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ABSTRACT

ANALYSIS OF SQUARE SPIRALS ON
PLANAR DIELECTRIC AND CHIRAL SLABS

DELIHACIOGLU, Kemal
Ph. D. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. Savas UCKUN
February 2007, 104 Pages

In this thesis, the scattering characteristics of novel Frequency Selective
Surfaces (FSSs) such as, L—shaped, One— and Two—turn square spiral elements are
investigated theoretically on planar dielectric and chiral slabs for Transverse Electric
(TE) and Transverse Magnetic (TM) incident plane waves. Assuming it to be
infinitely thin and a perfect conductor, the FSS elements are placed periodically in
the x—y plane. The Moment Method (MM) of Galerkin type is employed by
expanding the current induced on the metallic surfaces in terms of overlapping
Piecewise Sinusoidal (PWS) basis functions. The reflection and transmission

coefficients due to FSS structures are obtained in terms of current coefficients.

The numerical results of reflection and transmission coefficients are plotted
against frequency for freestanding and dielectric backed FSS elements. The variation
of reflection coefficient with respect to frequency is presented for different values of
parameters such as incident angle, slab thickness and dielectric constant. The co— and
cross—polarized field equations due to chiral medium are written separately for TE
and TM incident waves. The co— and cross—polarized reflection and transmission
coefficients are plotted with respect to frequency for different values of medium
parameters such as chirality admittance, slab thickness, incident angle and dielectric
constant. At resonant frequency a maximum current is excited on the elements; for
this reason, the current amplitude induced on the metallic FSSs is plotted against the

stretched out wire length at resonant frequency.

Key words: Chiral, Frequency Selective Surface, Moment Method, Piecewise

Sinusoidal, L—shaped, one—turn square spiral and two—turn square spiral.
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OZET

DUZLEMSEL DIELEKTRIK VE BAKISIMSIZ LEVHALAR
UZERINDEKI KARE HELEZONLARIN ANALIZI

DELIHACIOGLU, Kemal
Doktora Tezi Elektrik Elektronik Miithendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Savas UCKUN
Subat 2007, 104 Sayfa

Bu tezde, L—sekilli, tek ve ¢ift dongiilii kare helezon gibi yeni Frekans Segici
Yiizey (FSY)’ lerin sagilma karakteristikleri diizlemsel dielektrik ve bakigimsiz
levhaya dik gelen TE ve TM diizlem dalgalar1 i¢in arastirilmistir. Sonsuz ince ve
miitkemmel iletken kabul edilen FSY elemanlar1 x—y diizlemine periyodik olarak
yerlestirilmistir. Metal ylizeylerde indiiklenen bilinmeyen akim katsayilari iist iiste
cakisan pargali siniis temel fonksiyonlari cinsinden genisletilip Galerkin tipi Moment
Metodu kullanilmistir. FSY yapilarindan dolay1 olusan yansima ve iletim katsayilari

akim katsayilar1 cinsinden elde edilmistir.

Havada asili ve dielektrik levha ile desteklenen FSY elemanlar1 i¢in yansima
ve iletim katsayilarinin frekansa gore grafikleri ¢izilmistir. Yansima katsayisinin
frekansa gore degisimi gelme agisi, levha kalinligi ve dielektrik sabiti gibi
parametrelerin farkli degerleri i¢in sunulmustur. Bakisimsiz ortamdan dolay1, ortak—
ve ¢apraz—kutupsal alan denklemleri TE ve TM diizlem dalgalar1 i¢in elde edilmistir.
Ortak— ve ¢apraz— kutupsal yansima ve iletim katsayilarinin frekansa gore grafikleri
ortamin bakisimsizlik admitansi, levha kalinligi, gelme acis1 ve dielektrik sabiti gibi
farkli degerleri icin ¢izilmistir. Rezonans frekansinda FSY elemanlar1 iizerinde
maksimum akim olustugundan dolay1r metalik FSY’ler {izerinde indiiklenen akimin

grafigi iletkenin uzunluguna gore rezonans frekansinda ¢izilmistir.

Anahtar Kelimeler: Bakisimsiz, Frekans Secici Yiizey, Moment Metod,

Pargal1 siniis, L—sekilli, tek—dongiilii kare helezon ve ¢ift—dongiilii kare helezon.
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INTRODUCTION

The aim of this thesis is to investigate the reflection, transmission and
resonance characteristics of novel square spiral Frequency Selective Surface (FSS)
elements placed periodically on a chiral slab. First, square spiral element was
reduced to sub—structures such as strip, L—shaped and one—turn square spiral
elements, to go step by step. Later, we ended with a two—turn square spiral element.
Adding more turn to square spiral will increase the inter—element spacings and the
matrix dimension; however this is time consuming and more basis functions should
be used. These FSS structures are analyzed on both planar dielectric and chiral slabs.
The most important thing for square spiral element is to find suitable basis functions
that will represent unknown current coefficients. The entire domain or subdomain
basis functions are used to find surface currents in most of the FSS problems
comprised of simple structures. It is difficult to find an entire domain basis functions
for complex structures, i.e. two—turn or many—turn square spiral. Throughout this
thesis the Moment Method (MM) of overlapping Piecewise Sinusoidal (PWS) basis
functions are used to determine the unknown current coefficients. Since the square
spiral is a curved structure, the PWS basis function at the corners is divided into two
equal parts; one is in the vertical segment and the other is in the horizontal segment.
Having computed the unknown current coefficients, the reflected and transmitted

waves can readily be found.

Literature Review

The periodic structures constituted by metallic elements, which is called FSSs,
have been studied for many years and their behavior is well known. The FSS
elements can be either free standing or printed on a dielectric slab. The dielectric slab
is used to support FSS elements and modify spectral response characteristics. FSSs

for microwave systems are commonly fabricated in printed circuit technology where



the selectivity is determined by the shape and spacing of elements within the array of
conducting elements. FSSs also depend on the constitutive parameters of the slab,
angle of incidence and polarization of the incoming wave. FSSs have found wide use
in various applications. They are designed to reflect or transmit electromagnetic
waves with frequency discrimination. Scattering from the perfectly conducting arrays
of different FSS structures have been analyzed and reported by many authors i.e.
band stop filters, band pass filters, microwave multiband antennas, hybrid radomes,
dichroic subreflectors [1,2,3]. Theoretical and experimental investigations on arrays
of elements of different shapes such as dipole [4], crossed dipoles [5], tripoles [6],
square loops [7], Jerusalem cross [8] and patch [9] have been carried out earlier.
Some other applications of FSSs have been proposed in literature; for instance,
millimeter and sub millimeter wave applications [10], spaceborne applications of
reflector antenna [11], dual reflector antenna systems in order to provide multi—
frequency capabilities [12], rectangular patch FSS mounted on uniaxial anisotropic
substrate [13], in dielectric radomes design to reduce reflections [3]. The circular
ring FSS elements both double screen and single screen designs are generated for tri—
band system that reflects the X—band signal while transmitting through the S— and
Ku-band signals [14]. In antenna and microwave filter applications, periodic arrays
of conducting elements are also used for Photonic Bandgap structures which prohibit

the electromagnetic wave propagation within a certain frequency range [15].

Chiral media are known as optically active media. The special property of
optically active media is that the polarization plane of linearly polarized
electromagnetic wave is rotated as wave passes through the medium. The amount of
rotation depends on the distance traveled by the wave in the medium and on the
difference between the two wave numbers, which is a consequence of the degree of
chirality [16]. The optical activity of the chiral medium is commonly represented by
a scalar parameter, &, which is called chirality admittance of the medium [17]. Chiral
materials have a great importance in electromagnetic field applications with ongoing
progress. A considerable amount of experimental and analytical works have been
devoted to the application of chiral materials over the last couple decades [18]. In
microwave and antenna engineering, chiral materials can be used to build novel

devices and structures such as, polarization transformers [19], reduction of target



radar cross—section RCS [20], periodic achiral-chiral interfaces [21],
chirowaveguides [22], anti-reflection coatings [23], microstrip antennas [24], chiro—
phase shifter [25] and chiral absorbing material [26]. FSS elements, comprised of
periodically arranged metallic structures of dipole, cross dipole, square patch,

circular and square rings on a chiral slab are analyzed in [27].

The present thesis gives the results of three novel FSSs which are made up of
perfectly conducting elements of L—shaped, one— and two—turn square spirals placed
periodically on planar dielectric and chiral slabs. The unknown current induced by
the incident wave on the metallic FSSs can be found by expanding the current
density in terms of overlapping PWS basis functions [28] and then using the MM
[29] of Galerkin type. In [28], the numerical analysis algorithm for the square spiral
antennas is developed by expanding the current distribution in PWS basis function. A
computer program is developed to find the reflection and transmission coefficients
due to dielectric and chiral backed FSS elements. The results are presented in

graphical form for the current amplitude, reflection and transmission coefficients.

Thesis Overview

The presentation of the work done in this thesis is organized as follows:
Chapter 1 gives the necessary equations corresponding to electric and magnetic fields
derived for the FSS elements on planar dielectric slab. The detailed analyses of MM
and PWS basis functions are given. The Electric Field Integral Equation (EFIE) is
obtained using the boundary conditions and the inner products with the use of
overlapping PWS basis functions. The reflection and transmission coefficients are
plotted with respect to frequency for freestanding and dielectric backed FSSs at
different values of medium parameters. The current amplitude versus stretched out

length is plotted at resonant frequency of the three FSS elements.

Chapter 2 is devoted to the L—shaped, one— and two—turn square spiral FSS
elements backed by chiral slab. The necessary electric and magnetic fields are

written in terms of the modal fields [30] for the chiral slab and free spaces



corresponding to TE and TM wave incidences. The co— and cross—polarized
reflection and transmission coefficients are obtained in terms of the induced current
coefficients and medium parameters for the propagating modes. The co— and cross—
polarized reflection and transmission coefficients are plotted with respect to
frequency for FSS elements of strip, L—shaped, one— and two—turn square spirals.
The current coefficients induced on the conductors are plotted against the stretched

out length of the structure at resonant frequency.

Finally, in Chapter 3, conclusions and recommendations for additional work
are proposed. In the appendix the full expressions for the coefficients of TM and TE

wave on a chiral slab are given.



