

AASHTO 

LRFD 2000  

[10] 

Vc = β cf bwd       (6.45) β  is given in tabular form as a function of the 

equivalent crack spacing and the longitudinal 

strain in the web. 

ACI318-02 

Eq. 11-3 

[11] 

Vc = 
6

cf
 bwd          (6.46) 

fc < 70 MPa 

ACI318-02 

(2002) 

Eq. 11-5  

Vc =(0.16 cf +17 lρ
M

Vd
) bW    

(6.47) 

fc < 70 MPa, Vd/M ≤ 1 

 

 

The shear strength of RC beams without web reinforcement has been studied by 

numerous researchers (Cladera,2003, Morrow and Viest,1957, Kani et al.,1979, 

Mphonde and Frantz,1984, Elzanaty et al,1986, Ahmad et al,1986, Salandra and 

Ahmad,1989, Thorenfeldt and Drangsholt,1990, Kim and Park,1994, Yoon et 

al,1996, Adebar and Collins,1996, Islam et al,1998, Collins and Kuchma,1999, 

González-Fonteboa and Hormigones,2002). In this study an extensive literature 

review on experimental studies related to shear strength of RC beams without web 

reinforcement has been carried out and an experimental database has been 

constructed. A total of 161 specimens from 14 separate studies were included in the 

database shown in Table 6.32. Further details of the experimental database are given 

in Table A.4. 
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Table 6.32 Experimental database and range of variables 
 

Reference 
Number of 
Specimen 

d (mm) fc (MPa) lρ  (%) a/d 

Morrow et al. (1957)  11 356 to 375 15 to 46 1.83 to 3.83 2.8 to 7.9 

Kani et al. (1979)  31 137 to 1090 17 to 30 0.50 to 2.84 2.5 to 6.8 

Mphonde et al.(1984) 11 298 22 to 102 2.32 and 3.36 2.5 and 3.6 

Elzanaty et al. (1986)  11 273 21 to 79 1.00 to 3.30 4.0 and 6.0 

Ahmad et al. (1986) 14 184 to 208 61 to 67 1.77 to 6.64 2.7 to 4.0 

Salandra et al. (1989)  4 171 52 to 69 1.45 2.6 and 3.6 

Thorenfeldt et al (1990)  16 150 and 300 54 to 98 1.82 and 3.23 3.0 and 4.0 

Kim et al. (1994)  15 142 to 915 54 1.01 to 4.68 3.0 and 4.5 

Yoon et al. (1996)  3 655 36 to 87 2.8 3.23 

Adebar et al. (1996)  6 178 and 278 46 to 59 1.0 to 3.04 2.9 and 4.5 

Islam et al.(1998)  10 203 to 207 27 to 83 2.02 to 3.22 2.9 to 3.9 

Collins et al (1999)  21 110 to 925 36 to 99 0.50 to 1.03 2.5 to 3.1 

González (2002)  4 305 and 306 40 to 47 2.9 2.3 

Cladera (2003)  4 359 50 to 87 2.24 3.0 

 

NNs have been widely applied to the prediction of shear strength of RC beams 

(Seleemah,2005, Adhikary and Mutsuyoshi,2004, Cladera and Mari,2004a, Cladera 

and Mari,2004b, Mansour etal,2004, Oreta and Winston,2004, Sanad and 

Saka,2001).  

 

6.2.8.3 NN Results 

 

The experimental database is randomly divided as training and test set given in Table 

A.1. Among 161 datasets 14 datasets were used as test and the rest as training set. 

The optimal NN architecture in this part was found to be 5-3-1 NN architecture with 

hyperbolic tangent sigmoid transfer function (tansig). The training algorithm was 

quasi-Newton back propagation (BFGS). The optimum NN model is given in Fig 

6.87.  Statistical parameters of learning and training sets of NN model are presented 

in Table 6.33. The % errors and Prediction of NN and actual values of learning and 

testing sets and their corresponding correlation are given in Figs. 6.88-6.91. Results 

of NN model is presented in Table A4. 
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Fig 6.87 Optimum NN model  
 

Table 6.33 Statistical parameters of the proposed NN Model 
 

 MSE RMSE SSE MAPE (%) 
NN Test Set 346.2 18.61 5193 14.78 
NN Training  Set 80.9 9.0 11812 7.94 

 
Fig 6.88 % Error of test set for NN model     Fig 6.89 % Error of train set  
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Fig 6.90 Performance of test set for NN 
model 

 
Fig 6.91 Performance of train set for NN 
model 

The overall performance and accuracy of the proposed SC models and current design 

codes with respect to experimental results are shown in Figures 6.92-6.101 which is 

also summarized in Table A.4 
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Fig 6.92 Overall performance ACI (11.5) 
code   

 
Fig 6.93 Overall performance ACI (11.3) 
code   

 
Fig 6.94 Overall performance EC2 code 

 
 

Fig 6.95  Overall performance LRFD code   

 
Fig 6.96 Overall Performance of NN 
model 
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Fig 6.97 Distribution of mean of 
test/predicted for NN model 
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Fig 6.98 Distribution of mean of 
test/predicted for ACI 11.5 
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Fig 6.99 Distribution of mean of 
test/predicted for LRFD 
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Fig 6.100 Distribution of mean of 
test/predicted for EC2 model 
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Fig 6.101 Distribution of mean of 
test/predicted for ACI 11.3 model 
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6.2.8.4 Explicit Formulation of the NN Model 

 

The main focus is to obtain the explicit formulation of the shear capacity as a 

function of variables given as follows: 

V= f (bw, d, fc, lρ , a/d)      

 

The explicit formulation for the proposed NN model is obtained by using the well 

trained NN parameters which are biases, and weights for the input and hidden layer 

and the normalization factors both for inputs and output proposed NN model. The 

derivation of the explicit formulation is too complex particularly for those who do 

not have a neural network background. Detailed information about the derivation can 

be found in references [44, 45]. The same steps can be given in a simpler form as 

follows: 

V =400* 







−

+ −
1

1

2
2W

e
     

Where W= (0.17)* 







−

+ −
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1

2
12U

e
+ (0.615)* 








−

+ −
1

1

2
22U

e
 + (0.847)* 








−

+ −
1

1

2
32U

e
 - 

0.0976     

U1=  (0.02* bw) + (0.0029* d ) + (-0.0015* fc) + (0.96 * lρ  ) + (0.07*  a/d) – 10.19 

   

U2 = (0.0045* bw) + (-0.0003 * d ) + (-0.0025* fc) + (3.86* lρ  ) + (-0.021*  a/d)  - 

1.145  

U3=  (-0.0036* bw) + (0.0012 * d ) + (0.004* fc) + (-4.5 * lρ  ) + (-0.0086*  a/d) + 

1.298   

It should be noted that the proposed explicit formulation of the NN  models 

presented  above are valid only for the ranges of experimental database given  in 

Table 6.32. 

 

6.2.8.5 Conclusion 

 

This case study that addresses the feasibility of NNs for the prediction of shear 

capacity of RC beams without web reinforcement. The proposed NN model is given 

in explicit form for practical use. The overall performances of the proposed NN 
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model in this case study is quite satisfactory as compared to current design codes 

(ACI, EC2 and LRD. The correlation coefficients of current design codes are lower 

than the proposed SC codes except the LRFD code which has a higher correlation 

coefficient than the proposed NR model. However if the standard deviation is also 

taken into account the proposed NR model (Std. Dev.=0.188) performs better than 

LRFD code (Std. Dev.=0.222). The results of the proposed NN model is seen to be 

more accurate than current design codes. The outcomes of this study prove the 

feasibility of the application of NNs for the prediction of shear capacity of RC beams 

without web reinforcement. 

 

 

 

6.2.9 Strength Enhancement for CFRP Confined Concrete Cylinders 

 

6.2.9.1 Introduction 

 

This study presents the application of Neural Networks (NN) for the modeling of 

strength and ductility enhancement of CFRP (Carbon Fiber-Reinforced Plastic) 

confined concrete cylinders. The proposed NN model is based on experimental 

results collected from literature. It represents the ultimate strength of concrete 

cylinders after CFRP confinement which is also given in explicit form in terms of 

diameter, unconfined concrete strength, tensile strength CFRP laminate and total 

thickness of CFRP layer used. The accuracy of the proposed NN models are quite 

satisfactory as compared to experimental results. Moreover the result of proposed 

NN model is compared with 10 different theoretical models proposed by researchers 

so far and is found to be by far more accurate.  

 

With over fifty years of excellent performance records in the aerospace industry, fiber-

reinforced-polymer (FRP) composites have been introduced with confidence to the 

construction industry. These high-performance materials have been accepted by civil 

engineers and have been utilized in different construction applications such as repair 

and rehabilitation of existing structures as well as in new construction applications. 

One of the successful and most popular structural applications of FRP composites 

is the external strengthening, repair and ductility enhancement of reinforced 
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concrete (RC) columns in both seismic and corrosive environments 

(Hollaway,2004). Main types of FRP composites used in external 

strengthening and repair of RC columns are: Glass-fiber-reinforced polymers 

(GFRP), carbon-fiber-reinforced polymers (CFRP), and aramid-fiber-reinforced 

polymers (AFRP). Types of FRP confinement can be spiral, wrapped and tube.  

FRP composites offer several advantages due to extremely high strength-to-weight 

ratio, good corrosion behavior and electromagnetic neutrality. Thus the effect of FRP 

confinement on the strength and deformation capacity of concrete columns has been 

extensively studied and several empirical and theoretical models have been proposed 

(Lorenzis, 2001). This study proposes a new approach for the modeling of strength 

enhancement of CFRP wrapped concrete cylinders using NNs. The proposed NN 

model for the compressive strength of the confined concrete cylinder is presented in 

explicit form.  

 

6.2.9.2 Behavior of FRP Confined Concrete  

 

Being a frictional material, concrete is sensitive to hydrostatic pressure. The 

beneficial effect of lateral stresses on the concrete strength and deformation has been 

recognized nearly for a century. In other words when uniaxially loaded, concrete is 

restrained from dilating laterally, it exhibits increased strength and axial deformation 

capacity indicated as confinement which has been generally applied to compression 

members through steel transverse reinforcement in the form of spirals, circular hoops 

or rectangular ties, or by encasing the concrete columns into steel tubes that act as 

permanent formwork (Lorenzis, 2001). Besides steel reinforcement FRPs are also for 

confinement of concrete columns and offers several advantages as compared to steel 

(Fardis and Khalili,1982) such as continuous confining action to the entire cross-

section, easiness and speed of application, no change in the shape and size of the 

strengthened elements, corrosive resistance (Lorenzis,2001). 

