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ABSTRACT 

EDGE DETECTION IN MEDICAL IMAGES USING MORPHOLOGICAL 
OPERATORS 

 
İNCE, Taner 

M.Sc. in Electrical and Electronics Eng. 
Supervisor: Asst. Prof Dr. Nurdal WATSUJI 

June 2006, 92 pages 
 

Edge detection is an important research area in digital image processing with several 

applications. Edges characterize boundaries and therefore a problem of fundamental 

importance in image processing. The aim of edge detection in an image is to reduce 

the amount of data and filter out useless information, while preserving the important 

structural properties in an image. 

 

Mathematical morphology provides a systematic approach to analyze the geometric 

characteristics of signals or images, and has been used widely in many applications 

such as boundary detection, noise removal, image enhancement and image 

segmentation etc. The advantages of morphological approaches over linear 

approaches are 1) direct geometric interpretation, 2) simplicity, and 3) efficiency in 

hardware implementation. 

 

The main purpose of this thesis is to provide an overview of mathematical 

morphology and review some edge detection algorithms based on mathematical 

morphology and also propose a method for detecting edges in medical images such 

as Computed Tomography and Magnetic Resonance images. Edge detection can be 

divided into two phases; the first is the noise removal, and the second is ideal edge 

detection. By using an iterative averaged closing-opening operation, impulse noise as 

well as Gaussian noise is eliminated from the image. Then, the resulting ideal edges 

can be extracted by using a simple morphologic operator. 

Keywords: Edge detection, Mathematical Morphology, Alternating Sequential 

Filters,Thinning

 



ÖZET 

 
MEDİKAL GÖRÜNTÜLERDE MATEMATİKSEL MORFOLOJİ 

KULLANARAK AYRIT SEZİMLEME 
 

İNCE, Taner 
Yüksek Lisans Tezi, Elektrik ve Elektronik Müh.  
Tez Yöneticisi: Yrd. Doç. Dr. Nurdal WATSUJI 

Haziran 2006, 92 sayfa 
 
 

Ayrıt sezimi sayısal görüntü işleme alanında bir çok uygulaması olan önemli bir 

araştırma alanıdır. Ayrıtlar sınırları karakterize eder ve dolayısıyla görüntü işleme 

alanında önemli bir problemdir. Bir görüntüdeki ayrıt seziminin amacı, o 

görüntüdeki veri miktarını azaltmak ve gereksiz bilgiyi süzmektir, bununla birlikte o 

görüntüdeki önemli yapısal özellikleri korumaktır. 

Matematiksel Morfoloji sinyallerin ve görüntülerin geometrik karakterlerini analiz 

etmek için sistematik bir yaklaşım sunar, ve bir çok alanda kullanılmaktadır örnek 

olarak sınır tespitleme, gürültü yoketme, görüntü iyileştirme ve görüntü bölütleme 

sayılabilir. Morfolojik yaklaşımın linear yaklaşımlar üzerine avantajları 1) doğrudan 

geometrik açıklama, 2) basitlik, ve 3) donanım uygulamalarının verimliliğidir 

Bu tezin esas amacı Matematiksel Morfolojiyi tanıtma, bazı Matematiksel Morfoloji 

tabanlı ayrıt sezimleme algoritmalarını gözden geçirme ve Computed Tomografi ve 

Manyetik Rezonans gibi medikal görüntüler için bir ayrıt sezimleme yöntemi 

sunmaktır. Ayrıt sezimleme iki kısıma ayrılabilir; birincisi gürültü yoketme ve 

ikincisi ideal ayrıt sezimidir. Döngülü açma ve kapama işlemi kullanarak dürtü 

gürültü ve o kadar da Gauss gürültüsü görüntüden yok edilir. Sonra, basit bir 

morfolojik operator kullanarak sonuçlanan ideal ayrıtlar ortaya çıkarılabilir. 

 

Anahtar Kelimeler: Ayrıt Sezimi, Matematiksel Morfoloji, Ardışık Değişen 

Filtreler, İnceltme 
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CHAPTER 1 

INTRODUCTION 

1.1 Image Definition 

An image is a spatial representation of a two-dimensional or three-dimensional 

scene. In image processing, an image usually is digitized from a recorded image, 

such as a video image, camera or a picture. The digitization process includes 

sampling and quantization of continuous data. The sampling process samples the 

intensity of the continuous-tone image, such as monochrome, color or multi-

spectrum image, at specific locations on a discrete grid. The grid defines the 

sampling resolution. The quantization process converts the continuous or analog 

values of intensity brightness into discrete data, which corresponds to the digital 

brightness value of each sample, ranging from black, through the grays, to white. A 

digitized sample is referred to as a picture element or pixel. An image is generally is 

sampled into a rectangular array of pixels, which, for a monochrome image is 

represented as a discrete matrix F: 

F= {f(x,y) |x = 0,…..N-1, y = 0,……M-1 }     (1.1) 

where N is the total number of columns and M is the total number of rows. The value 

of the image at spatial coordinates corresponding to the sample index (x,y) is denoted 

by f(x,y), where x is the column number and y is the row number. The sample 

interval  and  are selected to match the smallest feature size. The physical 

coordinates are equal to  and . An example of an image matrix is shown in 

Figure 1.1. 

Δx Δy

x•Δx y•Δy
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Figure 1.1 Image Matrices 

For optical or photographic sensors, f(x,y) is typically proportional to the radiant energy 

received in the electromagnetic band to which the sensor or detector is sensitive, and 

integrated over a small aperture around (x,y). This is interpreted as an intensity at point 

(x,y). A simple aperture can be defined as a small rectangular or circular function in data 

acquisition processing, and the continuous intensity sampled is the integral of the image 

over the aperture at position (x,y). Because of the integral effect, for example, the sharp 

edge in a real image will become a blurred edge in digital image. Normally digitized 

images are defined by levels of gray spanning from black to white, called gray-scale 

images. Figure 1.2 shows the process of digital conversion.  

 
Figure 1.2 Model of a Digital Image Processing System 

 

Actually, the image may come from different sources. For medical imaging applications 

the images can be digitized from x-rays, ultrasound waves, and Magnetic Resonance 

response. For astronomy and military applications, satellite sensors produce digital 

images directly from the measurements of reflected or emitted visible, infrared or 

microwave radiation. In auto vehicle navigation applications, a vision system may use a 

combination of passive and active spatial image data. 
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During the image digitization, the image may be degraded by several factors. One is the 

restriction of sampling frequency. Based on the sampling theorem [R], the image has to 

be sampled at a rate of at least twice the highest spatial frequency contained in original 

image. Otherwise the image will have spatial aliasing. In natural scenes there is no way 

to control the “highest spatial frequency”, and this theorem is almost never satisfied. The 

second factor is the blurring effect of aperture. The third one is the quantization error. 

Because the quantization uses a finite number of values to represent the infinite value 

range of original images, the intensity of an image is not exact. The fourth one is 

additive and multiplicative noise produced by quantization devices, such as thermal 

effects in electronic components, which is often modeled as a Gaussian noise. 

1.2 Edge Model Definition 

An edge can be defined as the boundary between two regions separated by two relatively 

distinct gray-level properties [8]. It corresponds to local intensity discontinuities of an 

image. In the real world, the discontinuities reflect a rapid intensity change, such as the 

boundary between different regions, shadow boundaries, and abrupt changes in surface 

orientation and material properties. For example, edges represent the outline of a shape, 

the difference between the colors and pattern or texture. Therefore edges can be used for 

boundary estimation and segmentation in scene understanding. They can also be used to 

find corresponding points in multiple images of the same scene. For instance, the 

fingerprint, the human facial appearance and the body shape of an object are defined by 

the edges in images. 

In a broad sense the term edge detection refers to the detection and localization of 

intensity discontinuities of these image properties. In a more restrictive sense, it only 

refers to locations of significant change of intensity. Points of these locations are called 

edges or edge elements. Figure 1.3 shows images in which edges define object size, 

shape, scene and human appearance. 
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 a) Aerial Image   b) Lena  c) MRI image 

Figure 1.3 Edges in image show object size, shape boundary, human facial appearance 

 

The difference between boundaries and edges is that boundaries are the linked edges that 

characterize the shape of an object. 

1.3 Need for Edge Detection 

In general, edge detection is the process of locating the edge points. It can be used for 

region segmentation, feature extraction, and object or boundary description. Edges 

provide the topology and structure information of objects in an image. For example, 

different cars can be easily recognized from their body shape. The highway and river 

from aerial images can be detected in terms of their structure or distribution pattern, 

which all are described by the edges. By using edge detection techniques, machine 

vision and image processing systems can be built for a variety of applications. For 

example edge detection can be used for plate recognition of vehicles to identify them. 

Edge detection can also be used in medical applications such as detection of cancerous 

cells in mammograms, tumors in MR images e.g. 

The human perceptual system emphasizes the importance of edges to human vision. It 

has been suggested that one of the most fundamental organizing principles of visual 

system is the detection and description of discontinuity. Physiologists have discovered 

the organization of the mammalian visual system in terms of the responses to spatially 

and temporally discontinues inputs, such as edges, bars and points of light turning on or 

off. 
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Edge detection, therefore, is consistent with human visual response, which will provide 

edge strength and orientation for feature extraction and object description. For reducing 

information being processed, after edge detection gray-scale edges are usually converted 

into binary images by thresholding. The transformation preserves a great deal of the 

primitive or intrinsic information from the original image, i.e., the outline of the shape. 

In this thesis, an edge detection method based on mathematical morphology is 

investigated and they are compared with other edge detectors. Mathematical morphology 

is a branch of nonlinear signal processing and is a powerful tool for the geometrical 

shape description and analysis of images. 

1.4 Difficulty with the Process of Edge Detection 

Edge detection is a difficult issue. One difficulty comes from the complex contents of 

image itself. In real world applications, images contain object boundaries and object 

shadows and noise. The second cause of problems is degradation in image acquisition 

discussed in section 1.1. Sometimes it may be difficult to distinguish the exact edge 

from noise or trivial geometric features. For example, an image of the character “C” may 

be contaminated by noise during a fax transmission and it may look like a “G”. The 

cancerous cell in an MR image may be lost during acquisition and it may look like a 

normal cell. 

Two level edge detection processes are often used since the difficulty of edge estimation 

can not be easily overcome from detection operators alone. The first level process, called 

low-level process, extracts pieces of raw edge segments and geometric features, called 

primitives. They may be incomplete and inaccurate. The second level process usually is 

called high-level process. It will interpret and combine raw edges based on the edge 

models or deduction rules from a broader image context and a knowledge database. 

Sometimes pattern matching and statistical analysis will occur at this level. The second 

level process tries to remove the uncertainty or make correct decisions using low-level 

inputs and context. The more accurate the low-level input is, the more accurate the high-

level process result will be achieved. To measure the quality of low-level process, 

several criteria are proposed to help to improve the accuracy of edge detection. 
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1.5 Criteria for Edge Detection 

The quality of edge detection can be measured from several criteria objectively. Some 

criteria are proposed in terms of mathematical measurement [1], some of them are based 

on application and implementation requirements. In all cases a quantitative evaluation of 

performance requires use of images where the true edges are known. 

