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ABSTRACT
DIAGNOSIS USING PULMONARY SOUNDS AND DESIGN OF AN
ELECTRONIC AUSCULTATION DEVICE
AKA, Levent
M.Sc. in Mechanical Engineering
Supervisor: Assoc. Prof. Dr. H. Ridvan OZ
July 2006, 148 pages
The aim of this thesis is to find out relations betweennds and pulmonary
diseases. Every pulmonary disease has distinguishingd s®lnysicians diagnose
pulmonary disease by using a stethoscope. This is a dqualitgoproach, but this
should be measurable and recordable for a quantitatagnalsis. Mathematical
transformations are applied to signals to obtain furti@rmation from that signal
that is not readily available in the raw signal. Imststudy, a literature survey is
performed on analyzing lung sounds and diagnosis as iputembased approach.
There are many articles about electronic recording angssaf sounds. They are
not completely distinguishable due to the mixing of heattscle and other sounds.
Some of them can be filtered easily. It is possibldistinguish Chronic Obstructive
Pulmonary Disease (COPD) and other diseases using soumfdstudately, there is
no clear distinction among diseases. Nevertheleggaldsignal processing and its
filtering methods can be used to analyze pulmonary solasy parameters (age,
sex, smoking, pulmonary drugs, weight, muscle and hearndsocetc.) can affect the
groupings in the signal analyzing systems and their meanifigsse can be
eliminated by means of separation technique and filterirtpads. New techniques
may make to pre-diagnosis and pulmonary disease redgpiossible. Thus, sound
recordings of the all patients can be easily stored img w®mputer as sound library.
In the study the patients are diagnosed and the soued®@rded at University
Hospital in Gaziantep. FFT and STFT techniques are usexhdlyze the sound
recordings. Pneumonia and wheezing characteristics arevetisater the analysis.
It is aimed to have a database about the patientspthed recordings are stored in a
computer and will be used for revisiting and comparisorke hicludes design of an
auscultation device. Unfortunately, thoughts are improviedee to design of device
and signal processing methods were indicated from computsedbsystems.
Software is improved to be used for diagnosis by thectdins.
Key Words: Respiratory sound analysis, Respiratory disease, $FFT



OZET

SOLUNUM YOLLARI SESLER INI KULLANARAK TE SHIS VE
ELEKTRON iK OSKULTASYON C iHAZI TASARIMI
AKA, Levent

Yiksek Lisans Tezi, Makine MuhendglBolumu
Tez Yoneticisi: Dog. Dr. H. Ridvan OZ
Temmuz 2006, 148 sayfa
Sesler ve akg@er yollarina bgl hastaliklari arasindaki gkileri bulmak bu tezin
amacidir. Her akger yollarina bah hastalgin ayirt edici bir sesi vardir. Doktorlar
akciger hastaliklarini stetoskoplaskes etmektedirler. Bu niteliksel bir yakiandir.
Ama niceliksel bir tghis icin olculebilir ve kaydedilebilir olmahdirislenmemg
sinyalde hazir olarak bulunmayan sinyalden daha fazaddinmek icin, sinyallere
matematiksel dongimler uygulanir. Bu agirmada, bilgisayar tabanl yaklenda
oldugu gibi, akcger sesleri ve thisi hakkinda bir literatur agarmasi yapilmgtir.
Elektronik kayit ve ses analizi hakkinda bircok makale vaBlirsesler, kalp, kas ve
diger seslerin kagmasindan dolayl tam olarak ayirt edilemezler. Bazkalaylikla
filtre edilebilir. KOAH ve dger hastaliklarinin ayirt edici gleisinin bu alandaki
basarili calgmalardan sonra mumkin olgeaa inantyoruz. Ne yazik ki hastaliklar
arasinda belli ayrimlar yoktur. Yine de, sayisal singldme ve filtre metotlari
akciger seslerini analiz etmede kullanilabilir. Ama bircok etnfya, cinsiyet, sigara
kullanimi, akcger ilaglari, vicut grhg), kas ve kalp sesleri vs.) sinyal analizi
sistemlerindeki gruplandirmalari etkileyebilir. Yine, dminlar ayirma teknikleri ve
filtre yontemleri aracifitlyla ortadan kaldirabilir. Yeni teknikler 6ncedentis ve
akciger hastaliklar ikkilerini mamktn kilabilir. BOylece, butun hastalarin ses
kayitlari ses kutuphaneskeklinde kullanilacak olan bilgisayar yardimiyla
saklanabilir. Bu cajmada, Gaziantep Universitesi Hastanesine gelen hastakedan
kayitlart alinmgtir. FFT ve STFT teknikleri ile analizler gercegialmistir.
Pnomoni ve hirilti seslerinin karakteristikleri elde ed§hin Hastalik sesleri igin bir
veri tabani olsturulmaktadir. Bu bilgiler hastalarin hastaneyi tekrar aglarinde
karsilastirma amaciyla kullanilacaktir. Tez shginda cihaz tasarimi ge¢cmektedir.
Ancak cihaz tasarimi hakkindasdinceler gelitirilmis, bilgisayar Gzerindersaret
islemenin nasil yapilaga gosterilmgtir. Doktorlar tarafindan thiste kullaniimak
tzere yazilim gedtirilmi stir.

Anahtar kelimeler: Solunum sistemleri ses analizi, Solunum hastaliki&fT, STFT
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CHAPTER 1

INTRODUCTION

In this section an introduction will be given about negpry system and sounds.

1.1 Respiratory system
It consists of following elements.

£B. 5

LARNYX . t.. {

Tra:;hea__._._,
TRACHEA gl
TWO BRONCHEALS / /

Bronchioles
RIGHT LUNG (3 PARTS) Alvedi 3 L
LEFT LUNG (2 PARTS) .-'J &

Alveoli—— 0 "
BRONCHIOLES (enlkargement)
ALVEOLI

Figure 1.1 Human Respiratory system parts

Auscultation is the way of sound listening technique atht@an body. There are
three sound categories from auscultation hearing sourgigeasbelow.

- Normal Sounds

- Supplementary Sounds

- Talking Sounds

1.2 Normal Sounds

These types of sounds are physiological. These can &erde¢d as normal working
sounds of the organs. Normal sounds can be separatedwntcub-groups as
bronchioles and vesicular sounds. Bronchioles sounds agnin@ementally or

detrimentally. Vesicular sounds are normally breatimds.

Incremental and bilateral sounds can be heard in chitréatless people. Reducing
and bilateral sounds can be heard oppositely in fat pdoplemental and unilateral
sounds can be heard in pneumonia and atelectasia diReaesing sounds at one



side can be heard in accumulating liquids at the lungnia, atelectasia and big

neoplasm diseases.

1.3 Supplementary Sounds

Supplementary sounds are generally pathological and patisecret disease. On the
contrary, these types of sounds can also be heard myisaly in new born

children and especially cesarean born children. Supplanyesttunds can be divided
into two sub-groups likentermittentand uninterruptedsounds. Intermittent sounds
can be classified as tin, middle, rough sounds. We can tieaand intermittent

sounds at the pneumonia, heart failure, and interstitiséases; middle and
intermittent sounds at the bronchitis, chronic bronsh@ind still pneumonia.

Pneumonia implies tin and middle intermittent sounds.nténiupted sounds are
similar to classify tin and rough without middle. Tin mt@irrupted sound signifies
wheezing. When big and small air ways narrows, thgsestgf sounds can be heard.

Typical sample is the asthma

1.4 Talking Sounds

- Pectorilocy: The distinct articulation of the sounds of a patievitise, heard
on applying the ear to the chest in auscultation.

- Bronchophony: A modification of the voice sounds, by which they are
intensified and heightened in pitch; observed in auseuitaf the chest in
certain cases of intro-thoracic disease.

- Egophony: The sound of a patient's voice so modified as to resethble
bleating of a goat, heard on applying the ear to the chestriain diseases

within its cavity, as in pleurisy with effusion.
1.5 Sound Properties of the Respiratory Diseases
Stridor: a high-pitched, noisy respiration, like the blowing oé thind; a sign of

respiratory obstruction, especially in the trachedaoynx. A high-pitched, noisy
respiration, like the blowing of the wind; a sign a$p&atory obstruction.



Asthma: Asthma is a chronic, inflammatory lung disease chara&d by recurrent
breathing problems. People with asthma have acute episodesen the air

passages in their lungs get narrower, and breathing beconwge difficult

Sometimes episodes of asthma are triggered by allergéhsugh infection,

exercise, cold air and other factors are also impotiéggers. Labored breathing
caused by narrowing of the smaller air passages in thgs,luassociated with
shortness of breath, wheezing, cyanosis, and coughing

Chronic Obstructive Pulmonary Disease (COPD):a nonreversible lung disease
that is a combination of emphysema and chronic bronghisigally patients have
been heavy cigarette smokers.

Lung Diseases:

- Atelectasis: collapse of an expanded lung; also failure of pulmonbugod
to expand at birth.

- Emphysema: Emphysema is a non-reversible pulmonary disease ntausi
extreme shortness of breath and eventual death. Iniseiase, the bronchial
tubes of the lungs become blocked with mucus plugs dedtion, inhibiting
passage of air into and out of the alveoli. The diséas#haracterized by
destruction of these sacs, which lose their elastiswgell and rupture thereby
interfering with the exchange of oxygen and carbon dioxid@anbreathing
process. Emphysema is often caused by smoking. That typsease sound
can be heard like; breathing sounds get reduces from loeté @nd exhaling
time get bigger than normal.

- Pneumonia :Inflammation of the lungs characterized by fever, shithuscle
stiffness, chest pain, cough, shortness of breathd regairt rate and difficulty
breathing Polysaccharide vaccines- Vaccines that are cenhpof long
chains of sugar molecules that resemble the surfaceerddirt types of
bacteria. Polysaccharide vaccines are available fourpoeoccal disease,
meningococcal disease and Haemophilus Influenza type tygeabf disease
sound can be heard like; tin and middle intermittent sounds.

- Lung oedema :



- Tuberculosis: A constitutional disease characterized by the produation
tubercles in the internal organs, and especially in Ithgs, where it
constitutes the most common variety of pulmonary comgion. Infection
transmitted by inhalation or ingestion of tubercle baeiild manifested in
fever and small lesions. That type of disease sound chedrd like; middle

and rough intermittent sounds.

Pleura Diseases:

It is a thin layer of tissue covering the lungs and tladl wf the chest cavity to
protect and cushion the lungs. A small amount of fluat Htts as a lubricant allows
the lungs to move smoothly in the chest cavity durmgathing

- Ampiem

- Pleurisy

- Hemothorax

- Pnuemothorax

That type of disease sound can be heard like; sound ampiléddees or no sound
can be heard. At the liquid top surface of the small,apeanchial sound can be
heard.

Pneumothorax

Abnormal collection of air outside the lining of the dyrbetween the lung and the

chest wall, is often a consequence of pressure injuries.

1.6 Clinical Methods

Clinical methods to diagnose respiratory diseases:
- Patient history and physical consultation
- Lung graphics: postero anterior and lateral graphics
- Chest ultrasonography (The use of sound waves to produce epiobdir
internal organs. High-frequency sound waves are direictedtissues and
produce echoes, which are in turn changed into picturesauBe different



types of tissue reflect sound waves differently, ultnegyraphy often makes
it possible to find abnormal growths.)
- Breath function tests

1- Simple spirometerPneumatograph, an instrument for measuring the
vital capacity of the lungs, or the volume of air whadn be expelled from
the chest after the deepest possible inspiration.

2- Bronchodilator reversible tesf drug that relaxes and dilates the
bronchial passageways and improves the passages obainentings

3- Bronchi provocation test

4- Carbon monoxide diffusion test

Auscultation of the lung is an important and simplgdostic method [1-3]. At this
area, there is no computerized system to analyze andstembtkrthe respiratory
sound systems. Statistical approach can not be good ssl#sseen from surveys
[2]. Therefore, we believe that respiratory analysis be varied region-to-region,
people to people. Because of this, sound library and persbnatylihave to be
prepared to get good solutions. Auscultation gives direcrnmdtion about the
structure and function of the lung that cannot be obdamiéh any other simple and
noninvasive method [4-9]. Conventionally, physicians use amumsint called
stethoscope for listening the lung sounds. The stethoseapehe first diagnostic
instrument to gain widespread use among physicians. Witthelge of this tool,

physicians gained access to information from within theepési body{10].

This device, invented in 1821 by the French Physician, Laensiestillithe most
common diagnostic tool used by doctors. However, théadeis considered of low
diagnostic value due to its subjectivity in assessing lumgnds. Evaluation of
respiratory sounds depends strongly on the experientlee gfhysician and shows
large intersubject variability. Another drawback of timethod is the inability to
produce a permanent record of the auscultation data thmaki® an intersubject and
intrasubject comparison. Moreover, a stethoscop@euwtes frequency components
above approximately 120Hz (in spite of the fact thatiraspy sounds are known to
contain frequencies up to 2000 )Hmd the human ear is not very sensitive to the
lower-frequency band that remains [11].



The normal lung sound is defined as the sound associdiiedneathing, heard on
the chest of a healthy person. This sound is noise-ikd, the maximum of the
power spectrum lies in the frequency range below 100 Hz. €éfleegy of the
spectrum decreases sharply between 100 Hz and 200 Hzchuatbe detected up to
1.2 kHz. The amplitude of the respiratory sounds varigls thie square of the air
flow, but is also individually dependent and dependent err¢hording position on
the chest [10]. Respiratory sounds which are roughly ciedsifito breath sounds
and adventitious sounds are heard on the chest wall anthnBreath sounds which
are regarded as normal respiratory noises are synchramtitushe flow of air
changing from laminar to turbulent through the airwaysteme a frequency of 200-
600 Hz in healthy lungs. Wheezing is considered to be a @&sairway obstruction
and flow limitation and it appears as continuous, musioahds of more than 100
ms and crackles which are discontinuous, nonmusicalpgi¥pl sounds of less than
70 ms duration constitute the adventitious sounds. Thepfeaa attributed to the
bubbling of secretions in the airways or to the explosikange in gas pressure.
Crackles are classified by physicians according to pitegh or low), number
(scanty and profuse) and timing (inspiratory and expirateayly and late) [13].
These characteristics aid physicians in the final diagnésr example, crackles of
interstitial fibrosis are high pitched or fine and ocaumid to late inspiration. On
the other hand, early inspiratory crackles are assatiavith severe expiratory
obstruction. Low-pitched crackles, known as coarse ktgac are produced in

patients with chronic airflow obstruction and broncrasd.