 

Typical response of FRP-confined concrete is shown in Fig 6.102, where normalized 

axial stress is plotted against axial, lateral, and volumetric strains. The stress is 

normalized with respect to the unconfined strength of concrete core. The figure 

shows that both axial and lateral responses are bi-linear with a transition zone at or 

near the peak strength of unconfined concrete core. The volumetric response shows a 
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similar transition toward volume expansion. However, as soon as the jacket takes 

over, volumetric response undergoes another transition which reverses the dilation 

trend and results in volume compaction. This behavior is shown to be markedly 

different from plain concrete and steel-confined concrete (Mirmiran et al,2000). 

 

Fig 6.102 Typical response of FRP-confined concrete (Mirmiran et al,2000). 

 

The characteristic response of confined concrete includes three distinct regions of un-

cracked elastic deformations, crack formation and propagation, and plastic 

deformations. It is generally assumed that concrete behaves like an elastic-perfectly 

plastic material after reaching its maximum capacity, and that the failure surface is 

fixed in the stress space. Constitutive models for concrete should be concerned with 

pressure sensitivity, path dependence, stiffness degradation and cyclic response. The 

existing plasticity models range from nonlinear elasticity, endo-chronic plasticity, 

classical plasticity, and multi-laminate or micro-plane plasticity to bounding surface 

plasticity. Many of these models, however, are only suitable in a specific application 

and loading system for which they are devised and may give unrealistic results in 

other cases. Also, some of these models require several parameters to be calibrated 

based on experimental results (Mirmiran et al,2000).Considerable experimental 

research has been performed on the behaviour of CFRP confined concrete columns 

(Miyauchi et al,1997, Kono et al,1998, Matthys et al, 1999, Shahawy,2000, Rochette 

and Labossiére,2000, Micelli et al,2001, Rousakis,2001 ). Several models are 
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proposed in literature for the strength enhancement of FRP confinement effect of 

concrete columns given in table 6.34. 

 

Table 6.34.  Models for strength enhancement of FRP confined concrete cylinders 
 
 Model Expression ( ccf ′ / cof ′ ) 
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This case study aims to propose an alternative approach and a new formulation by 

means of NNs for the prediction of strength enhancement of CFRP confined concrete 

cylinders. 
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6.2.9.3 Experimental database 

 

In this case study an extensive literature review on experimental studies related to 

strength enhancement of CFRP wrapped concrete cylinders has been carried out and 

an experimental database has been gathered. It should be noted that all specimen 

used in the database have a length to diameter ratio of 2 (L/D = 2). A total of 101 

specimens from 7 separate studies with the ranges of variables were included in the 

database shown in Table 6.35.  

 

Table 6.35 Experimental database and ranges of variables 
 

Reference 
Number of 
Specimen 

D 
(mm) 

nt 
 (mm) 

Ef 
(MPa) 

cof ′  

(MPa) 

Miyauchi et al. (1997) 10 100,150 0.11 to 0.33 3481 31.2 to 51,9 

Kono et al. (1998) 17 100 0.167 to 0.501 3820 32.3 to 34,8 

Matthys et al. (1999) 
 

2 150 0.117,0.235 2600,1100 34.9 

Shahawy et al. (2000) 
 

9 153 0.36 to 1.25 2275 19.4 to 49 

Rochette and Labossiere  
 (2000) 

7 100, 150 0.6 to 5.04 230, 1265 42 to 43 

Micelli et al. (2001) 8 100 0.16, 0.35 1520, 3790 32 to 37 

Rousakis  (2001) 48 150 0.169 to 0.845 2024 25.15 to 82.13 

 
 

6.2.9.4 Results of NN model 

 

The experimental database is randomly divided as training and test set. Among 101 

datasets 10 datasets were used as test and the rest as training set. The optimal NN 

architecture in this part was found to be 4-15-1 NN architecture with hyperbolic 

tangent sigmoid transfer function (tansig). The training algorithm was quasi-Newton 

back propagation (BFGS). The optimum NN model is given in Fig 6.103.  Statistical 

parameters of learning and training sets of NN model are presented in Table 6.36.   

The % errors and Prediction of NN and actual values of learning and testing sets and 

their corresponding correlation are given in Figs 6.104-6.107. The results of the 
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proposed NN models are quite satisfactory (R=0.98, std dev.=0.06 ). Moreover the 

results of proposed NN model are compared with 10 different FRP confinement 

models and are found to be by far more accurate as given in Table 6.37.  

 
Table 6.36 Statistical parameters of the proposed NN model 
 
 MSE RMSE SSE MAPE (%) 
NN Training Set 18.76 4.33 1895.6 3.88 
NN Test  Set 77.06 8.77 770.6 8.41 
 

 

Fig 6.103 Proposed NN Model for the prediction of ccf ′  

 

Fig 6.104 % Error of test set for NN 
model 
 

 

Fig 6.105 % Error of train set for NN model 
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Fig 6.106 Performance of test set for NN 
model  

 

Fig 6.107 Performance of training set for 
NN model 

 
 
Table 6.37. Statistics of performance and accuracy of ( ccf ′ / cof ′ ) of proposed NN 

model and various models compared to experimental results 
 

Model 
 

NN 
/Test 

Eqn 
(6.48) 
/Test 

Eqn 
(6.49) 
/test 

Eqn 
(6.50) 
/Test 

Eqn 
(6.51) 
/Test 

Eqn 
(6.52) 
/Test 

Eqn 
(6.53) 
/Test 

Eqn 
(6.54) 
/Test 

Eqn 
(6.55) 
/Test 

Eqn 
(6.56) 
/Test 

Eqn 
(6.57) 
/Test 

Mean 1.00 1.31 1.33 1.25 1.20 0.98 1.06 1.29 1.03 1.01 1.00 

Std. 
Dev. 

0.06 0.34 0.28 0.19 0.28 0.18 0.17 0.26 0.16 0.19 0.46 

R 0.98 0.87 0.87 0.85 0.86 0.77 0.87 0.87 0.87 0.87 0.87 

 

 

6.2.9.5 Explicit Formulation of the NN Model 

 

The main focus is to obtain the explicit formulation of the compressive strength of 

CFRP confined concrete cylinder as a function of variables given as follows:  

 

    ccf ′   = f (D,nt,Ef , fco)      

 

The explicit formulation for the proposed NN model is obtained by using the well 

trained NN parameters which are biases, and weights for the input and hidden layer 

and the normalization factors both for inputs and output proposed NN model. The 

derivation of the explicit formulation is too complex particularly for those who do 
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not have a neural network background. The same steps can be given in a simpler 

form as follows: 

ccf ′  =150 * 

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
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U1=   (0.024* D ) + (0.59* nt ) + (0.0004 * Ef ) + (0.037* fco ) + 14.02     

U2=   (0.0217* D ) + (1.56* nt ) + (-0.0003 * Ef ) + (0.0346* fco ) – 4.42    

U3=   (-0.07* D ) + (-0.1* nt ) + (-0.0013 * Ef ) + (0.073*  fco ) +16.12    

U4=   (0.058* D ) + (-0.96* nt ) + (-0.0028 * Ef ) + (-0.041*  fco ) + 1.42    

U5=   (0.061* D ) + (-0.138* nt ) + (-0.0006 * Ef ) + (-0.06*  fco ) – 4.02    

U6=   (-0.0639* D ) + (-0.6017 * nt ) + (-0.0014* Ef ) + (-0.0327*  fco ) +15.32   

U7=   (-0.0365* D ) + (-0.4598* nt ) + (-0.0004* Ef ) + (0.0691*  fco ) +2.07   

U8=   (-0.0684* D ) + (0.1734* nt ) + (0.0006* Ef ) + (-0.0381*  fco ) +9.33   

U9=   (0.0044* D ) + (0.2966* nt ) + (0.0008* Ef ) + (0.0736*  fco ) –6.82   

U10= (0.0559* D ) + (1.3957* nt ) + (0.0004* Ef ) + (0.0160*  fco ) – 10.58   

U11= (0.0434* D ) + (-0.7968* nt ) + (0.0014* Ef ) + (-0.0164*  fco ) + 3.41   

U12= (-0.0309* D ) + (-1.0127* nt ) + (-0.0014* Ef ) + (-0.0326*  fco ) + 6.09   

U13= (-0.0638* D ) + (0.7750* nt ) + (0.0003* Ef ) + (0.0633*  fco ) + 1.34   

U14= (0.0920* D ) + (-0.6339* nt ) + (0.0007* Ef ) + (-0.0032*  fco ) – 2.86   

U15= (-0.0288* D ) + (-0.1202* nt ) + (0.0028 * Ef ) + (0.0137*  fco ) – 5.91  

  

 

It should be noted that the proposed explicit formulation of the NN models presented  

above are valid only for the ranges of experimental database given  in Table 6.34 and 

for specimen that have a length to diameter ratio of 2 (L/D = 2). 



 167 

6.2.9.6 Conclusion 

 

This case study presents an alternative formulation for strength enhancement of 

CFRP wrapped concrete cylinders based on experimental results by means of NNs. 

The optimum NN architecture is obtained by a MATLAB program that automatically 

finds the best NN model. The results of the proposed NN model compared to 

experimental results are found to be quite satisfactory (R=0.98, std. dev. = 0.06 ). 

Moreover the accuracy of the proposed NN model is compared with several FRP 

confinement models proposed in literature and is found to be by far more accurate. 

The proposed NN model is also presented in explicit form which enables the NN 

model to be used for practical applications. 
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CHAPTER 7 

CONCLUSIONS 

 

This thesis presents an attempt to show the applicability of NNs for elastoplastic 

analysis of structures. It can be seen from previous chapters that all of the research 

objectives related to this study have been achieved. Thus the author has successfully 

presented the following original work: 

 

1. Although NNs are widely used in the analysis of structural mechanics 

problems as well as for elastoplastic analysis of structures to an extent, no 

general study has been carried out covering a wide range of elastoplastic 

behavior of structures. Studies on this topic are specific studies in general. 

This thesis is the first study in literature investigating the feasibility of NNs 

for elastoplastic analysis of structures in a general aspect not only on 

theoretical basis of elastoplastic behavior but on realistic experimental 

results for various material types such as aluminum, steel, concrete and 

composite materials as well.  

2. Case studies in this thesis also cover a wide range of material behaviour like 

flexural and buckling and complex behaviour as in the case of web crippling. 

It should be noted that the elastoplastic behavior in these case studies is quite 

complex and there exist almost no well established analytical solutions.  

3. NNs are treated as black box in general. This thesis does not only verify NNs 

as alternative robust tools for elastoplastic analysis of structures but gives the 

solution in an explicit form of the proposed NN models as well. It aims to 

open the black box and to present the NN models in its implicit form. It 

should be noted that explicit formulation of NN models is of significant 

importance as it will serve for important advantages in the elastoplastic 

analysis and design of structures. This will also enable to open a new era in 

elastoplastic optimization analysis of structures.   
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4. The NN modeling in this thesis is based on FEM based data and 

experimental results collected from literature. Thus proposed NN models in 

this study are quite realistic as they are supported by experimental results. 

