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ABSTRACT 

ANALYSIS OF SQUARE SPIRALS ON 
PLANAR DIELECTRIC AND CHIRAL SLABS 

DELİHACIOĞLU, Kemal 
Ph. D. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Savaş UÇKUN 
February 2007, 104 Pages 

 

In this thesis, the scattering characteristics of novel Frequency Selective 

Surfaces (FSSs) such as, L–shaped, One– and Two–turn square spiral elements are 

investigated theoretically on planar dielectric and chiral slabs for Transverse Electric 

(TE) and Transverse Magnetic (TM) incident plane waves. Assuming it to be 

infinitely thin and a perfect conductor, the FSS elements are placed periodically in 

the x–y plane. The Moment Method (MM) of Galerkin type is employed by 

expanding the current induced on the metallic surfaces in terms of overlapping 

Piecewise Sinusoidal (PWS) basis functions. The reflection and transmission 

coefficients due to FSS structures are obtained in terms of current coefficients. 

The numerical results of reflection and transmission coefficients are plotted 

against frequency for freestanding and dielectric backed FSS elements. The variation 

of reflection coefficient with respect to frequency is presented for different values of 

parameters such as incident angle, slab thickness and dielectric constant. The co– and 

cross–polarized field equations due to chiral medium are written separately for TE 

and TM incident waves. The co– and cross–polarized reflection and transmission 

coefficients are plotted with respect to frequency for different values of medium 

parameters such as chirality admittance, slab thickness, incident angle and dielectric 

constant. At resonant frequency a maximum current is excited on the elements; for 

this reason, the current amplitude induced on the metallic FSSs is plotted against the 

stretched out wire length at resonant frequency. 

Key words: Chiral, Frequency Selective Surface, Moment Method, Piecewise 

Sinusoidal, L–shaped, one–turn square spiral and two–turn square spiral. 
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ÖZET 

DÜZLEMSEL DİELEKTRİK VE BAKIŞIMSIZ LEVHALAR 
ÜZERİNDEKİ KARE HELEZONLARIN ANALİZİ  

 
DELİHACIOĞLU, Kemal 

Doktora Tezi Elektrik Elektronik Mühendisliği Bölümü 
Tez Yöneticisi: Prof. Dr. Savaş UÇKUN 

Şubat 2007, 104 Sayfa 

 

Bu tezde, L–şekilli, tek ve çift döngülü kare helezon gibi yeni Frekans Seçici 

Yüzey (FSY)’ lerin saçılma karakteristikleri düzlemsel dielektrik ve bakışımsız 

levhaya dik gelen TE ve TM düzlem dalgaları için araştırılmıştır. Sonsuz ince ve 

mükemmel iletken kabul edilen FSY elemanları x–y düzlemine periyodik olarak 

yerleştirilmiştir. Metal yüzeylerde indüklenen bilinmeyen akım katsayıları üst üste 

çakışan parçalı sinüs temel fonksiyonları cinsinden genişletilip Galerkin tipi Moment 

Metodu kullanılmıştır. FSY yapılarından dolayı oluşan yansıma ve iletim katsayıları 

akım katsayıları cinsinden elde edilmiştir.  

 

Havada asılı ve dielektrik levha ile desteklenen FSY elemanları için yansıma 

ve iletim katsayılarının frekansa göre grafikleri çizilmiştir. Yansıma katsayısının 

frekansa göre değişimi gelme açısı, levha kalınlığı ve dielektrik sabiti gibi 

parametrelerin farklı değerleri için sunulmuştur. Bakışımsız ortamdan dolayı, ortak– 

ve çapraz–kutupsal alan denklemleri TE ve TM düzlem dalgaları için elde edilmiştir. 

Ortak– ve çapraz– kutupsal yansıma ve iletim katsayılarının frekansa göre grafikleri 

ortamın bakışımsızlık admitansı, levha kalınlığı, gelme açısı ve dielektrik sabiti gibi 

farklı değerleri için çizilmiştir. Rezonans frekansında FSY elemanları üzerinde 

maksimum akım oluştuğundan dolayı metalik FSY’ler üzerinde indüklenen akımın 

grafiği iletkenin uzunluğuna göre rezonans frekansında çizilmiştir. 

 

Anahtar Kelimeler: Bakışımsız, Frekans Seçici Yüzey, Moment Metod, 

Parçalı sinüs, L–şekilli, tek–döngülü kare helezon ve çift–döngülü kare helezon. 
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INTRODUCTION 
 

The aim of this thesis is to investigate the reflection, transmission and 

resonance characteristics of novel square spiral Frequency Selective Surface (FSS) 

elements placed periodically on a chiral slab. First, square spiral element was 

reduced to sub–structures such as strip, L–shaped and one–turn square spiral 

elements, to go step by step. Later, we ended with a two–turn square spiral element. 

Adding more turn to square spiral will increase the inter–element spacings and the 

matrix dimension; however this is time consuming and more basis functions should 

be used. These FSS structures are analyzed on both planar dielectric and chiral slabs. 

The most important thing for square spiral element is to find suitable basis functions 

that will represent unknown current coefficients. The entire domain or subdomain 

basis functions are used to find surface currents in most of the FSS problems 

comprised of simple structures. It is difficult to find an entire domain basis functions 

for complex structures, i.e. two–turn or many–turn square spiral. Throughout this 

thesis the Moment Method (MM) of overlapping Piecewise Sinusoidal (PWS) basis 

functions are used to determine the unknown current coefficients. Since the square 

spiral is a curved structure, the PWS basis function at the corners is divided into two 

equal parts; one is in the vertical segment and the other is in the horizontal segment. 

Having computed the unknown current coefficients, the reflected and transmitted 

waves can readily be found.  

 

 Literature Review 

 

The periodic structures constituted by metallic elements, which is called FSSs, 

have been studied for many years and their behavior is well known. The FSS 

elements can be either free standing or printed on a dielectric slab. The dielectric slab 

is used to support FSS elements and modify spectral response characteristics. FSSs 

for microwave systems are commonly fabricated in printed circuit technology where 
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the selectivity is determined by the shape and spacing of elements within the array of 

conducting elements. FSSs also depend on the constitutive parameters of the slab, 

angle of incidence and polarization of the incoming wave. FSSs have found wide use 

in various applications. They are designed to reflect or transmit electromagnetic 

waves with frequency discrimination. Scattering from the perfectly conducting arrays 

of different FSS structures have been analyzed and reported by many authors i.e. 

band stop filters, band pass filters, microwave multiband antennas, hybrid radomes, 

dichroic subreflectors [1,2,3]. Theoretical and experimental investigations on arrays 

of elements of different shapes such as dipole [4], crossed dipoles [5], tripoles [6], 

square loops [7], Jerusalem cross [8] and patch [9] have been carried out earlier. 

Some other applications of FSSs have been proposed in literature; for instance, 

millimeter and sub millimeter wave applications [10], spaceborne applications of 

reflector antenna [11], dual reflector antenna systems in order to provide multi–

frequency capabilities [12], rectangular patch FSS mounted on uniaxial anisotropic 

substrate [13], in dielectric radomes design to reduce reflections [3]. The circular 

ring FSS elements both double screen and single screen designs are generated for tri–

band system that reflects the X–band signal while transmitting through the S– and 

Ku–band signals [14]. In antenna and microwave filter applications, periodic arrays 

of conducting elements are also used for Photonic Bandgap structures which prohibit 

the electromagnetic wave propagation within a certain frequency range [15].  

 

Chiral media are known as optically active media. The special property of 

optically active media is that the polarization plane of linearly polarized 

electromagnetic wave is rotated as wave passes through the medium. The amount of 

rotation depends on the distance traveled by the wave in the medium and on the 

difference between the two wave numbers, which is a consequence of the degree of 

chirality [16]. The optical activity of the chiral medium is commonly represented by 

a scalar parameter, ξ, which is called chirality admittance of the medium [17]. Chiral 

materials have a great importance in electromagnetic field applications with ongoing 

progress. A considerable amount of experimental and analytical works have been 

devoted to the application of chiral materials over the last couple decades [18]. In 

microwave and antenna engineering, chiral materials can be used to build novel 

devices and structures such as, polarization transformers [19], reduction of target 
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radar cross–section RCS [20], periodic achiral–chiral interfaces [21], 

chirowaveguides [22], anti–reflection coatings [23], microstrip antennas [24], chiro–

phase shifter [25] and chiral absorbing material [26]. FSS elements, comprised of 

periodically arranged metallic structures of dipole, cross dipole, square patch, 

circular and square rings on a chiral slab are analyzed in [27]. 

 

The present thesis gives the results of three novel FSSs which are made up of 

perfectly conducting elements of L–shaped, one– and two–turn square spirals placed 

periodically on planar dielectric and chiral slabs. The unknown current induced by 

the incident wave on the metallic FSSs can be found by expanding the current 

density in terms of overlapping PWS basis functions [28] and then using the MM 

[29] of Galerkin type. In [28], the numerical analysis algorithm for the square spiral 

antennas is developed by expanding the current distribution in PWS basis function. A 

computer program is developed to find the reflection and transmission coefficients 

due to dielectric and chiral backed FSS elements. The results are presented in 

graphical form for the current amplitude, reflection and transmission coefficients.  

 

Thesis Overview 

 

The presentation of the work done in this thesis is organized as follows: 

Chapter 1 gives the necessary equations corresponding to electric and magnetic fields 

derived for the FSS elements on planar dielectric slab. The detailed analyses of MM 

and PWS basis functions are given. The Electric Field Integral Equation (EFIE) is 

obtained using the boundary conditions and the inner products with the use of 

overlapping PWS basis functions. The reflection and transmission coefficients are 

plotted with respect to frequency for freestanding and dielectric backed FSSs at 

different values of medium parameters. The current amplitude versus stretched out 

length is plotted at resonant frequency of the three FSS elements. 

 

Chapter 2 is devoted to the L–shaped, one– and two–turn square spiral FSS 

elements backed by chiral slab. The necessary electric and magnetic fields are 

written in terms of the modal fields [30] for the chiral slab and free spaces 
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corresponding to TE and TM wave incidences. The co– and cross–polarized 

reflection and transmission coefficients are obtained in terms of the induced current 

coefficients and medium parameters for the propagating modes. The co– and cross– 

polarized reflection and transmission coefficients are plotted with respect to 

frequency for FSS elements of strip, L–shaped, one– and two–turn square spirals. 

The current coefficients induced on the conductors are plotted against the stretched 

out length of the structure at resonant frequency. 

 

Finally, in Chapter 3, conclusions and recommendations for additional work 

are proposed. In the appendix the full expressions for the coefficients of TM and TE 

wave on a chiral slab are given. 
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CHAPTER  1 

DIELECTRIC  BACKED  FSSs 
1.1 Introduction 

The focus of this dissertation is to investigate the reflection, transmission and 

resonance characteristics of L–shaped, one– and two–turn square spiral FSSs placed 

periodically on x–y plane and composed of infinitely thin electrical conductors, 

backed by planar dielectric and chiral slabs. Firstly, we analyzed dielectric backed 

FSS by using Modal analysis method with the PWS basis functions MM. The 

dielectric and chiral slabs are placed between two free spaces, with infinite transverse 

dimensions on either side. The FSS array is illuminated by a monochromatic plane 

wave of arbitrary polarization (either TM or TE incident) from the free space region. 

The amplitude of the incident electric field is set to unity (1 V/m). The periodicities 

(inter–element spacing) d1 and d2 are in the x– and y– directions, respectively. The 

slab has a thickness d and a relative permittivity εr. The Modal analysis method was 

applied to expand the scattered field as a summation of modes near the array of 

perfect conductor with unknown coefficients, where each mode satisfies Floquet’s 

Theorem [31]. By requiring the total electric field vanish on the conducting element, 

an integral equation for the unknown current on each element is obtained. This 

integral equation can be solved by using MM converting the integral equation into 

simultaneous linear equation through numerical approximations, and into a matrix 

equation that can be solved numerically on computer by matrix inversion. In the 

MM, we expand the unknown currents into finite series in terms of basis functions. 

