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ABSTRACT

APPLICATIONS OF A NEW APPROACH TO BOUND-STATES

CELIK, Nuryaz
M.Sc. in Engineering Physics
Supervisor: Prof. Dr. Biilent GONUL
January 2006, 38 pages

Recently developed approach for the treatment of Schrodinger equations is
applied to anharmonic oscillator and Yukawa type potentials to have reliable
expressions for their bound state energies and eigenfunctions. In addition, we
show that the present novel formalism is entirely equivalent to a well known
alternative model in the literature.

Keywords: Anharmonic Oscillator, Yukawa Potential, Perturbation, Exactly
solvable potentials
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OZET

YENI BiR MODELIN BAGLI DURUMLARA UYGULAMALARI

CELIK, Nuryaz
Yiiksek Lisans Tezi, Fizik Miithendisligi
Tez Yoneticisi: Prof. Dr. Biilent GONUL
Ocak 2006, 38 sayfa

Schrodinger denklemlerinin ¢6ziimili i¢in yeni gelistirilen bir model, bagl
kuantum durumlar1 igeren harmonik olmayan titresim potansiyeli ve Yukawa tipi
etkilesimlere ait enerji ve dalga fonksiyonu davraniglarini veren giivenilir analitik
ifadelere ulagmak i¢in kullanildi. Ayrica, bu modelin literatiirde bulunan bagka bir
model ile tamamen ayn1 oldugu gosterildi

Anahtar kelimeler: Anharmonik titresim, Yukawa Potansiyeli, Yaklagik model,
Tam ¢oziilebilen potansiyeller
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CHAPTER 1

INTRODUCTION

Over the past years the Schrodinger equation has been studied extensively
with regard to its exact solvabilty. Many advances have been made in this area by
classifying quantum mechanical potentials in terms of their symmetry properties.
For example, various algebra which reveal the underlying symmetry as well as
obtaining the solutions have been found. In this respect the application of
supersymmtry ideas [1] to non-relativistic quantum mechanics has revived fresh
interest in the problem of attaining algebraic solutions of exactly solvable non-
relativistic potentials and provided a deeper understanding of analytically solvable
Hamiltonians as well as a set of powerful approximate schemes for dealing with
problems admitting no exact solutions. The concept of shape invariance [1] has
played an important role in these developments.

An exact solution of the Schrédinger equation exist only for a few
idealized problems in general it has to be solved using on approximation method
such as the Perturbation Theory (PT), which constitutes one of the most powerful
tools available in the study of quantum mechanics in the atoms and molecules. PT
is applied to those cases in which the real system can be described by a small
change in an exactly solvable idealized system. In this form we can describe a
great number of problems encountered especially in atomic physics, in which the
nucleus provides the strong central potential for the electrons; further interactions
of less strength are described by the perturbation. Examples of these additional
interactions are: the magnetic interaction (spin-orbit coupling), the electrostatic
repulsion of electrons and influence of external fields. But in spite of widespread
application of this theory, its basic analytical properties are poorly understood.
One of our objectives in this work is to illustrate selected important aspects of the
perturbation theory within the frame of supersymmetric quantum mechanics.

Performing explicit calculations in non-relativistic quantum mechanics using

the familiar Rayleigh-Schrédinger perturbation expansion is rendered difficult by



the presence of summations over all intermediate unperturbed eigenstates.
Alternative perturbation procedures have been proposed to avoid this difficulty,
notably the logaritmic perturbation theory (LPT) [2]-[5] and Dalgarno-Lewis
technique [6]-[9]. The virtue of LPT is its avoidance of cumbersome summation
over states for second- and higher-order corrections in Rayleigh-Schrodinger
perturbation theory. Unfortunately, it has problems of its own in calculating
corrections to excited states, owing to presence of nodes in the wave functions.
Various schemes have been proposed to circumvent the resulting singularities [5,
10, 11].

Such is the status of LPT after over 20 years of active development.
Meanwhile, supersymmetric quantum mechanics (SSQM) [1, 12] has developed
immensely since the first models were introduced [13,14]. Several approximation
methods using SSQM formalism have been developed, including the
supersymmetric perturbation theory (SSPT) of Cooper and Roy [15]. Recently,
Lee [16] has shown that SSPT and LPT are entirely equivalent and fortuitously,
each turns out to resolve difficulties encountered in the other. Namely, LPT
formulas for energy corrections obviate tedious procedures in the SSQM method,
while the use of SSQM partner potentials with virtually identical bound state
spectra solves difficulties with excited states encountered in LPT. Although the
iterative procedure in SSPT may not actually reduce the calculational workload, it

does cast the calculations into a physically-motivated, visualizable framework.

Within this context, starting from the first principles, recently Goniil [17]
has been developed a more economical model which yields simple but closed
perturbation theory formula leading to the Ricatti equation from which one can
actually obtain all the perturbation corrections to both energy level shift and wave
functions for all states unlike the other models mentioned above. The novel
applications of this model are discussed in detail through this thesis work.

Additinally, in the application of this method to the '

excited state, one requires
knowledge of the unperturbed eigenfunction Y, (r) but no knowledge of the other
eigenvalues or eigenfunctions is necessary. The procedure introduced here does
not involve either tedious explicit factoring out of the zeros of Y, (r) [2, 3] or

introduction of ghost states [5] as were the cases encountered for applying LPT to



excited states. Since, the present method offers explicit expressions for the energy
corrections, which are absent in the original SSPT while the treatment of Lee [16]
for such calculations has mathematical complexity. And it also provides a clean
route to the excited states, which are combersome to analyze in both LPT and
SSPT. Hence the present approach can be tought of as a generalization of
logarithmic and supersymmetric based perturbation theories. To discuss this point
briefly, together with its new applications, is also another objective in this work.
The plan of the thesis is as follows: After giving some introductory
remarks about basic formalism of the method we apply it to the anhormanic
oscillator in Chapter 3. The method further is extended to an algebraic non-
perturbative approach for the analytical treatment of such Schrodinger equations
with a potential that can be expressed in terms of an exactly solvable piece with
an additional potential. Avoiding disadventages of standart approaches, a new
handy recursion formulas with the same simple form both for ground and excited
states have been obtained. In Chapter 4, we propose a new scheme to obtain
analytic expressions for the bound state energies and eigenfunctions of Yukawa
like potentials within the framework of the novel formalism. The application
makes clear that the scheme developed gives quite good accuracy for energy
values despite its analytical nature. In Chapter 5, we first rewiev an alternative
transformation method, which is well known in the literature, permitting the
generation of exactly solvable quantum mechanical potentials from special
functions solving second-order differantial equations. This method later is applied
to Gegenbauer polynomials to generate an attractive radial potential. The
relationship of this method to our treatment is discussed in detail and it is shown
that the both method in fact is equal to each other. Subsequently, a unified
treatment is suggested in order to perfect the calculations. Finally, concluding

remarks and a future work are presented in the final chapter.