5. One of the major tasks in NN studies which is quite difficult is the selection 

of Optimum NN architecture which is based on trial and error approaches. 

However, this thesis proposes an alternative algorithm for the selection of 

optimum NN architecture that automatically selects the best architecture. 

 

 The results of this thesis can be summarized as follows: 

 

1. NNs can handle to model almost all complex plastic material behaviour being 

valid for almost all material types. In this thesis, NN models have shown 

satisfactory results for steel, aluminum, concrete and composite structures. 

2. The optimum learning algorithm for modeling of elastoplastic behavior was 

found to trainbfg. Another learning algorithm trainscg also gave satisfactory 

results where as trainlm algorithm should be used with a definite reserve. The 

optimum error learning algorithm was found to be SSE. It is impossible to 

define an optimum NN architecture but it can be concluded that single hidden 

layer architecture with less than 20 nodes is enough in general for the 

optimum NN architecture. 

3. It should be stated that a proposed NN model should also show a good 

generalization capability i.e. it should give reasonable results for datasets 

different than test and training sets. 

4. To attain flexibility, the NN toolbox offers significant advantages such as 

Hybrid NN models.  

5. This study in fact proves the ultra high function approximation capability of 

NNs. It is almost impossible to reach this accuracy with other tools.  

 

The author hopes that this study shall open a new era in NN studies of structural 

mechanics and analysis problems. 
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RECOMMENDATIONS FOR FUTURE WORK 

 

 

It is obvious that artificial intelligence techniques or specifically soft computing 

approaches such as fuzzy logic, NNs, Genetic Algorithm and Genetic Programming 

will have much more profound application areas in the future for structural 

mechanics and structural analysis problems. For certain problems where no 

analytical solutions exist or the solution is extremely complex and difficult soft 

computing techniques will enable to obtain simple and explicit form solutions. 

Among these techniques, Genetic programming is worth to emphasize related to the 

subject of this thesis. Case studies performed in this thesis can also be modeled by 

Genetic programming. Furthermore, the proposed NN models in this thesis can also 

be used in inverse engineering analysis as well. These proposed NN models as they 

are all presented in explicit form, can be used in optimization applications of these 

problems. A new approach so called neuro-optimization can offer many advantages 

and open a new era in optimization studies. 
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Table A.1 Results of NN models compared with Eqns. 6.8-6.11  
*Bold cases are test sets 
 

λ   e n 

FE 

(
2.0σ

σ u
) 

NN 

(
2.0σ

σ u
) FE/ 

NN 

Eqn  
(8-11) 
( χ ) 

FE/ 
Eqn(8-
11) 

0.500 0.001 3.0 0.970 0.991 0.979 1.000 0.970 
0.750 0.001 3.0 1.267 1.304 0.972 1.293 0.980 
1.000 0.001 3.0 1.516 1.603 0.946 1.613 0.940 
1.250 0.001 3.0 1.863 1.914 0.973 1.941 0.960 
1.500 0.001 3.0 2.227 2.252 0.989 2.273 0.980 
2.000 0.001 3.0 3.029 3.016 1.005 2.941 1.030 
2.500 0.001 3.0 3.866 3.874 0.998 3.613 1.070 
3.000 0.001 3.0 4.629 4.685 0.988 4.286 1.080 
0.500 0.001 5.0 1.118 1.027 1.089 1.107 1.010 
0.750 0.001 5.0 1.237 1.208 1.024 1.275 0.970 
1.000 0.001 5.0 1.417 1.411 1.004 1.523 0.930 
1.250 0.001 5.0 1.629 1.645 0.991 1.793 0.909 
1.500 0.001 5.0 1.890 1.912 0.988 2.070 0.913 
2.000 0.001 5.0 2.478 2.535 0.978 2.636 0.940 
2.500 0.001 5.0 3.112 3.222 0.966 3.208 0.970 
3.000 0.001 5.0 3.821 3.812 1.002 3.783 1.010 
0.500 0.001 10.0 1.083 1.101 0.983 1.105 0.980 
0.750 0.001 10.0 1.214 1.253 0.969 1.238 0.980 
1.000 0.001 10.0 1.451 1.440 1.008 1.466 0.990 
1.250 0.001 10.0 1.683 1.665 1.011 1.717 0.980 
1.500 0.001 10.0 1.918 1.928 0.995 1.977 0.970 
2.000 0.001 10.0 2.510 2.543 0.987 2.510 1.000 
2.500 0.001 10.0 3.111 3.119 0.997 3.050 1.020 
3.000 0.001 10.0 3.808 3.809 1.000 3.592 1.060 
0.500 0.001 100.0 0.976 1.031 0.946 0.996 0.980 
0.750 0.001 100.0 1.174 1.207 0.973 1.174 1.000 
1.000 0.001 100.0 1.471 1.418 1.037 1.415 1.040 
1.250 0.001 100.0 1.672 1.663 1.005 1.672 1.000 
1.500 0.001 100.0 1.916 1.934 0.991 1.935 0.990 
2.000 0.001 100.0 2.496 2.518 0.991 2.471 1.010 
2.500 0.001 100.0 3.073 3.117 0.986 3.013 1.020 
3.000 0.001 100.0 3.771 3.747 1.006 3.557 1.060 
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Table A.1 cont’d      
0.500 0.002 3.0 0.971 0.956 1.016 0.971 1.000 
0.750 0.002 3.0 1.289 1.247 1.034 1.240 1.040 
1.000 0.002 3.0 1.539 1.527 1.008 1.539 1.000 
1.250 0.002 3.0 1.846 1.820 1.015 1.846 1.000 
1.500 0.002 3.0 2.201 2.140 1.029 2.158 1.020 
2.000 0.002 3.0 2.955 2.867 1.031 2.787 1.060 
2.500 0.002 3.0 3.830 3.683 1.040 3.420 1.120 
3.000 0.002 3.0 4.581 4.438 1.032 4.054 1.130 
0.500 0.002 5.0 1.110 1.014 1.095 1.068 1.040 
0.750 0.002 5.0 1.245 1.187 1.049 1.232 1.010 
1.000 0.002 5.0 1.400 1.384 1.012 1.474 0.950 
1.250 0.002 5.0 1.648 1.611 1.023 1.734 0.950 
1.500 0.002 5.0 1.903 1.874 1.016 2.003 0.950 
2.000 0.002 5.0 2.526 2.485 1.016 2.552 0.990 
2.500 0.002 5.0 3.231 3.163 1.021 3.106 1.040 
3.000 0.002 5.0 3.810 3.742 1.018 3.664 1.040 
0.500 0.002 10.0 1.082 1.081 1.001 1.082 1.000 
0.750 0.002 10.0 1.213 1.228 0.987 1.213 1.000 
1.000 0.002 10.0 1.421 1.411 1.007 1.435 0.990 
1.250 0.002 10.0 1.631 1.631 1.000 1.681 0.970 
1.500 0.002 10.0 1.878 1.888 0.995 1.936 0.970 
2.000 0.002 10.0 2.482 2.494 0.995 2.457 1.010 
2.500 0.002 10.0 3.045 3.030 1.005 2.986 1.020 
3.000 0.002 10.0 3.728 3.739 0.997 3.517 1.060 
0.500 0.002 100.0 0.967 1.010 0.958 0.977 0.990 
0.750 0.002 100.0 1.151 1.181 0.974 1.151 1.000 
1.000 0.002 100.0 1.442 1.388 1.038 1.386 1.040 
1.250 0.002 100.0 1.621 1.628 0.996 1.637 0.990 
1.500 0.002 100.0 1.877 1.895 0.990 1.895 0.990 
2.000 0.002 100.0 2.445 2.473 0.989 2.420 1.010 
2.500 0.002 100.0 3.039 3.065 0.992 2.951 1.030 
3.000 0.002 100.0 3.692 3.684 1.002 3.483 1.060 
0.500 0.002 3.0 0.934 0.928 1.006 0.943 0.990 
0.750 0.002 3.0 1.250 1.199 1.042 1.190 1.050 
1.000 0.002 3.0 1.471 1.462 1.006 1.471 1.000 
1.250 0.002 3.0 1.778 1.740 1.022 1.761 1.010 
1.500 0.002 3.0 2.096 2.044 1.025 2.055 1.020 
2.000 0.002 3.0 2.808 2.739 1.025 2.649 1.060 
2.500 0.002 3.0 3.539 3.519 1.006 3.247 1.090 
3.000 0.002 3.0 4.115 4.228 0.973 3.846 1.070 
0.500 0.002 5.0 1.041 1.000 1.041 1.030 1.010 
0.750 0.002 5.0 1.204 1.167 1.032 1.192 1.010 
1.000 0.002 5.0 1.370 1.357 1.009 1.427 0.960 
1.250 0.002 5.0 1.596 1.579 1.011 1.680 0.950 
1.500 0.002 5.0 1.863 1.836 1.015 1.941 0.960 
2.000 0.002 5.0 2.473 2.437 1.015 2.473 1.000 
2.500 0.002 5.0 3.101 3.106 0.998 3.011 1.030 



