

GAZ�ANTEP UNIVERSITY GRADUATE

SCHOOL OF NATURAL & APPLIED SCIENCES

AUTOMATIC VEHICLE IDENTIFICATION
BY PLATE RECOGNITION

M. Sc. THESIS
IN

ELECTRICAL & ELECTRONICS ENGINEERING

BY
SERKAN ÖZBAY
JANUARY 2006

AUTOMATIC VEHICLE IDENTIFICATION BY PLATE

RECOGNITION

M.Sc. Thesis
in

Electrical & Electronics Engineering
University of Gaziantep

Supervisor

Assoc. Prof. Ergun ERÇELEB�

by

Serkan ÖZBAY

January 2006

 ii

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Sadettin ÖZYAZICI

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Assoc. Prof. Gülay TOHUMO�LU

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Ergun ERÇELEB�

 Supervisor

Examining Committee Members

1. Prof. Dr. Rauf M�RZABABAYEV ………………….

2. Prof. Dr. Arif NACARO�LU ………………….

3. Assoc. Prof. Ergun ERÇELEB� ………………….

4. Assist. Prof. Tuncay YA�AR ………………….

5. Assist. Prof. Nurdal VATSUJ� ..………………...

 iii

ABSTRACT

AUTOMATIC VEHICLE IDENTIFICATION BY PLATE RECOGNITION

ÖZBAY, Serkan

M.Sc. in Electrical & Electronics Eng.

Supervisor: Assoc. Prof. Ergun ERÇELEB�

January 2006, 115 pages

 In this thesis, a new algorithm for automatic vehicle identification has been

proposed. Identification is made by license plate recognition (LPR) algorithm.

License plate recognition is a form of automatic vehicle identification and is an

algorithm that identifies the vehicle by recognizing the license plate automatically. In

this study, a simple but effective algorithm is presented for vehicle’s license plate

recognition system.

 There are some other methods to identify the vehicles such as bar code-based

identification systems, radio-frequency identification systems. In bar code-based

identification and radio-frequency identification systems, the methods require

external components installed on vehicles for automated identification. On the other

hand, license plate recognition technology identifies the vehicle using only its license

plate. Since every vehicle carries a unique license plate, no external cards, tags or

transmitters need to be recognizable. Due to this reason, license plate recognition

algorithm is the most powerful and useful technique for automatic vehicle

identification.

The proposed algorithm consists of three major parts: Extraction of plate

region, segmentation of plate characters and recognition of plate characters. For

extracting the plate region, edge detection algorithms and smearing algorithms are

used. In segmentation part, smearing algorithms, filtering and some morphological

 iv

algorithms are used. And finally statistical based template matching is used

for recognition of plate characters.

This algorithm operates on inactive real images and the system is designed

for the identification of Turkish license plates. The necessary codes for the proposed

algorithm were written in Matlab software. To see the overall performance, the

proposed algorithm has been tested over a large number of images. The images were

taken on different time periods of the day and also these test images were taken

under various illumination conditions. And it was obtained that %97.6 success rate

for the extraction of plate region, %96 success rate for the segmentation of the

characters and %98.8 accuracy rate for the recognition of plate characters, giving the

overall system performance as %92.57 recognition rate.

 Moreover, some image processing techniques that have been used for license

plate recognition were presented in this thesis. And the advantages and the use of

these techniques have been explained.

Key Words: Character recognizer, license plate recognition, plate region extraction,

segmentation, smearing, template matching

 v

ÖZET

PLAKA TANIMA YÖNTEM�YLE OTOMAT�K ARAÇ TESP�T�

ÖZBAY Serkan

Yüksek Lisans Tezi, Elektrik-Elektronik Müh. Bölümü

Tez Yöneticisi: Doç.Dr. Ergun ERÇELEB�

Ocak 2006, 115 sayfa

 Bu tezde, otomatik araç tespitinde kullanılan yeni bir algoritma

önerilmektedir. Araç tespiti, plaka tanıma algoritması ile yapılır. Plaka tanıma

algoritması otomatik araç tespitinde kullanılan yöntemlerden bir tanesidir ve araçları,

plakalarını otomatik olarak tanıyarak tespit eden bir algoritmadır. Bu çalı�mada, basit

fakat etkili bir tanıma algoritması sunulmu�tur.

 Araçların tespiti için barkod tabanlı veya radyo frekansı ile çalı�an

daha farklı metodlar vardır. Bu metodların kullanıldı�ı sistemlerde, otomatik araç

tespiti için araçlara yerle�tirilmi� harici bir elemana ihtiyaç vardır. Bununla birlikte,

plaka tanıma algoritması aracı sadece plakasını kullanarak tespit eder. Her araç

kendine ait özel bir plaka ta�ıdı�ı için, tanınma için harici bir elemana, ek bir parçaya

yada vericiye ihtiyaç yoktur. Bu nedenden dolayı plaka tanıma algoritması, araçların

otomatik tespiti için en etkili ve kullanı�lı tekniktir.

Çalı�mada önerilen algoritma üç temel bölümden olu�maktadır : Plaka

bölgesinin çıkartılması, plaka karakterlerin ayrı�tırılması ve plaka karakterlerinin

tanınması. Plaka bölgesi çıkartılırken, kenar belirleme, lekeleme algoritmaları

kullanılmı�tır. Ayrı�tırma bölümünde, lekeleme, filtreleme ve bazı morfolojik

algoritmalar kullanılmaktadır. Ve plaka karakterlerinin tanınması için istatiksel

temellli �ablon e�le�tirme kullanılmı�tır.

 vi

 Bu sistem duran araç görüntüleri üzerinde çalı�maktadır ve sistem Türk araç

plakalarının tespiti için tasarlanmı�tır. Önerilen algoritma için gerekli olan kodlar

Matlab programı ile yazılmı�tır. Sistemin performansını tam olarak görebilmek için,

önerilen algoritma çok miktarda görüntü ile test edilmi�tir. Kullanılan görüntüler

günün de�i�ik zaman periyotlarında ve farklı aydınlanma durumlarında çekilmi�tir.

Ve plaka bölgesinin çıkartılmasında %97.6 ba�arı oranı, plaka karakterlerin

ayrı�tırılması için %96 ve plaka karakterlerinin tanınmasında %98.8 do�ruluk oranı,

ve sistemin bütünü için %92.57 tanıma oranı elde edilmi�tir.

 Bu tezde ayrıca plaka tanıma algoritmasında kullanılan bazı görüntü i�leme

teknikleri sunulmu�tur ve bu tekniklerin avantajları ve kullanımları açıklanmı�tır.

Anahtar Kelimeler: Karakter tanıyıcı, plaka tanıma, plaka bölgesi çıkarma,

ayrı�tırma, lekeleme, �ablon e�le�tirme

 vii

ACKNOWLEDGMENTS

I express sincere appreciation to my supervisor, Assoc. Prof. Ergun

ERCELEBI, for his guidance, constructive proofreading, and many fruitful

discussions. I thank him for helping me during writing this thesis.

I wish also to acknowledge my parents for always supporting my choices in

life and my colleague at GMYO for their support and encouragement.

I would like to express my gratitude to my teachers at the Department of

Electrical and Electronics Engineering.

And finally, special thanks to my fiancee, Gulden AKAY, for sharing the

most valuable times with me.

 viii

CONTENTS

 page

ABSTRACT . iii

ÖZET . v

ACKNOWLEDGMENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiv

LIST OF SYMBOLS . xv

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: HISTORY OF AVI SYSTEMS & LITERATURE SURVEY 5

2.1 History of AVI Systems 5

2.2 Literature Survey . 7

CHAPTER 3: IMAGE PROCESSING BASICS FOR LICENSE PLATE

 RECOGNITION . 12

3.1 Digital Image Fundamentals . 12

3.2 Characteristics of Image Operations . 14

 3.3 Pre-Processing Techniques . 16

 3.3.1. Color Spaces & Color Space Conversion . 16

 3.2.2. Thresholding . 19

 3.4 Image Enhancement . 20

 3.4.1 Histogram-Based Operations . 20

 3.4.1.1 Contrast Stretching 20

 3.4.1.2 Histogram Equalization . 21

 3.4.2 Image Smoothing . 21

 3.4.2.1 Neighborhood Averaging . 21

 3.4.2.2 Ordering-Based Filtering . 22

 3.4.2.3 Low-Pass Filtering . 23

 3.4.2.4 High-Pass Filtering . 25

 ix

 3.4.3 Morphological Operations . 25

 3.4.3.1 Dilation 26

 3.4.3.2 Erosion 27

 3.4.3.3 Opening and Closing Operations . 28

 3.5 Segmentation . 29

 3.5.1 Finding Discontinuities . 29

 3.5.1.1 Detection of Points . 30

 3.5.1.2 Detection of Lines 30

 3.5.1.3 Detection of Edges . 31

 3.5.2 Smearing Algorithm . 35

 3.5.3 Segment Labeling . 36

 3.5.3 Hough Transform . 38

 3.6 Character Recognition . 40

 3.6.1 Template Matching 42

 3.6.2 Feature Extraction 43

CHAPTER 4: LICENSE PLATE RECOGNITION SYSTEM 45

4.1 Input of the System 45

4.2 Extraction of Plate Region . 45

4.3 Segmentation of Plate Characters 56

4.4 Recognition of Plate Characters 62

CHAPTER 5: EXPERIMENTAL WORKS . 67

5.1 Accuracy Calculation 67

5.2 Test Results . 71

CONCLUSIONS . . 79

APPENDIX A: FLOW DIAGRAM OF THE ALGORITHM 82

APPENDIX B: SKEW CORRECTION USING HOUGH TRANSFORM 84

APPENDIX C: FUNCTION DESCRIPTIONS . 89

REFERENCES . 110

 x

LIST OF FIGURES page

Figure 1.1 A typical scheme for the LPR system . 2

Figure 3.1 Digitization of a continuous image 13

Figure 3.2 Illustration of various types of image operations 15

Figure 3.3 Some common neighborhoods . 16

Figure 3.4 RGB color space . 17

Figure 3.5 A sample mask with 3 x 3 size 23

Figure 3.6 A pictorial representation masking, a 3 x 3 mask showing coefficients

 and corresponding image pixel locations 24

Figure 3.7 A 3 x 3 low-pass filter coefficients 24

Figure 3.8 A 3 x 3 high-pass filter coefficients . 25

Figure 3.9 Illustration of dilation operation . 26

Figure 3.10 Pictorial representation of erosion operation 27

Figure 3.11 A 3 x 3 mask for point detection . 30

Figure 3.12 A sample mask for horizontal lines . 31

 xi

Figure 3.13 Line masks for various orientations . 31

Figure 3.14 Robert mask for edge detection . 33

Figure 3.15 Prewitt masks for edge detection 33

Figure 3.16 Sobel masks for edge detection . 34

Figure 3.17 A 5x5 mask for edge detection using laplacian of gaussian function . 34

Figure 3.18 A pictorial representation of smearing algorithm 36

Figure 3.19 Contour following . 37

Figure 3.20 Hough transform representation . 39

Figure 3.21 Parametric description of a straight line . 39

Figure 4.1 A sample image . 46

Figure 4.2 Processed image after binarization . 47

Figure 4.3 Plate region . 52

Figure 4.4 Image involving only plate . 52

Figure 4.5 Some images having more than one candidate region for plate

 location . 53

Figure 4.6 Plate image cut from original image . 56

Figure 4.7 Some cutted-plates 56

Figure 4.8 Plate image after filtering and dilation operation 57

 xii

Figure 4.9 Plate images showing segmentation . 60

Figure 4.10 Individual characters . 62

Figure 4.11 Refined characters . 63

Figure 4.12 Equal-sized characters . 63

Figure 4.13 A sample template, letter B . 64

Figure 4.14 The database characters . 65

Figure 5.1 Input image for the test . 72

Figure 5.2 The output of extraction part where more than one candidate

 region exist . 72

Figure 5.3 The images showing the wrong region labeled after extraction 73

Figure 5.4 A sample binarized image . 74

Figure 5.5 Output image after extraction . 74

Figure 5.6 The plate image after segmentation process . 74

Figure 5.7 Sample templates for confusion of characters . 76

Figure A.1 Flow diagram of the algorithm 83

Figure B.1 A sample image for skew correction 84

Figure B.2 The binarized image . 85

Figure B.3 Processed image after edge function 86

 xiii

Figure B.4 The image after dilation operation . 86

 xiv

LIST OF TABLES

 page

Table 3.1 Common values of digital image parameters . 14

Table 3.2 Types of image operations 14

Table 3.3 Conversions of RGB and YIQ color scales or vice versa18

Table 5.1 Results for the tests71

 xv

LIST OF SYMBOLS

a (x, y) Two dimensional light intensity function

D Dilation operation

E Erosion operation

O Opening operation

C Closing operation

∇ Gradient of a function

R (m, n) Cross correlation function

A Recognition rate

 1

CHAPTER 1

INTRODUCTION

With the rapid development of public transportation systems and increasing

use of vehicles in recent years, automatic identification of vehicles has played an

important role in many applications. For these reasons, researchers tend to the

research on advanced electronic and computer vision technologies to monitor and

control the traffic.

There have been some methods to identify the vehicles such as bar code-

based identification systems, radio-frequency identification systems and license plate

recognition systems. In bar code-based identification and radio-frequency

identification systems, the methods require external components installed on vehicles

for automated identification. On the other hand, license plate recognition technology

identifies the vehicle using only its license plate. Since every vehicle carries a unique

license plate, no external cards, tags or transmitters need to be recognizable. This

important advantage has increased the use of vision-based recognition systems.

 License Plate Recognition (LPR) is a form of Automatic Vehicle

Identification (AVI) based on automatic recognition of vehicle’s license plates. This

plate recognition technology has a wide range of applications which may solve

numerous tasks related to the identification of cars such as:

• Automated parking attendance at garages and parking lots

• Border crossing control

• Identification of stolen cars

• Speed enforcement

• Red light violation enforcement

 2

• Electronic toll collection

• Security control

License Plate Recognition (LPR) algorithm may have different names or it

may be called with slightly different names at various studies and references given

as:

• Automatic Vehicle Identification (AVI)

• Car Plate Recognition (CPR)

• Automatic Number Plate Recognition (ANPR)

• Car Plate Reader (CPR)

• Optical Character Recognition (OCR) for cars

A typical license plate recognition system is shown in Figure 1.1.

Figure 1.1: A typical scheme for the LPR system

 3

 Plate recognition system uses a video camera that captures a frame when the

sensors detect a vehicle. The captured image frame is sent to the computer using an

interface between the camera and the computer. Taken image frame is loaded to the

memory of the computer and then computer runs the license plate recognition

application which controls the system, reads the images, analyzes and the identifies

the plate. The main part of the system is the software which analyzes the image and

extracts the plate information. For analyzing the image and identifying the license

plate of the vehicle, some image processing techniques are applied on the image

using the software.

Some LPR systems operate on the successive frames taken by the camera as

well as some operates on a single frame. Working on the successive frames has the

advantage that the exterior edge of the vehicle is detected using the motion detection

algorithm [1]. The method of detecting cars uses the rate of color change in vertical

sensor. Vertical sensor is a special region of image. The difference value between the

vertical sensors of continuous images show whether there is a car or not. If difference

value is higher than the threshold value, it is regarded that the current image contains

car [2]. Working on the successive frames has also the advantage that noise on the

image can be eliminated by taking the mean value of the successive plate images.

However, if the number of images increases, it needs more memory requirements.

This is the disadvantage of that method.

In this study, license plate recognition algorithm consists of three major units:

• Extraction of Plate Region

• Segmentation of Plate Characters

• Recognition of Plate Characters

Extraction of plate region is the algorithm for finding the location of plate on

vehicle image. Segmentation of plate characters is to separate the plate characters on

a plate individually. Finally, recognition of characters is to identify the plate

characters correctly.

 4

 In this work, the images for the input to the system are colored images with

the size 1200x1600x3. The captured image is taken from 4-5 meters away from the

car. The input image is first converted to the binary image consisting of only 1’s and

0’s (only black and white). Then some image processing techniques are applied to

the binary image for extraction of plate location such as smearing algorithm, filtering

and edge detection algorithms. After extracting the plate region, license plate is

segmented into its constituent parts obtaining the characters individually by

segmentation unit. In segmentation part, smearing algorithm, filtering and

morphological operations are used. And finally recognition unit identifies the

characters giving the result as the plate number. For the recognition, statistical based

template matching is used. For the realization of this system, Matlab 6.5 is used and

the necessary algorithm is designed and coded in Matlab. This system is designed for

the recognition of Turkish license plates.