There are two classes of basis functions. The first class is defined over the entire 

solution domain and hence is called the entire–domain basis functions. For most 

electromagnetic problems, the solution domain is complicated, and it is difficult to 

find entire–domain basis functions that can form approximately a complete set over 

the domain. For this reason, the entire–domain basis functions have limited use. The 

second class is defined over small parts of the solution domain and is called the 

subdomain basis functions. Although the unknown function over the entire solution 

domain  can  be  complicated  and  cannot  be  represented  by  simple  functions,  its 
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Figure 1.1 FSSs composed of infinite doubly periodic arbitrary conductors printed on a dielectric 

slab 

behavior over a sufficiently small region can be rather simple and hence is 

representable with simple functions. For this reason, the subdomain basis functions 

are widely used in the MM for a variety of electromagnetic problems. In the solution 

domain of this thesis, the basis (expansion) function was chosen as PWS when 

implementing the MM to determine the reflection and transmission coefficients 

which depend on the current coefficients. 

 

1.2 Analysis of FSSs Backed by Dielectric Slab 

The dielectric slab is assumed to be linear, isotropic and homogeneous. All the 

elements in the array are assumed to be identical, infinitely thin and perfectly 

conducting. The array is periodic and extends to infinity in both the x– and y– 

directions. This allows us to expand the fields in three regions, i.e., inside the 

dielectric slab and in the air on either side, into Floquet modes. The Floquet mode 

theorem provides a means of describing the array in terms of complete orthogonal set 

of modes so that mutual coupling between the array elements is taken into account. 

The incident field, i.e., the field produced by the incident plane wave in the absence 

of scatterers, is just the field produced by the incident wave in the presence of 

dielectric slab. It therefore contains only the zero order Floquet modes. Scattered 

fields, on the other hand, are produced by the current distribution )y,x(J on the 

scatterers. It is assumed that a monochromatic plane wave of arbitrary polarization, 

with unity electric field intensity is incident from free space upon a dielectric slab. 

z x

y 

εr  

d 

d1 

A 

d2 

β 
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Arbitrary periodic excitations can be studied by decomposing the incident field into 

its TE and TM components and then further decomposing each component into its 

Floquet expansion. When expanding the fields, we recognize that we can use the 

vector Floquet modes with the tje ω  time dependence omitted: 

 rpq
zjj21

rpq
pqpq eeA κF ρk γ−⋅−−=  (1.1) 

where rpqF designate the electric and magnetic field at the (p,q)’th periodic cell. The 

first subscript 1=r or 2=r  is used to stand for TM and TE modes, respectively. 

Throughout this thesis, boldface letters have been used to denote vectors. The vector 

pqk  is the propagation vector along the tangential direction (x–y plane) and it is 

defined as 

 y
21

x
1

pq sind
q2

tand
p2sinsinkp

d
2cossink aak ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

β
π

β
πφθπφθ  (1.2) 

where yx yx aaρ +=  is a vector in the x–y plane and { }φθ ,  are the spherical 

coordinate angles defining the direction of propagation of the incident field. 1d  and 

2d  are lattice vectors. The area of the unit cell in Figure 1.1 is denoted by A 

( βsinddA 2121 =×= dd ).  

The propagation along the transverse direction (the z–direction) is defined as  

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤−−

≥−
=

pq
22

pq

pq
2

pq
2

pq

kkj

kk

kk

kk
γ  (1.3) 

 ok εμω=  

The explicit definition for the unit vector rpqκ is: 

 
pq

pq
pq1 k

k
κ = , TM modes 

 pq1zpq2 κaκ ×= , TE modes  ∞−−−∞= ,2,1,0,1,2,,q,p  
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For 0qpi ===θ , 0pq =k . In order to avoid a 
0
0  singularity when 

0qpi ===θ , the limit of rpqκ  must be taken for 0i →θ . The result of such a limit 

is yx aaκ ii100 sincos φφ +=  and yx aaκ ii200 cossin φφ +−= . The location of the 

elements is defined by the indices of arbitrary integers { }qp, . The modal propagation 

constant, pqγ  is positive real value for propagating modes and negative imaginary 

for the exponentially decaying (evanescent) modes in (1.3). Rather than using the 

compact notation of (1.1), we will write the Floquet modes explicitly in order to 

properly account for the direction of propagation. 

The total transverse incident electric and magnetic fields in the region z≤0 in 

the absence of the scatterers is given by [32],  

 ∑
=

⋅−− +=
2

1r
00r

jinc
r

zjslab
00r

zjinc
t

00
o
00

o
00 eb]eRe[ κE ρkγγ  (1.4) 

 00rz
jinc

r
zjslab

00r
zj2

1r

o
00r

inc
t

00
o
00

o
00 eb]eRe[Y κaH ρk ×−= ⋅−−

=
∑ γγ  (1.5) 

where the subscript t indicates the transverse field component and inc
rb is the 

amplitude of incident field. The modal admittances of the free space in the region 

z≤0 and z≥d are given by, 

o
pq

ooo
pq1

Yk
Y

γ
= , 

o

o
o
pqo

pq2 k
Y

Y
γ

= , oooY με= , oook μεω= , 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤−−
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=

00o
2
o

2
00

00o
2

00
2
o

o
00

kkj

kk

kk

kk
γ  m/F

36
10 9

o π
ε

−

=  m/H104 7
o

−= πμ  

where oo ,με are the permittivity and permeability of the free space. The reflection 

coefficient, slab
rpqR  at the boundary at z = 0, due to the dielectric slab is given by 

eq
rpq

eq
rpq

o
rpqslab

rpq Y

YY2
R

−
=  (1.6) 

where eq
rpqY  is the equivalent modal admittance given as 
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⎟
⎟
⎠
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⎜
⎜
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⎛
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rpq

rpq
rpq
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rpq

eq
rpq R1
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YYY , 

pq
pq1

kYY
γ
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k

Y
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pq2
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pqe

YY
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⎦

⎤
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⎣

⎡

+

−
=  

Equation (1.6) is found in a straightforward manner by matching the tangential 

electric and magnetic fields at z = 0 and z = d. 

The incident wave induces current on the scatterers. Radiation from the current 

and scattering from the dielectric slab yield the electromagnetic fields. The scattered 

fields in region 1 ( )0z ≤ , 2 ( )dz0 <<  and 3 ( )dz ≥  are represented by{ }11,HE , 

{ }22 ,HE  and{ }33 ,HE , respectively. For z≤0, we have  

 ∑ ∑ ∑
=

∞

−∞=

∞

−∞=

⋅−− ⋅=
2

1r p q
rpq

jzj
rpq

pq
o
pq ee κE ρk

1
γa  (1.7) 

 ∑ ∑ ∑
=

∞

−∞=

∞

−∞=

⋅−− ×⋅−=
2

1r p q
rpqz

jzj
rpq

o
rpq1 )(eeY pq

o
pq κaH ρkγa  (1.8) 

In the region 0<z≤d, 

 ∑ ∑ ∑
=

∞

−∞=

∞

−∞=

⋅−− ⋅+=
2

1r p q
rpq

jzj
rpq

zj
rpq2

pqpqpq e]eeb[ κE ρkγγ a  (1.9) 

 )(e]eeb[Y
2

1r p q
rpqz

jzj
rpq

zj
rpqrpq2

pqpqpq∑ ∑ ∑
=

∞

−∞=

∞

−∞=

⋅−− ×⋅−= κaH ρkγγ a  (1.10) 

For z ≥ d 

 ∑ ∑ ∑
=

∞

−∞=

∞

−∞=

⋅−−+ ⋅=
2

1r p q
rpq

jzj
rpq3

pq
o
pq eeb κE ρkγ  (1.11) 

 )(eebY
2

1r p q
rpqz

jzj
rpq

o
rpq3

pq
o
pq∑ ∑ ∑

=

∞

−∞=

∞

−∞=

⋅−−+ ×⋅= κaH ρkγ  (1.12) 

where −
rpqa , rpqb , rpqa and +

rpqb  are unknown field amplitudes. Each Floquet mode in 

the scattered fields must satisfy the following boundary conditions; 

1. The tangential components of electric and magnetic fields are continuous 

at z=d, 
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2. The tangential component of electric field is continuous at z=0, 

3. The tangential magnetic field exhibits a jump discontinuity at z=0 and is 

equal to surface current density )y,x(J  which resides on the interface. 

The boundary conditions are straightforward at z=d, resulting in, 

 rpqrpqrpq bR=a  (1.13) 

The continuity of electric field at z=0 results in, 

 rpqrpqrpq b)R1( +=−a  (1.14) 

The third boundary condition on the tangential magnetic field at z=0 is,  

 )y,x()0,y,x()0,y,x( z12 JaHH ×=−  (1.15) 

Substituting (1.8) and (1.10) into (1.15) and using (1.13) and (1.14), we find  

 ∑ ∑ ∑
∞
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⎥
⎦

⎤
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⎢
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⎜
⎜
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⎛
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p q

2
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j
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rpq
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o
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R1
R1

YY pq Jaκaρka  (1.16) 

The challenge is to find the values of the unknown coefficients −
rpqa . By taking 

the inner product on both sides of (1.16) ruv
uvje κρk ⋅  (where { }v,u  are arbitrary 

integers), and integrating both sides of the resulting equation over one periodic cell 

(using the orthogonality relationship) we obtain the following expression for the 

coefficients −
rpqa  in terms of the unknown induced currents. 

 ydxde)y,x(
AY

1 pqj

unitcell
rpqeq

rpq
rpq ′′′′⋅−=

′⋅− ∫
ρkJκa   (1.17) 

Hence the scattered tangential electric field for z≤0, can be written explicitly as, 

∑ ∑ ∑
=

∞

−∞=

∞

−∞=

−⋅−γ ⋅−=
2

1r p q

1eq
rpq

jzj
1 )Y(ee pq

o
pq ρkE rpq

j

unitcell
rpq ydxde)y,x(

A
1 pq κJκ ρk ′′′′⋅⋅

′⋅
∫  (1.18) 

Since both the scattered and the incident field satisfy the dielectric boundary 

conditions, the final boundary condition is that the tangential electric field vanishes 

over the perfect conductor. Hence 

 0)0,y,x()0,y,x( inc
t1 =+ EE  (1.19) 
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or substituting Equation (1.4) and (1.18) into (1.19), we find explicitly 

 =+ ⋅−

=
∑ 00r

jinc
r

2

1r

slab
00r

00eb)R1( κρk  

 rpq

2

1r p q unitcell

j
rpq

1eq
rpq

j ydxde)y,x()Y(e
A
1 pqpq κJκ ρkρk∑ ∑ ∑ ∫

=

∞

−∞=

∞

−∞=

′⋅−⋅− ′′′′⋅  (1.20) 

where 1binc
1 = , 0binc

2 =  for TM incidence, 

 0binc
1 = , 1binc

2 =  for TE incidence 

This is EFIE for the unknown current distribution. The most common method 

to solve the EFIE is the MM. In the MM, the integral equation for the 

electromagnetic field is transformed into a simultaneous equation or matrix equation 

and the unknown quantities such as the surface current on conducting scatterers is 

evaluated by solving the simultaneous equation numerically. In Equation (1.20) the 

current density )y,x(J is approximated as follows: 

 )y,x(c)y,x( n

N

1n
n fJ ∑

=
=  (1.21) 

where nc ’s are the unknown current coefficients to be determined. The functions 

)y,x(nf  are complete and orthogonal over a conducting element and N is finite for 

computability. Substituting (1.21) in (1.20) and integrating over a unit cell after 

multiplying both sides by )y,x(mf  yields the following system of equations. 

 ∑ ∑ ∑ ∑∑
= =

∞

−∞=

∞

−∞==

⋅⋅
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gκ  (1.22) 

where m=1,2,…,N and the asterisk denotes the complex conjugate. 

 ∫∫
⋅= dxdye pqj

nnpq
ρkfg  (1.23) 

where yvxu pqppq +=⋅ ρk  
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d
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β
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q2cot
d

p2sinsinkv
21
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Figure 1.2 Piecewise sinusoidal expansion functions for one–turn square spiral FSS 

Since the solution domain is a contour, it can first be divided into small 

segments, denoted by N210 s,s,s,s as illustrated in Figure1.2 for one–turn square 

spiral FSS. The basis function fn, is used to approximately represent the surface 

current which is the overlapping functions of PWS. The basis function in an arbitrary 

direction sa  is defined in parametric form as 
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The current flows only along the lengths of structures, which is axially directed 

and only x– or y– dependent. The reference current direction is assumed to be 

outward from the origin of the structure. The basis and weighting functions will 

follow the contour of the FSS elements. The width )(w  of the square spiral is much 

smaller compared with the segment length )hw( <<  and the wavelength )w( λ<< . 

