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                                                     ABSTRACT 

 
 

 
APPLICATIONS OF A NEW APPROACH TO BOUND-STATES  

 
ÇELİK, Nuryaz 

M.Sc. in Engineering Physics  
Supervisor: Prof. Dr. Bülent GÖNÜL 

January 2006, 38 pages 
 
 
 
         Recently developed approach for the treatment of Schrödinger equations is 
applied to anharmonic oscillator and Yukawa type potentials to have reliable 
expressions for their bound state energies and eigenfunctions. In addition, we 
show that the present novel formalism is entirely equivalent to a well known 
alternative model  in the literature. 
 
Keywords: Anharmonic Oscillator, Yukawa Potential, Perturbation, Exactly 
solvable potentials 
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                                                              ÖZET 
 
 

YENİ BİR MODELİN BAĞLI  DURUMLARA UYGULAMALARI 
 
 

ÇELİK, Nuryaz 
Yüksek Lisans Tezi, Fizik Mühendisliği  

Tez Yöneticisi: Prof. Dr. Bülent GÖNÜL 
Ocak 2006, 38 sayfa  

 
 
 

Schrödinger denklemlerinin çözümü için yeni geliştirilen bir model, bağlı 
kuantum durumları içeren harmonik olmayan titreşim potansiyeli ve Yukawa tipi 
etkileşimlere ait enerji ve dalga fonksiyonu davranışlarını veren güvenilir analitik 
ifadelere ulaşmak için kullanıldı. Ayrıca, bu modelin literatürde bulunan başka bir 
model ile tamamen aynı olduğu gösterildi 
 
 
 
Anahtar kelimeler: Anharmonik titreşim, Yukawa Potansiyeli, Yaklaşık model, 
Tam çözülebilen potansiyeller 
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CHAPTER  1 
 
 

INTRODUCTION 
 

Over the past years the Schrödinger  equation has been studied extensively 

with regard to its exact solvabilty. Many advances have been made in this area  by 

classifying quantum mechanical potentials in terms of their symmetry properties. 

For example, various algebra which reveal the underlying symmetry as well as 

obtaining the solutions have been found. In this respect the application of 

supersymmtry ideas [1] to non-relativistic quantum mechanics has revived fresh 

interest in the problem of attaining algebraic solutions of exactly solvable non-

relativistic potentials and provided a deeper understanding of analytically solvable 

Hamiltonians as well as a set of powerful approximate schemes for dealing with 

problems admitting no exact solutions. The concept of shape invariance [1] has 

played an important role in these developments. 

An exact solution of the Schrödinger equation exist only for a few 

idealized problems in general it has to be solved using on approximation method 

such as the Perturbation Theory (PT), which constitutes one of the most powerful 

tools available in the study of quantum mechanics in the atoms and molecules. PT 

is applied to those cases in which the real system can be described by a small 

change in an exactly solvable idealized system. In this form we can describe a 

great number of problems encountered especially in atomic physics, in which the 

nucleus provides the strong central potential for the electrons; further interactions 

of less strength are described by the perturbation. Examples of these additional 

interactions are: the magnetic interaction (spin-orbit coupling), the electrostatic 

repulsion of electrons and influence of external fields. But in spite of widespread 

application of this theory, its basic analytical properties are poorly understood. 

One of our objectives in this work is to illustrate selected important aspects of the 

perturbation theory within the frame of supersymmetric quantum mechanics. 

    Performing explicit calculations in non-relativistic quantum mechanics using 

the familiar Rayleigh-Schrödinger perturbation expansion is rendered difficult by 
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the presence of summations over all intermediate unperturbed eigenstates. 

Alternative perturbation procedures have been proposed to avoid this difficulty, 

notably the logaritmic perturbation theory (LPT) [2]-[5] and Dalgarno-Lewis 

technique [6]-[9]. The virtue of LPT is its avoidance of cumbersome summation 

over states for second- and higher-order corrections in Rayleigh-Schrödinger 

perturbation theory. Unfortunately, it has problems of its own in calculating 

corrections to excited states, owing to presence of nodes in the wave functions. 

Various schemes have been proposed to circumvent the resulting singularities [5, 

10, 11].    

Such is the status of LPT after over 20 years of active development. 

Meanwhile, supersymmetric quantum mechanics (SSQM) [1, 12] has developed 

immensely since the first models were introduced [13,14]. Several approximation 

methods using SSQM formalism have been developed, including the 

supersymmetric perturbation theory (SSPT) of Cooper and Roy [15]. Recently, 

Lee [16] has shown that SSPT and LPT are entirely equivalent and fortuitously, 

each turns out to resolve difficulties encountered in the other. Namely, LPT 

formulas for energy corrections obviate tedious procedures in the SSQM method, 

while the use of SSQM partner potentials with virtually identical bound state 

spectra solves difficulties with excited states encountered in LPT. Although the 

iterative procedure in SSPT may not actually reduce the calculational workload, it 

does cast the calculations into a physically-motivated, visualizable framework.  

 
Within this context, starting from the first principles, recently Gönül [17] 

has been developed a more economical model which yields simple but closed 

perturbation theory formula leading to the Ricatti equation from which one can 

actually obtain all the perturbation corrections to both energy level shift and wave 

functions for all states unlike the other models mentioned above. The novel 

applications of this model are discussed in detail through this thesis work. 

Additinally, in the application of this method to the thn  excited state, one requires 

knowledge of the unperturbed eigenfunction ( )rnχ  but no knowledge of the other 

eigenvalues or eigenfunctions is necessary. The procedure introduced here does 

not involve either tedious explicit factoring  out of the zeros of ( )rnχ   [2, 3] or 

introduction of ghost states [5] as were the cases encountered for applying LPT to 
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excited states. Since, the present method offers explicit expressions for the energy 

corrections, which are absent in the original SSPT while the treatment of Lee [16] 

for such calculations has mathematical complexity. And it also provides a clean 

route to the excited states, which are combersome to analyze in both LPT and 

SSPT. Hence the present approach can be tought of as a generalization of 

logarithmic and supersymmetric based  perturbation theories. To discuss this point 

briefly, together with its new applications, is also another objective in this work.  

The plan of the thesis is as follows: After giving some introductory 

remarks about basic formalism of the method we apply it to the anhormanic 

oscillator in Chapter 3. The method further is extended to an algebraic non-

perturbative approach for the analytical treatment of such Schrödinger equations 

with a potential that can be expressed in terms of an exactly solvable piece with 

an additional potential. Avoiding disadventages of standart approaches, a new 

handy recursion formulas with  the same simple form both for ground and excited 

states have been obtained. In Chapter 4,  we propose a new scheme to obtain 

analytic expressions for the bound state energies and eigenfunctions of Yukawa 

like potentials within the framework of the novel formalism. The application 

makes clear that the scheme developed gives quite good accuracy for energy 

values despite its analytical nature. In Chapter 5, we first rewiev an alternative 

transformation method, which is well known in the literature, permitting the 

generation of exactly solvable quantum mechanical potentials from special 

functions solving second-order differantial equations. This method later is applied 

to Gegenbauer polynomials to generate an attractive radial potential. The 

relationship of this method to our treatment is discussed in detail and it is shown 

that the both method in fact  is equal to each other. Subsequently, a unified 

treatment is suggested in order to perfect the calculations. Finally, concluding 

remarks and a future work are presented in the final chapter. 
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CHAPTER 2 
 

 
                                         FORMALISM 

. 
       We first start with a brief introduction of the present formalism. In general, 

the goal in supersymmetric quantum theory [1]  is to solve  the Ricatti equation.   