CHAPTER 2

FORMALISM

We first start with a brief introduction of the present formalism. In general,

the goal in supersymmetric quantum theory [1] is to solve the Ricatti equation.

w2 - ﬁW =V (r)-E,. 2.1)

where V(r) is the potential of interest and Ey is the corresponding ground state
energy. [f we find W(r), the so-called superpotential, we have of course found the

ground state wave function via,
r
Wolr)=Nexp| - [W(z)dz | (2.2)

where N is the normalization constant. If V() is a shape invariant potential, we
can in fact obtain the entire spectrum of bound state energies and wave functions
via ladder operators.

Keeping in mind this point, now suppose that we are interested in a
potential V(r) for which we do not know W(r) exactly, more specifically, we
assume that V(r) differs by a small amount from a potential ¥ (r) plus angular
momentum barrier if any, for which one solves the Ricatti equation explicitly. For
the consideration of spherically symmetric potentials, the corresponding

Schrodinger equation for the radial wave function has the form

A=l 0)-£) 0= R0)+ G s e

r

where AV(r) is a perturbing potential. Let us write the wave function {/,, as
()= xa () () (2.4)

in which )Y, is the known normalized eigenfunction of the unperturbed

Schrodinger equation whereas ¢, is a moderating function corresponding to the

perturbing potential. Substituting (2.4) into (2.3) yields



ﬁ()(_ + Oy 2)(_;1%) =V -E .5)
2m Xl’l w)’l Xn % "

Instead of setting the functions Y, and ¢@,, we will set their logaritmic derivatives

using Eqgs.(2.1) and the standart approach of LPT:

__ h Xn __ h
w,=—--1L2n = AW, =-_TL 0 2.6
n \/2”1)(}1 n \/2m % ( )
which leads to
D ¢ T, R S n2 (0+1)
A X 2 B =y () R - 2.7
A - e R e e

where &, is the eigenvalue of the unperturbed and exactly solvable unperturbed

n
potential, and

B2 (B s Xa B ) a2 — B =Av()-
2m(¢n+2Xn qon)‘AWn AW, + 20, AW, =BV ()= Be, 28)

in whichAg,, is the eigenvalue for the perturbed potential, and £, = €, +Ag,,.

Then Eq.(2.5), and subsequently Eq.(2.3), reduces to

(Wn +AWn)2 _ﬁ(Wn +AWn)' =V -E, (2.9)

which is similar to Eq. (2.1), nevertheless, it is valid for all states unlike the usual
supersymmetric treatment [1] which uses Eq.(2.9) only for the ground state due
to theorical considerations. Further, as one in principle knows explicitly the
solution of Eq.(2.7), namely the whole spectrum and the corresponding
eigenfunctions of the unperturbed interaction potential, the goal here is to solve
only Eq.(2.8), which is the backbone of this formalism. The reader is referred to
Ref[17] for the succesful applications of Eq.(2.8) involving different problems in
quantum theory through exactly solvable potentials. However, if the whole
potential has no analytical solution as the case considered in this thesis, then
Eq.(2.8) cannot be solved exactly which requires that, one can expand the

functions in terms of the perturbation parameter A,



AV(r:A) =S A ar, ()

N=1

A, (1 A)= YAV AW () (2.10)
N=I

00

Ae,(4)=> Xhe,, |

N=1
where N denotes the perturbation order. Substituting the above expansion into Eq.

(2.8) by equating terms with the some power of A on both sides yields up for

instance O( A )

QW AW, — AW =AV; - A&, | 2.11
n nl m nl 1 nl ( )
AW +2W, AW, —ﬁAWéz = AV, A&, (2.12)

2(W,AW,3 +AWnlAWn2)—ﬁAW,;3 =AV3 -Dg,3 . (2.13)

Eq.(2.8) and its expansion give a flexibility for the easy calculations of the
perturbative corrections to energy and wave functions for the nth state of interest
through an appropriately chosen perturbed superpotential. It has been shown [17]
that this feature of the present model leads to a simple framework in obtaining the

corrections to all states without using complicated mathematical procedures.



CHAPTER 3
APPLICATION TO ANHARMONIC OSCILLATOR PROBLEM

The present scheme [17] mentioned above is applied here to quartic anharmonic
oscillator since there has been a great deal of interest in the analytical and
numerical investigation of the one-dimensional anharmonic oscillator. They are of
interest because of their importance in molecular vibrations [18] as well as in
solid state physics [19] and quantum field theories [20]. The anharmonic oscillator
with quartic potentials can serve as a testing ground for the various methods based

on perturbative and non perturbative approaches. Namely, interest in such a model

stems mainly from the fact that, if one considers the anharmonicity gx4 as a

perturbing term, then the Rayleigh-Schrodinger perturbation expansion for the
eigenvalues diverges [21] for every value of g. Consequently, several methods
have been used to caculate the quartic anharmonic oscilltor for eigenvalues and
eigenfunctions. Without being exhaustive, we may recall variational methods
[22], WKB methods [23], Hill determinant [24,25] and Riccati [26], or Ricatti-
Hill determinant methods [27], perturbative treatment prescriptions using
summability techniques such as the Stieljes, Pade and Barrell methods [20,28].
Let us also mention the hypervirial perturbation method of Fernandez and Castro
[29], which can be viewed as a generalization of the Killinbeck method [30], and
other alternative treatments [31], together with those involving a group-theoretical
approach [32], the multiple scale technige [33], and supersymmetric methods

[34].

3.1 Application

For clarity, in this work we restrict ourselves to the Schrodinger equation

in one dimension (ﬁ = O) and consider the anharmonic potential as
V=Vy+AV =x> +gx* (3.1)

which the unperturbed potential represents the well-known factorizable harmonic



oscillator. From the literature, [1] , [35] the corresponding superpotentials, wave
functions and energy values are

Wy, = ‘\/Z[ ax —‘(—TH;&%)} :

(3.2)
X, =H, (x/ax)exp(— ax2/2), & =2a(n+%),
where H, denotes Hermite polynomials, n=0,1,2,3,......... is the radial quantum
number and a is the potential parameter. With a suitable choice of AW,
[00]
AW = Y £tV (3.3)

N=1
corresponding to the perturbed potential gx4 in Eq.(3.1), one obtains some

equations at successive orders for different states, revealing some interesting
relations between them and leading to a simple algebraic treatment of the problem

of interest here.