 The thesis is organized as follows. Chapter 2 presents the history of

Automatic vehicle identification systems in literature. In chapter 3, the image

processing algorithms used for license plate recognition are discussed involving

previously worked algorithms and the proposed algorithm. Extraction of plate region

is explained in chapter 4. In this chapter, segmentation of plate characters and the

details of recognition of characters are also presented. In chapter 5, the experimental

results of the proposed algorithm are discussed. And finally, conclusion is made and

the future studies are given in the last chapter.

 5

CHAPTER 2

HISTORY OF AVI SYSTEMS & LITERATURE SURVEY

2.1 History of AVI Systems

The name “Automatic Vehicle Identification (AVI)” is used for all

technologies related with the identification or recognition of particular vehicle. Early

development of AVI systems occurred in the United States, beginning with an optical

scanning system in the 1960s to identify railroad box cars. Since then, there have

been enormous advances in microelectronics. Inductive loop, radio frequency,

infrared, and microwave systems have all been developed and even satellites can be

used to provide continuous monitoring of vehicles. These technological advances and

increased accuracy and reliability, along with rapidly diminishing costs, have opened

new options for use [3].

 As cities became increasingly congested with road traffic in the 1950s and

1960s, the response from developed countries was to build vast freeways. The

ultimate failure of that response to overcome traffic problems, along with growing

environmental awareness, led to consideration of alternative ways of managing

traffic. Traffic planners focused on ways of restraining traffic. If they could persuade,

encourage, or force drivers to reduce their road use or change their patterns of use,

then existing roads could be used more efficiently. This would reduce traveling time

and fuel costs as well as air, noise, and visual pollution.

 Planners and policy makers have considered a number of measures to achieve

such restraint: taxes on ownership and registration of cars to reduce the number of

people able to afford cars; physical barriers to prevent people from driving into

congested city areas, or parking controls to discourage them; taxes on fuel as a mean

 6

of indirectly charging for road use. Singapore introduced an area licensing system in

1975 based on manual collection of permit fees, which reduced peak hour traffic in

the central business district by 40%, but few planners thought that this system could

be easily applied to other countries with less authoritarian styles of government [4].

 Developments in automatic vehicle identification and monitoring technology

opened the possibility for a system of road pricing in which charges depend on the

time of day, the road, and the vehicle. This would allow, for example, higher charges

to be made for travel during rush hours and on specific congested roads. According

to neoclassical economics, this would improve the efficiency with which the roads

are used.

 The first major trial of the technology for electronic road pricing was

undertaken in Hong Kong between 1983 and 1985. A volunteer vehicle fleet was

fitted with electronic number plates. Loops beneath the road surface transmitted back

to a control center the unique identification number of the passing vehicle. Vehicles

which failed to respond with a valid or operative electronic number plate were

photographed by closed-circuit TV; this back-up system combined with the basic

AVI system ensured a high degree of overall accuracy [5].

Research and development on AVI continues, especially in Europe and Japan

[6]. "Prometheus" is the name of an eight-year, $900 million industry-funded

program involving six European countries. Its aim is to improve safety, economy,

efficiency, comfort, and reduce pollution through the development of an intelligent

vehicle [7]. A smaller program called DRIVE is jointly funded by governments and

corporations. It is concerned with AVI technologies, computers in vehicles, "smart

cards" (that can automatically register electronic transactions), and automatic

enforcement systems including cameras and license plate systems.

In Japan, there is a large program organized under MITI called the Intelligent

Vehicle System, similar in size and orientation to Prometheus but with more

emphasis on artificial intelligence and automatic chauffeur. Another Japanese

venture is AMTICS (Advanced Mobile Traffic Information and Communication

 7

System), an integrated traffic information and navigation system which combines

CD-ROM technology with AVI [8]. Some Japanese cars on the market come with

rudimentary autonomous route guidance systems. The Japanese government has

halted the large programs and brought the project leaders together to decide future

directions [9].

In the Netherlands, there was an ambitious plan to introduce a national

electronic road pricing system by the early 1990s, in which each vehicle would hold

a smart card whose balance would be electronically decremented on passing beacons,

with a back-up monitoring and enforcement system for vehicles without a valid card

number or without sufficient funds. But later this system has been postponed [10].

In Norway, several towns have adopted AVI toll systems. For example, in

Alesund there is a programmable remote identification ("premid") system for toll

collection on a recently completed island-linking tunnel and bridge system. Sensors

in the road alert the system of an approaching car. Antennae send out a weak

microwave signal which is reflected back from a identifier plate on the car. This is

analyzed by the premid computer to identify the car, confirm that it is a paying

subscriber and register the trip. This is recorded in 150 milliseconds. The information

collected automatically on the site is then sent to a central computer. Cars that

attempt to pass through without paying activate a video camera which records the

registration number and the time and place [11].

 As a conclusion, the developments on Automatic Vehicle Identification

systems are well-developed in USA.

2.2 Literature Survey

In the recent past, researchers have tested a wide array of technologies in an

attempt to find improved methods of monitoring traffic conditions. Those techniques

can be grouped into roadside techniques, vehicle techniques and license plate

recognition techniques. Roadside techniques use detecting devices physically located

along the study routes whereas vehicle techniques use detecting devices carried

 8

inside vehicles. On the other hand, license plate recognition techniques need no

external device or equipments. AVI system comprises one of those advanced

technologies currently be used. A brief survey of technologies explored during the

past decade to provide an understanding of the level of research interest in traffic

surveillance technologies.

Bohnke and Pfannerstill [12] introduced a pattern recognition algorithm,

which could utilize unique vehicle presence signatures generated by successive series

of inductance loop detectors system. By identifying and reidentifying platoons of

vehicles traveling across links bounded by loop detection equipment, vehicle travel

times could be determined. Ju and Maze [13] performed simulations on incident

detection strategies using the FREQ8PE simulation model. Their research evaluated

a comparison of incident detection strategies using police patrol versus the use of

motorist call boxes at 1-km spacing. The motorist call boxes formed the backbone of

the modeled freeway surveillance and control system (FSCS). This FSCS yielded a

benefit-to-cost ratio of 2.69 as it generated benefits from travel-time reduction and

reduced fuel consumption. These benefits were brought about by reduced incident

detection time afforded by the motorist call boxes. In the development of video-

based surveillance, Berka and Lall [14] claim that loop detection reliability is low,

and that maintenance and repair of such a pavement-based system creates safety risks

for repair crews. Berka and Lall maintain that non-intrusive technologies such as

video surveillance provide reduced traffic disruption during installation or repair. In

addition, video surveillance is capable of detecting incidents on the sides of

roadways, outside of the detection range of loop detectors.

Automatic vehicle identification (AVI) represents a major technological

advance in the traffic surveillance technology (Bergan, et. al,) [15]. It origins from

the railway industry to monitor the movement of trains, to enable efficient

scheduling, and more importantly, to reduce potential conflicts or collisions. Prior to

the installation of an AVI system in Houston, Texas, there already had several AVI

system existed, which including Hong Kong Electronic Road-Pricing Project (1983);

San Francisco International Airport toll revenue collection (1985); Singapore Road-

Pricing study (1986); Heavy vehicle Electronic License Plate (HELP) program

(1991) etc. All those projects suggest that the implementation of accurate,

 9

dependable AVI system is currently possible and the use of AVI systems has the

great potential to provide significant monetary saving.

In 1991, a cellular phone demonstration project was designed to monitor

freeway traffic conditions in north Houston as a test of Houston AVI system.

Researchers recruited 200 volunteers to participate in the program, which required

them to call a traffic information office when they passed specific freeway locations

during their morning and evening commutes. The lessons learned from the cell phone

project aided in the development of the data analysis, processing and dissemination

techniques used for the AVI system that was later constructed in Houston and San

Antonio. In a similar scenario, prior to installing a large-scale AVI system in the

Puget Sound area, a small-scale test of AVI was performed (Butterfield et. al) [16].

In this test, AVI was “piggy-backed” with existing loop detectors. Results yielded an

AVI detection rate of about 80% for a fleet of tag-equipped buses. In a 1996 report

by Turner [17], a variety of techniques for travel time data collection were discussed,

along with the advantages and disadvantages of each. These data collection

techniques included electronic distance measuring instruments (DMI’s), License

plates matching, Cellular phone tracking, Automatic vehicle location (AVL),

Automatic vehicle identification (AVI) and Video imaging. Turner specifically noted

that travel time information was of particular importance for applications including

congestion measurement and real-time travel information.

And the other method, license plate recognition algorithm, for automatic

vehicle identification is based on the recognition of cars using their license plates

only. After several decades of research, many advances have been achieved in the

area of character recognition approaches including artificial neural network [18],

learning vector quantization [19] and support vector networks [20]. As it is known,

the performance of a character recognition system is based significantly on the

recognition feature used. Now recognition features fall into two main categories:

Structural features and frequency features. Structural features can precisely describe

the structure of a character and success to be used in the recognition of handwritten

characters. But they are vulnerable to the recognition of low resolution gray

characters such as video index or characters in vehicle license plate. It is difficult to

 10

extract invariability structural features because of deform and variation existing in

low resolution gray characters [21].

Another feature extraction method is frequency feature extraction method

such as Fourier Transform [22] and Wavelet Transform [23]. These methods are

widely used for the recognition of low resolution gray character. Gabor Filter, a kind

of frequency filter, which has been applied to texture analysis [24], moving object

tracking [25], face recognition and character recognition field. Daugman [26]

discovered that simply cells in the visual cortex can be modeled by Gabor filter. The

2-D Gabor filters proposed by Daugman are local spatial filter that conjoin

information in the 2-D spatial and 2-D Fourier domains. Gabor filter performs a

spatial frequency analysis on image. Tavsanoglu and Saatci [27] proposed an

approach to form orientation map as recognition feature using a Gabor filter for

recognizing characters. Yoshimura and Etoh [28] used Gabor jets projection to form

a feature vector for recognizing low resolution gray-scale character.

Lotufo, Morgan and Johnson [29] proposed automatic number-plate

recognition using optical character recognition techniques. Johnson and Bird [30]

proposed knowledge-guieded boundary following and template matching for

automatic vehicle identification. Fahmy [31] discussed about the potential of using

the bidirectional associative memories (BAM) neural network for number plate

reading. It’s appropriate for small numbers of patterns. Nijhuis, Ter Brugge,

Helmholf J.P.W. Pluim, L. Spaanenburg, R.S. Venema and M.A.Westenberg [32]

proposed fuzzy logic and neural networks for car LPR. This method used fuzzy logic

for segmentation and discrete-time cellular neural networks (DTCNN’S) for feature

extraction.

Choi [33] and Kim [34] proposed the method based on vertical edge using

Hough Transform (HT) for extracting the license plate. This is assumed that only a

license plate has vertical edges in front image of a car. However, many car images

have vertical edges from a radiator, and also using Hough Transform (HT) is very

sensitive to deformation of plate boundaries. Moreover, this method needs much

processing time. E.R. Lee, P.K. Kim and H.J. Kim [35] used neural network for color

extraction and a template matching to recognize characters. S.K. Kim, D.W. Kim and

 11

H.J. Kim [36] used a genetic algorithm based segmentation to extract the plate

region. Hontani et.al. [37] proposed a method for extracting characters without prior

knowledge of their position and size in the image. Park et. al. [38] devised a method

to extract Korean license plate depending on the color of the plate. H.J. Kim, D.W.

Kim, S.K. Kim, J.V. Lee, J.K. Lee [39] proposed a method of extracting plate region

based on color image segmentation by distributed genetic.

 12

CHAPTER 3

 IMAGE PROCESSING BASICS FOR LICENSE PLATE

RECOGNITION

Interest in digital image processing methods stems from two principal areas:

improvement of pictorial information for human interpretation, and processing of

scene data for autonomous machine perception.

This chapter presents the fundamentals of image processing techniques and

algorithms used for license plate recognition algorithms starting from digital image

definition to pre-processing techniques, image enhancement techniques, and image

analysis methods.

3.1 Digital Image Fundamentals

 We begin with certain basic definitions. An “image” refers to a two-

dimensional (2D) light intensity function a(x, y), where x and y denote spatial

coordinates and the value of a at any point (x, y) is proportional to the brightness (or

gray level) of the image at that point.

A digital image a[m, n] described in a 2D discrete space is derived from an

analog image a(x,y) in a 2D continuous space through a sampling process that is

frequently referred to as digitization.

 13

The 2D continuous image a(x, y) is divided into N rows and M columns. A

digital image that has been discretized both in spatial coordinates and in brightness

may be considered as a matrix whose row and column indices identify a point in the

image and the corresponding matrix element value identifies the gray level at that

point. The intersection of a row and a column is termed a “pixel”. The value assigned

to the integer coordinates [m,n] with {m=0,1,2,...,M-1} and {n=0,1,2,...,N-1} is

a[m,n].

The image shown in Figure 3.1 has been divided into N = 16 rows and M =

16 columns. The value assigned to every pixel is the average brightness in the pixel

rounded to the nearest integer value. The process of representing the amplitude of the

2D signal at a given coordinate as an integer value with L different gray levels is

usually referred to as amplitude quantization or simply quantization.

Figure 3.1: Digitization of a continuous image.

There are standard values for the various parameters encountered in digital

image processing. These values can be caused by video standards, by algorithmic

requirements, or by the desire to keep digital circuitry simple. Table 3.1 gives some

commonly encountered values.

 14

Table 3.1: Common values of digital image parameters

Parameter Symbol Typical Values

Rows N 256,512,525,625,1024,1035

Columns M 256,512,768,1024,1320

Gray Levels L 2,64,256,1024,4096,16384

The number of distinct gray levels is usually a power of 2, that is, L=2B

where B is the number of bits in the binary representation of the brightness levels.

When B>1 we speak of a gray-level image; when B=1 we speak of a binary image.

In a binary image there are just two gray levels which can be referred to, for

example, as "black" and "white" or "0" and "1" [40].

3.2 Characteristics of Image Operations

The types of operations that can be applied to digital images to transform an

input image a[m,n] into an output image b[m,n] (or another representation) can be

classified into three categories as shown in Table 3.2.

Table 3.2: Types of image operations.

Operation Characterization

Point the output value at a specific coordinate is dependent only on

the input value at that same coordinate.

Local the output value at a specific coordinate is dependent on the

input values in the neighborhood of that same coordinate.

Global the output value at a specific coordinate is dependent on all the

values in the input image.

This is shown graphically in Figure 3.2.

 15

Figure 3.2: Illustration of various types of image operations

Neighborhood operations play a key role in modern digital image processing.

It is therefore important to understand how images can be sampled and how that

relates to the various neighborhoods that can be used to process an image.

Rectangular sampling - In most cases, images are sampled by laying a

rectangular grid over an image as illustrated in Figure 3.1. This results in the type of

sampling shown in Figure 3.3(a,b).

Hexagonal sampling - An alternative sampling scheme is shown in Figure

3.3c and is termed hexagonal sampling.

Both sampling schemes have been studied extensively and both represent a

possible periodic tiling of the continuous image space. We will restrict our attention,

however, to only rectangular sampling as it remains, due to hardware and software

considerations, the method of choice. Local operations produce an output pixel value

b[m=mo,n=no] based upon the pixel values in the neighborhood of a[m=mo,n=no].

Some of the most common neighborhoods are the 4-connected neighborhood and the

8-connected neighborhood in the case of rectangular sampling and the 6-connected

neighborhood in the case of hexagonal sampling illustrated in Figure 3.3.

 16

Figure 3.3: Some common neighborhoods: (a) Rectangular sampling, (b) Rectangular

sampling, (c) Hexagonal sampling, 4-connected, 8-connected, 6-connected

3.3 Pre-Processing Techniques

The input of the system, which is output of a camera, is considered as raw

data. Raw data itself is not sufficient to extract the useful information. Therefore,

some pre-processing methods must be applied to the raw input image.

3.3.1 Color spaces & color space conversion

Natural color images, as opposed to computer-generated images, usually

originate from a color scanner or a color video camera. These devices incorporate

three sensors that are spectrally sensitive to the red, green, and blue portions of the

light spectrum. The color sensors typically generate red, green, and blue color signals

that are linearly proportional to the amount of red, green, and blue light detected by

each sensor. Linear RGB images are the basis for the generation of the various color

space image representations. Figure 3.4 shows the “space” defined by RGB signals:

it is a Cartesian cubic space, since the red, green, and blue signals are independent

and can be added to produce any color within the cube. There are other encoding

schemes that are more useful for image processing, since they are more closely

related to human perception.

 17

Figure 3.4: RGB Color Space

Raw data generally is in the form of RGB since this model is good for color

representation on a color monitor. However, RGB representation is not an

appropriate color space to extract the color and gray information for an image. So,

color space conversion is required.