                                       ( ) 02
2 ErVWW

m
−=′− h ,                                   (2.1) 

where V(r) is the potential of interest and E0 is the corresponding ground state 

energy. If we  find W(r), the so-called superpotential, we have of course found the 

ground state wave function via, 

                               ( ) ( )











∫−=
r

dzzWNr exp0ψ ,                                        (2.2)                         

where N is the normalization constant. If V(r) is a shape invariant potential, we 

can in fact obtain the entire spectrum of bound state energies and wave functions 

via ladder operators. 

Keeping in mind this point, now suppose that we are interested in a 

potential V(r) for which we do not know W(r) exactly, more specifically, we 

assume that ( )rV  differs by a small amount from a potential ( )rV0   plus angular 

momentum barrier if any, for which one solves the Ricatti equation explicitly. For 

the consideration of spherically symmetric potentials,  the corresponding 

Schrödinger equation for the radial wave function has the form     

( )[ ]nm
ErV

n
n −=
′′

ψ
ψ

2
h ,  ( ) ( ) ( ) VrVrV

r
∆+



 += +

2
1

0
ll  ,            (2.3) 

where ( )rV∆  is a perturbing potential. Let us write the wave function  nψ as 

                                      ( ) ( ) ( )rrr nnn φχψ =  ,                                               (2.4) 

in which nχ  is the known normalized eigenfunction of the unperturbed 

Schrödinger equation whereas nφ  is a moderating function corresponding to the 

perturbing potential. Substituting (2.4) into (2.3) yields    
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                     nm EV
n
n

n
n

n
n

n
n −=





 ++

′′′′′′
φ
φ

χ
χ

φ
φ

χ
χ 22

2h .                                       (2.5) 

Instead of setting the functions nχ and nφ , we will set their logaritmic derivatives 

using Eqs.(2.1) and the standart approach of LPT: 

                          
n
n

mnW χ
χ ′

−=
2
h   ,    

n
n

mnW φ
φ′

−=∆
2
h  ,                           (2.6)                         

which leads to    

              ( ) ( )
nrmnmnm

rVWW
n
n εχ

χ −



 +=′−= +′′

2

2 1
202

2
2

llhhh ,             (2.7) 

where nε  is the eigenvalue of the unperturbed and exactly solvable unperturbed 

potential, and 

( ) nnnnmnm rVWWWW
n
n

n
n

n
n εφ

φ
χ
χ

φ
φ ∆−∆=∆+′∆−∆=





 +

′′′′
22

2
2

2
2 hh ,(2.8)                         

in which nε∆  is the eigenvalue for the perturbed potential, and nnnE εε ∆+= . 

Then Eq.(2.5), and subsequently Eq.(2.3), reduces to  

                      ( ) ( ) nnnmnn EVWWWW −=′∆+−∆+
2

2 h                     (2.9) 

which is similar to Eq. (2.1), nevertheless, it is valid for all states unlike the usual 

supersymmetric treatment [1] which uses Eq.(2.9)  only for the ground state due 

to theorical considerations. Further, as one in principle knows explicitly the 

solution of Eq.(2.7), namely  the whole spectrum and the corresponding 

eigenfunctions of the unperturbed interaction potential, the goal here  is to solve 

only Eq.(2.8), which is the backbone of this formalism. The reader is referred to 

Ref [17] for the succesful applications of  Eq.(2.8) involving different problems in 

quantum theory through exactly solvable potentials. However, if the whole 

potential has no analytical solution as the case considered in this thesis, then 

Eq.(2.8) cannot be solved exactly which requires that, one can expand the 

functions in terms of the perturbation parameter ,λ  
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                                    ( ) ( )rVrV N
N

N ∆=∆ ∑
∞

=1
; λλ  , 

                                     ( ) ( )rWrW
N

nN
N

n ∑ ∆=∆
∞

=1
; λλ  ,                             (2.10) 

                                     ( ) nN
N

N
n ελλε ∆=∆ ∑

∞

=1
 ,                                                                        

where N denotes the perturbation order. Substituting the above expansion into Eq. 

(2.8) by equating terms with the some power of λ  on both sides yields up for 

instance  O( 3λ ) 

 

                      111212 nnmnn VWWW ε∆−∆=′∆−∆ h   ,                           (2.11) 

                    22222
2
1 2 nnmnnn VWWWW ε∆−∆=′∆−∆+∆ h ,                         (2.12) 

               ( ) 33322132 nnmnnnn VWWWWW ε∆−∆=′∆−∆∆+∆ h  .    (2.13)  

Eq.(2.8) and its expansion give a flexibility for the easy calculations of the 

perturbative corrections to energy and wave functions for the nth state of interest 

through an appropriately chosen perturbed superpotential. It has been shown [17] 

that this feature of the present model leads to a simple framework in obtaining the 

corrections to all states without using complicated mathematical procedures.  
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CHAPTER 3 
 

 APPLICATION TO ANHARMONIC OSCILLATOR PROBLEM 
 

The present scheme [17] mentioned above is applied here to quartic anharmonic 

oscillator since there has been a great deal of interest in the analytical and 

numerical investigation of the one-dimensional anharmonic oscillator. They are of 

interest because of their importance in molecular vibrations [18] as well as in 

solid state physics [19] and quantum field theories [20]. The anharmonic oscillator 

with quartic potentials can serve as a testing ground for the various methods based 

on perturbative and non perturbative approaches. Namely, interest in such a model 

stems mainly from the fact that, if one considers the anharmonicity 4gx  as a 

perturbing term, then the Rayleigh-Schrödinger perturbation expansion for the 

eigenvalues diverges [21] for every value of g . Consequently, several methods 

have been used to caculate the quartic anharmonic oscilltor for eigenvalues and 

eigenfunctions. Without being exhaustive, we may recall variational methods 

[22], WKB methods [23], Hill determinant [24,25] and Riccati [26], or Ricatti-

Hill determinant methods [27], perturbative treatment prescriptions using 

summability techniques such as the Stieljes, Pade and Barrell methods [20,28]. 

Let us also mention the hypervirial perturbation method of Fernandez and Castro 

[29], which can be viewed as a generalization of the Killinbeck method [30], and 

other alternative treatments [31], together with those involving a group-theoretical 

approach [32], the multiple scale techniqe [33], and supersymmetric methods 

[34]. 

 
 
3.1   Application 
 
 For clarity, in this work we restrict ourselves to the Schrödinger equation 

in one dimension ( )0=l  and consider the anharmonic potential as

                                        42
0 gxxVVV +=∆+=  ,                                           (3.1)    

which the unperturbed potential represents the well-known factorizable harmonic 
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oscillator. From the literature, [1] , [35] the corresponding superpotentials, wave 

functions and energy values are                                              

( )
( ) 



 −−= +

axH
axH

n
n

naxaW 1   ,   

                                                                                                                            (3.2) 

( ) ( )2exp 2axaxHnn
−=χ ,           ( )2

12 += nanε  ,                                                       

where nH  denotes Hermite polynomials, n=0,1,2,3,……… is the radial quantum 

number and a is the potential parameter. With a suitable choice of W∆ , 

                                                     12

1

+∞

=
∑=∆ N

N
nxfW       ,                           (3.3)                         

corresponding to the perturbed potential 4gx  in Eq.(3.1), one obtains some 

equations at successive orders for different states, revealing some interesting 

relations between them and leading to a simple algebraic treatment of the problem 

of interest here.  

