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ABSTRACT 

DIAGNOSIS USING PULMONARY SOUNDS AND DESIGN OF AN 

ELECTRONIC AUSCULTATION DEVICE 

AKA, Levent 

M.Sc. in Mechanical Engineering 

Supervisor: Assoc. Prof. Dr. H. Rıdvan ÖZ 

July 2006, 148 pages 

The aim of this thesis is to find out relations between sounds and pulmonary 

diseases. Every pulmonary disease has distinguishing sound. Physicians diagnose 

pulmonary disease by using a stethoscope. This is a qualitative approach, but this 

should be measurable and recordable for a quantitative diagnosis. Mathematical 

transformations are applied to signals to obtain further information from that signal 

that is not readily available in the raw signal. In this study, a literature survey is 

performed on analyzing lung sounds and diagnosis as in computer based approach. 

There are many articles about electronic recording and analysis of sounds. They are 

not completely distinguishable due to the mixing of heart, muscle and other sounds. 

Some of them can be filtered easily. It is possible to distinguish Chronic Obstructive 

Pulmonary Disease (COPD) and other diseases using sounds. Unfortunately, there is 

no clear distinction among diseases. Nevertheless, digital signal processing and its 

filtering methods can be used to analyze pulmonary sounds. Many parameters (age, 

sex, smoking, pulmonary drugs, weight, muscle and heart sounds etc.) can affect the 

groupings in the signal analyzing systems and their meanings. These can be 

eliminated by means of separation technique and filtering methods. New techniques 

may make to pre-diagnosis and pulmonary disease relations possible. Thus, sound 

recordings of the all patients can be easily stored by using computer as sound library. 

In the study the patients are diagnosed and the sounds are recorded at University 

Hospital in Gaziantep. FFT and STFT techniques are used to analyze the sound 

recordings. Pneumonia and wheezing characteristics are observed after the analysis. 

It is aimed to have a database about the patients; the sound recordings are stored in a 

computer and will be used for revisiting and comparisons. Title includes design of an 

auscultation device. Unfortunately, thoughts are improved related to design of device 

and signal processing methods were indicated from computer based systems. 

Software is improved to be used for diagnosis by the clinicians. 

Key Words:  Respiratory sound analysis, Respiratory disease, FFT, STFT  
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ÖZET 

SOLUNUM YOLLARI SESLER ĐNĐ KULLANARAK TE ŞHĐS VE 
ELEKTRON ĐK OSKÜLTASYON C ĐHAZI TASARIMI 

AKA, Levent 

Yüksek Lisans Tezi, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. H. Rıdvan ÖZ 

Temmuz 2006, 148 sayfa 

Sesler ve akciğer yollarına bağlı hastalıkları arasındaki ilişkileri bulmak bu tezin 

amacıdır. Her akciğer yollarına bağlı hastalığın ayırt edici bir sesi vardır. Doktorlar 

akciğer hastalıklarını stetoskopla teşhis etmektedirler. Bu niteliksel bir yaklaşımdır. 

Ama niceliksel bir teşhis için ölçülebilir ve kaydedilebilir olmalıdır. Đşlenmemiş 

sinyalde hazır olarak bulunmayan sinyalden daha fazla bilgi edinmek için, sinyallere 

matematiksel dönüşümler uygulanır. Bu araştırmada, bilgisayar tabanlı yaklaşımda 

olduğu gibi, akciğer sesleri ve teşhisi hakkında bir literatür araştırması yapılmıştır. 

Elektronik kayıt ve ses analizi hakkında birçok makale vardır. Bu sesler, kalp, kas ve 

diğer seslerin karışmasından dolayı tam olarak ayırt edilemezler. Bazıları kolaylıkla 

filtre edilebilir. KOAH ve diğer hastalıklarının ayırt edici teşhisinin bu alandaki 

başarılı çalışmalardan sonra mümkün olacağına inanıyoruz. Ne yazık ki hastalıklar 

arasında belli ayrımlar yoktur. Yine de, sayısal sinyal işleme ve filtre metotları 

akciğer seslerini analiz etmede kullanılabilir. Ama birçok etmen (yaş, cinsiyet, sigara 

kullanımı, akciğer ilaçları, vücut ağırlığı, kas ve kalp sesleri vs.) sinyal analizi 

sistemlerindeki gruplandırmaları etkileyebilir. Yine de, bunlar ayırma teknikleri ve 

filtre yöntemleri aracılığıyla ortadan kaldırabilir. Yeni teknikler önceden teşhis ve 

akciğer hastalıkları ilişkilerini mümkün kılabilir. Böylece, bütün hastaların ses 

kayıtları ses kütüphanesi şeklinde kullanılacak olan bilgisayar yardımıyla 

saklanabilir. Bu çalışmada, Gaziantep Üniversitesi Hastanesine gelen hastalardan ses 

kayıtları alınmıştır. FFT ve STFT teknikleri ile analizler gerçekleştirilmi ştir. 

Pnömoni ve hırıltı seslerinin karakteristikleri elde edilmiştir. Hastalık sesleri için bir 

veri tabanı oluşturulmaktadır. Bu bilgiler hastaların hastaneyi tekrar ziyaretlerinde 

karşılaştırma amacıyla kullanılacaktır. Tez başlığında cihaz tasarımı geçmektedir. 

Ancak cihaz tasarımı hakkında düşünceler geliştirilmi ş, bilgisayar üzerinden işaret 

işlemenin nasıl yapılacağı gösterilmiştir. Doktorlar tarafından teşhiste kullanılmak 

üzere yazılım geliştirilmi ştir.  

Anahtar kelimeler:  Solunum sistemleri ses analizi, Solunum hastalıkları, FFT, STFT 
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CHAPTER 1 

 

INTRODUCTION 

 

In this section an introduction will be given about respiratory system and sounds. 

1.1 Respiratory system 

It consists of following elements. 

 

LARNYX 

TRACHEA 

TWO BRONCHEALS 

RIGHT LUNG (3 PARTS) 

LEFT LUNG (2 PARTS) 

BRONCHIOLES 

ALVEOLI 

Figure 1.1 Human Respiratory system parts 

 

Auscultation is the way of sound listening technique at the human body. There are 

three sound categories from auscultation hearing sounds as given below. 

- Normal Sounds 

- Supplementary  Sounds 

- Talking Sounds 

 

1.2 Normal Sounds 

 

These types of sounds are physiological. These can be determined as normal working 

sounds of the organs. Normal sounds can be separated into two sub-groups as 

bronchioles and vesicular sounds. Bronchioles sounds can vary incrementally or 

detrimentally. Vesicular sounds are normally breath sounds. 

 

Incremental and bilateral sounds can be heard in children or fatless people. Reducing 

and bilateral sounds can be heard oppositely in fat people. Incremental and unilateral 

sounds can be heard in pneumonia and atelectasia disease. Reducing sounds at one 
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side can be heard in accumulating liquids at the lung lamina, atelectasia and big 

neoplasm diseases. 

 

1.3 Supplementary Sounds  

 

Supplementary sounds are generally pathological and point out secret disease. On the 

contrary, these types of sounds can also be heard physiologically in new born 

children and especially cesarean born children. Supplementary sounds can be divided 

into two sub-groups like intermittent and uninterrupted sounds. Intermittent sounds 

can be classified as tin, middle, rough sounds. We can hear; tin and intermittent 

sounds at the pneumonia, heart failure, and interstitial diseases; middle and 

intermittent sounds at the bronchitis, chronic bronchitis and still pneumonia. 

Pneumonia implies tin and middle intermittent sounds. Uninterrupted sounds are 

similar to classify tin and rough without middle. Tin uninterrupted sound signifies 

wheezing. When big and small air ways narrows, these types of sounds can be heard. 

Typical sample is the asthma.  

     

1.4 Talking Sounds 

 

- Pectorilocy: The distinct articulation of the sounds of a patient's voice, heard 

on applying the ear to the chest in auscultation. 

- Bronchophony: A modification of the voice sounds, by which they are 

intensified and heightened in pitch; observed in auscultation of the chest in 

certain cases of intro-thoracic disease. 

-  Egophony: The sound of a patient's voice so modified as to resemble the 

bleating of a goat, heard on applying the ear to the chest in certain diseases 

within its cavity, as in pleurisy with effusion. 

 

1.5 Sound Properties of the Respiratory Diseases 

 

Stridor: a high-pitched, noisy respiration, like the blowing of the wind; a sign of 

respiratory obstruction, especially in the trachea or larynx. A high-pitched, noisy 

respiration, like the blowing of the wind; a sign of respiratory obstruction. 
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Asthma: Asthma is a chronic, inflammatory lung disease characterized by recurrent 

breathing problems. People with asthma have acute episodes or when the air 

passages in their lungs get narrower, and breathing becomes more difficult 

Sometimes episodes of asthma are triggered by allergens, although infection, 

exercise, cold air and other factors are also important triggers. Labored breathing 

caused by narrowing of the smaller air passages in the lungs, associated with 

shortness of breath, wheezing, cyanosis, and coughing. 

 

Chronic Obstructive Pulmonary Disease (COPD): a nonreversible lung disease 

that is a combination of emphysema and chronic bronchitis; usually patients have 

been heavy cigarette smokers. 

 

Lung Diseases: 

 

- Atelectasis:  collapse of an expanded lung; also failure of pulmonary alveoli 

to expand at birth. 

- Emphysema: Emphysema is a non-reversible pulmonary disease causing 

extreme shortness of breath and eventual death. In this disease, the bronchial 

tubes of the lungs become blocked with mucus plugs and infection, inhibiting 

passage of air into and out of the alveoli. The disease is characterized by 

destruction of these sacs, which lose their elasticity, swell and rupture thereby 

interfering with the exchange of oxygen and carbon dioxide in the breathing 

process. Emphysema is often caused by smoking. That type of disease sound 

can be heard like; breathing sounds get reduces from both sides and exhaling 

time get bigger than normal. 

- Pneumonia : Inflammation of the lungs characterized by fever, chills, muscle 

stiffness, chest pain, cough, shortness of breath, rapid heart rate and difficulty 

breathing Polysaccharide vaccines- Vaccines that are composed of long 

chains of sugar molecules that resemble the surface of certain types of 

bacteria. Polysaccharide vaccines are available for pneumococcal disease, 

meningococcal disease and Haemophilus Influenza type. That type of disease 

sound can be heard like; tin and middle intermittent sounds. 

- Lung oedema :  
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- Tuberculosis: A constitutional disease characterized by the production of 

tubercles in the internal organs, and especially in the lungs, where it 

constitutes the most common variety of pulmonary consumption. Infection 

transmitted by inhalation or ingestion of tubercle bacilli and manifested in 

fever and small lesions. That type of disease sound can be heard like; middle 

and rough intermittent sounds.  

 

Pleura Diseases: 

 

It is a thin layer of tissue covering the lungs and the wall of the chest cavity to 

protect and cushion the lungs. A small amount of fluid that acts as a lubricant allows 

the lungs to move smoothly in the chest cavity during breathing 

- Ampiem 

- Pleurisy 

- Hemothorax 

- Pnuemothorax 

 

That type of disease sound can be heard like; sound amplitude reduces or no sound 

can be heard. At the liquid top surface of the small area, bronchial sound can be 

heard.  

 

Pneumothorax 

 

Abnormal collection of air outside the lining of the lung, between the lung and the 

chest wall, is often a consequence of pressure injuries. 

 

1.6 Clinical Methods 

 

Clinical methods to diagnose respiratory diseases: 

- Patient history and physical consultation  

- Lung graphics: postero anterior and lateral graphics 

- Chest ultrasonography (The use of sound waves to produce pictures of 

internal organs. High-frequency sound waves are directed into tissues and 

produce echoes, which are in turn changed into pictures. Because different 
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types of tissue reflect sound waves differently, ultrasonography often makes 

it possible to find abnormal growths.) 

- Breath function tests 

1- Simple spirometer: Pneumatograph, an instrument for measuring the 

vital capacity of the lungs, or the volume of air which can be expelled from 

the chest after the deepest possible inspiration. 

2- Bronchodilator reversible test: A drug that relaxes and dilates the 

bronchial passageways and improves the passages of air into the lungs. 

3- Bronchi provocation test 

4- Carbon monoxide diffusion test 

 

Auscultation of the lung is an important and simple diagnostic method [1-3]. At this 

area, there is no computerized system to analyze and understand the respiratory 

sound systems. Statistical approach can not be good solutions as seen from surveys 

[2]. Therefore, we believe that respiratory analysis can be varied region-to-region, 

people to people. Because of this, sound library and personal library have to be 

prepared to get good solutions. Auscultation gives direct information about the 

structure and function of the lung that cannot be obtained with any other simple and 

noninvasive method [4-9]. Conventionally, physicians use an instrument called 

stethoscope for listening the lung sounds. The stethoscope was the first diagnostic 

instrument to gain widespread use among physicians. With the help of this tool, 

physicians gained access to information from within the patient’s body [10]. 

 

This device, invented in 1821 by the French Physician, Laennec, is still the most 

common diagnostic tool used by doctors. However, the method is considered of low 

diagnostic value due to its subjectivity in assessing lung sounds. Evaluation of 

respiratory sounds depends strongly on the experience of the physician and shows 

large intersubject variability. Another drawback of the method is the inability to 

produce a permanent record of the auscultation data thus to make an intersubject and 

intrasubject comparison. Moreover, a stethoscope attenuates frequency components 

above approximately 120Hz (in spite of the fact that respiratory sounds are known to 

contain frequencies up to 2000 Hz) and the human ear is not very sensitive to the 

lower-frequency band that remains [11]. 
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The normal lung sound is defined as the sound associated with breathing, heard on 

the chest of a healthy person. This sound is noise-like, and the maximum of the 

power spectrum lies in the frequency range below 100 Hz. The energy of the 

spectrum decreases sharply between 100 Hz and 200 Hz, but it can be detected up to 

1.2 kHz. The amplitude of the respiratory sounds varies with the square of the air 

flow, but is also individually dependent and dependent on the recording position on 

the chest [10]. Respiratory sounds which are roughly classified into breath sounds 

and adventitious sounds are heard on the chest wall and mouth. Breath sounds which 

are regarded as normal respiratory noises are synchronous with the flow of air 

changing from laminar to turbulent through the airways and have a frequency of 200-

600 Hz in healthy lungs. Wheezing is considered to be a result of airway obstruction 

and flow limitation and it appears as continuous, musical sounds of more than 100 

ms and crackles which are discontinuous, nonmusical, explosive sounds of less than 

70 ms duration constitute the adventitious sounds. They are often attributed to the 

bubbling of secretions in the airways or to the explosive change in gas pressure. 