3.1.1 Calculations for n=0 and n=1 states

For instance, starting from the ground state calculations (n = 0), where,

from Eq .(3.2) W =ax and considering Eqs. (2.11) through (2.13) we get at the
first order (N=1),

— 11,2 3 3., =
2af1 =g, fl—g(a —1):>En:0—En:0—§g—O : (3.4)
Similarly, at the second order (N=2) of the perturbation we have
/72 +2af =0,
(3.5

_2af1-g 4 22 2 18g 5 _
J2=—5 = Ep=0 =15 En=0 ~ 7 En=0 {5 =0

and the third order (N=3) calculations give

2(af3 + f1./2)=0 . (3.62)



2
_J{ +2a2 5 _50 3 39g L 19 21g _

If one repeats same calculations for the first excited state (n=1), for which the
superpotential is set W =ax — 1/ X 1in the light of Eq. (3.2), then the first order

yields

2afi =g, f= ( ):>E3 ~9E,- -3¢ =0, (3.7)

and at the second order we have

fi*+2af, =0,
(3.8)
/2 =2af+—g:> E,le —33—4E,%:1 —-50gE,-; +21=0,
while the third order expressions are
2(afs + f1./2)=0
(3.9)

2
7 =%:>E2:1 —14E>_| —57gEp=) +45E,= +243g=0.

In our calculations, the upper bounds which are the largest real and positive roots
in these equations are chosen as the energy of the anharmonic oscillator in the
related quantum state.

The repeat of such calculations for large successive orders reproduces similar
relations in a manner of hieararchy. The systematic calculation of perturbation
corrections of large orders offers no difficulty if we resort a computer algebra
system like Mathematica and Maple or Reduce. This realization generalizes
anharmonic oscillator solutions for the ground and first excited states without
solving the Schrodinger equation. To calculate the energy values individually at

the each perturbation order, one needs to solve only

N
> Sk SN-k —g0N1 =0, (3.10)
k=0

in which 0 denotes Kronocker delta and f(, =a is the parameter related to Eq.

(3.2). The perturbation coeffients above can easily be computed through
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_(N-1
fu =N +2n+1) l(kz_:ofka—k—l —OpN1 _gJsz- (3.11)

The calculations are carried out for different range of g values and the results
obtained for the ground and first excited state energies are compared to the one
computed numerically [25]. The agreement is remarkable in the whole range of g
values for both quantum states, see Tables (3.1) and (3.2). The large order
perturbation calculations are performed by a simple use of Mathematica [36]

along the line of (3.10) and (3.11) with simple algebraic manipulations.

Table (3.1). Lowest eigenvalue of anharmonic oscillator (n=0)

g N=1 N=2 N=3 N=4 Exact[25]
0.001 1.00075 1.00075 1.00075 1.00075 1.000748
0.01 1.00742 1.00737 1.00737 1.00737 1.007373
0.05 1.03558 1.03467 1.03474 1.03473 1.034729
0.1 1.06792 1.06500 1.06533 1.06528 1.065286
0.5 1.26255 1.23689 1.24347 1.24118 1.2418541
1.0 1.43113 1.38082 1.39672 1.39017 1.392352
10 2.60124 2.38404 2.47867 2.42910 2.449174
100 5.37603 4.82115 5.08211 4.93770 4.999417
1000 11.4763 10.2346 10.8285 10.4960 10.639789
10000 24.6756 21.9784 23.2731 22.5463 22.861608

Table (3.2). First excited state energies of anharmonic oscillotor (n=1)

g N=1 N=2 N=3 N=4 N=8 Exact[25]

0.001 3.00374 | 3.00374 | 3.00374 | 3.00374 | 3.00374 | 3.003739

0.01 3.03682 | 3.03652 | 3.03653 | 3.03653 | 3.03653 | 3.036525

0.05 3.17236 | 3.16683 | 3.16727 | 3.16722 | 3.16723 | 3.167225

0.1 3.32148 | 3.30511 | 3.30718 | 3.30681 | 3.30687 | 3.306872

0.5 4.14123 | 4.03032 | 4.05869 | 4.04924 | 4.05171 | 4.051932

1.0 4.80180 | 4.60453 | 4.66448 | 4.64159 | 4.64784 | 4.648813

10 9.11388 | 8.39998 | 8.68054 | 8.55128 | 8.58582 | 8.599004

100 19.0576 | 17.3193 | 18.0446 | 17.6965 | 17.7864 | 17.83019

1000 40.7899 | 36.9427 | 38.5693 | 37.7818 | 37.9829 | 38.08683

10000 87.77547 | 79.4176 | 82.9526 | 81.2378 | 81.6747 | 81.90331
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3.1.2 Calculations for n =2 states

When dealing with excited states, this approach seems rather cumbersome
because the zeros of the wave function have to be taken into account explicitly.
However, with some simple but physically acceptable algebraic manipulations,
we can obtain simple analytical expressions for higher excited states easily from
a straightforward generalization of the resulting expressions at succesive
perturbation orders as in the previous section.

Starting  with second excited state (n=2), where from Eq.(3.2) the

superpotential is W=, = ax(2ax2 —5)/ (2ax2 —1) energies up to for example the
fifth order (N=5) can be obtained through

2afi =g, fi =%(a2 —1) , -1, (3.12a)

f2+2af, =0, [y :M;%g, N=2, (3.12b)
20af3 + /1./2)=0.  f3 :@, N=3, (3.12¢)
17 +2Afifs +afs)=0, £, =W, N=4, (3.12d)

2
215 f5 + fifa +afs)=0, fs - /3 +2(J?g3+af4) ., N=5.  (3.12¢)

In these treatments, to remove singularities in the related superpotential due to the

zeros of the wave function, we accept that 2ax?>1 leading to physically
acceptable results. This simple assumption reproduces good accuracy in the
calculations when compared to tedious calculations of LPT for higher excited

states. The results obtained are shown in Table (3.3).
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Table (3.3). Second excited state energies of the anharmonic oscillator (n=2)

g N=1 N=2 N=3 N=4 N=15 Exact[25]