1. True Edge Detection  

There should be minimum number of false edges or maximum Signal Noise Ratio 

(SNR). Usually, edges are detected after a threshold operation. The high threshold will 

lead to less false edges, but it also reduces the number of true edges detected. 

2. Robustness to Noise 

The robust algorithm can detect edges in certain acceptable noise (Gaussian, Uniform 

and impulsive noise) environments. Actually, an edge detector detects the edges and also 

amplifies noise simultaneously. Strategic filtering, consistency checking and post 

processing (such as non-maximum suppression) can be used to reduce noise sensitivity 

[2]. 

3. Edge Localization 

The edge location must be reported as close as possible to the correct position, i.e. edge 

localization accuracy [2] 

4. Orientation Sensitivity 

The operator not only detects edge magnitude, but it also detects edge orientation 

correctly. Orientation can be used in post processing to connect edge segments, reject 

noise and suppress non-maximum edge magnitude. 
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5. Speed and efficiency 

The algorithm should be fast enough to be usable in an image processing system. An 

algorithm that allows recursive implementation or separable processing can greatly 

improve efficiency.  
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CHAPTER 2 

INTRODUCTION TO MATHEMATICAL MORPHOLOGY 

The word morphology commonly denotes a branch of biology that deals with the form 

and structure of animals and plants. Also it can be interpreted as shape study using 

mathematical set theory. In image processing, mathematical morphology refers to a 

branch of nonlinear image processing and analysis developed initially by George 

Matheron and Jean Serra [3] that concentrate on the geometric structure within an 

image. The original theory developed by Matheron and Serra was limited to binary 

images, and later it was extended to gray scale morphology by Sternberg [4], Nakagawa 

and Rosenfeld [5] etc. 

The language of mathematical morphology is the set theory. As such, morphology offers 

a unified and powerful approach to numerous image processing problems. These include 

enhancement, segmentation, restoration, edge detection [6], texture analysis, particle 

analysis and compression.  

Some of the salient points regarding the morphological approach are as follows [7] 

1. Morphological operations provide for the systematic alteration of the geometric 

content of an image while preserving the stability of important geometric characteristics. 

2. There exists a well-developed morphological algebra that can be employed for 

representation and optimization. 

3. It is possible to express digital algorithms in terms of a very small class of primitive 

morphological operations. 

4. There exist certain representations theorems by means of which one can obtain the 

expression of morphological filters in terms of the primitive morphological operations.
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In general, morphological operators transform the original image into another image 

through the interaction with the other image of a certain shape and size, which is known 

as the structuring element. Geometric features of the images that are similar in shape and 

size to the structuring element are preserved, while other features are suppressed. 

Therefore morphological operations can simplify the image data, preserving their shape 

characteristics and eliminate irrelevancies. In view of applications, morphological 

operations can be employed for many purposes, including edge detection, segmentation, 

and enhancement of images. 

In Euclidean space, mathematical morphology is called Euclidean morphology and in 

digital setting it is called digital morphology. The actual implementation of 

morphological operators will be in digital setting, therefore in this thesis digital 

morphology setting will be considered. 

There are different notations in the mathematical morphology literature. For consistent 

description, notations of the Gonzalez [8] will be used in this thesis. An image object F 

in mathematical morphology terminology is represented as a set inside an n-dimensional 

Euclidean space Rn. A binary image 2D image object A is denoted by a set in R2 as: 

}),( ,1)( :{ 2RaaaafaA yx ∈===        (2.1)  

For convenience in the following sections, bold character z=(x,y) will be used to refer a 

point at the coordinate (x,y) of a set. 

2.1 Binary Morphology 

The theoretical foundation of binary mathematical morphology is the set theory [3]. In 

binary images, those points in the set are called the ‘foreground’ and those in the 

complement set are called the ‘background’. 

Besides dealing with the usual set operations of union and intersection, morphological 

operations are mainly dependent on translation operation. For convenience, ‘∪ ’ denotes 

the set-union, ‘∩ ’ denotes the set-intersection and ‘+’ inside the set notation denotes the 

vector addition in the following equations. To introduce the basic concepts of 
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morphological operators, several basic definitions are discussed first. Let A and B be 

sets in R2 where a=(ax,ay) and b=(bx,by). The translation, reflection and complement are 

defined as follows: 

a) Translation 

The translation of set A by point ),( 21 zzz = , denoted , is defined as: zA)(

{ AazaccA z }∈+== for     ,|)(        (2.2) 

 

Figure 2.1 Illustration of translation operation 

 
 

Figure 2.1 illustrates the definition of the translation operation; the symbol ▲ denotes 

the origin of each image set. The set A is an image in Z2. The result is displayed in the 

right part of Figure 2.1. 

b) Reflection 

The reflection of set B , denoted
∧

B , is defined as: 

{ AabwwB ∈−==
∧

for      ,| }       

 (2.3) 

c) Complement 
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The complement of a set A is the set of elements not contained in A: 

{ AwwAc ∉= | }         (2.4) 

2.1.1 Structuring Element 

Before explaining the basic operations of mathematical morphology, definition of the 

structuring element must be given. A structuring element is a small image that is 

overlapped on input image to compute a certain definition. The basic operations of 

binary and also grayscale images depend on what structuring elements are used. In this 

section only binary morphology are considered. In the next sections grayscale 

morphology will be introduced. 

 
Figure 2.2 Examples of 3x3 structuring elements 

 

Figure 2.2 shows structuring elements that are used commonly for binary images. The 

origins of the structuring elements are located on the center. The pixels marked ‘1’ are 

the points that should be considered during any binary morphological operations. Set of 

coordinate points of the first structuring element shown in Figure 2.2 are given as {(-1,-

1), (0,-1), (1, -1), (-1, 0), (0, 0), (1, 0), (-1, 1), (0, 1), (1, 1). 

2.2 Basic Operations of Mathematical Morphology 

There are two basic operations in mathematical morphology called namely; dilation and 

erosion. The other morphologic operators are derived from these basic operations. 

2.2.1 Binary Dilation 

Dilation is an operation that “grows” or “thickens” objects in a binary image. The 

specific manner and extent of this thickening is controlled by the structuring element. 

 Let A and B are sets in Z2, the dilation of A by B denoted by BA⊕ , is defined as 
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{ }BbAabazZzBA ∈∈+=∈=⊕  and  somefor  ,|2     (2.5) 

where A usually is an image and B is the structuring element. It can be shown that 

dilation is equivalent to a union of translation of the original image with respect to the 

structuring element 

( )b
Bb

ABA  
∈

=⊕ ∪          (2.6) 

 In other words, the dilation of A by B is the set consisting of all the structuring element 

origin locations where the reflected and translated B overlaps at least some portion of A.   

 
Figure 2.3 Example binary image and a structuring element 

 
 

Figure 2.3 shows a simple binary image containing a rectangular object and a structuring 

element. The bold rectangle on the centre of the structuring element denotes the center 

of it. Application of dilation operation to the binary image with the structuring element 

yields the result given in Figure 2.4. 

 
Figure 2.4 Dilated image  
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Dilation is found by placing the centre of template over each of the foreground pixels 

(1’s) of the original image and then taking the union of all the resulting copies of the 

structuring element, produced by using the translation. In Figure 2.4 black dots shows 

the expanded points after dilation operation and the image on the right of the Figure 2.4 

is the final resultant binary image. Dilation generally has an effect of expanding an 

image; so consequently, small holes inside foreground can be filled. 

 

In another sense, dilation can be a morphological operation on a binary image defined 

as: 

 

{ }| ( )zA B z B A
∧

⊕ = ≠ ∅∩         (2.7) 

this equation is based on obtaining the reflection of B about its origin and shifting this 

reflection by z. The dilation of A by B then is the set of all displacements, z, such that B
∧

 

and A overlap by at least one element. Based on this interpretation the equation above 

may be written as  

 

| ( )zA B z B A A
∧⎧ ⎡ ⎤⊕ = ⊆⎨ ⎢ ⎥⎣ ⎦⎩ ⎭
∩ ⎫

⎬        (2.8) 

In this equation the structuring element can be thought as a convolution mask. Although 

dilation is based on set operations, whereas convolution is based on arithmetic 

operations, the basic process of “flipping” B about its origin and then successively 

displacing it so that it slides over set (image) A is analogous to the convolution process. 

Figure 2.5 illustrates the dilation operation using a binary image. The original image is 

dilated with a 6x6 ‘disk’ type structuring element. 
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Figure 2.5 Binary dilation example 

 

2.2.2 Properties of Binary Dilation  

a) Dilation and erosion are duals of each other with respect to set complementation and 

reflection. 

( )c cA B A
∧

Θ = ⊕ B          (2.9) 

Proof: 

If set (  is contained in set A, then)z
B ( ) c

z
B A =∅∩ , then the preceding equation 

becomes 

( ) ( ){ }|
cc c

z
A B z B AΘ = =∅∩        (2.10) 

But the complement of the set of z’s that satisfy ( ) c
z

B A =∅∩  is the set of z’s such that 

.Thus ( ) c
z

B A ≠ ∅∩

( ) ( ){ }|

            

c c
z

c

A B z B A

A B
∧

Θ = ≠ ∅

= ⊕

∩
       (2.11) 

where the last step follows from the Eq (2.8). This concludes the proof. 

b) Dilation is commutative 
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A B B A⊕ = ⊕          (2.12) 

c) Dilation is associative 

( ) ( )A B C A B C⊕ ⊕ = ⊕ ⊕         (2.13) 

d) Dilation is extensive 

0 ,f B A A B∈ ⊆ ⊕          (2.14) 

e) Dilation is increasing 

A B implies A D B D⊆ ⊕ ⊆ ⊕        (2.15) 

2.2.3 Binary Erosion 

Erosion is an operation that “shrinks” or “thins” objects in a binary image. As in 

dilation, the manner and extent of shrinking is controlled by a structuring element. 

Let A and B are sets in Z2, the erosion of A by B denoted by A BΘ , is defined as 

{ }| ,  A B z z b A b BΘ = + ∈ ∀ ∈        (2.16) 

Whereas dilation can be expressed as a union of translates, erosion can be represented as 

an intersection of the negative translates. So the definition of erosion can be refined as 

 

( ) b
b B

A B A −
∈

Θ =∩          (2.17) 

where’–b’ is the scalar multiple of the vector ‘b’ by -1. 

Figure 2.6 shows the erosion operation on the binary image and structuring element 

given in Figure 2.3. Black dots are the shrinked points on the original binary image. 
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Figure 2.6 Eroded image 

 

Figure 2.6 depicts erosion as a process of translating the structuring element throughout 

the domain of the image and checking to see where it fits entirely within the foreground 

of the image. The output image in the right part of the Figure 2.6 has a value of 1 at each 

location of the origin of the structuring element, such that the element overlaps only 1-

valued pixels of the input image. 