CHAPTER 1
DIELECTRIC BACKED FSSs

1.1 Introduction

The focus of this dissertation is to investigate the reflection, transmission and
resonance characteristics of L—shaped, one— and two—turn square spiral FSSs placed
periodically on x—y plane and composed of infinitely thin electrical conductors,
backed by planar dielectric and chiral slabs. Firstly, we analyzed dielectric backed
FSS by using Modal analysis method with the PWS basis functions MM. The
dielectric and chiral slabs are placed between two free spaces, with infinite transverse
dimensions on either side. The FSS array is illuminated by a monochromatic plane
wave of arbitrary polarization (either TM or TE incident) from the free space region.
The amplitude of the incident electric field is set to unity (1 V/m). The periodicities
(inter—element spacing) d; and d» are in the x— and y— directions, respectively. The
slab has a thickness d and a relative permittivity &. The Modal analysis method was
applied to expand the scattered field as a summation of modes near the array of
perfect conductor with unknown coefficients, where each mode satisfies Floquet’s
Theorem [31]. By requiring the total electric field vanish on the conducting element,
an integral equation for the unknown current on each element is obtained. This
integral equation can be solved by using MM converting the integral equation into
simultaneous linear equation through numerical approximations, and into a matrix
equation that can be solved numerically on computer by matrix inversion. In the
MM, we expand the unknown currents into finite series in terms of basis functions.
There are two classes of basis functions. The first class is defined over the entire
solution domain and hence is called the entire—domain basis functions. For most
electromagnetic problems, the solution domain is complicated, and it is difficult to
find entire—domain basis functions that can form approximately a complete set over
the domain. For this reason, the entire—domain basis functions have limited use. The
second class is defined over small parts of the solution domain and is called the
subdomain basis functions. Although the unknown function over the entire solution

domain can be complicated and cannot be represented by simple functions, its



Figure 1.1 FSSs composed of infinite doubly periodic arbitrary conductors printed on a dielectric
slab

behavior over a sufficiently small region can be rather simple and hence is

representable with simple functions. For this reason, the subdomain basis functions

are widely used in the MM for a variety of electromagnetic problems. In the solution

domain of this thesis, the basis (expansion) function was chosen as PWS when

implementing the MM to determine the reflection and transmission coefficients

which depend on the current coefficients.

1.2 Analysis of FSSs Backed by Dielectric Slab

The dielectric slab is assumed to be linear, isotropic and homogeneous. All the
elements in the array are assumed to be identical, infinitely thin and perfectly
conducting. The array is periodic and extends to infinity in both the x— and y—
directions. This allows us to expand the fields in three regions, i.e., inside the
dielectric slab and in the air on either side, into Floquet modes. The Floquet mode
theorem provides a means of describing the array in terms of complete orthogonal set
of modes so that mutual coupling between the array elements is taken into account.
The incident field, i.e., the field produced by the incident plane wave in the absence
of scatterers, is just the field produced by the incident wave in the presence of
dielectric slab. It therefore contains only the zero order Floquet modes. Scattered

fields, on the other hand, are produced by the current distribution J(x,y)on the

scatterers. It is assumed that a monochromatic plane wave of arbitrary polarization,

with unity electric field intensity is incident from free space upon a dielectric slab.



Arbitrary periodic excitations can be studied by decomposing the incident field into
its TE and TM components and then further decomposing each component into its

Floquet expansion. When expanding the fields, we recognize that we can use the

vector Floquet modes with the ¢/ time dependence omitted:

_ A -2 —ikpqp —iVpqZ
F,,=A "¢ ™% ™Mk (1.1)

where F designate the electric and magnetic field at the (p,q)’th periodic cell. The

first subscript » =1lor =2 is used to stand for TM and TE modes, respectively.
Throughout this thesis, boldface letters have been used to denote vectors. The vector

k,, is the propagation vector along the tangential direction (x—y plane) and it is

defined as

ko, = ksin@cosg+2Zp la. +| ksinOsing——P 2™ a, (1.2)
d, d;tanf d,sinp

where  p=xa, +ya, is a vector in the x—y plane and {9,¢} are the spherical

coordinate angles defining the direction of propagation of the incident field. d, and
d, are lattice vectors. The area of the unit cell in Figure 1.1 is denoted by A

(A =|d, xd,|=d,d,sinB).

The propagation along the transverse direction (the z—direction) is defined as

k > ‘kpq‘
Ypq = (1.3)

—jw/kqu—kz k< k|

k = w./&u,

The explicit definition for the unit vector & is:

K, = kﬂ TM modes
Ipg — ‘ ’

Pq

kzpq = az X Klpq > TE mOdeS p’ q = _wﬁ t 9_27_1707152’ +er 0



For 6, =p=q=0, k,, =0. In order to avoid a 0 singularity when

6, =p=q=0, the limit of &, must be taken for &, — 0. The result of such a limit
Is Ko =cosga, +singa, and K, =-singa, +cosga,. The location of the
elements is defined by the indices of arbitrary integers {p,q}. The modal propagation
constant, y,. is positive real value for propagating modes and negative imaginary

for the exponentially decaying (evanescent) modes in (1.3). Rather than using the
compact notation of (1.1), we will write the Floquet modes explicitly in order to

properly account for the direction of propagation.

The total transverse incident electric and magnetic fields in the region z<0 in

the absence of the scatterers is given by [32],

2 2.0 :.,0 .
inc __ —1700% slab  1700Z 1y inc . —jkoo P
E™=)]e +Rige ™ b, e K100 (1.4)
r=1
inc 2 o ~i750% slab__§700Z 11 inc ikoo-p
— 00 _ 00 —JR00"
H; _ZYrOO[e R Ib,"e a, XKy (1.5)
r=1

where the subscript ¢ indicates the transverse field component and b™is the

amplitude of incident field. The modal admittances of the free space in the region

z<0 and z>d are given by,

k. Y yo Y
1(;’(12 000’ Y20Pq: plj O’ Yoz‘Vgo/ﬂo’ kozw\lgo:uo’

Pq 0

. ki _|koo k, 2 |koo| 107
Yoo = &, =

36rx
— kool —k2 K, <[k

where &,y are the permittivity and permeability of the free space. The reflection

|2

F/m  u,=4z10"H/m

ab

. sl _ . . . .
coefficient, Ry, at the boundary at z = 0, due to the dielectric slab is given by

2V ~ Yipg

€q
erq

slab __
Rrpq -

(1.6)

where Y is the equivalent modal admittance given as



1-R kY 7. Y
eq _ O pq _ _’Prq —
erq - erq +erq {m]’ Ylpq - aa Y2pq ok Y =4¢e/u

_ erq _Yr(l)aq ~i27pqd
S|y v, [
pq pq

Equation (1.6) is found in a straightforward manner by matching the tangential

electric and magnetic fields at z=0 and z = d.

The incident wave induces current on the scatterers. Radiation from the current
and scattering from the dielectric slab yield the electromagnetic fields. The scattered

fields in region 1(z<0), 2(0<z<d) and 3(z>d) are represented by{E,,H,},

E,,H,;and\E;, H,, respectively. For z<0, we have
{E, H,} and{E;, H |

E, = 22: i iaquejyng -e_jk"q'plcrpq (1.7)
r=I p=—o0 q=—o0
H=-33 SYoane™ ¢ ™% xu, (1.8)
r=1 p=—o0 q=—0
In the region 0<z<d,
E, =r22;‘ i f‘,[‘brpqe_jyqu + arpqejypqz] . e_jkpq'pkrpq (1.9)
=1 p=—0 q=—0
H, = ;pio qioqu [boge ™ —a e ] e (a, xa ) (1.10)
Forz>d
E, :i > Sbhee e e (1.11)
r=l p=—o0 q=-0
Hy= ;piﬂ qngr;qb:pqe”ng e (g, k) (1.12)
where a,,, b, , a,,,and b:rpq are unknown field amplitudes. Each Floquet mode in

the scattered fields must satisfy the following boundary conditions;

1. The tangential components of electric and magnetic fields are continuous

at z=d,



2. The tangential component of electric field is continuous at z=0,

3. The tangential magnetic field exhibits a jump discontinuity at z=0 and is

equal to surface current density J(x,y) which resides on the interface.

The boundary conditions are straightforward at z=d, resulting in,

=R__b (1.13)

pq = rpq

The continuity of electric field at z=0 results in,

Arpq =1+ R, )b (1.14)
The third boundary condition on the tangential magnetic field at z=0 is,
H,(x,y,0)-H,(x,y,0)=a, xJ(X,y) (1.15)
Substituting (1.8) and (1.10) into (1.15) and using (1.13) and (1.14), we find

0 © 1-R .
pq - —jkpq-p _
- Z Z Z{ mpq T+ (—Hamq e " MTa, XKy =4, xJ(x,y) (1.16)

p=—o0 q=—o0 r=1 1+Rrpq

The challenge is to find the values of the unknown coefficients a,,, . By taking

the inner product on both sides of (1.16) eMuve K., (where {u,v} are arbitrary
integers), and integrating both sides of the resulting equation over one periodic cell
(using the orthogonality relationship) we obtain the following expression for the

coefficients ar_pq in terms of the unknown induced currents.