Conversion from RGB (the brightness of the individual red, green, and blue

signals at defined wavelengths) to YIQ/YUV and to the other color encoding

schemes is straightforward and loses no information. Y, the “luminance” signal, is

just the brightness of a panchromatic monochrome image that would be displayed by

a black-and-white television receiver. It combines the red, green, and blue signals in

proportion to the human eye’s sensitivity to them. The I and Q (U and V)

components of the color signal are chosen for compatibility with the hardware used

in broadcasting; the I signal is essentially red minus cyan, while Q is magenta minus

green. The relationship between YIQ and RGB is shown in Table 3.3. An inverse

conversion from the encoded YIQ signal to RGB simply requires inverting the

matrix of values.

 18

Table 3.3: Conversions of RGB and YIQ color scales or vice versa

Y = 0.299 R + 0.587 G + 0.114 B

 I = 0.596 R – 0.274 G – 0.322 B

Q = 0.211 R – 0.523 G + 0.312 B

R = 1.000 Y + 0.956 I + 0.621 Q

G = 1.000 Y – 0.272 I – 0.647 Q

B = 1.000 Y – 1.106 I + 1.703 Q

There are some other representations, which separate the color and gray scale

information and represent them as different components. HSL (Hue, Saturation,

Lightness), HSI (Hue, Saturation, Intensity) and HSV (Hue, Saturation, Value)

are most widely used representations. These are closely related to each other. In this

system, hue is the color as described by wavelength, for instance the distinction

between red and yellow. Saturation is the amount of the color that is present, for

instance the distinction between red and pink. The third axis (called lightness,

intensity or value) is the amount of light, the distinction between a dark red and light

red or between dark grey and light grey. The only difference between these models is

the measurement of saturation, or the strength of the color.

The conversion from RGB to HSI is as follows:

3
)BGR(

I
++= (3.1)

)
)BG)(BR()GR(

))BR(
2

)GR(
(

(cosH
2

1

−−+−

−+−

= − (3.2)

)
)BGR(

3
(a1S

++
×−= (3.3)

where a is the minimum of R,G and B.

 19

3.3.2 Thresholding

Selecting features within a scene or image is an important prerequisite for

most kinds of measurement or understanding of the scene. Traditionally, one simple

way thresholding has been accomplished is to define a range of brightness values in

the original image, select the pixels within this range as belonging to the foreground,

and reject all of the other pixels to the background. Such an image is then usually

displayed as a binary or two-level image, using black and white colors. This

operation is called thresholding which is also called as binarization.

This technique is based upon a simple concept. A parameter “T” called the

brightness threshold is chosen and applied to the image a [m, n] as follows:

If a [m, n] >= T a [m, n] = object =1

Else a [m, n] = background = 0 (3.4)

This version of the algorithm assumes that we are interested in light objects

on a dark background. For dark objects on a light background we would use:

If a [m, n] < T a [m, n] = object =1

Else a [m, n] = background = 0 (3.5)

The main question in thresholding then becomes: How do we choose the

threshold value? While there is no universal procedure for threshold selection that is

guaranteed to work on all images, there are a variety of alternatives.

 20

Fixed threshold: One alternative is to use a threshold that is chosen

independently of the image data. If it is known that one is dealing with very high-

contrast images where the objects are very dark and the background is homogeneous

and very light, then a constant threshold of 128 on a scale of 0 to 255 might be

sufficiently accurate.

Histogram-derived thresholds: In most cases the threshold is chosen from the

brightness histogram of the region or image that we wish to segment.

3.4 Image Enhancement

Image enhancement processes consist of a collection of techniques that seek

to improve the visual appearance of an image or to convert the image to a form better

suited for analysis by a human or a machine.

There is no general unifying theory of image enhancement at present because

there is no general standard of image quality that can serve as a design criterion for

an image enhancement processor. Consideration is given here to a variety of

techniques that have proved useful for human observation improvement and image

analysis.

3.4.1 Histogram-based operations

The histogram of an image is simply a graph of brightness values versus

number of pixels having that value. This is an important tool for image analysis

giving the general information about the image.

3.4.1.1 Contrast stretching

Frequently, an image is scanned in such a way that the resulting brightness

values do not make full use of the available dynamic range. By stretching the

histogram over the available dynamic range we attempt to correct this situation. If

the image is intended to go from brightness 0 to brightness 12B − , then one generally

 21

maps the 0% value to the value 0 and the 100% value (or maximum) to the value

12B − . The appropriate transformation is given by:

imumminimummax
imummin]n,m[a

)12(]n,m[b B

−
−×−= (3.6)

3.4.1.2 Histogram equalization

The intensity values of a typical image are often distributed un-evenly across

the full range of 0 to 255 (for an 8-bit image), with most the mass near mid-gray

(128) and falling of on either side. An image can be transformed so that the

distribution of intensity values is at, that is, each intensity value is equally

represented in the image. This process is known has histogram equalization.

This algorithm makes the distribution that large range is assigned for the

intensities having more number of pixels and narrow range is assigned for the

intensities having less number of pixels.

3.4.2 Image smoothing

Smoothing operations are used primarily for diminishing spurious effects that

may be present in a digital image as a result of a poor sampling system or

transmission channel.

3.4.2.1 Neighborhood averaging

Neighborhood averaging is a straightforward spatial-domain technique for

image smoothing. Given an N x N image a(x, y), the procedure is to generate a

smoothed image b(x, y) whose gray level at every point (x, y) is obtained by

averaging the gray-level values of the pixels of a contained in a predefined

neighborhood of (x, y). In other words, the smoothed image is obtained by using the

relation:

 22

 �
∈

=
S)m,n(

)m,n(a
M
1

)y,x(b (3.7)

for x, y = 0,1,….N-1. S is the set of coordinates of points in the neighborhood of the

point (x, y), including (x, y) itself, and M is the total number of points in the

neighborhood.

3.4.2.2 Ordering-based filtering

One of the principal disadvantages of neighborhood algorithm is that it blurs

edges and other sharp details. To overcome this disadvantage, median filtering is

used as an alternative approach.

Median filters are filters in which we replace the gray level of each pixel by the

median of the gray levels in a neighborhood of that pixel, instead of by the average.

This method is particularly effective when the noise pattern consists of strong

components, and where the characteristic to be preserved is edge sharpness. In order

to perform median filtering in a neighborhood of a pixel we sort the values of the

pixel and its neighbors, determine the median, and assign this value to the pixel. For

example, in a 3 x 3 neighborhood, the median is the 5th largest value, in a 5 x 5

neighborhood the 13th largest value, and so on.

The other order-based filters are minimum filters and maximum filters. In

minimum filtering, in a neighborhood of a pixel the values of the pixels are ordered,

then a pixel value that has minimum gray level is assigned to the pixels in the

neighborhood. This algorithm increases the dark regions of the image in size and

decreases the more bright regions in size. On the other hand, maximum filtering

algorithm is a method that in e neighborhood the values of the pixels are ordered

from maximum value to minimum, then maximum-valued gray level is assigned to

the pixels in the neighborhood. This filtering makes the opposite effect of minimum

filtering.

 23

3.4.2.3 Low-pass filtering

In digital images, the term “image frequency” refers to the changes of gray

levels of pixels in an image plane. In other words, frequency is a measure of change

in brightness from a pixel to the successive neighbor pixel.

To eliminate the noises in an image (high-frequency content of the image),

low-pass filters are used. This filtering algorithm is made using masks (also referred

windows or filters). Basically a mask is a small (e.g. 3 x 3) two-dimensional array, as

shown in Figure 3.5, whose coefficients are chosen to detect a given property in an

image.

w1 w2 w3

w4 w5 w6

w7 w8 w9

Figure 3.5: A sample mask with 3 x 3 size.

The procedure of masking is as follows: The center of the mask is moved

around the image. At each pixel position in the image, every pixel that is contained

within the mask area is multiplied by the corresponding mask coefficient. The results

of these multiplications are then summed giving the new value of the pixel.

If we let w1, w2, w3,…., w9 represent mask coefficients and consider the

8-neighbors of (x, y), we may generalize the operation as:

T [a(x, y)] = w1 * a(x-1, y-1) + w2 * a(x-1, y) + w3 * a(x-1, y+1)

 + w4 * a(x, y-1) + w5 * a(x, y) + w6 * a(x, y+1) +

 + w7 * a(x+1, y-1) + w8 * a(x+1, y) + w9 * a(x+1, y+1) (3.8)

on a 3 x 3 neighborhood of (x, y), as shown in Figure 3.6.

 24

w1

(x-1,y-1)

W2

(x-1,y)

w3

(x-1,y+1)

w4

(x,y-1)

W5

(x, y)

w6

(x,y+1)

w1

(x+1,y-1)

W8

(x+1,y)

w9

(x+1,y+1)

Figure 3.6: A pictorial representation masking, a 3 x 3 mask showing

 coefficients and corresponding image pixel locations.

Larger masks are formed in a similar manner.

In order to attenuate a specified range of high-frequency components in an

image, low-pass filter can be applied as the mask shown in Figure 3.7.

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Figure 3.7: A 3 x 3 Low-pass Filter coefficients.

If this filter is applied to a region where it has big changes in gray-level

values in an image, the differences will be decreased between pixels in that region.

Because, this filtering algorithm assigns the average value of neighbors gray-level

values to the center pixel that has been intended to smooth. However, this filter

makes no chance in the region where there is no difference between the pixel gray-

levels.

This filtering algorithm is effective for eliminating the noises in an image, but

it blurs the image as an adverse effect.

 25

3.4.2.4 High-pass filtering

If an application desires to point out the regions where there are big gray-

level differences in the pixels of the region, then low-frequency content of the image

must be removed, only high-frequency-valued regions must remain. This is achieved

using high-pass filtering.

For doing this, in the mask (filter), greater-valued coefficient in the centre and

negative-valued coefficients in the surroundings is located as shown in Figure 3.8.

Figure 3.8: A 3 x 3 High-pass Filter coefficients.

If there is no difference in pixel gray-level values in the region, there will be

no change in the pixels. However, if this filter is applied to the region where it has

big changes in the pixel gray-level values, then the region having these changes

becomes more apparent and more evident.

3.4.3 Morphological operations

Morphological operations are methods for processing binary images based on

shapes. These operations take a binary image as input, and return a binary image as

output. The value of each pixel in the output image is based on the corresponding

input pixel and its neighbors. By choosing the neighborhood shape appropriately,

you can construct a morphological operation that is sensitive to specific shapes in the

input image.

Each morphological operation uses a specified neighborhood. The state of

any given pixel in the output image is determined by applying a rule to the

neighborhood of the corresponding pixel in the input image. The neighborhood is

-1 -1 -1

-1 9 -1

-1 -1 -1

 26

represented by a structuring element, which is a matrix consisting of only 0’s and

1’s. The center pixel in the structuring element represents the pixel of interest, while

the elements in the matrix that are on (i.e., = 1) define the neighborhood.

There are some morphological operations including dilation, erosion, opening

and closure operations.

3.4.3.1 Dilation

Dilation is an operation which adds pixels to the boundaries of objects (i.e.,

changes them from off to on). In other words, if any pixel in the input pixel’s

neighborhood is on, the output pixel is on. Otherwise, the output pixel is off.

Dilation operation can be formulized as:

)A(BA)B,A(D
B

β+=⊕=
∈β
� (3.9)

While either set A or B can be thought of as an "image", A is usually

considered as the image and B is called a structuring element. Dilation operation can

be explained schematically shown in Figure 3.9.

 Figure 3.9: Illustration of dilation operation

In this figure, the dilation operation is shown as: Original object pixels are in

gray; pixels added through dilation are in black.

 27

As a conclusion, dilation operation causes objects to dilate or grow in size.

3.4.3.2 Erosion

In contrast with the dilation operation, erosion operation removes pixels on

object boundaries (changes them from on to off). That is to say, for erosion, if every

pixel in the input pixel’s neighborhood is on, the output pixel is on. Otherwise, the

output pixel is off.

Erosion operation applies the mathematical operation as:

)A()B(A)B,A(E
B

β−=−Θ=
∈β
� (3.10)

where }B{B ∈ββ−=−

Erosion operation can be represented as in Figure 3.10.

 (a) (b)

 Figure 3.10: Pictorial representation of erosion operation, (a)- Original Image

(b)- Output Image after erosion operation.

 28

It can be said that as a conclusion, erosion operation causes objects to shrink.

3.4.3.3 Opening and closing operations

As it has been seen that, dilation operation expands the image and erosion

operation shrinks the image. There are some other important operations which are

just modified version of dilations or erosions, or combinations of dilation and erosion

as mainly opening and closing operation.

Opening operation consists of erosion followed by dilation operation,

symbolically as;

B)BA(BA)B,A(O ⊕Θ== � (3.11)

where B is a structuring element.

 Opening of an image generally smoothes the contour of an object, breaks

narrow strokes and eliminates thin protrusions.

As opposed to opening operation, dilation followed by erosion operation is

called a closure (closing) operation. It is expressed symbolically as;

B)BA(BA)B,A(C Θ⊕=•= (3.12)

where B is a structuring element.

Closing of an image with a compact structuring element also smoothes

section of contours of objects but as opposed to opening, it eliminates small holes in

the objects, and fuses short gaps between objects.

 When dialing with binary images, the principal application of morphological

operations is extracting image components that are useful in the representation and

 29

description of the shapes in the images. Some of the algorithms in morphology are

the algorithms for extracting boundaries, region filling, extraction of connected

components, thinning, thickening, finding skeleton of a region, pruning, etc.

3.5 Segmentation

One of the most widely used steps in the process of reducing images to

information is segmentation: dividing the image into regions that hopefully

correspond to structural units in the scene or distinguish objects of interest.

Segmentation is often described by analogy to visual processes as a

foreground/background separation, implying that the selection procedure

concentrates on a single kind of feature and discards the rest.

Segmentation subdivides an image into its constituent regions or objects. The

level to which the subdivision is carried depends on the desired interest. In other

words, segmentation algorithm should be terminated when the objects of interest in

an application have been isolated.

Image segmentation algorithms are generally based on one of the two basic

properties of intensity values: discontinuity and similarity. In the first case, the

approach is to partition an image based on abrupt changes in intensity, such as edges

in an image. But in the second case, the basic approaches are based on partitioning an

image into regions that are similar according to a set of predefined criteria, as in the

thresholding or smearing algorithms.

3.5.1 Finding discontinuities

Considering the digital images, it has been seen that there are three basic

types of gray-level discontinuities as the points, lines and the edges. Also, there has

been several ways to detect the discontinuities in a digital image. But the most

common way to detect the discontinuities is to use masking algorithm. Masking

algorithm involves the use of appropriate mask for the desired type of discontinuities

that is wanted and to run the mask through the target region of the image. Masking

 30

algorithm has been defined and explained in filtering algorithms sections of the

thesis.

3.5.1.1 Detection of points

The simplest and the most effective way to detect the isolated points in an

image is to use a mask that is useful for finding the point or points whose gray level

are obviously different from its background or surroundings. Therefore, the mask

used in high-pass filtering can easily detect such an isolated point or points located in

homogeneous or nearly homogeneous region. An example of 3x3 mask for the

purpose is shown in Figure 3.11.

Figure 3.11: A 3x3 mask for point detection.

On the other hand, this mask is different from the high-pass filtering case that

it makes the points in the surroundings that is homogeneous (whose gray-level values

are equal) to zero indicating the isolated point or points. This is the change of

centered coefficient of the mask to 8 instead of 9 for 3x3 masking.

3.5.1.2 Detection of lines

The line in an image can be distinguished from the surroundings with having

different gray-level values. The line can be horizontal, vertical or in any orientation.

If orientation of the line to be considered is known, then the mask that will respond

the more strongly to the line pixels is used. The coefficients of the mask is selected

that the line pixels are more evident (bigger coefficients) and the others(no line) are

zero. If the line is horizontal, the mask shown in Figure 3.12 can demonstrate the

line.

-1 -1 -1

-1 8 -1

-1 -1 -1

 31

Figure 3.12: A sample mask for horizontal lines

Here if the mask is applied through the image having horizontal line with a

constant background, the maximum response will be obtained when the line passed

through the middle row of the mask.

The similar approach can be applied for finding vertical lines, the lines

oriented at +45 degrees or the lines oriented at -45 degrees with the masks given in

Figure 3.13 respectively.

-1 2 -1 -1 -1 2 2 -1 -1

-1 2 -1 -1 2 -1 -1 2 -1

-1 2 -1 2 -1 -1 -1 -1 2

 Vertical Oriented at +45º Oriented at -45º

Figure 3.13: Line Masks for Various Orientations

If the all possible lines that may be oriented horizontally, vertically, or in any

direction are wanted to detect, then all possible masks are applied through the image

successively. Then the thresholding is made through the image and the pixels that are

in the lines are pointed out as the detection.