 
 
3.1.1 Calculations  for n=0 and n=1 states  
 

For instance, starting from the ground state calculations ( )0=n , where, 

from Eq .(3.2)  axW =  and considering Eqs. (2.11) through (2.13) we get at the 

first order (N=1), 

gaf =12 ,   ( ) 01 2
3

0
3

0
2

3
1

1 =−−⇒−= == gEEaf nn   .             (3.4) 

 Similarly, at the second order (N=2) of the perturbation we have 

                                           02 2
2

1 =+ aff , 

                                                                                                                            (3.5) 

017
5

017
182

017
224

05
2

2
1 =+−−⇒= ===
−

n
g

nn
gaf EEEf  

          and the third order (N=3) calculations give 

 

                                        ( ) 02 213 =+ ffaf   ,                                              (3.6a) 
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0
31

21
031

192
031

393
031

505
07

222
1

3 =++−−⇒= ====
+ g

nn
g

nn
aff

EEEEf    (3.6b)                        

If one repeats same calculations  for the first excited state (n=1), for which the 

superpotential is set  xaxW 1−=  in the light of Eq. (3.2), then the first order 

yields 

         gaf =12 ,   ( ) 091 2
135

1
3

1
2

5
1

1 =−−⇒−= == gEEaf nn ,              (3.7) 

and at the second order we have 
 

                                                       02 2
2

1 =+ aff   , 
 
                                                                                                                            (3.8) 

            02150 1
2

13
344

17
2

2
1 =+−−⇒= ===
−

nnn
gaf gEEEf ,  

                                                            
while the third order expressions are  
 
                              ( ) 02 213 =+ ffaf , 
                                                                                                                            (3.9) 

       0243455714 1
2

1
3

1
5

19
2

3
2

2
1 =++−−⇒= ====

+ gEgEEEf nnnn
aff

.   

                                                                                                                                                           
In our calculations, the upper bounds which are the largest real and positive roots 

in these equations are chosen as the energy of the anharmonic oscillator in the 

related quantum state.  

        The repeat of such calculations for large successive orders reproduces similar 

relations in a manner of hieararchy. The systematic calculation of perturbation 

corrections of large orders offers no difficulty if we resort a computer algebra 

system like Mathematica and Maple or Reduce. This realization generalizes 

anharmonic oscillator solutions for the ground and first excited states without 

solving the Schrödinger equation. To calculate the energy values individually at 

the each perturbation order, one  needs to solve only  

 

                                               01
0

=−∑
=

− N
N

k
kNk gff δ ,                             (3.10) 

in which  δ  denotes Kronocker delta and af =0  is the parameter related to Eq. 

(3.2). The perturbation coeffients above can easily be computed through                                         
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             ( ) 







∑ −−++=
−

=
−−

− 1

0
211

1122
N

k
NNkNkn gffnNf δδ .          (3.11)                 

 

The calculations are carried out for different range of g values and the results 

obtained for the ground and first excited state energies are compared to the one 

computed numerically [25]. The agreement is remarkable in the whole range of g  

values for both quantum states, see Tables (3.1) and (3.2). The large order 

perturbation calculations are performed by a simple use of Mathematica [36] 

along the line of (3.10) and (3.11) with simple algebraic manipulations. 

 

Table  (3.1). Lowest eigenvalue of anharmonic oscillator (n=0) 
 
 
        g      N=1       N=2       N=3       N=4  Exact[25] 

0.001 1.00075 1.00075 1.00075 1.00075 1.000748 
0.01 1.00742 1.00737 1.00737 1.00737 1.007373 
0.05 1.03558 1.03467 1.03474 1.03473 1.034729 
0.1 1.06792 1.06500 1.06533 1.06528 1.065286 
0.5 1.26255 1.23689 1.24347 1.24118 1.2418541 
1.0 1.43113 1.38082 1.39672 1.39017 1.392352 
10 2.60124 2.38404 2.47867 2.42910 2.449174 
100 5.37603 4.82115 5.08211 4.93770 4.999417 

1000 11.4763 10.2346 10.8285 10.4960 10.639789 
10000 24.6756 21.9784 23.2731 22.5463 22.861608 

 
 
Table  (3.2). First excited state energies of anharmonic oscillotor (n=1) 
 
  

g N=1 N=2 N=3 N=4 N=8 Exact[25]
0.001 3.00374 3.00374 3.00374 3.00374 3.00374 3.003739 
0.01 3.03682 3.03652 3.03653 3.03653 3.03653 3.036525 
0.05 3.17236 3.16683 3.16727 3.16722 3.16723 3.167225 
0.1 3.32148 3.30511 3.30718 3.30681 3.30687 3.306872 
0.5 4.14123 4.03032 4.05869 4.04924 4.05171 4.051932 
1.0 4.80180 4.60453 4.66448 4.64159 4.64784 4.648813 
10 9.11388 8.39998 8.68054 8.55128 8.58582 8.599004 
100 19.0576 17.3193 18.0446 17.6965 17.7864 17.83019 

1000 40.7899 36.9427 38.5693 37.7818 37.9829 38.08683 
10000 87.7547 79.4176 82.9526 81.2378 81.6747 81.90331 

 
 
 
 



 

 

11

3.1.2 Calculations for 2≥n   states 
 
When dealing with excited states, this approach seems rather cumbersome 

because the zeros of the wave function have to be taken into account explicitly. 

However, with some simple but physically acceptable algebraic manipulations, 

we can obtain  simple analytical expressions for higher excited states easily from 

a straightforward generalization of the resulting expressions at succesive 

perturbation orders as in the previous section. 

        Starting  with second excited state (n=2), where from Eq.(3.2) the 

superpotential is  ( ) ( )1252 22
2 −−== axaxaxWn  energies up to for example the 

fifth order (N=5) can be obtained through 

                        gaf =12 ,     ( )12
8
1

1 −= af   ,           N=1,                         (3.12a) 

 

            02 2
2

1 =+ aff ,     10
2

2
1 gaff −= ,                N=2,                         (3.12b) 

 

      ( ) 02 213 =+ ffaf ,        12
2

3
2

2
1 afff += ,           N=3,                         (3.12c) 

 

 ( ) 02 431
2
2 =++ affff , 

( )
14

2 213
4

ffaff += ,      N=4,                         (3.12d) 

 

   ( ) 02 54132 =++ afffff ,  
( )

16
2

5
431

2
2 afffff ++=  ,         N=5.        (3.12e) 

In these treatments, to remove singularities in the related superpotential due to the 

zeros of the wave function, we accept that 22ax >1 leading  to physically 

acceptable results. This simple assumption reproduces good accuracy in the 

calculations when compared to tedious calculations of LPT for higher excited 

states. The results obtained are shown in Table (3.3). 
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 Table (3.3). Second excited state energies of the anharmonic oscillator (n=2) 
 
   

g N=1 N=2 N=3 N=4 N=15 Exact[25]
0.001 5.00997 5.00996 5.00996 5.00996 5.00996 5.009711 
0.01 5.09715 5.09606 5.09609 5.09609 5.09609 5.093939 
0.05 5.44017 5.42257 5.42423 5.42401 5.42404 5.417261 
0.1 5.79852 5.75129 5.75799 5.75670 5.75694 5.747959 
0.5 7.60690 7.35517 7.41992 7.39911 7.40489 7.396900 
1.0 8.98161 8.56694 8.68960 8.64563 8.65908 8.655049 
10 17.5870 16.2662 16.7452 16.5461 16.6188 16.63592 
100 37.0665 33.9532 35.1363 34.6287 34.8238 34.87398 

1000 79.4750 72.6342 75.2605 74.1261 74.5674 74.68140 
10000 171.046 156.245 161.940 160.830 160.437 160.6859 

 
 