0.001 5.00997 | 5.00996 | 5.00996 | 5.00996 | 5.00996 | 5.009711

0.01 5.09715 | 5.09606 | 5.09609 | 5.09609 | 5.09609 | 5.093939

0.05 5.44017 | 5.42257 | 542423 | 5.42401 | 5.42404 | 5.417261

0.1 5.79852 | 5.75129 | 5.75799 | 5.75670 | 5.75694 | 5.747959

0.5 7.60690 | 7.35517 | 7.41992 | 7.39911 | 7.40489 | 7.396900

1.0 8.98161 | 8.56694 | 8.68960 | 8.64563 | 8.65908 | 8.655049

10 17.5870 | 16.2662 | 16.7452 | 16.5461 | 16.6188 | 16.63592

100 37.0665 | 33.9532 | 35.1363 | 34.6287 | 34.8238 | 34.87398

1000 79.4750 | 72.6342 | 75.2605 | 74.1261 | 74.5674 | 74.68140

10000 171.046 | 156.245 | 161.940 | 160.830 | 160.437 | 160.6859

Finally, within the same framework one can readily get similar expressions for
other excited states. For instance, in order to deal with the third excited state for

the third (n=3) of the anharmonic oscillator one can choose the corresponding
superpotential W, —p = (2a2x4 ~9ax? +3)/ (2ax3 —3x) via Eq.(3.2) for

unperturbed piece of the potential and end up with some explicit algebraic

equations at each order

2afi =g, fi =%(a2 —1), N=1, (3.13a)
[P +2af, =0, fp= 2afl : N=2, (3.13b)
Z(af3 +j[1f2) 0, f3 fl +2le2 N=3,... (3.13¢)

and so on. In the case wave the function and consequently the superpotential have
three zeros at x =*./3/2a. As argued above, to circumvent the resulting
singularities, the present calculations here make a similar assumption that is

2ax® >3x which produces reasonable results. However, this choice for higher

2N 2N +2

excited states with » =23 allows only the coefficents f,y with x™ " and x

through the linear perturbation expressions at each order.The results obtained are

illustrated in Table (3.4). Although the present formalism suggest a systematic
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way of improving the anharmonic oscillator perturbation series, the accuracy of
the present formulas as expected gets decrease with the increase of the quantum
number since the perturbation becomes more important. Nevertheless, owing to
the nearly correct large-g behavior of the results presented here they are expected
to be much more accurate than the perturbation series. This idea was exploited by
Fernandez et al [26]. in order to obtain analytical expressions for eigenvalues of

the anharmonic oscillator from the semiclassical considerations.

Table (3.4). Third excited state energies of the anharmonic oscillator (n=3)

g N=1 N=2 N=3 N=4 N=15 Exact[25]

0.001 7.02091 | 7.02087 | 7.02087 | 7.02087 | 7.02087 | 7.018652

0.01 7.20124 | 7.19823 | 7.19833 | 7.19832 | 7.19832 | 7.178573

0.05 7.87793 | 7.83590 | 7.84053 | 7.83985 | 7.83995 | 7.770271

0.1 8.54838 | 8.44564 | 8.46179 | 8.45849 | 8.45913 | 8.352677

0.05 11.7019 | 11.2511 | 11.3683 | 11.3315 | 11.3415 | 11.11515

1.0 14.0000 | 13.2973 | 13.5021 | 13.4319 | 13.4524 | 13.15680

10 28.0000 | 25.9479 | 26.6524 | 26.3804 | 26.4698 | 25.80627

100 59.3169 | 54.5806 | 56.2681 | 55.5997 | 55.4001 | 54.38529

1000 127.327 | 116.968 | 120.689 | 119.207 | 119.712 | 116.60319

10000 274.100 | 251.711 | 259.767 | 256.555 | 257.651 | 250.95073

In the light of above discussion one can easily generalize the whole calculations
discussed in Sec. 3 in a compact form to determine the solutions of quartic
anharmonic oscillator in a closed algebraic form, which should be valid for the all
states. Eq. (3.10) can be safely used for this purpose, however the coefticients
should be re-defined as

N—

1
Sy = (2N+2”+an)_1[k§0ﬁch—k—1 - On1 —g5N2j , (3.14)

where a,, = (n - 1) +a,,_1 being with n =1 and ay =1. As matter of fact , the

only data that are needed when using Mathematica is Eq. (3.14) to solve Eq.
(3.10) yielding energy values through the perturbation orders for any quantum

state.

3.1.3 Large-order calculations
A question now arises about the convergence of the method just described. Since

it seems closely related to perturbation theory, one expects it to be asymptotic
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divergent. Our numerical results almost confirm this assumption. We have
calculated low-lying energy levels of the anharmonic oscillator for several values,
finding almost the same behaviour in all cases. Tables (3.5) and (3.6) represent the
oscillations of our results, though they remain quite close to the true eigenvalue,

about its actual value as the perturbation order (N ) increases, which are carried
out for g =1 and g =10 respectively for the lowest state. Although divergent, the

present method is still useful because it certainly improves the perturbation series.
The most accurate results is obtained from the N value corresponding to the
smallest oscillation amplitude. Such an accuracy cannot be obtained from the

other perturbation series.

Table (3.5). Lowest eigenvalues calculated for g =/ at large orders

N En:() N En:()

5 1.39357 15 1.39269
6 1.39155 16 1.39196
7 1.39291 17 1.39272
8 1.39191 18 1.39221
9 1.39271 19 1.39273
10 1.39202 20 1.39231
11 1.39265 21 1.39273
12 1.39201 22 1.39235
13 1.39266 23 1.39272
14 1.39186 24 1.39238

< exact
ECH! =1.392352

Table (3.6). Lowest eigenvalue calculated for g =70 at large orders

En=0 N En=0
2.46214 15 2.45815
2.43752 16 2.44941
2.45804 17 2.45808
2.43856 18 2.45067
2.45720 19 2.45800
2.43125 20 2.45176
11 2.45752 21 2.45798
12 2.44277 22 2.45276
13 2.45799 23 2.45798
14 2.44735 24 2.45358

ECEST=2.449174

Slolcc||an v Z
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3.2 Conclusion

We have shown [47] that the eigenvalues of quantum mechanical systems
can be approximately obtained from the present formalism which is non-
perturbative, self-consistent and sistematically improvable. Although we have
limited ourselves to one illustrative example, the range of application of the
method is rather large and and appears to be straightforward. The perturbation
procedure here is well adapted to the use of software systems such as
Mathematica and allows the computation to be carried out up to high orders of
the perturbation. For any given state, simple algebraic manipulations provide at
the same time, analytical expressions of the perturbed eigenvalues and
eigenfunctions, without having to compute any matrix elements or to perform any
integration.