Crackles are classified by physicians according to pitch (high or low), number 

(scanty and profuse) and timing (inspiratory and expiratory; early and late) [13]. 

These characteristics aid physicians in the final diagnosis. For example, crackles of 

interstitial fibrosis are high pitched or fine and occur in mid to late inspiration. On 

the other hand, early inspiratory crackles are associated with severe expiratory 

obstruction. Low-pitched crackles, known as coarse crackles, are produced in 

patients with chronic airflow obstruction and bronchiectasis. 

 

1.7 Microphones 

 

A microphone, sometimes referred to as a mike or mic (pronounced "mike"), is an 

acoustic to electric transducer that converts sound into an electrical signal. Emile 

Berliner invented the first microphone on March 4, 1877, but the first useful 

microphone was invented by Alexander Graham Bell. Many early developments in 

microphone design took place in Bell Laboratories. 

 

All microphones capture sound waves with a thin, flexible diaphragm (or ribbon in 

the case of ribbon microphones). The vibrations of this element are then converted 

by various methods into an electrical signal that is an analog of the original sound. 

http://en.wikipedia.org/wiki/Transducer
http://en.wikipedia.org/wiki/Sound


 7 

Most microphones in use today use electromagnetic generation (dynamic 

microphones), capacitance change (condenser microphones) or piezoelectric 

generation to produce the signal from mechanical vibration. 

 

In a capacitor microphone, also known as a condenser microphone, the diaphragm 

acts as one plate of a capacitor, and the vibrations produce changes in the distance 

between the plates. Since the plates are biased with a fixed charge (Q), the voltage 

maintained across the capacitor plates changes with the vibrations in the air, 

according to the capacitance equation: 

VCQ .=  

where Q = charge in coulombs, C = capacitance in farads and V = potential 

difference in volts. The capacitance of the plates is inversely proportional to the 

distance between them for a parallel-plate capacitor 

d

A
Cα  

 

Capacitor microphones can be expensive and require a power supply, commonly 

provided from mic inputs as phantom power (Invented in the mid-1960s and 

standardized shortly thereafter, phantom power is a widely-used method for 

supplying current to devices over signalling cables, especially audio), but give a 

high-quality sound signal and are now the preferred choice in laboratory and studio 

recording. An electret microphone is a relatively new type of condenser microphone 

invented at Bell laboratories in 1962 by Gerhard Sessler and Jim West, and often 

simply called an electret microphone. An electret is a dielectric material that has 

been permanently electrically charged or polarised. The name comes from 

electrostatic and magnet; a static charge is embedded in an electret by alignment of 

the static charges in the material, much the way a magnet is made by aligning the 

magnetic domains in a piece of iron. They are used in many applications, from high-

quality recording and lavalier use to built-in microphones in small sound recording 

devices and telephones. Though electret mikes were once considered low-cost and 

low quality, the best ones can now rival capacitor mikes in every respect (apart from 

low noise) and can even have the long-term stability and ultra-flat response needed 

for a measuring microphone. Unlike other condenser microphones, they require no 

polarising voltage, but normally contain an integrated preamplifier which does 



 8 

require power (often incorrectly called polarizing power or bias). This preamp is 

frequently phantom powered in sound reinforcement and studio applications. While 

few electret microphones rival the best DC-polarized units in terms of noise level, 

this is not due to any inherent limitation of the electret. Rather, mass production 

techniques needed to produce electrets cheaply don't lend themselves to the precision 

needed to produce the highest quality microphones applications. 

 

Because of differences in their construction, microphones have their own 

characteristic responses to sound. This difference in response produces non-uniform 

phase and frequency responses. In addition, mics are not uniformly sensitive to 

sound pressure, and can accept differing levels without distorting. Although for 

scientific applications microphones with a more uniform response are desirable, this 

is often not the case for music recording, as the non-uniform response of a 

microphone can produce a desirable coloration of the sound. There is an international 

standard for microphone specifications (IEC 60268-4), but very few manufacturers 

adhere to it. 

 

A frequency response diagram plots the microphone sensitivity in decibels over a 

range of frequencies (typically at least 0–20 kHz), generally for perfectly on-axis 

sound (sound arriving at 0° to the capsule). Frequency response may be less 

informatively stated textually like so: "20 Hz–20 kHz ±3 dB". This is interpreted as a 

(mostly) linear plot between the stated frequencies, with variations in amplitude of 

no more than 3 dB plus or minus. However, one cannot determine from this 

information how smooth the variations are, nor in what parts of the spectrum they 

occur. Note that commonly-made statements such as "20 Hz–20 kHz" are 

meaningless without a decibel measure. 

 

The self-noise or equivalent noise level is the sound level that creates the same 

output voltage as the inherent noise of the microphone. This represents the lowest 

point of the microphone's dynamic range, and is particularly important should you 

wish to record sounds that are quiet. The measure is often stated in dBA, which is the 

equivalent loudness of the noise on a decibel scale frequency-weighted for how the 

ear hears, for example: "15 dBA SPL" (SPL means sound pressure level relative to 

20 micropascals). The lower the number the better. Some microphone manufacturers 

http://en.wikipedia.org/wiki/Phase_%28waves%29
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state the noise level using ITU-R 468 noise weighting, which more accurately 

represents the way we hear noise, but gives a figure some 11 to 14 dB higher. A quiet 

microphone will measure typically 20 dBA SPL or 32 dB SPL 468-weighted. 

 

The maximum SPL ( sound pressure level) the microphone can accept is measured 

for particular values of total harmonic distortion (THD), typically 1%. This is 

generally inaudible, so one can safely use the mic at this level without harming the 

recording. Example: "142 dB SPL peak (<1% THD)". The higher the value, the 

better. The clipping level is perhaps a better indicator of maximum useable level as 

the 1% THD figure usually quoted under max SPL is really a very mild level of 

distortion, quite inaudible especially on brief high peaks. Harmonic distortion from 

microphones is usually of low-order (mostly third harmonic) type, and hence not 

very audible even at 3-5%. Clipping, on the other hand, usually caused by the 

diaphram reaching its absolute displacement limit (or by the preamplifier), will 

produce a very harsh sound on peaks, and should be avoided if at all possible. For 

some mikes the clipping level may be much higher than the max SPL. The dynamic 

range of a mike is the difference in SPL between the noise floor and the maximum 

SPL. If stated on its own, for example "120 dB", it conveys significantly less 

information than having the self-noise and maximum SPL figures individually. 

 

Sensitivity indicates how well the mike converts acoustic pressure to output voltage. 

A high sensitivity mike creates more voltage and so will need less amplification at 

the mixer or recording device. This is a practical concern but not directly an 

indication of the mike's quality, and in fact the term sensitivity is something of a 

misnomer, 'transduction gain' being perhaps more meaningful, (or just "output level") 

because true sensitivity will generally be set by the noise floor, and too much 

"sensitivity" in terms of output level will compromise the clipping level. There are 

two common measures. The (preferred) international standard is made in mV per 

pascal at 1 kHz. A higher value indicates greater sensitivity. The older American 

method is referred to a 1 V/Pa standard and measured in plain dB, resulting in a 

negative value. Again, a higher value indicates greater sensitivity, so −60  dB is more 

sensitive than −70 dB. 

 

 

http://en.wikipedia.org/wiki/DB_SPL
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1.7.1 Used Equipments in this study 

 

Respiratory sounds were recorded by a microphone. Electret condenser type (ECM) 

microphone (Sony ECM T-150), which was used in literature is also used in this 

study. Working method of the microphone can be one or all directions. We used 

microphone in one direction for sound recording by using of stethoscope head. 

Microphone was mounted onto stethoscope head to get standard and valuable sound. 

Its impedance is 2.2 kΩ. Response bandwidth is between 30-15000 Hz. This 

bandwidth also includes heart, muscle and other sounds at the recordings. Therefore, 

recorded sounds have to be filtered before analyzing the signals. We have to prevent 

sounds coming from sliding of the microphone at the chest wall. Besides, sounds 

coming from ambient have to be filtered. For that reason, we have to record sounds 

at the lowest sound intensity laboratories. Climate, announce, traffic, patient parents 

noises affect recordings. Therefore, recordings at the hospital laboratories have to be 

made silently at the weekend. Nevertheless, obtaining of the patients is also problem 

at the weekend without some volunteers. Smokers and/or COPD students are the 

volunteers of this study. 

 

1.8 Processing System 

 

The system used for analyzing the sound recordings is given below. 

 

Computer: AMD 3500+, 64 bit, 2GB DDR-Ram, 160 GB HD. 

Program: MATLAB. 

 

1.9 Method 

 

Control groups are arranged to record respiratory sounds from normal people, who 

are the volunteers. To make the control groups, we take care of the age ranging 

between 20-60 years old as in equal distributions. Patient sound records during 

normal breathing. Advising measurement distance from chest to device is the 6mm. 

Working groups are arranged from respiratory patient, who visit lung disease clinic. 

Pulmonary patient sounds are directly recorded before clinical treatment. Recording 

sound is taken between 4th and 5th intercostals space under the scapula. These 
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recorded sounds include also heart and muscle sounds. Recorded sounds are taken 

from varying sex, age, height, and weight people. Sounds were recorded together 

with breath sounds. Heart sounds are below the 100 Hz. The help of varied digital 

low pass filters can filter this type of sounds. After filtering of the sounds, we have 

digital respiratory sounds without muscle and heart sounds. Above the 2000 Hz, is 

not belonging to respiratory disease according to literature survey, which can be 

filtered by high pass filters. Pneumonia disease sound frequencies are between 300 to 

600Hz. The patients, who have pneumonia can be examined by their respiratory 

signal by the help of band pass filters as in determined range with some searching 

signal characteristics. 

 

Frequency of wheezing sounds is about 400 Hz. Vesicular breath sound frequency of 

the healthy people is going over to 1000Hz. Some using filters are; infinite impulse 

filter (IIR), finite impulse filter (FIR), Yule walker, ellip and etc. 

 

Recording sounds at the normal people are taken because of the meaning and shape 

of the normal sound. Thus, we want to have some standards related to quantities of 

normal sounds. On the other hand, how the each people have different fingerprint, 

and also have different own sound characteristics.  For that reason, we want to get 

new way to our project. We decided that determining of the disease sounds is going 

together with personal database to get personally disease sounds.  In our opinion, 

until now, to get sound characteristics, difficulties of the all project have been came 

from that reason. We take pay attention to this to our project. That may be beneficial 

to good approach. Healthy and patient people are classified according to age, sex, 

height, weight and etc.  
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1.10   AN AUSCULTATION DEVICE 

An auscultation device, which can be seen in figure, may be consist of 

following parts to use easily by the clinicians: 

 

- Computer to analyze signals and turns to usable diagnosis information.  

- Microphones to get signals as in digital from valuable measuring place that 

may be consist of stethoscope head to isolate air and sound from human body 

surface.  

- The Spirometer and attached flow head function together as a 

Pneumotachometer, with an output signal proportional to airflow. 

- Software program, that may be improve from signal anaylsing and stattical 

analyzing technicque, which consist of old information relations. 

 

Sound was recorded as a digital signal with simultaneously breath recording 

to understand where/when the disease distinction takes place. Sound is directly 

related to lung volume and its dynamic properties.  

 
Figure 1.2 Measuring technique of the Respiratory sounds 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

During the last two decades, much research has been carried out on computer-based 

respiratory sound analysis systems. However, respiratory sounds are highly non-

stationary stochastic signals due to changing airflow rate, heart sounds and change in 

lung volume during a respiration cycle. This makes the analysis of the respiratory 

sounds a difficult task. 

 

Over recent years, the scientific activity within the field of respiratory acoustics has 

increased markedly. However, a lack of guidelines for data acquisition, storage, 

signal processing and analysis of the lung sound signal has made it difficult to 

compare results from different laboratories and has hampered the commercial 

development of respiratory sound analysis equipment. Several efforts have been 

undertaken to solve these problems [12,14,15]. With the use of modern digital signal 

processing techniques, the analysis of waveforms by computer has become an 

established research technique for the investigation of respiratory sounds [12,16]. 

 

Bibliographies reviewing the overall literature may be found in the following papers 

on snoring [17,18], cough [17-21], stridor [22], and wheeze [23,24]. Studies 

involving an objective analysis of respiratory sounds show that lower respiratory 

sound analysis accounted for 55% of the total and snoring for the remaining 45%.  

 

Overall, 50% of the papers were written by CORSA participants. 

Good bibliographies on breath sound analysis may be found in papers by Malmberg 

et al. [25], Gavriely et al. [26] and Schreur et al. [27]. 

 

2.1 Signal Acquisition Methods 

 

In all applications, sounds recorded from the respiratory system were captured by 

microphones or contact sensors situated at the mouth, on the chest or elsewhere. 

Typically, one chest-wall sound channel was used, but in many papers, two and 

occasionally multiple channels were used [28, 29]. Respiratory sound data through 
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five microphones placed at proper locations on the chest wall along with a flow 

signal for synchronization [3].  

 

Upper airways sounds such as snoring and cough were often captured by 

microphones used in free field at a set distance from the patient’s mouth [21]. 

Adventitious and breath sounds originating from the lower airways were captured 

from the chest wall using two types of microphone: 1) electret air-coupled 

microphones and 2) contact sensors (accelerometers) [12,30]. 

 

 Air-coupled microphones were used in all European Centres, but the size, shape and 

dimensions of the air cavity between the microphone and chest varied from centre to 

centre [30]. Microphone housings were generally designed and custom-made by 

individual centres according to particular theories and ideas. In North America and 

Israel, a variety of commercially available and custom-made contact sensors and 

accelerometers, attached on to the chest wall with either adhesive rings or a rubber 

belt, were employed [15]. 

 

Respiratory sounds can be recorded continuously, and analyzed on-line to monitor 

sleep apnea, nocturnal changes of bronchial obstruction in asthma (e.g. wheezing 

time) [31], ventilation during anesthesia [32] and regional distribution of ventilation 

[33]. Respiratory sounds recording and analysis can be used when assessing the 

response to bronchodilators and to bronchoconstrictors [34, 35] or the variations of 

airflow obstruction during acute bronchial challenge tests in children. Respiratory 

sounds can also be applied to monitoring and analyzing the bronchial response to 

inhaled nonspecific bronchoconstrictive agents like methacholine or histamine both 

in children [36] and in adults [37–39]. Changes in breath sound frequency 

distribution, in terms of the median frequency, have been shown to reflect the airway 

changes during histamine challenge tests in adults and children with asthma [25, 35]. 