3.5.1.3 Detection of edges

The edge in an image is the sudden change from dark to light or from light to

dark pixel intensity. In other words, edges are the places in an image that correspond

-1 -1 -1

2 2 2

-1 -1 -1

 32

the object boundaries. To find those pixels that belong to the borders of the objects is

called as edge detection.

To find edges looking for places in the image where the intensity changes

rapidly uses one of these two criteria:

• Places where the first derivative of the intensity is larger in magnitude than

some threshold.

• Places where the second derivative of the intensity has a zero crossing.

We use these operators because of the fact that the magnitude of first

derivative can be used to detect the presence of an edge at a point in an image (i.e., to

determine if a point is on a ramp). Similarly, the sign of second derivative can be

used to determine whether an edge pixel lies on the dark or light side of an edge with

properties of second derivative around an edge that an imaginary straight line joining

the extreme positive and negative values of the second derivative would cross zero

near the midpoint of the edge. This zero-crossing property of the second derivative is

quite useful for locating the centers of thick edges.

 First-order derivatives in an image can be computed using the gradient

operators and second-derivatives are obtained using the Laplacian. The gradient of

an image f(x,y) at location (x,y) is defined as:

[] �
�

�
�
�

�

∂
∂

∂
∂==∇

y
f

;
x
f

G;Gf yx (3.13)

and the magnitude of the gradient denoted by,

[] 2/12
y

2
x GG)f(mag +=∇ (3.14)

Computation of the gradient of an image is based on obtaining the partial derivatives

�f/�x and �f/�y at every pixel location.

 33

If a 3x3 area represents the gray levels in a neighborhood of an image shown in

figure 3.14 (a), one of the ways to calculate the first-order partial derivative at point

z5 is to use the Roberts cross-gradient operators:

)5z9z(G x −= and)6z8z(G y −= (3.15)

with the mask given in Figure 3.14 (b).

Z1 z2 Z3 -1 0 0 -1

Z4 z5 Z6 0 1 1 0

Z7 z8 Z9

 (a) (b)

Figure 3.14: (a) A 3x3 region of an image , (b)Roberts mask

And similar approach using the 3x3 mask in Figure 3.15 can be used to give

the partial derivatives as:

)7z4z1z()9z6z3z(G

)3z2z1z()9z8z7z(G

y

x

++−++=
++−++=

 (3.16)

Here the difference between the first and third rows of the 3x3 image region

approximates the derivative in x-direction, and the difference between the third and

first columns approximates the derivative in y-direction.

-1 -1 -1 -1 0 1

0 0 0 -1 0 1

1 1 1 -1 0 1

Figure 3.15: Prewitt masks for edge detection

 34

Some small changes in the mask coefficients to achieve smoothing by giving

more importance to the center point called Sobel masks is shown in Figure 3.16.

-1 -2 -1 -1 0 1

0 0 0 -2 0 2

1 2 1 -1 0 1

Figure 3.16: Sobel masks for edge detection

The Sobel mask provides superior noise-suppression characteristic than the

Prewitt masks.

The Laplacian of a an image is a second-order derivative defined as:

�
�

�
�
�

�

∂
∂+

∂
∂=∇

2

2

2

2
2

y
f

x
f

f (3.17)

The Laplacian is not used in its original form for edge detection because of

being sensitive to noise. So, the Laplacian can be combined with smoothing as a

precursor to find edges via zero-crossings. Here is the example of 5x5 Laplacian of

Gaussian mask in Figure 3.17.

Figure 3.17 : A 5x5 mask for edge detection using

Laplacian of Gaussian function.

As a summary, the Sobel method finds edges using the Sobel approximation

to the derivative. It returns edges at those points where the gradient of an image is

maximum. The Prewitt method finds edges using the Prewitt approximation to the

derivative. It returns edges at those points where the gradient of an image is

0 0 1 0 0

0 -1 -2 -1 0

-1 -2 16 -2 -1

0 -1 -2 -1 0

0 0 -1 0 0

 35

maximum. The Roberts method finds edges using the Roberts approximation to the

derivative. It returns edges at those points where the gradient of an image is

maximum. The Laplacian of Gaussian method finds edges by looking for zero

crossings after filtering an image with a Laplacian of Gaussian filter. The zero-cross

method finds edges by looking for zero crossings after filtering an image with a filter

you specify [41].

3.5.2 Smearing algorithm

Smearing is another type of segmentation method for the extraction of text

areas on a mixed image. This algorithm is also called as Run-Length Smearing

(RLS) or Run-Length Smoothing Algorithm (RLSA).

With the smearing algorithm, the image is processed along vertical and

horizontal runs (scan-lines). If an image consists of only 1’s and 0’s (only black and

white) called as binary image and if the number of white pixels is less than a desired

threshold or greater than any other desired threshold, white pixels are converted to

black or vice versa. The smearing algorithm can be made horizontally or vertically

through the image.

The white pixels (gaps) between the letters or words in the case of text areas

and the white pixels within the letters are converted to black if the pixel/pixel groups

are less or greater than the threshold or vice versa (converting the black to white).

This algorithm can be formulated as:

If number of ‘white’/ ‘black’ pixels < threshold ; pixels become ‘black’ / ‘white’

 Else ; no change

OR

If number of ‘white’ / ‘black’ pixels > threshold ; pixels become ‘black’ / ‘white’

 Else ; no change (3.18)

For example, if the pixel values for a horizontal region is given as:

 36

110001111101111111000001110000000001111000010011111

and if the threshold value is chosen as 5 and the desired operation is to smear the

white pixel / pixels smaller than the threshold (changing the white pixels (1’s) to

black (0’s)), then the sequence becomes after the smearing as:

 000001111101111111000000000000000000000000000011111

And, an example of horizontal smearing algorithm that is used for detecting

word regions by selecting the appropriate threshold value is shown in Figure 3.18. In

this example the selected threshold value is 10 meaning that if the number of white

pixels is less than the threshold value,10, the pixels become black.

 (a) (b)

Figure 3.18 : (a) Original image containing text , (b) The output image after

smearing

3.5.3 Segment labeling

The result of any successful image segmentation is the labeling of each pixel

that lies within a specific distinct segment. One means of labeling is to append to

each pixel of an image the label number or index of its segment. A more succinct

method is to specify the closed contour of each segment. If necessary, contour filling

 37

techniques can be used to label each pixel within a contour. The following describes

the common technique of contour following.

In the following binary image of Figure 3.19 as an example, a conceptual

contour follower begins marching from the white background to the black pixel

region indicated by the closed contour. When the contour follower crosses into a

black pixel, it makes a left turn and proceeds to the next pixel. If that pixel is black,

the follower again turns left, and if the pixel is white, the follower turns right. The

procedure continues until the follower returns to the starting point. This simple

contour follower may miss spur pixels on a boundary.

Figure 3.19 : Contour Following

The other technique is known as backtracking contour follower. In this

algorithm, if the follower makes a white-to-black pixel transition, it returns to its

previous starting point and makes a right turn. The follower makes a right turn

whenever it makes a white-to-white transition.

While the contour follower is following a contour, it can create a list of the

pixel coordinates of each boundary pixel. Alternatively, the coordinates of some

reference pixel on the boundary can be recorded, and the boundary can be described

by a relative movement code. That is pixels that have been dealt with are labeled

using some coding techniques [42].

 38

3.5.4 Hough transform

The Hough transform is a technique which can be used to isolate features of a

particular shape within an image. Because it requires that the desired features be

specified in some parametric form, the classical Hough transform is most commonly

used for the detection of regular curves such as lines, circles, ellipses, etc.

To understand the Hough Transform, it is important to know what the Hough

space is. Each point),r(θ in Hough space corresponds to a line at angle θ and

distance r from the origin in the original data space. The value of a function in

Hough space gives the point density along a line in the data space. The Hough

Transform utilizes this by the following method.

For each point in the original space consider all the lines which go through

that point at a particular discrete set of angles, chosen a priori. For each angle θ ,

calculate the distance to the line through the point at that angle and discretize that

distance using an a priori chosen discretization, giving value r . Make a

corresponding discretization of the Hough space - this will result in a set of boxes in

Hough space. These boxes are called the Hough accumulators. For each line we

consider above, we increment a count (initialised at zero) in the Hough accumulator

at point),r(θ . After considering all the lines through all the points, a Hough

accumulator with a high value will probably correspond to a line of points. In fact for

uniformly distributed points, each Hough box should have a Poisson distributed

count with mean given by the length of the line times discretisation width times

uniform point density. A count which is in the tail of the relevant Poisson distribution

is unlikely to be the result of the underlying uniform data, and hence more likely to

be the result of some line of points. Giving some prior model for the number of

points in a line will allow a proper Bayesian assessment of whether there is a line at

the relevant angle and distance from the origin. As a simple example, considering the

common problem of fitting a set of line segments to a set of discrete image points

(e.g. pixel locations output from an edge detector). Figure 3.20 shows some possible

solutions to this problem. Here the lack of a priori knowledge about the number of

desired line segments (and the ambiguity about what constitutes a line segment)

render this problem under-constrained.

 39

 (a) (b) (c)

Figure 3.20: (a) Coordinate points, (b) and (c) Possible straight line fittings.

We can analytically describe a line segment in a number of forms. However,

a convenient equation for describing a set of lines uses parametric or normal notion:

rsinycosx =θ+θ (3.19)

where r is the length of a normal from the origin to this line and θ is the orientation

of r with respect to the x-axis as in Figure 3.21. For any point (x, y) on this line r

and θ are constant.

.

Figure 3.21: Parametric description of a straight line

 40

In an image analysis context, the coordinates of the point(s) of edge segments

(i.e.)y,x(ii) in the image are known and therefore serve as constants in the

parametric line equation, while r and θ are the unknown variables we seek. If we

plot the possible),r(θ values defined by each)y,x(ii , points in cartesian image space

map to curves (i.e. sinusoids) in the polar Hough parameter space. This point-to-

curve transformation is the Hough transformation for straight lines. When viewed in

Hough parameter space, points which are collinear in the cartesian image space

become readily apparent as they yield curves which intersect at a common),r(θ

point.

The transform is implemented by quantizing the Hough parameter space into

finite intervals or accumulator cells. As the algorithm runs, each)y,x(ii is

transformed into a discretized),r(θ curve and the accumulator cells which lie along

this curve are incremented. Resulting peaks in the accumulator array represent strong

evidence that a corresponding straight line exists in the image [43].

3.6 Character Recognition

Optical character recognition, usually abbreviated to OCR, involves computer

software designed to translate images of typewritten text (usually captured by a

scanner) into machine-editable text, or to translate pictures of characters into a

standard encoding scheme representing them in (ASCII or Unicode). OCR began as a

field of research in artificial intelligence and machine vision. Though academic

research in the field continues, the focus on OCR has shifted to implementation of

proven techniques.

Human performs recognition operation as they read, taking the printed

character, interpreting its shape, and assigning meaning. On the other hand,

computers cannot normally achieve this intelligence and instead they must be taught

how to recover text from a character image.

 41

In 1950, David Shepard, a cryptanalyst at AFSA, the forerunner of the United

States National Security Agency (NSA), was asked by Frank Rowlett, who had

broken the Japanese PURPLE diplomatic code, to work with Dr. Louis Tordella to

recommend data automation procedures for the Agency. This included the problem

of converting printed messages into machine language for computer processing.

Shepard decided it must be possible to build a machine to do this, and, with the help

of Harvey Cook, a friend, built "Gismo" in his attic during evenings and weekends.

Shepard then founded Intelligent Machines Research Corporation (IMR), which went

on to deliver the world's first several OCR systems used in commercial operation.

While both Gismo and the later IMR systems used image analysis, as opposed to

character matching, and could accept some font variation, Gismo was limited to

reasonably close vertical registration, whereas the following commercial IMR

scanners analyzed characters anywhere in the scanned field, a practical necessity on

real world documents. The first commercial system was installed at the Readers

Digest in 1955, which, many years later, was donated by Readers Digest to the

Smithsonian, where it was put on display. The second system was sold to the

Standard Oil Company of California for reading credit card imprints for billing

purposes, with many more systems sold to other oil companies. Other systems sold

by IMR during the late 1950's were a bill stub reader to the Ohio Bell Telephone

Company and a page scanner to the U.S. Air Force for reading and transmitting by

teletype typewritten messages. IBM and others were later licensed on Shepard's OCR

patents [44]. These are the brief history of OCR systems

There are two methods for performing the character recognition: template-

based recognition and feature-based recognition. Although there have been hundreds

of different algorithm for each of these methods, the principle behind the particular

algorithm falls into one of these two categories.

 Template-based recognition matches each input character image against a

library of known character images called templates. With comparing the input image

with the templates, the best similarity gives the correct recognition. But, in feature-

based recognition, this approach attempts to compare the input image’s identification

features or label with the identification database. The input is identified as the

character whose features best matches that of the input image.

 42

3.6.1 Template matching

One of the most fundamental means of object detection within an image field

is by template matching, in which a replica of an object of interest is compared to all

unknown objects in the image field. If the template match between an unknown

object and the template is sufficiently close, the unknown object is labeled as the

template object.

Template matching is an effective algorithm for recognition of characters.

The character image is compared with the ones in the database and the best similarity

is measured.

To measure the similarity and find the best match, a statistical method

correlation is used. Correlation is an effective technique for image recognition which

was developed by Horowitz. [45]. This method measures the correlation coefficient

between a number of known images with the same size unknown images or parts of

an image with the highest correlation coefficient between the images producing the

best match.

There are two forms of correlations: auto-correlation and cross-correlation.

Auto-correlation function (ACF) involves only one signal and provides information

about the structure of the signal or its behavior in the time domain. Cross-correlation

function (CCF) is a measure of the similarities or shared properties between two

signals. Since there are two signals as unknown input image and known database

image in this system, cross-correlation is used.

If we have an image denoted by)k,j(F to be searched and template which is

denoted by)k,j(T for Jj1 ≤≤ and Kk1 ≤≤ , then the normalized cross-correlation

between the image pair is defined as:

 43

2/1

j k

2
2/1

j k

2

kj

2/)1N(nk,2/)1M(mj(T)k,j(F

)2/)1N(nk,2/)1M(mj(T)k,j(F

)n,m(R

�
�
�

�

�
�
�

�
++−++−

�
�
�

�

�
�
�

�

++−++−
=

����

��
(3.20)

for m=1,2,….M and n=1,2,….N, where M and N are odd integers.

R(m,n) is known as the cross-correlation coefficient. Its value always lies

between -1 and +1, meaning that

• +1 means 100 % correlation in the same sense

• -1 means 100 % correlation in the opposing sense

• A value of 0 signifies zero correlation. This means that the signal pairs are

completely independent.

3.6.2 Feature extraction

Feature-based recognition is a feature extraction method that computes

numeric or symbolic information from the observations of image with analyzing the

image.

An image feature is a distinguishing primitive characteristic or attribute of an

image. Some features are natural in the sense that such features are defined by the

visual appearance of an image, while other, artificial features result from specific

manipulations of an image. Natural features include the luminance of a region of

pixels and gray scale textural regions. Image amplitude histograms and spatial

frequency spectra are examples of artificial features.

 When dealing with the character recognition, this algorithm attempts to work

with a subset of the features in a character that a human would typically see for the

identification of machine-printed characters. If it were expanded to use more

 44

features, it would be made correspondingly slower; with the advent of faster

microprocessors this fact is not viewed as a crippling problem.

 A feature point is a point of human interest in an image, a place where

something happens. It could be an intersection between two lines, or it could be a

corner, or it could be just a dot surrounded by space. Such points serve to help define

the relationship between different strokes. Two strokes could fully cross each other,

come together in for example "Y" or a "T" intersection, form a corner, or avoid each

other altogether. People tend to be sensitive to these relationships; the fact that the

lines in for example "Z" connect in a certain way is more important than the

individual lengths of those lines. These relationships are what should be used for

character identification, and the feature points can be exploited for the task.

 45

CHAPTER 4

LICENSE PLATE RECOGNITION SYSTEM

In this thesis, the proposed system consists of three major units:

• Extraction of Plate Region

• Segmentation of Plate Characters

• Recognition of Plate Characters

In this chapter, all three units for LPR system are explained successively in

details. Also, the input for the system is given.

4.1 Input of The System

In this work, the images for the input to the system are colored images with

the size 1200x1600x3. And, captured images are taken with a digital camera from 4-

5 meters away from the car. And, the vehicle images captured by the camera all have

Turkish license plate. That is to say, this system is designed for identifying the

Turkish license plates. And the test images for the input are taken under various

illumination conditions.