Finally, within the same framework one can readily get similar expressions for 

other excited states. For instance, in order to deal with the third excited state   for 

the third  (n=3) of the anharmonic oscillator one can choose the corresponding 

superpotential ( ) ( )xaxaxxaWn 32392 3242
2 −+−==  via Eq.(3.2) for 

unperturbed piece of the potential and end up with some explicit algebraic 

equations at each order  

 

                              gaf =12 ,   ( )12
12
1

1 −= af  ,          N=1,                      (3.13a) 

 

                   02 2
2

1 =+ aff ,     14
2

2
1 gaff −= ,            N=2,                      (3.13b) 

 

               ( ) 02 213 =+ ffaf ,   16
2

3
2

2
1 afff += ,       N=3,...                      (3.13c) 

and so on. In the case wave the function and consequently the superpotential have 

three zeros at ax 23±= . As argued above, to circumvent the resulting 

singularities, the present calculations here make a similar  assumption  that is 

xax 32 2 >  which produces reasonable results. However,  this choice for higher 

excited states with 3≥n  allows only the coefficents Nf  with Nx2  and 22 +Nx  

through the linear perturbation expressions at each order.The results obtained are 

illustrated in Table (3.4). Although the present formalism suggest a systematic 
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way of improving the anharmonic oscillator perturbation series, the accuracy of 

the present formulas as expected gets decrease with the increase of the quantum 

number since the perturbation becomes more important. Nevertheless, owing to 

the nearly correct large-g behavior of the results presented here they are expected 

to be much more accurate than the perturbation series. This idea was exploited by 

Fernandez et al [26]. in order to obtain analytical expressions for eigenvalues of 

the anharmonic oscillator from the semiclassical considerations.   

 
 Table (3.4). Third excited state energies of the anharmonic oscillator (n=3) 
 
   

g N=1 N=2 N=3 N=4 N=15 Exact[25] 
0.001 7.02091 7.02087 7.02087 7.02087 7.02087 7.018652 
0.01 7.20124 7.19823 7.19833 7.19832 7.19832 7.178573 
0.05 7.87793 7.83590 7.84053 7.83985 7.83995 7.770271 
0.1 8.54838 8.44564 8.46179 8.45849 8.45913 8.352677 

0.05 11.7019 11.2511 11.3683 11.3315 11.3415 11.11515 
1.0 14.0000 13.2973 13.5021 13.4319 13.4524 13.15680 
10 28.0000 25.9479 26.6524 26.3804 26.4698 25.80627 
100 59.3169 54.5806 56.2681 55.5997 55.4001 54.38529 

1000 127.327 116.968 120.689 119.207 119.712 116.60319
10000 274.100 251.711 259.767 256.555 257.651 250.95073

 
 
   In the light of above discussion one can easily  generalize the whole calculations 

discussed in Sec. 3 in a compact form to determine the solutions of quartic 

anharmonic oscillator in a closed algebraic form, which should be valid for the all  

states. Eq. (3.10)  can be safely  used for this purpose, however the coefficients  

should be re-defined as 

      ( ) 







∑ −−++=
−

=
−−

− 1

0
211

122
N

k
NNkNknN gffanNf δδ  ,                         (3.14) 

 
where ( ) 11 −+−= nn ana  being with 1≥n  and 10 =a . As matter of fact , the 

only data that are needed when using Mathematica is Eq. (3.14) to solve Eq. 

(3.10) yielding energy values through the perturbation orders for any quantum 

state. 

 
3.1.3  Large-order calculations 

A question now arises about the convergence of the method just described. Since 

it seems closely related to perturbation theory, one expects it to be asymptotic 
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divergent. Our numerical results almost confirm this assumption. We have 

calculated low-lying energy levels of the anharmonic oscillator for several  values, 

finding almost the same behaviour in all cases. Tables (3.5) and (3.6) represent the 

oscillations of our results, though they remain quite close to the true eigenvalue, 

about its actual value as the perturbation order ( )N  increases, which are carried 

out for 1=g  and 10=g  respectively for the lowest state. Although divergent, the 

present method is still useful because it certainly improves the perturbation series. 

The most accurate results is obtained from the N  value corresponding to the 

smallest oscillation amplitude. Such an accuracy cannot be obtained from the 

other perturbation series. 

 

Table (3.5). Lowest eigenvalues calculated for g =1 at large orders 
 
    

N 0=nE  N 0=nE  
5 1.39357 15 1.39269 
6 1.39155 16 1.39196 
7 1.39291 17 1.39272 
8 1.39191 18 1.39221 
9 1.39271 19 1.39273 
10 1.39202 20 1.39231 
11 1.39265 21 1.39273 
12 1.39201 22 1.39235 
13 1.39266 23 1.39272 
14 1.39186 24 1.39238 

                                                 ==
exact
nE 0 1.392352 

   Table (3.6). Lowest eigenvalue calculated for g =10 at large orders 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
                                              exact

nE 0= =2.449174 

N 0=nE  N 0=nE  
5 2.46214 15 2.45815 
6 2.43752 16 2.44941 
7 2.45804 17 2.45808 
8 2.43856 18 2.45067 
9 2.45720 19 2.45800 

10 2.43125 20 2.45176 
11 2.45752 21 2.45798 
12 2.44277 22 2.45276 
13 2.45799 23 2.45798 
14 2.44735 24 2.45358 
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3.2  Conclusion  
         
        We have shown [47] that the eigenvalues of quantum mechanical systems 

can be approximately obtained from the present formalism which is non-

perturbative, self-consistent and sistematically improvable. Although we have 

limited ourselves to one illustrative example, the range of application of the 

method is rather large and and appears to be straightforward. The perturbation 

procedure here is well adapted to the use of software systems such as 

Mathematica and allows  the computation to be carried out up to high orders of 

the perturbation. For any given state,  simple algebraic manipulations provide at 

the same time, analytical expressions of the perturbed eigenvalues and 

eigenfunctions, without having to compute any matrix elements or to perform any 

integration.  

        The increase in the vales of g  for different quantum numbers does not imply 

special difficulty since the perturbed contributions merely follow from the 

solution of a linear system of equations of small order. Within this contex, we 

may for example recall that Hill determinants of orders as high as 100100×  are 

required [24] for large values of ( )50≈gg  and that, when applying summation 

procedures, the calculations become more and more cumbersome as increases, 

because of the strong divergence of the coefficients in the Rayleigh-Schrödinger 

expansions. Furthermore, the remove of the singularities in the unperturbed wave 

function via the superpotential introduced in the present formalism does not cause 

tedious calculations which are difficult when dealing with excited states in LPT. 

Finally, although in this thesis we have focused only the calculations of 

eigenvalues for the quartic anharmonic oscillator, one can also find analytical 

solutions easily for the corresponding total wave function, through the use of Eqs. 

(2.4), (2.6), (3.2), (3.3). 

        As a concluding remark,  due to its simplicity and accuracy in particular for 

small g   values at low-lying states we believe this method to  competitive with 

other methods developed to deal with perturbation treatments. As a matter of fact ,       

the degree of precision of the results can be drastically improved by raising the 

perturbative order in the expansion, a step which does not bear any technical 

difficulty. It would be interesting to extend the present scheme to other non-

exactly solvable potentials.  
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CHAPTER  4 
 

 
APPLICATION TO YUKAWA-TYPE POTENTIALS 

 
          Since the pioneering work of Yukawa [37] the potential,  

                                                      ( ) ( ) ( )rrArV α−= exp                             (4.1) 

has been extensively investigated in literature. This is due to the special role of 

this potential in different branches of physics. In plasma physics it is known as the 

Debye-Hückel potential, in solid state physics and atomic physics it is called 

Thomas-Fermi or screened Coulomb potential. Also, this potential is well known 

in nuclear physics  as the dominant central part of nucleon-nucleon interaction 

arising out of the one-pion-exchange mechanism. Thus, the parameters A and α 

are given by different expressions depending on the problem under consideration.  