Other authors have studied the behavior of breath sounds during exercise- induced 

airway obstruction in children with asthma [40]. In some cases, it could be useful to 

use methods for long-term recording of cough using filtered acoustic signals [41, 25]. 

Body movements related to the cough can be recorded by a static charge sensitive 

bed or by sensors 
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giving similar information. The patient can be studied lying or sitting with no 

transducers or electrodes attached [19]. 

 

2.2 Analogue pre-filtering and storage  

 

The most commonly used bandwidth for breath sounds is from 60–100 Hz to 2 kHz 

when recorded on the chest (lung sounds) and from 60–100 Hz to 4 kHz when 

recorded over the trachea. For adventitious sounds on the chest, it is from 60–100 Hz 

to 6 kHz. The analogue filtering applied to the captured sound signal varied from 

centre to centre according to established practice, available technology and the 

particular application. Most researchers employed a high-pass filter [15, 42] with a 

cut-off frequency chosen somewhere in the range from 30–150 Hz, the norm being 

around 50–60 Hz [41, 43, 44]. 

 

A low-pass filter was always used in the capture of lower airway sounds with the cut-

off frequency set between ~1600 and 3000 Hz [23, 42, 44]. Upper airway sounds 

were generally processed with higher cut-off frequencies [21]. Until 1990, normal 

practice was to store sound and flow signals on analogue magnetic recording tape, 

for subsequent digitization off line (flow signals were usually recorded using FM 

tape recorders). In recent years, DAT tape recorders have been used for both sound 

and flow, though normal practice is now direct digitization and acquisition by 

computer [43, 45]. 

 

2.3 Digitization protocols 

 

Analogue-to-digital converters are used with word lengths of nominally 12, 14 or 16 

bits per sample [23, 27, 43]. A wide range of different sampling rates are in common 

use, the lowest being around 4 kHz and the highest being 22.05 kHz. Three centres 

used standard multi-media sound cards e.g. "SoundBlaster" cards [45], and several 

others used other commercial multi-channel signal acquisition cards. 
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2.4 Signal processing 

 

The spectral analysis of respiratory sounds using the discrete Fourier transform 

(DFT), invariably making use of a Fast Fourier Transform (FFT) algorithm.[15, 26, 

46, 47] was universal. A version of the Fourier transform (FT) applicable to a 

discrete time series (finite sequence of signal samples) [46,47].  A series of number 

usually proportional to the values of an analogue signal at a series of times (normally 

equally spaced) [48]. 

 

The fast Fourier transform (FFT) is a very efficient algorithm (numerical process) 

used for calculating the discrete FTs [49–51]. The duration of each analysis segment 

was typically between 20 and 50 ms, which means that with a sampling rate of 

around 10 kHz, signal block lengths of 256, 512 or 1024 samples were commonly 

used. Zero padding and overlapping of analysis segments techniques were commonly 

used [23,43,52], and windowing was usually by a Hamming, Hann or other 

universally accepted type nonrectangular window. 

 

The survey revealed that newer highly advanced spectral analysis and digital signal 

processing techniques were being increasingly used, these included autoregressive 

analysis [53,54] wavelets[55], Pronys method [56], neural networks [57] and higher-

order spectra [58]. The analysis of the signal usually involved some of the following 

elements [15,46,47] short-term power and power spectral density, spectrographs; 

averaged power spectra; estimation of spectral energy distribution( e.g. quartiles); 

flow representation (sometime flow gating or flow-standardized spectra) 

[46,47,59,60]; wheeze detection [15,23,61-63]; crackle detection [29,64-67]; cough 

detection [19-21]; snoring detection [17,18,68,69], and a variety of other techniques 

[30,46,57,59,61,70,71]. 

 

Short time Fourier transform representation is well known in speech processing [72] 

and in respiratory sound analysis [73]. The consecutive spectra can be computed with 

or without an overlap. The advantage of such a representation is the ability to 

reintroduce the notion of time. The signal is no longer characterized by a mean 

spectrum. The evolution of its "instantaneous" and successive spectra is observed 

[74,75]. The methodology of the proposed WT-FD filter is the subject of this paper 
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[76]. The results from the application of the WT-FD filter to real bioacoustics data 

are described and discussed in the accompanying paper [77], also including 

performance evaluation, noise robustness testing, and comparison of the proposed 

method with previous works. A wavelet packet (WP) based analysis of short-term 

heart rate variability signal could provide a useful criterion for the detection of sleep 

apnea [78].  

 

Three techniques for waveform fractal dimension (FD) calculation were applied, 

based on: (1) signal variance; (2) non-normalized signal morphology; and (3) signal 

morphology normalized along both axes within the windows. Hence, this method 

may prove useful in the measurement of true changes in LS fractality and 

deciphering differences between LS in health and disease [79]. 

 

The spectral characteristics of healthy and pathological respiratory sound signals for 

inspiration and expiration phases were investigated. They have observed noticeable 

differences between healthy and pathological spectra and power spectral densities of 

sound recorded from pathological subjects are observed to contain high frequency 

components compared to those of healthy sound waveforms. It is concluded that 

spectral features can be used to develop a respiratory-sound classifier [80]. The 

Cepstral analysis is proposed with Gaussian Mixture Models (GMM) method to 

classify respiratory sounds in two categories: normal and wheezing. The proposed 

schema is compared with other classifiers: Vector Quantization (VQ) and Multi-

Layer Perceptron (MLP) neural networks. A post processing is proposed to improve 

the classification results [81]. 

 

The classification process is done using two classifiers: k-Nearest Neighbor (k-NN) 

classifier with Itakura and Euclidian distance measures, and Minimum distance 

classifier with the Mahalanobis distance measures [82]. 

 

A novel decision fusion scheme for the classification of respiratory sounds is 

proposed [83]. Neural network classification of lung sounds using wavelet 

coefficients [84] and classification of coughs using Fourier power spectra have been 

used as features [85]. Respiration sounds of individual asthmatic patients were 

analyzed in the scope of the development of a method for computerized recognition 
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of the degree of airways obstruction. The technique of artificial neural networks was 

applied for relating sound spectra and simultaneously measured lung function values 

[86]. 

 

Performance of the relatively new constructive probabilistic neural network (CPNN) 

against the more common classifiers, namely the multilayer perceptron (MLP) and 

radial basis function network (RBFN), in classifying a broad range of tracheal—

bronchial breath sounds were also searched [87]. Genetic algorithms is to search for 

optimal structure and training parameters of neural network for a better predicting of 

lung sounds. This application resulted in designing of optimum network structure 

and, hence reducing the processing load and time [88]. 

 

Lung sounds (LS) of children after bronchoconstriction should differ from baseline 

LS in terms of amplitude and pattern characteristics [89]. Mobile phone recordings 

clearly discriminate tracheal breath sounds in asthma and could be a noninvasive 

method of monitoring airway diseases [90]. To predict the characteristics of tracheal 

sounds the first use of a dynamic and distributed acoustic model of the respiratory 

tract. The model incorporates sound sources due to turbulent flow and allows for 

glottal aperture variation [91]. Assessing a blind data-based classification between 

‘spontaneous’ and ‘voluntary’ human cough on individual sound samples [92]. To 

develop an automated and objective method to separate swallowing sounds from 

breath sounds [93] and nonlinear analysis as a promising tool for quantitative 

analysis of swallowing sounds and swallowing disorders [94]. 

 

A simple system for the measurement and analysis of lung sound has been 

implemented with custom made electronic stethoscope, DasyLAB, and a sound 

blaster card inserted in a portable computer [95]. 

 

The application of signal coherence method for parametric representation and 

automatic classification of the respiratory sounds is investigated [96]. A comparison 

is made between the performances of k-NN classifiers with different feature sets 

derived from respiratory sound data acquired from four different fixed locations on 

the posterior chest area [97]. The design of a novel non-linear mapping method for 

visual classification based on multilayer perceptrons (MLP) and assigned class target 
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values [98]. A new regularization scheme is applied to the data to stabilize training 

and consultation [99]. 

 

To characterize the frequency spectrum, earlier studies have used the following 

parameters: median frequency [43,100], selected frequency with the highest power 

[43], quantile frequencies [101] and in addition to this Artificial Neural Network 

(ANN) [101-102]. In some studies, Wavelet analysis [103,104] and constructive 

probabilistic neural network [105] are used to compare these methods. 

 

In subjects with healthy lungs, the frequency range of the vesicular breathing sounds 

extends to 1000 Hz, where as majority of the power within this range is found 

between 60 Hz and 600 Hz [12,106]. Heart and respiratory sounds graphics for 

various stethoscope depth have been given in references [107]. Other sounds, such as 

wheezing or stridor, can sometimes appear at frequencies above 2000 Hz [12]. The 

normal classification of lung sounds in frequency bands involves: low (100-300 Hz), 

middle (300-600 Hz), high (600-1,200 Hz) frequency bands [108]. 

 

The normal lung sounds were analyzed according to age, sex, and smoking habit. 

Measurement of two frequency bands of 330 to 600 Hz and 60 to 330 Hz are 

considered. For both men and women, a slight increase of the relative power in the 

frequency band of 330 to 600 Hz was recorded with increasing age. However, on the 

basis of large individual variations, these small changes have no clinical significance 

and need not to be considered in automatic detection of lung diseases by analyzing 

lung sounds [109]. The images support the concept that inspiratory sounds are 

produced dominantly in the periphery of the lung while expiratory sounds are 

generated more centrally [107]. Standardized description and evaluation methods for 

normal and abnormal lung sounds do not currently exist, and the descriptive 

parameters of the frequency spectrum used in investigations must therefore still be 

tested [109,110,111]. The effects of breathing pathways are investigated. The spectra 

of sounds recorded over the trachea of adults typically reveal peaks near 700 and 

1500 Hz [112].  
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2.5 Displays 

 

Graphical representations of results were usually custom written. Some of the 

commoner forms of display were power plots in the time-domain, three-dimensional 

spectrographs and airflow, plot of averaged power spectra and time expanded 

waveforms [64-66,113]. Many other more specialized types of display including 

real-time spectrographs were employed specific to individual centres [114]. The 

graphics and programming software used to produce such displays were very 

variable but there is increasing usage of the graphic facilities offered by versions of 

C++ and MATLAB. 

 

2.6. Abnormal breath sounds 

 

Breath sounds may be abnormal in certain pathological conditions of the airways or 

lungs. Bronchial obstruction, e.g. in asthma, induces an increase of higher frequency 

components of the sound spectrum without the appearance of wheezing [25,35]; 

during bronchodilatation, the sound energy moves back to lower frequencies. In 

asthma, a significant association was found between the level of bronchoconstriction 

assessed in spirometric variables and the median frequency of breath sounds 

recorded over the trachea or on the chest in bronchial challenge tests [35]. Even in 

asthmatic patients with a normal ventilatory function, the median frequency of the 

breath sounds may be elevated [114]. Thus, it is probable that the allergic 

inflammation in the airways in asthma may induce certain changes in the mucosal or 

the submucosal part of the bronchi, which can induce changes in the airflow 

dynamics, including turbulence, during breathing. Breath sounds with abnormally 

high frequencies and intensity, and with a prolonged and loud expiratory phase are 

typical in many diseases with airway obstruction, like in asthma and in chronic 

bronchitis. These abnormal breath sounds have also been called bronchial sounds. 

They have frequency components up to 600–1,000 Hz recorded over the posterior 

chest wall. In chronic obstructive lung disease (COPD) with an emphysematic 

component, two phenomena are often observed. Firstly, the breath sound intensity is 

often reduced, which has been attributed to a reduced airflow [115]. Secondly, the, 

values of frequency variables may be within normal limits or lowered [35], which 
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has been attributed to an increase in the low-pass filtering effect of the damaged 

pulmonary tissue in pulmonary emphysema.  

 

Somewhat varying frequency bands have been obtained in studies on normal breath 

sounds. Averaged spectra computed on tracheal sounds (inspiration and expiration 

phases) have shown that the log amplitude response curve remained approximately 

flat in the range 75–~900 Hz, before rapidly falling away at higher frequencies [86, 

90]. Several other authors measured spectra of lung sounds on a linear plot with 

maximum amplitudes of 140 –200 Hz, followed by an exponential decay to 

insignificant levels at ~400 Hz [4]. Such differences are partly the result of using 

different representation of data, a linear scale being more likely to over accentuate 

high-amplitude responses and underestimate weaker signals. However, even though 

some investigators have measured an upper limit frequency as high as 3,000 Hz for 

tracheal sounds [112], it is commonly admitted that normal respiratory sounds 

contain components among which the most significant have a frequency of 50–1,200 

Hz. The frequency spectra of tracheal sounds decline rapidly at >850–900 Hz. Due to 

muscle sounds and heart sounds [117], respiratory sounds are not usually studied at 

<50–60 Hz and the range 0–60 Hz should be filtered by a high pass filter. Due to the 

dependence of breath sounds on airflow rate, respiratory sound spectra should be 

reported at a known airflow. Moreover, the frequency spectra at zero flow should be 

given in order to determine the background noise [15]. 

 

2.7. Adventitious sounds 

 

2.7.1 Crackles 

 

Crackles are discontinuous adventitious lung sounds [118,119] explosive and 

transient in character, and occur frequently in cardio respiratory diseases [65]. Their 

duration is less than 20 ms, and their frequency content typically is wide, ranging 

from 100 to 2000 Hz or even higher [15,120]. Two types of crackles may be 

distinguished: coarse and fine.  

 

The acoustical basis for this classification is well presented in the literature [119]. 