1.7 Microphones

A microphone, sometimes referred to as a mike or prienounced "mike"), is an
acoustic to electric transducer that converts soundantelectrical signal. Emile
Berliner invented the first microphone on March 4, 1877, Inat first useful
microphone was invented by Alexander Graham Bell. Manly e@velopments in
microphone design took place in Bell Laboratories.

All microphones capture sound waves with a thin, flexidé&phragm (or ribbon in
the case of ribbon microphones). The vibrations of ¢lesnent are then converted
by various methods into an electrical signal thatnisaalog of the original sound.


http://en.wikipedia.org/wiki/Transducer
http://en.wikipedia.org/wiki/Sound

Most microphones in use today use electromagnetic gerergdynamic
microphones), capacitance change (condenser microphomespiezoelectric
generation to produce the signal from mechanical vibration.

In a capacitor microphone, also known as a condenseophigne, the diaphragm
acts as one plate of a capacitor, and the vibrations pgocthanges in the distance
between the plates. Since the plates are biasedawii®ed charge (Q), the voltage
maintained across the capacitor plates changes wéhvitbrations in the air,
according to the capacitance equation:

Q=CV

where Q = charge in coulombs, C = capacitance iadfa and V = potential
difference in volts. The capacitance of the platesversely proportional to the
distance between them for a parallel-plate capacito

Caé
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Capacitor microphones can be expensive and regujpewer supply, commonly
provided from mic inputs as phantom power (Inventedthe mid-1960s and
standardized shortly thereafter, phantom power isvidely-used method for
supplying current to devices over signalling cablespecially audio), but give a
high-quality sound signal and are now the prefenfedice in laboratory and studio
recording. An electret microphone is a relativedyvrtype of condenser microphone
invented at Bell laboratories in 1962 by Gerhards&s and Jim West, and often
simply called an electret microphone. An electeetidielectric material that has
been permanently electrically charged or polarisétte name comes from
electrostatic and magnet; a static charge is endgeddan electret by alignment of
the static charges in the material, much the wayagnet is made by aligning the
magnetic domains in a piece of iron. They are usedany applications, from high-
quality recording and lavalier use to built-in n@phones in small sound recording
devices and telephones. Though electret mikes wece considered low-cost and
low quality, the best ones can now rival capaaiaes in every respect (apart from
low noise) and can even have the long-term stglalitd ultra-flat response needed
for a measuring microphone. Unlike other condemsierophones, they require no
polarising voltage, but normally contain an integda preamplifier which does



require power (often incorrectly called polarizing powerbias). This preamp is
frequently phantom powered in sound reinforcement andostygplications. While

few electret microphones rival the best DC-polarizedsuini terms of noise level,
this is not due to any inherent limitation of the eldctRather, mass production
techniques needed to produce electrets cheaply don't lendelemto the precision

needed to produce the highest quality microphones applications

Because of differences in their construction, micropsorhave their own
characteristic responses to sound. This differencesporese produces non-uniform
phase and frequency responses. In addition, mics are rotmolyi sensitive to
sound pressure, and can accept differing levels without tigforAlthough for
scientific applications microphones with a more umfaesponse are desirable, this
is often not the case for music recording, as the-umiorm response of a
microphone can produce a desirable coloration of the sdinede is an international
standard for microphone specifications (IEC 60268-4), but fexy manufacturers

adhere to it.

A frequency response diagram plots the microphone setysitivdecibels over a
range of frequencies (typically at least 0—20 kHz), gelyefat perfectly on-axis
sound (sound arriving at 0° to the capsule). Frequency respoagebe less
informatively stated textually like so: "20 Hz—20 kHz £3 dBhis is interpreted as a
(mostly) linear plot between the stated frequenciet) wariations in amplitude of
no more than 3 dB plus or minus. However, one cannotrrdigie from this
information how smooth the variations are, nor inatvparts of the spectrum they
occur. Note that commonly-made statements such as "20 Hz-Z0 kke

meaningless without a decibel measure.

The self-noise or equivalent noise level is the solenel that creates the same
output voltage as the inherent noise of the microphohe fEpresents the lowest
point of the microphone's dynamic range, and is partigulanportant should you

wish to record sounds that are quiet. The measureeis stated in dBA, which is the
equivalent loudness of the noise on a decibel scajdrey-weighted for how the
ear hears, for example: "15 dBA SPL" (SPL means soursbyme level relative to

20 micropascals). The lower the number the better. Snit®phone manufacturers


http://en.wikipedia.org/wiki/Phase_%28waves%29

state the noise level using ITU-R 468 noise weighting, kvimmwre accurately
represents the way we hear noise, but gives a figure sbriee14 dB higher. A quiet
microphone will measure typically 20 dBA SPL or 32 dB SPL-4@&ghted.

The maximum SPL ( sound pressure level) the microphoneceept is measured
for particular values of total harmonic distortion (T} DQDypically 1%. This is
generally inaudible, so one can safely use the mihislevel without harming the
recording. Example: "142 dB SPL peak (<1% THD)". The higlner value, the
better. The clipping level is perhaps a better indicat maximum useable level as
the 1% THD figure usually quoted under max SPL is really rgy wald level of
distortion, quite inaudible especially on brief high fgeaHarmonic distortion from
microphones is usually of low-order (mostly third harnadriype, and hence not
very audible even at 3-5%. Clipping, on the other hand, lyscalsed by the
diaphram reaching its absolute displacement limit (orth®y preamplifier), will
produce a very harsh sound on peaks, and should be avoedllifpossible. For
some mikes the clipping level may be much higher thamdve SPL. The dynamic
range of a mike is the difference in SPL between thisenfloor and the maximum
SPL. If stated on its own, for example "120 dB", it ceys significantly less
information than having the self-noise and maximum Sgrés individually.

Sensitivity indicates how well the mike converts acioystessure to output voltage.
A high sensitivity mike creates more voltage and sd makd less amplification at
the mixer or recording device. This is a practical comceunt not directly an
indication of the mike's quality, and in fact the teremstivity is something of a
misnomer, ‘transduction gain' being perhaps more meanigfylist "output level")
because true sensitivity will generally be set by the néiesr, and too much
"sensitivity" in terms of output level will compromise thkpping level. There are
two common measures. The (preferred) internationaldara is made in mV per
pascal at 1 kHz. A higher value indicates greater seimitiVhe older American
method is referred to a 1 V/Pa standard and measurediimda resulting in a
negative value. Again, a higher value indicates gressesitivity, so —60 dB is more
sensitive than —70 dB.


http://en.wikipedia.org/wiki/DB_SPL

1.7.1 Used Equipments in this study

Respiratory sounds were recorded by a microphone. Elecneenser type (ECM)
microphone (Sony ECM T-150), which was used in literaturalge used in this
study. Working method of the microphone can be one odiadctions. We used
microphone in one direction for sound recording by usingstethoscope head.
Microphone was mounted onto stethoscope head to gelasthand valuable sound.
Its impedance is 2.2(k Response bandwidth is between 30-15000 Hz. This
bandwidth also includes heart, muscle and other sountle a¢¢ordings. Therefore,
recorded sounds have to be filtered before analyzingdhals. We have to prevent
sounds coming from sliding of the microphone at the chadlt Besides, sounds
coming from ambient have to be filtered. For that reasee have to record sounds
at the lowest sound intensity laboratories. Climateounce, traffic, patient parents
noises affect recordings. Therefore, recordings ahtispital laboratories have to be
made silently at the weekend. Nevertheless, obtaininigeopatients is also problem
at the weekend without some volunteers. Smokers andd#DCstudents are the

volunteers of this study.

1.8 Processing System

The system used for analyzing the sound recordings is glew.

Computer: AMD 3500+, 64 bit, 2GB DDR-Ram, 160 GB HD.
Program: MATLAB.

1.9 Method

Control groups are arranged to record respiratory sounds riormal people, who
are the volunteers. To make the control groups, we take af the age ranging
between 20-60 years old as in equal distributions. Patmumdsrecords during
normal breathing. Advising measurement distance from ¢bedtvice is the 6mm.
Working groups are arranged from respiratory patient, wib luing disease clinic.
Pulmonary patient sounds are directly recorded befonealitreatment. Recording
sound is taken betweeri"4and %' intercostals space under the scapula. These
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recorded sounds include also heart and muscle sounds. Recouteld are taken
from varying sex, age, height, and weight people. Sounds vesorded together
with breath sounds. Heart sounds are below the 100 Hzhdlpeof varied digital
low pass filters can filter this type of sounds. Afliéering of the sounds, we have
digital respiratory sounds without muscle and heart deuAbove the 2000 Hz, is
not belonging to respiratory disease according to liteeasurvey, which can be
filtered by high pass filters. Pneumonia disease sounddreies are between 300 to
600Hz. The patients, who have pneumonia can be examined ibydbgiratory
signal by the help of band pass filters as in determinegeravith some searching
signal characteristics.

Frequency of wheezing sounds is about 400 Hz. Vesiculathbseand frequency of
the healthy people is going over to 1000Hz. Some using fd@ersinfinite impulse
filter (IIR), finite impulse filter (FIR), Yule walkerellip and etc.

Recording sounds at the normal people are taken bechtise meaning and shape
of the normal sound. Thus, we want to have some stdsdaltated to quantities of
normal sounds. On the other hand, how the each peopdedilferent fingerprint,
and also have different own sound characteristics. th&d reason, we want to get
new way to our project. We decided that determining oflitease sounds is going
together with personal database to get personally diseas®ls. In our opinion,
until now, to get sound characteristics, difficultiddiee all project have been came
from that reason. We take pay attention to this to cnjegt. That may be beneficial
to good approach. Healthy and patient people are classifiedrding to age, sex,
height, weight and etc.
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1.10 AN AUSCULTATION DEVICE
An auscultation device, which can be seen in figure, tm@ayconsist of

following parts to use easily by the clinicians:

- Computer to analyze signals and turns to usable diagnosis infarmat

- Microphones to get signals as in digital from valuable measuringeptaat
may be consist of stethoscope head to isolate airamtisrom human body
surface.

- The Spirometer and attached flow head function togethser a
Pneumotachometey with an output signal proportional to airflow.

- Software program, that may be improve from signal anaylsing and stattical
analyzing technicque, which consist of old information reteti

Sound was recorded as a digital signal with simultaneoushtip recording
to understand where/when the disease distinction talee®.pSound is directly

related to lung volume and its dynamic properties.

Figure 1.2 Measuring technique of the Respiratory sounds
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CHAPTER 2

LITERATURE SURVEY

During the last two decades, much research has beerdcauti®n computer-based
respiratory sound analysis systems. However, respyratounds are highly non-
stationary stochastic signals due to changing airflate, heart sounds and change in
lung volume during a respiration cycle. This makes the arsabyf the respiratory

sounds a difficult task.

Over recent years, the scientific activity within fiedd of respiratory acoustics has
increased markedly. However, a lack of guidelines for @atguisition, storage,
signal processing and analysis of the lung sound signal khde m difficult to

compare results from different laboratories and hasipeaed the commercial
development of respiratory sound analysis equipmenter8k efforts have been
undertaken to solve these problems [12,14,15]. With the usedérn digital signal
processing techniques, the analysis of waveforms by compaierbecome an

established research technique for the investigation ofaéspi sounds [12,16].

Bibliographies reviewing the overall literature may be bumthe following papers
on snoring [17,18], cough [17-21], stridor [22], and wheeze [23,34ldies
involving an objective analysis of respiratory soundswslhioat lower respiratory
sound analysis accounted for 55% of the total and snonrripdaemaining 45%.

Overall, 50% of the papers were written by CORSA partitgpa
Good bibliographies on breath sound analysis may be foundgoerpay Malmberg
et al. [25], Gavriely et al. [26] and Schreur et al. [27].

2.1 Signal Acquisition Methods

In all applications, sounds recorded from the respiyasystem were captured by
microphones or contact sensors situated at the mouthheo chest or elsewhere.
Typically, one chest-wall sound channel was used, but inynpapers, two and

occasionally multiple channels were used [28, 29]. Raspy sound data through
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five microphones placed at proper locations on the chedit along with aflow
signal for synchronization [3].

Upper airways sounds such as snoring and cough were o#iptured by
microphones used in free field at a set distance frompdhent’s mouth [21].
Adventitious and breath sounds originating from theelowirways were captured
from the chest wall using two types of microphone: lgcteét air-coupled
microphones and 2) contact sensors (accelerometer8p[12,

Air-coupled microphones were used in all European Ceritgghe size, shape and
dimensions of the air cavity between the microphonecéiedt varied from centre to

centre [30]. Microphone housings were generally desigmetl castom-made by

individual centres according to particular theories a®hs. In North America and

Israel, a variety of commercially available and custoade contact sensors and
accelerometers, attached on to the chest wall witilereadhesive rings or a rubber
belt, were employed [15].