- 1

1T Y (', ye ™ dxdy’ (1.17)

rpq unitcell

Hence the scattered tangential electric field for z<0, can be written explicitly as,
2 o © . . .
itpqz —ikpqp a1 kpqp'
E, z—z; D e e (YY) N flcrpq J(xX,ye M dx'dy'x,, (1.18)
r=l p=—0 q=—2 unitcell

Since both the scattered and the incident field satisfy the dielectric boundary
conditions, the final boundary condition is that the tangential electric field vanishes

over the perfect conductor. Hence

E,(x,y,0)+ E™(x,y,0) =0 (1.19)

10



or substituting Equation (1.4) and (1.18) into (1.19), we find explicitly

2

slab yi.inc _—jkoo-p _
Z(1+Rr00 )b, e Kyoo =
r=1

1 2 )

—jkpq- - !’ ! jheng P’ ! !/
XZ > e J"C"O(Yfp‘il) ! J.lcrpq-J(x,y)eJ pq‘adxdykrpq (1.20)
r=l p=-00 q=-o0 uniteell
where bi"™ =1, by =0 for TM incidence,

b =0, bi=1 for TE incidence

This is EFIE for the unknown current distribution. The most common method
to solve the EFIE is the MM. In the MM, the integral equation for the
electromagnetic field is transformed into a simultaneous equation or matrix equation
and the unknown quantities such as the surface current on conducting scatterers is
evaluated by solving the simultaneous equation numerically. In Equation (1.20) the

current density J(X,y) is approximated as follows:

N
J(x,y) =D ¢, fo(X,y) (1.21)
n=l

where ¢, ’s are the unknown current coefficients to be determined. The functions

f, (x,y) are complete and orthogonal over a conducting element and N is finite for

computability. Substituting (1.21) in (1.20) and integrating over a unit cell after

multiplying both sides by f. (x,y) yields the following system of equations.

g slal inc * gm "&n
Z(1+Rri)(l)))br Koo " 8moo = ZC Z z z rpq > rpq - (122)

r=1 n 1 r=1 p=—w q=—© erq
where m=1,2,...,N and the asterisk denotes the complex conjugate.
ik

Zopg = [[ fu "7 dxdy (1.23)

where  k, -p=u,x+v,y

u, :ksinﬁcos¢+2—ﬂp Vg :ksiné?sin¢5—2—7Zp<;0tﬂ+2—‘7Zq
d, d, d,sin g
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Sn-2 Sn-1 SN

Figure 1.2 Piecewise sinusoidal expansion functions for one—turn square spiral FSS

Since the solution domain is a contour, it can first be divided into small

segments, denoted by s,,s,,s,, --syas illustrated in Figurel.2 for one—turn square

spiral FSS. The basis function f;, is used to approximately represent the surface
current which is the overlapping functions of PWS. The basis function in an arbitrary

direction a, is defined in parametric form as

sink(s —s,_;) <
—_— Sy $s<s,
sink(s, —s,_;)

fa(s) =a, (1.24)

sink(s,,; —9)
—_— Sp SS<S,4

Sink(s .,y —$,)

The current flows only along the lengths of structures, which is axially directed
and only x— or y— dependent. The reference current direction is assumed to be
outward from the origin of the structure. The basis and weighting functions will

follow the contour of the FSS elements. The width (w) of the square spiral is much
smaller compared with the segment length (w <<h) and the wavelength(w << 4).
Hence, the variation of the current across the width can be ignored.

Equation (1.22) is a matrix equation of NxN for the unknown coefficients of
the current expansion. Substituting (1.23) in (1.22) would yield infinite system of

linear equations for the unknown current coefficients. If this infinite system of linear

equation is truncated, the solution to the truncated system approximates the exact

12



solution. The truncated linear system can be written in matrix form as;

Vo l=1Zon] lea] (1.25)

The elements of the impedance matrix are,

z -1 i i Hipa * 8mpa¥ipg "Enpg . F2pq *Empa*2pq *Enp (1.26)

"R S Yoy Y,
The excitation vector is,
[V]le = (1 +R 366 b K0 - €noo (1.27)
The unknown current coefficients are
[cli =[c, ¢, -+ cx] . with the superscript T denotes transpose.

In Equation (1.26), the matrix that is to be solved is called the moment matrix.
The moment matrix is a square matrix with one row and one column for every basis
function. Each entry in the moment matrix represents the electromagnetic coupling
between two basis functions. For example the moment matrix entry at row one and
column two represents the coupling between the first and second basis functions.
Typically the computation of the moment matrix entries (filling the matrix) is one of
the most time—consuming tasks when using the MM. The size of the matrix equals
the number of basis functions used. The matrix is symmetric at normal incidence due
to Galerkin’s MM. Symmetric means that elements are mirror images of each other
across the diagonal of the impedance matrix. The problem is formulated using MM
of overlapping PWS basis functions. Since the PWS basis functions are continuous
within a segment, the convergence of the results is obtained by increasing the
number of Floquet modes until there is little change in the results. With sufficiently
large number of Floquet modes the resulting matrix equation is well-conditioned
[33]. Equation (1.25) is solved using matrix inversion to calculate the current
coefficients for the computation of reflection and transmission coefficients. The total
reflected field can be written using (1.4) and (1.18),
Etreﬂeded = iRilgg ejy(())ozefjkoo"mbirnc"roo

r=1
2 »

o i75qZ kg e ! Voo adkpg P 3ot 3
=3 e Jkpqp[erclJ Y Ixrpq~J(X,y)ejkpqux dy'w,, (1.28)

r=1 p=—o0 q=— unitcell
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In a straightforward manner we can also find the transmitted field,

t itted o —i7%7 ik laby1.i

ransmitted __ —J700% .—jkoo P slal inc

E, = Ze € t00(1+ Rgg )by g0
r=1

2 0 © . 0 . . ’
_Z Z Ze_J}/que_JkPQ'ptrpq[qu }1 % Ikrpq .J(X"YV)eJkPQ‘p dxvdyvk.rpq (129)

pq
r=I p=—o00 q=- unitcell

H o 20,0
e](7pq 77pq )d + Rrpqu(}/qur}/pq)d

where tipg =

1+R,
The reflected and transmitted far fields contain only propagating Floquet modes for
which y,, is real. Since the distant scattered fields only consist of zero order

{p, q} = {0,0} propagating Floquet modes, the reflection and transmission coefficients

are computed from the following expressions:

2 . 1 N
lab
R = Z{Rigoblrnc T AY 2-Cn&noo 'krOO}krOO (1.30)
r=1 00 n=1
2 , t N
T= Z{(l + Ril&?)trooblrnc - —“’Sq Cn8noo * Koo }KrOO (1.31)
r=1 AYroo n=1

In case of the higher order Floquet modes propagation, it should be included to
Equations (1.30) and (1.31). A good FSS design supports only one propagating mode
in the same direction as the incident field. To avoid additional modes propagating,
we should pay attention to d,,(1+siné,) <A, in free space, with d;, the inter—
element spacing and & the angle of incidence. It must be mentioned that while
computing the current coefficients of ¢, in (1.22), the higher order modes must be
included since they are necessary for satisfying boundary conditions. The total
current can be expressed as the amount of surface current flowing on FSS structure

in the direction of n x dl is,
Itotal = j[J(X, y)xn]dl (132)

where the normal vector, n =a, and dl = a,dx or dl =ady.
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1.3 Moment Method (MM)

The MM is one of the most popular numerical techniques for solving either
open or closed scattering problems. In antenna analysis, the MM is used to convert
the EFIE into matrix equation or systems of linear equations. The matrix equation
can then be solved for the current coefficients by inverting the matrix, LU
decomposition, Gaussian elimination or any other techniques of linear algebra. The

basic form of the equation to be solved by the MM is,
L(f)=¢g (1.33)

where L is a linear operator, f is to be determined (unknown function), and g is the

source or forcing function. A crucial point is usually the choice of a suitable basis
function set to represent the unknown of the problem. In order to create the matrix
equation, the unknown function is defined to be the sum of a set of known

independent functions, f, called basis or expansion functions with unknown

amplitudes ¢, ,
f=>c,f, (1.34)

For exact solutions, (1.34) is usually an infinite summation and f, form a complete

set of basis functions. For approximate solutions, (1.34) is usually a finite
summation. Substituting (1.34) in (1.33) and using a linearity of the operator L, we

have,

Y L(f) =g (1.35)

The unknown amplitudes cannot yet be determined because there are n unknowns,
but one functional equation. A fixed set of equations are found by defining

independent weighting or testing functionsw,,, which are integrated with (1.35) to

give m different linear equations. The integration of the weighting functions with

(1.35) may be written symbolically as the inner product of the two functions, giving

Y cu (W L(£,)) = (w,,.8) (1.36)

where the inner product, <a,b> , 1s defined to be the integral of two functions over the

domain of linear operator. Now there are an equal number of unknowns and
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independent functions, which allow for the solution of the unknown amplitudes, ¢, .

The set of equations can be written in matrix form as,

[en]=1Zm] lcu] (1.37)

where

(Wi L(£)) (Wi L(B)) - (wi. L) ¢

e <W2a{4(f1)> <W2aI:(f2)> <W2’[:‘(fn)> e, ]= sz

(Wb L)) (WooL(E)) - (Wi, L(F)) c,

<Wlag>
]| 7%

If the matrix Z is nonsingular its inverse exists. The unknown

[(Wa8) |
current coefficients ¢, are obtained by[c, |=[Z,..]'[g..]-

1.4 Numerical Results

The numerical results are presented for three different FSS element geometries
as shown in Figure 1.3. The matrix elements, as given in (1.26), are a doubly infinite
summation in Floquet modes p and q. Generally, more basis functions should be
included to obtain convergent results. Since the double summation is slowly
converging, the convergence of the results is obtained by increasing the number of
Floquet modes until there is little change in the results. The numbers of Floquet
modes included are (2M+1)%, where M is the index of the highest order Floquet
modes. The double infinite sums of Floquet modes, occurring as matrix entries, are

truncated over a square matrix of dimension NxN.

For an array consisting of conducting elements under plane wave incidence, a
maximum current magnitude is excited on the elements at the array resonant
frequency. The current in this case is in phase with the incident field, i.e., the
impedance seen by the incident wave is purely ohmic (real), since the capacitive and
inductive parts cancel out. At resonance, the magnitude of the current is equal to the
real part and the imaginary part is negligible. As a result of the resonance the
incident wave is reflected with a phase reversal. Because of this, the currents induced

on the FSS elements are plotted at resonant frequency.
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Figure 1.3 L—shaped, One— and Two—turn square spiral scatterers

For the purposes of comparison, numerical results are calculated for the power
reflection coefficient versus frequency, for freestanding (¢=0 cm and &=1) narrow
strip FSS arranged in a square lattice dimension (£#=90°). The length and the width of
strip are 1.27 cm and 0.127 cm, respectively. The inter—element spacing is
di=d>,=1.78 cm. The number of basis is 10, which is satisfactory to make a
comparison with the experimental results. The comparison of the magnitude of
power reflection coefficient versus frequency with that of the measured result (black
dots) by Ott et all [4] is almost exact, as given in Figure 1.4. When the field is almost
normally incident, 6=1° and ¢=1°, total reflection (resonance) manifests itself at 11.2
GHz. At resonance (full reflection) the reflection coefficient is equal to unity with a
phase of 180°, while at anti—resonance (full transmission) the reflection coefficient
must have a magnitude of 0 (zero) with a phase of £90°. The reflection (R) and
transmission (T) coefficients versus frequency for a freestanding and dielectric
backed narrow strip FSS are plotted in Figure 1.5. Due to dielectric loading the
resonant frequency decreases when the FSS is etched on a dielectric slab. The
amount of frequency shift is proportional to the dielectric constant of slab. The plot
in Figure 1.6 shows the current amplitude versus length of the narrow strip. As

expected the current amplitude is in sinusoidal form.