The mathematical definition of erosion is similar to that of dilation. The erosion of A by 

B, denoted , is defined as  A BΘ

( ){ }| c
z

A B z B AΘ = ≠ ∅∩         (2.18) 

In other words, erosion of A by B is the set of all structuring element origin locations 

where the translated B has no overlap with the background of A. 

 

 

 
Figure 2.7 Binary erosion example 
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Figure 2.7 is an example of the erosion of a binary image. The image on the left is 

eroded with a 10x10 disk typed structuring element. As it is seen on the right of the 

Figure erosion shrinks the original image and eliminates the small enough peaks. 

2.2.4 Properties of Binary Erosion 

a) Erosion is not commutative as opposed to dilation 

A B B AΘ ≠ Θ           (2.19) 

b) Extensivity 

0 ,f B A B A∈ Θ ⊆          (2.20) 

c) Erosion is increasing  

,A C implies A B C B B C implies A B A C⊆ Θ ⊆ Θ ⊇ Θ ⊆ Θ

k

 

d) Chain rule 

1 1( ... ) (...( ) ... )kA B B A B BΘ ⊕ ⊕ = Θ Θ Θ       (2.21) 

2.2.5 Binary Opening 

The opening of a binary image A by the structuring element B, denoted by A BD  is 

defined as 

( )A B A B= Θ ⊕D B          (2.22) 

Thus, the opening A by B is the erosion of A by B, followed by a dilation of the result by 

B. 

The geometric interpretation of the opening process is shown in Figure 2.8. Structuring 

element B is viewed as a “rolling ball.” The boundary of A BD  is then established by the 

points in B that reach the farthest into the boundary of A as B is rolled around the inside 

of this boundary. This geometric fitting property of the opening operation leads to a set-
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theoretic formulation, which states that the opening of A by B is obtained by taking the 

union of all Translates of B that fit into A. That is, opening can be expressed as a fitting 

process such that B 

( ) ( ){ }|
z z

A B B B=D ∪ A⊆         (2.23) 

 

 
Figure 2.8 Illustration of binary opening process 

 

The effects of opening process on the original image are smoothing, reducing noise from 

quantization or the sensor and pruning extraneous structures. These effects result from 

the fact that the structuring element can not fit into the regions. Therefore, it can be said 

that the result of the opening process heavily depends on the shape of structuring 

elements. 

 
Figure 2.9 Binary opening process 
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The effects of the opening mentioned before are clearly shown in the Figure 2.9. The 

original image on the left of the Figure 2.9 are opened by a 7x7 square structuring 

element The vortices of the triangle foreground have been cut out because the original 

image is opened by a structuring element whereas the sides of the square are preserved 

due to the square structuring element. 

2.2.6 Binary Closing 

The closing of a binary image A by the structuring element B, denoted by A B•  is 

defined as 

( )A B A B B• = ⊕ Θ          (2.24) 

Thus, the closing A by B is the dilation of A by B, followed by an erosion of the result by 

B. 

Closing has a similar geometric interpretation, except that in this case, the structuring 

element B is rolled on the outside of the boundary of the image object A as seen in 

Figure 2.10. 

 
Figure 2.10 Illustration of binary closing process 

 

In another aspect, the definition of closing can be given as; a point w is an element of 

A B•  if and only if ( )z
B A ≠ ∅∩  for any translate of ( )z

B  that contains w. 

Closing operation tends to smooth sections of contours but, as opposed to opening, it 

generally fuses narrow breaks and along thin gulfs, eliminates small holes, and fills gaps 

in the contour. Figure 2.11 shows how closing works 
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Figure 2.11 Binary closing process 

 

2.2.7 Properties of Binary Opening and Closing 

a) Opening and closing operations are translation invariant 

( )xA B A B=D D        (2.25) ( )xA B A B• = •

b) Opening is anti-extensive 

A B A⊆D           (2.26) 

c) Closing is extensive 

A A B⊆ •           (2.27) 

d) Opening and closing are duals of each other 

( )c cA B A B
∧

• = D          (2.28) 

2.3 Grayscale Morphology 

A gray-scale image can be considered as a three-dimensional set where the first two 

elements are the x and y coordinates of a pixel and the third element is gray-scale value. 

In this section binary morphology is extended to gray-scale morphology. The key issue 

in grayscale morphology is to use ‘Maximum’ and ‘Minimum’ functions to define gray-

scale morphological operators. Using these concepts, gray-scale morphology can be 
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easily extended from binary morphology. The differences between binary and gray-scale 

morphology results from the definitions of dilations and erosion because other operators 

basically depend on these. Except for these definitions, gray-scale morphology is fairly 

similar to the binary case. Hence in this section, definitions for gray-scale dilation and 

erosion as well as some of examples for gray-scale dilation and erosion are given. 

 Before giving the definitions of gray-scale dilation and erosion, structuring elements of 

the gray-scale morphological operations could have the same domains as those in binary 

morphology. However as will be seen in the definitions below, a gray-scale structuring 

element has certain values (‘b’) instead of having only position value ‘1’ or ‘0’ showing 

its domain. Therefore as mentioned before, grayscale image can be thought of as a three-

dimensional (x, y) coordinates and grayscale value at that point. It can also be applied to 

the gray-scale structuring element. With this concept definition gray-scale definition of 

grayscale dilation and erosion are given below. 

2.3.1 Gray-scale Dilation 

Grayscale dilation of f by b, denoted f b⊕ ,is defined as 

( ) ( ) ( ) ( ){ }( , ) max , ( , ) | , ; ( , )f bf b s t f s x t y b x y s x t y D s y D⊕ = − − + − − ∈ ∈  (2.29) 

where fD  and  are the domains of  f and b, respectively. bD

An example of gray-scale dilation is given below. F represent a 5  image, B 

represents a 3  non-flat structuring element as given in Figure 2.12 

5×

3×

   
     B  F 

Figure 2.12 Calculation of grayscale dilation 
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The x, y plane is shown with the numbers representing the intensity at (x, y). The origin 

of B is shown by the bold number at the center. The origin of F is at the upper left 

corner. To start the algorithm, the origin of B is superimposed on the center element of 

F. Since B is a3 , the boundary elements of F is ignored. Those values are set to zero. 

For  calculation is as follows using equation 2.29. 

3×

(1,1)Fd

fd(1,1) = max{f(1-i,1-j)+b(i,j)| i=-1,0,1; j=-1,0,1} 

 = max {f(0,0)+b(1,1), f(0,1)+b(1,0), f(0,2)+b(1,-1) 

f(1,0)+b(0,1), f(1,1)+b(0,0), f(1,2)+b(0,-1) 

f(2,0)+b(-1,1), f(2,1)+b(-1,0), f(2,2)+b(-1,-1)}, 

 = max{0+0, 0+1, 0+0 

0+1, 1+2, 5+3 

0+0, 3+2, 2+0} 

 = max{0 ,1, 0 

1, 3, 8 

0, 5, 2} 

 = 8 

If we continue this process we obtain the result shown in Figure 2.13 below. The 

grayscale value of f(1,1) is 8.  

 
Figure 2.13 Gray-scale dilation example 
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2.3.2 Gray-scale Erosion 

Grayscale dilation of  f  by b, denoted f bΘ ,is defined as 

( ) ( ) ( ) ( ){ }( , ) max , ( , ) | , ; ( , )f bf b s t f s x t y b x y s x t y D s y DΘ = + + − + + ∈ ∈  

           (2.30) 

where fD  and  are the domains of each image function. bD

An example of the gray-scale erosion is given below. If the same F and the same 

structuring element B is used in Figure 2.12, then the calculation of gray-scale erosion 

using equation 2.30 is as follows, 

 

   
            B   F 

fe(2,2) = min{f(2+i,2+j)-b(i,j)| i=-1,0,1; j=-1,0,1} 

 = min {f(1,1)-b(-1,-1), f(1,2)-b(-1,0), f(1,3)-b(-1,1) 

f(2,1)-b(0,-1), f(2,2)-b(0,0), f(2,3)-b(0,1) 

f(3,1)-b(1,-1), f(3,1)-b(1,0), f(3,2)-b(1,1)}, 

 = min {1-0, 5-3, 0-0 

1-2, 2-0, 4-1 

0-0, 0-1, 4-0} 

 = min {1 ,2, 0 

-1, 2, 3 
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0, -1, 4} 

 = -1 

 
Figure 2.14 Gray-scale erosion example 

Gray-scale dilation and erosion are duals with respect to function completion and 

reflection. That is, the relation between these can be expressed as 

( ) ( ) (, ( ) ,c c )f b s t f b s t
∧

Θ = ⊕        (2.31) 

where  

( , )cf f x y= − and        (2.32) ( , )b b x y
∧

= − −

The minimum operator will interrogate a neighborhood with a certain domain and select 

the smallest pixel value to become the output value. This has the effect of causing the 

bright areas of an image to shrink or erode. Similarly gray-scale dilation is performed by 

using the maximum operator to select the greatest value in neighborhood. Figure 2.15 

shows a simple image and its dilation and erosion with a ‘flat top’ structuring element. 

The term ‘flat top’ refers to the fact that the values (b’s) of the structuring element are all 

zero in a certain domain. In this example a 512 x 512 gray-scale Lena image and a disk-

shaped structuring element is used. The radius of the structuring element is 4 pixels. 
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Figure 2.15 An example of gray-scale dilation and erosion 

2.3.3 Gray-scale Opening and Closing 

Gray-scale opening and closing are defined below in a similar manner as the binary case. 

The only difference is, when the operations are carried out, these opening and closing 

operations use gray-scale dilation and erosion described in the previous section. 

The effect of gray-scale opening and closing is shown in Figure 2.16. As binary 

morphological operations do, gray-scale opening is anti-extensive and gray-scale closing 

is extensive. Both operations make an original image smooth along the nature of 

minimum and maximum functions. Also, both operations have ‘increasing’, 

‘idempotent’ properties. 

 
Figure 2.16 An example of gray-scale opening and closing 
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2.4 The Hit or Miss Transformation 

The hit-and-miss transform is a basic tool for shape detection. This requires two 

structure elements. One element defines the foreground features to detect while the other 

defines the background features to detect.  

 

The hit-and-miss transform is a general binary morphological operation that can be used 

to look for particular patterns of foreground and background pixels in an image. It is 

actually the basic operation of binary morphology since almost all the other binary 

morphological operators can be derived from it. As with other binary morphological 

operators it takes as input a binary image and a structuring element (or two structuring 

elements), and produces another binary image as output.  

 

Hit-and-miss is defined as the intersection of the erosion of A (the object or objects in a 

binary image) by the first structure element and the erosion of the complement of A by 

the second structure element. 

 

( ) ( )1
c

2HoMT A B A B= Θ ∩ Θ        (2.33) 

 

So, the output of a hit-or-miss transform is the set of points which match the erosion of 

A by  (the foreground) and those which match the erosion of the complement of A 

with  (the background). The result is the matching of certain edge features (exactly 

which features depends on the shapes within the two structure elements).  