Hence, the variation of the current across the width can be ignored.  

Equation (1.22) is a matrix equation of NxN for the unknown coefficients of 

the current expansion. Substituting (1.23) in (1.22) would yield infinite system of 

linear equations for the unknown current coefficients. If this infinite system of linear 

equation  is  truncated,  the solution  to the truncated  system  approximates  the exact 
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solution. The truncated linear system can be written in matrix form as; 

 [ ] [ ] [ ]nmnm cZV =  (1.25) 

The elements of the impedance matrix are, 

 eq
pq2

npqpq2
*
mpqpq2

eq
pq1

npqpq1
*
mpqpq1

p q
mn YYA

1Z
gκgκgκgκ ⋅⋅

+
⋅⋅

= ∑ ∑
∞

−∞=

∞

−∞=
 (1.26) 

The excitation vector is, 

 [ ] ( ) 00n00r
inc
r

slab
00r1Nx bR1V gκ ⋅+=  (1.27) 

The unknown current coefficients are 

 [ ] [ ]TN211Nx cccc = , with the superscript T denotes transpose. 

In Equation (1.26), the matrix that is to be solved is called the moment matrix. 

The moment matrix is a square matrix with one row and one column for every basis 

function. Each entry in the moment matrix represents the electromagnetic coupling 

between two basis functions. For example the moment matrix entry at row one and 

column two represents the coupling between the first and second basis functions. 

Typically the computation of the moment matrix entries (filling the matrix) is one of 

the most time–consuming tasks when using the MM. The size of the matrix equals 

the number of basis functions used. The matrix is symmetric at normal incidence due 

to Galerkin’s MM. Symmetric means that elements are mirror images of each other 

across the diagonal of the impedance matrix. The problem is formulated using MM 

of overlapping PWS basis functions. Since the PWS basis functions are continuous 

within a segment, the convergence of the results is obtained by increasing the 

number of Floquet modes until there is little change in the results. With sufficiently 

large number of Floquet modes the resulting matrix equation is well–conditioned 

[33]. Equation (1.25) is solved using matrix inversion to calculate the current 

coefficients for the computation of reflection and transmission coefficients. The total 

reflected field can be written using (1.4) and (1.18), 

∑
=
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t beeR 00
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1 pq κJκ ρk  (1.28) 
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In a straightforward manner we can also find the transmitted field, 

∑
=

⋅−− +=
2
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00r
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r

slab
00r00r

jzjdtransmitte
t b)R1(tee 00
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where 
rpq

d)(j
rpq

d)(j
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eRe
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o
pq

+
+

=
+− γγγγ

 

The reflected and transmitted far fields contain only propagating Floquet modes for 

which pqγ  is real. Since the distant scattered fields only consist of zero order 

{ } { }0,0, =qp  propagating Floquet modes, the reflection and transmission coefficients 

are computed from the following expressions:  

 00r
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r
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00r c

AY
1bRR κκg∑ ∑

= = ⎭
⎬
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tbt)R1(T κκg∑ ∑
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⎫

⎩
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⎧

⋅−+=  (1.31) 

In case of the higher order Floquet modes propagation, it should be included to 

Equations (1.30) and (1.31). A good FSS design supports only one propagating mode 

in the same direction as the incident field. To avoid additional modes propagating, 

we should pay attention to λθ <+ )sin1(d i2,1 , in free space, with d1,2 the inter– 

element spacing and θi the angle of incidence. It must be mentioned that while 

computing the current coefficients of nc  in (1.22), the higher order modes must be 

included since they are necessary for satisfying boundary conditions. The total 

current can be expressed as the amount of surface current flowing on FSS structure 

in the direction of dln× is, 

dlnJ ⋅×= ∫ ])y,x([I total  (1.32) 

where the normal vector, zan =  and dxxadl =  or dyyadl = . 
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1.3 Moment Method (MM) 

The MM is one of the most popular numerical techniques for solving either 

open or closed scattering problems. In antenna analysis, the MM is used to convert 

the EFIE into matrix equation or systems of linear equations. The matrix equation 

can then be solved for the current coefficients by inverting the matrix, LU 

decomposition, Gaussian elimination or any other techniques of linear algebra. The 

basic form of the equation to be solved by the MM is,  

 g)f( =L  (1.33) 

where L  is a linear operator, f  is to be determined (unknown function), and g is the 

source or forcing function. A crucial point is usually the choice of a suitable basis 

function set to represent the unknown of the problem. In order to create the matrix 

equation, the unknown function is defined to be the sum of a set of known 

independent functions, nf  called basis or expansion functions with unknown 

amplitudes nc , 

 ∑=
n

nnfcf  (1.34) 

For exact solutions, (1.34) is usually an infinite summation and nf  form a complete 

set of basis functions. For approximate solutions, (1.34) is usually a finite 

summation. Substituting (1.34) in (1.33) and using a linearity of the operator L, we 

have,  

 ∑ =
n

nn g)f(Lc  (1.35) 

The unknown amplitudes cannot yet be determined because there are n unknowns, 

but one functional equation. A fixed set of equations are found by defining 

independent weighting or testing functions mw , which are integrated with (1.35) to 

give m different linear equations. The integration of the weighting functions with 

(1.35) may be written symbolically as the inner product of the two functions, giving 

 ∑ =
n

mnmn g,w)f(L,wc  (1.36) 

where the inner product, ba, , is defined to be the integral of two functions over the 

domain of linear operator. Now there are an equal number of unknowns and 
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independent functions, which allow for the solution of the unknown amplitudes, nc . 

The set of equations can be written in matrix form as, 

 [ ] [ ] [ ]nmnm cZg =  (1.37) 

where  
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⎥
⎥
⎥
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g

m

2

1

m  If the matrix Z is nonsingular its inverse exists. The unknown 

current coefficients nc are obtained by [ ] [ ] [ ]m
1

mnn gZc −= . 

1.4 Numerical Results 

The numerical results are presented for three different FSS element geometries 

as shown in Figure 1.3. The matrix elements, as given in (1.26), are a doubly infinite 

summation in Floquet modes p and q. Generally, more basis functions should be 

included to obtain convergent results. Since the double summation is slowly 

converging, the convergence of the results is obtained by increasing the number of 

Floquet modes until there is little change in the results. The numbers of Floquet 

modes included are (2M+1)2, where M is the index of the highest order Floquet 

modes. The double infinite sums of Floquet modes, occurring as matrix entries, are 

truncated over a square matrix of dimension NxN.  

For an array consisting of conducting elements under plane wave incidence, a 

maximum current magnitude is excited on the elements at the array resonant 

frequency. The current in this case is in phase with the incident field, i.e., the 

impedance seen by the incident wave is purely ohmic (real), since the capacitive and 

inductive parts cancel out. At resonance, the magnitude of the current is equal to the 

real part and the imaginary part is negligible. As a result of the resonance the 

incident wave is reflected with a phase reversal. Because of this, the currents induced 

on the FSS elements are plotted at resonant frequency. 
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Figure 1.3  L–shaped, One– and Two–turn square spiral scatterers 

 

For the purposes of comparison, numerical results are calculated for the power 

reflection coefficient versus frequency, for freestanding (d=0 cm and εr=1) narrow 

strip FSS arranged in a square lattice dimension (β=90°). The length and the width of 

strip are 1.27 cm and 0.127 cm, respectively. The inter–element spacing is 

d1=d2=1.78 cm. The number of basis is 10, which is satisfactory to make a 

comparison with the experimental results. The comparison of the magnitude of 

power reflection coefficient versus frequency with that of the measured result (black 

dots) by Ott et all [4] is almost exact, as given in Figure 1.4. When the field is almost 

normally incident, θ=1° and φ=1°, total reflection (resonance) manifests itself at 11.2 

GHz. At resonance (full reflection) the reflection coefficient is equal to unity with a 

phase of 180°, while at anti–resonance (full transmission) the reflection coefficient 

must have a magnitude of 0 (zero) with a phase of ±90°. The reflection (R) and 

transmission (T) coefficients versus frequency for a freestanding and dielectric 

backed narrow strip FSS are plotted in Figure 1.5. Due to dielectric loading the 

resonant frequency decreases when the FSS is etched on a dielectric slab. The 

amount of frequency shift is proportional to the dielectric constant of slab. The plot 

in Figure 1.6 shows the current amplitude versus length of the narrow strip. As 

expected the current amplitude is in sinusoidal form. 

 

1.4.1 Numerical Results of L–Shaped FSS Backed by Dielectric Slab 

The reflection and transmission coefficients of L–shaped FSS elements on a 

dielectric slab were first studied by the researcher in [34, 35]. The lengths of L–
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shaped FSS elements are h1=h2=0.9 cm and the width is 0.09 cm. The L–shaped 

elements are arranged in square lattice. The inter–element spacing are d1=d2=0.93 cm 

and the number of basis functions are N=19. The number of included Floquet modes 

is 361. Figure 1.7 reflection and transmission coefficients for the freestanding and 

dielectric backed L–shaped FSS have been plotted against frequency at normal 

incidence. At normal incidence, the reflection and transmission coefficients are the 

same for both types of polarization. Total reflection (resonance) occurs at 13.4 GHz 

for L–shaped FSS supported by dielectric slab of 0.1 cm thickness. The L–shaped 

FSS behaves as a band stop filter in the frequency region of about 10.5 to 16.4 GHz 

and it is transparent in other frequency regions. Total reflection appears at 15.2 GHz 

for the freestanding FSS and shifts to 13.4 GHz for dielectric backed FSS elements 

of L–shaped as shown in Figure 1.7. 

 

The incident electric field induces more current in the parallel arm while it 

induces less current in the perpendicular arm of the L–shaped FSS. As expected the 

current amplitude was the same for TE and TM wave incidence for dielectric backed 

L–shaped FSS, as illustrated in Figure 1.8. In Figure 1.9, the reflection coefficient 

was plotted for different lengths of L–shaped FSS. The resonant frequency shifts to 

lower frequency as the length of strip increases. A 0.1 cm increase in strip length 

approximately causes 2.2 GHz frequency shift for the resonance. The resonant 

frequency is inversely proportional to the total length of L–shaped FSS elements and 

the square root of the dielectric constant. The resonant frequencies are 17.4 GHz, 

15.2 GHz and 13.4 GHz for the strip lengths of 0.7 cm, 0.8 cm and 0.9 cm, 

respectively. Figures 1.10 and 1.11 illustrate the reflection coefficient versus 

frequency for TE and TM waves at different values of incident angles. The resonant 

frequency is almost stable up to 30° around 13.4 GHz and there is a slight shift in 

resonance for higher incidences as shown in Figure 1.10 for TE incident wave. The 

bandwidth of the reflected wave decreases as the incident angle increases for TM 

incidence as shown in Figure 1.11. For the variation of slab thickness, plotted in 

Figure 1.12, the resonant frequency is almost stable. Figure 1.13 depicts the 

reflection coefficient versus frequency for different values of dielectric constant. The 

resonant frequency shifts to lower frequencies as the dielectric constant increases.  
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Figure 1.4  Power reflection coefficient versus frequency for the freestanding strip FSS 

 
 

Figure 1.5  TE Reflection and transmission coefficients versus frequency for the freestanding and 

dielectric backed strip FSS 
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Figure 1.6 Current amplitude versus length for the freestanding and dielectric backed strip FSS at 

resonance frequency 

 
Figure 1.7 Reflection and transmission coefficients for the freestanding and dielectric backed L–

shaped FSS θ=φ=0°, h1=h2=0.9 cm, w=0.09 cm, d1=d2=0.93 cm 



21

 

 
 

Figure 1.8  Current amplitude versus length for the dielectric backed L–shaped FSS at fr= 13.4 GHz, 

θ=φ=0°, εr=1.6, d=0.1 cm, h1=h2=0.9 cm, w=0.09 cm, d1=d2=0.93 cm 

 
Figure 1.9  Reflection coefficient versus frequency at different lengths of L–shaped FSS; θ=φ=0°, 