Crackles are assumed to originate from the acoustic energy generated by pressure 
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equalization [121] or a change in elastic stress [122] after a sudden opening of 

abnormally closed airways. Crackles may sometimes occur in healthy subjects, 

during a deep inspiration [123], as a result of segmental reopening of dependent lung 

units. In those cardio respiratory disorders where crackles are frequently found, 

abnormal closure of the small airways may result from increased elastic recoil 

pressure ( e.g. in pulmonary fibrosis) or from a stiffening of small airways caused by 

accumulation of exudated fluid (e.g. in heart failure) or infiltrative cells (e.g. 

pneumonitis, alveolitis). The mechanisms of generation of the crackling sounds in 

chronic bronchitis and emphysema are incompletely understood, but, a source in the 

large airways has been suggested [124]. Bubbling of air through secretions is one 

possible mechanism but does not account for all the crackling phenomena in these 

patients. In patients with chronic obstructive lung disease, the loss of elastic recoil 

and bronchial support [125] may predispose to collapse and subsequent reopening of 

the lobar bronchi [126–128]. When present, crackling sounds in patients with lung 

fibrosis are typically fine, repetitive, and end inspiratory, whereas those associated 

with chronic airways obstruction (e.g.COPD, emphysema or bronchiectasis) are 

coarse, less repeatable, and occur early in inspiration [13, 128]. Patients with airways 

obstruction may also have expiratory crackles, and, unlike in patients with 

pulmonary fibrosis, the crackles may be audible at the mouth; in addition, these 

crackles may change or disappear after coughing [5]. In heart failure, the crackles 

tend to occur from the mid to late inspiratory cycle, and they are coarse in character 

[128]. Mathematical models and experiments predict that crackles originating from 

smaller airways are shorter in duration (fine in character), and those originating from 

larger airways are more coarse [122]. The appearance of crackles may be an early 

sign of respiratory disease, e.g. in asbestosis [65, 129]. Since the closure of small 

airways is gravity-dependent, crackles tend to occur first in the basal areas of the 

lungs, and later, when the disease progresses, also in the upper zones of the lungs. 

When present, the number of crackles per breath is associated with the severity of the 

disease in patients with interstitial lung disorders [130]. Moreover, the waveform and 

timing of crackles may have clinical significance in differential diagnosis of cardio 

respiratory disorders [5, 65]. 

 

Since the bandwidth of the commonly encountered crackles is 100–2,000 Hz, a 

sampling rate of 5,512 Hz provides a sufficient frequency range (i.e. 0–2,700 Hz). 
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However, the study of several fine crackles may require a wider range of analysis as 

they exhibit high frequency components. Therefore, in this case, the use of a 

sampling rate of ≥11,025 Hz is recommended [131]. Visually, the timing of crackles 

in relation to the respiratory phase is conveniently illustrated using a condensed time-

domain presentation "phonopneumogram" [13, 127]. Quantitatively, this relationship 

may be characterized by calculating the start and end point of crackles as a 

percentage of the respiratory phase [128]. 

By using the timing and waveform characteristics of crackles, a two-dimensional 

discriminate analysis has been applied [132]. This approach may be useful when 

different lung diseases presenting with crackles are to be distinguished from each 

other. Examples of parameter estimation based methods used in crackle detection 

include adaptive nonlinear filters [71] and wavelet transformation [133]. 

 

An instrument for separating crackles from stationary lung sounds and quantifying 

their characteristics is realized with adaptive filtering and implementing nonlinear 

operators to wavelet based decomposed lung sounds [134]. Effective classification of 

respiratory sounds for various pathologies can be achieved if a large database is 

formed [135]. 

 

2.7.2 Squawks 

 

Occasionally, in patients with interstitial lung diseases, crackles may be followed by 

short inspiratory musical sounds; these are called squawks [124,136,137]. In 

extrinsic allergic alveolitis, squawks have been found to be shorter in duration and 

higher in pitch than in pulmonary fibroses due to other causes [137]. Their duration 

rarely exceeds 400 ms. Squawks are assumed to originate from oscillation of small 

airways after sudden opening, and their timing seems to depend on the trans 

pulmonary pressure in a similar manner as in crackles. Thus, the basic mechanisms 

of their origin probably differ from that of wheezes in asthma. Therefore, we suggest 

that the term "squawk" should be limited to inspiratory short wheezes in patients 

with interstitial lung disorders that involve small airways; otherwise, short musical 

sounds may be called simply "short wheezes". The basic methods of respiratory 

sound analysis for squawks are the same as for wheezes. 
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2.7.3. Wheezes 

 

Wheezes are continuous adventitious lung sounds, which are superimposed on the 

normal breath sounds. According to the earlier definition of the American Thoracic 

Society (ATS), the word "continuous" means that the duration of a wheeze is longer 

than 250 ms. The ATS also defines wheezes as high-pitched continuous sounds and 

qualifies low-pitched continuous sounds as rhonchi. The ATS nomenclature specifies 

that a wheeze contains a dominant frequency of 400 Hz or more, while rhonchi are 

characterized as low-pitched continuous sounds with a dominant frequency of about 

200 Hz or less. However, investigators have not always agreed with those features. 

For instance, wheezes produce highly variable frequencies ranging from 80 to 1600 

Hz according to GAVRIELY et al. [138] and from 350 to 950 Hz according to 

PASTERKAMP and co-workers [139]. According to the new definitions of the 

present CORSA guidelines, the dominant frequency of a wheeze is usually >100 Hz 

and the duration >100 ms [140]. 

 

Wheezes, which are louder than the underlying breath sounds, are often audible at 

the patient's open mouth or by auscultation by the larynx. They can be monophonic, 

when only one pitch is heard, or polyphonic when multiple frequencies are 

simultaneously perceived. The transmission of wheezing sound through the airways 

is better than transmission through the lung to the surface of the chest wall. The 

higher-frequency sounds are more clearly detected over the trachea than at the chest 

[62,141]. The high-frequency components of breath sounds are absorbed mainly by 

the lung tissue [142]. The highest frequency of wheezes observed by BAUGHMAN 

and LOUDON [31,61], who recorded lung sounds over the chest wall, was 710 Hz. 

FENTON et al. [62] have studied the frequency spectra of wheezy lung sounds 

recorded simultaneously over the neck and the chest. Peaks at 870 and 940 Hz 

detected over the trachea were almost absent on the chest, as a result of the low-pass 

filtering effect of the lungs. These observations emphasize the importance of tracheal 

auscultation and sound recording in asthma [143,144]. 

  

According to recent definitions [10] and the present CORSA definitions, the 

dominant frequency of a wheeze is ≥80–100 Hz, and that of a rhonchus is ≤300 Hz. 
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There is no reason to try to set an upper limit for the pitch. So far, no wheeze has 

been reported with a pitch of >1600 Hz [138]. It is recommended, however, when 

studying wheezes, to use a sampling rate of ≥5,000 Hz [131]. 

 

Novel proposed technique can be quite useful in clinical diagnostics, mainly when 

the analysis can be made continually, using many respiratory cycles from patient. 

However, in this application the algorithm still needs to automatically detect the 

beginning and the ending of the respiratory cycle [145]. 

 

2.7.4. Snores 

 

Snores are noises commonly heard during the sleep. It is suggested that a snore is 

produced by vibrations in the walls of the oropharynx [146]. However, it is possible 

that also other structures could be put in vibration and participates to the snores. 

Snoring is frequently associated with the obstructive sleep apnoea syndrome and 

with cardiovascular diseases [147]. The snore is an inspiratory sound, although 

expiratory components can appear in obstructive sleep apnea. It can occur during the 

whole inspiration or at the end of the inspiration. Snores are loud sounds with an 

intensity higher than 50 dB(A). This intensity depends on the recording technique, 

but mean energies as high as 85–90 dB have been reported [97,148-150]. The snore 

contains periodic components, having a fundamental frequency between 30 and 250 

Hz [69,151]. The fundamental frequency varies during the same snore or from a 

snore to another [152]. The snore is associated with an inspiratory flow limitation, as 

well as an increase in airways resistance. 

 

The fundamental has been reported to be as low as 30 Hz and may be >250 Hz in 

some cases [153]. In nasal snoring, the upper limit of the spectrum defined as the last 

peak maximum frequency (Fmax) with a power >3% of the peak power is reported to 

be ~550 Hz [151]. For oronasal snoring, the same peak Fmax is ~850 Hz. These 

limits can be increased in the case of obstructive sleep apnea. When studying 

frequency spectra of snoring sounds, it is recommended that the range 30–2,000 Hz 

be considered, even if there is only a small amount of energy >1,200 Hz. 
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They present a novel algorithm to extract Speech and Voiced-Snore segments from 

corrupted SRS measurements. The algorithm utilizes Higher Order Statistics (HOS) 

due to its insensitivity to Gaussian noise and the ability to reconstruct a system 

preserving true phase characteristics [154]. 

 

Sleep nasendoscopy, when palate and tongue are seen to vibrate, they are indeed 

characterized by low (137 Hz) and high (1243 Hz) frequency sounds respectively. In 

addition, we have characterized epiglottic snores to occur at 490 Hz and tonsillar 

snores at 170 Hz [155]. Differences between snores and Obstructive Sleep Apnea 

Syndrome (OSAS) patients, and suggest that snore variability could be higher in 

OSAS patients [156]. 

 

2.7.5. Stridors 

 

Stridors are very loud wheezes, which are the consequence of a morphologic or 

dynamic obstruction in larynx or trachea. This sound can be heard near the patient 

without a stethoscope. The ear of a trained examiner may recognize the source of the 

noises: supraglottic, glottic, subglottic or tracheal [157]. Different terms are used to 

compare them to known noises: "cluck of turkey", "whistle of snake", "foghorn". The 

stridor usually occurs during inspiration when it is extrathoracic and during 

expiration when it is intrathoracic unless the obstruction is fixed, in which case, 

stridor may appear in both phases of respiration. The principal etiology of the 

supraglottic stridor is suctioning of ary-epiglottic folds onto the lumen of the airways 

during inspiration. These phenomena occur because of an excess of supraglottic 

tissue (anatomic hypothesis). In the glottic area, the main aetiology of stridor is vocal 

cord paralysis. Stridor is common in infants and in babies, since the dimensions of 

the supraglottic area are small. However, the obstruction in babies is most often due 

to a subglottic viral inflammation (laryngitis). Stridor is usually characterized by a 

prominent peak at about 1,000 Hz in its frequency spectrum. This component is 

called the pitch. The envelope of the pitch and the complexity of the spectrum (i.e. 

number of peaks or harmonics) is dependent on the disease, the site of obstruction, 

the airflow and the volume. Moreover, the elasticity of the obstruction and the 

surrounding tissues influence the sound generation. A fixed obstruction will generate 
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a constant pitch, and a dynamic obstruction will modulate the pitch in frequency as in 

the case of a laryngomalacia. 

 

The commonly observed range for the pitch is 600–1,300 Hz [158,159], usually 

~1,000 Hz. In adults, the pitch of the stridor is usually much lower and is <200 Hz. 

Although it is quite difficult to provide information on the other peaks, it seems that 

they are much more flow/volume-dependent than the main peak. Thus, a sampling 

frequency of ≥5,512 Hz is recommended when studying the main peak of the stridor. 

In addition, if the interest is in the estimation of obstruction parameters, this 

frequency should be ≥11,025 Hz, according to the CORSA recommendation [131]. 

 

2.8. Asthma 

 

 So far, few studies have been carried out in asthmatic patients and normal subjects 

[160]. Lung sounds are recorded before and after the inhalation of a β-stimulant 

bronchodilator drug (terbutaline) to understand the effect of terbutaline [160]. To 

validate asthma monitoring system based on wheezing detection in 

phonopneumograms are also studied [161]. Wheezes have been  reported  as  

adventitious  respiratory  sounds  in  asthmatic  or  obstructive  patients,  during  

forced  exhalation  maneuvers [12]. 

 

Not only asthmatic patients but also other diseases are important to analyze the 

respiratory sounds. Patients with sleep apnea, Pneumothorax, upper airway 

obstruction, chronic obstructive pulmonary disease (COPD) are of some examples of 

the clinical cases [163-166]. 

  

The lung sounds in a patient with pulmonary fibrosis, asthma and chronic obstructive 

pulmonary disease (COPD) that take place in which frequency bands are also shown 

[103,104]. A wheeze in a patient with asthma, frequency 420 Hz and in addition, 

harmonics of higher pitch can also be depicted. Toward the end of first inhalation, a 

weak high frequency wheeze of approximately frequency 900 Hz is visible. Such a 

sound can be difficult to hear with an acoustic stethoscope. 
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Not only asthmatic patients but also other diseases are important to analyze the 

respiratory sounds. Patients with sleep apnea, Pneumothorax, upper airway 

obstruction, chronic obstructive pulmonary disease (COPD) are of some examples of 

the clinical cases [24,161]. 

 

2.9 Aliasing 

 

The effect that, after sampling a harmonic function appears to manifest another 

frequency. This occurs if the frequency of the original continuous harmonic signal is 

higher than half the sampling rate. The apparent frequency is equal to the smallest 

distance of the original frequency to any integer multiple of the sampling rate. For 

example, if the sampling rate is 1 kHz, a sampled harmonic signal of 800 Hz will 

appear to have a frequency of 200 Hz; a sampled harmonic signal of 1,000 Hz will 

appear to have a frequency of 0 Hz (a constant value); a sampled harmonic signal of 

5,100 Hz will appear to have a frequency of 100 Hz. In general, for arbitrary signals, 

the spectrum should be zero above half the sampling rate. All frequency components 

above this frequency (the Nyquist frequency) will be "aliased", and this corrupts the 

actual original components in the base band [167]. 

 

2.10 Filtering Methods 

 

It is a device that transforms a signal at its input into a signal at its output. Usually, 

the transformation aims to remove unwanted components [46]. Filters can be 

classified in analogue filters (e.g. implemented by operational amplifiers, resistors 

and capacitors) and digital filters (e.g. implemented by programmable digital 

hardware). 

 

Many methods have been proposed to eliminate environmental noises. Most of the 

environmental noises can be avoided by using a soundproof room. An acoustic 

chamber can reduce ambient background noise by up to 30 dB [168], but most 

frequently, it is not available for clinical respiratory sound recordings. Shielding of 

the sensors with sound isolation materials can be helpful to eliminate environmental 

noise [169]. The noise at zero airflow (breath holding) picked up on the chest wall 

for assessing background noise in the frequency domain [15] should be measured in 
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order to assess the quality of the recording. In spectral analysis, it can even be used 

to subtract the noise spectrum. 

 

For real time auscultation, an automated gain control (AGC) with adaptive algorithm 

has been implemented for electronic stethoscopes application. The overall heart 

sound reduction by this method ranges from 75% to 83% at different chest location. 

As a result, a convenient and effective heart sounds reduction electronic stethoscope 

has been proposed [170]. Performance of an automatic method for structural 

decomposition, noise removal and enhancement of bowel sounds (BS), based on the 

wavelet transform were studied [171]. Heart sounds are the main unavoidable 

interference in lung sound recording and analysis. Hence, several techniques have 

been developed to reduce or cancel heart sounds (HS) from lung sound records. The 

use of a wavelet transform domain filtering technique as an adaptive de-noising tool, 

implemented in lung sounds analysis [172-173]. Adaptive Noise Cancellation with 

Recursive Least Square (Higher Order Statistics) method is used to filter out the 

heart sound from lung sound [174]. 