1.4.1 Numerical Results of L—Shaped FSS Backed by Dielectric Slab

The reflection and transmission coefficients of L—shaped FSS elements on a

dielectric slab were first studied by the researcher in [34, 35]. The lengths of L—
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shaped FSS elements are /#;=h,=0.9 cm and the width is 0.09 cm. The L—shaped
elements are arranged in square lattice. The inter—element spacing are d1=d>=0.93 cm
and the number of basis functions are N=19. The number of included Floquet modes
is 361. Figure 1.7 reflection and transmission coefficients for the freestanding and
dielectric backed L-shaped FSS have been plotted against frequency at normal
incidence. At normal incidence, the reflection and transmission coefficients are the
same for both types of polarization. Total reflection (resonance) occurs at 13.4 GHz
for L—shaped FSS supported by dielectric slab of 0.1 cm thickness. The L—shaped
FSS behaves as a band stop filter in the frequency region of about 10.5 to 16.4 GHz
and it is transparent in other frequency regions. Total reflection appears at 15.2 GHz
for the freestanding FSS and shifts to 13.4 GHz for dielectric backed FSS elements
of L—shaped as shown in Figure 1.7.

The incident electric field induces more current in the parallel arm while it
induces less current in the perpendicular arm of the L—shaped FSS. As expected the
current amplitude was the same for TE and TM wave incidence for dielectric backed
L—shaped FSS, as illustrated in Figure 1.8. In Figure 1.9, the reflection coefficient
was plotted for different lengths of L—shaped FSS. The resonant frequency shifts to
lower frequency as the length of strip increases. A 0.1 cm increase in strip length
approximately causes 2.2 GHz frequency shift for the resonance. The resonant
frequency is inversely proportional to the total length of L—shaped FSS elements and
the square root of the dielectric constant. The resonant frequencies are 17.4 GHz,
15.2 GHz and 13.4 GHz for the strip lengths of 0.7 cm, 0.8 cm and 0.9 cm,
respectively. Figures 1.10 and 1.11 illustrate the reflection coefficient versus
frequency for TE and TM waves at different values of incident angles. The resonant
frequency is almost stable up to 30° around 13.4 GHz and there is a slight shift in
resonance for higher incidences as shown in Figure 1.10 for TE incident wave. The
bandwidth of the reflected wave decreases as the incident angle increases for TM
incidence as shown in Figure 1.11. For the variation of slab thickness, plotted in
Figure 1.12, the resonant frequency is almost stable. Figure 1.13 depicts the
reflection coefficient versus frequency for different values of dielectric constant. The

resonant frequency shifts to lower frequencies as the dielectric constant increases.
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Figure 1.4 Power reflection coefficient versus frequency for the freestanding strip FSS
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Figure 1.11 TM Reflection coefficient versus frequency for L—shaped FSS at oblique angle incidence
#=0°, &=1.6, d=0.1 cm, h,=h,=0.9 cm, w= 0.09 cm, d,=d>=0.93 cm
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Figure 1.12 Reflection coefficient versus frequency for L—shaped FSS at different slab thicknesses,
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Figure 1.13 Reflection coefficient versus frequency for L—shaped FSS at different values of ¢,
O=¢=0°, d=0.1 cm, h;=h,=0.9 cm, w=0.09 cm, d\=d,=0.93 cm
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1.4.2 Numerical Results of One— and Two-Turn Square Spiral FSSs
Backed by Dielectric Slab

The numerical results of one—turn spiral FSS has been presented in Figures 14—
23 for TE and TM incident plane waves [35, 36]. The length of the first segment is
h;=0.2 cm and the other lengths can be found from the relation 4,=2h;(n—1) for n=2,
3, 4. The width is chosen as one tenth of the first length (w=h,/10=0.02 cm). The
inter—element spacings are equal to 1.55 cm. The number of basis is 25 to estimate
the unknown current coefficients. The number of included Floquet modes is 625. The
periodic cells are arranged in square lattice (£=90°). In Figure 14, the reflection and
transmission coefficients are illustrated for freestanding and dielectric backed FSS at
normal incidence for TE incidence. The resonant frequency shifts to lower value
when FSS is backed by dielectric slab. The narrow bandwidth is observed for both
freestanding and dielectric backed FSS with TE incident wave. The structure behaves
as a band stop filter in the frequency region of about 14 to 16 GHz and it is
transparent in other frequency regions for dielectric backed FSS. Full transmission
(anti—resonance) is observed up to frequency of 13 GHz. Figure 1.15 shows the
induced current amplitude variation against overall length of one—turn square spiral
FSS. The current induced on the longest parallel segment has a greater peak
compared with the current induced on the other segments. Figure 1.16 is depicted for
the variation of incident angle. At oblique incidence, the bandwidth is narrower and
resonance frequency shifts to lower frequencies. In Figure 1.17 the TE reflection
coefficient is plotted for the variation of slab thickness. The slab thickness shifts the
resonant to lower frequency and decreases the bandwidth of the reflected wave. As
the dielectric constant increases the resonant frequency shifts to lower end as shown
in Figure 1.18. As shown in Figure 1.19, the magnitude of the reflected and
transmitted waves is plotted with respect to frequency for freestanding and dielectric
backed one—turn square spiral FSS at normal incidence of TM plane wave
illumination. The structure shows anti—resonance up to 8 GHz. The resonance
manifests itself at 11.7 GHz and 10.6 GHz for freestanding and dielectric backed
one—turn square spiral FSS structure, respectively. The structure behaves as a band
stop filter in the frequency region of about 8 to 12.5 GHz and it is transparent in

other frequency regions for dielectric backed FSS. Figure 1.20 illustrates the current
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amplitude versus length induced on the one—turn square spiral FSS. The current
induced on the last segment has a greater peak and reduces in the other segments.
The reflection coefficient versus frequency for the variation of incidence angle is
shown in Figure 1.21. The resonant frequency is stable at 10.6 GHz for three
different values of incident angles and the bandwidths decrease for increasing values
of incident angles. The TM reflection coefficient versus frequency corresponding to
slab thickness and dielectric constant variations are shown in Figures 1.22 and 1.23,
respectively. In Figure 1.22 the resonant frequency is almost stable for the variation
of slab thickness. There is no change in bandwidth of the reflected wave. In Figure
1.23 the increasing value of dielectric constant moves the resonant to lower
frequency. The FSS resonates at different frequencies for TE and TM incident
waves. The bandwidth of the reflected wave is nearly the same for TE and TM

incident waves.
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Figure 1.15 TE Current amplitude versus length for dielectric backed one—turn square spiral FSS at
f=14.85 GHz; 6=¢=0°, d=0.1 cm, &=1.6, h;= 0.2 cm, h,=2(n—1)h;, n=2,3,4., w=0.02 cm,
d1:d2:1.55 cm

26



TE Reflection Coefficient (dB)

Frequency (GHz)
Figure 1.16 TE Reflection coefficient versus frequency for one—turn square spiral FSS at different
incident angles; ¢=0°, d=0.1 cm, g=1.6, = 0.2 cm, 7,=2(n—1)h;, n=2,3,4., w=0.02 cm,
d1:d2:1.55 cm
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Figure 1.17 TE Reflection coefficient versus frequency for one—turn square spiral FSS at different
slab thicknesses; G=¢=0°, g=1.6, h=0.2 cm, h,=2(n-1)h;, n=2,3.4., w=0.02 cm,
d1:d2:1.55 cm
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Figure 1.18 TE Reflection coefficient versus frequency for one—turn square spiral FSS at different
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Figure 1.19 TM Reflection and transmission coefficients for freestanding and dielectric backed one—
turn square spiral FSS; 6=¢=0°, h=0.2 cm, h,=2(n-1)h;, n=2,3,4., w=0.02 cm,
d1:d2:1.55 cm
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Figure 1.20 TM Current amplitude versus length for one—turn square spiral FSS at £i=10.6 GHz;
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Figure 1.21 TM Reflection coefficient versus frequency for one—turn square spiral FSS at different
incident angles; ¢=0°, d=0.1 cm, &=1.6, h;=0.2 cm, h,=2(n—1)h;, n=2, 3, 4., w=0.02 cm,
d1:d2:1.55 cm
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Figure 1.22 TM Reflection coefficient versus frequency for one—turn square spiral FSS at different
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Figure 1.23 TM Reflection coefficient versus frequency for one—turn square spiral FSS at different
values of g, &=¢=0°, d=0.1 cm, h=0.2 cm, h,=2(n-1)h;, n=2, 3, 4., w=0.02 cm,
d1:d2:1.55 cm
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The numerical results of the FSS comprised of periodic arrays of two—turn
square spiral shaped conductors in the case of TE and TM incident waves are
presented from Figure 1.24 to Figure 1.31 [36, 37]. The length of the first segment is
h;=0.1 cm. The lengths of the other segments can be found from the relation
h,=2h;(n—1) for n=2, 3, ... , 8. The overall length of the spiral is 5.7 cm. The width
of the two—turn square spiral was chosen as /,/10. The inter—element spacings are 1.7
cm. The periodic cells are arranged in square dimension. The number of basis
functions required to estimate the unknown current coefficients is 56. The number of
included Floquet modes is 961. This number is obtained by inclusion of more
Floquet modes until there is little change in the results. The only propagating mode is
the zero order Floquet mode. Keeping d; and d> small delays the onset of grating

modes.

In Figure 1.24 and 1.25 the reflection and transmission coefficients are plotted
for freestanding and dielectric backed two—turn square spiral FSS, under normal
incidence with electric field polarized along the y—axis (TE incidence). The
resonance frequency for the freestanding FSS is at 16.08 GHz. The resonance
frequency moves to14.62 GHz, when FSS is supported by dielectric slab as shown in
Figure 1.24. There is a full transmission at the S—band frequency region (1-5 GHz).
The FSS comprised of periodic two—turn square spiral shaped conductors is used as a
band stop filter in the microwave frequency regions of Ku-band (12.5-18 GHz) as
shown in Figurel.25. The curve in Figure 1.26 illustrates the normalized current
amplitude versus overall length for dielectric backed two—turn square spiral FSS
under normal incidence at resonant frequency (f,=14.62 GHz). The vertical grids
show the corner points of the structure. More current is induced on the fifth segment
of the structure. Figure 1.27 shows TE reflection coefficient for different values of
the first strip length (/). As the length of the first strip increases by 0.01 cm each
time, the resonance shifts nearly 1 GHz to lower frequencies. The resonance
frequencies are 14.62 GHz, 13.3 GHz and 12.3 GHz for the values of first strip
lengths of 0.10 cm, 0.11 cm, 0.12 cm, respectively. In Figure 1.28, TE reflection
coefficient is plotted against frequency for the incident angle variations. The
resonance frequency shifts to lower frequency for oblique angle of incidence 10°.