The increase in the vales of g for different quantum numbers does not imply

special difficulty since the perturbed contributions merely follow from the
solution of a linear system of equations of small order. Within this contex, we
may for example recall that Hill determinants of orders as high as 100x100 are

required [24] for large values of g(g = 50) and that, when applying summation

procedures, the calculations become more and more cumbersome as increases,
because of the strong divergence of the coefficients in the Rayleigh-Schrodinger
expansions. Furthermore, the remove of the singularities in the unperturbed wave
function via the superpotential introduced in the present formalism does not cause
tedious calculations which are difficult when dealing with excited states in LPT.
Finally, although in this thesis we have focused only the calculations of
eigenvalues for the quartic anharmonic oscillator, one can also find analytical
solutions easily for the corresponding total wave function, through the use of Egs.
(2.4), (2.6), (3.2), (3.3).

As a concluding remark, due to its simplicity and accuracy in particular for

small g values at low-lying states we believe this method to competitive with

other methods developed to deal with perturbation treatments. As a matter of fact ,
the degree of precision of the results can be drastically improved by raising the
perturbative order in the expansion, a step which does not bear any technical
difficulty. It would be interesting to extend the present scheme to other non-

exactly solvable potentials.
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CHAPTER 4

APPLICATION TO YUKAWA-TYPE POTENTIALS

Since the pioneering work of Yukawa [37] the potential,
v(r)=(4/r)exp(- ar) (4.1)
has been extensively investigated in literature. This is due to the special role of
this potential in different branches of physics. In plasma physics it is known as the
Debye-Hiickel potential, in solid state physics and atomic physics it is called
Thomas-Fermi or screened Coulomb potential. Also, this potential is well known
in nuclear physics as the dominant central part of nucleon-nucleon interaction
arising out of the one-pion-exchange mechanism. Thus, the parameters A and o
are given by different expressions depending on the problem under consideration.
In all these cases, a knowledge of the various bound state energies is essential for
understanding and correlating the properties of different systems. Since the
Schrédinger equation for such potential does not admit an exact analytic
solutions, various numerical and approximate analytical methods e.g. [16, 38, 39,
40, 41] have been employed over past several years to obtain its energy spectrum.
A new methodolgy in the previos chapters has been introduced. This
methodolgy based on the decompose of the radial Schrodinger equation in two
pieces having an exactly solvable part with an additional piece leading to either a
closed analytical solution or an approximate treatment depending on the nature of
perturbed potential. The application of this treatment to different problems in both

bound and continuum regions, have been proven the success of the formalism.

4.1 Application

We now apply this method to a Yukawa-type potential with the angular
momentum barrier
o\0+1 (0+1
Vo= (A )exp(— 0’7’)+—( ) [Vo +—( )} +AV (4.2)

- 2 2
mr mr
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where the first piece is the zeroth order and shape invariant exactly solvable piece
corresponding to the unperturbed potential with Vo == A/r while AV is the
perturbation term AV =Aaq - (Aa’z/2)r+ (Aa'3/6) r —(Aa'4/24) P,
through the expansion of the exponential terms. Our careful calculations have
clarified that the main contributions come from the first three terms. Hence, the

present calculations are performed up to the second-order involving only these

additional potential terms, which surprisingly provide highly accurate results.

4.1.1 Ground state calculations (n=0)

In the light of Eq. (2.7) , the zeroth-order calculations leading to exact solutions
can be carried out readily with the choice of a suitable W, =( yielding the

Coulomb potential,

— mA2

— ho /+1 Im A
w, - e N , €, =———————, n=0,1,2,...
=ol) V2m T 2 (£+1) T an? (nre+1)? '

(4.3)
{+1
_|_ 2ma (1) mA 2041 2mA
X \r)= exp| —————r|L —
) {Wﬂ)hz} e Ty L s ] [reeein?
mAn:
nor 1)(=r)"
in which Lf; (r) = ZO (m(f;fs(}z(_’;))'m' is an associate Laguerre polynomial.
m=

These analytical solutions are already exist in literature, providing a superiority to
the present calculations. For the calculation of corrections to the zeroth-order
energy and wavefunctions, one needs to consider the expressions leading to first-

and second-order perturbation given by Eqs.(2.11) and (2.12). Multiplication of

each term by X ,% in these equations, and keeping in mind the relation

n_Xi : i
n - _—% ﬁ in Eq (2.6) , one can obtain general expressions for

corrections in the first- order
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n= 1 23] 42

(4.4)
2m ) Aa?
0,00 = L2 T2 ney 422 i
Xn (”)
and the second-order calculations are
0o 3
— 2 A 2 2
ez = 1) 42 2 - )
(4.5)

r 3
o,2(0)= 22 a0 ()42 2 o
n r

for any state of interest. According to these formulas, we can calculate AW,;| and

AW, > when we know what the energy correction AE,jand A&, are, from

which the whole of the perturbed wevefunction can be calculated in a closed form
by Eq. (2.6). It is also noted that the lower limit of the integration for energy
caculations should be changed from —o to 0 to accomodate the fact rthat is
always positive. Thus, the ground state calculations within the frame of Eqs. (4.4)
and (4.5) give

h2(£+l)(2£+3)az

Aegp ==——— :

(4.6a)
n4(0+1)2 (e+2)(2¢+3) 3 _ h6(£+1)4(€+2)(2€+3)a4

Agy, =
12.Am? 1642 m3

9

(¢+1)ha?

AWy, (r) = BN

(4.6b)

{(e+0)na? rpmar+ (1) +2)n2 pan® (e+1)? ~amal}
242m(m4)*

AWy (r) =
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The analytical expressions for the lowest energy and radial wavefunction of a

Yukawa-type potential are then given by

En:() z“51/1:() + Aa +A€Ol +A502,
Y=o (r)z)(n (r)¢n (r) ) 4.7
r
Br=o(r)=exp —@ [(AWy, + AWy )dz

These explicit expressions support the similar works in [16, 40, 41]. Table (4.1)

shows numerical values of the perturbed energies for a few values of nand o .
The result obtained are compared with those of [16, 40, 41], together with the
results of Rogers and his co-workers [38] who solved the Schrodinger equation
numerically. Our results are in remarkably good agrement. Table (4.2) and (4.3)
illustrate another comparison of our calculations with those of [41] who carried
out their calculations in a different unit. These two different comparison make
clear the sensitivity of present calculations although the procedures in [16 ,40, 41]
to reproduce the corrections anallytically seem similar to ours. In particular, Table
(4.2) clarifies that the present method is very useful one for large potential
parameters (4), for which numerical solution of the Schrddinger equation is
extremely difficult. Because, for a large strength the Yukawa potential is very
deep and the wave function becomes very sharply peaked near the origin. This
causes a great deal of difficulty in the numerical solution of the Schrodinger
equation, which is reflected in the instability of the wavefunction thus obtained,

although the energy eigenvalue is fairly stable and accurate.
4.1.2. Excited state caculations (n=1)

The procedures leads to a handy recursion relations in the case of ground states,
but becomes extremely cumbersome in the description of radial excitations when
nodes of wavefunctions are taken into account , in particular during the higher
order calculations. Although several attempts have been made to by pass this

difficulty and improve calculations in dealing with excited states, e.g [16] within
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the frame of supersymmetric quantum mechanics and, the related references
therein regarding the Logarithmic Perturbation Theory, they have not resulted in
simple algorithm. Therefore, as an another objective of this work, here an explicit
treatment is introduced in within the frame of the present formalism and described
a straightforword procedure for obtaining the perturbation corrections through
handy recursion formula, having the same form both for ground and excited
states.