 

This paper proposes a novel method for HS localization using entropy of the lung 

sounds [175] and a robust and novel method for estimating flow using entropy of the 

band pass filtered tracheal sounds is proposed [176].  

 

In the range of lower frequencies (<100 Hz), heart and muscle sounds overlap; this 

range must therefore be filtered out for the assessment of lung sounds [4]. The 

current problem of lung sounds recording is noise from sources such as heart and 

muscle sounds, noise from contact between the recording device and the skin and the 

environmental noise that corrupt the lung sound signal. To reduce the effect of these 

sounds, all sound signals should be filtered [4,43,107]. Changes in lung function with 

age have long been well known and studied. The frequency spectrum of lung sounds 

below 300 Hz in infants and children is also age dependent. In adults an age 

dependence of lung sounds has been assumed [4]. To improve the convergence 

speed, transform domain adaptive filter (TDAF) with Walsh-Hadamard transform 

(WHT) are used [177]. This structure would cancel the ambient noise more 

efficiently. 
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CHAPTER 3 

 

SIGNAL PROCESSING and SOUND WAVE 

 

3.1 Signals, Systems, and Signal Processing 

 

To be able to understand what the meaning of the sound wave is, mathematical 

explanation of signal and wave will be given. A study summarizes [180] sounds 

analysis as follows. 

 

A signal is defined as any physical quantity that varies with time, space or any other 

independent variable or variables. Mathematically we describe a signal as a function 

of one or more independent variables. 

 

For example, a segment of speech may be represented to a high degree of accuracy 

as a sum of several sinusoids of different amplitudes and frequencies, that is, as 
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where )}({ tiΑ , )}({ tFi and )}({ tiθ are the sets of (possibly time varying) amplitudes, 

frequencies, and phases, respectively, of the sinusoids. In fact, one way to interpret 

the information content or message conveyed by any short time segment of the 

speech signal is to measure the amplitudes, frequencies, and phases contained in the 

short time segment of the signal. 

 

Another example of natural signal is an electrocardiogram (ECG), such a signal 

provides a doctor with information about the condition of the patient’s heart. 

Similarly, an electroencephalogram (EEG) signal provides about the activity of the 

brain. 

 

Speech, electrocardiogram, and electroencephalogram signals are examples of 

information bearing signals that evolve as a function of a single independent 

variable, namely time. 
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A system may also be defined as a physical device that performs on operation on a 

signal. For example, a filter used to reduce the noise and interference corrupting a 

desired information- bearing signal is called a “system”. In this case the filter 

performs some operations on the signal, which has the effect of reducing (filtering) 

the noise and interference from the desired information-bearing signal. In general, 

the system is characterized by the type of operation that is performs on the signal. 

For example is the operation is stationary, the system is called stationary. If the 

operation on the signal is nonstationary, the system is said to be nonstationary, and 

so forth. Such operations are usually referred to a signal processing. 

 

For our purposes, it is convenient to broaden the definition of a system to include not 

only physical devices, but also software realizations of operations on a signal. In 

digital processing a signal of a digital computer, the operation performed on a signal 

consists of a number of mathematical operations, that is, we have a digital signal 

processing system realized in software. For example, a digital computer can be 

programmed to perform digital filtering. 

 

3.1.1 Analog-to-digital Conversion 

 

Most signals of practical interest such as speech, biological signals, seismic signals, 

radar signals, sonar signals and various communication signals such as audio and 

video signals are analog. To process analog signals by digital means (Fig. 3.1) it is 

first necessary to convert them into digital form, that is, to convert them into a 

sequence of numbers having finite precision. This procedure is called analog-to-

digital (A/D) conversion, and the corresponding devices are called A/D converters 

(ADC’s). The process of converting signal into an analog signal is known as digital-

to-analog (D/A) conversion. 

 

There are two parameters in this conversion process, the frequency at which the 

waveform should be sampled, and the accuracy (number of bits) with which the 

samples should be represented. The sampling theorem, due to Nyquist, states that in 

order not to lose information, a waveform should be sampled at a frequency of at 

least twice the highest frequency in the waveform. 
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Figure 3.1   Digitization of a heart sound waveform (5 sec ) segment and sampled with 8 kHz. 

 

The time interval T between successive samples is called the sampling period or 

sample interval and its reciprocal sFT =/1  is called the sampling rate (samples per 

second) or the sampling frequency (Hertz). Unit frequency is the Nyquist frequency 

defined as the half the sampling frequency. 

 

If a signal contains no frequency components over the frequency maxf , the signal can 

be uniquely represented by equally spaced samples if the sampling frequency sf  is 

greater than twice maxf . That is, sampling frequency must satisfy the inequality 

max2 ff s 〉 . The other aspect of the sampling theorem is that the original analog 

signal can be recovered by performing the appropriate operations on the sample 

values. 

 

Aliasing, a phenomenon associated with the digitization of continuous signals, is 

closely related to the sampling rate and the Nyquist frequency, which is one half the 

sampling rates. Specifically, when digitized at a too low rate, a signal’s high 
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frequency components are said to fold about Nyquist frequency and appear low 

frequencies. If stated in the reverse way, you must sample data at twice its highest 

frequency component or else components higher than Nyquist frequency fold into 

low frequencies, and this distortion called as aliasing. 

 

3.1.2 Fourier Analysis 

 

Frequency is closely related to a specific type of periodic motion called harmonic 

oscillation, which is described by sinusoidal functions. The concept of frequency is 

directly related to the concept of time [181, 182]. 

 

Frequency analysis is useful for characterizing a signal; for seeing order where there 

appears to be none. Fourier analysis is also very useful as a means of filtering a 

signal. 

 

Any continuous signal (i.e. a signal that only has one value at any one instant in 

time) can be represented by the sum of sine waves of varying frequency, amplitude 

and phase. 

 

We can describe a pure sinusoidal function of time by the equation: 

 

fttf πωω 2                   )cos()( ==     (3.2) 

 

This function has maximum positive and negative amplitude at time zero and at 

integer multiples of half the period, i.e. 0, T/2, T, 3T/2… The function can have 

maximum at other times by the introduction of a phase term: 

 

)cos()( φω ±= ttf                                        (3.3) 

   

The cosine and sine harmonics can have different amplitudes, so we can write down 

a complete expression for the signal: 

 

tnbtnatf nn ωω sincos)( +=                                                (3.4) 
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where n is the harmonic number, 1,2,3…etc. 

 

At present our sinusoidal function of time is symmetric about zero. Real signals can 

have 0 Hz or DC offsets. So we need one more term as: 
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ω = the fundamental frequency 

a0 = DC offset 

an, bn = the Fourier coefficients 

 

As a first step we will find the coefficient a0 which represents the average DC (0 Hz) 

level of the signal.  We can find the mean level of a function by calculating the area 

under the curve and dividing by the length of the base. For a function of time f(t), we 

calculate the area under the curve by taking the integral between t = 0 and t = the 

period T. The length of the base of the curve is the period T. Mathematically we 

write this as: 
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The next step is to find the cosine and sine coefficients an and bn by finding the 

average of the function multiplied by sine waves of frequencies that are multiples of 

the fundamental. 
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The equations for finding the Fourier coefficients can be combined into a single 
equation: 
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A mathematical process called a Fourier Transform (FT) is used to decompose a 

signal into its component sine waves.  An inverse FT reconstructs a signal from its 

Fourier components. The transform derives its name from Jean Baptiste de Fourier 

who was a scientist on Napoleons 1799 expedition to Egypt (During which time to 

Rosetta stone was discovered). 

 

Following is an example to illustrate the use of Fourier series expansion. In the 

example the triangular periodic wave having a period of 0.24 sec and peak to peak 

value of 12 is examined. Infinite sum at the integrals are replaced by finite sums 

towards a numerical method to determine the Fourier series coefficients. 

 

Analysis is done for seven harmonics with 6 and 24 intervals. 
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Figure 3.2   The triangular periodic wave having for seven harmonics with 6 intervals.
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Figure 3.3   The triangular periodic wave having for seven harmonics with 24 intervals. 

 

As seen in the Figure (3.2) and (3.3), increasing the harmonic number the Fourier 

series can fit very best with the periodic signal. 

 

3.1.3 Discrete Fourier Transform 

 

Performing a Fourier transform by hand, although possible, would be extremely time 

consuming, and error prone. Therefore, to get anywhere we need to perform a 

Fourier transform (FT) by computer. This is done using a Discreet Fourier Transform 

(DFT), which in effect is what we were doing by hand anyway. A DFT is performed 

on a sampled signal (using an ADC). 

 

If a waveform has been digitized a frequency analysis can be performed by means of 

a technique known as the discrete Fourier transform or DFT. Suppose that the 

waveform is represented by 

 

)()( nTxtx =             nTt =     n=1, 2, 3……………, N     (3.10) 
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There are N consecutive sampled values so that the sampling interval is T. To make 

things simpler, let us also suppose that N is even. If the function )(tx  is nonzero only 

in a finite interval of time, then that whole interval of time is supposed to be 

contained in the range of the N points given. Alternatively, if the function )(tx  goes 

on forever, then the sampled points are supposed to be at least ‘typical’ of what )(tx  

looks like at all other times.   

  

With N number of inputs, we will evidently be able to produce no more than N 

independent numbers of output. 

 

A finite duration sequence )(nx of length N has a Fourier transform: 
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When we sample )(wX at equally spaced frequencies  
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π2=                                      k=1, 2, 3…………, N            (3.12) 

the resultant samples are  
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Here equations (3.10) and (3.12) have been used in the final equality. The final 

summation in equation 12 is called the discrete Fourier transform of the N 

points )(nx . 

 

The discrete Fourier transform has symmetry properties almost exactly the same as 

the continuous Fourier transform. 

 

The formula for the discrete inverse Fourier transform, which recovers the set of 

)(nx ’s exactly from the )(kX ’s is: 
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Notice that the only differences between eqn13 and eqn14 are changing the sign in 

the exponential and dividing the answers by N. 

 

3.1.4 Fast Fourier Transform 

 

Two American mathematicians, Cooley and Tukey, noted that a very large fraction 

of the calculations performed as part of a DFT are repeated and therefore are 

redundant. Cooley and Tukey devised a means of stripping out the redundant 

calculations thus greatly speeding up the transform. 

 

How much computations involved in computing the discrete Fourier transform 

(Equation 4.13) of N points, is important in practical considerations. Analysis may be 

required on line at a reasonable duration. To get an appreciation about the amount of 

computational mathematics required, define W as the complex number. 

 

NjeW /2 π−=                                                                                 (3.15) 

 

Then equation (3.13) can be rewritten as: 
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In other words, the vector of )(nx ’s is multiplied by a matrix whose thkn ),( element 

is the constant W to the power n*k. The matrix multiplication produces a vector 

result whose components are the )(kX ’s. The matrix multiplication evidently 

requires 2N  complex multiplications plus a smaller number of operations to generate 

the required powers of W. 

 

The discrete Fourier transform can be computed NN 2log  operations with an 

algorithm called the fast Fourier transform or FFT. In this algorithm the operations 

are divided into two sets, and then each set is itself subdivided. This process is 

repeated until each set contains only one term. This technique required only 

NN 2log  operations. Also N must be a power of 2. 
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Following is an example to illustrate the use of fast Fourier transform from the 

MATLAB. In the example the pure sinusoidal periodic wave having a frequency of 5 

Hz is examined and is depicted in Figure (3.4) and (3.5). 
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Figure 3.4   Pure sinusoidal signals having a 5 Hz frequency. 

 
3.1.5 Power Spectrum Estimation Using the FFT 
 
 
The first detail is power spectrum (also called a power spectral density or PSD) 

normalization. In general, there is some relation of proportionality between a 

measure of the squared amplitude of the function and a measure of the amplitude of 

the PSD. Unfortunately there are several different conventions for describing the 

normalization in each domain, and many opportunities for getting wrong the 

relationship between the two domains. Suppose that our function )(tx  is sampled at 

N points to produce values Nxx ...,.........1 , and that these points span a range of time t, 

that is TNt )1( −= , where T is the sampling interval. Then there are several different 

descriptions of the total power: 
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Figure 3.5   Taking a FFT by using a Matlab gives a signal frequency. 
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The power spectral density is: 

 

1. defined for discrete positive, zero and negative frequencies, and its sum over 

these is the function mean squared amplitude; 

2. defined for zero and discrete positive frequencies only, and its sum over these 

is the function mean squared amplitude; 
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3. defined in the Nyquist interval from cf−  and cf , and its integral is the 

function mean squared amplitude; 

4. defined from 0 to cf , and its integral over this range is the function mean 

squared amplitude,[181] 

 

It never makes sense to integrate the PSD of a sampled function outside of the 

Nyquist interval cf−  and cf  since, according to the sampling theorem, power there 

will have been aliased into the Nyquist interval.  

 

If we take an N-point sample of the function)(tc  at equal intervals and use the FFT 

to compute its discrete Fourier transform: 
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The power spectrum is defined at N/2+1 frequencies as: 
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where kf  is defined only for the zero and positive frequencies 
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A heart sound signal is not exactly periodic, but it does not change much from period 

to period. If the start of each period could be determined, it would be possible to take 

N equal to the number of points in a glottal period and perform FFT at this period. 
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This is sometimes done, but it is difficult to locate the beginning of each period in 

practice. 

 

Normally an arbitrary sequence of N points is taken. This is equivalent to 

multiplying the signal by a rectangular window which is zero everywhere except 

during the period to be analyzed. This introduces discontinuities at the edges which 

distort the spectrum by adding spurious high frequency components. 

 

A better technique is to multiply the signal by a smooth window function. Triangular, 

Gaussian and cosine shaped windows have been used, but the effects are much the 

same. A common technique is to use a Hamming window,[181,182]. The Hamming 

window coefficient is: 
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The effect of this is shown in Figures (3.6), (3.7) and (3.8). 

 

The equations given above express the DFT in terms of complex numbers. Usually in 

analysis it is the energy at each harmonic number (or frequency) which is required. 

This is given by power spectrum: 
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where nc  is sampled data and nw  is window function. 
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and  kf is given by Eqn 3.23 
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Figure 3.6   0.256 sec waveform segment of S1 and sampled with 8 kHz 
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Figure 3.7   Hamming window 
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Figure 3.8   Windowed form of Fig. 3.6, by Hamming window of Fig 3.7  
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3.2 Design of Digital Filters 

 

In the design of frequency-selective filters, the desired filter characteristics are 

specified in the frequency domain in terms of the desired magnitude and phase 

response of the filter. In the filter design process, we determine the coefficients of a 

casual FIR (Finite Impulse Response) or IIR (Infinite Impulse Response) filter that 

closely approximates the desired frequency response specifications. The issue of 

which type of filter to design, FIR or IIR, depends on the nature of the problem and 

on the specifications of the desired frequency response. 