When this value is greater than 10° the resonance disappears.
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Plots in Figures 1.29 and 1.30 shows the reflection and transmission
coefficients for freestanding and dielectric backed two—turn square spiral FSS
corresponding to TM incident plane wave. There are two resonant frequencies for
TM incident wave at 12.3 GHz and 17.52 GHz for dielectric slab as shown in Figure
1.29. The bandwidth of the first resonance is wider than the second one. The second
resonance is due to the higher order grating modes. There is a full transmission at the
S—band frequency region (1-5GHz) as shown in Figure 1.30. The FSS comprised of
periodic two—turn square spiral shaped conductors is used as a band stop filter in the
microwave frequency regions of Ku—band (12.5-18 GHz). Figure 1.31 illustrates the
normalized current versus length for dielectric backed FSS at resonance frequency.
More current is induced on the sixth segment of the two—turn square spiral. Figure
1.32 depicts TM reflection coefficient for different values of the first strip length
(h;). As the length of the first strip increases, the resonance shifts nearly 1 GHz to
lower frequencies. The resonance frequencies are 12.3 GHz, 11.2 GHz and 10.3 GHz
for the values of first strip lengths of 0.10 cm, 0.11 cm, 0.12 cm, respectively. It is
seen that the curves are approximately equal to each other. Figure 1.33 illustrates the
oblique angle incidence variations for the magnitude of TM reflection coefficient.
The first resonant frequency is almost stable up to 20° incidences. There is a small
decrease in bandwidth of the reflected wave. The second resonance disappears for
oblique angle of incidence. When the angle of incidence is greater than 20°, the
magnitude of the first peak reduces and resonance disappears. The variation of
dielectric constant and slab thickness versus frequency are not plotted for the two—
turn square spiral FSS. Since, we know their effects from the L—shaped and one—turn
square spiral FSS structures. FSS with two—turn square spiral array can be used as a
band—stop filter at different frequencies for TE and TM wave incidences. There is
anti-resonance at S—band and Ku-band frequency regions. Therefore, it can be made

into both reflecting and transparent FSS.
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Figure 1.24 TE Reflection coefficient for freestanding and dielectric backed two—turn square spiral

FSS; 6=¢=0°, d=0.1 cm, &=1.6, #;=0.1 cm, A,=2(n—-1)Ah;, n=2, 3,....8., w=0.01 cm,
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Figure 1.25 TE Transmission coefficient for freestanding and dielectric backed two—turn square spiral
FSS; 6=¢=0°, d=0.1 cm, ea=1.6, h=0.1 cm, h,=2(n-1)h;, n=2, 3,...,8., w=0.01 cm,
di=d,=1.7 cm

33



08+

06 s st st o sl o

04 s )

Normalized Current Amplitude

021

|
31 4.3 5.7

0
0103 0.7 1.9 21
Length (cm)
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Figure 1.27 TE Reflection coefficient versus frequency for two—turn square spiral FSS at different

values of first strip length, =¢=0°, d=0.1 cm, =1.6, h,=2(n—1)h;, n=2,3,...,8., w=h;/10

cm
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Figure 1.28 TE Reflection coefficient versus frequency for two—turn square spiral FSS at different
incident angles; ¢=0°, d=0.1 cm, =1.6, h=0.1 cm, h,=2(n-1)h;, n=2,3,...,8., w=0.01

cm, di=d,=1.7 cm
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Figure 1.29 TM Reflection coefficient for freestanding and dielectric backed two—turn square spiral

FSS; 6=¢=0°, d=0.1 cm, &=1.6, #;=0.1 cm, Ah,=2(n—-1)A;, n=2, 3,....8., w=0.01 cm,

d1:d2:1 .7 cm
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CHAPTER 2

CHIRAL BACKED FSSs

2.1 Introduction

Chiral materials, constructed by an artificial composite, have a great
importance in electromagnetic field applications with ongoing progress. Such
materials occur in nature as optically active molecules which display circular
birefringence at optical frequencies. Since chirality is a geometric concept, a chiral
object and its mirror image cannot be superimposed neither by rotation nor
translation. This property is known as handedness. Objects that have the property of
handedness are said to be either right-handed or left—-handed. Chiral materials can be
used to build novel microwave devices and structures. In microwave and millimeter
wave regimes, chiral media are used in many applications, for instance, polarization
transformers, phase shifters, antenna radomes, microstrip substrates, and waveguides.
An artificial chiral medium for a microwave frequency can be constructed by
embedding chiral objects, such as wire helices, mobius strip and irregular

tetrahedrons in a non—chiral host medium.

Chiral media are known as optically active media. The special property of
optically active media is that the polarization plane of linearly polarized
electromagnetic wave is rotated as wave passes through the medium. The amount of
rotation depends on the distance traveled by the wave in the medium and on the
difference between the two wave numbers, which is indication of the degree of
chirality. A linearly polarized wave incident on a chiral slab splits into two circularly
polarized waves. One is left circularly polarized (LCP) wave and the other is right
circularly polarized (RCP) wave with different phase velocities. The two circularly
polarized waves combine and a linearly polarized wave emerges behind the chiral
slab. The plane of polarization is rotated with respect to the plane of polarization of

the incident plane wave [16—18].
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Figure 2.1 Geometry of FSS elements on Chiral Slab

An electric or magnetic incident field simultaneously produces both electric
and magnetic polarization that exhibits magneto—electric coupling. The displacement
vector D and the magnetic field H inside a chiral medium depends on both E and B.
In order to explain the dependence, assume a short metallic helix as a chiral object in
a dielectric medium, the incident electric field induces currents in the straight portion
of the chiral object, and by continuity these currents must also flow in the circular
portion of the object. The current in the straight portion contributes to the electric
dipole moment of the object while the current in the circular portion contributes to its
magnetic dipole moment. In a complementary manner, the incident magnetic field
induces currents in the circular portion and by continuity in the straight portions.
Thus, also the magnetic field contributes to the electric and magnetic dipole moments

of the object.

In this Chapter, the reflection from and transmission through the chiral slab are
analyzed for the three structures given in Figure 1.3. The chirality parameter is
included to the slab parameters and the chiral slab is sandwiched between two free
spaces as shown in Figure 2.1. Unlike a regular dielectric, the chiral scatterers
produce both co—polarized and cross—polarized scattered fields. Four different
coefficients are calculated when a plane wave is incident on a chiral medium. R, and
R, are the co— and cross—polarization of the reflected waves; T., and T, are the co—
and cross—polarization of the transmitted waves, respectively. The cross—polarization

for TE and TM incidences correspond to TM and TE waves, respectively.
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2.2 Propagation of Wave in Chiral Medium

The isotropic, homogeneous, lossless and source free chiral medium is

characterized by the following constitutive relations for electromagnetic field with

¢’ time harmonic dependence, [18]

D=¢E - jéB (2.1)
H="'B_j& (2.2)
Ho

where &, 1,, and & are real values for lossless media and represent permittivity,
permeability, and chirality admittance (&) of the chiral medium, respectively. The
magnitude of & is a measure of the degree of chirality while the sign of & specifies
the medium handedness. When &>0 the medium is a right handed and the sense of
polarization is right handed, when £<0, the medium is left handed and the sense of
polarization is left handed; and when &=0 the medium reduces to ordinary dielectric

and there is no optical activity.

Inserting the constitutive relations into the source free Maxwell equations, the

chiral wave equation for the electric and magnetic fields can be obtained as

VxV £ 2 £ 2 E—o 23
xxH—a),uOgEVxH—a),uoeH— (2.3)

The chiral media has two different phase velocities for RCP and LCP waves

leading to two different wave numbers k, and k; which are given by

k, = o, + o’ 13 &% +k*
k; = —op,& +y 0’ 1 & + k7

The two characteristic waves propagate at different velocities in the chiral medium,

(2.4)

thereby causing birefringence. The solution to the chiral wave equation (Equation

2.3) consists of two partial waves, which are the right hand (E, ,H5) and left hand

(E,,H,) circularly polarized eigenwaves, [30] such that

E=E: +E;

(2.5)
H=H}+H;

The total electric field in region z<0 for TM and TE wave incidences are
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.0 . .
™ ™ _—i7g0Z T™ _i7§0% 1. —ikooP TE _i780% .—jkoop
E,. =[E,"¢e +Ejp¢ le Koo + J€200€ ¢ Ky (2.6)

TE _ rr TE . —i700Z TE _3700% 1.—ik0o-p T™ _ i700% .—ikoo-p
E,. =[E,¢ +Ejpe le Ko +J€ip0€ * € Ko (2.7)

where E!™and E]" are the amplitude of the TM and TE incident waves. The

magnitudes of the incident electric fields for TE and TM waves are equal to 1 and

cos(0;), respectively. The sets of {E/, andEl);,} and {e), ande,y } are the

amplitude of the co—polarized and cross—polarized reflected waves in the absence of

scatterers, respectively.