Respiratory sounds can be recorded continuously, and atayezéne to monitor
sleep apnea, nocturnal changes of bronchial obstructi@sthma €.g wheezing
time) [31], ventilation during anesthesia [32] and regiahstribution of ventilation
[33]. Respiratory sounds recording and analysis can be wben assessing the
response to bronchodilators and to bronchoconstsig®#%, 35] or the variations of
airflow obstruction during acute bronchial challenge testshitdren. Respiratory
sounds can also be applied to monitoring and analyzing trechial response to
inhaled nonspecific bronchoconstrictive agents like nuibine or histamine both
in children [36] and in adults [37-39]. Changes in breath souaduéncy
distribution, in terms of the median frequency, havenlst®wn to reflect the airway
changes during histamine challenge tests in adults andeahildth asthma [25, 35].
Other authors have studied the behavior of breath salumitsg exercise- induced
airway obstruction in children with asthma [40].some cases, it could be useful to
use methods for long-term recording of cough using filtexxustic signals [41, 25].
Body movements related to the cough can be recorded [ati@a charge sensitive
bed or by sensors
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giving similar information. The patient can be studied lyingsdting with no

transducers or electrodes attached [19].

2.2 Analogue pre-filtering and storage

The most commonly used bandwidth for breath sounds s @-100 Hz to 2 kHz
when recorded on the chest (lung sounds) and from 60-100 HMzktéz when
recorded over the trachea. For adventitious soundseoch#st, it is from 60—100 Hz
to 6 kHz. The analogue filtering applied to the captured ssigmhl varied from
centre to centre according to established practicailadéle technology and the
particular application. Most researchers employedga-pass filter [15, 42] with a
cut-off frequency chosen somewhere in the range from 30—z56hEl norm being
around 50-60 Hz [41, 43, 44].

A low-pass filter was always used in the capture okloairway sounds with the cut-
off frequency set between ~1600 and 3000 Hz [23, 42, 44]. Upper asowads
were generally processed with higher cut-off frequencds$. [Until 1990, normal
practice was to store sound and flow signals on analotagnetic recording tape,
for subsequent digitization off line (flow signals wersually recorded using FM
tape recorders). In recent years, DAT tape recorders been used for both sound
and flow, though normal practice is now direct digitizatand acquisition by
computer [43, 45].

2.3 Digitization protocols

Analogue-to-digital converters are used with word lengthsominally 12, 14 or 16
bits per sample [23, 27, 43]. A wide range of differentgang rates are in common
use, the lowest being around 4 kHz and the highest being 22.05TkH= centres
used standard multi-media sound caeds. "SoundBlaster" cards [45], and several
others used other commercial multi-channel signal a¢munstards.
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2.4 Signal processing

The spectral analysis of respiratory sounds using thereties Fourier transform
(DFT), invariably making use of a Fast Fourier Transf¢RRT) algorithm.[15, 26,

46, 47] was universal. A version of the Fourier transform) (Bpplicable to a

discrete time series (finite sequence of signal saspg#6,47]. A series of number
usually proportional to the values of an analogue sigraksaries of times (normally
equally spaced) [48].

The fast Fourier transform (FFT) is a very efficiagorithm (numerical process)
used for calculating the discrete FTs [49-51]. The durati@ach analysis segment
was typically between 20 and 50 ms, which means that wighnapling rate of
around 10 kHz, signal block lengths of 256, 512 or 1024 samples wem@aanly
used. Zero padding and overlapping of analysis segmentsgeekrwere commonly
used [23,43,52], and windowing was usually by a Hamming, Hann ar oth

universally accepted type nonrectangular window.

The survey revealed that newer highly advanced spectbisasiand digital signal
processing technigues were being increasingly used, thdsdedcautoregressive
analysis [53,54] wavelets[55], Pronys method [56], neural ods\{57] and higher-
order spectra [58]. The analysis of the signal usualtglved some of the following
elements [15,46,47] short-term power and power spectral despiegtrographs;
averaged power spectra; estimation of spectral enesgsibdition( e.g. quartiles);
flow representation (sometime flow gating or flowrstardized spectra)
[46,47,59,60]; wheeze detection [15,23,61-63]; crackle detectio642%]; cough
detection [19-21]; snoring detection [17,18,68,69], and a vaoiebther techniques
[30,46,57,59,61,70,71].

Short time Fourier transform representation is watiin in speech processing [72]
and in respiratory sound analysis [73]. The consecutiverspean be computed with
or without an overlap. The advantage of such a reprégents the ability to

reintroduce the notion of time. The signal is no longearacterized by a mean
spectrum. The evolution of its "instantaneous" and sgoeespectra is observed
[74,75]. The methodology of the proposed WT-FD filter is slubject of this paper
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[76]. The results from the application of the WT-FDsiilto real bioacoustics data
are described and discussed in the accompanying paper [77]inalading
performance evaluation, noise robustness testing, amgparison of the proposed
method with previous works. A wavelet packet (WP) basetysinaof short-term
heart rate variability signal could provide a usefuleciiin for the detection of sleep
apnea [78].

Three techniques for waveform fractal dimension (FDfutation were applied,
based on: (1) signal variance; (2) non-normalized sigmaphology; and (3) signal
morphology normalized along both axes within the windoMsnce, this method
may prove useful in the measurement of true change&Sinfractality and

deciphering differences between LS in health and dsig&s.

The spectral characteristics of healthy and patholbggspiratory sound signals for
inspiration and expiration phases were investigated. Tia@g observed noticeable
differences between healthy and pathological specttgpawer spectral densities of
sound recorded from pathological subjects are observedntaic high frequency
components compared to those of healthy sound wavefdtnss.concluded that
spectral features can be used to develop a respiratongtsclassifier [80]. The
Cepstral analysis is proposed with Gaussian Mixture Mo@&MM) method to
classify respiratory sounds in two categories: noramal wheezing. The proposed
schema is compared with other classifiers: Vector @etion (VQ) and Multi-
Layer Perceptron (MLP) neural networks. A post procgssirproposed to improve
the classification results [81].

The classification process is done using two classifieiNearest Neighbor (k-NN)
classifier with Itakura and Euclidian distance measusg®] Minimum distance
classifier with the Mahalanobis distance measures [82].

A novel decision fusion scheme for the classificatminrespiratory sounds is
proposed [83]. Neural network classification of lung soundsng wavelet
coefficients [84] and classification of coughs using Faoys@wver spectra have been
used as features [85]. Respiration sounds of individual asihrpatients were
analyzed in the scope of the development of a methodofmputerized recognition
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of the degree of airways obstruction. The technique dicaat neural networks was
applied for relating sound spectra and simultaneously uregdung function values
[86].

Performance of the relatively new constructive prolisila neural network (CPNN)
against the more common classifiers, namely the mwil perceptron (MLP) and
radial basis function network (RBFN), in classifying @dx range of tracheal—
bronchial breath sounds were also searched [87]. Galgtidthms is to search for
optimal structure and training parameters of neural nétfes a better predicting of
lung sounds. This application resulted in designing of optinmetwork structure
and, hence reducing the processing load and time [88].

Lung sounds (LS) of children after bronchoconstrictibawdd differ from baseline
LS in terms of amplitude and pattern characteristics. [BRjbile phone recordings
clearly discriminate tracheal breath sounds in asthmiacauld be a noninvasive
method of monitoring airway diseases [90]. To predietdharacteristics of tracheal
sounds the first use of a dynamic and distributed acoostdel of the respiratory
tract. The model incorporates sound sources due to turbldentahd allows for
glottal aperture variation [91]. Assessing a blind data<batassification between
‘spontaneous’ and ‘voluntary’ human cough on individualrebsamples [92]. To
develop an automated and objective method to separateowwngll sounds from
breath sounds [93] and nonlinear analysis as a promisingfdoofjuantitative

analysis of swallowing sounds and swallowing disorders [94].

A simple system for the measurement and analysisundl Isound has been
implemented with custom made electronic stethoscope, LBD&syand a sound

blaster card inserted in a portable computer [95].

The application of signal coherence method for panmacneepresentation and
automatic classification of the respiratory sounds isstigated [96]. A comparison
is made between the performances of k-NN classifietls different feature sets
derived from respiratory sound data acquired from fouemint fixed locations on
the posterior chest area [97]. The design of a novelinear mapping method for

visual classification based on multilayer perceptrons®Mand assigned class target
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values [98].A new regularizatiorscheme is applied to the data to stabilize training

and consultation [99].

To characterize the frequency spectrum, earlier stuchee lkised the following
parameters: median frequency [43,100], selected frequencythethighest power
[43], quantile frequencies [101] and in addition to this ArtaficNeural Network
(ANN) [101-102]. In some studies, Wavelet analysis [103,104] amstouctive
probabilistic neural network [105] are used to compare timethods.

In subjects with healthy lungs, the frequency rangi@fvesicular breathing sounds
extends to 1000 Hz, where as majority of the power withia range is found
between 60 Hz and 600 Hz [12,106]. Heart and respiratory saynagics for
various stethoscope depth have been given in references (i@l sounds, such as
wheezing or stridor, can sometimes appear at frequenomee £000 Hz [12]. The
normal classification of lung sounds in frequency bandslves: low (100-300 Hz),
middle (300-600 Hz), high (600-1,200 Hz) frequency bands [108].

The normal lung sounds were analyzed according to ageaséxmoking habit.
Measurement of two frequency bands of 330 to 600 Hz and 60 to 33reHz
considered. For both men and women, a slight increaieatlative power in the
frequency band of 330 to 600 Hz was recorded with increasindglagesver, on the
basis of large individual variations, these small charge/e no clinical significance
and need not to be considered in automatic detection gfdiseases by analyzing
lung sounds [109]. The images support the concept that itespiraounds are
produced dominantly in the periphery of the lung while etpity sounds are
generated more centrally [107]. Standardized description\aidation methods for
normal and abnormal lung sounds do not currently exist, theddescriptive
parameters of the frequency spectrum used in investigatnoss therefore still be
tested [109,110,111]. The effects of breathing pathways arstigatd. The spectra
of sounds recorded over the trachea of adults typicallgal peaks near 700 and
1500 Hz [112].
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2.5 Displays

Graphical representations of results were usually custoitten. Some of the
commoner forms of display were power plots in thestmlomain, three-dimensional
spectrographs and airflow, plot of averaged power spectiatiare expanded
waveforms [64-66,113]. Many other more specialized types gflayisincluding
real-time spectrographs were employed specific to iddali centres [114]. The
graphics and programming software used to produce such displnes very
variable but there is increasing usage of the graphittie€ioffered by versions of
C++ and MATLAB.

2.6. Abnormal breath sounds

Breath sounds may be abnormal in certain pathologicaligons of the airways or
lungs. Bronchial obstructio®,.g.in asthma, induces an increase of higher frequency
components of the sound spectrum without the appearanedexzing [25,35];
during bronchodilatation, the sound energy moves back werldrequencies. In
asthma, a significant association was found betweeiettel of bronchoconstriction
assessed in spirometric variables and the median freguenhdreath sounds
recorded over the trachea or on the chest in bronchalenge tests [35]. Even in
asthmatic patients with a normal ventilatory functidre median frequency of the
breath sounds may be elevated [114]. Thus, it is probalae ttre allergic
inflammation in the airways in asthma may induce certhanges in the mucosal or
the submucosal part of the bronchi, which can induce chaimgeke airflow
dynamics, including turbulence, during breathing. Breath deuwnth abnormally
high frequencies and intensity, and with a prolonged and lgpdlagory phase are
typical in many diseases with airway obstruction, likeasthma and in chronic
bronchitis. These abnormal breath sounds have also dadled bronchial sounds.
They have frequency components up to 600-1,000 Hz recordedheveosterior
chest wall. In chronic obstructive lung disease (CORMh an emphysematic
component, two phenomena are often observed. Firgdybrieath sound intensity is
often reduced, which has been attributed to a reduced afild®]. Secondly, the,
values of frequency variables may be within normaltnar lowered [35], which
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has been attributed to an increase in the low-passirtf effect of the damaged

pulmonary tissue in pulmonary emphysema.

Somewhat varying frequency bands have been obtained insstudieormal breath
sounds. Averaged spectra computed on tracheal sounds (iosp&ad expiration
phases) have shown that the log amplitude response @magned approximately
flat in the range 75—~900 Hz, before rapidly falling awayigher frequencies [86,
90]. Several other authors measured spectra of lung soundslinear plot with
maximum amplitudes of 140 -200 Hz, followed by an exponentiabydeo
insignificant levels at ~400 Hz [4]. Such differences jpaetly the result of using
different representation of data, a linear scale beiagertikely to over accentuate
high-amplitude responses and underestimate weaker sigiwd®ver, even though
some investigators have measured an upper limit frequenhigh as 3,000 Hz for
tracheal sounds [112], it is commonly admitted that norreapiratory sounds
contain components among which the most significang laafvequency of 50-1,200
Hz. The frequency spectra of tracheal sounds declindlyagdi >850—900 Hz. Due to
muscle sounds and heart sounds [117], respiratory sounds arsuadly studied at
<50-60 Hz and the range 0—-60 Hz should be filtered by a highipassiue to the
dependence of breath sounds on airflow rate, respiratmund spectra should be
reported at a known airflow. Moreover, the frequency speatzero flow should be
given in order to determine the background noise [15].

2.7. Adventitious sounds

2.7.1 Crackles

Crackles are discontinuous adventitious lung sounds [118,&%Plosive and
transient in character, and occur frequently in cardpiratory diseases [65] heir
duration is less than 20 ms, and their frequency conteratiypis wide, ranging
from 100 to 2000 Hz or even higher [15,120]. Two types of crackbay be

distinguished: coarse and fine.

