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ABSTRACT

INCLUSIVE PRODUCTION OF THE ρ±(770) MESON
IN HADRONIC DECAYS OF THE Z0 BOSON

BİNGÜL, Ahmet

Ph.D. in Engineering Physics

Supervisor: Assoc. Prof. Dr. Ayda BEDDALL
Co-supervisor: Assist. Prof. Dr. Andrew BEDDALL

April 2007, 143 pages

The inclusive production rate of the charged vector meson ρ±(770) in
hadronic Z decays is measured with the ALEPH detector at the LEP collider.
A total of 3,239,746 hadronic events are selected from data recorded by ALEPH
from the 1991 to 1995 running periods. Decays of ρ± → π0+π± are reconstructed
for xE > 0.05 and xp > 0.05 where xE = Eρ/Ebeam and xp = pρ/pbeam. The ρ±

multiplicity per hadronic event is evaluated to be:

〈Nρ±〉 = 2.59 ± 0.03 ± 0.15 ± 0.04

where the first error is statistical and the second systematic. The third error is
from the extrapolation to the xp = xE = 0. The rates and differential cross-
section are compared with Monte Carlo model predictions and OPAL measure-
ments.

Key words: ρ± meson production, ALEPH, LEP, hadronic Z decays.
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ÖZET

Z0 BOZONU’NUN HADRONİK BOZUNUMUNDA
ρ±(770) MEZONU ÖLÇÜMÜ

BİNGÜL, Ahmet

Doktora Tezi, Fiz. Müh.

Tez Yöneticisi: Doç. Dr. Ayda BEDDALL
Tez Yönetici Yardımcısı: Yrd. Doç. Dr. Andrew BEDDALL

Nisan 2007, 143 sayfa

Bu çalısmada, LEP’teki ALEPH detektöründe, hadronik Z bozunumların-
dan elde edilen yüklü ρ±(770) vektör mezonunun üretim hızı ölçüldü. 1991 ve
1995 yılları arasında ALEPH detektörü ile kaydedilen toplam 3,239,746 hadronik
olay seçildi. ρ± → π0+π± bozumumları xE > 0.05 and xp > 0.05 deĝerleri icin bir
araya getirildi; burada xE = Eρ/Edemet ve xp = pρ/pdemet şeklindedir. Hadronik
olay başına ρ± mezonun bolluĝu:

〈Nρ±〉 = 2.59 ± 0.03 ± 0.15 ± 0.04

olarak hesaplandı. Burada birinci hata istatiksel, ikincisi sistematiktir. Üçüncü
hata hesaplanmayan xp = xE = 0 deĝerleri için tahminde yapılan hatadır.
Ölçülen üretim hızı ve diferansiyel tesir kesitleri Monte Carlo öngörüleri ve OPAL
grubunun sonuçları ile karşılaştırıldı.

Anahtar kelimeler: ρ± mezon üretimi, LEP, hadronik Z bozunumları.



v

To my wife Meltem and our daughter Gülcenur
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CHAPTER 1

INTRODUCTION

In the standard model of elementary particle physics, quarks and leptons

interact via the exchange of photons and intermediate vector bosons, as described

by the Glashow-Weinberg-Salam standard model of weak interactions [1, 2, 3].

In addition, quarks are subject to the strong interaction, described by quantum

chromodynamics (QCD) [4].

The area of interest for this analysis is the transformation of quarks and

gluons into observable hadrons (parton fragmentation) in high energy reactions.

This transformation is governed by QCD which is predictive in high energy pro-

cesses where perturbation theory can be used. However, the final stage of the

transformation (hadronisation) occurs at low energy where perturbation theory

is no longer applicable, therefore phenomenological models are constructed to

describe the hadronisation.

A clean environment for the study of fragmentation has been provided by

the Large Electron Positron Collider (LEP) in which the process e+e− → Z → qq̄

can be selected with little contamination from background processes. Measure-

ments of the hadronic final state are made in order to test the fragmentation

models: parameters in the models are tuned to reproduce observed distributions

such as event shape variables, jet production rates, and particle production rates.