The scattered reflected electric fields in region z<0 due to metallic structures at

the interface of chiral slab are,
™ - TE —jkpg P _iVoqZ
Erl = ZZ[Elpq Klpq + Jelpq'c2pq]e PaTe (28)
p
—jkpqP _i7pq?
r2 - ZZ[E2qu2pq + .]e2pq’€1pq]e Pt (29)

The RCP and LCP waves inside the chiral medium (0<z<d) for TM wave

incidence are,

2 m-— bz m-1 A r kg -
;zzzzj 1 mpq J7’pq +(_1) lAmpq J}’pq ] mpq Jqu (210)
m=lp ¢
2 .
= T ) Bl ™+ () B e e @.11)
m=lp q

The RCP and LCP waves inside the chiral medium (0<z<d) for TE wave

incidence are,

! ’ o
E; - ZZZJ [Cmpq Jypqz +(_1)m 1Cfnpq JquZ]Kmpqe Jkpqp (212)
m=l p q
Ez_ — ZZZ( J) [Dmpq vaqz +(_1)m 1D:11pq vaqz]xmpqe —ikpqp (2.13)
m=l p

where the propagation constants for RCP(}/;q) and LCP (y;q)waves along the

transverse direction is defined as

41



k2, - \kpq\ k,’lz‘kpq‘
Von = (2.14)
2
_j ‘kpq‘ _kil rl—‘k ‘

The corresponding magnetic fields inside the chiral slab can be obtained from

the relation,

H=L(VxE—a)ﬂ0§E) (2.15)
o,

The electric fields in region z>d for TM and TE wave incidences are,

Etl = ZZ[E;rlla\gklpq + jegrl;:qKqu ]e_jkpq'Pe_jJ’qu (2 16)
P
Ep =Y S[EI ey, +jeinn e rle 7 (2.17)
P q
TE TM rl nl nl nl
In Equatlons (2 8) (2 17) Elpq ] lpq ’ E2pq H 2pq ’ Ampq ” Bmpq ’ Cmpq H Dmpq s

E3pq , e3pq , E3pq, e3pq are unknown field amplitudes and can be found in terms of

medium parameters after matching the boundary conditions.

Matching the boundary conditions as mentioned in Chapter 1, one can get the

EFIE for TM wave incidence,

™ ~ikpqp _
—{(E, +E100)’€100+Je’200x200}e P

Za Z Z[(Dlpqgnpq qugnpq)klpq e pa® + J(D3pqgnpq + D4pqgnpq )Kqu pq'p] (2 1 8)

n=l1 p=—00q=—o
Similarly for TE incident wave the EFIE is,

TE TE . T™M ik p
—{(Ey" +E0)K000 + J€100 K100t€ ~ 7 =

ZO{ Z Z[(Clpqgnpq + C2pqgnpq )’c2pq pa + J(CSpqgnpq + C4pqg )klpq i P] (2 19)

p=—00q=—00

npq

where Cipq and Dy, are known coefficients (s=1,2,3,4)

™ _
€upqg = Kipg " Enpg (2.20)

&npg = K¥2pq * 8npq
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Multiplying both sides of (2.18) and (2.19) by f,,(X,y)and integrating over a

unit cell yields a simultaneous equation or NxN matrix equation.

[V ]TM,TE :[Z ]TM,TE [oc ]TMvTE

(2.21)

mn n

where V, Z and o are the excitation vector, the impedance matrix and unknown
coefficients, respectively. The excitation vectors are given by the equations,
[V]IT\II::[I = —(EEM ElTé\(/)[ )(gnOO Jezoo (gnOO (2.22)
TE _ TE TE
[V] =—(E;" +Egg )(gnoo) - Jeloo (gnOO (2.23)

Nx1

The elements of the impedance matrix are

[Z,n] ™ =— ZZ[(Dlpqg npg T D2pe& npq)(g mpq) + J(D3pqg npg T Dapg& npq)(g mpq) 1(2.24)

[ ] = _ZZ[(Clpqgnpq + Cqugnpq )(gmpq) +J(C3pqg npg C4pqg npq )& mpq) 1(2.25)

where the asterisk denotes the complex conjugate. By inverting the matrix equation
(2.21), the unknown current coefficients can be obtained. The co— and cross—

polarized reflection and transmission coefficients can then be written as

N
REM ElT(%[ + Zo‘rTlM (Dmoggg/([) + Dzoogzgo)/A (2.26)
REE e200 + ZO‘TM (D300gn00 + D400gn00)/A (2.27)
n=l
N
TcToM Eg(l)\g + ZOLEM (Klooggg/(l) + KzooggoEo)/A (2.28)
n=l
TE _ TE < TM ™ TE
Te =300 + 20y (K3008n00 + KagoZnoo)/ A (2.29)
n=l
N
Rgf = Eg(])io + ZOLEE (Cloogg(];:o + Czoogg%)/A (2.30)
n=l
Rer e100 + ZOLTE (C300gn00 + C400gn00)/A (2.31)
n=l
TE TE <N TE TE ™
Teo =Ez00 + 2.0, (Pioo8noo + Pa008noo)/ A (2.32)

n=1
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N
TcTrM = ‘33T(1)\6I + ZGIE (P3oogzgo + P4oog13$)/A (2.33)

n=l
where the detailed expressions for the unknown parameters Dioo, Kkoo, Ckoo and Pxoo

can be seen in Appendix. (k=1,2,3,4.)

2.2.1 Numerical Results of Strip FSS on a Chiral Slab

The numerical results of a strip FSS on a chiral slab [38] is given in this section
in order to compare the results. The configuration considered here is two dimensional
infinite arrays of perfectly conducting narrow strips having dimensions 4#=0.92 cm
and w=0.1 cm. The FSS strip elements are arranged in a square lattice, di=d>=1 cm.
The structure is excited by a normally incident plane wave polarized in a, direction.
The slab thickness and dielectric constants are 0.5 cm and 1.06, respectively. These
numerical values are taken from Koca’s dissertation [27]. The correctness of the
algorithm is ensured by comparing the numerical results with that of [27] for a
narrow strip FSS backed by chiral slab and proved to be as good. The amplitude of
co— and cross—polarized reflection and transmission coefficients are plotted with

respect to frequency for different values of chirality admittance. The value of
chirality admittance is varied within the range given by inequality |§| <\e.&, /1,

[17]. For instance, the chirality admittance changes from 0 to 0.003355 for 1.6 value

of dielectric constant.

In the case of TE or TM wave incidences, we have two reflection and two
transmission coefficients in the first and third regions, respectively. Totally, four
coefficients are calculated when a plane wave is incident on a chiral medium. That is
co— and cross—polarized reflection and transmission coefficients. As shown in Figure
2.2a the co—polarized reflection coefficient at low chirality admittance is very close
to the dielectric case. Multiple resonances with narrow bandwidth appear when the

chirality admittance of the slab is increased to 0.0015 and 0.0025 S. At the resonant
frequency of f; = 21.04 GHz, R!" looks like a spike with a very narrow bandwidth.

For small values of chirality admittance the co—polarized transmission coefficient of
chiral FSS exhibits similarity with that one of the dielectric FSS as shown in Figure

2.2b. In Figure 2.2c full transmission is observed for cross—polarization at 16.35
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GHz. At this frequency the polarization state of the incident wave is converted from
TE to TM or we can say that optical activity is observed. The current amplitude
induced on the strip FSS on chiral slab is illustrated in Figure 2.3 against the length
of strip at resonance frequencies for the chirality admittance of &=0.0025 S. At
resonant frequencies, the current amplitude is maximum at the center of strip, and it
is symmetric with respect to the center of strip. At f; = 21.04 GHz, the current has

two equal peaks which are the mirror image of each other with respect to center.
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Figure 2.3 Current amplitude versus length at resonance frequencies of strip FSS on a chiral slab;

G=¢=0°, £=0.0025 S, d=0.5 cm, £=1.06, w=0.1 cm, #=0.92 cm, d,=d,=1 cm
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2.2.2 Numerical Results of L-Shaped FSS on a Chiral Slab

The numerical results of L—shaped FSS backed by chiral slab have been
presented for TE and TM incident plane waves [38, 39]. The co— and cross—polarized
reflection and transmission coefficients are plotted against frequency at normal
incidence for different values of medium parameters such as chirality admittance,
slab thickness, and dielectric constant. The coefficients are also plotted for TE and
TM incident waves at oblique incidence. The lengths of L—shaped FSS and other

parameters can be found in section 1.4.1 of Chapter 1.

Figure 2.4 shows the effect of chirality admittance variations at normal
incidence of TE wave. As can be seen from Figure 2.4a at low chirality admittance
the reflected wave is close to the dielectric case and has a one resonance frequency.
Multiple resonances are seen for high value of chirality admittance because one wave
number becomes very high at that value. It is highly interesting that at around 10
GHz the magnitude of co—polarized reflection coefficient is nearly the same for
various chirality admittances as shown in Figure 2.4a. At this frequency chiral slab

behaves as an ordinary dielectric slab for the reflection. For chirality admittances of
&=0.002 S and &=0.003 S values the cross—polarized transmission coefficient (TCTrM)

reaches unity (0—dB) which means that the polarization state of the incident TE wave
is converted to TM wave at that frequency. This phenomenon is due to the effect of
optical activity, indicating that chirality of slab caused significant rotation of the
waves. The cross—polarized transmission coefficient T, has also nulls at resonance
frequencies as shown in Figure 2.4b. The magnitude of co—polarized transmission
coefficients are very close to each other for low values of chirality admittances but,
for higher values the curves are quite different, as seen in Figure 2.4c. At normal
incidence the magnitude of the cross—polarized reflection coefficient (RZIM ) is very
low as given in Figure 2.4d. In Figure 2.5 the slab thickness variations are plotted for
£&=0.003 S with a dielectric constant of =1.6. Multiple resonances appear for a thick

slab as depicted in Figure 2.5a. The conversion of the polarization state is obtained

for d=0.3 and 0.5 cm at the frequency of 21.2 and 14.4 GHz, respectively as shown

in Figure 2.5b. The magnitude of T." decreases up to 12 GHz as illustrated in
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Figure 2.5c. The magnitude of Rer is less than —20 dB as depicted in Figure 2.5d.