The acoustical basis for this classification is weksented in the literature [119].
Crackles are assumed to originate from the acoustiggmgmerated by pressure
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equalization [121] or a change in elastic stress [1#®r a sudden opening of
abnormally closed airways. Crackles may sometimesirogt healthy subjects,
during a deep inspiration [123], as a result of segmerntakreng of dependent lung
units. In those cardio respiratory disorders wherektea are frequently found,
abnormal closure of the small airways may result froereased elastic recoill
pressure €.g in pulmonary fibrosis) or from a stiffening of smaltways caused by
accumulation of exudated fluide.g in heart failure) or infiltrative cellse(g
pneumonitis, alveolitis). The mechanisms of generatiothefcrackling sounds in
chronic bronchitis and emphysema are incompletely uratsisbut, a source in the
large airways has been suggested [124]. Bubbling of air threegtetions is one
possible mechanism but does not account for all the angcghenomena in these
patients. In patients with chronic obstructive lung disedhe loss of elastic recoil
and bronchial support [125] may predispose to collapse ds#guent reopening of
the lobar bronchi [126-128]. When present, crackling sounds ienpatvith lung
fibrosis are typically fine, repetitive, and end insprgt whereas those associated
with chronic airways obstructiofe.gCOPD, emphysema or bronchiectasis) are
coarse, less repeatable, and occur early in inspiratRnp8]. Patients with airways
obstruction may also have expiratory crackles, andjker in patients with
pulmonary fibrosis, the crackles may be audible at riiouth; in addition, these
crackles may change or disappear after coughing [5]. Irt felure, the crackles
tend to occur from the mid to late inspiratory cycled ghey are coarse in character
[128]. Mathematical models and experiments predict thatkérs originating from
smaller airways are shorter in duration (fine in ch@m@gcand those originating from
larger airways are more coarse [122]. The appearanceackles may be an early
sign of respiratory disease,g. in asbestosis [65, 129]. Since the closure of small
airways is gravity-dependent, crackles tend to occur ifirghe basal areas of the
lungs, and later, when the disease progresses, atbe upper zones of the lungs.
When present, the number of crackles per breathasiassd with the severity of the
disease in patients with interstitial lung disordé/30]. Moreover, the waveform and
timing of crackles may have clinical significance infeliéntial diagnosis of cardio

respiratory disorders [5, 65].

Since the bandwidth of the commonly encountered cracklesd9-2,000 Hz, a
sampling rate of 5,512 Hz provides a sufficient frequencgedie. 02,700 Hz).
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However, the study of several fine crackles may requinader range of analysis as
they exhibit high frequency components. Therefore, in taise, the use of a
sampling rate 011,025 Hz is recommended [131]. Visually, the timing of crackle
in relation to the respiratory phase is convenientlytiaied using a condensed time-
domain presentation "phonopneumogram” [13, 127]. Quantitgtitlas relationship
may be characterized by calculating the start and endt mdi crackles as a
percentage of the respiratory phase [128].

By using the timing and waveform characteristics of ldes; a two-dimensional
discriminate analysis has been applied [132]. This approzoh be useful when
different lung diseases presenting with cracklestarbe distinguished from each
other. Examples of parameter estimation based meth@ds inscrackle detection
include adaptive nonlinear filters [71] and wavelet transétion [133].

An instrument for separating crackles from stationanglsounds and quantifying
their characteristics is realized with adaptive filtgriand implementing nonlinear
operators to wavelet based decomposed lung sounds [134}tiffelassification of
respiratory sounds for various pathologies can be eethief a large database is
formed [135].

2.7.2 Squawks

Occasionally, in patients with interstitial lung dises, crackles may be followed by
short inspiratory musical sounds; these are called squdh&4,136,137]. In
extrinsic allergic alveolitis, squawks have been fountbeécshorter in duration and
higher in pitch than in pulmonary fibroses due to othessea [137]. Their duration
rarely exceeds 400 ms. Squawks are assumed to originateofcillation of small
airways after sudden opening, and their timing seems to depenthe trans
pulmonary pressure in a similar manner as in cracKless, the basic mechanisms
of their origin probably differ from that of wheezesasthma. Therefore, we suggest
that the term "squawk" should be limited to inspiratehprt wheezes in patients
with interstitial lung disorders that involve smaitveays; otherwise, short musical
sounds may be called simply "short wheezes". The basihods of respiratory

sound analysis for squawks are the same as for wheezes.
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2.7.3. Wheezes

Wheezes are continuous adventitious lung sounds, whicBugerimposed on the
normal breath sounds. According to the earlier definidgbthe American Thoracic
Society (ATS), the word "continuous" means that theatlom of a wheeze is longer
than 250 ms. The ATS also defines wheezes as high-pitciméidcmus sounds and
qualifies low-pitched continuous sounds as rhonchi. The Adi8enclature specifies
that a wheeze contains a dominant frequency of 400 Hz ¥, mdiile rhonchi are
characterized as low-pitched continuous sounds with andonfrequency of about
200 Hz or less. However, investigators have not alwaysdgsith those features.
For instance, wheezes produce highly variable frequerairegng from 80 to 1600
Hz according to GAVRIELYet al. [138] and from 350 to 950 Hz according to
PASTERKAMP and co-workers [139]. According to the newirdebns of the
present CORSA guidelines, the dominant frequency of a wheemrially >100 Hz
and the duration >100 ms [140].

Wheezes, which are louder than the underlying breath soarelsften audible at
the patient's open mouth or by auscultation by the larfiyh&y can be monophonic,
when only one pitch is heard, or polyphonic when multiflequencies are
simultaneously perceived. The transmission of wheezingdsthrough the airways
is better than transmission through the lung to the ceiréd the chest wall. The
higher-frequency sounds are more clearly detected ovératieea than at the chest
[62,141]. The high-frequency components of breath soundsbaceted mainly by
the lung tissue [142]. The highest frequency of wheezesradis by BAUGHMAN
and LOUDON [31,61], who recorded lung sounds over the chaltwas 710 Hz.
FENTON et al. [62] have studied the frequency spectra of wheezy lungdsoun
recorded simultaneously over the neck and the chest. R&a®®80 and 940 Hz
detected over the trachea were almost absent omése, @s a result of the low-pass
filtering effect of the lungs. These observations kagize the importance of tracheal

auscultation and sound recording in asthma [143,144].

According to recent definitions [10] and the present CARERfinitions, the
dominant frequency of a wheeze>80-100 Hz, and that of a rhonchus&00 Hz.
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There is no reason to try to set an upper limit f@r piich. So far, no wheeze has
been reported with a pitch of >1600 Hz [138]. It is recommendedever, when
studying wheezes, to use a sampling ratebgd00 Hz [131].

Novel proposed technique can be quite useful in clini@@mbstics, mainly when
the analysis can be made continually, using many edspyr cycles from patient.
However, in this application the algorithm still negdsautomatically detect the
beginning and the ending of the respiratory cycle [145].

2.7.4. Snores

Snores are noises commonly heard during the sleep. It iesteggthat a snore is
produced by vibrations in the walls of the oropharynx [146]. H@wnet is possible
that also other structures could be put in vibration anticgeates to the snores.
Snoring is frequently associated with the obstructieeps apnoea syndrome and
with cardiovascular diseases [147]. The snore is apiratsery sound, although
expiratory components can appear in obstructive sleep aproaa occur during the
whole inspiration or at the end of the inspirationoi®s are loud sounds with an
intensity higher than 50 dB(A). This intensity dependslenrecording technique,
but mean energies as high as 85-90 dB have been reported [97,148kHESShore
contains periodic components, having a fundamental frequasteyeen 30 and 250
Hz [69,151]. The fundamental frequency varies during the samoee or from a
snore to another [152]. The snore is associated withspiratory flow limitation, as

well as an increase in airways resistance.

The fundamental has been reported to be as low as 3odHmay be >250 Hz in
some cases [153]. In nasal snoring, the upper limit o$pleetrum defined as the last
peak maximum frequency (Fmax) with a power >3% of the pewaleipis reported to
be ~550 Hz [151]. For oronasal snoring, the same peak Fsna50 Hz. These
limits can be increased in the case of obstructive ségmpea. When studying
frequency spectra of snoring sounds, it is recommendédhaange 30-2,000 Hz
be considered, even if there is only a small amouanefgy >1,200 Hz.

25



They present a novel algorithm to extract Speech andeddinore segments from
corrupted SRS measurements. The algorithm utilizes Hi@héer Statistics (HOS)
due to its insensitivity to Gaussian noise and the whiéit reconstruct a system
preserving true phase characteristics [154].

Sleep nasendoscopy, when palate and tongue are seendie,vithey are indeed
characterized by low (137 Hz) and high (1243 Hz) frequency saasgsctively. In
addition, we have characterized epiglottic snores tuoat 490 Hz and tonsillar
snores at 170 Hz [155]. Differences between snores anduCtbg Sleep Apnea
Syndrome (OSAS) patients, and suggest that snore vdsiatiluld be higher in
OSAS patients [156].

2.7.5. Stridors

Stridors are very loud wheezes, which are the consequenaemorphologic or
dynamic obstruction in larynx or trachea. This sound lwarneard near the patient
without a stethoscope. The ear of a trained examiagrrecognize the source of the
noises: supraglottic, glottic, subglottic or trachga&l7]. Different terms are used to
compare them to known noises: "cluck of turkey", "whisflenake", "foghorn". The
stridor usually occurs during inspiration when it is exiedlcic and during
expiration when it is intrathoracic unless the obstouncis fixed, in which case,
stridor may appear in both phases of respiration. The pahatiology of the
supraglottic stridor is suctioning of ary-epiglotticdslonto the lumen of the airways
during inspiration. These phenomena occur because of @s®f supraglottic
tissue (anatomic hypothesis). In the glottic areambm aetiology of stridor is vocal
cord paralysis. Stridor is common in infants and in balsgge the dimensions of
the supraglottic area are small. However, the obstruad babies is most often due
to a subglottic viral inflammation (laryngitis). Strider usually characterized by a
prominent peak at about 1,000 Hz in its frequency spectrum. chmgonent is
called the pitch. The envelope of the pitch and the cexiigl of the spectrumi.g.
number of peaks or harmonics) is dependent on the distessite of obstruction,
the airflow and the volume. Moreover, the elastiaitfy the obstruction and the
surrounding tissues influence the sound generation. A fixedughien will generate
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a constant pitch, and a dynamic obstruction will mo@ulaé pitch in frequency as in

the case of a laryngomalacia.

The commonly observed range for the pitch is 600-1,300 Hz [158,u59lly
~1,000 Hz. In adults, the pitch of the stridor is usuallycmlower and is <200 Hz.
Although it is quite difficult to provide information ohe other peaks, it seems that
they are much more flow/volume-dependent than the maik Fdws, a sampling
frequency o£5,512 Hz is recommended when studying the main peak of ttierstr
In addition, if the interest is in the estimation olbstruction parameters, this
frequency should bel1,025 Hz, according to the CORSA recommendation [131].

2.8. Asthma

So far, few studies have been carried out in asthmatiergs and normal subjects
[160]. Lung sounds are recorded before and after the idralaf a B-stimulant
bronchodilator drug (terbutaline) to understand the efféderoutaline [160]. To
validate asthma monitoring system based on wheezing tidetecin
phonopneumograms are also studied [161]. Wheezes have beported as
adventitious respiratory sounds in asthmatic ostrabtive patients, during
forced exhalation maneuvers [12].

Not only asthmatic patients but also other diseasesnaperiant to analyze the
respiratory sounds. Patients with sleep apnea, Pnbeonact upper airway
obstruction, chronic obstructive pulmonary disease (@)dPe of some examples of
the clinical cases [163-166].

The lung sounds in a patient with pulmonary fibrosidirastand chronic obstructive
pulmonary disease (COPD) that take place in which frequieands are also shown
[103,104]. A wheeze in a patient with asthma, frequency 420ndzira addition,
harmonics of higher pitch can also be depicted. Towasdend of first inhalation, a
weak high frequency wheeze of approximately frequency 900 Mgiide. Such a
sound can be difficult to hear with an acoustic stetbps.
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Not only asthmatic patients but also other diseasesnaperiant to analyze the
respiratory sounds. Patients with sleep apnea, Pnbeonact upper airway
obstruction, chronic obstructive pulmonary disease (@)CdPe of some examples of

the clinical cases [24,161].

2.9 Aliasing

The effect that, after sampling a harmonic function appdéo manifest another
frequency. This occurs if the frequency of the origiraittyuous harmonic signal is
higher than half the sampling rate. The apparent frequsnegual to the smallest
distance of the original frequency to any integer multgflehe sampling rate. For
example, if the sampling rate is 1 kHz, a sampled hacsighal of 800 Hz will

appear to have a frequency of 200 Hz; a sampled harmonal sifjfh,000 Hz will

appear to have a frequency of 0 Hz (a constant valsgmpled harmonic signal of
5,100 Hz will appear to have a frequency of 100 Hz. In gerferadrbitrary signals,

the spectrum should be zero above half the samplingAktieequency components
above this frequency (the Nyquist frequency) will bea&dd", and this corrupts the

actual original components in the base band [167].

2.10 Filtering Methods

It is a device that transforms a signal at its inpta & signal at its output. Usually,
the transformation aims to remove unwanted componet@$ [Filters can be
classified in analogue filtereg. implemented by operational amplifiers, resistors
and capacitors) and digital filtere.g. implemented by programmable digital

hardware).

Many methods have been proposed to eliminate environmamitds. Most of the
environmental noises can be avoided by using a soundproof ronacoustic
chamber can reduce ambient background noise by up to 30 dB [168hdsut
frequently, it is not available for clinical resgmay sound recordings. Shielding of
the sensors with sound isolation materials can beidlp eliminate environmental
noise [169]. The noise at zero airflow (breath holdipigked up on the chest wall

for assessing background noise in the frequency domain [16ldshe measured in
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order to assess the quality of the recording. In spleatralysis, it can even be used
to subtract the noise spectrum.