 

In practice, FIR filters are employed in filtering problems where there is a 

requirement for a linear phase characteristic within the bandpass of the filter. If there 

is no requirement for a linear phase characteristic, either an IIR or an FIR filter may 

be employed. Today, FIR and IIR digital filter design is greatly facilitated by the 

availability of numerous computer software programs. 

 

In conjunction with our discussion of digital filter design, we describe frequency 

transformations in both the analog and digital domains for transforming a low-pass 

prototype filter into another low-pass, band-pass, band-stop, or high-pass filter. 

 

The goal of filter design is to perform frequency dependent alteration of a data 

sequence. Filter design methods differ primarily in how performance is specified. 

How to apply the filter design tools to IIR and FIR filter design problems. 

 

3.2.1 IIR Filter Design 

 

The primary advantage of IIR filters over FIR filters is that they typically meet a 

given set of specifications with a much lower filter order than a corresponding FIR 

filter. 

 

The classical IIR filters, Butterworth, Chebyshew types I and II, elliptic and Bessel, 

all approximate the ideal ‘brickwall’ filter in different ways. Signal processing 

toolbox in Matlab provides functions to create all these types of classical IIR filters 

in both analog and digital domains. For most filter types, you can also find the lowest 
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filter order that fits a given filter specification in terms of pass-band and stop-band 

attenuation, and transition width. 

 

The principal IIR digital filter design technique this toolbox provides is based on the 

conversion of classical low-pass filters to their digital equivalents. All classical IIR 

low-pass filters are ill conditioned for extremely low cut-of frequencies. Therefore, 

instead of designing a low-pass IIR filter with a very narrow pass-band, it can be 

better to design a wider pass-band and decimate the input signal. The toolbox 

provides five different types of classical IIR filter, each optimal in some way. 

 

3.2.2 FIR Filter Design 

 

Digital filters with finite duration impulse response (FIR) response have both 

advantages and disadvantages compared to infinite duration impulse response (IIR) 

filters. 

 

 FIR filters have the following primary advantages: 

• They can have exactly following primary advantages. 

• They are always stable. 

• The design methods are generally linear 

• They can be realized efficiently in hardware 

• The filter start-up transients have finite duration. 

 

The primary disadvantages of FIR filters are that they often require a much higher 

filter order than IIR filters to achieve a given level of performance. 

 

The functions fir1, fir2, firls, remez, fircls, and fircls1 all design type I and II linear 

phase FIR filter by default. 

 

3.2.3 Advantages of Digital versus Analogue Filtering 

 

There are many advantages to digitizing signals from an instrumentation point of 

view. Some of these are: 
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• Permanent storage of digitized signal 

• No electronic noise is associated with digital processing 

• Digital analysis using a computer may well be cheaper than an analogue circuit 

• A ‘virtual’ instrument can be built using a PC. 

• Easy frequency analysis 

 

3.2.4 Relations and General Properties Signal Processing Method  

 

Raw signals are generally represented that time axis (independent variables), 

amplitude (dependent variables). When we plot time-domain signals, we obtain a 

time-amplitude representation of the signal. This representation is not always the best 

representation of the signal for most signal processing related applications. 

Therefore, Robi Polikar [178] talk about signal and mathematical representation as 

briefly as follow:  

In many cases, the most distinguished information is hidden in the frequency 

content of the signal. Frequency changing in time (where/when) is also important in 

our search to get valuable information from respiratory signal. The frequency 

SPECTRUM of a signal is basically the frequency components (spectral 

components) of that signal. The frequency spectrum of a signal shows what 

frequencies exist in the signal. The frequency is measured in cycles/second, or with a 

more common name, in "Hertz". For example the electric power we use in our daily 

life in the Turkey is 50 Hz (60 Hz elsewhere in the world). Signals have own 

characteristics related to some mathematical representations. Therefore, each signal 

has cosine and sine components.  So how do we measure frequency, or how do we 

find the frequency content of a signal? The answer is FOURIER TRANSFORM 

(FT). If the FT of a signal in time domain is taken, the frequency-amplitude 

representation of that signal is obtained. In other words, we now have a plot with one 

axis being the frequency and the other being the amplitude. This plot tells us how 

much of each frequency exists in our signal. 

Often times, the information that cannot be readily seen in the time-domain can be 

seen in the frequency domain. Every transformation technique has its own area of 

application, with advantages and disadvantages, and the wavelet transform (WT) is 

no exception. For a better understanding of the need for the WT let's look at the FT 
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more closely. FT (as well as WT) is a reversible transform, that is, it allows going 

back and forward between the raw and processed (transformed) signals. However, 

only either of them is available at any given time. That is, no frequency information 

is available in the time-domain signal, and no time information is available in the 

Fourier transformed signal. The natural question that comes to mind is that is it 

necessary to have both the time and the frequency information at the same time? 

Recall that the FT gives the frequency information of the signal, which means that it 

tells us how much of each frequency exists in the signal, but it does not tell us when 

in time these frequency components exist. This information is not required when the 

signal is so-called stationary. Signals whose frequency content does not change in 

time are called stationary signals. In other words, the frequencies content of 

stationary signals do not change in time. In this case, one does not need to know at 

what times frequency components exist, since all frequency components exist at all 

times! FT gives the spectral content of the signal, but it gives no information 

regarding where in time those spectral components appear. Therefore, FT is not a 

suitable technique for non-stationary signal, with one exception:  

 

FT can be used for non-stationary signals, if we are only interested in what spectral 

components exist in the signal, but not interested where these occur. However, if this 

information is needed, i.e., if we want to know, what spectral component occur at 

what time (interval), then Fourier transform is not the right transform to use. For 

practical purposes it is difficult to make the separation, since there are a lot of 

practical stationary signals, as well as non-stationary ones. Almost all biological 

signals, for example, are non-stationary. Some of the most famous ones are ECG 

(electrical activity of the heart, electrocardiograph), EEG (electrical activity of the 

brain, electroencephalograph), and EMG (electrical activity of the muscles, 

electromyogram). When the time points of the spectral components are needed, a 

transform giving the TIME-FREQUENCY REPRESENTATION of the signal is 

needed. Wavelet transform is capable of providing the time and frequency 

information simultaneously, hence giving a time-frequency representation of the 

signal. How wavelet transform works is completely a different fun story, and should 

be explained after short time Fourier Transform (STFT). The WT was developed as 

an alternative to the STFT. 
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To make a real long story short, we pass the time-domain signal from various high 

pass and low pass filters, which filters out either high frequency or low frequency 

portions of the signal. This procedure is repeated, every time some portion of the 

signal corresponding to some frequencies being removed from the signal. 

 

Here is how this works: Suppose we have a signal, which has frequencies up to 1000 

Hz. In the first stage we split up the signal in to two parts by passing the signal from 

a high pass and a low pass filter (filters should satisfy some certain conditions, so-

called admissibility condition) which results in two different versions of the same 

signal: portion of the signal corresponding to 0-500 Hz (low pass portion), and 500-

1000 Hz (high pass portion). Then, we take either portion (usually low pass portion) 

or both, and do the same thing again. This operation is called decomposition.  

 

Assuming that we have taken the low pass portion, we now have 3 sets of data, each 

corresponding to the same signal at frequencies 0-250 Hz, 250-500 Hz, 500-1000 Hz. 

 

Then we take the low pass portion again and pass it through low and high pass 

filters; we now have 4 sets of signals corresponding to 0-125 Hz, 125-250 Hz,250-

500 Hz, and 500-1000 Hz. We continue like this until we have decomposed the 

signal to a pre-defined certain level. Then we have a bunch of signals, which actually 

represent the same signal, but all corresponding to different frequency bands. We 

know which signal corresponds to which frequency band, and if we put all of them 

together and plot them on a 3-D graph, we will have time in one axis, frequency in 

the second and amplitude in the third axis. This will show us, which frequencies exist 

at which time (there is an issue, called "uncertainty principle", which states that, we 

cannot exactly know what frequency exists at what time instance, but we can only 

know what frequency bands exist at what time intervals)  

 

The uncertainty principle, originally found and formulated by Heisenberg, states that, 

the momentum and the position of a moving particle cannot be known 

simultaneously. This applies to our subject as follows: 

 

The frequency and time information of a signal at some certain point in the time-

frequency plane cannot be known. In other words: We cannot know what spectral 
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component exists at any given time instant. The best we can do is to investigate what 

spectral components exist at any given interval of time. This is a problem of 

resolution, and it is the main reason why researchers have switched to WT from 

STFT. STFT gives a fixed resolution at all times, whereas WT gives a variable 

resolution as follows : 

 

Higher frequencies are better resolved in time, and lower frequencies are better 

resolved in frequency. This means that, a certain high frequency component can be 

located better in time (with less relative error) than a low frequency component. On 

the contrary, a low frequency component can be located better in frequency 

compared to high frequency component. FT decomposes a signal to complex 

exponential functions of different frequencies. The way it does this, is defined by the 

following two equations: 

 dtetxfX ftj∫
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∞−

−= π2).()(                                            (3.28) 

dfefXtx ftj∫
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= π2).()(                                            (3.29) 

 

At the STFT, We not only know what frequency components are present in the 

signal, but we also know where they are located in time.  The short-time Fourier 

transform (STFT), or alternatively short-term Fourier transform, is a Fourier-related 

transform used to determine the sinusoidal frequency and phase content of local 

sections of a signal as it changes over time. Simply described, in the continuous-time 

case, the function to be transformed is multiplied by a window function which is 

nonzero for only a short period of time. The Fourier transform (a one-dimensional 

function) of the resulting signal is taken as the window is slid along the time axis, 

resulting in a two-dimensional representation of the signal. Mathematically, this is 

written as: 

( ){ } ( ) ( )dtettxXxSTFT tj∫
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−−=≡ ωτωωτ ))(,                           (3.30) 

 

where w(t) is the window function, commonly a Hann window or gaussian "hill" 

centered around zero, and x(t) is the signal to be transformed. X(τ,ω) is essentially 
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the Fourier Transform of x(t)w(t-τ), a complex function representing the phase and 

magnitude of the signal over time and frequency. Often phase unwrapping is 

employed along either or both the time axis, τ and frequency axis, ω, to suppress any 

jump discontinuity of the phase result of the STFT. The time index τ is normally 

considered to be "slow" time and usually not expressed in as high resolution as time 

t. In the discrete time case, the data to be transformed could be broken up into chunks 

or frames (which usually overlap each other). Each chunk is Fourier transformed, 

and the complex result is added to a matrix, which records magnitude and phase for 

each point in time and frequency. This can be written as: 

[ ]{ } [ ] [ ] njemnnxmXxSTFT ωωω −∞

∞−∑ −=≡ ),( (3.31) 

Likewise, with signal x[n] and window w[n]. In this case, m is discrete and ω 

is continuous, but in most typical applications the STFT is performed on a computer 

using the Fast Fourier Transform, so both variables are discrete and quantized. 

Again, the discrete-time index m is normally considered to be "slow" time and 

usually not expressed in as high resolution as time n. 

 

The continuous wavelet transform was developed as an alternative approach 

to the short time Fourier transform to overcome the resolution problem. Unlike the 

STFT which has a constant resolution at all times and frequencies, the WT has a 

good time and poor frequency resolution at high frequencies, and good frequency 

and poor time resolution at low frequencies.  

 

3.3 Sound wave 

 

In this part sound and physical properties will be explained [179]. A wave is a 

disturbance that propagates through space, often transferring energy. While a 

mechanical wave exists in a medium (which on deformation is capable of producing 

elastic restoring forces), waves of electromagnetic radiation, and probably 

gravitational radiation can travel through vacuum, that is, without a medium. Waves 

travel and transfer energy from one point to another, with little or no permanent 

displacement of the particles of the medium (there is little or no associated mass 

transport); instead there are oscillations around fixed positions. 

 

http://en.wikipedia.org/wiki/Medium_%28optics%29
http://en.wikipedia.org/wiki/Gravitational_radiation
http://en.wikipedia.org/wiki/Vacuum
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Sound is a disturbance of mechanical energy that propagates through matter as a 

wave. Sound is characterized by the properties of sound waves, which are frequency, 

wavelength, period, amplitude and velocity or speed. Noise and sound often mean 

the same thing; when they differ, a noise is an unwanted sound. In science and 

engineering, noise is an undesirable component that obscures a signal. What is noise 

and what is signal depends on your point of view. Humans perceive sound by the 

sense of hearing. By sound, we commonly mean the vibrations that travel through air 

and can be heard by humans. However, scientists and engineers use a wider 

definition of sound that includes low and high frequency vibrations in air that cannot 

be heard, and vibrations that travel through all forms of matter, gases, liquids and 

solids. The matter that supports the sound is called the medium. Sound propagates as 

waves of alternating pressure, causing local regions of compression and rarefaction. 

Particles in the medium are displaced by the wave and oscillate. The scientific study 

of sound is called acoustics. Sound is perceived through the sense of hearing. 

Humans and many animals use their ears to hear sound, but loud sounds and low 

frequency sounds can be perceived by other parts of the body through the sense of 

touch. Sounds are used in several ways, most notably for communication through 

speech or, for example, music. Sound can also be used to acquire information about 

properties of the surrounding environment such as spatial characteristics and 

presence of other animals or objects. For example, bats use echolocation, ships and 

submarines use sonar, and humans can determine spatial information by the way in 

which they perceive sounds. 

 

The range of frequencies that humans can hear is approximately between 20 Hz and 

20,000 Hz. This range is by definition the audible spectrum, but some people 

(particularly women) can hear above 20,000 Hz. This range varies by individual and 

generally shrinks with age, mostly in the upper part of the spectrum. The ear is most 

sensitive to frequencies around 3,500 Hz. Sound above 20,000 Hz is known as 

ultrasound; sound below 20 Hz as infrasound. 

 

The amplitude of a sound wave is specified in terms of its pressure. The human ear 

can detect sounds with a very wide range of amplitudes and a logarithmic decibel 

amplitude scale is used. The quietest sounds that humans can hear have an amplitude 

of approximately 20 µPa (micropascals) or a sound pressure level (SPL) of 0 dB re 
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20 µPa (often incorrectly abbreviated as 0 dB SPL). Prolonged exposure to a sound 

pressure level exceeding 85 dB can permanently damage the ear, sometimes resulting 

in tinnitus and hearing impairment. Sound levels in excess of 130 dB are considered 

above of what the human ear can withstand and may result in serious pain and 

permanent damage. At very high amplitudes, sound waves exhibit non-linear effects 

including shock. 