 199 

Table A.1 cont’d      
3.000 0.002 5.0 3.658 3.674 0.996 3.552 1.030 
0.500 0.002 10.0 1.081 1.061 1.019 1.060 1.020 
0.750 0.002 10.0 1.188 1.205 0.986 1.188 1.000 
1.000 0.002 10.0 1.392 1.382 1.007 1.406 0.990 
1.250 0.002 10.0 1.581 1.597 0.990 1.647 0.960 
1.500 0.002 10.0 1.839 1.850 0.994 1.896 0.970 
2.000 0.002 10.0 2.431 2.446 0.994 2.407 1.010 
2.500 0.002 10.0 3.012 2.972 1.014 2.924 1.030 
3.000 0.002 10.0 3.617 3.671 0.985 3.445 1.050 
0.500 0.002 100.0 0.950 0.989 0.960 0.959 0.990 
0.750 0.002 100.0 1.140 1.156 0.986 1.129 1.010 
1.000 0.002 100.0 1.400 1.359 1.030 1.359 1.030 
1.250 0.002 100.0 1.605 1.594 1.007 1.605 1.000 
1.500 0.002 100.0 1.839 1.857 0.990 1.857 0.990 
2.000 0.002 100.0 2.372 2.429 0.977 2.372 1.000 
2.500 0.002 100.0 3.064 3.014 1.017 2.891 1.060 
3.000 0.002 100.0 3.413 3.622 0.942 3.413 1.000 
0.500 0.003 3.0 0.899 0.906 0.993 0.917 0.980 
0.750 0.003 3.0 1.191 1.159 1.028 1.145 1.040 
1.000 0.003 3.0 1.409 1.407 1.001 1.409 1.000 
1.250 0.003 3.0 1.649 1.670 0.987 1.682 0.980 
1.500 0.003 3.0 1.980 1.961 1.010 1.961 1.010 
2.000 0.003 3.0 2.650 2.629 1.008 2.524 1.050 
2.500 0.003 3.0 3.492 3.378 1.034 3.090 1.130 
3.000 0.003 3.0 3.988 4.048 0.985 3.659 1.090 
0.500 0.003 5.0 0.986 0.987 0.999 0.996 0.990 
0.750 0.003 5.0 1.155 1.147 1.007 1.155 1.000 
1.000 0.003 5.0 1.328 1.332 0.997 1.383 0.960 
1.250 0.003 5.0 1.548 1.548 1.000 1.629 0.950 
1.500 0.003 5.0 1.826 1.799 1.015 1.882 0.970 
2.000 0.003 5.0 2.375 2.390 0.994 2.399 0.990 
2.500 0.003 5.0 3.097 3.049 1.015 2.921 1.060 
3.000 0.003 5.0 3.584 3.607 0.994 3.446 1.040 
0.500 0.003 10.0 1.060 1.043 1.016 1.039 1.020 
0.750 0.003 10.0 1.164 1.182 0.985 1.164 1.000 
1.000 0.003 10.0 1.364 1.355 1.007 1.378 0.990 
1.250 0.003 10.0 1.549 1.565 0.990 1.614 0.960 
1.500 0.003 10.0 1.802 1.812 0.995 1.858 0.970 
2.000 0.003 10.0 2.358 2.399 0.983 2.358 1.000 
2.500 0.003 10.0 2.980 2.916 1.022 2.865 1.040 
3.000 0.003 10.0 3.477 3.605 0.964 3.375 1.030 
0.500 0.003 100.0 0.942 0.969 0.972 0.942 1.000 
0.750 0.003 100.0 1.118 1.132 0.988 1.107 1.010 
1.000 0.003 100.0 1.386 1.330 1.042 1.332 1.040 
1.250 0.003 100.0 1.589 1.561 1.018 1.573 1.010 
1.500 0.003 100.0 1.803 1.820 0.990 1.821 0.990 
2.000 0.003 100.0 2.394 2.385 1.004 2.324 1.030 
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2.500 0.003 100.0 2.918 2.964 0.985 2.833 1.030 
3.000 0.003 100.0 3.612 3.562 1.014 3.344 1.080 
0.500 0.003 3.0 0.848 0.887 0.956 0.893 0.950 
0.750 0.003 3.0 1.136 1.124 1.010 1.103 1.030 
1.000 0.003 3.0 1.324 1.358 0.975 1.351 0.980 
1.250 0.003 3.0 1.579 1.610 0.981 1.611 0.980 
1.500 0.003 3.0 1.838 1.888 0.973 1.875 0.980 
2.000 0.003 3.0 2.458 2.532 0.971 2.410 1.020 
2.500 0.003 3.0 3.213 3.256 0.987 2.948 1.090 
3.000 0.003 3.0 3.698 3.893 0.950 3.488 1.060 
0.500 0.003 5.0 0.935 0.973 0.961 0.964 0.970 
0.750 0.003 5.0 1.120 1.128 0.993 1.120 1.000 
1.000 0.003 5.0 1.288 1.307 0.986 1.342 0.960 
1.250 0.003 5.0 1.502 1.517 0.990 1.581 0.950 
1.500 0.003 5.0 1.736 1.762 0.985 1.827 0.950 
2.000 0.003 5.0 2.306 2.344 0.984 2.329 0.990 
2.500 0.003 5.0 2.979 2.975 1.001 2.837 1.050 
3.000 0.003 5.0 3.414 3.542 0.964 3.347 1.020 
0.500 0.003 10.0 1.039 1.024 1.014 1.019 1.020 
0.750 0.003 10.0 1.141 1.160 0.984 1.141 1.000 
1.000 0.003 10.0 1.324 1.328 0.997 1.351 0.980 
1.250 0.003 10.0 1.503 1.533 0.980 1.582 0.950 
1.500 0.003 10.0 1.749 1.775 0.985 1.821 0.960 
2.000 0.003 10.0 2.312 2.353 0.982 2.312 1.000 
2.500 0.003 10.0 2.893 2.862 1.011 2.809 1.030 
3.000 0.003 10.0 3.441 3.540 0.972 3.309 1.040 
0.500 0.003 100.0 0.934 0.949 0.985 0.925 1.010 
0.750 0.003 100.0 1.108 1.108 1.000 1.087 1.020 
1.000 0.003 100.0 1.359 1.302 1.044 1.307 1.040 
1.250 0.003 100.0 1.559 1.529 1.020 1.543 1.010 
1.500 0.003 100.0 1.804 1.784 1.011 1.786 1.010 
2.000 0.003 100.0 2.371 2.343 1.012 2.279 1.040 
2.500 0.003 100.0 2.945 2.916 1.010 2.778 1.060 
3.000 0.003 100.0 3.476 3.503 0.992 3.279 1.060 
    Mean 1.000  1.008 
    Std dev. 0.023  0.040 
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Table A.2 Results of NN models compared with Rasmussen’s Equations, EC9 
and ISO  
 
*Bold sets are used as test sets for NN training 
RAS1 : Proposed formulation by Rasmussen and Rondal (2000) for  α = 0.4 
RAS2 : Proposed formulation by Rasmussen and Rondal (2000)  for  α = 0.3 

 
 
 

Ref 
E 

(MPa) 
2.0σ  

(MPa) 
n L/r λ  

uσ  

TEST 
(MPa) 

TEST/ 
RAS1 

TEST/ 
RAS2 

TEST 
/EC9 

TEST 
/ISO 

uσ  

NN 
(MPa) 

TEST 
/NN 

Djalaly and 
Sfintesco 

(1972) 72600 310 7.15 10 0.211 312.9 1.008 1.008 1.011 1.008 297.5 1.05 

 72600 310 7.15 50 1.055 225.4 1.143 1.085 1.147 1.121 235.3 0.958 

 72600 310 7.15 70 1.477 143.8 1.165 1.129 1.203 1.189 147 0.978 

 72600 310 7.15 85 1.793 97.6 1.108 1.085 1.15 1.141 102.2 0.955 

 72600 310 7.15 100 2.109 74.4 1.139 1.122 1.183 1.177 72.7 1.023 

 72600 310 7.15 120 2.531 51.4 1.112 1.1 1.153 1.149 49.73 1.034 

 72600 310 7.15 150 3.164 33.8 1.12 1.117 1.163 1.16 34.24 0.987 

 72600 310 7.15 10 0.214 321.5 1.004 1.004 1.007 1.004 347.1 0.925 

 70630 320 18.12 50 1.072 237.4 1.186 1.127 1.193 1.166 231.4 1.026 

 70630 320 18.12 70 1.5 137.8 1.111 1.077 1.148 1.135 143.7 0.959 

 70630 320 18.12 85 1.822 97.2 1.1 1.077 1.141 1.134 100 0.972 

 70630 320 18.12 100 2.143 71 1.084 1.068 1.125 1.12 71.38 0.995 

 70630 320 18.12 120 2.572 47.7 1.029 1.018 1.067 1.064 49.05 0.973 

 70630 320 18.12 150 3.215 30.7 1.022 1.014 1.056 1.054 34 0.903 

 70630 320 18.12 10 0.203 288.2 1 1 1.001 1 286 1.008 

 68670 288 16.16 50 1.016 213.6 1.124 1.066 1.123 1.095 213.8 0.999 

 68670 288 16.16 70 1.423 144 1.182 1.143 1.219 1.204 132.7 1.086 

 68670 288 16.16 85 1.728 93.7 1.071 1.047 1.111 1.102 92.44 1.014 

 68670 288 16.16 100 2.033 65.6 1.009 0.992 1.048 1.042 66.41 0.988 

 68670 288 16.16 120 2.44 46.7 1.013 1.001 1.05 1.047 46.32 1.008 

 68670 288 16.16 150 3.049 29.3 0.976 0.969 1.01 1.008 32.9 0.891 

Bernard et al. 
(1973)  68670 288 16.16 48.3 1.022 226 1.027 0.974 1.026 1.001 248.5 0.909 

 75880 335 24.15 48.3 1.022 255.7 1.162 1.102 1.161 1.133 248.5 1.029 

 75880 335 24.15 48.3 1.022 263.3 1.196 1.135 1.196 1.167 248.5 1.06 

 75880 335 24.15 48.3 1.022 278.1 1.263 1.198 1.263 1.232 248.5 1.119 

 75880 335 24.15 64.5 1.311 178.9 1.167 1.122 1.198 1.18 183.2 0.977 

 78264 325 26.56 64.5 1.311 197.6 1.289 1.239 1.323 1.303 183.2 1.079 

 78264 325 26.56 64.5 1.311 224.9 1.467 1.411 1.506 1.483 183.2 1.228 

 78264 325 26.56 64.5 1.311 178.9 1.167 1.122 1.198 1.18 183.2 0.976 

 78264 325 26.56 64.5 1.311 215 1.403 1.348 1.44 1.418 183.2 1.174 

 78264 325 26.56 64.5 1.311 161.6 1.054 1.013 1.082 1.065 183.2 0.882 

 78264 325 26.56 64.5 1.311 159.6 1.041 1.001 1.068 1.052 183.2 0.871 

 78264 325 26.56 64.5 1.311 166.5 1.086 1.044 1.114 1.098 183.2 0.909 

 78264 325 26.56 48.3 0.982 251.4 1.156 1.097 1.15 1.121 258.6 0.972 
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 78264 325 26.56 48.3 0.982 286.9 1.32 1.251 1.313 1.279 258.6 1.11 