Using our expertise due to our earlier calculations, the function W, related to

excited states can be calculated explicitly for the computation of perturbations
expressed by (4.4) and (4.5). So, the first-order corrections in the first excited

state (n=1) are

2
_ hT\0+4)20+3) 2
Agll =- ( 4’1)1( )0' ,

(4.8)

_ (€+2)hazrlA2m2r2 ~(e+1)(20+5) 2 mdr+(e+1)? (0+2)(0+4)n* |

AWy =
11 2@[Amr—(f+l)(€+2)h2]2

However, higher-order calculations have singularity problems during the

integrations because of the nodes appearing in AW;. To remove this problem, we

focus on a hidden relation in the above equation and with some confidence

suggest that

[Amr —(e+1)(+ 2)1112]2 = [A2m2r2 —(+1)20 + 52 mar+ (0 +1)* (¢ +2)(¢ + 4)h4]

(4.9)
which transforms eq.(4.8) into
2
(+2)ha
AW (r) = (—7"
ll( ) 2Jom . (4.10)

Use of the approximate AW in Eq.(4.10) gives the energy correction in the
second-order as

nt(0+2)? (e+7)(26+3) 3 _ 1O (042)2 (0+7)(20+3) 4

A&, = a . (4.11)
12.Am? 1642m3
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Therefore, the appoximate energy value of the Yukawa potential corresponding to

the first excited state is
E,= = &,=| + Aa® + Mgy + D&y, 4.12)

The related radial wavefunction can be expressed in an analytical form in the light
of Egs. (4.4), (4.5) and (4.7), if required.

One can easily check the similarities as in (4.9), between the terms of any

I

— h X

n = EX_n of interest to by pass the nodal difficulty as in the first excited

state. Our careful and exhausted investigations have revealed that the ratio
between these similar terms in W), for any state is approximately 1, which means,

that the approximation used here would not affect considerably the sensitivity of

the calculations. Furthermore, these investigations put forword interesting
hiearachy between AW, terms of different quantum states in the first order,

circumventing the nodal difficulties elegantly,

(n+0+1)na?

2@ r (4.13)

which, for example, for second excited state (n=2) leads to,

AWnl =

h2[2£2+17£+27)
A€21 == i a” |
(4.14)
4 2 6 4
_ AT (e+2)(e+3)"(20+23) 3 A (e+2)(¢+3)7(20+23) 4
A&y = 5 a’ - > 3 a
124m 164 m

Calculations for higher excited states can be carried out in the same manner
without employing tedious integrals, results of which are fairly in good
agreement with the accurate numerical integration results, see tables (4.1) and
(4.3), when compared to the other theoretical works. Finally, though the
comparison of these results with those of [38] for large n — and ¢ — values yields
excellent results, we do not illusrate these tables here for clarity, which may be

reproduced easily within the scheme described in this chapter.
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Table (4.1). Energy eigenvalues of the Yukawa potential in units of 2 =m =1.

For comparison, we set 4 = V2 and a = gA

State g Present calculations Ref[38] Ref.[40] | Ref[16]
(exact)

Is 0.002 -0.99601 -0.9960 -0.99601 | -0.9960
0.005 -0.99004 -0.9900 -0.99004 -
0.01 -0.98015 -0.9801 -0.98015 | -0.9801
0.02 -0.96059 -0.9606 -0.96059 | -0.9606
0.025 -0.95092 -0.9509 -0.95092 -
0.05 -0.90363 -0.9036 -0.90363 | -0.9036

2s 0.002 -0.24602 -0.2460 -0.24602 | -0.2460
0.005 -0.24015 -0.2401 -0.24015 -
0.01 -0.23059 -0.2306 -0.23058 | -0.2306
0.02 -0.21230 -0.21230 -0.21229 | -0.2124
0.025 -0.20355 -0.2036 -0.20352 -
0.05 -0.16351 -0.1635 -0.16325 | -0.1650

2p 0.002 -0.24602 -0.2460 -0.24602 | -0.2460
0.005 -0.24012 -0.2401 -0.24012 -
0.01 -0.23049 -0.2305 -0.23049 | -0.2305
0.02 -0.21192 -0.2119 -0.21193 | -0.2120
0.025 -0.20299 -0.2030 -0.20299 -
0.05 -0.16144 -0.1615 -0.16155 | -0.1625

3p 0.002 -0.10716 -0.1072 -0.10716 | -0.1072
0.005 -0.10142 -0.1014 -0.10142 -
0.01 -0.09231 -0.09232 -0.09236 | -0.09236
0.02 -0.07570 -0.07570 -0.07563 | -0.07611
0.025 -0.06814 -0.06816 -0.06799 -
0.05 -0.03739 -0.03712 -0.03486 | -0.04236

3d 0.002 -0.10715 -0.1072 -0.10715 | -0.1072
0.005 -0.1014 -0.1014 -0.10137 -
0.01 -0.09212 -0.09212 -0.09212 | -0.09216
0.02 -0.07502 -0.07503 -0.07504 | -0.07531
0.025 -0.06713 -0.06715 -0.06718 -
0.05 -0.3388 -0.034383 -0.03477 | -0.03736
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Table (4.2). The same as in Table (3.1) ,but z=2m =1, a = fm_l and n=0

A 4 Present calculations | Ref.[41] (Numerical) | Ref.[41](Analytical)

4 0 -3.2563 -3.2565 -3.2199
8 0 -14.4581 -14.4571 -14.4199

1 -2.5830 -2.5836 -2.4332

16 | O -60.8590 -60.8590 -60.8193
1 -12.9908 -12.9910 -12.8375

24 | 0 -139.2590 -139.2594 -139.2201
1 -31.3937 -31.3938 -31.2385

2 -11.5951 -11.5959 -11.2456

Table (4.3). The same as in Table (3.2), but n > 0
A | /| n | Present Calculations | Ref.[41](Numerical) | Ref.[41](Analytical)