The area of analysis presented in this thesis is inclusive particle produc-

tion. Many particle species have been measured in previous e+e− annihilation

experiments and a number of Monte Carlo programs based on QCD have been

tuned so that the measured rates were reproduced. A comprehensive compilation

of experimental data on inclusive particle production in e+e− interactions can

be found in [5].

Since the construction of LEP as a Z boson factory much progress has

been made, particularly in the area of resonant states. In previous experiments

resonances were measured with poor statistical precision and there were, in ad-

dition, some considerable systematic disagreements among experiments. The
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higher statistics obtainable at LEP are illustrated by Figure 1.1, which shows

the much larger hadronic cross-section compared to the lower energy colliders:

with a comparable luminosity, LEP has experienced much higher reaction rates

and since the startup of LEP in 1989 each of the four experiments, ALEPH,

DELPHI, L3 and OPAL, has collected several million hadronic Z decays.
.

10

10

10

10

10

2

3

4

5

0 20 40 60 80 100 120

Center of Mass Energy (GeV)

To
tal

 C
ro

ss
-S

ec
tio

n
(p

b)

LEP

hadronse e+ _
→

CESR DORIS

PEP  PETRA

TRISTAN

e e+
_
→µ µ+ _

+ _
e e →γ γ

Figure 1.1: Total cross-section for e+e− annihilation into hadrons and muon
pairs as function of the centre-of-mass energy. Also given is the two-photon
cross-section. Experimental data are compared with predictions from the standard
model.

More information can be gained by studying the production rates of reso-

nances. Resonant states are particularly interesting because they are less likely

than the lighter hadrons to be products of particle decays and therefore their

dynamics are more closely related to those of the fragmenting partons. The

light vector mesons are particularly well suited as they are copiously produced

in hadronic events giving rise to a significant fraction of the observed stable par-

ticles. In addition, measurements of the vector mesons contribute to a more

complete picture of particle production. Hence, the measurement of inclusive

particle production cross sections of resonant states improve the description of

the hadronisation process. The large sample of hadronic Z decays collected at

LEP is ideal for this purpose.
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This study presents the ALEPH measurement [6] of the rate and differential

cross section of the ρ(770)± meson produced in hadronic Z decays. ρ± candi-

dates are reconstructed from their daughter pions (ρ± → π0π±, BR ≈ 100%).

The analysis described here is essentially similar to that of papers such as [7]

and [8], and it is based on about 3.2 million selected hadronic events recorded

by the ALEPH detector at centre-of-mass energies around
√

s = 91.2 GeV in

the running period of LEP between 1991 and 1995. The results of the evaluated

rates and cross sections are compared with Monte Carlo programs Jetset 7.4,

Pythia 6.4 and Herwig 6.5, and the OPAL measurement which is the only

other experiment at LEP to make this measurement.

This thesis includes a short summary of the Standard Model, a theoretical

description of the fragmentation models and a brief description of the experi-

mental apparatus including the data acquisition system, event reconstruction,

and detector simulation. The analysis is presented in Chapters 5 to 10, and the

results and conclusions are given in Chapter 11.



4

CHAPTER 2

THEORY

2.1 The Standard Model

The Standard Model is an attempt to describe the fundamental particles

and their interactions. The model is a quantum field theory that includes the

unified weak and electromagnetic interactions (electroweak) and the strong in-

teractions (quantum chromodynamics). Gravity has not yet been included in

the Standard Model; however, in the quantum world of particle interactions the

effects of gravity are insignificant.

In the Standard Model the most fundamental particles in nature are di-

vided into two groups: fermions and bosons. The two groups are summarised in

Table 2.1. The fundamental fermions are spin-1
2

particles providing the building

blocks of all matter, whilst the interactions between the fermions are provided

by the exchange of bosons (spin-1); the electromagnetic interaction is mediated

by photons, the weak interaction by the W+,W− and Z bosons, and the strong

interaction by gluons. In addition, a Higgs boson is required to provide mass for

the fermions and the Z and W± bosons.