εr=1.6, d=0.1 cm, w=h1/10, d1=d2=h1+0.03 cm 
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Figure 1.10  TE Reflection coefficient versus frequency for L–shaped FSS at oblique angle incidence 

φ=0°, εr=1.6, d=0.1 cm, h1=h2=0.9 cm, w=0.09 cm, d1=d2=0.93 cm 

 
 

Figure 1.11  TM Reflection coefficient versus frequency for L–shaped FSS at oblique angle incidence 

φ=0°, εr=1.6, d=0.1 cm, h1=h2=0.9 cm, w= 0.09 cm, d1=d2=0.93 cm  
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Figure 1.12  Reflection coefficient versus frequency for L–shaped FSS at different slab thicknesses, 

θ=φ=0°, εr=1.6, h1=h2=0.9 cm, w=0.09 cm, d1=d2=0.93 cm 

 
 

Figure 1.13  Reflection coefficient versus frequency for L–shaped FSS at different values of εr, 

θ=φ=0°, d=0.1 cm, h1=h2=0.9 cm, w=0.09 cm, d1=d2=0.93 cm  



24

 

1.4.2 Numerical Results of One– and Two–Turn Square Spiral FSSs 

Backed by Dielectric Slab 

 

The numerical results of one–turn spiral FSS has been presented in Figures 14–

23 for TE and TM incident plane waves [35, 36]. The length of the first segment is 

h1=0.2 cm and the other lengths can be found from the relation hn=2h1(n–1) for n=2, 

3, 4. The width is chosen as one tenth of the first length (w=h1/10=0.02 cm). The 

inter–element spacings are equal to 1.55 cm. The number of basis is 25 to estimate 

the unknown current coefficients. The number of included Floquet modes is 625. The 

periodic cells are arranged in square lattice (β=90°). In Figure 14, the reflection and 

transmission coefficients are illustrated for freestanding and dielectric backed FSS at 

normal incidence for TE incidence. The resonant frequency shifts to lower value 

when FSS is backed by dielectric slab. The narrow bandwidth is observed for both 

freestanding and dielectric backed FSS with TE incident wave. The structure behaves 

as a band stop filter in the frequency region of about 14 to 16 GHz and it is 

transparent in other frequency regions for dielectric backed FSS. Full transmission 

(anti–resonance) is observed up to frequency of 13 GHz. Figure 1.15 shows the 

induced current amplitude variation against overall length of one–turn square spiral 

FSS. The current induced on the longest parallel segment has a greater peak 

compared with the current induced on the other segments. Figure 1.16 is depicted for 

the variation of incident angle. At oblique incidence, the bandwidth is narrower and 

resonance frequency shifts to lower frequencies. In Figure 1.17 the TE reflection 

coefficient is plotted for the variation of slab thickness. The slab thickness shifts the 

resonant to lower frequency and decreases the bandwidth of the reflected wave. As 

the dielectric constant increases the resonant frequency shifts to lower end as shown 

in Figure 1.18. As shown in Figure 1.19, the magnitude of the reflected and 

transmitted waves is plotted with respect to frequency for freestanding and dielectric 

backed one–turn square spiral FSS at normal incidence of TM plane wave 

illumination. The structure shows anti–resonance up to 8 GHz. The resonance 

manifests itself at 11.7 GHz and 10.6 GHz for freestanding and dielectric backed 

one–turn square spiral FSS structure, respectively. The structure behaves as a band 

stop filter in the frequency region of about 8 to 12.5 GHz and it is transparent in 

other frequency regions for dielectric backed FSS. Figure 1.20 illustrates the current 
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amplitude versus length induced on the one–turn square spiral FSS. The current 

induced on the last segment has a greater peak and reduces in the other segments. 

The reflection coefficient versus frequency for the variation of incidence angle is 

shown in Figure 1.21. The resonant frequency is stable at 10.6 GHz for three 

different values of incident angles and the bandwidths decrease for increasing values 

of incident angles. The TM reflection coefficient versus frequency corresponding to 

slab thickness and dielectric constant variations are shown in Figures 1.22 and 1.23, 

respectively. In Figure 1.22 the resonant frequency is almost stable for the variation 

of slab thickness. There is no change in bandwidth of the reflected wave. In Figure 

1.23 the increasing value of dielectric constant moves the resonant to lower 

frequency. The FSS resonates at different frequencies for TE and TM incident 

waves. The bandwidth of the reflected wave is nearly the same for TE and TM 

incident waves.  
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Figure 1.14  TE Reflection and transmission coefficients for freestanding and dielectric backed one–

turn square spiral FSS; θ=φ=0°, h1=0.2 cm, hn=2(n–1)h1, n=2,3,4., w=0.02 cm, 

d1=d2=1.55 cm 

 
Figure 1.15  TE Current amplitude versus length for dielectric backed one–turn square spiral FSS at 

fr=14.85 GHz; θ=φ=0°, d=0.1 cm, εr=1.6, h1= 0.2 cm, hn=2(n–1)h1, n=2,3,4., w=0.02 cm, 

d1=d2=1.55 cm  
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Figure 1.16  TE Reflection coefficient versus frequency for one–turn square spiral FSS at different 

incident angles; φ=0°, d=0.1 cm, εr=1.6, h1= 0.2 cm, hn=2(n–1)h1, n=2,3,4., w=0.02 cm, 

d1=d2=1.55 cm  

 
Figure 1.17  TE Reflection coefficient versus frequency for one–turn square spiral FSS at different 

slab thicknesses; θ=φ=0°, εr=1.6, h1=0.2 cm, hn=2(n–1)h1, n=2,3,4., w=0.02 cm, 

d1=d2=1.55 cm  
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Figure 1.18  TE Reflection coefficient versus frequency for one–turn square spiral FSS at different 

values of εr; θ=φ=0°, d=0.1 cm, h1=0.2 cm, hn=2(n–1)h1, n=2,3,4., w=0.02 cm, 

d1=d2=1.55 cm  

 
Figure 1.19  TM Reflection and transmission coefficients for freestanding and dielectric backed one–

turn square spiral FSS; θ=φ=0°, h1=0.2 cm, hn=2(n–1)h1, n=2,3,4., w=0.02 cm, 

d1=d2=1.55 cm  
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Figure 1.20  TM Current amplitude versus length for one–turn square spiral FSS at fr=10.6 GHz; 

θ=φ=0°, d=0.1 cm, εr=1.6, h1=0.2 cm, hn=2(n–1)h1, n=2, 3, 4., w=0.02 cm, d1=d2=1.55 

cm  

 
Figure 1.21  TM Reflection coefficient versus frequency for one–turn square spiral FSS at different 

incident angles; φ=0°, d=0.1 cm, εr=1.6, h1=0.2 cm, hn=2(n–1)h1, n=2, 3, 4., w=0.02 cm, 

d1=d2=1.55 cm  
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Figure 1.22  TM Reflection coefficient versus frequency for one–turn square spiral FSS at different 

slab thicknesses, θ=φ=0°, εr=1.6, h1=0.2 cm, hn=2(n–1)h1, n=2, 3, 4., w=0.02 cm, 

d1=d2=1.55 cm  

 
Figure 1.23  TM Reflection coefficient versus frequency for one–turn square spiral FSS at different 

values of εr, θ=φ=0°, d=0.1 cm, h1=0.2 cm, hn=2(n–1)h1, n=2, 3, 4., w=0.02 cm, 

d1=d2=1.55 cm  
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The numerical results of the FSS comprised of periodic arrays of two–turn 

square spiral shaped conductors in the case of TE and TM incident waves are 

presented from Figure 1.24 to Figure 1.31 [36, 37]. The length of the first segment is 

h1=0.1 cm. The lengths of the other segments can be found from the relation 

hn=2h1(n–1) for n=2, 3, … , 8. The overall length of the spiral is 5.7 cm. The width 

of the two–turn square spiral was chosen as h1/10. The inter–element spacings are 1.7 

cm. The periodic cells are arranged in square dimension. The number of basis 

functions required to estimate the unknown current coefficients is 56. The number of 

included Floquet modes is 961. This number is obtained by inclusion of more 

Floquet modes until there is little change in the results. The only propagating mode is 

the zero order Floquet mode. Keeping d1 and d2 small delays the onset of grating 

modes. 

 

In Figure 1.24 and 1.25 the reflection and transmission coefficients are plotted 

for freestanding and dielectric backed two–turn square spiral FSS, under normal 

incidence with electric field polarized along the y–axis (TE incidence). The 

resonance frequency for the freestanding FSS is at 16.08 GHz. The resonance 

frequency moves to14.62 GHz, when FSS is supported by dielectric slab as shown in 

Figure 1.24. There is a full transmission at the S–band frequency region (1–5 GHz). 

The FSS comprised of periodic two–turn square spiral shaped conductors is used as a 

band stop filter in the microwave frequency regions of Ku–band (12.5–18 GHz) as 

shown in Figure1.25. The curve in Figure 1.26 illustrates the normalized current 

amplitude versus overall length for dielectric backed two–turn square spiral FSS 

under normal incidence at resonant frequency (fr=14.62 GHz). The vertical grids 

show the corner points of the structure. More current is induced on the fifth segment 

of the structure. Figure 1.27 shows TE reflection coefficient for different values of 

the first strip length (h1). As the length of the first strip increases by 0.01 cm each 

time, the resonance shifts nearly 1 GHz to lower frequencies. The resonance 

frequencies are 14.62 GHz, 13.3 GHz and 12.3 GHz for the values of first strip 

lengths of 0.10 cm, 0.11 cm, 0.12 cm, respectively. In Figure 1.28, TE reflection 

coefficient is plotted against frequency for the incident angle variations. The 

resonance frequency shifts to lower frequency for oblique angle of incidence 10°. 

When this value is greater than 10° the resonance disappears.  
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Plots in Figures 1.29 and 1.30 shows the reflection and transmission 

coefficients for freestanding and dielectric backed two–turn square spiral FSS 

corresponding to TM incident plane wave. There are two resonant frequencies for 

TM incident wave at 12.3 GHz and 17.52 GHz for dielectric slab as shown in Figure 

1.29. The bandwidth of the first resonance is wider than the second one. The second 

resonance is due to the higher order grating modes. There is a full transmission at the 

S–band frequency region (1–5GHz) as shown in Figure 1.30. The FSS comprised of 

periodic two–turn square spiral shaped conductors is used as a band stop filter in the 

microwave frequency regions of Ku–band (12.5–18 GHz). Figure 1.31 illustrates the 

normalized current versus length for dielectric backed FSS at resonance frequency. 

More current is induced on the sixth segment of the two–turn square spiral. Figure 

1.32 depicts TM reflection coefficient for different values of the first strip length 

(h1). As the length of the first strip increases, the resonance shifts nearly 1 GHz to 

lower frequencies. The resonance frequencies are 12.3 GHz, 11.2 GHz and 10.3 GHz 

for the values of first strip lengths of 0.10 cm, 0.11 cm, 0.12 cm, respectively. It is 

seen that the curves are approximately equal to each other. Figure 1.33 illustrates the 

oblique angle incidence variations for the magnitude of TM reflection coefficient. 