 

The speed of sound is a term used to describe the speed of sound waves passing 

through an elastic medium. The speed varies with the medium employed (for 

example, sound waves move faster through water than through air), as well as with 

the properties of the medium, especially temperature. It is sometimes used in 

describing the nature of substances. In conventional use and in scientific literature 

sound velocity, v, and sound speed, c, are used synonymously and should not be 

confused with sound particle velocity (also symbolized as v), which is the velocity of 

the individual particles. The term is commonly used to refer specifically to the speed 

of sound in air. The speed varies depending on atmospheric conditions; the most 

important factor is the temperature. Humidity has little effect on the speed of sound, 

nor does air pressure per se. (Pressure has no effect at all in an ideal gas 

approximation. This is because pressure and density both contribute to sound 

velocity equally, and in an ideal gas the two effects cancel out, leaving only the 

effect of temperature.) Sound usually travels more slowly with greater altitude, due 

to reduced temperature. An approximate speed of sound in air (in meters per second) 

can be calculated from: 

1))6.0(5.331( −+= mscair ϑ                                                (3.32) 

where (theta) is the temperature in degrees Celsius (°C). 

In general, the speed of sound c is given by 

 

ρ
C

c =                                                                                (3.33)                                                                         

where 

C is a coefficient of stiffness  

ρ is the density  
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Thus the speed of sound increases with the stiffness of the material, and decreases 

with the density. For general equations of state, if classical mechanics is used, the 

speed of sound c is given by 

ρ∂
∂= p

c2                                                                                      (3.33) 

where differentiation is taken with respect to adiabatic change. 

 

If relativistic effects are important, the speed of sound may be calculated from the 

relativistic Euler equations. In a Non-Dispersive Medium – Sound speed is 

independent of frequency, so the speeds of energy transport and sound propagation 

are the same. For audio sound range air is a non-dispersive medium. We should also 

note that air contains CO2 which is a dispersive medium, and it introduces dispersion 

to air at ultrasound frequencies (> 28 kHz). 

 

In a Dispersive Medium – Sound speed is a function of frequency. The spatial and 

temporal distribution of a propagating disturbance will continually change. Each 

frequency component propagates at its own phase speed, while the energy of the 

disturbance propagates at the group velocity. A suspension of small particles in a 

fluid is an example of a dispersive medium. 

 

Speed in solids 

In a solid, there is a non-zero stiffness both for volumetric and shear deformations. 

Hence, in a solid it is possible to generate sound waves with different velocities 

dependent on the deformation mode. 

In a solid rod (with thickness much smaller than the wavelength) the speed of sound 

is given by: 

ρ
E

csolids =                                                                (3.34) 

 

where 

E is Young’s modules  

ρ (rho) is density  

Thus, in steel the speed of sound is approximately 5100 m·s-1. 
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In a solid with lateral dimensions much larger than the wavelength, the sound 

velocity is higher. It is found by replacing Young’s modulus with the plane wave 

modulus, which can be expressed in terms of the Young’s modulus and Poisson’s 

ratio as: 

221

1

νν
ν

−−
−= EM                                                          (3.35) 

 

Speed in a fluid 

In a fluid the only non-zero stiffness is to volumetric deformation (a fluid does not 

sustain shear forces). 

Hence the speed of sound in a fluid is given by 

ρ
K

c fluid =                                                                     (3.36) 

where 

K is the adiabatic bulk modulus  

 

The speed of sound in water is of interest to those mapping the ocean floor. In 

saltwater, sound travels at about 1500 m·s-1 and in freshwater 1435 m·s-1. These 

speeds vary due to pressure, depth, temperature, salinity and other factors. 

 

Speed in ideal gases and in air 

For a gas, K is approximately given by 

pK .κ=                                                                             (3.37) 

where 

κ is the adiabatic index also known as the isentropic expansion factor and sometimes-

called γ (Greek letter gamma). It is the ratio of constant-pressure to constant-volume 

heat capacities of the gas (Cp / Cv), and arises because a classical sound wave 

induces an adiabatic compression, in which the heat of the compression does not 

have enough time to escape the pressure pulse, and thus contributes to the pressure 

induced by the compression.  

p is the pressure.  

Using the ideal gas law the speed of sound is identical to: 

 

http://en.wikipedia.org/wiki/Bulk_modulus
http://en.wikipedia.org/wiki/Ocean
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Ideal_gas
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M
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ρ
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where 

R (287.05 J·kg-1·K-1 for air) is the gas constant for air: the universal gas constant R, 

with units of J·mol-1·K-1, is divided by the molar mass of air, as is common practice 

in aerodynamics.  

κ (kappa) is the adiabatic index (1.402 for air), sometimes noted γ  

T is the absolute temperature in kelvins.  

In the standard atmosphere: 

T0 is 273.15 K (= 0 °C), giving a value of 331.5 m·s-1 (=1193 km·h-1). 

T20 is 293.15 K (= 20 °C), giving a value of 343.4 m·s-1 (= 1236 km·h-1)  

T25 is 298.15 K (= 25 °C), giving a value of 346.3 m·s-1 (= 1246 km·h-1). 

 

In fact, assuming an, the speed of sound c depends on temperature only, not on the 

pressure or density (since these change in lockstep for a given temperature and 

cancel out). Air is almost an ideal gas. The temperature of the air varies with altitude, 

giving the following variations in the speed of sound using the standard atmosphere - 

actual conditions may vary. 

 

Effect of temperature 

 

In ˚C  
 

c in m.s-1 ρ in kg.m-3 Z in N.s.m-3 

−10 325.4 1.341 436.5 

−5 328.5 1.316 432.4 

0 331.5 1.293 428.3 

5 334.5 1.269 424.5 

10 337.5 1.247 420.7 

15 340.5 1.225 417.0 

20 343.4 1.204 413.5 

25 346.3 1.184 410.0 

30 349.2 1.164 406.6 

Table 3.1 Effect of Temperature 

 

http://en.wikipedia.org/wiki/Gas_constant
http://en.wikipedia.org/wiki/Molar_mass
http://en.wikipedia.org/wiki/Aerodynamics
http://en.wikipedia.org/wiki/Adiabatic_index
http://en.wikipedia.org/wiki/Kelvin
http://en.wikipedia.org/wiki/Standard_temperature_and_pressure
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is the temperature in °C  

c is the speed of sound in m·s-1  

ρ is the density in kg·m-3  

Z is the acoustic impedance in N·s·m-3 (Z=ρ·c)  

Given normal atmospheric conditions, the temperature, and thus speed of sound, 

varies with altitude: 

 

Effect of frequency and gas composition 

With increasing frequency the sound wave compression approaches a perfect 

adiabatic because there is less and less time for heat to escape in the compression 

process. For this reason, sound waves in air, particularly ultrasound, approach the 

theoretical relation given above very closely, as frequency rises. 

The molecular composition of the gas contributes both as the mass (M) of the 

molecules, and their heat capacities, and so both have an influence on speed of 

sound. In general, at the same molecular mass, monatomic gases have slightly higher 

sound speeds (over 9% higher) due to the fact that they have a higher gamma (5/3 = 

1.6) than diatomics do (7/5 = 1.4). Thus, at the same molecular mass, the sound 

speed of a monatomic gas goes up by a factor of 

09.1
4.1

6.1 ≈=gasc                                                         (3.39) 

 

This gives the 9% difference, and would be a typical ratio for sound speeds at room 

temperature in helium vs. deuterium, each with a molecular weight of 4. Sound 

travels faster in helium than deuterium because adiabatic compression heats helium 

more, since the helium molecules can store heat energy from compression only in 

translation, but not rotation. Thus helium molecules (monatomic molecules) travel 

faster in a soundwave and transmit sound faster. (Sound generally travels at about 

70% of the mean molecular velocity in gases). 

 

Note that in this example we have assumed that temperature is low enough that heat 

capacities are not influenced by molecular vibration. However, vibrational modes 

simply cause gammas which decrease toward 1, since vibration modes in a 

polyatomic gas gives the gas additional ways to store heat which do not affect 

temperature, and thus do not affect molecular velocity and sound velocity. Thus, the 
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effect of higher temperatures and vibrational heat capacity acts to increase the 

difference between sound speed in monatomic vs. polyatomic molecules, with the 

speed remaining greater in monatomics. 

 

3.4 Acoustical Natural Frequencies 

 
The sound in human body travels through trachea, larynx, etc. They can be 

considered as pipes. It is necessary to see the change in frequencies in these systems 

approximately. An acoustic wave is a longitudinal pressure wave, which it 

propagates. The amplitude disturbance is thus parallel to the direction of propagation.  

 

Consider the pipe in the figure, where the length is much greater than the diameter. 

The cross-section may have an arbitrary shape. Assume that the pipe is filled with 

some gas or liquid.  

 
Figure 3.9 Pipe 

 

L is the length 

c is the speed of sound  

The acoustic pressure p(x,t) is governed by the equation 

2 2

2 2 2

1p p

x c t

∂ ∂=
∂ ∂

                                         (3.40) 

 

Note that this equation has the same form as the equation for the longitudinal 

vibration of a rod. Note that the speed of sound is given by equation 3.34 for solids. 

If we change equation following format, 

0

E
c

ρ
=                                                    (3.41) 

where E is the modulus of elasticity, 

0ρ  is the equilibrium density. 
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Separate the variables in equation. Let 

( ) )()(, tTxPtxp =                                        (3.42) 

Substitute the equation in to previous equation and apply the following boundary 

conditions, one can obtain frequencies. 

 

Case I:  Both Ends Open 

,....3,2,1, == n
L

c
nn πω  

 

Case II: Open-Closed 

,...3,2,1,
2

12 =






 −= n
L

cn
n πω  

 

Case III:  Both Ends Closed 

L

c
nn πω = ,   n = 1,2,3,… 

 

Infinite number of frequencies is obtained for different pipe lengths, pipe material, 

speed of sound, and different boundary conditions. Thus sound frequency in a 

disease can change human to human, age to age, and weight to weight. The shape of 

the lung is different in everybody. The structural properties of the organ also changes 

with age and weight. 
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CHAPTER 4 

 

SOUND RECORDING 

 

ECM T-150 Sony Microphone is used to get sound signals directly to the computer 

as in digital signals.  Sound was recorded in noiseless clinical ambient at the hospital. 

But, there is no special sound isolation at the hospital room. Patients were classified 

related to some parameters such as age, gender, smoker/non-smoker, weight, passed 

patient knowledge and etc. Recorded sound signals were stored with patient data at 

the computer. 

Some of measuring restriction can affect searches: Some of these; 

- Measuring time period for each patient 

- How many times measured each respiratory signal during patient treatment   

- Position of the patient sit/ supine 

- Run or staying patient 

- Ambient effects and Seasons (Rel.Humidty) 

- Recorded data restriction (Signal Sampling rate and Computer Restriction)  

 

Sound analysis coming from measuring data as digital signal can be at least 

Nyquist’s frequency or more. Therefore, sampling rate of the sound was investigated 

8000 Hz.  The sound signal was high-pass filtered at 7.5 Hz to remove DC offset (1st 

order Butterworth filter) and low-pass filtered at 2.5 kHz to avoid aliasing (8th order 

Butterworth filter). The original sampling rate was 8 kHz. The sound signal was 

again high-pass filter filtered at 100 Hz to remove heart and muscle sound (1st order 

Butterworth filter) and low-pass filtered at 2.5 kHz to avoid aliasing  (8th order 

Butterworth filter). 

 

Lung sounds from the chest were recorded from 22 patients (12 men and 10 women) 

with different pulmonary diseases which are 8 healthy subjects and 14 different 

pulmonary diseases. Types of recorded diseases are: rhonchus, wheezing, 

pneumonia, asthma, bilateral rhonchus, current wheezing, wheezing at expirium, 

wheezing at left, hypersensitive pneumonia, interstitial pulmonary fibrosis, 

bronchiectasis, rhomatoid artrit. The frequency of the recorded wheezing and 
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rhonchus sounds are like as in literature about 400 Hz. And patient with pneumonia, 

frequency range is between 300- 600 Hz.  

 

The sounds recorded are given in Appendix A. All the subjects were asked to breath 

spontaneously in the sitting position and sounds were recorded over the right scapula. 

In all figures, there are 4 graphs. The first one (a), shows time domain of the original 

signal. The second one (b), shows the diagram filtered to remove DC offset and 

aliasing. The third one (c), shows the diagram filtered to remove heart sound. The 

last one (d), shows FFT of the final signal which is without muscle and hearth 

signals, and high frequency aliasing. 

 

In Figure A. 1, normal vesicular sounds recorded over the right scapula of a 21 year 

old, 1.75 m height, 79 kg weight, and no smokers’ man are shown. After 500 Hz 

there is no considerable frequency component. 

 

In Figure A. 2, normal vesicular sounds recorded over the right scapula of a 24 year 

old, 1.75 m height, 75 kg weight, and no smokers’ man are shown. 

 

In Figure A. 3, normal vesicular sounds recorded over the right scapula of a 24 year 

old, 1.70 m height, 75 kg weight, and no smokers’ man are shown.  

 

In Figure A. 4, normal vesicular sounds recorded over the right scapula of a 21 year 

old, 1.80 m height, 72 kg weight, and quit smoking man are shown. 

 

In Figure A. 5; normal vesicular sounds recorded over the right scapula of a 25 year 

old, 1.74 m height, 90 kg weight, and quit smoking man are shown. 

 

In Figure A. 6; normal vesicular sounds recorded over the right scapula of a 50 year 

old, 1.58 m height, 76 kg weight, and no smoker’s woman are shown. 

 

In Figure A. 7; normal vesicular sounds recorded over the right scapula of a 53 year 

old, 1.58 m height, 81 kg weight, and no smoker’s woman are shown. 
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In Figure A. 8; normal vesicular sounds recorded over the right scapula of a 29 year 

old, 1.61 m height, 63 kg weight, and no smoker’s woman are shown. 

 

In Figure A. 9; a patient with asthma were recorded over the right scapula of a 54 

year old, 1.75 m height, 93 kg weight, and quit smoking man are shown. In Figure A. 

10; a patient with asthma and bilateral rhonchus were recorded over the right scapula 

of a 59 year old, 1.61 m height, 96 kg weight, and no smoker’s woman. Information 

about a patient with asthma has rhonchus sounds in both lungs that are given above. 