The variation of dielectric constant is shown in Figure 2.6. The resonant and anti—

resonant frequencies decrease or shift to left side for an increase in dielectric constant
as given in Figure 2.6a and 2.6b. The magnitude of T, is nearly the same up to 10
GHz as shown in Figure 2.6¢. It has greater peaks at around 21 GHz. The magnitude
of RZIM is less than —20 dB as depicted in Figure 2.6d. The oblique incidence
variations are shown in Figure 2.7 for the value of &0.002 S. In Figure 2.7a, two
resonant frequencies are seen at normal incidence. The resonant frequencies
disappear for an obliquely incident TE wave. Full transmissions are observed for
cross—polarized field at normal and oblique angle of incidences as illustrated in
Figure 2.7b. The co—polarized transmission coefficient is not affected from the

variation of incident angle up to 10 GHz, but it is oscillatory for high frequency

values, as depicted in Figure 2.7c. At oblique angle of incidence, the magnitude of

R;M is seen to increase in high frequency region as depicted in Figure 2.7d.
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Figure 2.4 Reflection and transmission coefficients of L—shaped FSS on a chiral slab at different
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Figure 2.6 Reflection and transmission coefficients of L—shaped FSS on a chiral slab at different
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Figure 2.8 illustrates the variation of chirality admittance for TM wave at
normal incidence. The resonant frequencies are the same with TE incident wave but
there are some differences in co— and cross—polarized reflection and transmission
coefficients of TM and TE wave at normal incidence. Especially, the deep null points
and sharp notches are seen on the reflection and transmission curves for TM incident
wave. The incident electric field will not only induce current on FSS elements, but
also scatter in the forward as well as the backscatter direction. The net result is that
the various array fields can interfere and produce nulls. As seen in Figure 2.8a we
notice some spurious resonances around 20 GHz. Usually, these resonances are not
of great concern, since they in general are very sharp and strongly reduces by a
minor amount of loss either from the dielectric or resistivity of the FSS elements. As
the chirality admittance increases, multiple resonances are seen. The bandwidth of
the fundamental resonance is wider than the others. As depicted in Figure 2.8b, anti—

resonances are observed for high values of chirality admittance. At low value of

chirality admittances, the magnitude of T(I)M is very close to the achiral case (&=0),

™
Tco ’

as shown in Figure 2.8c. The magnitude of decreases up to frequency of 11.5

GHz. The magnitude of R and R!" are the same for chiral backed FSS at normal

incidence, which is less than —20 dB, as shown in Figures 2.4d and 2.8d. The
variation of slab thicknesses for TM wave is depicted in Figure 2.9. Multiple
resonances are observed for thick dielectric slab, as shown in Figure 2.9a. There is
approximately, full transmission for cross—polarization in the frequency region of

15-18 GHz as given in Figure 2.9b. Anti-resonances exist for a thicker chiral slab.

The magnitude of TCTOM decreases in the frequency region of up to 12 GHz as

illustrated in Figure 2.9c. The magnitude of RF is less than —20 dB, which is given
in Figure 2.9d. Figure 2.10 depicts the oblique angle variation. At normal incidence
two resonant frequencies are appeared at 12.8 and 18.4 GHz as shown in Figure
2.10a. The second resonance disappeared at oblique angle of incidence. The first
resonance has wider bandwidth and nearly the same up to 30° of incidence. At 30° of
incidence there is also full transmission for cross—polarized field at 20 GHz as
depicted in Figure 2.10b. At normal incidence deep nulls are seen in transmission

curves at resonant frequencies. These nulls are filled at oblique angle incidences. The

null is also filled for T.™ at oblique angle of incidence as shown in Figure 2.10c.
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The magnitude of T(I)M is nearly the same for oblique incidence up to 8 GHz. The

magnitude of cross polarization increases in the frequency region up to 12 GHz, as
given in Figure 2.10d. In the frequency region of 12-20 GHz, the magnitude is
greater than the normal incidence case. The plotted Figures 2.11 and 2.12 illustrate
the current amplitude versus stretched out length, induced on the L—shaped FSS
elements backed by chiral slab, at resonant frequencies of £&=0.003 S for TE and TM
wave incidences, respectively. At resonant frequency, the incident electric field
induces more current in the parallel arm while it induces less current in the
perpendicular arm of the L—shaped FSS for both type of polarization. On the contrary
to dielectric slab, the induced currents are not the same, especially in the

perpendicular arms, due to chiral medium for the TE and TM incident waves.
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Figure 2.8 Reflection and transmission coefficients of L—shaped FSS on a chiral slab at different
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2.2.3 Numerical Results of One—Turn Square Spiral FSS on a Chiral Slab

The numerical results of one—turn square spiral FSS backed by chiral slab has
been presented for TE and TM incident plane waves. The co— and cross—polarized
reflection and transmission coefficients are plotted with respect to frequency for
different values of chirality admittance, slab thickness and incident angle. The length
of the first segment is #;=0.16 cm and the other lengths can be found from the
relation h,=n*h, for n=2, 3, 4. The width is chosen as one tenth of the first length
(w=h1/10=0.016 cm). The inter—element spacings d; and d, are equal to 0.7 cm and
0.73 cm for TE and TM wave incidences, respectively. The periodic cells are
arranged in square lattice (#=90°). The total length of one—turn square spiral is
approximated by 25 PWS current functions to determine the unknown coefficients.
The number of Floquet modes used in the computations is 625. The co— and cross—
polarized reflection and transmission coefficients are plotted against frequency at
normal incidence for different values of medium parameters such as chirality
admittance and slab thickness. The coefficients are also plotted for TE and TM

incident waves at oblique incidence.

Figure 2.13 shows the variation of chirality admittance at normal incidence of
TE wave for one—turn square spiral FSS on a chiral slab. In Figure 2.134, at low
chirality admittance (dashed curve) only one resonant frequency is seen, while at

high chirality admittances two resonant frequencies are observed. In the frequency
region of 1-12.5 GHz, the magnitude of R\ increases, as the chirality admittance

increases. The two peaks are approximately equal in terms of bandwidth for £&=0.002.

The bandwidth of the first peak is very narrow than the second one for &=0.003. As
shown in Figure 2.13b, the magnitude of TCTrM is less than —20 dB for an achiral case

(&=0). At low chirality, £&=0.001, no polarization conversion is observed. There are

two anti—resonant peaks for £&=0.002 at 18 and 22 GHz. When &=0.003, there is one
anti-resonant frequency at about 15 GHz The magnitude of T, reduces up to 19.5

GHz as the value of chirality admittance is varied from 0 to 0.002, as illustrated in
Figure 2.13c. The magnitude is also decreasing up to 13.5 GHz for £&=0.003 value.
Some extra peaks are seen for £&=0.003 in the frequency region of 13.5-25 GHz. The
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magnitude of the last peak is close to unity. The magnitude of the cross—polarized

reflection coefficient is very low, that is why it is not plotted.

The variation of slab thickness is shown in Figure 2.14. The resonant frequency
is stable at 23 GHz, as seen in Figure 2.14a. The magnitude of TcTrM increases as slab
thickness increases up to 22 GHz, as depicted in Figure 2.14b. Around resonant
frequency, there is no more change in magnitude. The magnitude of T." decreases
for increasing value of slab thickness as illustrated in Figure 2.14c. At resonant

frequency the T." and T, each have a null.

The reflection and transmission coefficients for oblique incidence are shown in
Figure 2.15. The resonant frequency occurs at around 23 GHz at normal incidence

TE wave as shown in Figure 2.15a. In the frequency region of 1-17 GHz, the
magnitude of R]. increases, as the chirality admittance increases. For an oblique
incidence of 30° and 45°, more than one resonant frequency has been seen. The
resonant frequency shifts to the lower end as the angle of incidence increases. As can
be depicted in Figure 2.15b, the magnitudes of the cross—polarized transmission

coefficients are approximately equal to each other in the frequency region of 1-9

GHz. No anti-resonance is observed for obliquely incident TE wave. There is a

slight decrease in the magnitude of T." up to 19 GHz, as illustrated in Figure 2.15c.
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Figure 2.15 Reflection and transmission coefficients of one—turn square spiral FSS on a chiral slab at

different incident angles; TE incidence, ¢=0°, £&=0.001 S, d=0.5 cm, &=1.6, w=0.016 cm,

m=0.16 cm, h=n*h, cm, n=2,3.4., d;=d,=0.7 cm, (a) Reflection Coefficient R\ , (b)

Transmission Coefficient TCTrM , (¢) Transmission Coefficient T(I)E

Figure 2.16 illustrates the variation of chirality admittance at normal incidence
of TM wave for one—turn square spiral FSS on a chiral slab. The first resonance is
stable up to &=0.002 and slightly shifts for £&=0.003, as shown in Figure 2.16a. For
&=0.003, three resonant frequencies appear. The first peak is wider than the others. In

Figure 2.16b, there is an anti-—resonance at 21.5 GHz for £&=0.002. In the frequency
region of 1-12 GHz, as the chirality admittance increases, the magnitude of TCTrE
increases whereas the magnitude of TCTOM reduces as shown in Figure 2.16b and

Figure 2.16c, respectively. In the frequency region of 15-25 GHz, the magnitude of

T(I)M is also decreasing except for &=0.003. In this frequency region, two peaks,

which are close to unity, are seen for £&=0.003.
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The variation of slab thickness is illustrated in Figure 2.17. Some slight
variations are seen in the magnitude of Rz(l)“ , but the resonant frequency is not

affected from the variation of slab thickness as depicted in Figure 2.17a. The
resonant frequency happens at about 14 GHz. As shown in Figure 2.17b, the

magnitude of TCTrE is increasing corresponding to an increase in slab thickness.
Around the resonant frequency, approximately no variation was observed in the
curves. The magnitude of TCTOM is not affected from the variation of slab thickness up
to resonant frequency as shown in Figure 2.17c. After the resonant frequency the

magnitude of T." reduces corresponding to an increase in slab thickness.

The reflection and transmission coefficients for oblique incidence TM wave are
shown in Figure 2.18. The resonant frequency shifts to right side for oblique angle of

incidence, as shown in Figure 2.18a. For an obliquely incident wave the magnitude

of R!M increases up to resonance frequency. There is only one resonant frequency

for oblique incidence of up t045°. No anti-resonance is observed for an obliquely
incident TM wave as shown in Figure 2.18b. The magnitude of TCTrE increases for an
obliquely incident wave up to 14 GHz. There is no variation in the magnitude of
T_M up to 11 GHz, as shown in Figure 2.18c. The magnitude of TL" is decreasing

in the frequency region of 11-14 GHz.

Figures 2.19 and 2.20 illustrate the current amplitude versus stretched out
length of one—turn square spiral FSS backed by chiral slab at resonant frequency.
The vertical grids show the corner points of the one—turn square spiral element. For
TE plane wave at normal incidence the current has a greater peak at the longest (third
one) segment as shown in Figure 2.19. For TM plane wave at normal incidence the
current amplitude versus stretched out length is shown in Figure 2.20. Most of the
current is induced on the fourth segment of one—turn square spiral element which is
the longest and parallel to applied electric field. The currents at two resonant

frequencies are approximately close to each other.
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Figure 2.20 Current amplitude versus length at resonant frequencies of one—turn square spiral FSS on
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2.2.4 Numerical Results of Two—Turn Square Spiral FSS on a Chiral Slab

The numerical results of FSS comprised of periodic arrays of two—turn square
spiral shaped conductors in the case of TE and TM incident waves are presented
from Figure 2.21 to 2.28. The co— and cross—polarized reflection and transmission
coefficients are plotted with respect to frequency for different values of chirality
admittance, slab thickness and incident angle. The length of the first segment is
h1=0.1 cm. The lengths of the other segments can be found from the relation 4,=n*h;
for n=2,3,...,8. The width of the two—turn square spiral was chosen as /,/10. The
inter—element spacings are 0.83 cm. The periodic cells are arranged in square
dimension. The overall length of the spiral is 3.6 cm. The number of basis functions
required to estimate the unknown current coefficients is taken as 56. The number of
Floquet modes used in the computations is 961. This number is obtained by inclusion

of more Floquet modes until there is little change in the results.