The first resonant frequency is almost stable up to 20° incidences. There is a small 

decrease in bandwidth of the reflected wave. The second resonance disappears for 

oblique angle of incidence. When the angle of incidence is greater than 20°, the 

magnitude of the first peak reduces and resonance disappears. The variation of 

dielectric constant and slab thickness versus frequency are not plotted for the two–

turn square spiral FSS. Since, we know their effects from the L–shaped and one–turn 

square spiral FSS structures. FSS with two–turn square spiral array can be used as a 

band–stop filter at different frequencies for TE and TM wave incidences. There is 

anti–resonance at S–band and Ku–band frequency regions. Therefore, it can be made 

into both reflecting and transparent FSS. 
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Figure 1.24  TE Reflection coefficient for freestanding and dielectric backed two–turn square spiral 

FSS; θ=φ=0°, d=0.1 cm, εr=1.6, h1=0.1 cm, hn=2(n–1)h1, n=2, 3,…,8., w=0.01 cm, 

d1=d2=1.7 cm  

 
Figure 1.25 TE Transmission coefficient for freestanding and dielectric backed two–turn square spiral 

FSS; θ=φ=0°, d=0.1 cm, εr=1.6, h1=0.1 cm, hn=2(n–1)h1, n=2, 3,…,8., w=0.01 cm, 

d1=d2=1.7 cm 
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Figure 1.26 TE Normalized current amplitude versus length for dielectric backed two–turn square 

spiral FSS at fr=14.62 GHz; θ=φ=0°, d=0.1 cm, εr=1.6, h1=0.1 cm, hn=2(n–1)h1, n=2, 

3,…, 8., w=0.01 cm, d1=d2=1.7 cm 

 
Figure 1.27 TE Reflection coefficient versus frequency for two–turn square spiral FSS at different 

values of first strip length, θ=φ=0°, d=0.1 cm, εr=1.6, hn=2(n–1)h1, n=2,3,…,8., w=h1/10 

cm 
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Figure 1.28  TE Reflection coefficient versus frequency for two–turn square spiral FSS at different 

incident angles; φ=0°, d=0.1 cm, εr=1.6, h1=0.1 cm, hn=2(n–1)h1, n=2,3,…,8., w=0.01 

cm, d1=d2=1.7 cm 

 
Figure 1.29  TM Reflection coefficient for freestanding and dielectric backed two–turn square spiral 

FSS; θ=φ=0°, d=0.1 cm, εr=1.6, h1=0.1 cm, hn=2(n–1)h1, n=2, 3,…,8., w=0.01 cm, 

d1=d2=1.7 cm  
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Figure 1.30  TM Transmission coefficient for freestanding and dielectric backed two–turn square 

spiral FSS; θ=φ=0°, d=0.1 cm, εr=1.6, h1= 0.1 cm, hn=2(n–1)h1, n=2, 3,…,8., w=0.01 cm, 

d1=d2=1.7 cm  

 
Figure 1.31  TM Normalized current amplitude versus length for dielectric backed two–turn square 

spiral FSS at fr=12.3 GHz; θ=φ=0°, d=0.1 cm, εr=1.6, h1=0.1 cm, hn=2(n–1)h1, n=2, 

3,…,8., w=0.01 cm, d1=d2=1.7 cm 
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Figure 1.32  TM Reflection coefficient versus frequency for two–turn square spiral FSS at different 

values of first strip length, θ=φ=0°, d=0.1 cm, εr=1.6, hn=2(n–1)h1, n=2,3,…,8., w=h1/10 

cm 

 
Figure 1.33  TM Reflection coefficient versus frequency for two–turn square spiral FSS at different 

incident angles; φ=0°, d=0.1 cm, εr=1.6, h1=0.1 cm, hn=2(n–1)h1, n=2,3,…,8., w=0.01 

cm, d1=d2=1.7 cm 
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CHAPTER  2 

CHIRAL  BACKED  FSSs 

2.1 Introduction 

Chiral materials, constructed by an artificial composite, have a great 

importance in electromagnetic field applications with ongoing progress. Such 

materials occur in nature as optically active molecules which display circular 

birefringence at optical frequencies. Since chirality is a geometric concept, a chiral 

object and its mirror image cannot be superimposed neither by rotation nor 

translation. This property is known as handedness. Objects that have the property of 

handedness are said to be either right–handed or left–handed. Chiral materials can be 

used to build novel microwave devices and structures. In microwave and millimeter 

wave regimes, chiral media are used in many applications, for instance, polarization 

transformers, phase shifters, antenna radomes, microstrip substrates, and waveguides. 

An artificial chiral medium for a microwave frequency can be constructed by 

embedding chiral objects, such as wire helices, möbius strip and irregular 

tetrahedrons in a non–chiral host medium.  

 

Chiral media are known as optically active media. The special property of 

optically active media is that the polarization plane of linearly polarized 

electromagnetic wave is rotated as wave passes through the medium. The amount of 

rotation depends on the distance traveled by the wave in the medium and on the 

difference between the two wave numbers, which is indication of the degree of 

chirality. A linearly polarized wave incident on a chiral slab splits into two circularly 

polarized waves. One is left circularly polarized (LCP) wave and the other is right 

circularly polarized (RCP) wave with different phase velocities. The two circularly 

polarized waves combine and a linearly polarized wave emerges behind the chiral 

slab. The plane of polarization is rotated with respect to the plane of polarization of 

the incident plane wave [16–18].  
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Figure 2.1  Geometry of FSS elements on Chiral Slab 

 

An electric or magnetic incident field simultaneously produces both electric 

and magnetic polarization that exhibits magneto–electric coupling. The displacement 

vector D and the magnetic field H inside a chiral medium depends on both E and B. 

In order to explain the dependence, assume a short metallic helix as a chiral object in 

a dielectric medium, the incident electric field induces currents in the straight portion 

of the chiral object, and by continuity these currents must also flow in the circular 

portion of the object. The current in the straight portion contributes to the electric 

dipole moment of the object while the current in the circular portion contributes to its 

magnetic dipole moment. In a complementary manner, the incident magnetic field 

induces currents in the circular portion and by continuity in the straight portions. 

Thus, also the magnetic field contributes to the electric and magnetic dipole moments 

of the object.  

 

In this Chapter, the reflection from and transmission through the chiral slab are 

analyzed for the three structures given in Figure 1.3. The chirality parameter is 

included to the slab parameters and the chiral slab is sandwiched between two free 

spaces as shown in Figure 2.1. Unlike a regular dielectric, the chiral scatterers 

produce both co–polarized and cross–polarized scattered fields. Four different 

coefficients are calculated when a plane wave is incident on a chiral medium. Rco and 

Rcr are the co– and cross–polarization of the reflected waves; Tco and Tcr are the co– 

and cross–polarization of the transmitted waves, respectively. The cross–polarization 

for TE and TM incidences correspond to TM and TE waves, respectively.  
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2.2 Propagation of Wave in Chiral Medium 

The isotropic, homogeneous, lossless and source free chiral medium is 

characterized by the following constitutive relations for electromagnetic field with 
tje ω  time harmonic dependence, [18] 

 BED ξε j−=  (2.1) 

 EBH ξ
μ

j1

o
−=  (2.2) 

where ε, μo, and ξ, are real values for lossless media and represent permittivity, 

permeability, and chirality admittance (ξ) of the chiral medium, respectively. The 

magnitude of ξ is a measure of the degree of chirality while the sign of ξ specifies 

the medium handedness. When ξ>0 the medium is a right handed and the sense of 

polarization is right handed, when ξ<0, the medium is left handed and the sense of 

polarization is left handed; and when ξ=0 the medium reduces to ordinary dielectric 

and there is no optical activity. 

Inserting the constitutive relations into the source free Maxwell equations, the 

chiral wave equation for the electric and magnetic fields can be obtained as 
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The chiral media has two different phase velocities for RCP and LCP waves 

leading to two different wave numbers kr and kl which are given by 
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The two characteristic waves propagate at different velocities in the chiral medium, 

thereby causing birefringence. The solution to the chiral wave equation (Equation 

2.3) consists of two partial waves, which are the right hand ),( 22
++ HE  and left hand 

),( 22
−− HE  circularly polarized eigenwaves, [30] such that 
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The total electric field in region z<0 for TM and TE wave incidences are 
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where TM
oE and TE

oE  are the amplitude of the TM and TE incident waves. The 

magnitudes of the incident electric fields for TE and TM waves are equal to 1 and 

cos(θi), respectively. The sets of { TM
100E  and TE

200E } and { TE
200e  and TM

100e } are the 

amplitude of the co–polarized and cross–polarized reflected waves in the absence of 

scatterers, respectively.  

The scattered reflected electric fields in region z<0 due to metallic structures at 

the interface of chiral slab are, 
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The RCP and LCP waves inside the chiral medium (0<z<d) for TM wave 

incidence are, 
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The RCP and LCP waves inside the chiral medium (0<z<d) for TE wave 

incidence are, 
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where the propagation constants for RCP )( pq
rγ  and LCP )( pq

lγ waves along the 

transverse direction is defined as 
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The corresponding magnetic fields inside the chiral slab can be obtained from 

the relation,  

 )(j
o

o
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ωμ
−×∇=  (2.15) 

The electric fields in region z>d for TM and TE wave incidences are, 

 zjj

p q
pq2

TE
pq3pq1

TM
pq31t

o
pqpq ee]jeE[ γ−⋅−∑∑ += ρkκκE  (2.16) 

 zjj

p q
pq1

TM
pq3pq2

TE
pq32t

o
pqpq ee]jeE[ γ−⋅−∑∑ += ρkκκE  (2.17) 

In Equations (2.8)–(2.17) TM
pq1E , TE

pq1e , TE
pq2E , TM

pq2e , lr,
mpqA , lr,

mpqB , lr,
mpqC , lr,

mpqD , 

TM
pq3E , TE

pq3e , TE
pq3E , TM

pq3e  are unknown field amplitudes and can be found in terms of 

medium parameters after matching the boundary conditions.  

Matching the boundary conditions as mentioned in Chapter 1, one can get the 

EFIE for TM wave incidence, 
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Similarly for TE incident wave the EFIE is, 
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where spqC and spqD are known coefficients (s=1,2,3,4)  
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Multiplying both sides of (2.18) and (2.19) by )y,x(mf and integrating over a 

unit cell yields a simultaneous equation or NxN matrix equation.  

 [ ] [ ] [ ] TE,TM
n
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mn

TE,TM
m ZV α=  (2.21) 

where V, Z and α are the excitation vector, the impedance matrix and unknown 

coefficients, respectively. The excitation vectors are given by the equations, 
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The elements of the impedance matrix are 
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where the asterisk denotes the complex conjugate. By inverting the matrix equation 

(2.21), the unknown current coefficients can be obtained. The co– and cross–

polarized reflection and transmission coefficients can then be written as 
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where the detailed expressions for the unknown parameters Dk00, Kk00, Ck00 and Pk00 

can be seen in Appendix. (k=1,2,3,4.) 

 

2.2.1 Numerical Results of Strip FSS on a Chiral Slab 

 

The numerical results of a strip FSS on a chiral slab [38] is given in this section 

in order to compare the results. The configuration considered here is two dimensional 

infinite arrays of perfectly conducting narrow strips having dimensions h=0.92 cm 

and w=0.1 cm. The FSS strip elements are arranged in a square lattice, d1=d2=1 cm. 

The structure is excited by a normally incident plane wave polarized in ay direction. 

The slab thickness and dielectric constants are 0.5 cm and 1.06, respectively. These 

numerical values are taken from Koca’s dissertation [27]. The correctness of the 

algorithm is ensured by comparing the numerical results with that of [27] for a 

narrow strip FSS backed by chiral slab and proved to be as good. The amplitude of 

co– and cross–polarized reflection and transmission coefficients are plotted with 

respect to frequency for different values of chirality admittance. The value of 

chirality admittance is varied within the range given by inequality oor μεε≤ξ  

[17]. For instance, the chirality admittance changes from 0 to 0.003355 for 1.6 value 

of dielectric constant. 

 

In the case of TE or TM wave incidences, we have two reflection and two 

transmission coefficients in the first and third regions, respectively. Totally, four 

coefficients are calculated when a plane wave is incident on a chiral medium. That is 

co– and cross–polarized reflection and transmission coefficients. As shown in Figure 

2.2a the co–polarized reflection coefficient at low chirality admittance is very close 

to the dielectric case. Multiple resonances with narrow bandwidth appear when the 

chirality admittance of the slab is increased to 0.0015 and 0.0025 S. At the resonant 

frequency of fr = 21.04 GHz,  TE
coR  looks like a spike with a very narrow bandwidth. 