1SE

2SE

The hit-or-miss operation is performed in much the same way as other morphological 

operators, by translating the origin of the structuring element to all points in the image, 

and then comparing the structuring element with the underlying image pixels. If the 

foreground and background pixels in the structuring element exactly match foreground 

and background pixels in the image, then the pixel underneath of the origin of the 

structuring element is set to foreground color. If it does not match, then that pixel is set 

to the background color. 
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Figure below shows the hit-or-miss transformation to identify the locations of the cross-

shaped pixel configuration 

 

 

     
a) Original image    b) Structuring element 1B  

 

     
 c) Erosion of A by 1B     d) Structuring element 2B  
 

   
e) Complement of the original image  f) Erosion of by cA 2B  
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g) Output image 

Figure 2.17 Hit or miss transformation 

 

Figure 2.17 a) contains this configuration of pixels in two different locations. Erosion 

with structuring element 1B  determines the locations of foreground pixels that have 

north, east, south, and west foreground neighbors. Erosion of the complement with 

structuring element 2B  determines the locations of all the pixels whose northeast, 

southeast, southwest, and northwest neighbors belong to the background. Figure 2.17 g) 

shows the intersection of these two operations. Each foreground pixel of Figure 2.17 g) 

is the location of a set of pixels having the desired configuration. 

2.5 Thinning 

Thinning [22] means reducing binary objects or shapes in an image to strokes that are a 

single pixel wide. The thinning of a set A by structuring element B, denoted A B⊗ , can 

be defined in terms of the hit-or-miss transform: 

( ),  A B A HoMT A B⊗ = −         (2.34) 

A more useful expression for thinning A symmetrically is based on a sequence of 

structuring elements: 

{ } { }1 2 3, , ,...., nB B B B B=         (2.35) 

where iB  is a rotated version of 1iB − . Then definition for thinning is given as: 
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{ } ( )( )(( )1 2... ... n)A B A B B⊗ = ⊗ ⊗ ⊗ B       (2.36) 

The process is to thin A by one pass with 1B , then thin the result with one pass of 2B , 

and so on, until A is thinned with one pass of nB . The entire process is repeated until no 

further changes occur. Each individual thinning pass is performed using Equation 2.34. 

2.6 Structuring element Decomposition 

When computing morphological operations on images, it is necessary to decompose, if 

possible, the structuring element into smaller ones. 

It is shown that dilation is associative. That is 

( ) ( )A B C A B C⊕ ⊕ = ⊕ ⊕         (2.37) 

Suppose that a structuring element B can be represented as a dilation of two structuring 

elements 1B  and 2B : 

1 2B B B= ⊕           (2.38) 

Then ( ) ( )1 2 1 2A B A B B A B B⊕ = ⊕ ⊕ = ⊕ ⊕ . In other words, dilating A with B is the 

same as first dilating A  with 1B , and then dilating the result with 2B .Then it is concluded 

that B  can be decomposed into the structuring elements 1B  and 2B . 

The associative property is important because the time required computing dilation is 

proportional to the number of nonzero pixels in the structuring element. 

 For example, dilation with an 5 5×  array of 1’s: 
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This structuring element can be decomposed into a five-element row of 1s and a five-

element column of 1s: 

1
1

1 1 1 1 1 1
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥⊕⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The number of elements in the original structuring element is 25, but the total number of 

elements in the row-column decomposition is only 10. This means that dilation with the 

row structuring element first, followed by dilation with the column element, can be 

performed 2.5 times faster than dilation with the 5 5×  array of 1s. 
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CHAPTER 3 

EDGE DETECTION USING CLASSICAL EDGE DETECTORS 

Image edge detection is a basic tool in image segmentation since edges carry valuable 

features of the image. Edges in image are formed due to variations of illumination in the 

scene. Hence, the conventional approach to edge detection is composed of “gradient 

calculation” and “thresholding”. For the first step, the original image is transformed into 

a gradient image which represents the edge strength of each pixel. A threshold is then 

applied to classify each pixel to the edge point or non-edge point. Traditionally, the 

gradient image can be obtained by means of first-order differential operators or a 

Laplacian operator which can enhance the spatial intensity changes in the image. 

Morphological edge detectors [10-12] have also been proposed for their robustness 

under noisy conditions and some of them are discussed in the following section. The 

classification of edge detectors discussed in this chapter is based on the behavioral study 

of these edges with respect to the following operators: 

• Gradient based edge detectors 

• Laplacian of Gaussian 

• Gaussian edge detectors  

3.2 Gradient Based Edge Detectors 

Traditional methods to find the gradient of an image typically apply a first-order 

differential operation on the original image. This operation is similar to linear filtering 

which consists of scanning the original image with certain masks. The sizes and values 

of the mask are derived from standard mathematical expressions and approximated with 

ad 
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hoc procedures to digital settings. The most popular gradient-based edge detectors are 

Roberts cross gradient operator, Sobel operator and the Prewitt operator. 

3.2.1 Derivative of a Digital Function 

The derivatives of a digital function are defined in terms of differences. There are 

various ways to define these differences. However, any definition used for a first 

derivative 1) must be zero in flat segments (areas of constant gray-level values); 2) must 

be nonzero at the onset of a gray-level step or ramp; and 3) must be nonzero along 

ramps. Similarly, any definition of a second derivative 1) must be zero in flat areas; 2) 

must be nonzero at the onset and end of a gray-level step or ramp; and 3) must be zero 

along ramps of constant slope. 

A basic definition of the first-order derivative of a one-dimensional function ( )f x  is the 

difference  

( 1) (f )f x f x
x
∂

= + −
∂

         (3.1) 

partial derivative is used in the above equation because an image function is composed 

of two variables, ( , )f x y . 

Similarly, definition of second order derivative as the difference is 

2

2 ( 1) ( 1) 2 (f )f x f x f
x

∂
= + + − −

∂
x          (3.2) 

3.3 Gradient Operators 

First-order derivatives of a digital image are based on various approximations of the 2-D 

gradient. The gradient of an image ( , )f x y  at location ( , )x y  is defined as the vector 

f x

y

f
G x

fG
y

∂⎡ ⎤
⎢ ⎥⎡ ⎤ ∂⎢ ⎥Δ = =⎢ ⎥ ∂⎢ ⎥⎣ ⎦
⎢ ⎥∂⎣ ⎦

         (3.3) 
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it is well known from vector analysis that the gradient vector points in the direction of 

maximum rate of change of f at coordinates ( , )x y . 

An important quantity in edge detection is the magnitude of this vector, denoted fΔ , 

where 

1/ 22 2

1/ 222

mag( f )

    

    

x y

f

G G

f f
x y

Δ = Δ

⎡ ⎤= +⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

        (3.4) 

The computational complexity of implementing Eq (3.4) over an entire image is not 

trivial, and it is common practice to approximate the magnitude of the gradient by using 

the absolute values instead of squares and square roots: 

f x yG GΔ ≈ +          (3.5) 

This quantity gives the maximum rate of increase of ( , )f x y  per unit distance in the 

direction of Δf . It is a common (although not strictly correct) practice to refer to fΔ  

also as the gradient. 

The direction of the gradient vector is also an important property. Let  represent 

the direction angle of the vector  at ( ,

( , )a x y

Δf )x y . Then, from vector analysis, 

1( , ) tan y

x

G
a x y

G
− ⎛ ⎞

= ⎜
⎝ ⎠

⎟          (3.6) 

where the angle is measured with respect to the x-axis. The direction of an edge at ( , )x y  

is perpendicular to the direction of the gradient vector at that point. The other method of 

calculating the gradient is given by estimating the finite differences. 

0

( , ) ( ,lim
h

)f f x h y f x y
x h→

∂ + −
=

∂
       (3.7) 
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0

( , ) ( , )lim
h

f f x y h f x y
y h→

∂ + −
=

∂
       (3.8) 

therefore this finite difference is approximated as 

0

( , ) ( , )lim ( 1, ) ( , )
h

x

f f x h y f x y f x y f x y
x h→

∂ + −
= = +

∂
−   ( )1xh =  (3.9) 

( , ) ( , ) ( , 1) ( , )
y

f f x y h f x y f x y f x y
y h
∂ + −

= = +
∂

−   ( )1yh =   (3.10) 

Computation of the gradient of an image is based on obtaining the partial derivatives 

f x∂ ∂  and f y∂ ∂  at every pixel location. Let the 3 3×  area shown in Figure 3.1 

represent the gray levels in a neighborhood of an image 

 

 
Figure 3.1 3 3×  Neighborhood of an image  

 
The center point, z5, denotes ( , )f x y , z1 denotes ( 1, 1f x y )− − , and so on. 

3.3.1 Roberts Edge Detector 

It is known that the simplest approximations to a first-order derivative that satisfy the 

conditions stated are  and8 5( )xG z z= − 6 5(yG z z )= − . Two other definitions proposed 

by Roberts [8] are 

           (3.11) 9 5(xG z z= − )

)8 6(yG z z= −          

 (3.12) 
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If we used the equation (3.4), then gradient is computed as 

( ) ( )
1/ 22

9 5 8 6f z z z z⎡Δ = − + −⎣
2 ⎤
⎦        (3.13) 

If Eq (3.5) is used to calculate the approximated gradient values, then 

9 5 8 6f z z z zΔ ≈ − + −         (3.14) 

this equation can be implemented using the masks given in  Figure 3.2 and these masks 

are referred to as the Roberts cross-gradient operators. Masks of even size are hard to 

implement because they do not have a clear center.  

The calculation of the gradient magnitude of an image is obtained by the partial 

derivatives f
x
∂
∂

 and f
y
∂
∂

 at every pixel location. The simplest way to implement the first 

order partial derivative is by using the Roberts cross gradient operator. Therefore 

( 1) (f )f x f x
x
∂

= + −
∂

         (3.15) 

( 1) (f )f y f
y
∂

= + −
∂

y         (3.16) 

The operators given above can be implemented by approximating them two  masks. 

The Roberts operator masks are 

2 2×

 
Figure 3.2 Roberts operator 

 
These filters have the shortest support, thus the position of the edges is more accurate, 

but the problem with the short support of the filters is its sensitivity to noise. It also 

produces very weak responses to genuine edges unless they are very sharp. 
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3.3.2 Prewitt Edge Detector 

The Prewitt edge detector is a much better operator than the Roberts operator. This 

operator having a  masks deals better with the effect of noise. The partial 

derivatives of the Prewitt operator are calculated as 

3 3×

( ) (7 8 9 1 2 3xG z z z z z z= + + − + + )

)

        (3.17) 

( ) (3 6 9 1 4 7yG z z z z z z= + + − + +        (3.18) 

Therefore the Prewitt masks are as follows 

 
Figure 3.3 Prewitt masks 

 

These masks have longer support. They differentiate in one direction and average in the 

other direction, so the edge detector is less vulnerable to noise. 

It is possible to modify the 3 3×  masks in Figures 3.3 so that they have their strongest 

responses along the diagonal directions. 