For real time auscultation, an automated gain co(®GIC) with adaptive algorithm
has been implemented for electronic stethoscopes apptic The overall heart
sound reduction by this method ranges from 75% to 83% at diffehest location.
As a result, a convenient and effective heart sounds feduwalectronic stethoscope
has been proposed [170]. Performance of an automatic dhdtho structural
decomposition, noise removal and enhancement of bowatlsqBS), based on the
wavelet transform were studied [171]. Heart sounds arenih&n unavoidable
interference in lung sound recording and analysis. Heseeegral techniques have
been developed to reduce or cancel heart sounds (HS)Uransbund records. The
use of a wavelet transform domain filtering technique asdaptive de-noising tool,
implemented in lung sounds analysis [172-173]. Adaptive Noaecéllation with
Recursive Least Square (Higher Order Statistics) methadsed to filter out the
heart sound from lung sound [174].

This paper proposes a novel method for HS localizatiamgusntropy of the lung
sounds [175] and a robust and novel method for estimatinguifging entropy of the
band pass filtered tracheal sounds is proposed [176].

In the range of lower frequencies (<100 Hz), heart and lewseunds overlap; this
range must therefore be filtered out for the assesswiehtng sounds [4]. The
current problem of lung sounds recording is noise froorcgs such as heart and
muscle sounds, noise from contact between the regpddvice and the skin and the
environmental noise that corrupt the lung sound signaled@oae the effect of these
sounds, all sound signals should be filtered [4,43,107]. Chamdi@sg function with
age have long been well known and studied. The frequencyrspeof lung sounds
below 300 Hz in infants and children is also age dependanadults an age
dependence of lung sounds has been assumed [4]. To impm®wenmvergence
speed, transform domain adaptive filter (TDAF) with Wattadamard transform
(WHT) are used [177]. This structure would cancel the ambrense more
efficiently.
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CHAPTER 3
SIGNAL PROCESSING and SOUND WAVE
3.1 Signals, Systems, and Signal Processing

To be able to understand what the meaning of the sound wawveathematical
explanation of signal and wave will be given. A stuglymmarizes [180] sounds
analysis as follows.

A signal is defined as any physical quantity that vasiits time, space or any other
independent variable or variables. Mathematically we daserisignal as a function

of one or more independent variables.

For example, a segment of speech may be representeligh degree of accuracy
as a sum of several sinusoids of different amplituddsr@quencies, that is, as

Zi A (t)sin[ 2* M F, ()t + 6. (t)] )

where{A, (t )},{F (t)}and {8, (t )}are the sets of (possibly time varying) amplitudes,
frequencies, and phases, respectively, of the sinudaidact, one way to interpret
the information content or message conveyed by any sinoet $egment of the
speech signal is to measure the amplitudes, frequeanidghases contained in the
short time segment of the signal.

Another example of natural signal is an electrocapdion (ECG), such a signal
provides a doctor with information about the conditiontbé patient’s heart.
Similarly, an electroencephalogram (EEG) signal presidbout the activity of the

brain.
Speech, electrocardiogram, and electroencephalogranalsigme examples of

information bearing signals that evolve as a functafna single independent

variable, namely time.
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A system may also be defined as a physical device thigirperon operation on a
signal. For example, a filter used to reduce the naiskeirgterference corrupting a
desired information- bearing signal is called a “system this case the filter
performs some operations on the signal, which has thet eff reducing (filtering)
the noise and interference from the desired informdigaring signal. In general,
the system is characterized by the type of operatianishperforms on the signal.
For example is the operation is stationary, the ayste called stationary. If the
operation on the signal is nonstationary, the systesaid to be nonstationary, and
so forth. Such operations are usually referred to abkmncessing.

For our purposes, it is convenient to broaden the diefindif a system to include not
only physical devices, but also software realizatioheperations on a signal. In
digital processing a signal of a digital computer, theration performed on a signal
consists of a number of mathematical operations, ithave have a digital signal
processing system realized in software. For exampldigigal computer can be
programmed to perform digital filtering.

3.1.1 Analog-to-digital Conversion

Most signals of practical interest such as speechpdiidl signals, seismic signals,
radar signals, sonar signals and various communicatgnalsi such as audio and
video signals are analog. To process analog signalsgiigldneans (Fig. 3.1) it is
first necessary to convert them into digital forrhatt is, to convert them into a
sequence of numbers having finite precision. This procedualied analog-to-
digital (A/D) conversion, and the corresponding devicescalled A/D converters
(ADC's). The process of converting signal into an agadignal is known as digital-

to-analog (D/A) conversion.

There are two parameters in this conversion processfrefqaency at which the
waveform should be sampled, and the accuracy (numbeérts)fwith which the
samples should be represented. The sampling theoreny dygaist, states that in
order not to lose information, a waveform should beEad at a frequency of at
least twice the highest frequency in the waveform.
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Normal Heart Sound
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Figure 3.1 Digitization of a heart sound waveformd® ssegment and sampled with 8 kHz.

The time interval T between successive samples isccdllie sampling period or

sample interval and its reciprochT = F, is called the sampling rate (samples per

second) or the sampling frequency (Hertz). Unit frequesdia Nyquist frequency
defined as the half the sampling frequency.

If a signal contains no frequency components overrgguéncyf the signal can

be uniquely represented by equally spaced samples if thdisgrfipquency f is
greater than twicef _ . That is, sampling frequency must satisfy the inequality
fy2f,., . The other aspect of the sampling theorem is thatotlggnal analog

signal can be recovered by performing the appropriate opssabn the sample

values.
Aliasing, a phenomenon associated with the digibratf continuous signals, is

closely related to the sampling rate and the Nyquisugacy, which is one half the
sampling rates. Specifically, when digitized at a tow lmte, a signal’'s high

32



frequency components are said to fold about Nyquist frequend appear low
frequencies. If stated in the reverse way, you muspkadata at twice its highest
frequency component or else components higher than Nyleeiency fold into
low frequencies, and this distortion called as aliasing.

3.1.2 Fourier Analysis
Frequency is closely related to a specific type of parioabtion called harmonic
oscillation, which is described by sinusoidal functioflse concept of frequency is
directly related to the concept of time [181, 182].
Frequency analysis is useful for characterizing a sidoakeeing order where there
appears to be none. Fourier analysis is also very uasfa means of filtering a
signal.
Any continuous signal (i.e. a signal that only has orleevat any one instant in
time) can be represented by the sum of sine waves ghgafrequency, amplitude
and phase.
We can describe a pure sinusoidal function of timehbyequation:

f (t) = cos(at) a = 2mif (3.2)
This function has maximum positive and negative amplitadéme zero and at
integer multiples of half the period, i.e. 0, T/2, T/3... The function can have
maximum at other times by the introduction of a phasa:te

f(t) = cos(at + ¢) (3.3)

The cosine and sine harmonics can have different armdpst so we can write down

a complete expression for the signal:

f(t) =a,cosnwt+ b, sin nwt (3.4)
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where n is the harmonic number, 1,2,3...etc.

At present our sinusoidal function of time is symmeatiout zero. Real signals can
have 0 Hz or DC offsets. So we need one more term as:

f(t)=a, + > a,cosnwt+ > b sin nwt (3.5)

n=1 n=1

w = the fundamental frequency
& = DC offset
a, b,=the Fourier coefficients

As a first step we will find the coefficient ahich represents the average DC (0 Hz)
level of the signal. We can find the mean level &irection by calculating the area
under the curve and dividing by the length of the base. Ramctidn of timef(t), we
calculate the area under the curve by taking the irtbégtaveen t = 0 and t = the
period T. The length of the base of the curve is theogefi. Mathematically we

write this as:
_ 1 t=T
a, = T_Lo f(t) dt (3.6)

The next step is to find the cosine and sine coeffisi@yand Bk by finding the
average of the function multiplied by sine waves ofjdiencies that are multiples of
the fundamental.

a, :TEIOT f (t) cos( nwt) dt 1B.

b = TijoT f (t) sin (nwt) dt gB.

The equations for finding the Fourier coefficients candombined into a single
equation:

a, = Tij; f(tye "®'dt (n=1) (3.9)
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A mathematical process called a Fourier Transform) (BTused to decompose a
signal into its component sine waves. An inverse Fongtucts a signal from its
Fourier components. The transform derives its name ffeam Baptiste de Fourier
who was a scientist on Napoleons 1799 expedition to Egwotin@ which time to

Rosetta stone was discovered).

Following is an example to illustrate the use of Fauseries expansion. In the
example the triangular periodic wave having a period of 0e24asd peak to peak
value of 12 is examined. Infinite sum at the integralsrapdaced by finite sums

towards a numerical method to determine the Fourieesseaefficients.

Analysis is done for seven harmonics with 6 and 24 iaterv

14 T - - T
—— Fourier series

— triangle

0 0.1 0.2 0.3 0.4 0.5
time(sec)

Figure 3.2 The triangular periodic wave having foresevarmonics with 6 intervals.
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Figure 3.3 The triangular periodic wave having foresevarmonics with 24 intervals.

As seen in the Figure (3.2) and (3.3), increasing the hacrmamnber the Fourier

series can fit very best with the periodic signal.

3.1.3 Discrete Fourier Transform

Performing a Fourier transform by hand, although possilejdwbe extremely time
consuming, and error prone. Therefore, to get anywhereneee to perform a
Fourier transform (FT) by computer. This is done usingszi@et Fourier Transform
(DFT), which in effect is what we were doing by hand anywaDFT is performed

on asampledsignal (using an ADC).

If a waveform has been digitized a frequency analysidegmerformed by means of
a technique known as the discrete Fourier transform of. [Htippose that the

waveform is represented by

X(t) = x(nT) t = nT n=1,2,3............... , N (3.10)
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There areN consecutive sampled values so that the sampling intsralTo make

things simpler, let us also suppose that N is evenelftthction x(t) is nonzero only

in a finite interval of time, then that whole intat of time is supposed to be

contained in the range of the N points given. Alagively, if the functionx(t )goes
on forever, then the sampled points are supposbd &i least ‘typical’ of whak(t )

looks like at all other times.

With N number of inputs, we will evidently be alle produce no more than N
independent numbers of output.

A finite duration sequencg(n of length N has a Fourier transform:

X (w) = NZ_:lx(n)e’jW” 0<sw< 27 (3.11)

n=0

When we sampleX(w gt equally spaced frequencies

- 27k k=1, 2, 3..cc...... N, (3.12)
N
the resultant samples are
N -1 )
X (k) = Z x(n)e 127 /N k=1,2,3............ , N (3.13)
n=0

Here equations (3.10) and (3.12) have been usdteirfinal equality. The final
summation in equation 12 is called the discreterieoutransform of the N

pointsx(n).

The discrete Fourier transform has symmetry praggedimost exactly the same as

the continuous Fourier transform.

The formula for the discrete inverse Fourier transt which recovers the set of
x(n) 's exactly from theX(k s is:
1 N -1 )
x(n) = WZ X (k)el2m®n/N n=1,2,3......... N (3.14)

k=0
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Notice that the only differences between eqnl3 and eqnldharging the sign in

the exponential and dividing the answers by N.
3.1.4 Fast Fourier Transform

Two American mathematicians, Cooley and Tukey, notedahadry large fraction
of the calculations performed as part of a DFT amgeatd and therefore are
redundant. Cooley and Tukey devised a means of stripping outethendant
calculations thus greatly speeding up the transform.

How much computations involved in computing the discrete Fouransform
(Equation 4.13) of N points, is important in practical édasations. Analysis may be
required on line at a reasonable duration. To get an appoecabout the amount of

computational mathematics required, define W as the campimber.
W = e2im/N (3.15)

Then equation (3.13) can be rewritten as:

X (k) = NZ_“lx(n)w mkn (3.16)

n=0

In other words, the vector &fn)’s is multiplied by a matrix whosén, k)" element
is the constant W to the power n*k. The matrix mplitation produces a vector

result whose components are ¥k ’'s.) The matrix multiplication evidently

requiresN? complex multiplications plus a smaller number péamtions to generate

the required powers of W.

The discrete Fourier transform can be compufeétbg, N operations with an

algorithm called the fast Fourier transform or FHT this algorithm the operations
are divided into two sets, and then each set @f i®ibdivided. This process is
repeated until each set contains only one terms Thchnique required only

Nlog, N operations. Also N must be a power of 2.
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Following is an example to illustrate the use of fagurer transform from the
MATLAB. In the example the pure sinusoidal periodic waaeihg a frequency of 5
Hz is examined and is depicted in Figure (3.4) and (3.5).

pure sinusoidal signal
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Figure 3.4 Pure sinusoidal signals having a 5 Hz frequency

3.1.5 Power Spectrum Estimation Using the FFT

The first detail is power spectrum (also called a posmactral density or PSD)
normalization. In general, there is some relationpobdportionality between a
measure of the squared amplitude of the function andasune of the amplitude of
the PSD. Unfortunately there are several differentventions for describing the
normalization in each domain, and many opportunities dgetting wrong the
relationship between the two domains. Suppose that outidank(t) is sampled at

N points to produce values,........... Xy » and that these points span a range of time t,
that ist = (N -2)T , where T is the sampling interval. Then theresaneeral different

descriptions of the total power:
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fast Fourier transform
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Figure 3.5 Taking a FFT by using a Matlab gives a sigaguency.

N-1
Z ‘cj ‘2 = “sum squared amplitude” (3.17)
j=0

N

z ‘cj ‘2 = “mean squared amplitude” (3.18)

-1
i=0

i]|c(t)|2dt =
T 0

Z||—\

T _
j|c(t)|2dt = TNzl‘cj ‘2 = “time-integral squared amplitude”  (3.19)
0 i=0

The power spectral density is:

1. defined for discrete positive, zero and negatiegdiencies, and its sum over
these is the function mean squared amplitude;

2. defined for zero and discrete positive frequenoidyg, and its sum over these
is the function mean squared amplitude;
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3. defined in the Nyquist interval from f, and f_, and its integral is the

[+ )
function mean squared amplitude;

4. defined from O tof_, and its integral over this range is the function mean

squared amplitude,[181]

It never makes sense to integrate the PSD of a sanfijptetion outside of the

Nyquist interval- f_ and f_ since, according to the sampling theorem, power there

will have been aliased into the Nyquist interval.