For small values of chirality admittance the co–polarized transmission coefficient of 

chiral FSS exhibits similarity with that one of the dielectric FSS as shown in Figure 

2.2b. In Figure 2.2c full transmission is observed for cross–polarization at 16.35 
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GHz. At this frequency the polarization state of the incident wave is converted from 

TE to TM or we can say that optical activity is observed. The current amplitude 

induced on the strip FSS on chiral slab is illustrated in Figure 2.3 against the length 

of strip at resonance frequencies for the chirality admittance of ξ=0.0025 S. At 

resonant frequencies, the current amplitude is maximum at the center of strip, and it 

is symmetric with respect to the center of strip. At fr = 21.04 GHz, the current has 

two equal peaks which are the mirror image of each other with respect to center. 
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(a) 

 

(b) 
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(c) 

Figure 2.2  Reflection and transmission coefficients of strip FSS on a chiral slab at different chirality 

admittances; TE incidence, θ=φ=0°, d=0.5 cm, εr=1.06, w=0.1 cm, h=0.92 cm, d1=d2=1 

cm, (a) Reflection Coefficient TE
coR , (b) Transmission Coefficient TE

coT , (c) Transmission 

Coefficient TM
crT  

 
Figure 2.3  Current amplitude versus length at resonance frequencies of strip FSS on a chiral slab; 

θ=φ=0°, ξ=0.0025 S, d=0.5 cm, εr=1.06, w=0.1 cm, h=0.92 cm, d1=d2=1 cm 
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2.2.2 Numerical Results of L–Shaped FSS on a Chiral Slab 

 

The numerical results of L–shaped FSS backed by chiral slab have been 

presented for TE and TM incident plane waves [38, 39]. The co– and cross–polarized 

reflection and transmission coefficients are plotted against frequency at normal 

incidence for different values of medium parameters such as chirality admittance, 

slab thickness, and dielectric constant. The coefficients are also plotted for TE and 

TM incident waves at oblique incidence. The lengths of L–shaped FSS and other 

parameters can be found in section 1.4.1 of Chapter 1. 

 

Figure 2.4 shows the effect of chirality admittance variations at normal 

incidence of TE wave. As can be seen from Figure 2.4a at low chirality admittance 

the reflected wave is close to the dielectric case and has a one resonance frequency. 

Multiple resonances are seen for high value of chirality admittance because one wave 

number becomes very high at that value. It is highly interesting that at around 10 

GHz the magnitude of co–polarized reflection coefficient is nearly the same for 

various chirality admittances as shown in Figure 2.4a. At this frequency chiral slab 

behaves as an ordinary dielectric slab for the reflection. For chirality admittances of 

ξ=0.002 S and ξ=0.003 S values the cross–polarized transmission coefficient ( TM
crT ) 

reaches unity (0–dB) which means that the polarization state of the incident TE wave 

is converted to TM wave at that frequency. This phenomenon is due to the effect of 

optical activity, indicating that chirality of slab caused significant rotation of the 

waves. The cross–polarized transmission coefficient TM
crT  has also nulls at resonance 

frequencies as shown in Figure 2.4b. The magnitude of co–polarized transmission 

coefficients are very close to each other for low values of chirality admittances but, 

for higher values the curves are quite different, as seen in Figure 2.4c. At normal 

incidence the magnitude of the cross–polarized reflection coefficient ( TM
crR ) is very 

low as given in Figure 2.4d. In Figure 2.5 the slab thickness variations are plotted for 

ξ=0.003 S with a dielectric constant of εr=1.6. Multiple resonances appear for a thick 

slab as depicted in Figure 2.5a. The conversion of the polarization state is obtained 

for d=0.3 and 0.5 cm at the frequency of 21.2 and 14.4 GHz, respectively as shown 

in Figure 2.5b. The magnitude of TE
coT  decreases up to 12 GHz as illustrated in 
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Figure 2.5c. The magnitude of TM
crR  is less than –20 dB as depicted in Figure 2.5d. 

The variation of dielectric constant is shown in Figure 2.6. The resonant and anti–

resonant frequencies decrease or shift to left side for an increase in dielectric constant 

as given in Figure 2.6a and 2.6b. The magnitude of TE
coT  is nearly the same up to 10 

GHz as shown in Figure 2.6c. It has greater peaks at around 21 GHz. The magnitude 

of TM
crR  is less than –20 dB as depicted in Figure 2.6d. The oblique incidence 

variations are shown in Figure 2.7 for the value of ξ=0.002 S. In Figure 2.7a, two 

resonant frequencies are seen at normal incidence. The resonant frequencies 

disappear for an obliquely incident TE wave. Full transmissions are observed for 

cross–polarized field at normal and oblique angle of incidences as illustrated in 

Figure 2.7b. The co–polarized transmission coefficient is not affected from the 

variation of incident angle up to 10 GHz, but it is oscillatory for high frequency 

values, as depicted in Figure 2.7c. At oblique angle of incidence, the magnitude of 
TM
crR  is seen to increase in high frequency region as depicted in Figure 2.7d.  



50

 

 
 

(a) 
 

 
 

(b) 



51
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(d) 

 
Figure 2.4  Reflection and transmission coefficients of L–shaped FSS on a chiral slab at different 

chirality admittances; TE incidence, θ=φ=0°, d=0.5 cm, εr=1.6, w=0.09 cm, h1=h2=0.9 

cm, d1=d2=0.93cm, (a) Reflection Coefficient TE
coR , (b) Transmission Coefficient TM

crT , 

(c) Transmission Coefficient TE
coT , (d) Reflection Coefficient TM

crR  
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(c) 

 
(d) 

 
Figure 2.5  Reflection and transmission coefficients of L–shaped FSS on a chiral slab at different 

slab thicknesses; TE incidence, θ=φ=0°, ξ=0.003 S, εr=1.6, w=0.09 cm, h1=h2=0.9 cm, 

d1=d2=0.93 cm, (a) Reflection Coefficient TE
coR , (b) Transmission Coefficient TM

crT , (c) 

Transmission Coefficient TE
coT , (d) Reflection Coefficient TM

crR  



54

 

 

 
(a) 

 

 
 

(b) 



55

 

 
(c) 

 
(d) 

 
Figure 2.6  Reflection and transmission coefficients of L–shaped FSS on a chiral slab at different 

dielectric constants; TE incidence, θ=φ=0°, ξ=0.003 S, d=0.5 cm, w=0.09 cm, h1=h2=0.9 

cm, d1=d2=0.93 cm, (a) Reflection Coefficient TE
coR , (b) Transmission Coefficient TM

crT , 

(c) Transmission Coefficient TE
coT , (d) Reflection Coefficient TM

crR  



56

 

 

 
(a) 

 

 
 

(b) 



57
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Figure 2.7  Reflection and transmission coefficients of L–shaped FSS on a chiral slab at different 

incident angles; TE incidence, φ=0°, ξ=0.002 S, d=0.5 cm, εr=1.6, w=0.09 cm, h1=h2=0.9 

cm, d1=d2=0.93 cm, (a) Reflection Coefficient TE
coR , (b) Transmission Coefficient TM

crT , 

(c) Transmission Coefficient TE
coT , (d) Reflection Coefficient TM

crR  
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Figure 2.8 illustrates the variation of chirality admittance for TM wave at 

normal incidence. The resonant frequencies are the same with TE incident wave but 

there are some differences in co– and cross–polarized reflection and transmission 

coefficients of TM and TE wave at normal incidence. Especially, the deep null points 

and sharp notches are seen on the reflection and transmission curves for TM incident 

wave. The incident electric field will not only induce current on FSS elements, but 

also scatter in the forward as well as the backscatter direction. The net result is that 

the various array fields can interfere and produce nulls. As seen in Figure 2.8a we 

notice some spurious resonances around 20 GHz. Usually, these resonances are not 

of great concern, since they in general are very sharp and strongly reduces by a 

minor amount of loss either from the dielectric or resistivity of the FSS elements. As 

the chirality admittance increases, multiple resonances are seen. The bandwidth of 

the fundamental resonance is wider than the others. As depicted in Figure 2.8b, anti– 

resonances are observed for high values of chirality admittance. At low value of 

chirality admittances, the magnitude of TM
coT  is very close to the achiral case (ξ=0), 

as shown in Figure 2.8c. The magnitude of TM
coT , decreases up to frequency of 11.5 

GHz. The magnitude of TM
crR and TE

crR  are the same for chiral backed FSS at normal 

incidence, which is less than –20 dB, as shown in Figures 2.4d and 2.8d. The 

variation of slab thicknesses for TM wave is depicted in Figure 2.9. Multiple 

resonances are observed for thick dielectric slab, as shown in Figure 2.9a. There is 

approximately, full transmission for cross–polarization in the frequency region of 

15–18 GHz as given in Figure 2.9b. Anti–resonances exist for a thicker chiral slab. 

The magnitude of TM
coT  decreases in the frequency region of up to 12 GHz as 

illustrated in Figure 2.9c. The magnitude of TE
crR  is less than –20 dB, which is given 

in Figure 2.9d. Figure 2.10 depicts the oblique angle variation. At normal incidence 

two resonant frequencies are appeared at 12.8 and 18.4 GHz as shown in Figure 

2.10a. The second resonance disappeared at oblique angle of incidence. The first 

resonance has wider bandwidth and nearly the same up to 30° of incidence. At 30° of 

incidence there is also full transmission for cross–polarized field at 20 GHz as 

depicted in Figure 2.10b. At normal incidence deep nulls are seen in transmission 

curves at resonant frequencies. These nulls are filled at oblique angle incidences. The 

null is also filled for TM
coT  at oblique angle of incidence as shown in Figure 2.10c. 
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The magnitude of TM
coT  is nearly the same for oblique incidence up to 8 GHz. The 

magnitude of cross polarization increases in the frequency region up to 12 GHz, as 

given in Figure 2.10d. In the frequency region of 12–20 GHz, the magnitude is 

greater than the normal incidence case. The plotted Figures 2.11 and 2.12 illustrate 

the current amplitude versus stretched out length, induced on the L–shaped FSS 

elements backed by chiral slab, at resonant frequencies of ξ=0.003 S for TE and TM 

wave incidences, respectively. At resonant frequency, the incident electric field 

induces more current in the parallel arm while it induces less current in the 

perpendicular arm of the L–shaped FSS for both type of polarization. On the contrary 

to dielectric slab, the induced currents are not the same, especially in the 

perpendicular arms, due to chiral medium for the TE and TM incident waves. 
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Figure 2.8  Reflection and transmission coefficients of L–shaped FSS on a chiral slab at different 

chirality admittances; TM incidence, θ=φ=0°, d=0.5 cm, εr=1.6, w=0.09 cm, h1=h2=0.9 

cm, d1=d2=0.93 cm, (a) Reflection Coefficient TM
coR , (b) Transmission Coefficient TE

crT , 

(c) Transmission Coefficient TM
coT , (d) Reflection Coefficient TE

crR  
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Figure 2.9  Reflection and transmission coefficients of L–shaped FSS on a chiral slab at different 

slab thicknesses; TM incidence, θ=φ=0°, ξ=0.003 S, εr=1.6, w=0.09 cm, h1=h2=0.9 cm, 

d1=d2=0.93 cm, (a) Reflection Coefficient TM
coR , (b) Transmission Coefficient TE

crT , (c) 

Transmission Coefficient TM
coT , (d) Reflection Coefficient TE

crR  
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Figure 2.10 Reflection and transmission coefficients of L–shaped FSS on a chiral slab at different 

incident angles; TM incidence, φ=0°, ξ=0.002 S, d=0.5 cm, εr=1.6, w=0.09 cm, h1=h2=0.9 

cm, d1=d2=0.93 cm, (a) Reflection Coefficient TM
coR , (b) Transmission Coefficient TE

crT , 

(c) Transmission Coefficient TM
coT , (d) Reflection Coefficient TE

crR  



66

 

 
Figure 2.11 Current amplitude versus length at resonant frequencies of L–shaped FSS on a chiral slab 

TE incidence; θ=φ=0°, ξ=0.003 S, d=0.5 cm, εr=1.6, w=0.09 cm, h1=h2=0.9 cm, 

d1=d2=0.93 cm 

 
Figure 2.12  Current amplitude versus length at resonant frequencies of L–shaped FSS on a chiral slab 

TM incidence; θ=φ=0°, ξ=0.003 S, d=0.5 cm, εr=1.6, w=0.09 cm, h1=h2=0.9 cm, 

d1=d2=0.93 cm 
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2.2.3 Numerical Results of One–Turn Square Spiral FSS on a Chiral Slab 

 

The numerical results of one–turn square spiral FSS backed by chiral slab has 

been presented for TE and TM incident plane waves. The co– and cross–polarized 

reflection and transmission coefficients are plotted with respect to frequency for 

different values of chirality admittance, slab thickness and incident angle. The length 

of the first segment is h1=0.16 cm and the other lengths can be found from the 

relation hn=n*h1 for n=2, 3, 4. The width is chosen as one tenth of the first length 

(w=h1/10=0.016 cm). The inter–element spacings d1 and d2 are equal to 0.7 cm and 

0.73 cm for TE and TM wave incidences, respectively. The periodic cells are 

arranged in square lattice (β=90°). The total length of one–turn square spiral is 

approximated by 25 PWS current functions to determine the unknown coefficients. 