Fermions can be further divided into two sub-groups: leptons which inter-

act via the electroweak interaction, and quarks which in addition interact via

the strong interaction. The leptons consist of the electron, the muon, the tau,

and their corresponding neutrinos. The quarks and leptons can be arranged into

groups, according to their coupling to the weak current, forming three genera-

tions. The three roes of fermions in Table 2.1 represent each generation, each

containing heavier particles than its predecessor.

In the early running periods of LEP, the number of generations of light

neutrinos was confirmed to be three. Figure 2.1 shows for ALEPH data from

1990 and 1991 the measured hadronic cross-section around the Z resonance. The

theoretical predictions for two, three, and four generations of light neutrinos are

shown. The data are consistent only with the hypothesis of three generations.
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Table 2.1: The particles and forces of the Standard Model.

Fermions (spin − 1
2
) Bosons (spin 1)

Quarks Leptons em. Weak Strong

u (up) d (down) e− νe

c (charm) s (strange) µ− νµ γ W±, Z gluons(8)
t (top) b (bottom) τ− ντ

Combining the data from the four LEP experiments a recent value for the number

of light neutrino generations is 2.994 ± 0.012 [9]. However, whilst all known

neutrinos are believed to have zero or negligible mass, the measurements do not

rule out a fourth generation neutrino of mass greater than MZ/2.
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Figure 2.1: The hadronic cross-section as a function of the centre-of-mass en-
ergy. The theoretical predictions are shown for the cases of two, three, and four
generations of light neutrinos. The data are consistent only with the hypothesis
of three generations.
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2.2 Quantum Chromodynamics

QCD was formulated in analogy to QED as a gauge theory which describes

strong interactions between quarks via exchange of massless gauge bosons, the

‘gluons’. The six quark flavours (u, d, s, c, b and t) carry a quantum number

called colour (red, green or blue). This is analogous to the electric charge in

QED. Eight gauge bosons (the gluons) are introduced to mediate the strong

interaction. An important difference between QED and QCD is that the gluons

also carry the colour charge and can therefore couple directly to other gluons

unlike the photons in QED which do not carry electric charge. A consequence is

that strong coupling, αs, is energy dependent. To first order, αs is given by the

equation:

αs(Q
2) =

12π

(33 − 2nf) ln(Q2/Λ2)
(2.1)

where Q2 is the momentum transfer (on the Z peak Q2 = (91.2 GeV)2), nf is

the available number of quark flavours (nf = 5 at LEP), and Λ is a parameter

determined by experiment. The strength of αs therefore decreases for higher

values of Q2 (or alternatively very short interaction distances) leading to the

property known as asymptotic freedom where the quarks and gluons behave like

free particles. Conversely, for small values of Q2 (large interaction distances) αs

diverges. This explains why quarks are not observed as free particles.

2.3 Hadron Production in Z Decays

Electron-positron annihilation at LEP energies results in the production

of the Z boson which subsequently decays to a fermion-antifermion pair. The

dominant decay mode is Z → qq̄ (branching ratio = 69.91 ± 0.06% [9]), an

illustration of the theoretical description of this reaction is shown in Figure 2.2.

The development can be separated into four phases:

(1) Electroweak.

(2) Perturbative QCD.

(3) Hadronisation.

(4) Hadron decays.

The first phase describes the production of the initial hadronic partons, the

remaining phases describe the fragmentation of these partons into the final state

hadrons. These four phases are discussed below.
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Figure 2.2: Schematic diagram of the reaction e+e− → Z → qq̄. The development
can be separated into four phases: electroweak, perturbative QCD, Hadronisation,
and hadron decays.
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2.3.1 The Electroweak Phase

The first phase involves the annihilation of an e+e− pair (with the possi-

bility of an initial bremsstrahlung radiation) and the creation of a Z boson and

its subsequent decay to a qq̄ pair. This phase is described by the electroweak

theory.