16 10| 1 -13.0271 -13.0273 -13.0326
0| 2 -4.3937 -4.3720 -4.4057
1|1 -4.3612 -4.3480 -4.3886
2410 | 1 -31.4311 -31.4313 -31.4356
0] 2 -11.6992 -11.6998 -11.7093
03 -5.0448 -5.0442 -5.0590

0| 4 -2.2194 -2.2033 -2.2237
1|1 -11.6645 -11.6653 -11.6839

1| 2 -5.0133 -5.0135 -5.0541
1|3 -2.1908 -2.1770 -2.2414
211 -4.9504 -4.9516 -5.0085

2| 2 -2.1337 -2.1241 -2.2428
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4.2 Concluding Remarks

In conclusion, a new useful technique for solving the bound state problem
for Yukawa-type potentials within the frame of Riccati equation have been
obtained and the comparison of calculation results with the accurate numerical
values has been proven the success of the formalism. Avoiding the disadvantages
of the standard non-relativistic perturbation theories, the present formula have the
same simple form both for ground and excited states and provide, in principle, the
calculation of the perturbation corrections up to an arbitrary order in analytical or
numerical form.

Additionally, the application of the present technique to Yukawa potential
is really of great interest leading to analytic expressions for both energy values
and wavefunctions. Of particular importance is the apperance of ground state
energy in a simple form. Comparing various energy levels with different works in
the literature we feel that our analytic treatment quite reliable and further analytic
calculation with this non-perturbative scheme would be useful. In particular, our
method becomes more reliable as the potential strength increases while the
numerical solution of the Schrodinger equation gets unstable and unreliable in
calculating especially the wavefunction. Thus, the present method nicely
complements the existing numerical methods.

Finally, it is noted that the present results can be extended easily to
N —dimension with the consideration of the work in [42] by the replacement of

the angular momentum term ¢ with A= (M —3)/ 2 where M =N+2/(.
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CHAPTER 5

EQUIVALENCE OF TWO ALTERNATIVE APPROACHES
5.1 Introduction of the other model

It has been recently shown that the supersymmetric perturbation techniques
[43] and other approaches [9, 10, 11] based logarithmic perturbation theory [2, 3,
4, 5] are involved within the more general framework of the novel formalism [17]
discussed in this thesis , considering only non-exactly solvable potentials. Within
this context, in this Chapter we go further and show that the present model also is
entirely equivalent to the other significant approach [44] in the literature for
exactly solvable Schrodinger equations. Before clarifying this point, the other
model and its one application is briefly reviewed.

In their exposure to quantum mechanics in undergraduate courses in
physics and chemistry, most students obtain a grounding in the solutions to
exactly solvable model systems such as the hydrogen atom and the harmonic
oscillator. While these are certainly essential for a student to know about, the
manner of presentation often gets the sense that there are relatively few exactly
solvable quantum mechanical systems, as well as the view that the mathematics
involved in finding exact solutions is beyond their capabilities. Simple techniques
permitting students to generate for themselves exactly solvable quantum
mechanical potentials should hence be of general interest. Below, we outline one
such method and apply it to generate a somewhat novel, exactly solvable quantum
mechanical radial potential. The method essentially involves developing
secondary differential equations from the differential equations solved by special
functions by use of the chain rule, and finding their solutions. These solutions
then determine the form of the solvable potential, as well as the allowed energy

eigenvalues and the variables appearing in the wavefunctions.
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5.1.1 Generation of solvable potentials from special functions

In the following, we shall adapt the notation and approach used by Levai [44].
Many of the special functions F(g) of mathematic, including orthogonal
polynomials, represent solutions to differential equations of the form
2
I+ 0l T e () =0 g
where the functions Q(g) and R(g) are defined for a particular function. The form

of this differential equation can be compared to that of a single variable

Schrédinger equation

22;” H(E- () =0 (52)

where atomic units have been adopted such that A=2m=1. Wiriting wavefunction

solutions to (5.2) in the form ¢ (x) =f (x)F (g (x))’ applying the chain rule and

equating like terms between the resulting expression and (5.1) results in the
equalities
g" 2f'
=+ == x .
op ey =2 (5.3)

and

S* LBV oplof
fe? (@) Hlelel)

This permits representation of the term £ —V(x) in several ways, when both

(54)

(5.3) and (5.4) are considered simultaneously:

E-v(x)=(g'V R(glx))- 1"/ 1

~(¢'V Rl = (/1Y = (1) 55
(P R(e) 492 10 (el)) [+ £ -3 &

I
0Q
~

®)
=
—
0Q
N
|
N | —
Q
RS
|
I

| et £
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Now, whenever g' can be found such that one of the terms on the right becomes a
real constant repesenting the energy and the remaining terms become independent
of any quantum number, a solvable quantum mechanical potential results.

Specifically, whenever ‘secondary’differential equations of the forms

(g')Rr(g)=C
(¢")? [%} =C (5.6)

(g (0(e))’ =C et

can be solved (where C is a real constant) solvable potentials V(x) are possible.
Often, since special functions solving equations of the form (5.1) are defined by
integral indices which become quantum numbers, some algebraic manipulation is
usually reguired in order to remove any dependence of a specific potential V(x) on
the index. Such manipulation determines the sipecific mathematical form of the
energy eigenvalues. The Jacobi, Laguerre, and Hermite polynomials represent
examples where several different types of exactly solvable potentials have been
derived using this approach, including many of the better known model potentials

[44].

5.1.2 Application of the method: an attractive radial potential

Solutions to the differential equation

d’Flg) | (i+a) | 2+4a-da®+g° |

2 > (¢)=0 (5.7)
() |7

dg2 l-g

are given in terms of the Gegenbauer polynomials C ,ﬁ’ (g(r)) by
2fr3)ea

F (g(r)): l-g 201 ¢Cy (g(r)) [46]. Multiplying the numerator and

denominator of the first non-derivative term in (5.7) by 4(1 - g2) and defining

R(g) as in (5.1) gives
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R( ): 4(n+a)2+2+4a_4a2 +(1—4(n+a)2g2)
4(1—g2)2 4(1_g2)2

Derivation of solvable potential requires that one of the terms in (5.8) becomes a

(5.8)

real constant representing the energy £ when multiplied by (g')2 . This gives two
secondary differantial equations:
2
12 21 —
(2 /1-¢2f =c

b

(5.9
(') g%/ (1 -g° )2 =C (C=constant).

Solutions to the first differantial equations give a type of potential previously
derived for Jacobi polynomials by Levai [44], as the Gegenbauer polynomials

can be represented by Jacobi polynomials. We choose the other one leading a

solution g(l”)=(1—exp(2ar))1/ 2 and results in a somewhat novel radial
potential.