 
Figure 3.4 Modified Prewitt masks 

3.3.3 Sobel Edge Detector 
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The Sobel edge detector is very much similar to the Prewitt edge detector. The 

difference between the both is that the weight of the center coefficient is 2 in the Sobel 

operator. The partial derivatives of the Sobel operator are calculated as 

( ) (7 8 9 1 2 32 2xG z z z z z z= + + − + + )

)

      (3.19) 

( ) (3 6 9 1 4 72 2yG z z z z z z= + + − + +       (3.20) 

( ) ( ) ( ) ( )7 8 9 1 2 3 3 6 9 1 4 72 2 2 2f z z z z z z z z z z z zΔ = + + − + + + + + − + +   (3.21) 

and the Sobel masks are as follows 

 
Figure 3.5 Sobel operator 

 

The difference between the third and first rows of the 3 3×  image region approximates 

the derivative in the x-direction, and the difference between the third and first columns 

approximates the derivative in the y-direction. The masks shown in Figure 3.5 are called 

Sobel operators. 

Although the Prewitt masks are easier to implement than the Sobel masks, the later has 

better noise suppression characteristics. 

It is possible to modify the 3 3×  masks in Figure 3.4 so that they have their strongest 

responses along the diagonal directions. The two additional Sobel masks for detecting 

discontinuities in the diagonal directions are shown in Figure 3.6 
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Figure 3.6 Modified Sobel masks 

 

3.3.4 The Laplacian  

The principle used in Laplacian of Gaussian method is, the second derivative of a signal 

is zero when the magnitude of the derivative is maximum. The Laplacian for a function 

image ( , )f x y  of two variables is defined as  

( )
2 2

2
2( , ) 2

f ff x y
x y

∂ ∂
Δ = +

∂ ∂
        (3.22) 

In order to be useful for digital image processing, this equation needs to be expressed in 

discrete form. The partial second-order derivative in the x-direction 

2

2 ( 1, ) ( 1, ) 2 ( , )f f x y f x y f x y
x

∂
= + + − −

∂
      (3.23) 

and similarly in the y-direction, as 

2

2 ( , 1) ( , 1) 2 ( , )f f x y f x y f x y
y

∂
= + + − −

∂
      (3.24) 

The digital implementation of the two-dimensional Laplacian is obtained by summing 

these two components: 

[ ]2f ( 1, ) ( 1, ) ( , 1) ( , 1) 4 ( , )f x y f x y f x y f x y f x yΔ = + + − + + + − −   (3.25) 

and the other implementation of the two-dimensional Laplacian is 
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2 ( 1, 1) ( , 1) ( 1, 1) ( 1, ) 8 ( , )
f

( 1, ) ( 1, 1) ( , 1) ( 1, 1)
f x y f x y f x y f x y f x y
f x y f x y f x y f x y

− + + + + + + + − − +⎡ ⎤
Δ = ⎢ ⎥+ + − − + − + + −⎣ ⎦

 (3.26) 

This equation can be implemented using the mask shown in Figure 3.7,  

 
Figure 3.7 Laplacian 

 

The above partial derivative equations are isotropic for rotation increments of  and 

, respectively. Edge detection is obtained by convolving an image with the Laplacian 

at a given scale and then mark the points where the result have zero value, which is 

called the zero –crossings. These points should be controlled to ensure that the gradient 

magnitude is large. The algorithm is developed by Marr Hildreth [13]. 

90D

45D

The Laplacian generally is not used in its original form for edge detection for several 

reasons: As a second-order derivative, the Laplacian typically is unacceptably sensitive 

to noise. The magnitude of the Laplacian produces double edges. Finally, the Laplacian 

is unable to detect edge direction. 

3.4 Marr and Hildreth method 

The Roberts and Sobel operators are the first derivative edge detectors. These filters give 

very little control over smoothing and edge localization. Marr proposed a Laplacian of 

Gaussian (LOG) method, which detects edges by checking zero-crossing of the second 

derivative of Gaussian filtered image. 

The two-dimensional Gaussian function with zero mean and standard deviation σ  is 

defined by the equation 
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2 2 22

2 22 2
2 2

1 1( , )
2 2

x y yx

G x y e e eσ σ 22σ

πσ πσ

⎛ ⎞ ⎛⎛ ⎞+
− −−⎜ ⎟ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝= =

⎞
⎟⎟
⎠      (3.27) 

For continuous variables Laplacian of Gaussian is defined as 

2 2

2
2 2 2

22
6

2( ( , ))
2

x y
x yG x y e σσ

πσ

⎛ ⎞+
−⎜ ⎟⎜
⎝+ −

Δ =
⎟
⎠       (3.28) 

The edge pixels in image are determined by a single convolution operation. The basic 

principle of this method is to find the position in an image where the second derivatives 

become zero. These positions correspond to edge positions. The Gaussian function 

firstly smoothes or blurs any edge. Blurring is advantageous here because Laplacian 

would be infinity at unsmoothed edge and therefore edge position is still preserved. 

LOG operator is still sensitive to noise, but by ignoring zero-crossings produced by 

small changes in image intensity can reduce the effects of noise. 
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CHAPTER 4 

EDGE DETECTION USING MORPHOLOGICAL OPERATORS 

A simple method of performing gray-scale edge detection in a morphology-based vision 

system is to take the difference between an image and its erosion by a small rod shaped 

structuring element. The difference image is the image of edge strength. And if a 

threshold operation is applied to the image, a binary edge image can be obtained. The 

simplest morphological edge detectors are the dilation residue and erosion residue edge 

detectors [10]. 

4.1 Erosion Residue Edge Detector 

The center of local neighborhood is (0  and a point which is a distance ,0) rδ  from the 

center in row direction and a distance cδ  from the center in column direction is denoted 

by ( ),r cδ δ .  

The erosion of a gray-scale image ( , )f r c  by the rod structuring element b of radius 1 is 

given by the formula. 

1( , )
( , ) min [ ( , ) ( , )]

rodi j D
e r c f r i c j b r c

∈
= + + −       (4.1) 

where the domain of the structuring element is 

( ) ( ) ( ) ( ){ }1 0, 1 , 0,1 , 1,0 , 1,0rodD = − −  and { }1: 0,..., 255rodb D →  

0
0 * 0

0
 

Figure 4.1 Rod structuring element
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Since a rod is flat on top, the gray-scale value of all the ( ),b r c , ( ) 1, rodr c D∈ , is zero. 

Then the formula given in (4.1) for the zero height structuring element becomes 

1( , )
( , ) min [ ( , )]

rodi j D
e r c f r i c j

∈
= + +        (4.2) 

The erosion residue edge detector produces the edge strength image  defined by eG

1

1

( , )

( , )

( , ) ( , ) ( , )
( , ) min [ ( , )]

max [ ( , ) ( , )]
rod

rod

e

i j D

i j D

G r c f r c e r c
f r c f r i c j

f r c f r i c j
∈

∈

−
= − + +

= − +

 = 
            

            +

)

      (4.3) 

Since  includes exactly the four connected neighbors of position . The edge 

strength image is 

1rodD (0,0

[ ]
4( , ) ( , )

( , ) max ( , ) ( , )e i j N r c
G r c f r c e r c

∈
− =        (4.4) 

where  is the set of four connected neighbors of position . 4 ( , )N r c ( ),r c

To compare the performance of the nonlinear morphological edge operator with the 

linear Laplacian operator, it is applied to four perfect digital step edge patterns of edge 

contrasts E running in directions 0o, 90o, 45o, and 135o, respectively. 

0

0 0 0

E E E
E E E

E D

  

90

0
0
0

E E
E E
E E

E D 45

0
0 0

E E E
E E
E

E D

 

135

0
0 0

E E E
E E

E
E D

 

Figure 4.2 Digital Step Edge Patterns 
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The magnitude of the responses of G and 2 fΔ  are as follows: 

0 90 45 13

2 2 2
e

5
E E E E

G E E E E
f E E E EΔ

D D D D

 

Figure 4.3 Erosion residue edge detector and Laplacian 

 

Thus the responses of 2 fΔ  to these edges are E, E, 2E and 2E. For diagonal edges 

Laplacian is two times the original value of the edge patterns. This problem can be 

solved if morphological operator  is used instead ofeG 2 fΔ .  produces values in the 

same range as the original gray-scale values, which is most convenient on any computer 

vision system. 

eG

Both operators are applied to a single noise pattern with noise height h given in Figure 

4.4. 

0 0 0
0 0
0 0 0

h  

Figure 4.4 Single noise pattern 

 

The responses of  and eG 2 fΔ  are h and 4h, respectively. Thus although both  and eG

2 fΔ  are noise sensitive, the noise response of  2 fΔ  is four times the response of   

and hence four times the response of 

eG

2 fΔ  on a horizontal or vertical ideal step edge 

with edge contrast h. 

If the neighborhood size of the morphologic edge detector is increased by increasing the 

size of the structuring element, for example; an eight-connected neighborhood edge 

operator by changing the structuring element to be flat on top and have domain in given 

in equation (4.5) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }8 1, 1 , 0, 1 , 1, 1 , 1,0 , 1,0 , 1,1 , 0,1 , 1,1connectedD − = − − − − − −   (4.5) 
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then the edge strength then will be 

[ ]
8

8 ( , ) ( , )
( , ) max ( , ) ( , )e connected i j N r c

G r c f r c f i− ∈
= − j

1

     (4.6) 

where  is the set of eight connected neighbors of image position (r,c). 8 ( , )N r c

The corresponding Laplacian operator for the eight connected neighborhood is 

1 1 1
1 8
1 1 1

−  

Then application of this operator to the four perfect digital step edge patterns 

0
E D ,

90
E D ,

45
E D , 135

E D . The magnitude of the responses of  and eG 2 fΔ  are as follows: 
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Figure 4.5 Eight connected erosion residue and Laplacian 

with increased neighborhood size, the 2 fΔ  operator  achieves uniform performance on 

these edges. The response of  and eG 2 fΔ  on a single noise pattern given in Figure 4.4 

is h and 8h, respectively. Since both operators are noise sensitive but Laplacian being 

more sensitive. This shows that raw Laplacian operator is not a good edge detector in 

noisy images. 

It is common to filter noisy images by a Gaussian filter and then apply a Laplacian 

operator. Edges are localized at zero crossings of the Laplacian (Marr and Hildreth). But 

in this case Laplacian can change the locations of the most of the edges in real images. 

Since the erosion residue morphologic edge detector is noise sensitive; it can not be a 

good edge detector. Increasing the neighborhood size of the structuring element for 
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erosion residue edge detector fails in reducing the amount of noise. If erosion residue 

edge detector is applied to the image pattern shown in Figure 4.6 

0

F F F F F
F F F F F
F F F F
F F F F F
F F F F F

 

Figure 4.6 Noise pattern 

 

Then the pattern given in Figure 4.6 is a flat area with pixel intensity F and a noise spike 

at the center of this area with pixel intensity zero. The response of morphological edge 

operator is given in Figure 4.7. 
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Figure 4.7 Response to noise pattern of morphological residue operator 

 

It has the same value F for each of the eight-connected neighbors of the center point. 

Thus increasing the size of the neighborhood of the morphological operator results an 

increase in the pixel which is assigned to F. As a matter of fact, each pixel of the 

neighborhood support except the center point will be assigned to F. Therefore a larger 

neighborhood can result in worse results with this operator. 