If we take an N-point sample of the functt) at equal intervals and use the FFT
to compute its discrete Fourier transform:
N-1

C, =) c,e /2 k=1,2,3............. N 3.20)

=0

The power spectrum is defined at N/2+1 frequenages

P(0) = P(f,) =$|co|

P(f,) :%ﬂckf +|cN_k|2] k=1,2 ....cc...... %—1) (3.21)

2

P(f.)=P(f

1
v) S N7

where f, is defined only for the zero and positive frequesc

kK

f. =
“ NT

= 2f, % k=0,1, 2,............ ; (3.23)

A heart sound signal is not exactly periodic, batoes not change much from period
to period. If the start of each period could beed®ined, it would be possible to take
N equal to the number of points in a glottal peraowl perform FFT at this period.
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This is sometimes done, but it is difficult to locate beginning of each period in

practice.

Normally an arbitrary sequence of N points is taken. Tikisequivalent to

multiplying the signal by a rectangular window which is zek@rywhere except
during the period to be analyzed. This introduces discatiéawat the edges which
distort the spectrum by adding spurious high frequency compsnen

A better technique is to multiply the signal by a smoatidaw function. Triangular,
Gaussian and cosine shaped windows have been used, but the a#emuch the
same. A common technique is to use a Hamming window,[181,182]H&mming

window coefficient is:
wn+1] = 054- OAGcosQnﬁ) N=1,2 30, N (3.24)

The effect of this is shown in Figures (3.6), (3.7) anfl)(3.

The equations given above express the DFT in termsnyblex numbers. Usually in
analysis it is the energy at each harmonic numbemréguéncy) which is required.

This is given by power spectrum:

D, =) c,w,e &N k=1,2,3,..cccc....., N (3.25)

wherec, is sampled data and, is window function.

P(0) = P(fo)=V%|Do|2

Ss

P(f,) :ﬁﬁDkf +|DN_k|2] K=1,2 coorrrres ,g—l) (3.26)
1 2
P(fe)=P(fy)="5|Dy,

whereW,, stands for “window squared and summed”,
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N
W, =N> w,’ (3.27)

and f,is given by Eqn 3.23
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3.2 Design of Digital Filters

In the design of frequency-selective filters, the desifider characteristics are
specified in the frequency domain in terms of the desired muagniand phase
response of the filter. In the filter design process,determine the coefficients of a
casual FIR (Finite Impulse Response) or IIR (Infinitepliise Response) filter that
closely approximates the desired frequency response spéioifis. The issue of
which type of filter to design, FIR or IIR, depends ba nature of the problem and

on the specifications of the desired frequency response.

In practice, FIR filters are employed in filtering prabke where there is a
requirement for a linear phase characteristic withendhindpass of the filter. If there
is no requirement for a linear phase characteristiserean IIR or an FIR filter may
be employed. Today, FIR and IIR digital filter designgreatly facilitated by the

availability of numerous computer software programs.

In conjunction with our discussion of digital filter dgsj we describe frequency
transformations in both the analog and digital domaingrémsforming a low-pass

prototype filter into another low-pass, band-pass, band-stdyglo-pass filter.

The goal of filter design is to perform frequency depenhddteration of a data
sequence. Filter design methods differ primarily in howfgomance is specified.
How to apply the filter design tools to IR and FIR filtesign problems.

3.2.1 IIR Filter Design

The primary advantage of IIR filters over FIR filtassthat they typically meet a
given set of specifications with a much lower filteder than a corresponding FIR

filter.

The classical IIR filters, Butterworth, Chebyshew sypand Il, elliptic and Bessel,
all approximate the ideal ‘brickwall’ filter in differérways. Signal processing
toolbox in Matlab provides functions to create all theges of classical IR filters
in both analog and digital domains. For most filter syp@u can also find the lowest
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filter order that fits a given filter specification terms of pass-band and stop-band

attenuation, and transition width.

The principal lIR digital filter design technique this tootharovides is based on the
conversion of classical low-pass filters to theiritdigequivalents. All classical IR
low-pass filters are ill conditioned for extremelwwla@ut-of frequencies. Therefore,
instead of designing a low-pass IIR filter with a very oarmpass-band, it can be
better to design a wider pass-band and decimate the aiguodl. The toolbox

provides five different types of classical IIR filteach optimal in some way.

3.2.2 FIR Filter Design

Digital filters with finite duration impulse respons&IR) response have both
advantages and disadvantages compared to infinite duratmrsenresponse (IIR)
filters.

FIR filters have the following primary advantages:
* They can have exactly following primary advantages.
* They are always stable.
* The design methods are generally linear
* They can be realized efficiently in hardware

» The filter start-up transients have finite duration.

The primary disadvantages of FIR filters are thay thiten require a much higher

filter order than IIR filters to achieve a given lewélperformance.

The functions firl, fir2, firls, remez, fircls, anddisl all design type | and Il linear
phase FIR filter by default.

3.2.3 Advantages of Digital versus Analogue Filtering

There are many advantages to digitizing signals fromnatrumentation point of

view. Some of these are:
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* Permanent storage of digitized signal

* No electronic noise is associated with digital preces

» Digital analysis using a computer may well be cheaper éineanalogue circuit
* A‘virtual instrument can be built using a PC.

» Easy frequency analysis

3.2.4 Relations and General Properties Signal Processing Method

Raw signals are generally represented that time axidegendent variables),
amplitude (dependent variables). When we plot time-domgimals, we obtain a
time-amplitude representation of the signal. This repradion is not always the best
representation of the signal for most signal procgsgielated applications.
Therefore, Robi Polikar [178] talk about signal and mathealatepresentation as
briefly as follow:

In many cases, the most distinguished information is hiduéme frequency
content of the signal. Frequency changing in time (whdren) is also important in
our search to get valuable information from respiratsignal. The frequency
SPECTRUM of a signal is basically the frequency comembs (spectral
components) of that signal. The frequency spectrum dfigaal shows what
frequencies exist in the signal. The frequency is medsarcycles/second, or with a
more common name, in "Hertz". For example the etegimwer we use in our daily
life in the Turkey is 50 Hz (60 Hz elsewhere in the worl8ignals have own
characteristics related to some mathematical repietsams. Therefore, each signal
has cosine and sine components. So how do we measyuerfoy, or how do we
find the frequency content of a signal? The answerOQ8 RIER TRANSFORM
(FT). If the FT of a signal in time domain is taken, thequency-amplitude
representation of that signal is obtained. In otherd&owe now have a plot with one
axis being the frequency and the other being the ampliftius. plot tells us how
much of each frequency exists in our signal.

Often times, the information that cannot be readdgrsin the time-domain can be
seen in the frequency domain. Every transformatiohnigae has its own area of
application, with advantages and disadvantages, and thelewvaransform (WT) is

no exception. For a better understanding of the neethéoWT let's look at the FT
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more closely. FT (as well as WT) is a reversiblegfarm, that is, it allows going
back and forward between the raw and processed (traresfprsignals. However,
only either of them is available at any given time. tTisano frequency information
is available in the time-domain signal, and no time rimiation is available in the
Fourier transformed signal. The natural question tlaes to mind is that is it
necessary to have both the time and the frequencymafan at the same time?
Recall that the FT gives the frequency informationhef$ignal, which means that it
tells us how much of each frequency exists in the signait does not tell us when
in time these frequency components exist. This informasanot required when the
signal is so-called stationary. Signals whose frequearyent does not change in
time are called stationary signals. In other worthe frequencies content of
stationary signals do not change in time. In this case,does not need to know at
what times frequency components exist, since all frecpueomponents exist at all
times! FT gives the spectral content of the signal, ibugives no information
regarding where in time those spectral components appkarefore, FT is not a
suitable technique for non-stationary signal, with oxeeption:

FT can be used for non-stationary signals, if we aifg imterested in what spectral
components exist in the signal, but not interested witex®e occur. However, if this
information is needed, i.e., if we want to know, wbkpectral component occur at
what time (interval), then Fourier transform is no¢ tight transform to use. For
practical purposes it is difficult to make the separatsince there are a lot of
practical stationary signals, as well as non-statiprones. Almost all biological
signals, for example, are non-stationary. Some efrtltost famous ones are ECG
(electrical activity of the heart, electrocardiogragBl;G (electrical activity of the
brain, electroencephalograph), and EMG (electricaliviac of the muscles,
electromyogram). When the time points of the spedoahponents are needed, a
transform giving the TIME-FREQUENCY REPRESENTATION tife signal is
needed. Wavelet transform is capable of providing the tand frequency
information simultaneously, hence giving a time-freqyenepresentation of the
signal. How wavelet transform works is completelyifeecent fun story, and should
be explained after short time Fourier Transform (STHRe WT was developed as
an alternative to the STFT.
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To make a real long story short, we pass the time-dosigiral from various high
pass and low pass filters, which filters out either Higlguency or low frequency
portions of the signal. This procedure is repeated, ewergy some portion of the
signal corresponding to some frequencies being removedtfr@signal.

Here is how this works: Suppose we have a signal, wlasHrequencies up to 1000
Hz. In the first stage we split up the signal in to feosts by passing the signal from
a high pass and a low pass filter (filters should satisiye certain conditions, so-
called admissibility condition) which results in twdfefent versions of the same
signal: portion of the signal corresponding to 0-500 ldw (bass portion), and 500-
1000 Hz (high pass portion). Then, we take either portion (lydaow pass portion)
or both, and do the same thing again. This operation iglaiieomposition.

Assuming that we have taken the low pass portion, we now 3i@ets of data, each
corresponding to the same signal at frequencies 0-250 H5M®bBIz, 500-1000 Hz.

Then we take the low pass portion again and pass it thrlmwgland high pass
filters; we now have 4 sets of signals corresponding-125 Hz, 125-250 Hz,250-
500 Hz, and 500-1000 Hz. We continue like this until we have decsed the

signal to a pre-defined certain level. Then we have albohsignals, which actually
represent the same signal, but all corresponding toreliffefrequency bands. We
know which signal corresponds to which frequency band, fawe put all of them

together and plot them on a 3-D graph, we will haves timone axis, frequency in
the second and amplitude in the third axis. This will sheywvhich frequencies exist
at which time (there is an issue, called "uncertgimigciple”, which states that, we
cannot exactly know what frequency exists at what tim@amte, but we can only

know what frequency bands exist at what time intervals)

The uncertainty principle, originally found and formeldty Heisenberg, states that,
the momentum and the position of a moving particle canmet khown

simultaneously. This applies to our subject as follows:

The frequency and time information of a signal at s@ewain point in the time-
frequency plane cannot be known. In other words: We atakmow what spectral
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component exists at any given time instant. The besanealo is to investigate what
spectral components exist at any given interval of tifff@s is a problem of
resolution, and it is the main reason why researchave Bwitched to WT from
STFT. STFT gives a fixed resolution at all times, wher&V/T gives a variable

resolution as follows

Higher frequencies are better resolved in time, and rldvegjuencies are better
resolved in frequency. This means that, a certain hgdué&ncy component can be
located better in time (with less relative erro@rra low frequency component. On
the contrary, a low frequency component can be locatéterben frequency
compared to high frequency component. FT decomposes a smgnedmplex
exponential functions of different frequencies. The walpes this, is defined by the

following two equations:

X (f) = j_mmx(t).e‘Zj”ﬂdt (3.28)

x(t) = j_"; X (f).e?i™df (3.29)

At the STFT, We not only know what frequency componemts present in the
signal, but we also know where they are located in.tifide short-time Fourier
transform (STFT), or alternatively short-term Fouti@nsform, is a Fourier-related
transform used to determine the sinusoidal frequency ansept@ntent of local
sections of a signal as it changes over time. Sime$cribed, in the continuous-time
case, the function to be transformed is multipliedabwindow function which is
nonzero for only a short period of time. The Fourr@ansform (a one-dimensional
function) of the resulting signal is taken as the windswlid along the time axis,
resulting in a two-dimensional representation of tigmali Mathematically, this is

written as:

STFRExX( )} = X(r,w)= on(t)w(t ~r)e i it (3.30)

where w(t) is the window function, commonly a Hann windomwgaussian "hill"

centered around zero, and x(t) is the signal to besfyemed. X¢,0) is essentially
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the Fourier Transform of x(t)w(t}, a complex function representing the phase and
magnitude of the signal over time and frequency. Oftensg@hanwrapping is
employed along either or both the time axiand frequency axisy, to suppress any
jump discontinuity of the phase result of the STHhe time indext is normally
considered to be "slow" time and usually not expressed imgh resolution as time

t. In the discrete time case, the data to be tram&d could be broken up into chunks
or frames (which usually overlap each other). Each chsirfkourier transformed,
and the complex result is added to a matrix, which recmatgitude and phase for
each point in time and frequency. This can be written as:

STFT{X[ ]} = X(mw) = Z: x[n]a{n - m]e_jan (3.31)

Likewise, with signal x[n] and window w[n]. In this gasm is discrete and
is continuous, but in most typical applications the B1dperformed on a computer
using the Fast Fourier Transform, so both variables dascrete and quantized.
Again, the discrete-time index m is normally considetecbe "slow" time and

usually not expressed in as high resolution as time n.