4.2 Extraction of Plate Region

Extraction of plate region is to find the exact location of the plate in an image

and to label or cut the plate region from the input image. Plate region extraction is

the first stage in this algorithm.

 46

Firstly, image captured from the camera is converted to the binary image

consisting of only 1’s and 0’s (only white and black) by thresholding the pixel values

of 0 (black) for all pixels in the input image with luminance less than threshold value

and 1 (white) for all other pixels. This process is known as binarization. A threshold

value is selected for the process and binarization maps the image with the threshold

and assigns the 1’s (white) for the greater values from the threshold and 0’s (black)

for the smaller than the threshold giving the binary image as the output.

Selection of the threshold value is important concern. This can be done

applying uniform histogram equalization. It means that the histogram of the input

image is forced to be distributed uniformly. In this system, we use “im2bw” function

in Matlab for binarization process. Im2bw function converts an image to a binary

image by thresholding. To do this, it converts the input image to grayscale format

and then converts this grayscale image to binary by thresholding.

A sample input image and the processed image after the binarization process

are given in Figure 4.1 and Figure 4.2, respectively.

Figure 4.1: A sample image

 47

Figure 4.2: Processed image after binarization

After binarization process, the image is filtered with neighborhood averaging

algorithm. Neighborhood averaging is a spatial-domain technique for image

smoothing. The aim of this algorithm is to generate a smoothed image whose gray

level at every point (x, y) is obtained by averaging the gray-level values of the pixels

of the image contained in a predefined neighborhood of (x, y). This is made using

Matlab “fspecial(average)” function and the 5x5 neighborhood is selected. This

function creates a 2-D filter and processes the image with averaging algorithm.

Then, to find the plate location, smearing algorithm is used. The plate region

is considered as a text region on a mixed image (containing other regions or parts).

Therefore, the image is scanned for the plate region (text region) for which the plate

region width and height have an upper and lower limit. Since the approximate values

of the width and height of the plate are known, an assumption for the limits of the

plate region is not a prediction.

 Smearing is a method for the extraction of text areas on a mixed image. With

the smearing algorithm, the image is processed along vertical and horizontal runs

(scan-lines). If the number of white pixels is less than a desired threshold, white

 48

pixels are converted to black or if the number of white pixels is greater than a

threshold, white pixels are converted to black. In this system, threshold values are

selected as 10 and 100 for both horizontal and vertical smearing.

 This can be formulized as given below,

 If number of ‘white’ pixels < 10 ; pixels become ‘black’

 Else ; no change

If number of ‘white’ pixels > 100 ; pixels become ‘black’

 Else ; no change (4.1)

 The horizontal smearing algorithms written in Matlab are as follows;

%horizontal smearing for # of pixels greater than 100

c=0;

t=0;

 for x=1:size(image,1)-1

 c=0;

 t=0;

 for y=1:size(image,2)-1

 if image(x,y)==1

 t=t+1;

 else

 t=0;

 c=0;

 end

 if t>100

 image(x,y)=0;

 else if t>=100 && c==0

 for k=y-99:y-1

 image(x,k)=0;

 c=1;

 end

 49

 end

 end

 end

 end

%horizontal smearing for # of pixels smaller than 10

t=0;

c=0;

 for x=1:size(image,1)-1

 t=0;

 c=0;

 for y=1:size(image,2)-1

 if image(x,y)==1

 t=t+1;

 else

 t=0;

 c=0;

 end

if t<10

 image(x,y)=0;

 else if t>=10 && c==0

 for k=y-9:y-1

 image(x,k)=1;

 c=1;

 end

 end

end

 end

 end

 50

 Note that the threshold values are approximated experimentally. After

horizontal smearing with the threshold values of 100 and 10, vertical smearing is

applied to the image whose codes are as follows;

%vertical smearing for # of pixels greater than 100

c=0;

t=0;

 for y=1:size(image,2)-1

 c=0;

 t=0;

 for x=1:size(image,1)-1

 if image(x,y)==1

 t=t+1;

 else

 t=0;

 c=0;

 end

 if t>100

 image(x,y)=0;

 else if t>=100 && c==0

for k=x-99:x-1

image(k,y)=0;

c=1;

 end

 end

 end

 end

 end

%vertical smearing for # of pixels smaller than 10

t=0;

c=0;

 for y=1:size(image,2)-1

 51

 t=0;

 c=0;

for x=1:size(image,1)-1

 if image(x,y)==1

 t=t+1;

else

t=0;

c=0;

 end

if t<10

image(x,y)=0;

else if t>=10 && c==0

 for k=x-9:x-1

 image(k,y)=1;

 c=1;

 end

end

end

 end

 end

After smearing, a morphological operation, dilation, is applied to the image

for specifying the plate location. Most probably, these operations find the plate

location only. However, there may be sometimes more than one candidate region for

plate location. To find the exact region and eliminate the other regions, some criteria

tests considering the properties of plate region are applied for the purpose. Then,

only plate region remains.

The resulting image containing only plate region is shown in Figure 4.3.

 52

Figure 4.3: Plate Region

 Now, the procedure is to obtain an image containing only plate. To do this,

lower and upper limits of plate location are found and then, a regular-shaped area is

formed with the help of found values of plate boundaries in both vertical and

horizontal directions. The resultant image involving only plate region is in Figure

4.4.

Figure 4.4: Image involving only plate

 53

Some images that have more than one candidate region for plate location can

be seen in Figure 4.5.

Figure 4.5: Some images having more than one candidate region for plate location.

 And, to find the exact plate region, some features of plate region are used.

Finally, only one region remains for plate location.

 After finding the plate region and obtaining the image involving only plate,

the next step is to cut the plate from the original input image. This can be done by

calculating the starting and end points of plate in both directions, horizontal and

vertical directions. If these values are known, the part that contains only plate is cut.

Necessary program segment for finding the starting and end points of plate (plate

boundaries) is as follows;

% Finding plate boundaries

% In horizontal direction

c=1;

r=0;

for x=1:size(image,1)-1

 54

 for y=1:size(image,2)-1

 if r~=image(x,y)

 m(c)=y;

 c=c+1;

 r=image(x,y);

 end

 end

 r=0;

end

k=1;

c=1;

for i=1:length(m)/2

t(k)=m(c+1)-m(c);

c=c+2;

k=k+1;

end

% In vertical direction

c=1;

r=0;

for y=1:size(image,2)-1

 for x=1:size(image,1)-1

 if r~=image(x,y)

 n(c)=x;

 c=c+1;

 r=image(x,y);

 end

 end

 r=0;

end

 55

k=1;

c=1;

for i=1:length(n)/2

s(k)=n(c+1)-n(c);

c=c+2;

k=k+1;

end

[y,i1]=max(t);

[y,i2]=max(s);

% z1,z2,z3 and z4 values are boundaries of plate.

z1=n(2*i2-1);

z2=m(2*i1-1);

z3=n(2*i2);

z4=m(2*i1);

 In this program segment, the variations of pixels from white to black or black

to white are considered, and the maximum values at which the pixels remain white

are considered as limit values of plate region. And, by using these boundary values

the image is cut to obtain only plate. This cutting operation is made with the help of

Matlab “imcrop” function.

Imcrop function crops an image to a specified rectangle. The region that is

wanted to cut is specified with the starting end points and these values are given as

an input argument, and then the region is obtained.

The resulting image for the sample input is given in Figure 4.6 as an example.

 56

Figure 4.6: Plate image cut from original image

For some other input images, the plates obtained after extraction step can be

seen here in Figure 4.7.

Figure 4.7: Some cutted-plates

4.3 Segmentation of Plate Characters

In the previous step, the place of the license plate is found and this region is

cut from the original input image. In this step, it is aimed to extract all of the

characters from the license plate.

 57

Namely, in the segmentation of plate characters, license plate is segmented

into its constituent parts obtaining the characters individually. Firstly, image is

filtered for enhancing the image and removing the noises and unwanted spots using

averaging filtering algorithm. Then dilation operation is applied to the image for

separating the characters from each other if the characters are close to each other.

This is necessary operation. Because, some plate characters can be written in such a

way that these characters are very close to each other. To separate these characters,

dilation operation is an effective solution.

After filtering and dilation operation, plate image can be seen in Figure 4.8,

below.

Figure 4.8: Plate image after filtering and dilation operation

The next procedure is to process the image such that characters can be

separated easily. To do this, both horizontal and vertical smearing algorithms are

applied for finding the character regions. Firstly, vertical smearing is applied from

the top of the image to the bottom and then the same procedure is repeated from

bottom to top. This operation enables to fill the spaces for inner parts of each

character. For vertical smearing, threshold value is chosen as 70. And this value is

also determined with the help of approximate limit values of plate characters and test

results. And, finally horizontal smearing is applied with a threshold value of 6. The

program segment for these smearing algorithms is here as;

%Vertical Smearing from top to bottom

t=0;

c=0;

for y=1:size(plate,2)-1

 for x=1:size(plate,1)-1

 58

 if plate(x,y)==1

 t=t+1;

 else

 t=0;

 c=0;

 end

 if t<70

 plate(x,y)=0;

 else if t>=70 && c==0

 for k=t-69:t-1

 plate(k,y)=1;

 c=1;

 end

 t=0;

 end

 end

 end

 end

%Vertical Smearing from bottom to top

t=0;

c=0;

for y=size(plate,2)-1:-1:1

 for x=size(plate,1)-1:-1:1

 if plate(x,y)==1

 t=t+1;

 else

 t=0;

 c=0;

 end

 if t<70

 plate(x,y)=0;

 else if t>=70 && c==0

 59

 for k=t-69:t-1

 plate(k,y)=1;

 c=1;

 end

 t=0;

 end

 end

 end

 end

%horizontal smearing for # of pixels smaller than 6

t=0;

c=0;

for x=1:size(plate,1)-1

t=0;

c=0;

 for y=1:size(plate,2)-1

 if plate(x,y)==1

 t=t+1;

 else

 t=0;

 c=0;

 end

 if t<6

 plate(x,y)=0;

 else if t>=6 && c==0

 for k=y-5:y-1

 plate(x,k)=1;

 c=1;

 end

 end

 end

 end

 end

 60

 The resulting plate after smearing algorithms is shown in Figure 4.9. To see

the overall performance of segmentation, the input for segmentation part, the image

after filtering and dilation operations and output image after segmentation are given,

respectively.

Figure 4.9: Plate images showing segmentation

 Now, the locations of plate characters are known. These are labeled as black

pixels and separated from each other. Next step is to cut the plate characters. It is

done by finding starting and end points of characters in horizontal direction. Again

the transitions of pixels from white to black or black to white are useful information

to know that characters start and stop in these boundary points. The necessary

program segment for this purpose is as follows;

%Finding starting and end points of characters

c=1;

r=1;

for y=50:size(character,2)-50

 61

 if r~=character(1,y)

 m(c)=y;

 c=c+1;

 r=character(1,y);

 end

end

s=1;

for x=1:length(m)/2

 if m(s+1)-m(s)>=11

 m(s)=m(s);

 m(s+1)=m(s+1);

 s=s+2;

 else

 m(s)=2;

 m(s+1)=2;

 s=s+2;

 end

end

 Although there are only plate characters in plate image, some points or

regions may still remain. To eliminate this, some tests are applied to the found points

that they are related with characters or not. And finally, these plate characters are cut

using Matlab “imcrop” function taking the found starting and end points as an

arguments.

 The characters that are cut can be shown in Figure 4.10.

 62

Figure 4.10: Individual characters

4.4 Recognition of Plate Characters

As mentioned in chapter 4, there are two main character recognition methods:

template-based recognition and feature-based recognition. In this work, template-

based recognition algorithm is used.

In template-based algorithm, the character image is compared with the ones

in the database known as template and the best similarity is measured. This algorithm

is named as template-matching. As mentioned in chapter 4, to measure the similarity

and find the best match, a statistical method correlation is used. This method

measures the correlation coefficient between a number of known images with the

same size unknown images or parts of an image with the highest correlation

coefficient between the images producing the best match. Since there are two signals

as unknown input image and known database image in this system, cross-correlation

is used.

Before recognition algorithm with template-matching, the characters must be

normalized. Normalization is to refine the characters into a block that contains no

extra white spaces (pixels) in all four sides of the characters. Then, each character is

refined as shown in Figure 4.11.

 63

Figure 4.11: Refined characters

In Figure 4.11, it is obviously seen that characters sizes are different form

each other. Therefore, character sizes must be fit to equal size. In other words, all

character sizes must be equal-sized. This operation is made using Matlab “imresize”

function. This function resizes an image of any type using the specified interpolation

method. In this work, default interpolation, nearest neighbor interpolation, is used

and the desired size values are given as an argument. Here the characters are fit to

equal-sized as 36 × 18. Now, the characters become as in Figure 4.12.

Figure 4.12: Equal-sized characters

Fitting approach is necessary for template matching. For matching the

characters with the database, input images must be equal-sized with the database

characters. Here the characters are fit to 36 × 18. The extracted characters cut from

 64

plate and the characters on database are now equal-sized. The next step is to form

templates for matching algorithm.

 The templates are necessary for matching. These templates are made as the

matrices whose dimensions are the same as the plate characters that have been

normalized and equal-sized. A sample for the letter B is shown in Figure 4.13.

Figure 4.13: A sample template, letter B

And the collection of these templates for all characters is named as the

database for this system. This system used the database as the Turkish license plates

characters all 33 alphanumeric characters (23 alphabets and 10 numerals) with the

size of 36×18. The database formed is shown in Figure 4.14.

 65

Figure 4.14: The database characters

Now, we have an input, plate characters and the templates known as database.

The last step is to match the input with the templates and to find the best match. The

cross-correlation function is used for this matching. This is done using Matlab

“corr2” function. This function computes 2-D correlation coefficient between an

input image and a template image, where both input and template images are

matrices or vectors of the same size.

For an input, the necessary algorithm for calculating the correlation

coefficients and finding the best similarity (the biggest correlation coefficient) is as

follows;

% calculation the correlation coefficient for character1

t=1;

for d=1:18:594

w=corr2(character1,database(1:36,d:d+17));

w2(t)=w

t=t+1;

end

 66

[y1,i(1)]=max(w2);

% calculation the correlation coefficient for character2

t=1;

for d=1:18:594

w=corr2(character2,database(1:36,d:d+17));

w2(t)=w

t=t+1;

end

[y2,i(2)]=max(w2);

This algorithm is repeated for all characters that have been obtained from the

license plate. And the biggest correlation coefficients for all characters individually

are recorded and these values are compared with the database. Finally, these values

show the best similarity between the input character and the template that are most

correlated. So, the value that is showing the related template is read as a recognition

output.

Because of the similarities of some characters, there may be some errors

during recognition. In other words, the algorithm can recognize the wrong letter or

number. The confused characters mainly are B and 8, E and F, D and O, S and 5, Z

and 2. To eliminate such mistakes and to increase the recognition rate, some criteria

tests are used in the system for the confused characters defining the special features

of the characters. Therefore, if one of these characters is detected, another checking

algorithm is used to identify the character. With these features of characters and

applied checking tests during recognition algorithm, recognition rate is increased

with the minimum error.

 67

CHAPTER 5

EXPERIMENTAL WORKS

 As mentioned before, this license plate recognition system is designed for the

identification Turkish license plates. And the test vehicle images containing Turkish

license plates are given as a tester and the performance of the system are obtained.

 The input vehicle images are captured by a digital camera. Two different

cameras are used for the input images. Both the cameras have the same resolution

value which is 1200x1600. And, the captured images are colored images. The test

images are taken under various illumination conditions. In other words, the images

are taken on the different time periods of the day with different light conditions.

Also, the captured images are taken from 4-5 meters away from the vehicles.

 The system is tested with a Pentium III computer 733 MHz with 128 MB

RAM. The operating system is Windows 98. Moreover, the performance of the

system is tested with a Windows 2000 operating system and with 256 MB RAM as

well. And the system is designed in Matlab 6.5. Matlab is the software produced by

The MathWorks Company and it is used for performing mathematical calculations,

analyzing and visualizing data, and writing new software programs.

5.1 Accuracy Calculation

 To calculate the performance of any system is primary concern for

understanding the structure and measuring the accuracy. Determining the accuracy of

an Automatic Vehicle Identification (AVI) system is a bit complex and it depends on

 68

the application that is applied, operating conditions and assumptions that is made

during testing process.

 An AVI system performance is difficult to quantify. It is encouraging to

expect a system or a machine to be perfect and also it is encouraging to assume 100

percent accuracy in identifying license plates. On the other hand, some plates

couldn’t be read at all by a eye, human being, or by a machine system owing to

damage, dirtiness of plate or obscuration. Therefore, an automatic system for vehicle

identification shouldn’t be expected to achieve perfect performance, even under ideal

conditions such as weather, illumination, etc.