In all these cases, a knowledge of the various bound state energies is essential for 

understanding and correlating the properties of different systems. Since the 

Schrödinger equation for such  potential does not admit an exact analytic 

solutions, various numerical and approximate analytical methods e.g. [16, 38, 39, 

40,  41] have been employed over past several years to obtain its energy spectrum.   

          A new methodolgy in the previos chapters has been introduced. This 

methodolgy based on the decompose of the radial Schrödinger equation in two 

pieces having an exactly solvable part with an additional piece leading to either a 

closed analytical solution or an approximate treatment depending on the nature of 

perturbed potential. The application of this treatment to different problems in both 

bound and continuum regions, have been proven the success of the formalism.  

   
4.1 Application 
 

We now apply this method to a Yukawa-type potential with the angular 

momentum barrier 

       ( ) ( ) ( ) ( ) VVrV
mrmrr

A ∆+




 +=+−= ++
22

1
022

1exp llllα ,                           (4.2)
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where the first piece is the zeroth order and shape invariant exactly solvable piece  

corresponding to the unperturbed potential with rAV −=0  while V∆  is the 

perturbation term ( )22αα AAV −=∆ r ( )63αA+ 2r ( )244αA− ..........3 +r  

through the expansion of the exponential terms. Our careful calculations have 

clarified that the main contributions come from the first three terms. Hence, the 

present calculations are performed up to the second-order involving  only these 

additional potential terms, which surprisingly provide highly accurate results. 

 

4.1.1 Ground state calculations  (n=0) 
 

In the light of Eq. (2.7) , the zeroth-order calculations  leading  to exact solutions 

can be carried out readily with the choice of a suitable 0=nW  yielding the 

Coulomb potential, 

 
 

 ( ) ( )hl
lh

12
1

20 +
+

= +−= Am
rmn rW  ,  

( )22

2

12 ++
−=

lh n
mA

nε ,  n=0,1,2,… 

                                                                                                                        
                                                                                                                            (4.3) 

( )
( )

( )
( ) ( ) ( )

















−








=

++

+

++++

+
++

+

++ 21
212

21!12
!

1
1

1
1

21
2 exp

hl

l

hllh

l

l

l

hl n
mA

n
n

mA

n
mAn

r
nn

mA
n Lrrχ  

 

in which ( ) ( )( )
( )( )∑=

= −++
−++Γn

m mmnm

mrn
n rL

0 !!1
1

l

ll  is an associate Laguerre polynomial. 

These analytical solutions are already exist in literature, providing a superiority to 

the present calculations. For the calculation of corrections to the zeroth-order 

energy and wavefunctions, one needs to consider the expressions  leading to first- 

and second-order perturbation given by Eqs.(2.11) and (2.12). Multiplication of 

each term by 2
nχ  in these equations, and keeping in mind the relation 

n
n

mnW χ
χ ′

−=
2
h

 in Eq (2.6) , one can obtain general expressions for 

corrections in the first- order 
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                                     ( ) drrr A
nn ∫ 






−=∆

∞

∞− 2
22

1
αχε

 
                                                                                                                            (4.4) 

                   ( )
( )

( ) dzzzrW A
n

r
n

rn

m
n 






 +∆∫=∆

2
2

1
2

2
12

1
α

χ
εχ

h  

 
and the second-order calculations are 
 

                    ( ) ( ) drrWrr n
A

nn 



 ∆−∫=∆

∞

∞−

2
1

2
6

32
2

αχε  , 

                                                                                                                            (4.5)                   
                     

( )
( )

( ) ( ) dzzzWzrW
r A

nnn
rn

m
n ∫ 



 −∆+∆=∆ 2

6
32

12
2

2
12

2
α

χ
εχ

h , 

 
for any state of interest. According to these formulas, we can calculate 1nW∆  and  

2nW∆  when we know what the energy correction 1nε∆ and 2nε∆  are, from 

which the whole of the perturbed wevefunction can be calculated in a closed form 

by Eq. (2.6).  It is also noted that the lower limit of the integration for energy 

caculations should be changed from ∞−  to 0 to accomodate the fact r that is 

always positive. Thus,  the ground state calculations within the frame of Eqs. (4.4) 

and (4.5) give 

 

                                      
( )( ) 2

4
3212

01 αε m
++−=∆ llh

 , 
                                                                                                                          (4.6a) 

      
( ) ( )( ) ( ) ( )( ) 4

3216

3224163
212

322214
02 ααε

mAAm

++++++ −=∆ lllhlllh
,        

                                                                                                                           

                                      ( ) ( ) rrW
m22

21
01

αhl+−=∆ , 

                                                                                                                          (4.6b) 
     

( ) ( ) ( )( )[ ] ( )[ ]}{
( )2

2223

224
413211

02 mAm
mAmArrrW −+++++=∆ lhhllhl αα
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The analytical expressions for the lowest energy and radial wavefunction of a 

Yukawa-type potential are then given by 

 

                            020100 εεαε ∆+∆++≈ == AE nn , 
 
                                        
                                              ( ) ( ) ( )rrr nnn φχψ ≈=0 ,                                  (4.7)                         
                                                                                                                         

                        ( )













∫ ∆+∆−≈=
rm

n dzWWr )(exp 0201
2

0 h
φ . 

 
These  explicit expressions support the similar works in [16, 40, 41]. Table (4.1) 

shows  numerical values of the perturbed energies for a few values of n and α . 

The result obtained are compared with those of [16, 40, 41], together with the 

results of Rogers and his co-workers [38] who solved the Schrödinger equation 

numerically. Our results are in remarkably good agrement. Table (4.2) and (4.3) 

illustrate another comparison of our calculations with those of [41] who carried 

out their calculations in a different unit. These two different comparison make 

clear the sensitivity of present calculations although the procedures in [16 ,40, 41] 

to reproduce the corrections anallytically seem similar to ours. In particular, Table 

(4.2) clarifies that the present method is very useful one for large potential 

parameters (A), for which numerical solution of the Schrödinger equation is 

extremely difficult. Because, for a large strength the Yukawa potential is very 

deep and the wave function becomes very sharply peaked near the origin. This 

causes a great deal of difficulty in the numerical solution of the Schrödinger 

equation, which is reflected in the instability of the wavefunction thus obtained, 

although the energy eigenvalue is fairly stable and accurate. 

 
4.1.2. Excited state caculations (n≥ 1) 
 

The procedures leads to a handy recursion relations in the case of ground states,  

but becomes extremely cumbersome in the description of radial excitations when 

nodes of wavefunctions are taken into account , in particular  during the higher 

order calculations. Although several attempts have been made to by pass this 

difficulty and improve calculations in dealing with excited states, e.g [16] within 
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the frame of supersymmetric quantum mechanics and, the related references 

therein regarding the Logarithmic Perturbation Theory, they have not resulted in 

simple algorithm. Therefore, as an another objective of this work, here an explicit 

treatment is introduced in within the frame of the present formalism and described 

a straightforword procedure for obtaining the perturbation corrections through 

handy recursion formula, having the same form both for ground and excited 

states. 