The number of Floquet modes used in the computations is 625. The co– and cross–

polarized reflection and transmission coefficients are plotted against frequency at 

normal incidence for different values of medium parameters such as chirality 

admittance and slab thickness. The coefficients are also plotted for TE and TM 

incident waves at oblique incidence. 

 

Figure 2.13 shows the variation of chirality admittance at normal incidence of 

TE wave for one–turn square spiral FSS on a chiral slab. In Figure 2.13a, at low 

chirality admittance (dashed curve) only one resonant frequency is seen, while at 

high chirality admittances two resonant frequencies are observed. In the frequency 

region of 1–12.5 GHz, the magnitude of TE
coR  increases, as the chirality admittance 

increases. The two peaks are approximately equal in terms of bandwidth for ξ=0.002. 

The bandwidth of the first peak is very narrow than the second one for ξ=0.003. As 

shown in Figure 2.13b, the magnitude of TM
crT  is less than –20 dB for an achiral case 

(ξ=0). At low chirality, ξ=0.001, no polarization conversion is observed. There are 

two anti–resonant peaks for ξ=0.002 at 18 and 22 GHz. When ξ=0.003, there is one 

anti–resonant frequency at about 15 GHz The magnitude of TE
coT  reduces up to 19.5 

GHz as the value of chirality admittance is varied from 0 to 0.002, as illustrated in 

Figure 2.13c. The magnitude is also decreasing up to 13.5 GHz for ξ=0.003 value. 

Some extra peaks are seen for ξ=0.003 in the frequency region of 13.5–25 GHz. The 
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magnitude of the last peak is close to unity. The magnitude of the cross–polarized 

reflection coefficient is very low, that is why it is not plotted. 

 

The variation of slab thickness is shown in Figure 2.14. The resonant frequency 

is stable at 23 GHz, as seen in Figure 2.14a. The magnitude of TM
crT  increases as slab 

thickness increases up to 22 GHz, as depicted in Figure 2.14b. Around resonant 

frequency, there is no more change in magnitude. The magnitude of TE
coT  decreases 

for increasing value of slab thickness as illustrated in Figure 2.14c. At resonant 

frequency the TE
coT  and TM

crT  each have a null. 

 

The reflection and transmission coefficients for oblique incidence are shown in 

Figure 2.15. The resonant frequency occurs at around 23 GHz at normal incidence 

TE wave as shown in Figure 2.15a. In the frequency region of 1–17 GHz, the 

magnitude of TE
coR  increases, as the chirality admittance increases. For an oblique 

incidence of 30  and 45 , more than one resonant frequency has been seen. The 

resonant frequency shifts to the lower end as the angle of incidence increases. As can 

be depicted in Figure 2.15b, the magnitudes of the cross–polarized transmission 

coefficients are approximately equal to each other in the frequency region of 1–9 

GHz. No anti–resonance is observed for obliquely incident TE wave. There is a 

slight decrease in the magnitude of TE
coT  up to 19 GHz, as illustrated in Figure 2.15c. 
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Figure 2.13  Reflection and transmission coefficients of one–turn square spiral FSS on a chiral slab at 

different chirality admittances; TE incidence, θ=φ=0°, d=0.5 cm, εr=1.6, w=0.016 cm, 

h1=0.16 cm, hn=n*h1 cm, n=2,3,4., d1=d2=0.7 cm, (a) Reflection Coefficient TE
coR , (b) 

Transmission Coefficient TM
crT , (c) Transmission Coefficient TE

coT  

 
(a) 
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(c) 

 
Figure 2.14  Reflection and transmission coefficients of one–turn square spiral FSS on a chiral slab at 

different slab thicknesses; TE incidence, θ=φ=0°, ξ=0.001 S, εr=1.6, w=0.016 cm, 

h1=0.16 cm, hn=n*h1 cm, n=2,3,4., d1=d2=0.7 cm, (a) Reflection Coefficient TE
coR , (b) 

Transmission Coefficient TM
crT , (c) Transmission Coefficient TE

coT  



72

 

 
 

(a) 
 
 

 
 

(b) 
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Figure 2.15  Reflection and transmission coefficients of one–turn square spiral FSS on a chiral slab at 

different incident angles; TE incidence, φ=0°, ξ=0.001 S, d=0.5 cm, εr=1.6, w=0.016 cm, 

h1=0.16 cm, hn=n*h1 cm, n=2,3,4., d1=d2=0.7 cm, (a) Reflection Coefficient TE
coR , (b) 

Transmission Coefficient TM
crT , (c) Transmission Coefficient TE

coT  

 

 

Figure 2.16 illustrates the variation of chirality admittance at normal incidence 

of TM wave for one–turn square spiral FSS on a chiral slab. The first resonance is 

stable up to ξ=0.002 and slightly shifts for ξ=0.003, as shown in Figure 2.16a. For 

ξ=0.003, three resonant frequencies appear. The first peak is wider than the others. In 

Figure 2.16b, there is an anti–resonance at 21.5 GHz for ξ=0.002. In the frequency 

region of 1–12 GHz, as the chirality admittance increases, the magnitude of TE
crT  

increases whereas the magnitude of TM
coT  reduces as shown in Figure 2.16b and 

Figure 2.16c, respectively. In the frequency region of 15–25 GHz, the magnitude of 
TM
coT  is also decreasing except for ξ=0.003. In this frequency region, two peaks, 

which are close to unity, are seen for ξ=0.003. 
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The variation of slab thickness is illustrated in Figure 2.17. Some slight 

variations are seen in the magnitude of TM
coR , but the resonant frequency is not 

affected from the variation of slab thickness as depicted in Figure 2.17a. The 

resonant frequency happens at about 14 GHz. As shown in Figure 2.17b, the 

magnitude of TE
crT  is increasing corresponding to an increase in slab thickness. 

Around the resonant frequency, approximately no variation was observed in the 

curves. The magnitude of TM
coT  is not affected from the variation of slab thickness up 

to resonant frequency as shown in Figure 2.17c. After the resonant frequency the 

magnitude of TM
coT  reduces corresponding to an increase in slab thickness. 

 

The reflection and transmission coefficients for oblique incidence TM wave are 

shown in Figure 2.18. The resonant frequency shifts to right side for oblique angle of 

incidence, as shown in Figure 2.18a. For an obliquely incident wave the magnitude 

of TM
coR  increases up to resonance frequency. There is only one resonant frequency 

for oblique incidence of up to 45 . No anti–resonance is observed for an obliquely 

incident TM wave as shown in Figure 2.18b. The magnitude of TE
crT  increases for an 

obliquely incident wave up to 14 GHz. There is no variation in the magnitude of 
TM
coT  up to 11 GHz, as shown in Figure 2.18c. The magnitude of TM

coT  is decreasing 

in the frequency region of 11–14 GHz.  

 

Figures 2.19 and 2.20 illustrate the current amplitude versus stretched out 

length of one–turn square spiral FSS backed by chiral slab at resonant frequency. 

The vertical grids show the corner points of the one–turn square spiral element. For 

TE plane wave at normal incidence the current has a greater peak at the longest (third 

one) segment as shown in Figure 2.19. For TM plane wave at normal incidence the 

current amplitude versus stretched out length is shown in Figure 2.20. Most of the 

current is induced on the fourth segment of one–turn square spiral element which is 

the longest and parallel to applied electric field. The currents at two resonant 

frequencies are approximately close to each other. 
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Figure 2.16  Reflection and transmission coefficients of one–turn square spiral FSS on a chiral slab at 

different chirality admittances; TM incidence, θ=φ=0°, d=0.5 cm, εr=1.6, w=0.016 cm, 

h1=0.16cm, hn=n*h1 cm, n=2,3,4., d1=d2=0.73 cm, (a) Reflection Coefficient TM
coR , (b) 

Transmission Coefficient TE
crT , (c) Transmission Coefficient TM

coT  

 
(a) 
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(b) 

 
(c) 

 
Figure 2.17  Reflection and transmission coefficients of one–turn square spiral FSS on a chiral slab at 

different slab thicknesses; TM incidence, φ=0°, ξ=0.001 S, d=0.5 cm, εr=1.6, w=0.016 

cm, h1=0.16cm, hn=n*h1 cm, n=2,3,4., d1=d2=0.73 cm, (a) Reflection Coefficient TM
coR , 

(b) Transmission Coefficient TE
crT , (c) Transmission Coefficient TM

coT  
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Figure 2.18  Reflection and transmission coefficients of one–turn square spiral FSS on a chiral slab at 

different incident angles; TM incidence, φ=0°, ξ=0.001 S, d=0.5 cm, εr=1.6, w=0.016 cm, 

h1=0.16 cm, hn=n*h1 cm, n=2,3,4., d1=d2=0.73 cm, (a) Reflection Coefficient TM
coR , (b) 

Transmission Coefficient TE
crT , (c) Transmission Coefficient TM

coT  
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Figure 2.19 Current amplitude versus length at resonant frequencies of one–turn square spiral FSS on 

a chiral slab for TE incidence: θ=φ=0°, ξ=0.003 S, d=0.5 cm, εr=1.6, w=0.016 cm, 

h1=0.16 cm, hn=n*h1 cm, n=2,3,4. d1=d2=0.7 cm 

 
Figure 2.20  Current amplitude versus length at resonant frequencies of one–turn square spiral FSS on 

a chiral slab for TM incidence: θ=φ=0°, ξ=0.003 S, d=0.5 cm, εr=1.6, w=0.016 cm, 

h1=0.16 cm, hn=n*h1 cm, n=2,3,4. d1=d2=0.73 cm 



81

 

2.2.4 Numerical Results of Two–Turn Square Spiral FSS on a Chiral Slab 

 

The numerical results of FSS comprised of periodic arrays of two–turn square 

spiral shaped conductors in the case of TE and TM incident waves are presented 

from Figure 2.21 to 2.28. The co– and cross–polarized reflection and transmission 

coefficients are plotted with respect to frequency for different values of chirality 

admittance, slab thickness and incident angle. The length of the first segment is 

h1=0.1 cm. The lengths of the other segments can be found from the relation hn=n*h1 

for n=2,3,…,8. The width of the two–turn square spiral was chosen as h1/10. The 

inter–element spacings are 0.83 cm. The periodic cells are arranged in square 

dimension. The overall length of the spiral is 3.6 cm. The number of basis functions 

required to estimate the unknown current coefficients is taken as 56. The number of 

Floquet modes used in the computations is 961. This number is obtained by inclusion 

of more Floquet modes until there is little change in the results.  

 

Figure 2.21 shows the effect of chirality admittance variations at normal 

incidence of TE wave. In Figure 2.21a, it is seen that, two resonant frequencies exist 

for different values of ξ. In the region of frequency from 1 to 12 GHz, the magnitude 

of TE
coR  increases for increasing values of ξ. No variation was observed in the 

reflection curves in the 11.5–13.5 GHz. There is a small shift in the first resonant 

frequency, which happens at around 15.5 GHz. The bandwidth of second resonance 

is wider than the first one for ξ=0 and ξ=0.001 values. For ξ=0.0018 the magnitude 

of TM
crT  is seen to be unity at three different frequencies as shown in Figure 2.21b. 

There is no polarization conversion (anti–resonance) for other chirality admittances 

and the magnitude of TE
coR  is very low at the anti–resonant frequency. In the 

frequency region of 1–15 GHz, the magnitude of TE
coT  decreases for increasing 

values of ξ, as illustrated in Figure 2.21c. The magnitude of TM
crR  is very low in the 

frequency region of 1–13 GHz and it varies between –10 to –60 dB in the 15–25 

GHz as can be depicted in Figure 2.21d. 
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Figure 2.22 illustrates the slab thickness variations at normal incidence. Two 

resonant frequencies are seen for three different slab thicknesses, as shown in Figure 

2.22a. The resonant frequencies are not affected from the variation of slab thickness. 