 One of the methods to measure the reliability and success of license plate

recognition system is as the percentage of license plates correctly identified by the

system that may then be verified by a person observing the raw video signal on a

monitor. If a person estimates the vehicle with its license plate from a poor video

image, it is probable that the system can also produce a lower-confidence result.

However, by looking at clear video image, the person is less likely to make mistake.

And, an automated machine or system will also return to a higher degree of accuracy

in a similar way.

 An automated system can only identify or recognize the alphanumeric content

of license plate after the system is well-arranged, meaning that the plate of the

vehicle is in the field of view.

 It is important to note that the overall accuracy of an automated system

cannot be estimated directly from its individual characters accuracies. For instance, if

we have a system that recognizes and identifies 10000 license plates with seven

characters on each plate, 70000 characters totally. And, assuming that the system

reads the six characters correctly on each plate, on the other hand, the system makes

a mistake that one character is not recognized correctly on each plate. In other words,

the system misses a character. From this point of view, one might be inclined to state

the overall recognition as, 6 characters on each plate times totally 10000 license

plates giving the 60000 plate characters to be recognized correctly. It can be

formulized as;

 69

6 characters x 10000 license plates = 60000 (recognized-characters)

 And the overall accuracy of the system is expressed the ratio of recognized-

characters to total number license plates. As a percentage, this can be formulized as;

Accuracy = (total number of recognized-characters / total number of plates) x 100%

For this example, the overall accuracy is;

Overall accuracy = (60000 / 70000) x 100 % = 85.71 %

 However, true accuracy of the system in the example above is not 85.71

percent. Because, there isn’t any correct plate recognition. All plate recognitions fail

due to missing one character on each plate. Therefore, the true accuracy of the

system in the example is zero.

 Because of this, the overall system performance or accuracy must be

corrected. So, the true overall system accuracy can be expressed as a formula given

below;

%100)
T

A
()A(Accuracy i

i

×=
�

 (5.1)

where iA is the recognition rate for each plate

 T is the total number of license plates

and

)C.....CCC(A n321i ××××= (5.2)

 70

where nC is the rate of successful interpretation of nth character and nC takes only

one or zero values:

 �=1Cn for true recognition

 �=0Cn for false recognition.

 This approach is the best recognition rate. On the other hand, this formulation

or calculation shows only the performance of recognition part of a license plate

recognition system. But, the system consists of three main parts: Extraction of plate

region, segmentation of plate characters and recognition of characters. Therefore, the

accuracies of all these parts of the system must be considered and all accuracies must

be taken into consideration.

 To find the overall performance of the system, it is important to determine the

all accuracy rates for all parts of the system. So, the overall system performance can

be defined as the product of all parts accuracy rates: Accuracy rate for extraction of

plate region part, accuracy rate for segmentation of plate characters part and accuracy

rate for recognition of characters part [46].

 This definition or calculations can be formulized as given below;

Recognition Rate of LPR System = ∏ (A1 x A2 x A3)

 = ∏(Percentages of Accuracies)

 (5.3)

where,

 A1 = recognition rate for extraction part

 A2 = recognition rate for segmentation part

 A3 = recognition rate for recognition part

 For performance calculation, it is important to note that the system should be

defined clearly and precisely and also the conditions must be explained clearly under

which the system achieved the stated accuracy rate.

 71

 In this study, the system is tested over a large number of vehicle images and

the overall performance of the system is calculated considering all parts of the

system.

5.2 Test Results

As stated before, the captured images are taken from 4-5 meters away from

the vehicles and the images are taken on the different time periods of the day with

different light conditions. And fixed images-motionless video images- are used. As a

summary, experiments have been performed to test the proposed system and to

measure the accuracy of the system.

 For the test, 340 different images for 340 different vehicles are used. For all

input images, the system algorithms are applied and all the outputs of parts of the

system are observed.

The results of the tests can be seen in Table 5.1.

Table 5.1: Results of the tests

UNITS OF LPR

SYSTEM

NUMBER OF

ACCURACY

PERCENTAGE OF

ACCURACY

Extraction of Plate

Region
332 / 340 97.65 %

Segmentation of Plate

Characters
327 / 340 96.18 %

Recognition of Plate

Characters
336 / 340 98.82 %

 72

 To observe the performance of the extraction of plate region part, the input

images are processed with the algorithm and it was found that the exact location for

vehicle plates are obtained successfully in 332 vehicle images. And in 8 vehicle

images, the exact locations are not uniquely found. One failure for a test image can

be shown in Figures 5.1, 5.2 and 5.3.

Figure 5.1: Input image for the test

Figure 5.2: The output of extraction part

where more than one candidate region exist

 73

Figure 5.3: The images showing the wrong

region labeled after extraction

If these images are examined, it is seen that there are three candidate regions

for plate location, not one. As mentioned in chapter 4, if there exists such a situation,

some criteria tests are applied to the image. These tests are applied to the image. But,

unfortunately the exact place of license plate couldn’t be found.

 After observing the extraction part, next step is to find the correctness of

segmentation part of the system. It is clearly seen that the least accuracy rate or

success is this part in this system. 327 of 340 input images are correctly segmented,

and 13 images are not segmented correctly. The main failure occurs in the point that

Turkish license plates have the international TR label on left side of the plate. In

some plates this label is very close to the first character in the plate, so the

segmentation cannot be fully achieved. The first character and the TR label are

sensed as one character on a plate. An example of this situation can be observed in

Figure 5.4, Figure 5.5 and Figure 5.6.

 74

Figure 5.4 : A sample binarized image

Figure 5.5 : Output image after extraction

Figure 5.6: The plate image after segmentation process

 It is seen from Figure 5.6, the first character 2 and the label TR is inseparable

from each other. So, there is a segmentation failure here.

Similar failure may occur if the plate characters are written very close to each

other. Also, the same failure may arise when the characters are written in bold-style.

These situations may result such an effect.

 75

And if the plates contain some dirt or spots on it, these undesired effects may

cause some difficulties for separating the characters correctly. Therefore, these

undesired noises must be filtered using effective filters.

Finally, the performance of the character recognition is to be searched.

According to the values given in Table 5.1, the biggest accuracy rate is for

recognition part, approximately 98.8 %. The character recognition algorithm depends

on the correlations between the plate characters and the template characters. The best

similarity between the input image and templates can be interpreted as true

recognition.

This approach is very useful in many conditions. However, there are some

failures or wrong recognition during this template matching algorithm. Because of

the similarities for some characters, the recognition may fail. This undesired situation

appears when the proposed recognition algorithm is tested. In other words, some

characters may be confused during recognition part because of the similarities of

some characters. The confused characters mainly are B and 8, Z and 7, D and 0, S

and 5, Z and 2. To increase the recognition rate, some criteria tests are used in the

system for the confused characters defining the special features of the characters.

With the help of these unique properties of characters and applied tests during

recognition algorithm, recognition rate is increased with the minimum error.

 An example of such a failure can be shown for the letter B and the numeral 8.

Let’s assume that one of the characters in a license plate is B. And, also assume that,

the system recognizes this character as a numeric character 8 instead of letter B

(recognition failure). If these characters are examined in details, the unique

properties can be revealed. To see the differences between the two characters, the

template characters for the letter B the numeral 8 are shown in Figure 5.7.

 76

Figure 5.7: Sample templates for confusion of characters

For example, the letter B has only black pixels in first column of its matrix

representation. However, the numeric character 8 hasn’t. This is the difference on

letter B with respect to numeral 8. This unique property can be used to detect the

letter B from the numeral 8. If the system recognizes one of two characters as a true

recognition, a checking algorithm is applied to the input character whether this is true

or not. And, this property is used as a checking criterion.

During the tests of the system, “B”, “A”, “D”, “S”, and “Z” are confused with

“8”, “4”, “0”, “5” and “7” respectively.

Also, these confusions are more likely to be solved because one of the

characters is a letter while the other one is a numeral. In considering the Turkish

license plates, the numerals can be used at the beginning of the license plates or at

the end of the license plates. Therefore, by checking the place of the characters, these

confusions can be solved. For example, first two characters and last two characters

must be a numeral or third character must be a letter. If these are thought as checking

criteria, some confusion may be eliminated.

 In this study, the plates are assumed parallel to the ground. This is because

the camera that captures vehicle images is fixed at a point. So, there is no such an

image that is not parallel to the ground. But, if an image exists that the captured

image is not parallel to the ground, some additional image processing algorithms can

 77

be applied to the image to make the image parallel to the ground. A solution for this

situation can be an algorithm that uses the Hough transform. An approach for this

situation is explained in Appendix B.

 As a summary, from the tests results seen in Table 5.1, the overall

performance of the automatic vehicle identification system can be stated as the

product of all recognition rates in each step, extraction of plate region, segmentation

of plate characters and recognition of plate characters.

Recognition Rate of LPR System = ∏(Percentages of Accuracies)

=[(recognition rate for extraction part) x (recognition rate for segmentation part) x

 (recognition rate for recognition part)]

Recognition Rate = 97.65 % x 96.18 % x 98.82 %

Recognition Rate = 92.80 %

 If the recognition rate is thought as a ratio of the value at which the true

recognition occurs to the total number of test images, the overall system performance

becomes as;

Recognition Rate

 = (total number of true recognized-images / total number of input images) x 100 %

 So, the overall system performance is;

Recognition Rate = (321 / 340) x 100 % = 94.41 %

 This value can be seen that it is bigger rate for the value presented before.

However, as stated earlier, true performance of overall system depends on the all

 78

system units. Therefore, they must be appreciated independently. And overall system

performance can be found as the product of all parts accuracies.

 The failure of the system can be also defined as the error for each part of the

system. And the error is defined as the ratio of the total number of faulty (wrong)

output images to the total number of input images after each step. Therefore,

Error for extraction part = 8 / 340 x 100% = 2.35 %

Error for segmentation part = 13 / 340 x 100% = 3.82 %

Error for recognition part = 4 / 340 x 100% = 1.18 %

 79

CONCLUSIONS

 In this thesis, we presented a new algorithm for Automatic Vehicle

Identification. Identification is made using the vehicle’s license plates. A system

identifies the vehicle by recognizing the license plate automatically. And the system

is designed for Turkish license plates.

 Input of the system is the image of a vehicle captured by a camera. The

captured image taken from 4-5 meters away is processed through the license plate

extractor with giving its output to segmentation part. Segmentation part separates the

characters individually. And finally recognition part recognizes the characters giving

the result as the plate number.

 For observing the performance of the system, 340 vehicle images are used

which are taken with a digital camera at the car parks of Gaziantep University. The

images are taken on different time periods of the day and also these test images were

taken under various illumination conditions. The system is tested over a large

number of images. Finally it is proved to be %97.65 for the extraction of plate

region, %96.18 for the segmentation of the characters and %98.82 for the recognition

unit accurate, giving the overall system performance %92.80 recognition rates. If the

recognition rate is thought as a ratio of the value at which the true recognition occurs

to the total number of test images, the overall system performance becomes as 94.41

percent. On the other hand, as mentioned earlier, true performance of overall system

depends on the all system units. Therefore, they must be appreciated independently.

And overall system performance can be found as the product of all parts accuracies.

 Considering the extraction of plate region, the failure appears when there is

more than one candidate region for plate location. This can be eliminated using some

checking algorithms that are sensitive to the special properties of plate location. This

operation makes the failure to the minimum.

 80

During the segmentation part of the algorithm, the main failure can occur to

segment or separate the first character in a plate. Since Turkish license plates have

the international TR label on left side of the plate and this label may be very close to

the first character in some plates, so the segmentation cannot be fully achieved. The

first character and the TR label are sensed as one character on a plate. To solve such

a failure, the plate image is dilated using morphological dilation operation. This is

effective to isolate the characters from each other. And similar failure may be

encountered when the characters are close to each other or characters are written in

bold style. In segmentation, there may be some difficulties for separating the

characters if the plates contain some dirt or spots on it, these undesired effects can be

eliminated with filtering the plate image. Averaging filtering or low-pass filtering

can be used for this noise suppression conditions.

The confusions between some characters are the most encountered problems

of the character recognition algorithm. This is because of the similarities between

some characters. The most recognition failures are between the “B” and “8”, “A” and

“4”, “D” and “0”, “S” and “5”, and “Z” and “7”.

In order to moderate the errors or confusions, some criteria tests are used in

the system for the confused characters defining the special features of the characters.

With the help of these unique properties of characters and the checking algorithms

giving the answer of true recognition, recognition rate is increased with the minimum

error.

The shadow on the plate is another factor that reduces the recognition rate. If

the plate is placed in a deeper way to the car, the sunlight may cause the shadow to

appear on the plate. To use a camera that is sensitive to the illumination conditions

and adaptive for these changes or to use a light source with the camera can minimize

the effect of shade.

 The proposed algorithm in this thesis works well on the vehicle images whose

plates are clear enough to extract the characters and identify the vehicle

automatically. And the recognition rate is good for the purpose.

 81

 During the efforts in studying this system, we have seen that the processing

for identification takes a bit long time. The identification time can be reduced in

future works. The other future work is to improve the recognition rate. Some

different algorithms can be tried and the overall performance can be increased.

 When dealing with recognition of Turkish license plates, it is thought that this

system can be applied for other international plates. The first thing is to try to

redesign the system for identification of multinational car license plates in future

studies.

 82

APPENDIX A

FLOW DIAGRAM OF THE ALGORITHM

 83

Figure A.1: Flow diagram of the algorithm

 84

APPENDIX B

SKEW CORRECTION USING HOUGH TRANSFORM

 In some situations, the vehicle images cannot be parallel to the ground. In

other words, the license plate that is desired to recognize can be inclined. This

situation is not appropriate for identification. Because, this can produce a failure

during the recognition process of plate characters with template matching algorithm.

Template matching algorithm uses the templates for comparing with the input and

the templates are formed as parallel to the ground. If the characters are skew, the

recognition process can give a wrong result.

 To overcome this situation, Hough transform can be used. As mentioned

earlier in chapter 3, Hough transform can be used to detect the lines in an image.

And, if the lines are not parallel to the ground, this can be understood using this

algorithm. An example of such a vehicle image is shown in Figure B.1. Also, the

image after binarization process can be seen in Figure B.2 to see the inclination of

the plate.

Figure B.1: A sample image for skew correction

 85

Figure B.2: The binarized image

 If the lines are found firstly, and then the angle of the lines with respect to the

ground is estimated, the image can be rotated in counter direction with this angle

value. Namely, this operation normalizes the vehicle image with making it parallel to

the ground.

 To do this, an edge detection algorithm can be applied to the image to

determine the lines. For doing it, Matlab “edge” function can be used. Edge function

finds edges in intensity image. Edge function takes a binary image as its input, and

returns a binary image of the same size as the input image, with 1's where the

function finds edges in I and 0's elsewhere. The result of this application for the

sample image given in Figure B.1 can be shown in Figure B.3.

 86

Figure B.3: Processed image after edge function

After that, dilation operation is done to make the lines or edges more visible. The

result of it is in Figure B.4 below.

Figure B.4: The image after dilation operation

Now, an algorithm for detecting the lines and finding the angles of lines is

used. For the purpose, an algorithm based on Hough transform is as follows;

% This function detects lines in a binary image using common computer vision

 87

% operation known as the Hough Transform.

% Function uses Standard Hough Transform to detect Lines in a binary image.

% Arguments:

% Imbinary - a binary image. image pixels that have value equal to 1 are

% interested pixels for HOUGHLINE function.

% pstep - interval for radius of lines in polar coordinates.

% tetastep - interval for angle of lines in polar coordinates.

% thresh - a threshold value that determines the minimum number of pixels that

% belong to a line in image space.

% Returns:

% pdetect - a vactor that contains radius of detected lines in polar coordinates

% system.

% tetadetect - a vector that contains angle of detected lines in polar coordinates

% system.

function[pdetect,tetadetect,] = houghline(Imbinary,pstep,tetastep,thresh)

p = 1:pstep:sqrt((size(Imbinary,1))^2+(size(Imbinary,2))^2);

teta = 0:tetastep:180-tetastep;

Accumulator = zeros(length(p),length(teta));

[yIndex xIndex] = find(Imbinary);

for cnt = 1:size(xIndex)

 Indteta = 0;

 for tetai = teta*pi/180

 Indteta = Indteta+1;

 roi = xIndex(cnt)*cos(tetai)+yIndex(cnt)*sin(tetai);

 if roi >= 1 & roi <= p(end)

 temp = abs(roi-p);

 mintemp = min(temp);

 Indp = find(temp == mintemp);

 Indp = Indp(1);

 Accumulator(Indp,Indteta) = Accumulator(Indp,Indteta)+1;

 end

 88

 end

end

AccumulatorbinaryMax = imregionalmax(Accumulator);

[Potential_p Potential_teta] = find(AccumulatorbinaryMax == 1);

Accumulatortemp = Accumulator - thresh;

pdetect = [];tetadetect = [];

for cnt = 1:length(Potential_p)

 if Accumulatortemp(Potential_p(cnt),Potential_teta(cnt)) >= 0

 pdetect = [pdetect;Potential_p(cnt)];

 tetadetect = [tetadetect;Potential_teta(cnt)];

 end

end

% Calculation of detected lines parameters(Radius & Angle).

pdetect = pdetect * pstep;

tetadetect = tetadetect *tetastep - tetastep;

 This function is written in Matlab. And it is useful for skew correction. If the

angle value of the lines can be found, then the image can be rotated to normalize the

image in opposite direction. This rotation operation can be made using Matlab

“imrotate” function.