 78264 325 26.56 48.3 0.982 263.2 1.211 1.148 1.204 0.173 258.6 1.018 

 78264 325 26.56 48.3 0.982 242 1.113 1.055 1.107 0.179 258.6 0.936 

 78264 325 26.56 48.3 0.982 262 1.205 1.143 1.199 1.168 258.6 1.013 

 78264 325 26.56 48.3 0.982 263.2 1.211 1.148 1.204 1.173 258.6 1.018 

 78264 325 26.56 48.3 0.982 257 1.182 1.121 1.176 1.146 258.6 0.994 

 78264 325 26.56 48.3 0.982 281.9 1.297 1.23 1.29 1.257 258.6 1.09 

 78264 325 26.56 32.4 0.659 290 1.083 1.042 1.042 1.015 295.1 0.983 

 78264 325 26.56 32.4 0.659 288.7 1.078 1.038 1.038 1.01 295.1 0.978 

 78264 325 26.56 32.4 0.659 298.7 1.116 1.074 1.074 1.046 295.1 1.012 

 78264 325 26.56 32.4 0.659 310.1 1.158 1.115 1.115 1.085 295.1 1.051 

 78264 325 26.56 32.4 0.659 282.9 1.057 1.017 1.017 0.99 295.1 0.959 

 78264 325 26.56 32.4 0.659 283.7 1.06 1.02 1.02 0.993 295.1 0.962 

 78264 325 26.56 32.4 0.659 301.6 1.126 1.084 1.084 1.055 295.1 1.022 

 78264 325 26.56 32.4 0.659 295 1.102 1.06 1.06 1.032 295.1 1 

 78264 325 26.56 41.2 0.9 271.4 1.094 1.076 1.076 1.047 275.5 0.985 

 72170 340 35.78 41.2 0.9 265.6 1.07 1.053 1.053 1.024 275.5 0.964 

 72170 340 35.78 41.2 0.9 274.9 1.108 1.09 1.09 1.06 275.5 0.998 

 72170 340 35.78 41.2 0.9 264 1.064 1.047 1.047 1.018 275.5 0.958 

 72170 340 35.78 41.2 0.9 275.7 1.111 1.093 1.093 1.063 275.5 1.001 

 72170 340 35.78 51.2 1.086 201.7 1.095 1.041 1.103 1.079 203.6 0.991 

 67300 299 29.45 51.2 1.086 197.6 1.073 1.02 1.081 1.057 203.6 0.971 

 67300 299 29.45 51.2 1.086 206.5 1.121 1.066 1.13 1.105 203.6 1.014 

 67300 299 29.45 51.2 1.086 219.9 1.194 1.135 1.203 1.176 203.6 1.08 

 67300 299 29.45 51.2 1.086 203.9 1.107 1.052 1.115 1.09 203.6 1.002 

 67300 299 29.45 51.2 1.086 194.2 1.055 1.002 1.063 1.039 203.6 0.954 

 67300 299 29.45 51.2 1.086 202.8 1.101 1.046 1.109 1.085 203.6 0.996 

 67300 299 29.45 51.2 1.086 203.2 1.103 1.048 1.111 1.087 203.6 0.998 

 67300 299 29.45 28.9 0.527 208.6 0.963 0.936 0.926 0.903 202 1.033 

 74650 245 19.94 28.9 0.527 200.3 0.925 0.899 0.889 0.867 202 0.992 

 74650 245 19.94 28.9 0.527 197.9 0.914 0.888 0.878 0.857 202 0.98 

 74650 245 19.94 28.9 0.527 192.7 0.89 0.865 0.855 0.834 202 0.954 

 74650 245 19.94 51.9 0.947 163.6 0.951 0.902 0.941 0.916 164.3 0.996 

 74650 245 19.94 51.9 0.947 155.1 0.901 0.854 0.892 0.868 164.3 0.944 

 74650 245 19.94 51.9 0.947 191.4 1.112 1.054 1.101 1.072 164.3 1.165 

 74650 245 19.94 51.9 0.947 158.8 0.923 0.875 0.913 0.889 164.3 0.966 

 74650 245 19.94 51.9 0.947 153.3 0.891 0.845 0.882 0.859 164.3 0.933 

 74650 245 19.94 51.9 0.947 163.6 0.951 0.902 0.941 0.916 164.3 0.996 

 74650 245 19.94 51.9 0.947 153.2 0.89 0.844 0.881 0.858 164.3 0.932 

 74650 245 19.94 51.9 0.947 157.1 0.912 0.865 0.903 0.879 164.3 0.956 

Kloppel and 
Barsch (1973) 74650 245 19.94 90 1.937 82.2 1.011 0.992 1.049 1.043 85.81 0.958 

 72100 330 33.6 90 1.827 81.5 1.013 0.992 1.051 1.044 82.83 0.984 

 72100 293 29.9 90 1.827 79 0.981 0.961 1.018 1.011 82.83 0.954 

 72100 293 29.9 60 1.291 180.5 1.115 1.07 1.143 1.125 176.6 1.022 

 72100 330 33.6 60 1.291 169.7 1.048 1.006 1.074 1.057 176.6 0.961 

 72100 330 33.6 82 1.765 98.1 1.018 0.996 1.057 1.049 103.3 0.95 
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 72100 330 33.6 82 1.765 98.1 1.018 0.996 1.057 1.049 103.3 0.95 

 72100 330 33.6 60 1.218 162.8 1.04 0.995 1.061 1.042 170.4 0.956 

 72100 293 29.9 82 1.665 101 1.063 1.037 1.102 1.092 99.71 1.013 

Arnault (1967) 72100 293 29.9 50 1.036 225.6 1.117 1.06 1.119 1.092 230.2 0.98 

 73575 312 11.9 70 1.451 144.2 1.125 1.089 1.161 1.147 143.7 1.004 

 73575 312 11.9 85 1.762 97.6 1.067 1.044 1.107 1.099 99.74 0.979 

 73575 312 11.9 100 2.073 74.5 1.097 1.079 1.138 1.133 71.13 1.047 

 73575 312 11.9 120 2.487 51.4 1.068 1.056 1.108 1.104 48.91 1.051 

 73575 312 11.9 150 3.109 33.8 1.082 1.074 1.119 1.116 34.24 0.987 

 73575 312 11.9 50 0.996 213.6 1.102 1.045 1.098 1.071 217.9 0.98 

 68670 288 66.3 70 1.394 143.9 1.144 1.104 1.178 1.163 133.3 1.079 

 68670 288 66.3 85 1.693 93.7 1.033 1.009 1.072 1.063 92.38 1.014 

 68670 288 66.3 100 1.992 65.6 0.972 0.955 1.009 1.003 66.51 0.986 

 68670 288 66.3 120 2.39 46.7 0.974 0.962 1.011 1.007 46.71 1 

 68670 288 66.3 150 2.988 29.2 0.937 0.929 0.969 0.967 33.38 0.875 

 68670 288 66.3 50 1.078 241.1 1.233 1.171 1.241 1.213 225.6 1.069 

 68670 315 22.5 70 1.509 149 1.233 1.196 1.274 1.261 140 1.064 

 68670 315 22.5 85 1.832 98.5 1.145 1.122 1.189 1.18 97.53 1.01 

 68670 315 22.5 50 1.071 237.4 1.179 1.12 1.186 1.159 218 1.089 

 71120 322 37.3 70 1.499 137.8 1.103 1.07 1.14 1.128 134.1 1.028 

 71120 322 37.3 85 1.82 97.2 1.093 1.07 1.134 1.126 93.53 1.039 

 71120 322 37.3 100 2.141 70.9 1.076 1.06 1.117 1.112 67.46 1.051 

 71120 322 37.3 120 2.569 47.7 1.022 1.011 1.106 1.056 47.26 1.009 

 71120 322 37.3 150 3.212 30.8 1.017 1.009 1.051 1.049 33.47 0.92 

      Mean: 1.089 1.052 1.1 1.064  0.998 

      Stan Dev. 0.103 0.095 0.109 0.165  0.06 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 204 

Table A.3 Results Of NN Models 
*Bold values are Test set        

  
Specimen L λ  E ft n TEST NN Test/N Form. Test 

/Form. 
TESTS NN Test/NN 

RHS1 46.8 19.86 62.8 250.9 24 19.39 19.39 1.00 20.3 0.96 77.5 82.65 0.94 

RHS1 46.8 19.86 62.8 250.9 24 19.41 19.39 1.00 20.3 0.96 78.7 82.65 0.95 
RHS2 120.4 34.52 69.8 214.3 31 24.54 24.54 1.00 29.8 0.82 122.4 68.14 1.80 

RHS2 73.6 21.1 69.8 214.3 31 24.93 24.93 1.00 29.8 0.84 124.3 152.46 0.82 

RHS3 52.3 22.62 68.4 233.3 27 15.1 15.11 1.00 16.34 0.92 134.8 159.97 0.84 

RHS3 52.3 22.62 68.4 233.3 27 15.12 15.11 1.00 16.34 0.93 136.8 159.97 0.86 

RHS4 149 39.81 70.9 242.5 20 6.45 6.45 1.00 7.69 0.84 109.2 111.3 0.98 

RHS4 80.7 21.56 70.9 242.5 20 6.7 6.70 1.00 7.69 0.87 109.8 121.67 0.90 

RHS5 211 42.23 69.7 244.5 48 3.28 3.28 1.00 4.31 0.76 109.1 123.56 0.88 

RHS5 104.5 20.92 69.7 244.5 48 3.75 7.35 0.51 4.31 0.87 108.5 80.21 1.35 
RHS6 88.8 20.62 77.8 235 19 3.83 3.83 1.00 5.59 0.69 122.4 124.65 0.98 

RHS6 179 41.56 77.8 235 19 4.15 4.15 1.00 5.59 0.74 122.9 127.05 0.97 

RHS7 176 34.52 62.8 258.9 31 1.63 1.69 0.96 2.29 0.71 118.7 117.3 1.01 

RHS7 179.5 35.21 62.8 258.9 31 1.94 1.88 1.03 2.29 0.85 120.6 112.66 1.07 

RHS8 233.5 45.95 63.5 258.6 27 2.88 2.92 0.99 4.36 0.66 212 206.86 1.02 

RHS8 234.5 46.14 63.5 258.6 27 2.9 2.86 1.01 4.36 0.67 212 208.29 1.02 

RHS9 236 45.6 70.2 242.2 45 1.88 1.88 1.00 3.13 0.60 224.9 192.34 1.17 

RHS9 236 46.09 68.5 236.6 33 1.95 1.85 1.05 3.13 0.62 248.1 243.71 1.02 

RHS10 361 54.7 68.9 227.3 25 1.35 1.35 1.00 2 0.68 255.6 255.37 1.00 

RHS10 361 54.7 68.9 227.3 25 1.6 1.60 1.00 2 0.80 271.2 281.8 0.96 

RHS11 225 41.54 68.8 255.5 14 1.09 1.05 1.04 1.171 0.93 290.8 270.97 1.07 

RHS11 224.5 41.45 68.8 255.5 14 1.09 1.13 0.97 1.171 0.93 261.2 267.74 0.98 

RHS12 237 43.37 74.5 246.8 19 0.99 0.97 1.02 0.934 1.06 315.6 311.82 1.01 

RHS12 242 44.29 74.5 246.8 19 1.04 1.06 0.98 0.934 1.11 313.2 326.02 0.96 

RHS13 298 45.94 68.5 236.6 33 1.88 1.98 0.95 2.53 0.74 248.2 239.83 1.03 

RHS13 299 45.6 70.2 242.2 45 1.95 1.88 1.04 2.53 0.77 222.6 192.34 1.16 
RHS14 176 34.02 62.4 242.8 35 1.15 1.15 1.00 1.213 0.95 79.7 86.98 0.92 
RHS14 191 34.98 69.3 253.3 38 1.24 1.24 1.00 1.213 1.02 89.4 80.15 1.12 