An anti–resonance is seen at about 20 GHz for increasing value of slab thickness, as 

given in Figure 2.22b. In Figure 2.22c, there is a small decrease in the magnitude of 
TE
coT  up to about 16.5 GHz. 

 

The reflection and transmission coefficients of two–turn square spiral FSS for 

oblique incidence variations are shown in Figure 2.23. There is a small shift in 

resonant frequency which happens at around 16.5 GHz as illustrated in Figure 2.23a. 

There is a gradual increase in magnitude of TE
coR  at oblique incidence variations up 

to resonant frequency. However, for an angle of 45 , the second resonant frequency 

disappears. No anti–resonance is observed for oblique incidence as shown in Figure 

2.23b. As illustrated in Figure 2.23c, there is a small decrease in the magnitude of 
TE
coT  in the frequency range of 1–15 GHz and multiple peaks occur at higher 

frequencies. 
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(d) 

Figure 2.21  Reflection and transmission coefficients of two–turn square spiral FSS on a chiral slab at 

different chirality admittances; TE incidence, θ=φ=0°, d=0.5 cm, εr=1.6, w=0.01 cm, 

h1=0.1 cm, hn=n*h1 cm, n=2,3,…,8., d1=d2=0.83 cm, (a) Reflection Coefficient TE
coR , 

(b) Transmission Coefficient TM
crT , (c) Transmission Coefficient TE

coT , (d) Reflection 

Coefficient TM
crR  
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Figure 2.22  Reflection and transmission coefficients of two–turn square spiral FSS on a chiral slab at 

different slab thicknesses; TE incidence, θ=φ=0°, ξ=0.001 S, εr=1.2, w=0.01 cm, h1=0.1 

cm, hn=n*h1 cm, n=2,3,…,8., d1=d2=0.83 cm, (a) Reflection Coefficient TE
coR , (b) 

Transmission Coefficient TM
crT , (c) Transmission Coefficient TE

coT  

 
(a) 
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(b) 

 
(c) 

 
Figure 2.23  Reflection and transmission coefficients of two–turn square spiral FSS on a chiral slab at 

different incident angles; TE incidence, φ=0°, ξ=0.001 S, d=0.5 cm, εr=1.2, w=0.01 cm, 

h1=0.1 cm, hn=n*h1 cm, n=2,3,…,8., d1=d2=0.83 cm, (a) Reflection Coefficient TE
coR , 

(b) Transmission Coefficient TM
crT , (c) Transmission Coefficient TE

coT  
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Figure 2.24 illustrates the effect of chirality admittance variations at normal 

incidence of TM wave. The resonance at about 3 GHz is not affected from the 

variation of chirality admittance, as shown in Figure 2.24a. The second peak 

increases in magnitude and shifts to lower frequency as ξ increases. The second 

resonance happens at 17.8 GHz and is narrower than the first one, for ξ=0.0018. In 

Figure 2.24b, the TE
crT  has null at resonant frequency. Anti–resonances appear for 

ξ=0.0018 value of chirality admittance in the frequency regions of 15–25 GHz. The 

magnitude of TM
coT  is not changed in S–band frequency region, as depicted in Figure 

2.24c. It also decreases in the frequency region of 6–17 GHz for an increasing value 

of ξ. The magnitude of TE
crR  is the same with TM

crR  which is plotted in Figure 2.21d. 

The magnitude of reflection and transmission coefficients versus frequency is 

plotted for different values of slab thickness, as shown in Figure 2.25. Two resonant 

peaks, which are not affected by the variation of slab thickness, appear as given in 

Figure 2.25a. In Figure 2.25b, the magnitude of TE
crT  increases corresponding to 

increasing value of slab thickness, except the region around resonant frequency. The 
TE
crT  has nulls at resonant frequencies. The TM

coT  has also nulls at resonant 

frequencies as shown in Figure 2.25c. In S–band frequency region, there is no 

change in magnitude. The magnitude of TM
coT  reduces in the frequency regions of 7–

19 GHz and 21–25 GHz, as the slab thickness increases. 

The oblique incidence variations are plotted in Figure 2.26 for different values 

of incident angles. In Figure 2.26a, there is a slight shift at the first resonant 

frequency. The magnitude of second resonance reduces and disappears for obliquely 

incident angles. As can be seen in Figure 2.26b, there is no anti–resonance for 

ξ=0.001. As shown in Figure 2.26c, there is a slight change up to 10 GHz and no 

variation was observed in the frequency range of 10–17 GHz. 

The normalized current amplitude versus stretched out length for two–turn 

square spiral is depicted in Figures 2.27 and 2.28 for TE and TM plane waves, 

respectively. Although the amplitude of currents is different at resonant frequencies, 

their amplitudes are normalized to unity. The vertical grids illustrate the corners of 

the two–turn square spiral. The current has one greater peak at one parallel segment 

with respect to other segments for both type of polarization. At fr=2.8 GHz most of 

the current is induced at the longest segment for TM case as shown in Figure 2.28. 
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(d) 

Figure 2.24  Reflection and transmission coefficients of two–turn square spiral FSS on a chiral slab at 

different chirality admittances; TM incidence, θ=φ=0°, d=0.5 cm, εr=1.6, w=0.01 cm, 

h1=0.1 cm, hn=n*h1 cm, n=2,3,…,8., d1=d2=0.83 cm, (a) Reflection Coefficient TM
coR , (b) 

Transmission Coefficient TE
crT , (c) Transmission Coefficient TM

coT , (d) Reflection 

Coefficient TE
crR  
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Figure 2.25  Reflection and transmission coefficients of two–turn square spiral FSS on a chiral slab at 

different slab thciknesses; TM incidence, θ=φ=0°, ξ=0.001 S, εr=1.2, w=0.01 cm, h1=0.1 

cm, hn=n*h1 cm, n=2,3,…,8., d1=d2=0.83 cm, (a) Reflection Coefficient TM
coR , (b) 

Transmission Coefficient TE
crT , (c) Transmission Coefficient TM

coT  

 
(a) 
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(c) 

 
Figure 2.26  Reflection and transmission coefficients of two–turn square spiral FSS on a chiral slab at 

different incident angles; TM incidence, φ=0°, ξ=0.001 S, d=0.5 cm, εr=1.2, w=0.01 cm, 

h1=0.1 cm, hn=n*h1 cm, n=2,3,…,8., d1=d2=0.83 cm, (a) Reflection Coefficient TM
coR , 

(b) Transmission Coefficient TE
crT , (c) Transmission Coefficient TM

coT  
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Figure 2.27 Normalized current amplitude versus length at resonant frequencies of two–turn square 

spiral FSS on a chiral slab for TE incidence: θ=φ=0°, ξ=0.0018 S, d=0.5 cm, εr=1.6, 

w=0.01 cm, h1=0.1 cm, hn=n*h1 cm, n=2,3,…,8., d1=d2=0.83 cm 

 
Figure 2.28  Normalized current amplitude versus length at resonant frequencies of two–turn square 

spiral FSS on a chiral slab for TM incidence: θ=φ=0°, ξ=0.0018 S, d=0.5 cm, εr=1.6, 

w=0.01 cm, h1=0.1 cm, hn=n*h1 cm, n=2,3,…,8., d1=d2=0.83 cm 
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CHAPTER  3 

CONCLUSIONS 

This study addresses new FSS element geometries that have not been studied 

earlier. The major contribution of this study is in fact the presented scattering 

properties of L–shaped, one– and two–turn square spiral FSS elements backed by 

planar dielectric and chiral slabs. 

 

3.1 Conclusion to Dielectric Backed FSSs 

 

The scattering of electromagnetic waves from freestanding and dielectric 

backed FSS elements are investigated in Chapter 1. An improved subsectional 

current approximation model of PWS basis is proposed to expand the induced 

current. The MM is employed to determine the reflection and transmission 

coefficients. The Floquet modes are included until there is little difference in results. 

The amplitude of element currents along the stretched out wire is plotted for 

dielectric backed FSSs. The reflection coefficient versus frequency is plotted for 

different values of incident angle, dielectric slab thickness and dielectric constant.  

 

The correctness of the algorithm is ensured by comparing the numerical results 

with the experimental results in the literature for an FSS composed of strips and 

proved to be as good. Another check for the correctness is that at normal incidence, 

the amplitude of reflection and transmission coefficients with reference to L–shaped 

FSS elements are the same without regard to TE or TM wave excitations. The 

correctness of one– and two–turn square spirals is also satisfied by interchanging the 

x– and y–axis. It has been observed that each FSS element has different resonant 

frequencies and bandwidths, showing band stop filter characteristics at different 

frequency regions. These structures are used as passive electromagnetic filters. FSS 

with two–turn square spiral array can be used as a band–stop filter at different 
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frequencies for TE and TM wave incidences. There is an anti–resonance at S–band 

and Ku–band frequency regions. Therefore, it can be made into both reflecting and 

transparent FSS.  

 

A good FSS element should be small in terms of wavelength. A quality 

element should have a stable resonant frequency with angle of incidence. The 

primary reason for this is simply that the inter–element spacings are kept as small as 

possible. Further increase in inter–element spacing will lead to early onset of grating 

modes which always push the fundamental resonance downward with angle of 

incidence. Grating modes only depend on inter–element spacings and the incident 

angle. Keeping d1 and d2 small delays the onset of grating modes. For three FSS 

elements, the only propagating mode is the zero order Floquet mode. 

 

It is seen that adding dielectric to periodic surfaces lowers the resonant 

frequency. The bandwidth varies more with polarization. There is no need to increase 

the number of turns since addition of more turns will increase the inter–element 

spacing, which will cause the resonant frequency to reduce and trigger the onset of 

grating modes. 

 

3.2 Conclusion to Chiral Backed FSSs 

 

In Chapter 2, the co– and cross–polarized reflection and transmission 

coefficients, which are strongly sensitive to the frequency of the incident wave, are 

plotted with respect to frequency for the variation of medium parameters and oblique 

incident angle. Numerical results illustrate that the chirality admittance of the slab 

causes a significant polarization rotation of the scattered fields. At low chirality 

admittances, there is no polarization conversion. Multiple resonances are seen for 

high value of chirality admittance because one wave number becomes very high at 

that value. The number of resonances depends on the slab thickness, dielectric 

constant and chirality admittance of the chiral medium. Anti–resonances which 

correspond to mode conversion are seen in cross–polarized transmission, for both 

types of polarization. This feature can have potential applications in design of novel 

devices such as TE ↔ TM converters and polarization filters. In the reflection 



97

 

characteristics of FSS elements on chiral slab, the resonances are separated with a 

deep minimum which shows a very good isolation between the resonances. As we 

increase the chirality admittance, the transmitted power is virtually switched from 

one mode to the other. This feature can be intuitively explained by recalling that the 

polarization of the electric field transverse components "rotates" as the wave 

traverses the chiral slab. 

 

The resonant frequency is not affected from the variation of slab thickness for 

one– and two–turn square spiral elements. There is a small shift at resonant 

frequency for L–shaped FSS. The resonant frequency shifts for the variation of 

dielectric constant. At normal incidence, chiral medium behaves differently with TE 

and TM waves. For one–turn square spiral FSS, as the oblique angle increases 

multiple resonances appear in TE case but there is only one resonant frequency in 

TM case. The first resonant frequency shifts to the lower end and the second 

resonance disappears at oblique angle of incidence for two–turn square spiral but no 

anti–resonance is observed. 

 

3.3 Recommendations for Future Work 

The present study permits the reflection and transmission coefficients of L–

shaped, one– and two–turn square spiral FSSs backed by planar dielectric and chiral 

slabs. The study is open to further developments.  Future works can be the following: 

 
• A spiral with circular turns can be investigated on planar dielectric and 

chiral slabs; 

• FSS with spiral square–shaped turn elements can be cascaded to form 

multilayer dielectric or chiral slab; 

• FSS with spiral circular turn elements can be cascaded to form multilayer 

dielectric or chiral slab; 

• A spiral with circular turns or spiral with square–shaped turns of finite 

extent on dielectric or chiral slabs can be investigated; 

• The square spiral element on chiral slab can be used as a FSS element [3]; 

• Bifilar or quadfilar spiral FSS elements can be investigated on a dielectric 

or chiral slab. 
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APPENDIX 

The full expressions for the coefficients of TM wave on a chiral slab appearing in 

equation (2.18)–(2.25) are given below. 
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