The continuous wavelet transform was developed astamaiive approach
to the short time Fourier transform to overcomergsolution problem. Unlike the
STFT which has a constant resolution at all times aaguencies, the WT has a
good time and poor frequency resolution at high frequenciesgaad frequency

and poor time resolution at low frequencies.
3.3 Sound wave

In this part sound and physical properties will be expthifle/9]. A wave is a

disturbance that propagates through space, often trangfeenergy. While a

mechanical wave exists in a medium (which on defoonat capable of producing
elastic restoring forces), waves of electromagnetdiation, and probably
gravitational radiation can travel through vacuum, thawithout a medium. Waves
travel and transfer energy from one point to anothath little or no permanent

displacement of the particles of the medium (theréttie or no associated mass
transport); instead there are oscillations around fpasitions.
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Sound is a disturbance of mechanical energy that progagateugh matter as a
wave. Sound is characterized by the properties of soundsyavhich are frequency,
wavelength, period, amplitude and velocity or speed. Naisesaund often mean
the same thing; when they differ, a noise is an umnedasiound. In science and
engineering, noise is an undesirable component that @ssawignal. What is noise
and what is signal depends on your point of view. Humansejer sound by the
sense of hearing. By sound, we commonly mean the vibeati@t travel through air
and can be heard by humans. However, scientists and ergyinge a wider
definition of sound that includes low and high frequency wbns in air that cannot
be heard, and vibrations that travel through all formsnafter, gases, liquids and
solids. The matter that supports the sound is callednddium. Sound propagates as
waves of alternating pressure, causing local regions mpoession and rarefaction.
Particles in the medium are displaced by the waveoanilate. The scientific study
of sound is called acoustics. Sound is perceived through ethge sof hearing.
Humans and many animals use their ears to hear sounthususounds and low
frequency sounds can be perceived by other parts of thetbaxligh the sense of
touch. Sounds are used in several ways, most notably fomgoization through
speech or, for example, music. Sound can also be usemjtire information about
properties of the surrounding environment such as spatialakastics and
presence of other animals or objects. For example,usat®cholocation, ships and
submarines use sonar, and humans can determine spatialatidoriy the way in

which they perceive sounds.

The range of frequencies that humans can hear is apptekmbatween 20 Hz and
20,000 Hz. This range is by definition the audible spectrbot, some people
(particularly women) can hear above 20,000 Hz. This raages/by individual and
generally shrinks with age, mostly in the upper part ofsfhectrum. The ear is most
sensitive to frequencies around 3,500 Hz. Sound above 20,000 Hmouen kas

ultrasound; sound below 20 Hz as infrasound.

The amplitude of a sound wave is specified in terms giritsssure. The human ear
can detect sounds with a very wide range of amplitudesaaodarithmic decibel

amplitude scale is used. The quietest sounds that humahsaahave an amplitude
of approximately 2@Pa (micropascals) or a sound pressure level (SPL) of @dB
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20 uPa (often incorrectly abbreviated as 0 dB SPL). Prolongpdseire to a sound
pressure level exceeding 85 dB can permanently damage flsee@times resulting
in tinnitus and hearing impairment. Sound levels in exced80@1B are considered
above of what the human ear can withstand and mayt riesgkerious pain and
permanent damage. At very high amplitudes, sound waves enbibiinear effects

including shock.

The speed of sound is a term used to describe the spessdirod waves passing
through an elastic medium. The speed varies with thdiume employed (for
example, sound waves move faster through water thanghrair), as well as with
the properties of the medium, especially temperaturas Isometimes used in
describing the nature of substances. In conventional nenascientific literature
sound velocity, v, and sound speed, ¢, are used synonymauslghauld not be
confused with sound particle velocity (also symbolized)aw/hich is the velocity of
the individual particles. The term is commonly used terrgpecifically to the speed
of sound in air. The speed varies depending on atmospheridiocnsgdthe most
important factor is the temperature. Humidity haseligtffect on the speed of sound,
nor does air pressure per se. (Pressure has no effeal at an ideal gas
approximation. This is because pressure and density botibcoa to sound
velocity equally, and in an ideal gas the two effects elanat, leaving only the
effect of temperature.) Sound usually travels more slowtlig greater altitude, due
to reduced temperature. An approximate speed of sound in awefers per second)
can be calculated from:

c,, =(3315+ (064))ms™ (3.32)

where?? (theta) is the temperature in degrees Celsius (°C).

In general, the speed of soune given by

c= |C (3.33)
0

where
C is a coefficient of stiffness
p is the density
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Thus the speed of sound increases with the stiffnetiseafaterial, and decreases
with the density. For general equations of state, gsitaal mechanics is used, the
speed of soundis given by
G = 0p

0p
where differentiation is taken with respect to adiabetiange.

(3.33)

If relativistic effects are important, the speed of sbumy be calculated from the
relativistic Euler equations. In a Non-Dispersive MedismSound speed is
independent of frequency, so the speeds of energy transpbsoand propagation
are the same. For audio sound range air is a non-sigpenedium. We should also
note that air contains Gvhichis a dispersive medium, and it introduces dispersion
to air at ultrasound frequencies (> 28 kHz).

In a Dispersive Medium — Sound speed is a function guiacy. The spatial and
temporal distribution of a propagating disturbance willtcwally change. Each
frequency component propagates at its own phase speed, tiwhilenergy of the
disturbance propagates at the group velocity. A suspensiemalf particles in a

fluid is an example of a dispersive medium.

Speed in solids

In a solid, there is a non-zero stiffness both fourwtric and shear deformations.
Hence, in a solid it is possible to generate sound wewtss different velocities
dependent on the deformation mode.

In a solid rod (with thickness much smaller than theeklength) the speed of sound
is given by:

c:solids. = \/E (334)
Yo

where

E is Young’s modules

p (rho) is density

Thus, in steel the speed of sound is approximately 5108 m-s
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In a solid with lateral dimensions much larger than wevelength, the sound
velocity is higher. It is found by replacing Young’s modulwith the plane wave
modulus, which can be expressed in terms of the Young’s lo®dund Poisson’s
ratio as:

1-v

Speed in a fluid

In a fluid the only non-zero stiffness is to volumetdeformation (a fluid does not
sustain shear forces).

Hence the speed of sound in a fluid is given by

K
Chuig = /— (3.36)
fluid 0

where

K is the adiabatic bulk modulus

The speed of sound in water is of interest to those mgpihie ocean floor. In
saltwater, sound travels at about 1500 m-s-1 and in fréshd435 m-s-1. These

speeds vary due to pressure, depth, temperature, saliniogteerdactors.

Speed in ideal gases and in air

For a gasK is approximately given by

K=«xk.p (3.37)

where

K Is the adiabatic index also known as the isentregpansion factor and sometimes-
calledy (Greek letter gamma). It is the ratio of constargssure to constant-volume
heat capacities of the gas (Cp / Cv), and arisesause a classical sound wave
induces an adiabatic compression, in which the béahe compression does not
have enough time to escape the pressure pulsgahasdaontributes to the pressure
induced by the compression.

p is the pressure.

Using the ideal gas law the speed of sound is ickrtb:
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=\/K.ﬂ (3.38)

where

R (287.05 J-k§:K™ for air) is the gas constant for air: the universal g@sstant R,
with units of J-mét-K?, is divided by the molar mass of air, as is commontijsec
in aerodynamics.

K (kappa) is the adiabatic index (1.402 for air), sometinésdy

T is the absolute temperature in kelvins.

In the standard atmosphere:

Tois 273.15 K (= 0 °C), giving a value of 331.5 t{s1193 km-H).

Toois 293.15 K (= 20 °C), giving a value of 343.4 m-s-1 (= 1236 ®m:h

Tosis 298.15 K (= 25 °C), giving a value of 346.3 m-s-1 (= 1246 ®m-h

In fact, assuming an, the speed of sound ¢ depends on té&mnperaly, not on the
pressure or density (since these change in lockstep fpvem temperature and
cancel out). Air is almost an ideal gas. The temperatitige air varies with altitude,
giving the following variations in the speed of sound usimgstiandard atmosphere -

actual conditions may vary

Effect of temperature

L cinms' pinkg.m® ZinN.s.n?

~10  325.4 1.341 436.5

-5 328.5 1.316 432.4
331.5 1.293 428.3
334.5 1.269 424.5

10 3375 1.247 420.7

15 340.5 1.225 417.0

20 343.4 1.204 413.5

25 346.3 1.184 410.0

30 349.2 1.164 406.6

Table 3.1 Effect of Temperature
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1} is the temperature in °C

c is the speed of sound in M-s

p is the density in kg-th

Z is the acoustic impedance in N-8-(@=p-c)

Given normal atmospheric conditions, the temperatane, thus speed of sound,
varies with altitude:

Effect of frequency and gas composition

With increasing frequency the sound wave compression ap@®aa perfect
adiabatic because there is less and less time farttvesscape in the compression
process. For this reason, sound waves in air, pantiguérasound, approach the
theoretical relation given above very closely, agudency rises.

The molecular composition of the gas contributes kaghthe mass (M) of the
molecules, and their heat capacities, and so both &avefluence on speed of
sound. In general, at the same molecular mass, momag@ases have slightly higher
sound speeds (over 9% higher) due to the fact that theyahlaiglher gamma (5/3 =
1.6) than diatomics do (7/5 = 1.4). Thus, at the same mlatemass, the sound

speed of a monatomic gas goes up by a factor of
[16
Coas = 4/— = 109 3.39
gas 14 ( )

This gives the 9% difference, and would be a tyma#to for sound speeds at room
temperature in helium vs. deuterium, each with demdar weight of 4. Sound
travels faster in helium than deuterium becausabatiic compression heats helium
more, since the helium molecules can store heaggrfeom compression only in
translation, but not rotation. Thus helium molesu{emonatomic molecules) travel
faster in a soundwave and transmit sound fastewn@® generally travels at about

70% of the mean molecular velocity in gases).

Note that in this example we have assumed thatdsatyre is low enough that heat
capacities are not influenced by molecular vibratiBlowever, vibrational modes
simply cause gammas which decrease toward 1, suim@tion modes in a

polyatomic gas gives the gas additional ways teesteeat which do not affect
temperature, and thus do not affect molecular vigl@nd sound velocity. Thus, the
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effect of higher temperatures and vibrational heat @gpacts to increase the
difference between sound speed in monatomic vs. polyatowiecules, with the

speed remaining greater in monatomics.

3.4 Acoustical Natural Frequencies

The sound in human body travels through trachea, laryr, Htey can be
considered as pipes. It is necessary to see the chafrgguencies in these systems
approximately. An acoustic wave is a longitudinal presswaeve, which it
propagates. The amplitude disturbance is thus paralleétditection of propagation.

Consider the pipe in the figure, where the length is ngrehter than the diameter.
The cross-section may have an arbitrary shape. Assliaheéhe pipe is filled with
some gas or liquid.

d :
pIpe

Figure 3.9 Pipe

L is the length

c is the speed of sound
The acoustic pressure p(x,t) is governed by the equation
°p_10°p
x> ¢ ot

(3.40)

Note that this equation has the same form as thmteq for the longitudinal
vibration of a rod. Note that the speed of soungiven by equation 3.34 for solids.
If we change equation following format,

c= |— (3.42)
where E is the modulus of elasticity,

P, is the equilibrium density.
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Separate the variables in equation. Let
p(x,t) = P(X)T (t) (3.42)
Substitute the equation in to previous equation apply the following boundary

conditions, one can obtain frequencies.

Case I: Both Ends Open

w, = nn%,nz 123,....

Case II: Open-Closed

w, :[2”_1jn3,n = 123,...
2 )L

Case Ill: Both Ends Closed

w, :anE, n=12_3,...

Infinite number of frequencies is obtained for @iffnt pipe lengths, pipe material,
speed of sound, and different boundary conditioftsus sound frequency in a
disease can change human to human, age to ageeggit to weight. The shape of
the lung is different in everybody. The structyradperties of the organ also changes

with age and weight.
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CHAPTER 4
SOUND RECORDING

ECM T-150 Sony Microphone is used to get sound signalstljirecthe computer
as in digital signals. Sound was recorded in noiselgssat ambient at the hospital.
But, there is no special sound isolation at the hdsmitan. Patients were classified
related to some parameters such as age, gender, smokarioker, weight, passed
patient knowledge and etc. Recorded sound signals weetlstath patient data at
the computer.
Some of measuring restriction can affect searcheseSdthese;

- Measuring time period for each patient

- How many times measured each respiratory signal durimgnpéteatment

- Position of the patient sit/ supine

- Run or staying patient

- Ambient effects and Seasons (Rel.Humidty)

- Recorded data restriction (Signal Sampling rate and ComBetriction)

Sound analysis coming from measuring data as digitgiasican be at least
Nyquist’s frequency or more. Therefore, sampling rdtd® sound was investigated
8000 Hz. The sound signal was high-pass filtered at 7.5 Haove DC offset (1st
order Butterworth filter) and low-pass filtered at 2.5 kHzavoid aliasing (8th order
Butterworth filter). The original sampling rate was 8 kHhe sound signal was
again high-pass filter filtered at 100 Hz to remove headtrauscle sound {1order

Butterworth filter) and low-pass filtered at 2.5 kHz tooivaliasing (8 order

Butterworth filter).

Lung sounds from the chest were recorded from 22 pa(#dtsien and 10 women)
with different pulmonary diseases which are 8 healthyjestis and 14 different
pulmonary diseases. Types of recorded diseases arecchusn wheezing,
pneumonia, asthma, bilateral rhonchus, current wheezihgezing at expirium,
wheezing at left, hypersensitive pneumonia, interstig@llmonary fibrosis,
bronchiectasis, rhomatoid artrit. The frequency of theom#ed wheezing and

60



rhonchus sounds are like as in literature about 400 Ha.p&tient with pneumonia,

frequency range is between 300- 600 Hz.