RHS14 178 34.4 62.4 242.8 35 1.26 1.26 1.00 1.213 1.04 79.1 83.06 0.95 

RHS15 235.5 46.5 69.3 212.4 27 4.16 4.16 1.00 5.833 0.71 190.7 191.72 0.99 

RHS15 234.5 46.3 69.3 212.4 27 4.64 4.74 0.98 5.833 0.80 185.7 186.64 0.99 

RHS15 233.9 46.18 69.3 212.4 27 5.21 5.11 1.02 5.833 0.89 185.2 183.55 1.01 

RHS16 238 44.75 60 260.5 53 1.08 1.15 0.94 0.437 2.47 92.8 94.43 0.98 

RHS16 239 44.94 60 260.5 53 1.12 1.05 1.06 0.437 2.56 92.5 93.97 0.98 

RHS17 180 34.99 62.4 242.8 35 1.24 1.30 0.95 1.245 1.00 85.1 78.93 1.08 
RHS17 178 34.59 69.3 253.3 38 1.28 1.53 0.84 1.245 1.03 88.6 79.71 1.11 
RHS18 125 36.13 68 285 28 0.98 1.03 0.95 0.546 1.79 92.7 93.17 0.99 

RHS18 127 36.71 68 285 28 1.02 0.98 1.05 0.546 1.87 89.4 91.29 0.98 

RHS19 359 43.97 69.3 229.4 34 0.83 0.79 1.05 0.518 1.60 137.7 168.94 0.82 

RHS19 355 43.48 69.3 229.4 34 0.83 0.87 0.95 0.518 1.60 139.6 156.71 0.89 

RHS20 601 45.27 65.2 282.8 15 0.89 0.91 0.98 0.477 1.87 513.5 512.37 1.00 

RHS20 601 45.27 65.2 282.8 15 0.93 0.91 1.02 0.477 1.95 506.5 512.37 0.99 

RHS21 140 28.57 67.5 276.9 33 2.77 2.80 0.99 5.08 0.55 115.3 128.14 0.90 

RHS21 141 28.78 67.5 276.9 33 3.26 3.22 1.01 5.08 0.64 116.5 125.26 0.93 

RHS22 540 57.73 72 353.4 84 0.92 0.92 1.00 0.487 1.89 497 498.48 1.00 
RHS22 540 57.73 72 353.4 84 0.97 0.92 1.05 0.487 1.99 493 498.48 0.99 
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RHS23 411.5 45.45 71.9 329.9 91 0.99 1.02 0.97 0.916 1.08 612 614.02 1.00 

RHS23 411 45.4 71.9 329.9 91 1 0.97 1.03 0.916 1.09 621.5 620.89 1.00 

RHS24 531.2 23.46 71.4 362.1 77 2.83 2.82 1.00 5.06 0.56 2939.4 2945 1.00 

RHS24 535 23.63 71.4 362.1 77 2.85 2.86 1.00 5.06 0.56 2934 2925 1.00 

RHS25 361 29.93 68.8 342.8 30 1.37 1.38 0.99 1.415 0.97 669 679.13 0.99 

RHS25 361 29.93 68.8 342.8 30 1.39 1.38 1.01 1.415 0.98 670.5 679.13 0.99 

RHS26 601 26.2 71.6 184.8 84 1.92 1.95 0.98 1.733 1.11 852 867.13 0.98 
RHS26 601 26.2 71.6 184.8 84 1.95 1.95 1.00 1.733 1.13 865 867.13 1.00 

RHS27 508 56.18 69 325 53 1.17 1.22 0.96 0.317 3.69 808.5 818.85 0.99 

RHS27 508 56.17 69 325 53 1.28 1.23 1.04 0.317 4.04 831 818.32 1.02 

SHS1 44.5 26.13 67.5 241.3 22 30.04 30.03 1.00 47.34 0.63 30.6 27.58 1.11 

SHS1 46 27.01 67.5 241.3 22 32.51 32.52 1.00 47.34 0.69 29.7 18.87 1.57 

SHS2 120 24.86 72.3 244.3 19 18.36 18.36 1.00 25.28 0.73 158.4 150.55 1.05 

SHS2 115.7 25.78 72.3 244.3 19 21.07 21.07 1.00 25.28 0.83 160.8 156.15 1.03 

SHS3 149.4 24.59 64.9 244.8 29 4.94 4.94 1.00 5.38 0.92 132.4 185.88 0.71 

SHS3 149.4 24.59 64.9 244.8 29 5.07 4.94 1.03 5.38 0.94 131.3 185.88 0.71 
SHS4 149.4 25.07 64.1 225.2 31 11.65 12.48 0.93 13.59 0.86 186.6 171.06 1.09 

SHS4 149.3 25.05 64.1 225.2 31 13.26 12.43 1.07 13.59 0.98 180.9 171.64 1.05 

SHS5 209.5 24.6 70.2 202.9 21 6.88 7.38 0.93 7 0.98 213.8 215.73 0.99 

SHS5 209.5 24.6 70.2 202.9 21 7.89 7.38 1.07 7 1.13 208.7 215.73 0.97 

SHS6 239 24.49 71.7 220.3 27 3.52 3.83 0.92 4.85 0.73 264.4 261.99 1.01 

SHS6 239 24.49 71.7 220.3 27 4.13 3.83 1.08 4.85 0.85 263.8 261.99 1.01 

SHS7 296 23.9 70.8 228.3 28 1.43 1.43 1.00 1.93 0.74 300.2 245.02 1.23 

SHS7 299 24.14 70.8 228.3 28 1.47 1.61 0.91 1.93 0.76 304.8 241.36 1.26 
SHS8 179 23.88 72 186.6 12 1.71 1.81 0.95 2.49 0.69 83.3 83.73 0.99 

SHS8 179 23.88 72 186.6 12 1.9 1.81 1.05 2.49 0.76 82.7 83.73 0.99 

SHS9 239 23.71 65.1 203.9 28 0.76 0.79 0.96 0.63 1.21 84.6 72.02 1.17 

SHS9 239.5 23.75 65.1 203.9 28 0.81 0.78 1.04 0.63 1.29 84.7 71.46 1.19 

SHS10 303 25 65.3 323.7 27 2.91 2.91 1.00 3.75 0.78 728.5 709.19 1.03 

SHS10 303 25 65.3 323.7 27 3.26 2.91 1.12 3.75 0.87 731.5 709.19 1.03 
SHS11 451 24.12 75.3 252.1 11 1.29 1.29 1.00 1.18 1.09 592.5 615.86 0.96 

SHS11 437 23.37 75.3 252.1 11 1.56 1.56 1.00 1.18 1.32 605.5 582.41 1.04 

SHS12 452 24.2 68.4 300.1 13 1.06 1.07 0.99 0.902 1.18 643.5 636.77 1.01 

SHS12 451.5 24.17 68.4 300.1 13 1.13 1.12 1.01 0.902 1.25 626.5 634.05 0.99 

       Mean: 0.99  1.09   1.02 
       St. 

 
0.07  0.61   0.15 



 206 

TABLE A.4 Experimental database vs. NN and design code results  
*Bold sets are test sets 
 
 

Ref. B(mm) D(mm) fc(MPa) %Reinf a/d 
Vtest 
(kN) 

NN 
(kN) 

EC2 
(kN) 

LRFD 
(kN) 

ACI11-5 
(kN) 

ACI 11-3 
(kN) 

TEST/ 
NN 

TEST/ 
EC2 

TEST/ 
LRFD 

TEST/ 
ACI11-5 

TEST/ 
ACI11-3 

  305 368 14.7 1.85 3.9 100.1 107 105.5 80.1 70.70 93.5 0.936 0.949 1.250 1.416 1.071 

  305 375 25 2.41 3.8 137.9 138.9 131.2 106.1 94.13 125.4 0.993 1.051 1.300 1.465 1.100 

  305 368 27.2 1.85 3.9 122.3 116.3 129.6 100.3 92.85 118.8 1.051 0.944 1.219 1.317 1.029 

  305 368 28.4 1.24 3.9 109 105.5 115 90.8 91.63 103.8 1.033 0.948 1.200 1.190 1.050 

  308 356 39.9 3.79 4 177.9 162.8 148.7 135.8 116.75 161.8 1.093 1.196 1.310 1.524 1.100 

  305 372 45.7 1.83 3.8 136.8 130 154.8 121 118.87 142.5 1.053 0.884 1.131 1.151 0.960 

  305 365 32.6 1.87 7.9 104.3 105 137.2 84.1 95.34 97.5 0.994 0.760 1.240 1.094 1.070 

  305 365 16.3 1.87 4.9 88.96 103.6 108.9 76.7 71.54 89 0.858 0.817 1.160 1.244 1.000 

  305 368 27.2 2.46 4.8 132.3 137.5 133 101 93.42 119.2 0.962 0.995 1.310 1.416 1.110 

  305 356 45 3.83 5 177.9 164 153.2 130.8 118.31 158.9 1.085 1.161 1.360 1.504 1.120 

Morrow and Viest (1957) 305 363 27.2 1.88 5.9 111.2 107.6 128.9 86.9 88.57 102 1.034 0.863 1.280 1.256 1.090 

  177.8 273 20.6 1.2 4 44.81 46.89 47.2 33.9 33.97 40.7 0.956 0.949 1.322 1.319 1.101 

  177.8 273 39.9 1 4 45.97 47.56 55.4 40.3 45.88 44.2 0.967 0.830 1.141 1.002 1.040 

  177.8 273 20.6 2.5 4 54.48 60.32 56 41.6 36.67 49.5 0.903 0.973 1.310 1.486 1.101 

  177.8 273 39.9 1.2 4 46.35 51.25 58.9 42.9 46.30 51.5 0.904 0.787 1.080 1.001 0.900 

  177.8 273 39.9 2.5 4 64.93 69.76 69.8 52.8 49.00 61.3 0.931 0.930 1.230 1.325 1.059 

  177.8 273 79.2 2.5 4 68.29 83.77 87.7 60.4 66.91 75 0.815 0.779 1.131 1.021 0.911 

  177.8 273 65.5 1.2 4 58.69 55.05 69.5 50.6 58.62 57.5 1.066 0.844 1.160 1.001 1.021 