The erosion residue morphological edge detector is position biased. It only gives edge 

strength to border pixels on that side of the edge where the pixels have the higher value. 

To solve this problem, the dilation residue edge detector is used conjunction with the 

erosion residue edge detector. 
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4.2 Dilation Residue Edge Detector 

The dilation residue edge detector takes the difference between a dilated image and its 

original image. If the structuring element for the dilation is a rod of radius 1, then the 

dilation of the gray-scale image ( , )f r c is 

[ ]
1( , )

( , ) max ( , )
rodi j D

d r c f r i c j
∈

= = − −        (4.7) 

and the edge strength image is 

4( , ) ( , )

( , ) ( , ) ( , )
max [ ( , ) ( , )]

 = 
            

d

i j N x y

G r c d r c f r c
f i j f r c

∈

−
= −       (4.8) 

This operator only gives the edge strength to that side of the edge which has the lower 

value. 

A position independent edge operator is obtained by a combination of operators  

and  using the pixel wise minimum, maximum, or sum. That is 

( , )eG r c

( , )dG r c

( , )

max

( , )

( , ) max( ( , ), ( , ))
max [ ( , ) ( , )]

r c

e d

i j N

E r c G r c G r c
f r c f i j

∈

=
= −
  

                  (4.9) 

( , )N r c  is the neighborhood support of the structuring element for both dilation and 

erosion operators. 

To see the performance of the operator ( , )E r c , it is applied on four perfect digital step 

edge patterns of edge contrast E, one ideal ramp edge pattern of edge contrast E, and one 

single noise pattern of amplitude N. 
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Figure 4.8 Different directions step images and noise 

 
The results of this operator are given in Figure 4.9 
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Figure 4.9 Result of dilation residue edge detector 
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It is understood from the results that the edge operator  performs perfectly on 

ideal edge step patterns however it is not very good for the ramp edge pattern and 

sensitive to noise. It responds with five noise patterns to a single noise pattern. 

max ( , )E r c

In the second case summation version of the edge operator is investigated which is given 

by the formula  

( , ) ( , ) ( , )sum e dE r c G r c G r c= +        (4.10) 

Similarly this operator is applied to the edge patterns given in Figure 4.8 
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Figure 4.10 Summation version of dilation and erosion residue edge operator 

 

It is seen from Figure 4.10 that the results are same for the summation version of the 

edge detector as in the maximum version except for the ramp edge pattern. For the ramp 

edge pattern, it detects an edge line whose edge strength equals edge contrast and two 

lines on both sides of the edge line whose edge strength equals half-edge contrast. 

Therefore if a threshold operation is applied to resultant ramp edge pattern greater than 

the half-edge contrast, it is possible to have perfect performance. 
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As a final case minimum version of the edge detector is investigated given by the 

formula 

min ( , ) min( ( , ), ( , ))e dE r c G r c G r c=        (4.11) 

The result of this operator to same edge patterns given in Figure 4.8 are shown below. 
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Figure 4.11 Minimum version of dilation and erosion residue operators 

 

The result of this operator for the ramp edge pattern and noise are promising. Because it 

is noise insensitive and it detects a single edge line having an edge contrast . But it 

is not good for the detection of step edge patterns. So if we blur the step edge patterns 

first and then apply the edge detector, result will be very good in performance. 

/ 2E

4.3 Effective Morphologic Edge Detectors 

From the results of the simplest edge detectors, they are either sensitive to noise or can 

not detect step edge patterns. In this section improved versions of the morphologic edge 

detectors are introduced. 

Let D1, D2, D3, D4 and D be structuring elements which have domains 
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( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ({ }

1
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3

4

1,0 , 0,0 , 0,1
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D

D

D

D

D

= −

= −

= − −

=

= − − − − )

      (4.12) 

and this is given diagrammatically in Figure 4.12 
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Figure 4.12 Structuring elements in different directions 

 

Suppose dilation and erosion of ( , )f r c  by the flat top structuring element whose 

domain is a is denoted by  and  respectively. Then the 

improved dilation residue operator is defined as 

( , )adilation r c ( , )aerosion r c

( ){ }1

' ''( , ) min ( , ) ( , ),  , ( , ),  ( , )
rodd D DG r c dilation r c f r c dilation r c f r c G r c= − − d   (4.13) 

where is defined as '' ( , )dG r c

{ }1 2 3

'' ( , ) max ( , ) ( , ) , ( , ) ( , )d D D D DG r c dilation r c dilation r c dilation r c dilation r c= − −
4

 

           (4.14) 

and the improved erosion residue operator is defined as  

( ){ }1

' ''( , ) min ( , ) ( , ),  ( , ) , ,  ( , )
rode D DG r c f r c erosion r c f r c erosion r c G r c= − − e   

           (4.15) 
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where is defined as '' ( , )eG r c

{ }1 2 3 4

'' ( , ) max ( , ) ( , ) , ( , ) ( , )e D D DG r c erosion r c erosion r c erosion r c erosion r c= − − D  

           (4.16) 

If we  and   is combined using pixel wise summation, a noise 

insensitive and no position biased edge detector will be 

'' ( , )dG r c '' ( , )eG r c

' ' '( , ) ( , ) ( , )sum d eG r c G r c G r c= +        (4.17) 

4.4 Blur and Minimum Operator 

The blur minimum operator (BMO) or (MBMR) [10], as an improved morphological 

edge detector, blurs the image first in order to remove noise and detect ideal step edge, 

and takes the minimum difference from the residue of dilation and erosion of the blurred 

image. It is defined by 

( ) ( ){ }1 1 1min ,BMO I erosion I dilation I I= − − 1      (4.18) 

where 1I  is the blurred image of input image 

The same size neighborhood is used for both dilation/erosion for simple calculation. For 

example, for a 3  window, the blurring operation can be obtained as using a mean 

filter with mask h as follows: 

3×

*bF F h=  
1 1 1

1 1 1 1
9

1 1 1
h

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

where F is the input image, Fb is the blurred image and h is the kernel of convolution. 

Then blurred image will be  given in Equation (4.19) bF
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( 1, ) ( 1, ) ( , ) ( 1, 1) ( , 1)
( 1, 1) ( 1, 1) ( , 1) ( 1, 1)b

f x y f x y f x y f x y f x y
F

f x y f x y f x y f x y
− + + + + − − + − +⎡ ⎤

= ⎢ ⎥+ − + − + + + + + +⎣ ⎦
  (4.19) 

 

  

Figure 4.13 Blurred Lena image 

 

Resulting blurring operation on Lenna’s image is shown in Figure 4.13 

After obtaining the blurred image, BMO is applied to Lenna’s image and obtained edge 

map is given in Figure 4.14 

 

  
Figure 4.14 Blur minimum edge detector 

 
The BMO is noise insensitive [10]. Due to blurring effect, it helps to reduce the 

Gaussian noise. Also the choice of minimum operator will suppress impulsive noise 

from a process window. The BMO thus is less sensitive to noise than dilation or erosion 

residue operators and basic morphological gradients. 
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The BMO produces a result which has nonzero edge strength on both the edge pixels for 

the ideal step edge due to the blurring effect. However, due to the effect of smoothing, 

the edge strength is weaker than minimum operator without using blurring operation. By 

thresholding the edge strength of BMO with a suitable threshold value, ideal ramp edges 

can be extracted. 

4.5 Alpha Trimmed Morphologic Edge Detector 

In alpha trimmed morphological edge detector proposed by [15] blurs the input image 

instead of mean filter as in blur minimum edge detector, using alpha trimmed mean filter 

and then calculates the edge strength using equation (4.18). 

( ) ( ){ }1 1 1min , 1ATM I erosion I dilation I I= − −      (4.20) 

where 1I  is filtered using alpha trimmed mean filter. 

4.5.1 Alpha trimmed mean filters 

Alpha trimmed mean filter deletes the  lowest and the  highest gray-level 

values of corrupted image  in the area defined by 

/ 2d / 2d

( , )g x y xyS  . Let  represent the 

remaining  pixels. A filter formed by averaging these remaining pixels is called 

an alpha trimmed mean filter: 

( , )rg s t

mn d−

( , )

1( , ) ( , )
xy

r
s t S

f x y g s t
mn d

∧

∈

=
− ∑         (4.21) 

where the value of  can range from 0 to d 1mn− . When 0d = , the alpha-trimmed filter 

reduces to the arithmetic mean filter and when ( 1) /d mn 2= − , the filter becomes a 

median filter. For other values of d , the alpha trimmed filter is useful in situations 

involving multiple types of noise, such as a combination of salt-and-pepper and 

Gaussian noise. 
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Figure 4.15 Noisy image and filtered using alpha trimmed filter 

  
Figure 4.16 ATM edge map 
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CHAPTER 5 

DEVELOPMENT OF AN EDGE DETECTION ALGORITHM USING 

ALTERNATING SEQUENTIAL FILTERS 

Edge detection plays a very important role in medical imaging. Pre-operative diagnosis 

of diseases such as cancer, tumors, bone fractures etc. depend on edge detection 

techniques to identify the malignant growths. In orthopedics, edge detection techniques 

are used in the reconstruction of the skeletal system from modalities such as MRI 

(Magnetic Resonance Imaging) and CT (Computed Tomography). 

 

Medical images acquired from MR or CT scanners are generally low-contrast images. 

Before application of an edge detection method to a medical image, it must be 

preprocessed in order to increase contrast of it. Since all of the details in image must 

appear to extract edge points. To obtain a well contrast image some contrast stretching 

transformations must be applied to medical image.  

 

Morphological filtering [3] is nonlinear image processing technique used widely in 

image processing. If the operation in mathematical morphology is composed of erosions 

and dilations then equal number of erosions and dilations constitutes a filter. 

5.1 Alternating Sequential Filters 

Alternating sequential filters (ASFs) [9,10] in morphology are a combination of iterative 

morphological filters with increasing size of structuring elements, which are composed 

of openings and closings. 

Let X denotes a binary image and B a binary structuring element. The alternating filters 

are defined as 
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( ) ( )BAF X X B B= •D   

( ) ( )BAF X X B B= • D         (5.1) 

( ) (( ) )BAF X X B B B= •D D  

( ) (( ) )BAF X X B B B= • •D  

 

where  and  shows openings and closings respectively. Then alternating sequential 

filter (ASF) is an iterative application of  with increasing size of structuring 

elements. 

D •

)(XAFB

11
( ) ..... ( )

NB B BN
ASF X AF AF AF X

−
=       (5.2) 

where N is an  integer and BBN ,BN-1B ,….,BB1 are structuring elements with decreasing sizes. 

The BNB

22

 is constructed by  

1 1  for 2N nB B B N−= ⊕ ≥         (5.3) 

In [9] the alternating sequential filters are applied on salt and pepper noised image (Input 

PSNR 13.06 db, probability of occurrence of noisy samples is 0.1) given in Figure 4.16. 

The noise suppression capability of these filters is compared with that of conventional 

filters. In all morphological operations ×  square structuring element is used. 