       Using our expertise due to our earlier calculations, the function nW  related to 

excited states can be calculated explicitly for the computation of perturbations 

expressed by (4.4) and (4.5). So, the first-order corrections in the first  excited  

state (n=1) are 

 

                           
( )( ) 2

4
3242

11 αε m
++−=∆ llh

, 

                                                                                                                            (4.8) 
              

( ) ( )( ) ( ) ( )( )[ ]
( )( )[ ]22

4222222

2122

4215212
11

hll

hlllhllhl

++−

++++++−+−=∆
Amrm

mArrmArW α
. 

 

However, higher-order calculations have singularity problems during the 

integrations because of the nodes appearing in 11W∆ . To remove this problem, we 

focus on a hidden  relation in the above equation and with some confidence 

suggest that 

          

( )( )[ ] ( )( ) ( ) ( )( )[ ]42222222 42152121 hlllhllhll ++++++−≈++− mArrmAAmr
                                                                                                                            (4.9)         

which transforms eq.(4.8) into 

                                        
( ) rrW

m22

22
11 )( αhl+≈∆ .                                     (4.10)       

Use of the approximate 11W∆  in Eq.(4.10) gives the energy correction in the 
second-order as 
 

    
( ) ( )( ) ( ) ( )( ) 4

3216

3272263
212

327224
12 ααε

mAAm

++++++ −=∆ lllhlllh
.          (4.11) 
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Therefore, the appoximate energy value of the Yukawa potential corresponding to 

the first excited state is 

                            1211
2

11 εεαε ∆+∆++≈ == AE nn .                         (4.12)                        
 
The related radial wavefunction can be expressed in an analytical form in the light 

of Eqs. (4.4), (4.5) and (4.7), if required. 

          One can easily check the similarities as in (4.9), between the terms of any 

n
n

mnW χ
χ ′

−=
2
h  of interest to by pass the nodal difficulty as in the first excited 

state. Our careful and exhausted investigations have revealed that the ratio  

between these similar terms in nW  for any state is approximately 1, which means, 

that  the approximation used here would not affect considerably the sensitivity of 

the calculations. Furthermore, these investigations put forword interesting 

hiearachy between 1nW∆  terms of different quantum states in the first order, 

circumventing the nodal difficulties elegantly, 

 

                                      
( ) rW

m
n

n 22

21
1

αhl++≈∆                                        (4.13)                         

 
which, for example, for second excited state (n=2) leads to, 
 

                  2
4

2717222

21 αε m






 ++

−=∆
llh

 , 
                                                                                                                          (4.14) 

      
( )( ) ( ) ( )( ) ( ) 4

3216

23243263
212

2322324
22 ααε

mAAm

++++++ −=∆ lllhlllh
   .    

 
Calculations for higher excited states can be carried out in the same manner 

without employing tedious integrals, results of which are fairly  in good 

agreement with the accurate numerical integration results, see tables (4.1) and 

(4.3), when compared to the other theoretical works. Finally, though  the 

comparison of these results with those of [38] for large −n  and −l  values yields 

excellent results, we do not illusrate these tables here for clarity, which may be 

reproduced easily within the scheme described in this chapter. 
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    Table (4.1). Energy eigenvalues of the Yukawa potential in units of 1== mh . 
For comparison, we set 2=A  and gA=α  
 
 
State g Present calculations Ref[38] 

(exact) 
Ref.[40] Ref.[16] 

1s 
 
 

0.002 
0.005 
0.01 
0.02 

0.025 
0.05 

-0.99601 
-0.99004 
-0.98015 
-0.96059 
-0.95092 
-0.90363 

-0.9960 
-0.9900 
-0.9801 
-0.9606 
-0.9509 
-0.9036 

-0.99601 
-0.99004 
-0.98015 
-0.96059 
-0.95092 
-0.90363 

-0.9960 
- 

-0.9801 
-0.9606 

- 
-0.9036 

2s 0.002 
0.005 
0.01 
0.02 

0.025 
0.05 

-0.24602 
-0.24015 
-0.23059 
-0.21230 
-0.20355 
-0.16351 

 

-0.2460 
-0.2401 
-0.2306 
-0.21230 
-0.2036 
-0.1635 

-0.24602 
-0.24015 
-0.23058 
-0.21229 
-0.20352 
-0.16325 

-0.2460 
- 

-0.2306 
-0.2124 

- 
-0.1650 

2p 0.002 
0.005 
0.01 
0.02 

0.025 
0.05 

-0.24602 
-0.24012 
-0.23049 
-0.21192 
-0.20299 
-0.16144 

-0.2460 
-0.2401 
-0.2305 
-0.2119 
-0.2030 
-0.1615 

-0.24602 
-0.24012 
-0.23049 
-0.21193 
-0.20299 
-0.16155 

-0.2460 
- 

-0.2305 
-0.2120 

- 
-0.1625 

3p 0.002 
0.005 
0.01 
0.02 

0.025 
0.05 

-0.10716 
-0.10142 
-0.09231 
-0.07570 
-0.06814 
-0.03739 

 

-0.1072 
-0.1014 
-0.09232 
-0.07570 
-0.06816 
-0.03712 

-0.10716 
-0.10142 
-0.09236 
-0.07563 
-0.06799 
-0.03486 

-0.1072 
- 

-0.09236 
-0.07611 

- 
-0.04236 

 
3d 0.002 

0.005 
0.01 
0.02 

0.025 
0.05 

-0.10715 
-0.1014 
-0.09212 
-0.07502 
-0.06713 
-0.3388 

-0.1072 
-0.1014 
-0.09212 
-0.07503 
-0.06715 

-0.034383 
 

-0.10715 
-0.10137 
-0.09212 
-0.07504 
-0.06718 
-0.03477 

-0.1072 
- 

-0.09216 
-0.07531 

- 
-0.03736 
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  Table (4.2). The same as in Table (3.1) , but 12 == mh , 1−= fmα  and 0=n  
     
 

A l  Present calculations Ref.[41] (Numerical) Ref.[41](Analytical) 
4 0 -3.2563 -3.2565 -3.2199 
8 0 

1 
-14.4581 
-2.5830 

-14.4571 
-2.5836 

-14.4199 
-2.4332 

16 0 
1 

-60.8590 
-12.9908 

-60.8590 
-12.9910 

-60.8193 
-12.8375 

24 0 
1 
2 

-139.2590 
-31.3937 
-11.5951 

-139.2594 
-31.3938 
-11.5959 

-139.2201 
-31.2385 
-11.2456 

 
 
 
    Table (4.3). The same as in Table (3.2), but 0fn  
 
 
 
A l  n  Present Calculations Ref.[41](Numerical) Ref.[41](Analytical)
16 0 

0 
1 

1 
2 
1 

-13.0271 
-4.3937 
-4.3612 

-13.0273 
-4.3720 
-4.3480 

-13.0326 
-4.4057 
-4.3886 

24 0 
0 
0 
0 
1 
1 
1 
2 
2 

1 
2 
3 
4 
1 
2 
3 
1 
2 

-31.4311 
-11.6992 
-5.0448 
-2.2194 
-11.6645 
-5.0133 
-2.1908 
-4.9504 
-2.1337 

-31.4313 
-11.6998 
-5.0442 
-2.2033 

-11.6653 
-5.0135 
-2.1770 
-4.9516 
-2.1241 

-31.4356 
-11.7093 
-5.0590 
-2.2237 
-11.6839 
-5.0541 
-2.2414 
-5.0085 
-2.2428 
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4.2 Concluding Remarks 
 
 In conclusion, a new useful technique for solving the bound state problem 

for Yukawa-type potentials within the frame of Riccati equation have been 

obtained and the comparison of  calculation results with the accurate numerical 

values has been  proven the success of the formalism. Avoiding the disadvantages 

of the standard non-relativistic perturbation theories, the present formula have the 

same simple form both for ground and excited states and provide, in principle, the 

calculation of the perturbation corrections up to an arbitrary order in analytical or 

numerical form. 