  177.8 273 65.5 2.5 4 67.21 79.68 82.4 62.8 61.32 71.5 0.844 0.816 1.070 1.096 0.940 

  177.8 273 79.2 1.6 4 63.67 65.36 81.4 53.1 65.04 67 0.974 0.782 1.199 0.979 0.950 

  177.8 273 65.5 3.3 4 78.53 87.67 82.4 68.3 62.98 78.5 0.896 0.953 1.150 1.247 1.000 

Elzanaty et al (1986) 177.8 273 63.4 2.5 6 61.9 64.94 81.5 54.8 58.68 63.8 0.953 0.760 1.130 1.055 0.970 

  152 298 22.6 3.36 3.6 64.6 69.42 52.8 45.2 38.01 53.8 0.931 1.223 1.429 1.700 1.201 

  152 298 29.5 2.32 3.6 66.8 64.93 57.7 48.8 40.15 57.6 1.029 1.158 1.369 1.664 1.160 

  152 298 49.1 3.36 2.5 117.9 91.69 68.4 67 55.78 77.1 1.286 1.724 1.760 2.114 1.529 
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  152 298 40.9 3.36 3.6 82.16 79.71 64.4 56.7 48.63 67.3 1.031 1.276 1.449 1.689 1.221 

  152 298 45.2 3.36 3.6 82.79 81.9 66.6 58.7 50.75 69.6 1.011 1.243 1.410 1.631 1.190 

  152 298 81.4 3.36 3.6 89.69 96.86 81 63.6 65.63 76.7 0.926 1.107 1.410 1.367 1.169 

  152 298 81.1 3.36 3.6 89.38 96.76 80.9 63.4 65.52 76.4 0.924 1.105 1.410 1.364 1.170 

  152 298 88.4 3.36 3.6 93.45 99.04 83.2 65.3 68.09 78.5 0.944 1.123 1.431 1.373 1.190 

  152 298 99.8 3.36 3.6 97.84 102.1 86.7 68.4 71.89 82.2 0.958 1.128 1.430 1.361 1.190 

  152 298 22.4 3.36 2.5 77.77 77.31 52.7 49.9 41.06 55.2 1.006 1.476 1.559 1.894 1.409 

Mphonde and Frantz 
(1984) 152 298 86.2 3.36 2.5 111.3 106 82.6 73.2 70.51 86.3 1.050 1.347 1.520 1.578 1.290 

  150 203 83.3 3.22 3.9 65 74.56 60.1 44.2 43.97 46.1 0.872 1.082 1.471 1.478 1.410 

  150 203 83.3 3.22 3 96.9 81.57 60.1 48.7 45.38 51.5 1.188 1.612 1.990 2.135 1.882 

  150 203 83.3 3.22 3.9 80.7 74.56 60.1 44.3 43.97 46.1 1.082 1.343 1.822 1.835 1.751 

  150 203 72.2 3.22 3.9 58 69.84 57.3 43.3 41.23 45 0.831 1.012 1.339 1.407 1.289 

  150 203 72.2 3.22 3.9 72.1 69.84 57.3 43.4 41.23 45.1 1.032 1.258 1.661 1.749 1.599 

  150 207 50.8 2.02 3.9 45.5 49.27 51.7 36.1 34.40 38.2 0.924 0.880 1.260 1.323 1.191 

  150 207 50.8 2.02 3.9 51.9 49.27 51.7 36 34.40 38.2 1.053 1.004 1.442 1.509 1.359 

  150 205 34.4 3.19 3.9 55 50.42 45.1 35 30.08 37.2 1.091 1.220 1.571 1.829 1.478 

  150 207 26.6 2.02 3.9 47.5 41.23 41.7 28.6 25.66 30.8 1.152 1.139 1.661 1.851 1.542 

Islam et al (1998) 150 207 26.6 2.02 2.9 56.5 47.94 41.7 31.2 26.58 34 1.179 1.355 1.811 2.125 1.662 

  300 925 36 1 2.9 225 228.4 241.6 189.1 254.15 197.5 0.985 0.931 1.190 0.885 1.139 

  300 925 36 1 2.9 249 228.4 241.6 190.1 254.15 197.5 1.090 1.031 1.310 0.980 1.261 

  300 925 39 1 2.9 223 227.6 248.2 193.9 263.86 183.5 0.980 0.898 1.150 0.845 1.215 

  300 925 39 1 2.9 235 227.6 248.2 194.2 263.86 183.6 1.033 0.947 1.210 0.891 1.280 

  300 925 39 1 2.9 204 227.6 248.2 194.3 263.86 197.3 0.896 0.822 1.050 0.773 1.034 

  300 925 37 0.75 2.9 192 202 221.5 173 253.36 202.1 0.950 0.867 1.110 0.758 0.950 

  300 450 37 0.81 3 131.7 124.9 125.8 102.1 123.56 116.8 1.054 1.047 1.290 1.066 1.128 

  300 225 37 0.88 3 72.9 75.06 75.4 59.8 62.05 71.2 0.971 0.967 1.219 1.175 1.024 

  300 110 37 0.9 3.1 40 42.91 38.2 32.3 30.33 37.6 0.932 1.047 1.238 1.319 1.064 

  295 920 50 1.03 2.5 200.8 216.9 266.5 223.1 293.32 242 0.926 0.753 0.900 0.685 0.830 

  169 459 53 1.03 2.7 68.6 68.21 87.9 73.8 85.71 77.7 1.006 0.780 0.930 0.800 0.883 
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  295 920 50 1.03 2.5 235.7 216.9 266.5 222.4 293.32 242 1.087 0.884 1.060 0.804 0.974 

  169 459 53 1.03 2.7 80.5 68.21 87.9 73.2 85.71 77.7 1.180 0.916 1.100 0.939 1.036 

  295 920 86 1.03 2.5 184 204.1 319.3 143.3 378.72 164.3 0.902 0.576 1.284 0.486 1.120 

  169 459 91 1.03 2.7 73.1 64.63 105.3 64.3 110.75 76.9 1.131 0.694 1.137 0.660 0.951 

  300 925 98 1 2.9 193 206.5 337.4 225.5 408.74 264.4 0.935 0.572 0.856 0.472 0.730 

  300 925 98 1 2.9 217 206.5 337.4 225.3 408.74 261.4 1.051 0.643 0.963 0.531 0.830 

  300 925 99 0.75 2.9 193 179.6 307.6 204.7 406.66 257.3 1.075 0.627 0.943 0.475 0.750 

  300 450 99 0.81 3 131.7 134.1 174.6 125.1 198.14 144.7 0.982 0.754 1.053 0.665 0.910 

  300 225 99 0.88 3 84.8 103.4 104.6 81.3 99.34 82.3 0.820 0.811 1.043 0.854 1.030 

Collins and Kuchma 
(1999) 300 925 94 0.5 2.9 163 158.5 264.1 172.7 392.50 209 1.028 0.617 0.944 0.415 0.780 

  127 208 60.8 1.77 3 48.92 44.82 44.8 34.9 32.10 41.8 1.092 1.092 1.402 1.524 1.170 

  127 203 60.8 3.93 4 57.83 63.21 45.8 38.8 33.06 41.9 0.915 1.263 1.490 1.749 1.380 

  127 203 60.8 3.93 3 68.95 70.57 45.8 42.3 34.51 46.3 0.977 1.505 1.630 1.998 1.489 

  127 203 60.8 3.93 2.7 68.95 72.78 45.8 43.4 35.15 47.6 0.947 1.505 1.589 1.962 1.449 

  127 202 67 5.04 4 51.21 62.12 47.1 42.3 35.54 44.5 0.824 1.087 1.211 1.441 1.151 

  127 202 67 5.04 3 68.94 68.5 47.1 45.7 37.39 48.9 1.006 1.464 1.509 1.844 1.410 

  127 184 64.3 6.64 4 54.28 70.81 42.5 45.2 33.42 44.5 0.767 1.277 1.201 1.624 1.220 

  127 184 64.3 6.64 3 75.63 71.47 42.5 49.1 35.64 43.7 1.058 1.780 1.540 2.122 1.731 

  127 184 64.3 6.64 2.7 68.95 71.66 42.5 50.7 36.62 43.6 0.962 1.622 1.360 1.883 1.581 

  127 207 64.3 3.26 4 45.39 62.21 47.4 38.1 33.79 45.8 0.730 0.958 1.191 1.343 0.991 

  127 207 64.3 3.26 3 44.48 69.38 47.4 41.6 35.01 49.4 0.641 0.938 1.069 1.270 0.900 

  127 207 64.3 3.26 2.7 45.39 71.53 47.4 42.8 35.56 50.4 0.635 0.958 1.061 1.277 0.901 

  127 208 66.9 2.25 4 44.62 48.64 48.2 35.7 33.41 43.3 0.917 0.926 1.250 1.335 1.030 

 Ahmad et al (1986) 127 208 66.9 2.25 3 46.7 54.87 48.2 38.9 34.26 47.2 0.851 0.969 1.201 1.363 0.989 

  375 655 36 2.8 3.2 249 273.1 285.6 254.1 247.04 168.2 0.912 0.872 0.980 1.008 1.480 

  375 655 67 2.8 3.2 296 303.8 351.3 293.1 323.72 205.6 0.974 0.843 1.010 0.914 1.440 

Yoon and Cook () 375 655 87 2.8 3.2 327 321.3 383.2 292 363.79 219.5 1.018 0.853 1.120 0.899 1.490 

  170 270 53.7 1.87 3 70.68 69.63 71.5 59.4 52.96 68.6 1.015 0.989 1.190 1.335 1.030 

  170 270 53.7 1.87 3 71.6 69.63 71.5 59.7 52.96 68.2 1.028 1.001 1.199 1.352 1.050 
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  170 272 53.7 1.01 3 58.26 52.19 58.5 50.2 51.08 57.1 1.116 0.996 1.161 1.141 1.020 

  170 272 53.7 1.01 3 56.41 52.19 58.5 50.4 51.08 57 1.081 0.964 1.119 1.104 0.990 

  170 267 53.7 3.35 3 78.07 85.85 72.4 69.1 56.21 78.9 0.909 1.078 1.130 1.389 0.989 

  170 255 53.7 4.68 3 89.73 80.59 69.9 71.8 56.97 76 1.113 1.284 1.250 1.575 1.181 

  170 255 53.7 4.68 3 95.37 80.59 69.9 71.7 56.97 76.3 1.183 1.364 1.330 1.674 1.250 

  170 270 53.7 1.87 4.5 66.55 59.76 71.5 52.4 51.32 61.1 1.114 0.931 1.270 1.297 1.089 

  170 270 53.7 1.87 4.5 63.8 59.76 71.5 52.7 51.32 60.8 1.068 0.892 1.211 1.243 1.049 