To compare the performance of the morphological filters with that of conventional 

filters, PSNR (Peak signal to noise ratio) value is used. PSNR is defined by the equation 

[ ]

255
20log   

2
( , ) ( , )

   
.1 1

PSNR dB
RMSE

N M f i j F i j
MSE

N Mi j

=

−
= ∑ ∑

= =

⎧ ⎫
⎨ ⎬
⎩ ⎭

      (5.4) 

Here N and M denote the picture height and width, and are the pixel value at 

 of the source image and the reconstructed image respectively. RMSE is the root 

),( jif ),( jiF

( , )i j

mean squared error of the MSE. There are some other definitions of PSNR but it is not 

important because we are interested in relative comparison not absolute values. 
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Figure 5.1 Original and salt and pepper noised image 

 

The results of ASF on noisy image are given in Table 5.1 

Table 5.1. Output PSNR of the filters 

Ψ αβ βα αβα βαβ M os af 
PSNR 20.7 21.3 21 21.1 17.8 16.1 14.4 

 
 
The result with the greatest PSNR value is presented in the Figure 5.2. 
 
 

 

 

Figure 5.2 Noisy image and reconstructed image 
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5.2 Contrast Enhancement in Mathematical Morphology 

The notion of contrast enhancement can be defined in terms of the relative difference in 

intensity between an image structure and its background. The principal objective of 

contrast enhancement or sharpening is to emphasize fine details in a medical image. 

The principle of contrast enhancement was introduced by Soille [3]. Contrast 

enhancement is done using top-hat and bottom-hat transformations.  

The top-hat transformation in mathematical morphology is defined as the difference 

between the original image and its grayscale opening given by equation (5.5) 

0TH BI γ= −           (5.5) γ

and bottom hat transformation is defined as the difference between the grayscale closing 

and the original image given by equation (5.6) 

0TH B Iφ φ= −

K I

          (5.6) 

Then contrast enhanced image will be the summation of these transformations and the 

original image. 

         (5.7) 0 TH THγ φ= + −

The top-hat transformation yields an image that contains all the residual features (peaks 

and ridges) removed by opening. Adding these residual filters features to the original 

image has the effect of high-intensity structures. The bottom hat transformation yields an 

image that is low intensity structures. 

5.3 Proposed Method for Edge Detection in Medical Images 

The flow diagram given in Figure 5.3 is proposed to detect edges in medical images. 

Firstly input image is gone through a transformation called top hat and bottom hat 

transformations. It is used for enhancement of the contrast of the input image. And then 

contrast enhanced image is filtered with alternating sequential filter given by 5.8 in order 
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to remove noise. Then simple erosion residue edge (4.26) detector is applied to the 

filtered image to extract edge map. After obtaining edge map a threshold operation is 

applied to edge map to get edge points. Then, edge image is thinned until all of the edges 

become one pixel thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bottom hatTophat 
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Morphological 
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Morphological 
Filter 2f  

Thresholding

Thinning 

Out Image 

Figure 5.3 Flow diagram of new algorithm for edge detection 
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The flow diagram of the new edge detection method is given in Figure 5.3. The 

morphological filters 1f  used in the edge detector of Figure. 5.3 can be alternating 

sequential filters. Morphological filters f  and f  are given in equation (5.8) 1 2

1 1 1

2 1

f
f f B

γ φ=
= Θ

          (5.8) 

 are defined as: where algebraic openings 1γ

 
1 21 ( , ) ( , ) ( , )( , ,..... )

nl l lMax f f fα α αγ =        (5.9) 

and the algebraic closings  are defined as: 1φ

       (5.10) 1 2 ( , )( , ) ( , )
1 ( , ,....., )n ll lMin f f f αα αφ =

where ( , )lα  is the linear structuring element of length l and whose angle with the x-axis 

is α . 1,...., nα α  are the different directions chosen. Figure 5.4 gives different directions 

structuring elements of length 3 pixels. 

1

0 0 0
1 1 1
0 0 0
 0α °=

     

3

0 1 0
0 1 0
0 1 0

90α °=2

0 0 1
0 1 0
1 0 0

45α °= 4

1 0 0
0 1 0
0 0 1

135α °=

Figure 5.4 Different directions structuring elements of length 3 pixels. 
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Figure 5.5 Noisy image and filtered image using alternating sequential filter 
 

  

Figure 5.6 ASF edge map 

5.4 Thresholding 

Thresholding is a way to get rid of the effect of noise and to improve the signal-noise 

ratio. That is, it is a way to keep the significant information of the image while get rid of 

the unimportant part. Using the general theory of thresholding, the grayscale image can 

be converted to a binary image by changing all pixels below a predetermined value, the 

threshold value, to zero while changing the remaining pixels to one. Mathematically for 

a function ( , )f x y , the value of the new function  using the threshold value of T 

is 

( , )F x y
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1    if ( , )
( , )

0   if ( , )
f x y T

F x y
f x y T

≥⎧
= ⎨ <⎩ ⎭

⎫
⎬        (5.11) 

The Otsu thresholding method allows for the automatic selection of this threshold value 

[14]. Clustering analysis is applied to the gray level data for the image. Two clusters are 

formed from the Gaussian distribution of the gray level pixels. For these clusters, one 

cluster represents the background and the other the foreground. The objective of the 

Otsu method is to achieve optimal threshold value by minimizing the weighted sum for 

the within-class variance for the two clusters. Application of Otsu’s method is given in 

Figure 5.7  

  

Figure 5.7 Original Lena image and thresholded image 

 62



CHAPTER 6 

COMPARATIVE ANALYSIS 

A number of researchers have considered the problem of measuring the edge detector 

performance. In fact, it is not a simple problem since it is not known what the underlying 

features are to be detected. However, it is assumed that they are step edges corrupted by 

Gaussian noise or impulse noise, and then some criteria can be set for evaluating 

performance. Such criteria are usually as follows: 

• The probability of false edges; 

• The probability of missing edges; 

• The error in estimating the edge angle; 

• The mean square distance of the edge estimate from the true edge; 

• The algorithm’s tolerance to distorted edges and other features such as corners 

and junctions. 

The first two criteria relate to edge detection, the second two to edge localization, and 

the last to tolerance to departures from the ideal edge model. Pratt [1] introduced a 

figure of merit function FOM for measuring quantitatively the performance of various 

edge detectors. His measure is 

2
1

1
max( , ) 1

AI

iA I i

FOM
I I d

1
α=

=
+∑        (6.1) 

where IA , I , d, and αI  are respectively the detected edges, the ideal edges, the distance 

between the actual and the ideal edges, and a design constant to penalize displaced 
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edges. The larger value of FOM corresponds to better performance, with 1 being a 

perfectresult.
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6.1 Performance on Step Edge 

In the first experiment ideal step edge images are used since they allow objective 

performance measures. Two 128 128×  synthetic images are composed of single vertical 

edge. First one is in binary form and the second is in gray scale form shown in Figure 

6.1. The gray-scale value is chosen as 70 for left side and 160 for the right side of the 

image. 

     

 b) Gray-scale ideal step image          a) Binary ideal step image 

 

c) Ideal edge image 

Figure 6.1 Binary and gray level step images 

 
 
Salt and pepper noise with different noise densities and Gaussian noise with zero mean 

and different variances are added to these two ideal step edges, respectively. Laplacian 

of Gaussian (Log), Sobel, Prewitt, Roberts and morphological edge detectors are applied 

to them. Figures 6.2 through 6.6 show the results of applying Log, Sobel, Prewitt, 

Roberts and morphological algorithms to ideal binary step edge under salt and pepper 

noise and Gaussian noise with different densities, respectively.  
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Tables 6.1and 6.2 list the results of these edge operators on binary and grayscale images 

corrupted with salt and pepper noise. The performance of ASF edge detector and the 

other edge morphologic edge detectors are approximately the same when noise is small; 

however, when noise is increased the performance of ASF edge detector algorithm is 

better than others. For instance when noise density is increased to 15 percent 

performance of ASF edge detector is 46 percent in binary case however MBMR and 

ATM edge detectors 16 percent and 11 percent respectively, for the same density. So in 

binary image corrupted with salt and pepper noise, the performance of ASF edge 

detector is superior to other conventional and morphologic edge detectors. This is 

because ASF edge detector suppresses noise using alternating sequential filter before 

detecting edges. Also Figure 6.2 shows the graphical performance of the three 

algorithms ATM, MBMR and ASF. It can be inferred from the graph that ASF edge 

detection algorithm is more robust to noise. 

 

In grayscale case corrupted with salt and pepper noise, again the algorithm is very good 

in detecting edges as it is seen on Figure 6.3 an increase in noise density does not affect 

the performance of detecting edges. 

 

A visual inspection also leaves the impression that the ASF edge detector suppresses 

more noise than the other conventional and morphologic edge detectors, also it leaves 

continuous edges. It is easily seen from Figure 6.4 and 6.7 
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Table 6.1 FOM values for binary image corrupted by salt and pepper noise 

 

NOISE DISTRUBUTION  
Edge 

No noise SAP0.03 SAP0.06 SAP0.9 SAP0.12 SAP0.15Detector 
Log 0.88906 0.15905 0.12345 0.096191 0.091484 0.088771
Sobel 0.88594 0.15223 0.12147 0.28522 0.21919 0.1952 
Prewitt 0.88594 0.15791 0.12136 0.26808 0.2176 0.19272
Roberts 0.98438 0.25374 0.18748 0.46669 0.36515 0.30786
MR 0.95 0.45281 0.29444 0.20105 0.16594 0.13881
MBMR 0.95 0.91883 0.36575 0.23669 0.18068 0.16505
ATM 0.99219 0.98281 0.81127 0.47498 0.35831 0.11141
ASF 0.9 0.89751 0.79937 0.64402 0.5508 0.46474
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Figure 6.2 Performance on binary step image  
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Table 6.2 FOM values for gray level image corrupted by salt and pepper noise 

 

NOISE DISTRUBUTION  
Edge 

No noise SAP0.03 SAP0.06 SAP0.09 SAP0.12 SAP0.15Detector 
Log 0.33937 0.149 0.10867 0.099425 0.084162 0.087672
Sobel 0.88594 0.17836 0.14986 0.13166 0.096992 0.15971
Prewitt 0.88594 0.15237 0.15061 0.12937 0.11167 0.16768
Roberts 0.98438 0.28124 0.081735 0.11774 0.073254 0.092549
MR 0.95 0.33551 0.20261 0.14557 0.12332 0.10947
MBMR 0.87308 0.65086 0.26488 0.1735 0.14815 0.13842
ATM 0.97656 0.81436 0.24598 0.13286 0.081166 0.089594
ASF 0.89297 0.86702 0.84105 0.84345 0.81033 0.61165
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Figure 6.3 Performance on gray level step image corrupted by salt and pepper noise 
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      a) Original           b)Sobel               c) Prewitt 

   
       d) LoG       e) Roberts        f) MR 

 

   
g) ASF  h) ATM       i) MBMR 

 
Figure 6.4 Results of Edge operators on binary image corrupted with 10 

percent salt and pepper noise 

 

Table 6.3 and 6.4 lists the results of same edge operators to binary and gray scale images 

corrupted with zero mean Gaussian noise. From Figure 6.5, it is seen that when Gaussian 

noise is present in a gray scale image, performance of new algorithm using alternating 

sequential filters is not very good for gray scale case. Even it is worse than the other 

morphology based algorithms When variance of the Gaussian noise is increased a little 

bit, performance of the algorithm using alternating sequential filter declines suddenly.  