          Additionally, the application of the present technique to Yukawa potential 

is really of great interest leading to analytic expressions  for both energy values 

and wavefunctions. Of particular importance is the apperance of ground state 

energy in a simple form. Comparing various energy levels with different works in 

the literature we feel that our analytic treatment quite reliable and further analytic 

calculation with this non-perturbative scheme would be useful. In particular, our 

method becomes more reliable as the potential strength increases while the 

numerical solution of the Schrödinger equation gets unstable and unreliable in 

calculating especially the wavefunction. Thus, the present method nicely 

complements the existing numerical methods. 

 Finally, it is noted that the present results can be extended easily to 

−N dimension with the consideration of the work in [42] by the replacement of 

the angular momentum term l  with ( ) 23−=Λ M  where l2+= NM .
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CHAPTER  5 
 
 

EQUIVALENCE OF TWO ALTERNATIVE APPROACHES 
 

5.1 Introduction of the other model 
 

          It has been recently shown that the supersymmetric perturbation techniques 

[43] and other approaches [9, 10, 11] based logarithmic perturbation theory [2, 3, 

4, 5] are involved within the more general framework of the novel formalism [17] 

discussed in this thesis , considering only non-exactly solvable potentials. Within 

this context, in this Chapter we go further and show that the present model also is 

entirely equivalent to the other significant approach [44] in the literature for 

exactly solvable Schrödinger equations. Before clarifying this point, the other 

model and its one application is briefly reviewed. 

               In their exposure to quantum mechanics in undergraduate courses in 

physics and chemistry, most students obtain a grounding in the solutions to 

exactly solvable model systems such as the hydrogen atom and the harmonic 

oscillator. While these are certainly essential for a student to know about, the 

manner of presentation often gets the sense that there are relatively few exactly 

solvable quantum mechanical systems, as well as the view that the mathematics 

involved in finding exact solutions is beyond their capabilities. Simple techniques 

permitting students to generate for themselves exactly solvable quantum 

mechanical potentials should hence be of general interest. Below, we outline one 

such method and apply it to generate a somewhat novel, exactly solvable quantum 

mechanical radial potential. The method essentially involves developing 

secondary differential equations from the differential equations solved by special 

functions by use of the chain rule, and finding their solutions. These solutions 

then determine the form of the solvable potential, as well as the allowed energy 

eigenvalues and the variables appearing in the wavefunctions. 
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5.1.1 Generation of solvable potentials from special functions 
 
In the following, we shall adapt the notation and approach used by Levai [44]. 

Many of the special functions F(g) of mathematic, including orthogonal 

polynomials, represent solutions to differential equations of the form  

                                    
( ) ( ) ( ) ( ) ( ) 02

2
=++ gFgRgQ dg

gdF

dg

gFd
                       (5.1)                         

where the functions Q(g) and R(g) are defined for a particular function. The form 

of this differential equation can be compared to that of a single variable 

Schrödinger equation 

                                    ( )( ) ( ) 02

2
=−+ xxVE

dx

d ψψ
                                         (5.2)                         

 
where atomic units have been adopted such that h=2m=1. Wiriting wavefunction 

solutions to (5.2) in the form ( ) ( ) ( )( )xgFxfx =ψ , applying the chain rule and 

equating like terms between the resulting expression and (5.1) results in the 

equalities 

                                       
( )

( )( )xgQfg
f

g

g =+ ′
′′′ 2

2                                               (5.3)                         

and 
 

                                        
( )

( )
( )

( )( )xgR
g

xVE

gf

f =+
′

−

′

′′
22 .                                    (5.4)                        

 This permits representation of the term ( )xVE −  in several ways, when both 

(5.3) and (5.4) are considered simultaneously: 

                       ( ) ( ) ( )( ) ffxgRgxVE ′′−′=− 2        
 

                                      = ( ) ( )( ) ( ) ( )′′−′−′ ffffxgRg 22                       (5.5)                         
                                                                                                                                      

                                      = ( ) ( ) ( )( )



 −−′ xgQgRg dg

dQ 2
4
1

2
12 + 



− ′

′′
′
′′

g
g

g
g

4
3

2  

 

                                      = ( ) ( ) ( )( )
2

22
2

4
1

2
12





−



+



 −−′

′
′′

′
′′

g
g

g
g

dg
dQ xgQgRg . 
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Now, whenever g ′  can be found such that one of the terms on the right becomes a 

real constant repesenting the energy and the remaining terms become independent 

of any quantum number, a solvable quantum mechanical potential results. 

Specifically, whenever ‘secondary’differential equations of the forms 

 

                                               ( ) ( ) CgRg =′ 2       
 

                                               ( ) Cg dg
dQ =



′ 2                                                   (5.6)                       

 

                                               ( ) ( )( ) CgQg =′ 22  , etc                                          
can be solved (where C  is a real constant) solvable potentials V(x) are possible. 

Often, since special functions solving equations of the form (5.1) are defined by 

integral indices which become quantum numbers, some algebraic manipulation is 

usually reguired in order to remove any dependence of a specific potential V(x) on 

the index. Such manipulation determines the sipecific mathematical form of the 

energy eigenvalues. The Jacobi, Laguerre, and Hermite polynomials represent 

examples where several different types of exactly solvable potentials have been 

derived using this approach, including many of the better known model potentials 

[44]. 

 
 
5.1.2  Application of the method: an attractive radial potential 
 
Solutions to the differential equation  
 

                                
( ) ( ) ( ) 0

214

22442
21

2

2

2
=
















++






 −

+−+

−

+ gF
g

g

g

n

dg

gFd ααα
              (5.7)                        

 

are given in terms of the Gegenbauer polynomials ( )( )rgCn
α  by    

( )( ) ( ) ( )( )rgCgrgF n
αα 2

2
1

21





 +

−=  [46]. Multiplying the numerator and 

denominator of the first non-derivative term in (5.7) by ( )214 g−  and defining 

( )gR  as in (5.1) gives 
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                      ( ) ( ) ( )

















+=





 −






 +−






 −

−+++
2214

2241

2214

244224

g

gn

g

ngR
αααα

.                    (5.8)                

 
Derivation of solvable potential requires that one of the terms in (5.8) becomes a 

real constant representing the energy E  when multiplied by ( )2g ′ . This gives two 

secondary differantial equations: 

                                             ( ) ( ) Cgg =−′
222 1 , 

                                                                                                                            (5.9) 

                                  ( ) ( ) Cggg =−′
2222 1   (C=constant). 

 
Solutions to the first differantial  equations give a type of potential previously 

derived for Jacobi polynomials  by Levai [44], as the Gegenbauer polynomials 

can be represented by Jacobi polynomials. We choose the other one leading a 

solution ( ) ( )( ) 212exp1 arrg −=  and  results in a somewhat novel radial 

potential.  