The sounds recorded are given in Appendix A. All the subjeetre asked to breath
spontaneously in the sitting position and sounds werededaver the right scapula.
In all figures, there are 4 graphs. The first oneglapws time domain of the original
signal. The second one (b), shows the diagram filtésecemove DC offset and
aliasing. The third one (c), shows the diagram filteeedeimove heart sound. The
last one (d), shows FFT of the final signal which ishaiit muscle and hearth

signals, and high frequency aliasing.
In Figure A. 1, normal vesicular sounds recorded overigiet scapula of a 21 year
old, 1.75 m height, 79 kg weight, and no smokers’ man arershafter 500 Hz

there is no considerable frequency component.

In Figure A. 2, normal vesicular sounds recorded overigit scapula of a 24 year
old, 1.75 m height, 75 kg weight, and no smokers’ man aersh

In Figure A. 3, normal vesicular sounds recorded overigit scapula of a 24 year
old, 1.70 m height, 75 kg weight, and no smokers’ man arersh

In Figure A. 4, normal vesicular sounds recorded overigiet scapula of a 21 year
old, 1.80 m height, 72 kg weight, and quit smoking man avesish

In Figure A. 5; normal vesicular sounds recorded overitfie scapula of a 25 year
old, 1.74 m height, 90 kg weight, and quit smoking man avesish

In Figure A. 6; normal vesicular sounds recorded overitfie scapula of a 50 year
old, 1.58 m height, 76 kg weight, and no smoker’'s womaslare/n.

In Figure A. 7; normal vesicular sounds recorded overitfie scapula of a 53 year
old, 1.58 m height, 81 kg weight, and no smoker’'s womaslare/n.
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In Figure A. 8; normal vesicular sounds recorded overitfe scapula of a 29 year

old, 1.61 m height, 63 kg weight, and no smoker’'s womaslare/n.

In Figure A. 9; a patient with asthma were recorded dweright scapula of a 54
year old, 1.75 m height, 93 kg weight, and quit smoking maslaren. In Figure A.
10; a patient with asthma and bilateral rhonchus weregdedaver the right scapula
of a 59 year old, 1.61 m height, 96 kg weight, and no smokenrsan. Information
about a patient with asthma has rhonchus sounds in loagk that are given above.
As the severities of sounds are increased so rhonchudssturns to wheezing. High
frequency wheezes of approximately 400 Hz is visible. Tdg#n are seen in Figure
A.10b

In Figure A. 11; a patient with current wheezing recorolgl the right scapula of a
66 year old, 1.53 m height, 72 kg weight, and no smoker’s amoare shown.
Current wheezing sounds had higher amplitude at 300 Hz andddition,
frequencies around the 400 are visible.

In Figure A. 12; a patient with wheezing sounds atraxpi recorded over the right
scapula of a 73 year old, 1.73 m height, 91 kg weight, and stmokan are shown.
Spectrum of wheezing sounds at expirium are seen abavé&equency range are
visible. In Figure A. 13; a patient with wheezing sounésenrecorded over the right

scapula of a 23 year old, 1.72 m height, 62kg weight, and qukisghman.

In Figure A. 14; a patient with pneumonia were recorded thesright scapula of a
72 year old, 1.72 m height, 64 kg weight, and no smoker’'s nmariterature,
frequency bands of pneumonia sounds are known as 300-600 Hz.

In Figure A. 15; a patient with pneumonia were recorded thesright scapula of a
34 year old, 1.76 m height, 80 kg weight, and no smoker’s mattid Figure A.

range of pneumonia is more definite.

In Figure A. 16; a patient with hypersensitive pneumoniaewecorded over the
right scapula of a 66 year old, 1.61m height, 72 kg weaid,no smoker’'s woman.
In subjects with hypersensitive pneumonia, majority ofaibeer is found at 400 Hz.
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In Figure A. 17; a patient with interstitial pulmonary ébis were recorded over the
right scapula of a 59 year old, 1.49 m height, 35 kg weigldt,n@ smoker’'s woman.
Spectrum of intersiyel pulmonary fibrosis extends to 500 Hz.

In Figure A. 18; a patient with rhonchus were recorded dweeright scapula of a 56
year old, 1.69 m height, 117 kg weight, and smoker’s maroi\apf the power of

this sound is found 150 Hz and quadratic majority of the paarfeund between 300
and 350 Hz.

In Figure A. 19; a patient with bilateral rhonchus wereorded over the right
scapula of a 41 year old, 1.54 m height, 77 kg weight, arakesrs woman.A
patient with rhonchus in lung, frequency of wheezin@ise as in literature.

In Figure A. 20; a patient with bronchiectasis were reabaler the right scapula of
a 66 year old, 1.57 m height, 65 kg weight, and no smokemsano

In Figure A. 21; a patient with romatoid artrit were reat over the right scapula of
a 49 year old, 1.67 m height, 66 kg weight, and quit smoking man

In Figure A. 22; a patient with extended expirium soundewecorded over the right
scapula of a 37 year old, 1.61 m height, 71 kg weight, and okesta woman.

Also R.A.L.E sounds are given in Appendix B. We obtainespiratory sound
signals from internet web site “http://www.rale.c&ecorded sounds are analyzed

using FFT and STFT with hamming window.

In Figure B.1 R.A.L.E. Normal vesicular sounds wererded over the left anterior

upper chest of a 15 year old male adolescent

In Figure B.2, R.A.L.E. Tracheal sounds were recorded thetrachea of a healthy

26 year old man
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In Figure B.3 R.A.L.E. Bronchial sounds were recorded thwerright anterior upper

chest of a 12 year old boy

In Figure B.4 R.A.L.E. Bronchovesicular sounds were meorover the right

posterior lower chest of a 2 day old baby girl.

In Figure B.5 R.A.L.E. Crackles sounds were recorded theeright posterior lower
chest of a 9 year old boy with pneumonia.

In Figure B.6 R.A.L.E. Crackles and bronchial breathing weoerded posteriorly
over the consolidated left lower lung of a 16 year old Wil tuberculosis.

In Figure B. 7 R.A.L.E. Late inspiratory fine cracklesres recorded over the right

posterior lower lung of a 55 year old woman with rheundglung disease.

In Figure B.8 R.A.L.E. Grunting was recorded with a micaph in front of the
mouth of a premature baby girl with respiratory digtré$ours after birth.

In Figure B.9 R.A.L.E. Inspiratory squawk and cracklesenecorded over the right
posterior upper chest of a 78 year old woman with intedgpulmonary fibrosis.

In Figure B.10 R.A.L.E. Stridor was recorded over thehgacof a 15 month old girl

with croup.

In Figure B.11 R.A.L.E. Expiratory wheezing was recordedrdte right anterior
upper chest of an 8 year old boy with asthma. Theresliglat frequency component
between 400-500 Hz.

In Figure B.12 R.A.L.E. Wheezing and coarse crackles vem@rded over the right
posterior lower lung of an 8 month old boy with virabibchiolitis. There is a

powerful frequency component between 400-500 Hz

In Figure B.13 R.A.L.E. Wheezing over trachea and rightelolung was recorded
from an 11-year old girl with acute asthma.
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CONCLUSION

This thesis has presented a study on respiratory soumal gigh using digital signal
processing method. Respiratory diseases can rapidlyhaselle using signal
processing tools and analyzed. The relation between disgassound can be found
in frequency domain. This can be accomplished by using FRhidrthesis FFT is
used for that reason. The figures obtained from soundrdigs in University
hospital are presented in Appendix A. But this is not enobgbause some sound
signals have time dependent frequencies. Therefore, STHHE good approach for
this case. But, this is not enough to understand wholelsigneng breathing cycle.
Windowing is used to concentrate on the desired part ofigmal .We used STFT
with hamming window and presented in Appendix B. Our searchliterdture
survey indicates that wheezing sound frequencies are abottz4@Jso pneumonia
disease has frequency between 300 and 600 Hz. Thereforeresthieatory diseases
also can be found in different frequency ranges. Bwdret are many difficulties
affecting the analysis such as number of patient fon easpiratory disease.

Clinicians will be able to use some packet and standdt@ae program to get
efficient and rapid diagnosis. However, it will be atnto prepare user interfaced
software in the future studies. This special software progvél be used together
with pneumotachometer measuring values and also maydmcaiiatabase parts
related to patient and diseases to get statistical iafiitom After, each instrument
and parts have international standard use; an ausenlgvice can be found as in

standard packet to use easily by clinicians.
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APPENDIX A

RESPIRATORY DISEASE SOUND GRAPHICS
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Figure A. 1. Normal breath sounds in time-domain signéfkdys (b) filtered to remove DC offset
and aliasing (c¢) and filtered to remove heart soundKd)<-
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Figure A. 2. Normal breath sounds in time-domain signafkdys (b) filtered to remove DC offset

and aliasing (c¢) and filtered to remove heart soundKd)<-
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Power spectrum density, filtered sound
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Figure A. 3. Normal breath sounds in time-domain signéfkdys (b) filtered to remove DC offset
and aliasing (c¢) and filtered to remove heart soundKd)<-
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Power spectrum density, filtered sound
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Figure A. 4. Normal breath sounds in time-domain signéfkdys (b) filtered to remove DC offset
and aliasing (c¢) and filtered to remove heart soundKd)<-
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Figure A. 5. Normal breath sounds in time-domain signafkdys (b) filtered to remove DC offset

and aliasing (c¢) and filtered to remove heart soundKd)<-
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Power spectrum density, filtered sound
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Figure A. 6. Normal breath sounds in time-domain signafkdys (b) filtered to remove DC offset
and aliasing (c¢) and filtered to remove heart soundKd)<-
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Figure A. 7. Normal breath sounds in time-domain signafkdys (b) filtered to remove DC offset

and aliasing (c¢) and filtered to remove heart soundKd)<-
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Figure A. 8. Normal breath sounds in time-domain signdfkdys (b) filtered to remove DC offset

and aliasing (c¢) and filtered to remove heart soundKd)<-
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Power spectrum density, filtered sound
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Figure A. 9. A patient with asthma in time-domain sigalRFT's (b) filtered to remove DC offset

and aliasing (c¢) and filtered to remove heart soundKd)<-
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Power spectrum density, filtered sound
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Figure A. 10. A patient with asthma and bilateral rharsctin time-domain signal (a) FFT's (b)

filtered to remove DC offset and aliasing (c) antkfidd to remove heart sound (d) FFT's.
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Figure A. 11. Current wheezing sound in time-domain si¢aaFFT's (b) filtered to remove DC

offset and aliasing (c) and filtered to remove heartdguhFFT's.
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Figure A. 12. Wheezing sound at expirium in time-domain signd&Ka)s (b) filtered to remove DC

offset and aliasing (c) and filtered to remove heartdguhFFT’s.
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Figure A. 13. Wheezing sound in time-domain signal (a) FH) §iltered to remove DC offset and

aliasing (c) and filtered to remove heart sound (d)'&:FT
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Figure A. 14. Peumoniasound in time-domain signal (a) FFT’s (b) filtered to oemDC offset

and aliasing (c¢) and filtered to remove heart soundKd)<-
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Figure A. 15. Peumoniasound in time-domain signal (a) FFT’s (b) filtered to oemDC offset
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96



Amplitude

Pneumoni

l T T T T

0.2

- l I I L L L I I L
0 1 2 3 4 5

Time, se
Figure A.16a

o
~
o

Power spectrum dens

1.5 T T T

0.5+

ol MimMi@Wﬂmmm m !.ﬂmll..mm i b sl e | I
0 100 200 300 400 500 600 700 800 900

Frequency, H
Figure A.16b

97

1000



Power spectrum density, filtered sound

15

0.51 1

bl o il L L

0 LA A

‘ Wt
0 100 200 300 400 500 600 700 800 900 1000

Frequency, H
Figure A.16C

Power spectrum density, filtered sound
14F T T T T T T 5

0 100 200 300 400 500 k00 700 800
Frequency, H
Figure A.16d

Figure A. 16. Hypersensitive pneumonia sound in time-dorsighal (a) FFT's (b) filtered to remove
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Figure A. 18. Rhonchus sound in time-domain signal (&)4-¢b) filtered to remove DC offset and

aliasing (c) and filtered to remove heart sound (d)'&:FT
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Figure A. 19. Rhonchus sound in time-domain signal (&)4-¢b) filtered to remove DC offset and

aliasing (c) and filtered to remove heart sound (d)'&:FT
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Figure A. 20. Bronchiectasis in time-domain signal (a)'Bkb) filtered to remove DC offset and
aliasing (c) and filtered to remove heart sound (d)'&FT
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Figure B. 1. (a) R.A.L.E Normal vesicular sounds inetidomain signal (b) FFT’s.(c) 3D STFT,
Using Hamming window
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Hamming window
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Figure B. 3. (a) R.A.L.E Bronchial sounds in time donsgmal (b) FFT's.(c) 3D STFT, Using
Hamming window
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Using Hamming window
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STFT, Using Hamming window
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Figure B. 6. (a) R.A.L.E. crackles and bronchial rizey with tuberculosis. in time domain signal (b)
FFT's
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Figure B. 7. (a) R.A.L.E. late inspiratory fine craakith rheumatoid lung disease. in time domain
signal (b) FFT’s.(c) 3D STFT, Using Hamming window
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Figure B. 8. (a) R.A.L.E. Grunting with respiratory disgén time domain signal (b) FFT’s.(c) 3D
STFT, Using Hamming window
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Figure B. 9. (2)R.A.L.E. Inspiratory squawk and cracklgh interstitial pulmonary fibrosis in time
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Figure B. 10. (a) R.A.L.E. Stridor with croup in time domsignal (b) FFT’s.(c) 3D STFT, Using
Hamming window
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Figure B. 11. (a) R.A.L.E. Expiratory wheezing withhasa. in time domain signal (b) FFT’s.(c) 3D
STFT, Using Hamming window
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Figure B. 12. (a) R.A.L.E. Wheezing and coarse crackigsviral bronchiolitisin time domain
signal (b) FFT’s.(c) 3D STFT, Using Hamming window
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