  170 142 53.7 1.87 3 41.03 48.31 40.4 33 27.85 41.9 0.849 1.016 1.243 1.473 0.979 

  170 142 53.7 1.87 3 39.34 48.31 40.4 33 27.85 41.9 0.814 0.974 1.192 1.413 0.939 

  300 550 53.7 1.87 3 226.1 199.2 221.3 191.6 190.36 194.9 1.135 1.022 1.180 1.188 1.160 

  300 550 53.7 1.87 3 214.5 199.2 221.3 191.5 190.36 195 1.077 0.969 1.120 1.127 1.100 

  300 915 53.7 1.87 3 299.2 310.7 337 287.7 316.70 285 0.963 0.888 1.040 0.945 1.050 

Kim and Park (1994) 300 915 53.7 1.87 3 332.1 310.7 337 286.3 316.70 286.3 1.069 0.985 1.160 1.049 1.160 

  150 221 77.8 1.82 3 67.93 58.52 60.7 43 45.22 46.5 1.161 1.119 1.580 1.502 1.461 

  150 221 54 1.82 3 58.12 54.51 53.7 42.4 38.25 44.4 1.066 1.082 1.371 1.520 1.309 

  150 207 54 3.23 4 70.46 61.41 52.8 43 36.89 45.8 1.147 1.334 1.639 1.910 1.538 

  150 207 54 3.23 3 82.63 68.78 52.8 46.9 38.33 49.2 1.201 1.565 1.762 2.156 1.679 

  150 207 77.8 3.23 4 77.82 72.78 59.6 43.7 43.42 48 1.069 1.306 1.781 1.792 1.621 

  150 207 77.8 3.23 3 82.63 79.97 59.6 48 44.86 52.3 1.033 1.386 1.721 1.842 1.580 

  150 207 58 3.23 4 68.01 63.5 54.1 44.2 38.08 46.9 1.071 1.257 1.539 1.786 1.450 

  150 207 58 3.23 3 82.63 70.84 54.1 48 39.51 50.1 1.166 1.527 1.721 2.091 1.649 

  150 207 86.4 3.23 4 86.16 76.26 61.7 45.3 45.53 49.8 1.130 1.396 1.902 1.892 1.730 

  150 207 86.4 3.23 3 107.2 83.37 61.7 50.1 46.96 54.4 1.286 1.737 2.140 2.283 1.971 

  150 207 97.7 3.23 4 76.84 80.31 64.3 47.4 48.14 51.9 0.957 1.195 1.621 1.596 1.481 

  150 207 97.7 3.23 3 77.72 87.31 64.3 52.2 49.58 56.7 0.890 1.209 1.489 1.568 1.371 

  300 414 77.8 3.23 4 229.4 227.1 203.8 151.9 173.69 159.3 1.010 1.126 1.510 1.321 1.440 

  150 221 97.7 1.82 3 56.16 60.46 65.5 46.8 50.26 50.1 0.929 0.857 1.200 1.117 1.121 

  300 442 77.8 1.82 3 180.3 168.5 208.1 149 180.87 155.4 1.070 0.866 1.210 0.997 1.160 

Thorenfeldt and 
Drangsholt (1990) 300 414 77.8 3.23 3 280.7 230 203.8 174.3 179.42 176.5 1.220 1.377 1.610 1.564 1.590 
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  150 137 25 2.73 3.9 28.6 27.45 27.3 21.9 17.13 26.6 1.042 1.048 1.306 1.670 1.075 

  150 137 25 2.8 3 32.7 34.26 27.3 23.2 17.94 28.7 0.955 1.198 1.409 1.822 1.139 

  156 270 27 2.74 3 65.1 68.03 53.3 45.9 37.86 55.6 0.957 1.221 1.418 1.719 1.171 

  151 270 27 2.84 4 55.4 60.46 51.6 41.1 35.23 50.4 0.916 1.074 1.348 1.573 1.099 

  155 270 30 2.66 6.5 53.6 43.46 54.9 37.9 35.70 45.3 1.233 0.976 1.414 1.501 1.183 

  156 543 26 2.77 4 93.1 109.9 91.5 74.3 71.76 98.5 0.847 1.017 1.253 1.297 0.945 

  156 543 27 2.77 3.1 107.8 115.8 92.6 80.5 75.77 106 0.931 1.164 1.339 1.423 1.017 

  156 543 26 2.72 6.8 84.6 90.32 91.5 60.8 67.48 79.1 0.937 0.925 1.391 1.254 1.070 

  154 1090 27 2.71 3 164.4 159.1 163.1 143.5 150.60 177.7 1.033 1.008 1.146 1.092 0.925 

  152 1090 30 2.72 4 158 152.9 166.8 122.1 149.05 157.7 1.033 0.947 1.294 1.060 1.002 

  155 1090 27 2.7 7 153.6 149.7 164.2 105.5 136.58 135.2 1.026 0.935 1.456 1.125 1.136 

  152 270 17 0.5 3 27.2 31.54 28.1 24 25.35 27.2 0.862 0.968 1.133 1.073 1.000 

  152 270 17 0.5 3.5 24.5 28.72 28.1 20 25.17 23.4 0.853 0.872 1.225 0.973 1.047 

  152 270 28 0.5 3.5 25.4 30.36 33.1 20 32.04 24.6 0.837 0.767 1.270 0.793 1.033 

  152 270 35 0.5 2.6 33.6 35.39 35.7 28 36.05 35.2 0.949 0.941 1.200 0.932 0.955 

  152 270 35 0.5 3.5 24.9 30.81 35.7 20 35.68 24.7 0.808 0.697 1.245 0.698 1.008 

  152 270 17 0.8 4 30.2 31.31 32.8 24.9 25.59 30.7 0.965 0.921 1.213 1.180 0.984 

  152 270 17 0.8 5 27.3 25.52 32.8 19.3 25.29 24.6 1.070 0.832 1.415 1.079 1.110 

  152 270 17 0.8 2.5 35.6 39.51 32.8 30.4 26.44 39.2 0.901 1.085 1.171 1.346 0.908 

  152 270 17 0.8 3 32.5 36.5 32.8 27.9 26.04 35.4 0.890 0.991 1.165 1.248 0.918 

  152 270 17 0.8 3 32.8 36.67 32.8 28.4 26.06 36 0.895 1.000 1.155 1.259 0.911 

  152 270 26 0.8 3 38.8 38 37.8 33.3 31.78 41.8 1.021 1.026 1.165 1.221 0.928 

  152 270 26 0.8 4 33.6 32.36 37.8 27.7 31.29 31.3 1.038 0.889 1.213 1.074 1.073 

  152 270 26 0.8 2.5 41.5 40.59 37.8 33.6 32.15 43.6 1.022 1.098 1.235 1.291 0.952 

  152 270 26 0.8 2.5 44.6 40.43 37.8 34.4 32.12 47 1.103 1.180 1.297 1.389 0.949 

  152 270 26 0.8 5.1 25.7 26.8 37.8 23.8 31.00 24.9 0.959 0.680 1.080 0.829 1.032 

  152 270 26 0.8 5.1 27.9 26.96 37.8 22 31.01 23.9 1.035 0.738 1.268 0.900 1.167 

  152 270 26 0.8 2.5 43.3 40.65 37.8 34.2 32.16 43.8 1.065 1.146 1.266 1.347 0.989 

  152 270 26 0.8 2.5 39.4 40.65 37.8 34.1 32.16 44.1 0.969 1.042 1.155 1.225 0.893 

  152 270 26 0.8 3 39.3 37.84 37.8 31.5 31.76 38.5 1.039 1.040 1.248 1.237 1.021 
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Kani et al (1979) 152 270 26 0.8 4 32.6 32.74 37.8 27.6 31.32 30 0.996 0.862 1.181 1.041 1.087 

  200 359 49.9 2.24 3 99.69 100.2 104.7 90 81.62 91 0.995 0.952 1.108 1.221 1.095 

  200 359 60.8 2.24 3 108.1 103.2 111.8 95 89.14 97 1.047 0.967 1.138 1.213 1.114 

  200 359 68.9 2.24 3 99.93 105.2 116.6 101 94.30 99 0.950 0.857 0.989 1.060 1.009 

Cladera (2003) 200 359 87 2.24 3 117.9 108.4 126 110 104.83 100 1.088 0.936 1.072 1.125 1.179 

  360 278 52.5 1.57 2.9 128 132.4 144.9 120.8 112.95 128.6 0.967 0.883 1.060 1.133 0.995 

  360 278 52.5 1.57 2.9 119 132.4 144.9 121.4 112.95 128.2 0.899 0.821 0.980 1.054 0.928 

  290 278 49.3 1.95 2.9 108 99.48 122.9 100.9 90.22 135.7 1.086 0.879 1.070 1.197 0.796 

  290 278 46.2 1.95 2.9 81 97.24 120.2 57.4 87.64 62.8 0.833 0.674 1.411 0.924 1.290 

  290 178 51.5 3.04 4.5 74.3 69.78 87.1 68.8 58.91 77.4 1.065 0.853 1.080 1.261 0.960 

Adebar and Collins 
(1996) 290 278 58.9 1 2.9 90 98.6 104.4 89.1 93.19 101.5 0.913 0.862 1.010 0.966 0.887 

  101.6 171.4 53.7 1.45 2.6 26.68 27.75 26.8 22.6 19.90 27.5 0.962 0.996 1.181 1.341 0.970 

  101.6 171.4 52.1 1.45 3.6 21.79 22.35 26.5 20 19.15 23.9 0.975 0.822 1.090 1.138 0.912 

  101.6 171.4 69.1 1.45 3.6 20.02 24.55 29.1 21.5 21.87 22.8 0.816 0.688 0.931 0.915 0.878 

Salandra and Ahmad 
(1989) 101.6 171.4 66.8 1.45 2.6 29.8 29.22 28.8 24.2 22.00 25.7 1.020 1.035 1.231 1.354 1.160 

  200 305 39.65 2.93 3.3 90.64 87.97 85.4 75 64.21 96.4 1.030 1.061 1.209 1.412 0.940 

  202 306 40.2 2.88 3.3 88.86 88.77 86.8 75.6 65.32 97.7 1.001 1.024 1.175 1.360 0.910 

  203 306 46.77 2.87 3.3 100.5 92.72 91.8 79.8 70.03 92.5 1.084 1.095 1.259 1.435 1.086 

Gonzalez (2002) 199 305 41.45 2.93 3.3 83.88 88.93 86.2 76.2 65.12 92.6 0.943 0.973 1.101 1.288 0.906 

           Mean 0.993 1.026 1.282 1.301 1.144 

           Std Dev. 0.109 0.232 0.222 0.375 0.238 

           R 0.988 0.943 0.969 0.878 0.938 
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