     To complete derivation of this solvable potential, it is also necessary to remove 

any dependence of the potential ( )xV  on the polynomial index n, which becomes 

the quantum number. For the choice of ( )rg  above, this means that any 

dependence on n  be removed from the first term of the right in (5.8). This 

accomplished by requiring that  

                                     ( ) An =−+++ 22 4424 ααα ,                             (5.10)            
                                                                    
where A  is a real constant. Expansion this polynomial results in the expression  
 

                                                 48
242

+
−−= n

nAα                                                (5.11) 

 
and ultimately the energy E  for this solvable potential is given by 
 

                              ( ) ( )( )22 414 α+−= naE                                                 (5.12)    
                                                                              

                                  ( ) ( )





















−= +

−++
2

12
4222 414 n

Anna  .                                       
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The corresponding potential energy ( )rV  and unnormalized wavefunctions 

( )( )rgψ  are then given by  

 

                           ( ) 24

2
2

2

2 g
Aa

g
g

g
grV −



−



= ′

′′
′
′′

 

 

                                   ( ) ( )








= −−+

4
32642 4

g

gAga                                          (5.13) 

 

                                   = ( ) ( ) ( ) ( ) ( )
( )( ) 









−−

−+−−+−
22exp1

42exp84exp2 4
ar

AarAara    

 
and 
 

                             ( )( ) ( ) ( )( ) ( )gCggrg n
αα

ψ
221221 1

+− −′∝  
                                                                                                                          (5.14) 
                

( )( ) ( )( ) ( )( )( )212exp121exp412exp1 rCarr n ααα α −−×−−−−−= . 
 
The boundary conditions  ( ) 00 ==rψ   and  ( ) 0=∞=rψ   for a radial potential 

are met by requiring that 2
1>α . 

      The parameter α , besides meeting the requirement that 2
1>α , has 

complitated dependence on the parameter A  and the quantum number n . These 

conditions imply that there are no eigenstates for the potential ( )( )rgV  unless 

4>A  and that relatively few eigenstates are allowed for even large values of the 

parameter A .  

 
5.1.3   Superpotentials and supersymmetric quantum mechanics                  
 
        The method described above has an immediate application in the emerging 

area of supersymmetric quantum mechanics. An accesable introduction to the 

general theory is given by Dutt et al [45]. Brifly, in supersymmetric quantum 

mechanics two one-dimensional Hamiltonian partners H _ and H +  can written as 

 

                                            ( )xVH
dx
d

±± +−=
2
2

                                          (5.15)                   
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where  ( )xV−  and ( )xV+   are expressed in terms of a superpotential ( )xW  such 
that 
 

                                            ( ) ( ) ( )xWxWxV ′±=±
2 .                                  (5.16)                

 
The energy eigenvalues of −H  and +H  are identical, except for the ground state, 

where 00 =−
=nE  and eigenfunctions of each Hamiltonian are connected through 

operators related to the factorization of the Hamiltonians. 

      Comparison of (5.16) with the expressions in (5.5) shows an immediate 

connection. With the defination 

 

                                             ( ) ( )( )( )′−= xfxW ln                                          (5.17) 
 
the term ( )xVE −  can be expessed as 
 

                   ( ) ( ) ( ) ( )( ) ( )( )′+−′=− xWxWgRgxVE 22                            (5.18) 
 
and whenever ( ) 0,0 == EgR  for a potential ( )xV−  defined by the 

superpotential ( )xW . The function ( )xf  can be determined from (5.3) by  

 

                     ( ) ( ) ( )

























∫′= −
g

dzzQgxf
2
121 exp                                            (5.19) 

 
or from the ground state eigenfunction when ( )( ) 0=nxgF  is a constant. Since the 

form of ( )gR  in (5.1) is such that ( ) 0=gR  when the polynomial index 0=n   for 

many orthogonal polynomials, this observation permitted the facile generation of 

the superpotentials associated with the solvable potentials described earlier by 

Levai in 1989 [44].   

     Superpotentials defined by  
 

                          ( )( ) 



= ′

′′−
g
gxgW 2                                                                   (5.20) 

 
are also possibilty whenever g ′  can be found such that  
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                          ( ) ( ) ( )( ) 02
4
1

2
12 =



 −−′ xgQgRg dg

dQ
                               (5.21) 

 
when the polynomial index 0=n . 
 
5.1.4  Conclusion 

        A simple method [44] for generating exactly solvable, single variable 

Schrödinger equation based on the special functions solving second-order linear 

ordinary differantial equations has been reviewed. Application of this method in 

the case of a differantial equation related to the Gegenbauer polynomials results in 

generation of an exactly solvable radial potential, and the quantum mechanical 

supersymmetric superpotential for this solvable potential can also be easily 

derived. The relative mathematical case with which this method can be applied, as 

well as its relationship to the developing area of supersymmtric quantum 

mechanics, should make it of use to both teachers and students of introductory and 

intermediate quantum mechanics.  

       Now, the equivalence of both models, the one introduced in this Chapter and 

other used through the thesis work, is discussed in detail below for analytically 

solvable potentials. 

 

5.2. Equivalence of two models 

        The substitution of [ ])()()( xgFxfx =Ψ  in the one-dimensional time-

independent Schrödinger equation  

                          
)()()()(

2

2

xExxV
dx

xd Ψ=Ψ+Ψ−   ,                                     (5.22)                       

 leads to the second-order differential equation 

EV
Ff

fgF
F
Fg

F
gF

f
f −=

′′′
+

′′′
+

′′′
+

′′
2

2

.                                                      (5.23)         

Splitting the equation in two parts as have done earlier in our calculations one gets 

f
fWxVxWxW
′

−=−=′− ,)()()( 0
2 ε  ,                                                (5.24)                    

and 

F
gFWExVxWxWxWxW

′′
−=∆∆−∆=∆+′∆−∆ ,)()()(2)()(2   , (5.25) 
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where EE ∆+= ε  and VVV ∆+= 0 . Eqs. (5.23) and (5.24) are the concrete 

proof of the equivalence between the two alternative models.  

      Afterall, it can be clearly seen that Eq. (5.24) is the one required for obtaining 

an explicit expression for W  term corresponding to exactly solvable systems in 

one-dimension. However, to proceed further,  the functions f  and g  should be 

solved as F , Q  and R  are known in principle. Now, equating like terms between 

the resulting expression in (5.22) and (5.1) gives 

( )[ ] ( )[ ] ( )







−+

′′
′

=






 ′
+

′
′′

′
= VE

f
f

g
xgR

f
f

g
g

g
xgQ 2

1,21
  ,                 (5.26)          

where, from the definition of Q , 

                                   ( ) ( )
( )












′≈ ∫−

xg

dggQgxf
2
1exp)( 21  .                             (5.27)                      

Consideration of Eqs. (5.23) through (5.26) suggests a novel prescription  

                                                  ( )gRgExV 2)( ′−=∆−∆   ,                       (5.28) 

which, for R  functions,  provides a reliable expression for )(xg . Though the both 

model of interest seem different, in fact they are entirely equivalent as clarified 

within the frame of the present unified formalism to solve underlined  problems in 

physics. 
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CHAPTER 6 
 
 

GENERAL CONCLUSION 
 
 
       Within the powerful framework of a novel approach introduced recently [17], 

we have solved successfully significant problems of physics. This investigation 

confirms once more the reliability and usefulness of the model for both exactly 

and non-exactly solvable Schrödinger equations. 

       The search of anharmonic oscillator potential in the light of a perturbative 

treatment of the technique has shown flexibility of the formalism by the 

comparison of the results obatined at different orders with those of a numerical 

integration work. In addition, large order calculations have made clear rapid 

convergence of the calculations. The algebraic closed expressions obtained for the 

energy values and wave functions at ground and higher excited states are found in 

well agreement with the others in the literature.  

       Application of the approach to Yukawa type potentials justifies the sensitivity 

of the calculations through the method for approximately solvable Schrödinger 

equations. The comparison of our calculation results with those of other 

techniques put forwards the superiority of the formalism within its elegant 

algebraic framework. 

      Finally, we have proven that the prescription used through the present thesis 

work is entirely equivalent to the other well known approach in the literature for 

exactly solvable Schrödinger equations. The two methods have been unified to 

perfect the calculations removing deficiency of each other. 
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