In binary case MBMR and ATM edge detection algorithms are better than the new 

algorithm. But up to some point they have equal performance on noisy image. 
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Table 6.3 FOM values for gray level image corrupted by Gaussian noise 

NOISE DISTRUBUTION  
Edge 

No noise G0.03 G0.06 G0.09 G0.12 G0.15 Detector 
Log 0.33937 0.12535 0.092464 0.090709 0.084169 0.083047
Sobel 0.88594 0.48598 0.36479 0.32871 0.26998 0.24217
Prewitt 0.88594 0.4743 0.37864 0.35176 0.30281 0.29039
Roberts 0.98438 0.63943 0.30494 0.17558 0.08312 0.021116
MR 0.95 0.094259 0.079733 0.078744 0.079161 0.074071
MBMR 0.87308 0.89116 0.78551 0.20222 0.16902 0.15474
ATM 0.97656 0.96785 0.70906 0.093648 0.090434 0.091792
ASF 0.89297 0.82932 0.090091 0.090904 0.10061 0.094085

 

 
Figure 6.5 Performance on gray level step image corrupted by Gaussian noise  
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Table 6.4 FOM values for binary image corrupted by Gaussian noise 
 

NOISE DISTRUBUTION  
Edge 

No noise G0.03 G0.06 G0.09 G0.12 G0.15 Detector 
Log 0.88906 0.19644 0.12064 0.10024 0.093991 0.085248
Sobel 0.88594 0.71146 0.45655 0.35768 0.33896 0.31521
Prewitt 0.88594 0.75306 0.48082 0.38823 0.34325 0.32892
Roberts 0.98438 0.78244 0.64804 0.58811 0.56025 0.42382
MR 0.95 0.13718 0.10366 0.095865 0.093684 0.091042
MBMR 0.95 0.87537 0.88503 0.8896 0.896 0.84606
ATM 0.99219 0.96478 0.9375 0.94688 0.93516 0.87514
ASF 0.9 0.88648 0.87674 0.83097 0.66864 0.16008
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Figure 6.6 Performance on binary step image corrupted by Gaussian noise 
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     a) Original        b) Sobel        c) Prewitt 

   
   d) LoG      e) Roberts   f) MR 

   
g) ASFh)   ATMi)   MBMR 

Figure 6.7 Results of edge operators on gray level step image corrupted with 

10 percent salt and pepper noise 
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6.2 Image Formats 

Images in medical imaging are stored in many formats. Image formats being dealt with 

in this thesis are 

• DICOM (Digital Imaging and Communications in Medicine) 

• ANALYZE FORMAT  

 

6.2.1 Dicom  

DICOM (Digital Imaging and Communications in Medicine) standard was created by 

the National Electrical Manufacturers Association (NEMA) to aid the distribution and 

viewing of medical images, such as CT scans, MRIs, and ultrasound. 

 

A single DICOM file contains both a header (which stores information about the 

patient's name, the type of scan, image dimensions, etc), as well as all of the image data 

(which can contain information in 3Ds). This is different from the popular Analyze 

format, which stores the image data in one file (*.img) and the header data in another 

file (*.hdr). DICOM image data can be compressed (encapsulated) to reduce the image 

size. Files can be compressed using lossy or lossless variants of the JPEG format, as well 

as a lossless Run-Length Encoding format (which is identical to the packed-bits 

compression found in some Tiff format images).  

 

DICOM is the most common standard for receiving scans from a hospital. Figure 6.8 b) 

shows a typical DICOM file with the DICOM image. In this example, the first 794 bytes 

are used for a DICOM format, which describes the image dimensions and retains other 

text information about the scan. The size of this header varies depending on how much 

header information is stored. Here, the header defines an image which has the 

dimensions 109x91x2 voxels (three dimensional pixels), with a data resolution of 1 byte 

per voxel (so the total image size will be 19838). The image data follows the header 

information (the header and the image data are stored in the same file). 

 

In Figure 6.8 a), a more detailed list of the DICOM header as displayed. Note that 

DICOM requires a 128-byte preamble (these 128 bytes are usually all set to zero), 
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followed by the letters ‘D’, ‘I’, ‘C’, ‘M’. This is followed by the header information, 

which is organized in ‘groups’. For example, the group 0002hex is the file meta 

information group, and (Figure 6.8 a) contains 3 elements: one defines the group length, 

another stores the file version and a third stores the transfer syntax. For example, this 

image modality is ‘MR’ (see element 0008, 0060), so it should have elements to 

describe the MRI echo time. The absence of this information in this image is a violation 

of the DICOM standard. In practice, most DICOM format viewers do not check for the 

presence of most of these elements, extracting only the header information, which 

describes the image size. 

 

    
   a)         b) 

Figure 6.8 Example DICOM header 
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6.2.2 Analyze Format 

 

An Analyze (7.5) format image consists of two files, and image and a header file. If the 

image is for example named "brain", then the files for that image will be called 

"brain.img" and "brain.hdr". The *.img file contains the numbers that make up the 

information in the image. The *.hdr file contains information about the *.img file, such 

as the volume represented by each number in the image (voxel size) and the number of 

pixels in the X, Y and Z directions. This header contains fields of text, floating point, 

integer and other information. 

 

6.3 Application of the New Edge Detection Algorithm to Medical Images 

In this section we applied the algorithm to real world clinical images. In first experiment 

proposed algorithm in Figure 5.3 is applied to several medical images. The dimensions 

of each image set is 512 . Some of them are given in appendix A given in Figure 

6.9 and 6.14. Format of these images are either DICOM or Analyze format. Then it is 

compared with that of other conventional and morphological edge detectors. Results are 

given at appendix in Figures 6.10-6.14 and 6.16-6.19. Experimental results were done on 

a computer having P4 2.8 GHz processor and 512 RAM. 

512×

Visual evaluation of results shows that algorithm used for edge detection gives more 

realistic results than that of other algorithms. First our algorithm extracts more points 

than others. Second edge points are more continuous and linked smoothly.  

In Figure 6.9 we used an MR of an human spine. The reason to choose this image is that 

the image is noisy and the content of the image is very complex. When we look at the 

result of all algorithms from Figures 6.10 through 6.13 algorithm is extracting more 

points than the other algorithms.  

In Figure 6.14 we used a CT of a chest in order to extract the edge points of lungs of a 

human. The detected edges using alternating sequential filters in Figure 6.15 are 

continuous, well localized and most of the basic edge features are extracted comparing 

with that of other algorithms. Extracting of edge points efficiently and correctly is very 
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important in medical imaging, because lung cancer detection or tumor detection is all 

done using edge detection techniques. Any false edge point may lead to misdiagnosis of 

the case. 

In Figure 6.19 original MR brain is shown and the result of the algorithm is given in 

Figure 6.20. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORKS 

 

This thesis is focused on comparison of an edge detection algorithm using alternating 

sequential filter with previously known edge detection algorithms including 

mathematical morphology based edge detection algorithms. The comparison was made 

on the extraction of the edge points in different images, one is synthetic and the other is 

medical image of modalities CT and MR. For synthetic images, a step image in binary 

and grayscale case were used, then we investigated the performance of the edge 

detection algorithms on this step edge images under noisy environment. When noise is 

small, the performances of all algorithms are approximately the same. However, when 

noise density is increased gradient based algorithms performs very badly. The 

experimental results show that proposed algorithm using alternating sequential filters for 

edge detection are better than that of other morphologic edge detectors and conventional 

edge detectors at some points in synthetic images. In medical images our algorithm also 

gave satisfactory results. 

 

The experimental results show that each algorithm has advantageous properties as well 

as some specific drawbacks. First, implementation of an algorithm in mathematical 

morphology is very easy compared to other algorithms. The reason for simplicity is that 

any complex operation in mathematical morphology can be done using primitive 

operations of mathematical morphology. Second, at some noise types, noise removing 

capability of morphology based approaches is better than that of differential based 

operators. 

 

We propose some problems related to edge detection using alternating sequential filters 

which may worth future research works. 
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1. Computation time for edge detection using morphological operators is longer 

than that of other differential based operators. This computation is directly 

related with the neighborhood of the structuring element. When the 

neighborhood of the structuring element is increased, the computation time is 

also increased. To overcome this problem, some fast algorithms were developed 

[25]. Using these algorithms may further reduce the computation time of 

primitive operations of mathematical morphology which are dilation and erosion. 

 

2. When Gaussian noise is presented in an image, noise removing capability of 

morphological operators is worse than that of other conventional differential 

based operators. But this problem can be solved, if we apply a preprocessing 

operation like Gaussian filtering or other suitable type of filters or non-flat 

structuring elements with center weighted may further reduce the effect of noise. 

 

3. Selection of structuring element is a key point in mathematical morphology. 

When using a large structuring element, it is good for noise removing but in this 

case some details are lost due to the dimension of the structuring element. To 

overcome this problem morphological reconstruction algorithms [27] can be used 

to reduce the effect of distortion in the image. Besides this, shape of the 

structuring element is also important because if the image contains circular 

objects, it is not good to choose a square structuring element and vice versa. 
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APPENDIX A 

FİGURES FROM 6.9 THROUGH 6.20 

 

 

Figure 6.9 Original Spine MR Image 
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Figure 6.10 New algorithm for edge detection 

 82



 

Figure 6.11 ATM edge detector 
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Figure 6.12 BMO operator 
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Figure 6.13 Sobel edge detector 
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Figure 6.14 Original CT of chest 
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Figure 6.15 New algorithm for edge detection 
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Figure 6.16 ATM edge detector 
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Figure 6.17 BMO operator 
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Figure 6.18 Sobel edge detector 
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APPENDIX B  

ORIGINAL BRAIN MR and EDGE IMAGE 

 

Figure 6.19 Original brain MR 

 91



 

Figure 6.20 Edge image of the brain MR using new algorithm (Contrast enhanced)  
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APPENDIX C 

SOME IMPORTANT NOİSE PROBABİLİTY DENSİTY FUNCTİONS 

Gaussian noise 

The PDF of a Gaussian random variable,  is given by z

2 2( ) / 21( )
2

zp z e μ σ

πσ
− −=  

where  represents gray level, z μ  is the mean of average value of , and σz  is its 

standard deviation. The standard deviation squared,  is called the variance of . 2σ z

Uniform Noise 

The PDF of a uniform noise is given by 

1     if 
( )

0           otherwise

a z b
p z b a

⎧ ≤ ≤⎪= −⎨
⎪⎩

 

 

Impulse (salt-and-pepper) noise 

The PDF of impulse noise is given by  

    for 
( )     for 

0      otherwise

a

b

P z a
p z P z b

=⎧
⎪= =⎨
⎪
⎩
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