Figure 2.21 shows the effect of chirality admittance variations at normal
incidence of TE wave. In Figure 2.21q, it is seen that, two resonant frequencies exist

for different values of & In the region of frequency from 1 to 12 GHz, the magnitude
of R} increases for increasing values of & No variation was observed in the

reflection curves in the 11.5-13.5 GHz. There is a small shift in the first resonant
frequency, which happens at around 15.5 GHz. The bandwidth of second resonance

1s wider than the first one for &=0 and £=0.001 values. For £&=0.0018 the magnitude
of TIM is seen to be unity at three different frequencies as shown in Figure 2.21b.
There is no polarization conversion (anti—resonance) for other chirality admittances
and the magnitude of R} is very low at the anti-resonant frequency. In the

frequency region of 1-15 GHz, the magnitude of TCTOE decreases for increasing

values of & as illustrated in Figure 2.21c. The magnitude of R is very low in the

frequency region of 1-13 GHz and it varies between —10 to —60 dB in the 15-25
GHz as can be depicted in Figure 2.21d.
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Figure 2.22 illustrates the slab thickness variations at normal incidence. Two
resonant frequencies are seen for three different slab thicknesses, as shown in Figure
2.22a. The resonant frequencies are not affected from the variation of slab thickness.
An anti-resonance is seen at about 20 GHz for increasing value of slab thickness, as

given in Figure 2.22b. In Figure 2.22c, there is a small decrease in the magnitude of

T." up to about 16.5 GHz.

The reflection and transmission coefficients of two—turn square spiral FSS for
oblique incidence variations are shown in Figure 2.23. There is a small shift in

resonant frequency which happens at around 16.5 GHz as illustrated in Figure 2.23a.
There is a gradual increase in magnitude of R at oblique incidence variations up
to resonant frequency. However, for an angle of 45°, the second resonant frequency

disappears. No anti-resonance is observed for oblique incidence as shown in Figure

2.23b. As illustrated in Figure 2.23c, there is a small decrease in the magnitude of
T.F in the frequency range of 1-15 GHz and multiple peaks occur at higher

frequencies.
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Figure 2.24 illustrates the effect of chirality admittance variations at normal
incidence of TM wave. The resonance at about 3 GHz is not affected from the
variation of chirality admittance, as shown in Figure 2.24a. The second peak
increases in magnitude and shifts to lower frequency as & increases. The second

resonance happens at 17.8 GHz and is narrower than the first one, for £&=0.0018. In
Figure 2.24b, the T." has null at resonant frequency. Anti-resonances appear for
&=0.0018 value of chirality admittance in the frequency regions of 15-25 GHz. The
magnitude of T, is not changed in S—band frequency region, as depicted in Figure
2.24c. It also decreases in the frequency region of 617 GHz for an increasing value
of £ The magnitude of R." is the same with R™ which is plotted in Figure 2.21d.

The magnitude of reflection and transmission coefficients versus frequency is
plotted for different values of slab thickness, as shown in Figure 2.25. Two resonant

peaks, which are not affected by the variation of slab thickness, appear as given in
Figure 2.25a. In Figure 2.25b, the magnitude of T." increases corresponding to
increasing value of slab thickness, except the region around resonant frequency. The
T." has nulls at resonant frequencies. The T.™ has also nulls at resonant
frequencies as shown in Figure 2.25c. In S—-band frequency region, there is no
change in magnitude. The magnitude of TCTOM reduces in the frequency regions of 7—

19 GHz and 21-25 GHz, as the slab thickness increases.

The oblique incidence variations are plotted in Figure 2.26 for different values
of incident angles. In Figure 2.26a, there is a slight shift at the first resonant
frequency. The magnitude of second resonance reduces and disappears for obliquely
incident angles. As can be seen in Figure 2.26b, there is no anti—resonance for
&=0.001. As shown in Figure 2.26¢, there is a slight change up to 10 GHz and no
variation was observed in the frequency range of 10—-17 GHz.

The normalized current amplitude versus stretched out length for two—turn
square spiral is depicted in Figures 2.27 and 2.28 for TE and TM plane waves,
respectively. Although the amplitude of currents is different at resonant frequencies,
their amplitudes are normalized to unity. The vertical grids illustrate the corners of
the two—turn square spiral. The current has one greater peak at one parallel segment
with respect to other segments for both type of polarization. At =2.8 GHz most of

the current is induced at the longest segment for TM case as shown in Figure 2.28.
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CHAPTER 3

CONCLUSIONS

This study addresses new FSS element geometries that have not been studied
earlier. The major contribution of this study is in fact the presented scattering
properties of L—shaped, one— and two—turn square spiral FSS elements backed by

planar dielectric and chiral slabs.

3.1 Conclusion to Dielectric Backed FSSs

The scattering of electromagnetic waves from freestanding and dielectric
backed FSS elements are investigated in Chapter 1. An improved subsectional
current approximation model of PWS basis is proposed to expand the induced
current. The MM is employed to determine the reflection and transmission
coefficients. The Floquet modes are included until there is little difference in results.
The amplitude of element currents along the stretched out wire is plotted for
dielectric backed FSSs. The reflection coefficient versus frequency is plotted for

different values of incident angle, dielectric slab thickness and dielectric constant.

The correctness of the algorithm is ensured by comparing the numerical results
with the experimental results in the literature for an FSS composed of strips and
proved to be as good. Another check for the correctness is that at normal incidence,
the amplitude of reflection and transmission coefficients with reference to L—shaped
FSS elements are the same without regard to TE or TM wave excitations. The
correctness of one— and two—turn square spirals is also satisfied by interchanging the
x— and y—axis. It has been observed that each FSS element has different resonant
frequencies and bandwidths, showing band stop filter characteristics at different
frequency regions. These structures are used as passive electromagnetic filters. FSS

with two—turn square spiral array can be used as a band-stop filter at different
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frequencies for TE and TM wave incidences. There is an anti—resonance at S—band
and Ku-band frequency regions. Therefore, it can be made into both reflecting and

transparent FSS.

A good FSS element should be small in terms of wavelength. A quality
element should have a stable resonant frequency with angle of incidence. The
primary reason for this is simply that the inter—element spacings are kept as small as
possible. Further increase in inter—element spacing will lead to early onset of grating
modes which always push the fundamental resonance downward with angle of
incidence. Grating modes only depend on inter—element spacings and the incident
angle. Keeping d; and d, small delays the onset of grating modes. For three FSS

elements, the only propagating mode is the zero order Floquet mode.

It is seen that adding dielectric to periodic surfaces lowers the resonant
frequency. The bandwidth varies more with polarization. There is no need to increase
the number of turns since addition of more turns will increase the inter—element
spacing, which will cause the resonant frequency to reduce and trigger the onset of

grating modes.

3.2 Conclusion to Chiral Backed FSSs

In Chapter 2, the co— and cross—polarized reflection and transmission
coefficients, which are strongly sensitive to the frequency of the incident wave, are
plotted with respect to frequency for the variation of medium parameters and oblique
incident angle. Numerical results illustrate that the chirality admittance of the slab
causes a significant polarization rotation of the scattered fields. At low chirality
admittances, there is no polarization conversion. Multiple resonances are seen for
high value of chirality admittance because one wave number becomes very high at
that value. The number of resonances depends on the slab thickness, dielectric
constant and chirality admittance of the chiral medium. Anti-resonances which
correspond to mode conversion are seen in cross—polarized transmission, for both
types of polarization. This feature can have potential applications in design of novel

devices such as TE <> TM converters and polarization filters. In the reflection
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characteristics of FSS elements on chiral slab, the resonances are separated with a
deep minimum which shows a very good isolation between the resonances. As we
increase the chirality admittance, the transmitted power is virtually switched from
one mode to the other. This feature can be intuitively explained by recalling that the
polarization of the electric field transverse components '"rotates" as the wave

traverses the chiral slab.

The resonant frequency is not affected from the variation of slab thickness for
one— and two—turn square spiral elements. There is a small shift at resonant
frequency for L—shaped FSS. The resonant frequency shifts for the variation of
dielectric constant. At normal incidence, chiral medium behaves differently with TE
and TM waves. For one—turn square spiral FSS, as the oblique angle increases
multiple resonances appear in TE case but there is only one resonant frequency in
TM case. The first resonant frequency shifts to the lower end and the second
resonance disappears at oblique angle of incidence for two—turn square spiral but no

anti-resonance is observed.

3.3 Recommendations for Future Work

The present study permits the reflection and transmission coefficients of L—
shaped, one— and two—turn square spiral FSSs backed by planar dielectric and chiral

slabs. The study is open to further developments. Future works can be the following:

e A spiral with circular turns can be investigated on planar dielectric and
chiral slabs;

e FSS with spiral square—shaped turn elements can be cascaded to form
multilayer dielectric or chiral slab;

e FSS with spiral circular turn elements can be cascaded to form multilayer
dielectric or chiral slab;

e A spiral with circular turns or spiral with square—shaped turns of finite
extent on dielectric or chiral slabs can be investigated;

e The square spiral element on chiral slab can be used as a FSS element [3];

e Bifilar or quadfilar spiral FSS elements can be investigated on a dielectric

or chiral slab.
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APPENDIX

The full expressions for the coefficients of TM wave on a chiral slab appearing in

equation (2.18)—(2.25) are given below.

Dypg = ((Yh (4 rl )+ Y5 13 bl + (Yo (1414, )+ YL r2 b3, [/,

Dy = (YA (11 )+ Y 13, b2, +(Yh, (1414, )+ Y 12 b4 /Y,

D3pq = blpq (1- rlpq + r3pq) + b3pq (-1- r2pq + r4pq)
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Ay =Y3, (Y + Y1
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The full expressions for the coefficients of TE wave on a chiral slab
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