As the severities of sounds are increased so rhonchus sounds turns to wheezing. High 

frequency wheezes of approximately 400 Hz is visible. This region are seen in Figure 

A.10b 

 

In Figure A. 11; a patient with current wheezing recorded over the right scapula of a 

66 year old, 1.53 m height, 72 kg weight, and no smoker’s woman are shown. 

Current wheezing sounds had higher amplitude at 300 Hz and in addition, 

frequencies around the 400 are visible.  

 

In Figure A. 12; a patient with wheezing sounds at expirium recorded over the right 

scapula of a 73 year old, 1.73 m height, 91 kg weight, and smoker’s man are shown. 

Spectrum of wheezing sounds at expirium are seen above and frequency range are 

visible. In Figure A. 13; a patient with wheezing sounds were recorded over the right 

scapula of a 23 year old, 1.72 m height, 62kg weight, and quit smoking man. 

 

In Figure A. 14; a patient with pneumonia were recorded over the right scapula of a 

72 year old, 1.72 m height, 64 kg weight, and no smoker’s man. In literature, 

frequency bands of pneumonia sounds are known as 300-600 Hz.  

 

In Figure A. 15; a patient with pneumonia were recorded over the right scapula of a 

34 year old, 1.76 m height, 80 kg weight, and no smoker’s man. In this Figure A. 

range of pneumonia is more definite. 

 

In Figure A. 16; a patient with hypersensitive pneumonia were recorded over the 

right scapula of a 66 year old, 1.61m height, 72 kg weight, and no smoker’s woman. 

In subjects with hypersensitive pneumonia, majority of the power is found at 400 Hz. 
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In Figure A. 17; a patient with interstitial pulmonary fibrosis were recorded over the 

right scapula of a 59 year old, 1.49 m height, 35 kg weight, and no smoker’s woman. 

Spectrum of intersiyel pulmonary fibrosis extends to 500 Hz. 

 

In Figure A. 18; a patient with rhonchus were recorded over the right scapula of a 56 

year old, 1.69 m height, 117 kg weight, and smoker’s man. Majority of the power of 

this sound is found 150 Hz and quadratic majority of the power is found between 300 

and 350 Hz. 

 

In Figure A. 19; a patient with bilateral rhonchus were recorded over the right 

scapula of a 41 year old, 1.54 m height, 77 kg weight, and smoker’s woman. A 

patient with rhonchus in lung, frequency of wheezing is same as in literature. 

 

In Figure A. 20; a patient with bronchiectasis were recorded over the right scapula of 

a 66 year old, 1.57 m height, 65 kg weight, and no smoker’s woman. 

 

In Figure A. 21; a patient with romatoid artrit were recorded over the right scapula of 

a 49 year old, 1.67 m height, 66 kg weight, and quit smoking man. 

 

In Figure A. 22; a patient with extended expirium sound were recorded over the right 

scapula of a 37 year old, 1.61 m height, 71 kg weight, and no smoker’s woman. 

 

Also R.A.L.E sounds are given in Appendix B. We obtained respiratory sound 

signals from internet web site “http://www.rale.ca”  Recorded sounds are analyzed 

using FFT and STFT with hamming window.  

 

In Figure B.1 R.A.L.E. Normal vesicular sounds were recorded over the left anterior 

upper chest of a 15 year old male adolescent   

 

In Figure B.2, R.A.L.E. Tracheal sounds were recorded over the trachea of a healthy 

26 year old man  
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In Figure B.3 R.A.L.E. Bronchial sounds were recorded over the right anterior upper 

chest of a 12 year old boy  

 

In Figure B.4 R.A.L.E. Bronchovesicular sounds were recorded over the right 

posterior lower chest of a 2 day old baby girl.  

 

In Figure B.5 R.A.L.E. Crackles sounds were recorded over the right posterior lower 

chest of a 9 year old boy with pneumonia.  

 

In Figure B.6 R.A.L.E. Crackles and bronchial breathing were recorded posteriorly 

over the consolidated left lower lung of a 16 year old boy with tuberculosis. 

 

In Figure B. 7 R.A.L.E. Late inspiratory fine crackles were recorded over the right 

posterior lower lung of a 55 year old woman with rheumatoid lung disease. 

 

In Figure B.8 R.A.L.E. Grunting was recorded with a microphone in front of the 

mouth of a premature baby girl with respiratory distress 7 hours after birth. 

 

In Figure B.9 R.A.L.E. Inspiratory squawk and crackles were recorded over the right 

posterior upper chest of a 78 year old woman with interstitial pulmonary fibrosis. 

 

In Figure B.10 R.A.L.E. Stridor was recorded over the trachea of a 15 month old girl 

with croup. 

 

In Figure B.11 R.A.L.E. Expiratory wheezing was recorded over the right anterior 

upper chest of an 8 year old boy with asthma. There is a slight frequency component 

between 400-500 Hz. 

 

In Figure B.12 R.A.L.E. Wheezing and coarse crackles were recorded over the right 

posterior lower lung of an 8 month old boy with viral bronchiolitis. There is a 

powerful frequency component between 400-500 Hz 

 

In Figure B.13 R.A.L.E. Wheezing over trachea and right lower lung was recorded 

from an 11-year old girl with acute asthma. 
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CONCLUSION 

 

This thesis has presented a study on respiratory sound signal with using digital signal 

processing method. Respiratory diseases can rapidly be handle using signal 

processing tools and analyzed. The relation between disease and sound can be found 

in frequency domain. This can be accomplished by using FFT. In this thesis FFT is 

used for that reason. The figures obtained from sound recordings in University 

hospital are presented in Appendix A. But this is not enough, because some sound 

signals have time dependent frequencies. Therefore, STFT is the good approach for 

this case. But, this is not enough to understand whole signals during breathing cycle. 

Windowing is used to concentrate on the desired part of the signal .We used STFT 

with hamming window and presented in Appendix B. Our search and literature 

survey indicates that wheezing sound frequencies are about 400 Hz. Also pneumonia 

disease has frequency between 300 and 600 Hz. Therefore, other respiratory diseases 

also can be found in different frequency ranges. But, there are many difficulties 

affecting the analysis such as number of patient for each respiratory disease. 

 

Clinicians will be able to use some packet and standard software program to get 

efficient and rapid diagnosis. However, it will be aimed to prepare user interfaced 

software in the future studies. This special software program will be used together 

with pneumotachometer measuring values and also may include database parts 

related to patient and diseases to get statistical information. After, each instrument 

and parts have international standard use; an auscultation device can be found as in 

standard packet to use easily by clinicians.   
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APPENDIX A 

 
RESPIRATORY DISEASE SOUND GRAPHICS 
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Figure A. 1a 
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Figure A. 1b 
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Figure A.1c 

 

 

 
Figure A.1d 

  
 

Figure A. 1. Normal breath sounds in time-domain signal (a) FFT’s (b) filtered to remove DC offset 
and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.2a 

 
 
 

 
 

Figure A.2b 
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Figure A.2c 
 
 
 
 

 
Figure A.2d 

 
Figure A. 2. Normal breath sounds in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.3a 
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Figure A.3b 
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Figure A.3c 
 
 
 
 

 
Figure A.3d 

 
Figure A. 3. Normal breath sounds in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.4a 
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Figure A.4b 
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Figure A.4c 
 
 
 
 
 

 
Figure A.4d 

 
Figure A. 4. Normal breath sounds in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.5a 
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Figure A.5b 
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Figure A.5 c 
 
 
 
 

 
Figure A.5d 

 
Figure A. 5. Normal breath sounds in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.6a 
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Figure A.6b 
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Figure A.6c 
 
 
 
 

 

Figure A.6d 

Figure A. 6. Normal breath sounds in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.7a 
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Figure A.7b 
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Figure A.7c 
 
 
 
 

 
Figure A.7d 

 
Figure A. 7. Normal breath sounds in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.8a 
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Figure A.8b 
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Figure A.8c 
 
 
 
 
 

 
Figure A.8d 

 
Figure A. 8. Normal breath sounds in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.9a 
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Figure A.9b 
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Figure A.9c 
 
 
 
 
 
 

 
Figure A.9d 

 
Figure A. 9. A patient with asthma in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.10a 
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Figure A.10b 
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Figure A.10c 
 
 
 

 

 
Figure A.10d 

 
Figure A. 10. A patient with asthma and bilateral rhonchus  in time-domain signal (a) FFT’s (b) 

filtered to remove DC offset and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.11a 
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Figure A.11b 
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Figure A.11c 
 
 
 

 
Figure A.11d 

 
Figure A. 11. Current wheezing sound in time-domain signal (a) FFT’s (b) filtered to remove DC 

offset and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.12a 
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Figure A.12b 
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Figure A.12c 
 
 
 
 

 
Figure A.12d 

 
Figure A. 12. Wheezing sound at expirium in time-domain signal (a) FFT’s (b) filtered to remove DC 

offset and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.13a 
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Figure A.13b 
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Figure A.13c 
 
 

 
 

 
Figure A.13d 

 
Figure A. 13. Wheezing sound in time-domain signal (a) FFT’s (b) filtered to remove DC offset and 

aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.14a 
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Figure A.14b 
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Figure A.14c 
 
 
 
 

 
Figure A.14d 

 
Figure A. 14. Pneumonia sound in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.15a 
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Figure A.15b 
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Figure A.15c 
 
 
 
 
 
 
 

 
Figure A.15d 

 
Figure A. 15. Pneumonia sound in time-domain signal (a) FFT’s (b) filtered to remove DC offset 

and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.16a 
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Figure A.16b 
 
 
 
 
 
 
 
 
 
 
 

Frequency, Hz 

Power spectrum density 

Time, sec 

A
m

pl
itu

de
 

Pneumonia 



 98 

 

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5
filtre edilmis sesin güç spectrum yogunlugu

Frekans(Hz)
 

Figure A.16c 
 
 
 
 

 
Figure A.16d 

 

Figure A. 16. Hypersensitive pneumonia sound in time-domain signal (a) FFT’s (b) filtered to remove 

DC offset and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.17a 
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Figure A.17b 
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Figure A.17c 
 

 
 

 
Figure A.17d 

 
Figure A. 17. Interstitial pulmonary fibrosis sound in time-domain signal (a) FFT’s (b) filtered to 

remove DC offset and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.18a 
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Figure A.18b 
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Figure A.18c 
 
 
 
 

 
Figure A.18d 

 
Figure A. 18. Rhonchus sound in time-domain signal (a) FFT’s (b) filtered to remove DC offset and 

aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.19a 
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Figure A.19b 
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Figure A.19c 
 

 
 
 
 

 
Figure A.19d 

 
Figure A. 19. Rhonchus sound in time-domain signal (a) FFT’s (b) filtered to remove DC offset and 

aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.20a 
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Figure A.20b 
 
 
 
 
 
 
 

Frequency, Hz 

Power spectrum density 

Time, sec 

A
m

pl
itu

de
 

Bronchiectasis 



 106 

 
 
 
 

0 100 200 300 400 500 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
filtre edilmis sesin güç spectrum yogunlugu

Frekans(Hz)
 

Figure A.20c 
 
 
 
 
 

 
Figure A.20d 

 
Figure A. 20. Bronchiectasis in time-domain signal (a) FFT’s (b) filtered to remove DC offset and 

aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.21a 
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Figure A.21b 
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Figure A.21c 
 
 
 
 

 
Figure A.21d 

 
Figure A. 21. Rhomatoid artrit in time-domain signal (a) FFT’s (b) filtered to remove DC offset and 

aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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Figure A.22a 
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Figure A.22b 
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Figure A.22d 

 
Figure A. 22. Extended expirium sound in time-domain signal (a) FFT’s (b) filtered to remove DC 

offset and aliasing (c) and filtered to remove heart sound (d) FFT’s. 
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R.AL.E. Repository 
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Figure B1a 
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Figure B.1c 

 
 

Figure B. 1. (a) R.A.L.E Normal vesicular sounds  in time domain signal (b) FFT’s.(c) 3D STFT, 
Using Hamming window 
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Figure B.2a 
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Figure B.2 b 
 

 
Figure B. 2. (a) R.A.L.E Tracheal sounds in time domain signal (b) FFT’s.(c) 3D STFT, Using 

Hamming window 
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Figure B.3a 
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Figure B.3b 
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Figure B.3c 

 
 

Figure B. 3. (a) R.A.L.E Bronchial sounds in time domain signal (b) FFT’s.(c) 3D STFT, Using 
Hamming window 
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Figure B.4a 
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Figure B.4b 
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Figure B.4c 

 
Figure B. 4. (a) R.A.L.E  Bronchovesicular sounds in time domain signal (b) FFT’s.(c) 3D STFT, 

Using Hamming window 
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Figure B.5a 
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Figure B.5b 
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Figure B.5c 

 
Figure B. 5. (a) R.A.L.E  Crackles sounds with pneumonia in time domain signal (b) FFT’s.(c) 3D 

STFT, Using Hamming window 
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Figure B.6a 
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Figure B.6b 
 

Figure B. 6. (a) R.A.L.E. crackles and bronchial breathing with tuberculosis. in time domain signal (b) 
FFT’s 
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Figure B.7a 
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Figure B.7b 
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Figure B.7c 

 
Figure B. 7. (a) R.A.L.E. late inspiratory fine crackles with rheumatoid lung disease. in time domain 

signal (b) FFT’s.(c) 3D STFT, Using Hamming window 
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Figure B.8a 
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Figure B.8b 
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Figure B.8c 

 
Figure B. 8. (a) R.A.L.E. Grunting with respiratory distress in time domain signal (b) FFT’s.(c) 3D 

STFT, Using Hamming window 
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Figure B.9a 
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Figure B.9b 
 

Figure B. 9. (a)R.A.L.E. Inspiratory squawk and crackles with interstitial pulmonary fibrosis in time 
domain signal (b) FFT’s 
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Figure B.10a 
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Figure B.10b 
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Figure B.10c 

 
Figure B. 10. (a) R.A.L.E. Stridor with croup in time domain signal (b) FFT’s.(c) 3D STFT, Using 

Hamming window 
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Figure B.11a 
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Figure B.11b 
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Figure B.11c 

 
Figure B. 11. (a) R.A.L.E. Expiratory wheezing with asthma. in time domain signal (b) FFT’s.(c) 3D 

STFT, Using Hamming window 
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Figure B.12a 
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Figure B.12b 
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Figure B.12c 

 
Figure B. 12. (a) R.A.L.E. Wheezing and coarse crackles with viral bronchiolitis in time domain 

signal (b) FFT’s.(c) 3D STFT, Using Hamming window 
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Figure B.13a 
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