 89

APPENDIX C

FUNCTION DESCRIPTIONS

This part provides detailed descriptions of the functions that are used in this

thesis. These are the Matlab functions in the Image Processing Toolbox. It begins

with a list of functions grouped by subject area and continues with the detailed

explanations of the functions in alphabetical order.

Image File I/O

• imread : Read image file

• imwrite : Write image file

Geometric Operations

• imcrop : Crop image

• imresize : Resize image

• imrotate : Rotate image

Pixel Values and Statistics

• corr2 : Compute 2-D correlation coefficient

 90

• imhist : Display histogram of image data

Image Analysis

• edge : Find edges in intensity image

Image Enhancement

• histeq : Enhance contrast using histogram equalization

• imadjust : Adjust image intensity values

Linear Filtering

• filter2 : Perform 2-D filtering

• fspecial : Create predefined filters

Binary Image Operations

• dilate : Perform dilation on binary image

• erode : Perform erosion on binary image

Image Types and Type Conversions

• im2bw : Convert image to binary image by thresholding

• rgb2gray : Convert RGB image or colormap to grayscale

 91

CORR2

Purpose:

Compute the two-dimensional correlation coefficient between two matrices

Syntax:

r = corr2(A,B)

Description:

r = corr2(A,B) computes the correlation coefficient between A and B, where A and B

are matrices or vectors of the same size.

Class Support:

A and B can be of class double or of any integer class. r is a scalar of class double.

Algorithm:

corr2 computes the correlation coefficient using

�
�
�

�

�
�
�

�
−�

�

�
�
�

�
−

−−
=

−−

−−

����

��

2
mn

m nm n

2
mn

m n
mnmn

)BB()AA(

)BB)(AA(
r (C.1)

where)A(2meanA=
−

 , and)B(2meanB=
−

DILATE

Purpose:

Perform dilation on a binary image

 92

Syntax:

BW2 = dilate(BW1,SE)

BW2 = dilate(BW1,SE,alg)

BW2 = dilate(BW1,SE,...,n)

Description:

BW2 = dilate(BW1,SE) performs dilation on the binary image

BW1, using the binary structuring element SE. SE is a matrix containing only 1’s

and 0’s.

BW2 = dilate(BW1,SE,alg) performs dilation using the specified algorithm. alg is a

string that can have one of these values:

 •'spatial' (default) – processes the image in the spatial domain.

 •'frequency' – processes the image in the frequency domain.

Both algorithms produce the same result, but they make different tradeoffs between

speed and memory use. The frequency algorithm is faster for large images and

structuring elements than the spatial algorithm, but uses much more memory.

 BW2 = dilate(BW1,SE,...,n) performs the dilation operation n times.

Class Support:

The input image BW1 can be of class double or uint8. The output image BW2 is of

class uint8.

Remarks:

You should use the frequency algorithm only if you have a large amount of memory

on your system. If you use this algorithm with insufficient memory, it may actually

be slower than the spatial algorithm, due to virtual memory paging. If the frequency

algorithm slows down your system excessively, or if you receive “out of

memory” messages, use the spatial algorithm instead.

EDGE

Purpose:

Find edges in an intensity image

 93

Syntax:

BW = edge(I,'sobel')

BW = edge(I,'sobel',thresh)

BW = edge(I,'sobel',thresh,direction)

[BW,thresh] = edge(I,'sobel',...)

BW = edge(I,'prewitt')

BW = edge(I,'prewitt',thresh)

BW = edge(I,'prewitt',thresh,direction)

[BW,thresh] = edge(I,'prewitt',...)

BW = edge(I,'roberts')

BW = edge(I,'roberts',thresh)

[BW,thresh] = edge(I,'roberts',...)

BW = edge(I,'log')

BW = edge(I,'log',thresh)

BW = edge(I,'log',thresh,sigma)

[BW,threshold] = edge(I,'log',...)

BW = edge(I,'zerocross',thresh,h)

[BW,thresh] = edge(I,'zerocross',...)

BW = edge(I,'canny')

BW = edge(I,'canny',thresh)

BW = edge(I,'canny',thresh,sigma)

[BW,threshold] = edge(I,'canny',...)

Description:

edge takes an intensity image I as its input, and returns a binary image BW of the

same size as I, with 1’s where the function finds edges in I and 0’s elsewhere.

edge supports six different edge-finding methods:

 94

•The Sobel method finds edges using the Sobel approximation to the derivative. It

returns edges at those points where the gradient of I is maximum.

•The Prewitt method finds edges using the Prewitt approximation to the derivative. It

returns edges at those points where the gradient of I is maximum.

•The Roberts method finds edges using the Roberts approximation to the derivative.

It returns edges at those points where the gradient of I is maximum.

•The Laplacian of Gaussian method finds edges by looking for zero crossings after

filtering I with a Laplacian of Gaussian filter.

•The zero-cross method finds edges by looking for zero crossings after filtering I

with a filter you specify.

•The Canny method finds edges by looking for local maxima of the gradient of I. The

gradient is calculated using the derivative of a Gaussian filter. The method uses two

thresholds, to detect strong and weak edges, and includes the weak edges in the

output only if they are connected to strong edges. This method is therefore less

likely than the others to be “fooled” by noise, and more likely to detect true weak

edges.

The parameters you can supply differ depending on the method you specify. If you

do not specify a method, edge uses the Sobel method.

Class Support:

I can be of class uint8, uint16, or double. BW is of class uint8.

Remarks:

For the 'log' and ‘zerocross' methods, if you specify a threshold of 0, the output

image has closed contours, because it includes all of the zero crossings in the input

image.

ERODE

Purpose:

Perform erosion on a binary image

 95

Syntax:

BW2 = erode(BW1,SE)

BW2 = erode(BW1,SE,alg)

BW2 = erode(BW1,SE,...,n)

Description:

BW2 = erode(BW1,SE) performs erosion on the binary image

BW1, using the binary structuring element SE. SE is a matrix containing only 1’s

and 0’s.

BW2 = erode(BW1,SE,alg) performs erosion using the specified algorithm. alg is a

string that can have one of these values:

•'spatial' (default) – processes the image in the spatial domain.

•'frequency' – processes the image in the frequency domain.

Both algorithms produce the same result, but they make different tradeoffs between

speed and memory use. The frequency algorithm is faster for large images and

structuring elements than the spatial algorithm, but uses much more memory.

BW2 = erode(BW1,SE,...,n) performs the erosion operation n times.

Class Support:

The input image BW1 can be of class double or uint8. The output image BW2 is of

class uint8.

Remarks:

You should use the frequency algorithm only if you have a large amount of memory

on your system. If you use this algorithm with insufficient memory, it may actually

be slower than the spatial algorithm, due to virtual memory paging. If the frequency

algorithm slows down your system excessively, or if you receive “out of memory”

messages, use the spatial algorithm instead.

 96

FILTER2

Purpose:

Perform two-dimensional linear filtering

Syntax:

B = filter2(h,A)

B = filter2(h,A,shape)

Description:

B = filter2(h,A) filters the data in A with the two-dimensional FIR filter in the matrix

h. It computes the result, B, using two dimensional correlation, and returns the

central part of the correlation that is the same size as A.

B = filter2(h,A,shape) returns the part of B specified by the shape parameter. shape is

a string with one of these values:

•'full' returns the full two-dimensional correlation. In this case, B is larger than A.

•'same' (the default) returns the central part of the correlation. In this case, B is the

same size as A.

•'valid' returns only those parts of the correlation that are computed without zero-

padded edges. In this case, B is smaller than A.

Class Support:

The matrix inputs to filter2 can be of class double or of any integer class. The output

matrix B is of class double.

Remarks:

Two-dimensional correlation is equivalent to two-dimensional convolution with the

filter matrix rotated 180 degrees.

FSPECIAL

Purpose:

Create predefined filters

 97

Syntax:

h = fspecial(type)

h = fspecial(type,parameters)

Description:

h = fspecial(type) creates a two-dimensional filter h of the specified type. (fspecial

returns h as a computational molecule, which is the appropriate form to use with

filter2.) type is a string having one of these values:

•'gaussian' for a Gaussian lowpass filter

•'sobel' for a Sobel horizontal edge-emphasizing filter

•'prewitt' for a Prewitt horizontal edge-emphasizing filter

•'laplacian' for a filter approximating the two-dimensional Laplacian operator

•'log' for a Laplacian of Gaussian filter

•'average' for an averaging filter

•'unsharp' for an unsharp contrast enhancement filter

Depending on type, fspecial may take additional parameters which you can supply.

These parameters all have default values.

h = fspecial('gaussian',n,sigma) returns a rotationally symmetric Gaussian lowpass

filter with standard deviation sigma (in pixels). n is a 1-by-2 vector specifying the

number of rows and columns in h. (n can also be a scalar, in which case h is n-by-n.)

If you do not specify the parameters, fspecial uses the default values of [3 3] for n

and 0.5 for sigma.

h = fspecial('sobel') returns this 3-by-3 horizontal edge-finding and y-derivative

approximation filter:

 [1 2 1

 0 0 0

 –1 –2 –1]

To find vertical edges, or for x-derivatives, use –h'.

 98

h = fspecial('prewitt') returns this 3-by-3 horizontal edge-finding and y-derivative

approximation filter:

 [1 1 1

 0 0 0

 –1 –1 –1]

To find vertical edges, or for x-derivatives, use –h'.

h = fspecial('laplacian',alpha) returns a 3-by-3 filter approximating the two-

dimensional Laplacian operator. The parameter alpha controls the shape of the

Laplacian and must be in the range 0 to 1.0. fspecial uses the default value of 0.2 if

you do not specify alpha.

h = fspecial('log',n,sigma) returns a rotationally symmetric Laplacian of Gaussian

filter with standard deviation sigma (in pixels). n is a 1-by-2 vector specifying the

number of rows and columns in h. (n can also be a scalar, in which case h is n-by-n.)

If you do not specify the parameters, fspecial uses the default values of [5 5] for n

and 0.5 for sigma.

h = fspecial('average',n) returns an averaging filter. n is a 1-by-2 vector specifying

the number of rows and columns in h. (n can also be a scalar, in which case h is n-by-

n.) If you do not specify n, fspecial uses the default value of [3 3].

h = fspecial('unsharp',alpha) returns a 3-by-3 unsharp contrast enhancement filter.

fspecial creates the unsharp filter from the negative of the Laplacian filter with

parameter alpha. alpha controls the shape of the Laplacian and must be in the range 0

to 1.0 fspecial uses the default value of 0.2 if you do not specify alpha.

HISTEQ

Purpose:

Enhance contrast using histogram equalization

 99

Syntax:

J = histeq(I,hgram)

J = histeq(I,n)

[J,T] = histeq(I,...)

newmap = histeq(X,map,hgram)

newmap = histeq(X,map)

[newmap,T] = histeq(X,...)

Description:

histeq enhances the contrast of images by transforming the values in an intensity

image, or the values in the colormap of an indexed image, so that the histogram of

the output image approximately matches a specified histogram.

J = histeq(I,hgram) transforms the intensity image I so that the histogram of the

output intensity image J with length(hgram) bins approximately matches hgram. The

vector hgram should contain integer counts for equally spaced bins with intensity

values from 0 to 1.0. histeq automatically scales hgram so that sum(hgram) =

prod(size(I)). The histogram of J will better match hgram when length(hgram) is

much smaller than the number of discrete levels in I.

J = histeq(I,n) transforms the intensity image I, returning in J an intensity image with

n discrete gray levels. A roughly equal number of pixels is mapped to each of the n

levels in J, so that the histogram of J is approximately flat. (The histogram of J is

flatter when n is much smaller than the number of discrete levels in I.) The default

value for n is 64.

[J,T] = histeq(I,...) returns the gray scale transformation that maps gray levels in the

intensity image I to gray levels in J.

newmap = histeq(X,map,hgram) transforms the colormap associated with the

indexed image X so that the histogram of the gray component of the indexed image

(X,newmap) approximately matches hgram. histeq returns the transformed colormap

in newmap. length(hgram) must be the same as size(map,1).

 100

newmap = histeq(X,map) transforms the values in the colormap so that the histogram

of the gray component of the indexed image X is approximately flat. It returns the

transformed colormap in newmap.

[newmap,T] = histeq(X,...) returns the grayscale transformation T that maps the gray

component of map to the gray component of newmap.

Class Support:

For syntaxes that include an intensity image I as input, I can be of class uint8,

uint16, or double, and the output image J has the same class as I. For syntaxes that

include an indexed image X as input, X can be of class uint8 or double; the output

colormap is always of class double. Also, the optional output T (the gray level

transform) is always of class double.

IM2BW

Purpose:

Convert an image to a binary image, based on threshold

Syntax:

BW = im2bw(I,level)

BW = im2bw(X,map,level)

BW = im2bw(RGB,level)

Description:

im2bw produces binary images from indexed, intensity, or RGB images. To do this,

it converts the input image to grayscale format (if it is not already an intensity

image), and then converts this grayscale image to binary by thresholding. The output

binary image BW has values of 0 (black) for all pixels in the input image with

luminance less than level and 1 (white) for all other pixels. (Note that you specify

level in the range [0,1], regardless of the class of the input image.)

BW = im2bw(I,level) converts the intensity image I to black and white.

 101

BW = im2bw(X,map,level) converts the indexed image X with colormap map to

black and white.

BW = im2bw(RGB,level) converts the RGB image RGB to black and white.

Class Support:

The input image can be of class uint8, uint16, or double. The output image BW is of

class uint8.

IMADJUST

Purpose:

Adjust image intensity values or colormap

Syntax:

J = imadjust(I,[low high],[bottom top],gamma)

newmap = imadjust(map,[low high],[bottom top],gamma)

RGB2 = imadjust(RGB1,...)

Description:

J = imadjust(I,[low high],[bottom top],gamma) transforms the values in the intensity

image I to values in J by mapping values between low and high to values between

bottom and top. Values below low and above high are clipped; that is, values below

low map to bottom, and those above high map to top. You can use an empty matrix

([]) for [low high] or for [bottom top] to specify the default of [0 1]. gamma specifies

the shape of the curve describing the relationship between the values in I and J. If

gamma is less than 1, the mapping is weighted toward higher (brighter) output

values. If gamma is greater than 1, the mapping is weighted toward lower (darker)

output values. If you omit the rgument, gamma defaults to 1 (linear mapping).

newmap = imadjust(map,[low high],[bottom top],gamma) ransforms the colormap

associated with an indexed image. If [low high] and [bottom top] are both 2-by-3,

 102

and gamma is a 1- by-3 vector, imadjust rescales the red, green, and blue components

separately. The rescaled colormap, newmap, is the same size as map.

RGB2 = imadjust(RGB1,...) performs the adjustment on each image plane (red,

green, and blue) of the RGB image RGB1. As with the colormap adjustment, you can

use different parameter values for each plane by specifying [low high] and [bottom

top] as 2-by-3 matrices, and gamma as a 1-by-3 vector.

Class Support:

For syntax that include an input image (rather than a colormap), the image can be of

class uint8, uint16, or double. The output image is of the same class as the input

image. For syntax that include a colormap, the input and output colormaps are of

class double.

Remarks:

If top < bottom, the output image is reversed (i.e., as in a negative).

IMCROP

Purpose:

Crop an image

Syntax:

I2 = imcrop(I)

X2 = imcrop(X,map)

RGB2 = imcrop(RGB)

I2 = imcrop(I,rect)

X2 = imcrop(X,map,rect)

RGB2 = imcrop(RGB,rect)

[...] = imcrop(x,y,...)

[A,rect] = imcrop(...)

[x,y,A,rect] = imcrop(...)

 103

Description:

imcrop crops an image to a specified rectangle. In the syntaxes below, imcrop

displays the input image and waits for you to specify the crop rectangle with the

mouse.

I2 = imcrop(I)

X2 = imcrop(X,map)

RGB2 = imcrop(RGB)

If you omit the input arguments, imcrop operates on the image in the current axes.