To complete derivation of this solvable potential, it is also necessary to remove
any dependence of the potential V(x) on the polynomial index », which becomes
the quantum number. For the choice of g(r) above, this means that any
dependence on n be removed from the first term of the right in (5.8). This
accomplished by requiring that

4n+a)? +2+4a-4a% = 4, (5.10)

where A is a real constant. Expansion this polynomial results in the expression

2
— A-2-4n
a= R a (5.11)
and ultimately the energy E for this solvable potential is given by
—1,2 _ 2
E= (a /4X1 4(n+a) ) (5.12)

2n+l

- (a2/4 1 —4{”2 "”"(A—2)/4}2
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The corresponding potential energy V(F) and unnormalized wavefunctions

w(g(r)) are then given by

=(a2/4{g4+(6_f)g2_3} (5.13)

g

(l—exp(— 2ar))2

_ (a2/41: exp(—4ar)+(A—8)exp(—2ar)+(4—A)}

and

w0 (o) 2= g2 )" 2 cae)
(5.14)

= (1 - exp(-2ar))-1/4exp(- (@ = 1/2)ar)x CZ ((1 —exp(-2ar))? )

The boundary conditions ¢(r=0)=0 and ¢(r=0)=0 for a radial potential

1

are met by requiring that a > 5

The parameter @, besides meeting the requirement that o >4, has

complitated dependence on the parameter 4 and the quantum number 7. These
conditions imply that there are no eigenstates for the potential V(g(r)) unless

A >4 and that relatively few eigenstates are allowed for even large values of the

parameter A4 .

5.1.3 Superpotentials and supersymmetric quantum mechanics

The method described above has an immediate application in the emerging
area of supersymmetric quantum mechanics. An accesable introduction to the
general theory is given by Dutt et al [45]. Brifly, in supersymmetric quantum

mechanics two one-dimensional Hamiltonian partners H _and H . can written as

2
H, :—d—2+V_(x) (5.15)
dx
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where 7_(x) and ¥, (x) are expressed in terms of a superpotential #(x) such
that

Ve(x)=w2(x)£w'(x). (5.16)

The energy eigenvalues of H_ and H ., are identical, except for the ground state,

where E,=9 =0 and eigenfunctions of each Hamiltonian are connected through

operators related to the factorization of the Hamiltonians.
Comparison of (5.16) with the expressions in (5.5) shows an immediate

connection. With the defination

I

W (x)=~(n(r(x))) (5.17)

the term E =¥ (x) can be expessed as

E-V(x)=(g'V R(g)-(W())* + (w(x) (5.18)

and whenever R(g) =0,E=0 for a potential V_(x) defined by the
superpotential W(x). The function f (x) can be determined from (5.3) by

10 =(e)" exp[ﬁg(z)dzJ 510

or from the ground state eigenfunction when F (g(x)) n=0 18 a constant. Since the

form of R(g) in (5.1) is such that R(g) =0 when the polynomial index » =0 for

many orthogonal polynomials, this observation permitted the facile generation of
the superpotentials associated with the solvable potentials described earlier by
Levai in 1989 [44].

Superpotentials defined by

W(el)=) 35 ] (520

are also possibilty whenever g' can be found such that
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N |—

(| &e)-

2 —in(g(x))} =0 (521)

when the polynomial index n =0.

5.1.4 Conclusion

A simple method [44] for generating exactly solvable, single variable
Schrodinger equation based on the special functions solving second-order linear
ordinary differantial equations has been reviewed. Application of this method in
the case of a differantial equation related to the Gegenbauer polynomials results in
generation of an exactly solvable radial potential, and the quantum mechanical
supersymmetric superpotential for this solvable potential can also be easily
derived. The relative mathematical case with which this method can be applied, as
well as its relationship to the developing area of supersymmtric quantum
mechanics, should make it of use to both teachers and students of introductory and
intermediate quantum mechanics.

Now, the equivalence of both models, the one introduced in this Chapter and
other used through the thesis work, is discussed in detail below for analytically

solvable potentials.

5.2. Equivalence of two models
The substitution of W(x)= f(x)F[g(x)] in the one-dimensional time-

independent Schrodinger equation

_ % FV(0)W(x) = E¥() | (5.22)

2
X

leads to the second-order differential equation

n n_r2 "y 11,0
f—+Fg +gF+2Fgf =V-E.

5.23
f F F Ff (5-23)
Splitting the equation in two parts as have done earlier in our calculations one gets
e (.24
and
F'g'

AW (x) =AWW' (x) +2W (X)AW (x) = AV (x)-DE , AW = , (5.25)

F
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where E=&+AF and V =V, +AV . Egs. (5.23) and (5.24) are the concrete
proof of the equivalence between the two alternative models.

Afterall, it can be clearly seen that Eq. (5.24) is the one required for obtaining
an explicit expression for W term corresponding to exactly solvable systems in
one-dimension. However, to proceed further, the functions f and g should be
solved as F', O and R are known in principle. Now, equating like terms between
the resulting expression in (5.22) and (5.1) gives

Aebl=[£+20) L detl=2e| Dole-n)| . 20

g

where, from the definition of Q,

g(x)
ﬂm=@V%mEde@] 520

Consideration of Egs. (5.23) through (5.26) suggests a novel prescription
AV (x)-DE =-g"*R(g) | (5.28)
which, for R functions, provides a reliable expression for g(x). Though the both

model of interest seem different, in fact they are entirely equivalent as clarified
within the frame of the present unified formalism to solve underlined problems in

physics.
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CHAPTER 6

GENERAL CONCLUSION

Within the powerful framework of a novel approach introduced recently [17],
we have solved successfully significant problems of physics. This investigation
confirms once more the reliability and usefulness of the model for both exactly
and non-exactly solvable Schrodinger equations.

The search of anharmonic oscillator potential in the light of a perturbative
treatment of the technique has shown flexibility of the formalism by the
comparison of the results obatined at different orders with those of a numerical
integration work. In addition, large order calculations have made clear rapid
convergence of the calculations. The algebraic closed expressions obtained for the
energy values and wave functions at ground and higher excited states are found in
well agreement with the others in the literature.

Application of the approach to Yukawa type potentials justifies the sensitivity
of the calculations through the method for approximately solvable Schrodinger
equations. The comparison of our calculation results with those of other
techniques put forwards the superiority of the formalism within its elegant
algebraic framework.

Finally, we have proven that the prescription used through the present thesis
work is entirely equivalent to the other well known approach in the literature for
exactly solvable Schrodinger equations. The two methods have been unified to

perfect the calculations removing deficiency of each other.
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