To specify the rectangle:

•For a single-button mouse, press the mouse button and drag to define the crop

rectangle. Finish by releasing the mouse button.

•For a 2- or 3-button mouse, press the left mouse button and drag to define the crop

rectangle. Finish by releasing the mouse button.

If you hold down the Shift key while dragging, or if you press the right mouse button

on a 2- or 3-button mouse, imcrop constrains the bounding rectangle to be a square.

When you release the mouse button, imcrop returns the cropped image in the

supplied output argument. If you do not supply an output argument, imcrop displays

the output image in a new figure.

Class Support:

The input image A can be of class uint8, uint16, or double. The output image B is of

the same class as A. rect is always of class double.

Remarks:

Because rect is specified in terms of spatial coordinates, the width and height

elements of rect do not always correspond exactly with the size of the output image.

For example, suppose rect is [20 20 40 30], using the default spatial coordinate

system. The upper-left corner of the specified rectangle is the center of the pixel

(20,20) and the lower-right corner is the center of the pixel (50,60). The resulting

output image is 31-by-41, not 30-by-40, because the output image includes all pixels

in the input image that are completely or partially enclosed by the rectangle.

 104

IMHIST

Purpose:

Display a histogram of image data

Syntax:

imhist(I,n)

imhist(X,map)

[counts,x] = imhist(...)

Description:

imhist(I,n) displays a histogram with n bins for the intensity image I above a

grayscale colorbar of length n. If you omit the argument, imhist uses a default value

of n = 256 if I is a grayscale image, or n = 2 if I is a binary image.

imhist(X,map) displays a histogram for the indexed image X. This histogram shows

the distribution of pixel values above a colorbar of the colormap map. The colormap

must be at least as long as the largest index in X. The histogram has one bin for each

entry in the colormap.

[counts,x] = imhist(...) returns the histogram counts in counts and the bin locations in

x so that stem(x,counts) shows the histogram. For indexed images, it returns the

histogram counts for each colormap entry; the length of counts is the same as the

length of the colormap.

Class Support:

The input image can be of class uint8, uint16, or double.

IMREAD

Purpose:

Read images from graphics files

 105

Syntax:

A = imread(filename,fmt)

[X,map] = imread(filename,fmt)

[...] = imread(filename)

[...] = imread(...,idx) (TIFF only)

[...] = imread(...,ref) (HDF only)

[...] = imread(...,’BackgroundColor’,BG) (PNG only)

[A,map,alpha] = imread(...) (PNG only)

Description:

A = imread(filename,fmt) reads a grayscale or truecolor image named filename into

A. If the file contains a grayscale intensity image, A is a two-dimensional array. If

the file contains a truecolor (RGB) image, A is a three-dimensional (m-by-n-by-3)

array.

[X,map] = imread(filename,fmt) reads the indexed image in filename into X and its

associated colormap into map. The colormap values are rescaled to the range [0,1]. A

and map are two-dimensional arrays.

[...] = imread(filename) attempts to infer the format of the file from its content.

filename is a string that specifies the name of the graphics file, and fmt is a string

that specifies the format of the file. If the file is not in the current directory or in a

directory in the MATLAB path, specify the full pathname for a location on your

system. If imread cannot find a file named filename, it looks for a file named

filename.fmt. If you do not specify a string for fmt, the toolbox will try to discern the

format of the file by checking the file header.

Imread can read BMP, HDF, JPEG, PCX, PNG, TIFF and XVD.

Class Support:

In most of the image file formats supported by imread, pixels are stored using eight

or fewer bits per color plane. When reading such a file, the class of the output (A or

X) is uint8. imread also supports reading 16-bit-per-pixel data from TIFF and PNG

files; for such image files, the class of the output (A or X) is uint16. Note that for

 106

indexed images, imread always reads the colormap Into an array of class double,

even though the image array itself may be of class uint8 or uint16.

IMRESIZE

Purpose:

Resize an image

Syntax:

B = imresize(A,m,method)

B = imresize(A,[mrows ncols],method)

B = imresize(...,method,n)

B = imresize(...,method,h)

Description:

imresize resizes an image of any type using the specified Interpolation method.

method is a string that can have one of these values:

•'nearest' (default) uses nearest neighbor interpolation.

•'bilinear' uses bilinear interpolation.

•'bicubic' uses bicubic interpolation.

 If you omit the method argument, imresize uses the default method of 'nearest'.

Class Support:

The input image can be of class uint8, uint16, or double. The output image is of the

same class as the input image.

IMROTATE

Purpose:

Rotate an image

 107

Syntax:

B = imrotate(A,angle,method)

B = imrotate(A,angle,method,'crop')

Description:

B = imrotate(A,angle,method) rotates the image A by angle degrees in a counter-

clockwise direction, using the specified interpolation method. Method is a string that

can have one of these values:

•'nearest' (default) uses nearest neighbor interpolation.

•'bilinear' uses bilinear interpolation.

•'bicubic' uses bicubic interpolation.

If you omit the method argument, imrotate uses the default method of 'nearest'.

The returned image matrix B is, in general, larger than A to include the whole rotated

image. imrotate sets invalid values on the periphery of B to 0.

B = imrotate(A,angle,method,'crop') rotates the image A through angle degrees and

returns the central portion which is the same size as A.

Class Support:

The input image can be of class uint8, uint16, or double. The output image is of the

same class as the input image.

Remarks:

To rotate the image clockwise, specify a negative angle.

IMWRITE

Purpose:

Write an image to a graphics file

Syntax:

imwrite(A,filename,fmt)

imwrite(X,map,filename,fmt)

 108

imwrite(...,filename)

imwrite(...,Param1,Val1,Param2,Val2...)

Description:

imwrite(A,filename,fmt) writes the image in A to filename. A can be either a

grayscale image (M-by-N) or a truecolor image (M-by-N-by-3). If A is of class uint8

or uint16, imwrite writes the actual values in the array to the file. If A is of class

double, imwrite rescales the values in the array before writing, using

uint8(round(255*A)). This operation converts the floating-point numbers in the

range [0,1] to 8-bit integers in the range [0,255].

imwrite(X,map,filename,fmt) writes the indexed image in X and its associated

colormap map to filename. If X is of class uint8 or uint16, imwrite writes the actual

values in the array to the file. If X is of class double, imwrite offsets the values in

the array before writing using uint8(X–1). Map must be a valid MATLAB colormap

of class double; imwrite rescales the values in map using uint8(round(255*map)).

Note that most image file formats do not support colormaps with more than 256

entries.

Class Support:

Most of the supported image file formats store uint8 data. PNG and TIFF

additionally support uint16 data. For grayscale and RGB images, if the data array is

double, the assumed dynamic range is [0,1]. The data array is automatically scaled

by 255 before being written out as uint8. If the data array is uint8 or uint16 (PNG

and TIFF only), then it is written out without scaling as uint8 or uint16, respectively.

RGB2GRAY

Purpose:

Convert an RGB image or colormap to grayscale

Syntax:

I = rgb2gray(RGB)

newmap = rgb2gray(map)

 109

Description:

rgb2gray converts RGB images to grayscale by eliminating the hue and saturation

information while retaining the luminance.

I = rgb2gray(RGB) converts the truecolor image RGB to the grayscale intensity

image I.

newmap = rgb2gray(map) returns a grayscale colormap equivalent to map.

Class Support:

If the input is an RGB image, it can be of class uint8, uint16, or double; the output

image I is of the same class as the input image. If the input is a colormap, the input

and output colormaps are both of class double.

Algorithm:

rgb2gray converts the RGB values to NTSC coordinates, sets the hue and saturation

components to zero, and then converts back to RGB color space.

 110

REFERENCES

[1] Yuntao Cui and Qian Huang, (1997). Character Extraction of License Plates

from Video, Conference on Computer Vision and Pattern Recognition

(CVPR’97)

[2] K.K. Kim, K.I. Kim, J.B. Kim, H.J. Kim, (2000). Learning Based Approach

For License Plate Recognition, Proceedings of the 2000 IEEE Signal

Processing Society Workshop, Volume 2, pp. 614-623

[3] B. Martin, P. Scott, (1992). Automatic Vehicle Identification: A Test of

Theories of Technology Published in Science, Technology & Human Values,

Volume 17, No. 4, pp. 485-505,

[4] Morrison, A. Steven, (1986). A Survey of Road Pricing, Transportation

Research A, Volume 20, No.2, pp. 87-97

[5] Dawson, J. A. L. (1983). Electronic road pricing in Hong Kong: the pilot

stage, Traffic Engineering + Control, Volume 24, pp. 372-374.

[6] I. Catling, Bob McQueen, (1991). Road transport informatics in Europe major

programs and demonstrations, IEEE Transactions on Vehicular Technology,

Volume 40, pp. 132-140.

[7] W. J. Gillan, (1988). Prometheus-Reducing traffic congestion by advanced

technology. In Roads and Traffic 2000, International Road and Traffic

Conference, Volume 1, pp.111-115.

 111

[8] Tsuzawa, Masami and H. Okamoto, (1998). Overview and perspective of

Advanced Mobile Traffic Information & Communication System (AMTICS).

In Roads and Traffic 2000, International Road and Traffic Conference,

Volume 1, pp. 153-157.

[9] Kawashima, Hironao, (1991). Two major programs and demonstrations in

Japan, IEEE Transactions on Vehicular Technology, Volume 40, pp. 141-

146.

[10] H.J. Stoelhurst, and A. J. Zandbergen, (1990). The development of a road

pricing system in the Netherlands, Traffic Engineering + Control, Volume 31,

pp. 66-71.

[11] K. Waersted, and K. Bogen, (1989). No stop electronic toll payment systems,

Second International Conference on Road Traffic Monitoring, pp. 128-132.

[12] P. Bohnke and E. Pfannerstill, (1986, January). A System for the Automatic

Surveillance of Traffic Situations, Institute of Transportation Engineers

Journal, pp. 41-45

[13] Rong-Shyang Ju, T. H. Maze, (1989, July/August). Freeway Surveillance and

Control System Using Simulation Model, Journal of Transportation

Engineering, Volume 115, No. 4, pp. 425-437

[14] Berka, Stanislaw and B. Kent Lall. (1998, Jan/Feb). New Perspectives for

ATMS: Advanced Technologies in Traffic Detection, Journal of

Transportation Engineering, pp. 9-15.

[15] A. T. Bergan, Loyd Henion, Milan Krukar and Brian Taylor, (1988).

Electronic License Plate Technology: Automatic Vehicle Location and

Identification', Canadian Journal of Civil Engineering, Vol. 15, No. 6, pp.

1035-1042

 112

[16] Butterfield, Earl, and Mark Haselkorn and Kathy Alalusi. (1994, July).

Potential of Automatic Vehicle Identification in the Puget Sound Area.,

Washington State Department of Transportation, Washington State

Transportation Center, University of Washington

[17] Turner, Shawn M. (1996). Advanced Techniques for Travel Time Data

Collection, Innovative Transportation Data Management, Survey Methods,

and Geographic Information Systems/TRB, National Research Council

Washington D.C.: National Academy Press, pp. 51-8.

[18] Burges CJC, Ben JI, Denker JS, Lecun Y, Nohl CR, (1993). Off line

recognition of handwritten postal words using neural networks, International

Journal of Pattern Recognition & Artificial Intelligence, Volume 7, No. 4, pp.

689-704.

[19] Camastra F, Vinciarelli A, (2001). Cursive character recognition by learning

vector quantization, Pattern Recognition Letters, Volume 22, No. 6-7, pp.625-

629

[20] Cortes C, Vapnik V, (1995). Support-vector Networks, Machine Learning,

Volume 20, No.3, pp.273-297

[21] P. Hu, Y. Zhao, J. Wang, Z. Yang, (2002). Recognition of Gray Character

using Gabor Filters, Proceedings of the Fifth International Conference on

Information Fusion, Volume 1, pp. 419-424

[22] G. Chen, T. D. Bui, (1999). Invariant Fourier-wavelet descriptor for pattern

recognition, Pattern Recognition, Volume 32, No.7

[23] W.L.Hwang, F. Chang, (1998). Character extraction from documents using

wavelet maxima, Image and Vision Computing, Volume 16, No.5

 113

[24] R. Porter, N.Canagarajah, (1997). Robust rotation-invariant texture

classification:wavelet, Gabor fitler and GMRF based schemes, IEE

Proceedings:Vision, Image & Signal Processing, Volume 144, No.3, pp. 180-

188

[25] H. Chao, D. Jianyu, Y.F. Zheng, S.C. Ahalt, (2001). Object tracking using the

Gabor wavelet transform and golden section algorithm, Proceedings 2001

ICRA, IEEE International Conference on Robotics and Robotics and

Automation, Vol.2, pp. 1671-1676

[26] J.G. Daugman, (1980). Two-dimensional spectral analysis of cortical

receptive field profiles, Vision Research, Vol.20, pp. 847-856

[27] V. Tavsanoglu, E. Saatci, (2000), Feature extraction for character recognition

using Gabor-type filters implemented by cellular neural networks,

Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural

Networks and their Applications, IEEE. 2000, pp. 63-8.

[28] H. Yoshimura, M. Etoh, K. Kondo, N.Yokoya N, (2000). Gray-scale

character recognition by Gabor jets projection, Proceedings 15th International

Conference on Pattern Recognition, ICPR-2000. IEEE Comput. Soc. Part

Volume 2, pp.335-8

[29] R.A.Lotufo, A.D.Morgan, and A.S.Johnson, (1990). Automatic Number-Plate

Recognition, Proceedings of the IEE Colloquium on Image analysis for

Transport Applications, Volume 35, pp.6/1-6/6

[30] A.S. Johnson, B.M. Bird, (1990, April). Number-plate Matching for

Automatic Vehicle Identification, IEE Colloquium on Electronic Image and

Image Processing in Security and Forensic.

[31] M.M.M. Fahmy, (1994). Automatic Number-plate Recognition: Neural

Network Approach, Proceedings of VNIS’94 Vehicle Navigation and

Information System Conference, 3 1 Aug-2 Sept

 114

[32] J.A.G. Nijhuis, M.H. Ter Brugge, K.A.Helmholt , J.P.W.Pluim, L.

Spaanenburg, R.S. Venema, M.A.Westenberg, (1995). Car License Plate

Recognition with Neural Networks and Fuzzy Logic, IEEE International

Conference on Neural Networks.

[33] H.J. Choi, (1987). A Study on the Extraction and Recognition of a Car

Number Plate by Image Processing, Journal of the Korea Institute of

Telematics and Electronics, Volume 24, pp. 309-3 15

[34] H.S. Kim, et al., (1991). Recognition of a Car Number Plate by a Neural

Network, Proceedings of the Korea Information Science Society Fall

Conference, Volume 18, pp. 259-262

[35] E.R. Lee, P.K. Kim, and H.J. Kim, (1994). Automatic Recognition of a Car

License Plate Using Color Image Processing, Proceedings of the International

Conference on Image Processing

[36] S.K. Kim, D.W. Kim, and H.J. Kim, (1996). A Recognition of Vehicle

License Plate Using a Genetic Algorithm Based Segmentation, Proceedings

of 3rd IEEE International Conference on Image Processing, Volume 2, pp.

661-664

[37] H. Hontani, and T. Koga, (2001). Character extraction method without prior

knowledge on size and information, Proceedings of the IEEE International

Vehicle Electronics Conference (IVEC’01), pp. 67-72.

[38] S.H. Park, K.I. Kim, K. Jung, and H.J. Kim, (1999). Locating car license

plates using neural network, IEE Electronics Letters, Volume 35, No. 17, pp.

1475-1477.

[39] H.J.Kim, D.W.Kim, S.K. Kim, J.V. Lee, J.K. Lee, (1997). Automatic

Recognition of Car Licence Plates Using Color Image Processing,

Engineering Design & Automation, 3(2), pp. 215-225

[40] Image Processing Fundamentals [Ebook]

http://www.ph.tn.tudelft.nl/Courses/FIP/frames/fip.html

 115

[41] Gonzalez and Woods, (2002). Digital Image Processing, Prentice Hall

(Second Edition)

[42] William K. Pratt, (2001). Digital Image Processing, John Wiley & Sons, Inc.

 (Third Edition)

[43] Hough Transform,

http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm

[44] Character Recognition,

http://en.wikipedia.org/wiki/Optical_character_recognition

[45] M.Horowitz, (1957). Efficient use of a picture correlator, J. Opt. Soc. Am,

Volume 47, pp.327

[46] S. Ozbay, and E. Ercelebi, (2005). Automatic Vehicle Identification by Plate

Recognition, Transactions on Enformatika System Sciences and Engineering,

Volume 9, pp. 222-225.