2.3.2 Perturbative QCD

The initial quark-antiquark pair move apart with a relative speed close to

the speed of light, each parton having the beam energy of ≈ 45 GeV. These initial

quarks start radiating gluons, which in turn can radiate further gluons or split

into secondary quark-antiquark pairs. The early evolution of this process can

be described by perturbative QCD. In this phase, momentum transfers involved

in the interactions are sufficiently large, giving rise to a small value for the

strong coupling constant, for perturbation theory to be applicable. There are

two approaches which can be used to model perturbative QCD: the ‘matrix

element’ method, and the ‘parton shower’ method.

In the matrix element method, available for example in the Jetset ME

option of the Lund Monte Carlo [10], a fixed order QCD calculation is used

to describe the perturbative phase by generating partonic final states according

to the exact QCD matrix elements. The advantage of models based on this

method is that interference effects are taken into account properly, and that

αs is well defined. However, as the models only use calculations of the matrix

elements to O(α2
s), only 2, 3 and 4 parton final states can be generated. At

PEP/PETRA energies the matrix element models work reasonably well; however,

at LEP energies these do not generate final states with high enough parton

multiplicity, resulting in an inability to simultaneously reproduce correctly both

3 and 4-jet rates.

In the parton shower approach the leading terms of the perturbation expan-

sion are summed to all orders. These leading (logarithmic) terms are enhanced

and correspond to infra-red or collinear parton emission. Parton shower algo-

rithms are based upon an iterative use of the basic branchings q → qg, g → gg

and g → qq̄. Generally a primary 2, 3 or 4-parton final state is generated using

the second order matrix element approach. The configuration is then allowed to

shower in a tree-like fashion according to the various probabilities of the branch-

ings given above. The process continues until the evolution variable reaches a

predefined cut-off.

It is a general property of the popular shower algorithms that they produce

‘coherent’ showers. This is achieved, for example, by angular ordering the radi-
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ated partons such that the production angle of each parton is never more than

the production angle of the radiated parton which preceded it. This angular

ordering has an important phenomenological implication as it predicts that the

energy flow in the shower remains collimated around the direction of the initial

partons. This explains why most hadronic Z decays exhibit a pronounced 2-jet

structure. Furthermore, if in the initial stage of the parton shower a hard gluon

is emitted at a large angle, it gives rise to a well separated jet.

The weakness of the parton shower approach, however, is that because it

sums only the leading-log terms in the expansion it is limited in its predictions

for wide-angle parton emission. In this case, the matrix element method is more

suitable.

2.3.3 Hadronisation

Towards the end of the parton shower, the momentum transfer Q2 becomes

small and therefore the strong coupling constant becomes large rendering the pre-

dictions of perturbative QCD invalid. To model the final phase of fragmentation,

i.e. the transformation of the partons into colourless hadrons (hadronisation),

phenomenological models implemented as Monte Carlo programs are used. Three

main models exist: independent hadronisation, string hadronisation, and cluster

hadronisation. The latter two models are implemented in the Jetset and Her-

wig programs respectively, and are used in the analysis presented in this thesis.

The three models are described below.

Independent Hadronisation

One of the first models of the hadronisation process was the independent

fragmentation model introduced in 1977 by R.D.Field and R.P.Feynman [11]. In

this model, each original quark and antiquark independently transform into a jet

of hadrons in the following way:

q0 → h(q0, q̄1) + q1

q1 → h(q1, q̄2) + q2

q2 → etc., (2.2)

where q0 is the quark from the original quark-antiquark pair. This process is

illustrated in Figure 2.3. A new quark-antiquark pair (q1, q̄1) is created in the

colour field of q0 (from the vacuum) which results in q0 and q̄1 combining to

form a hadron h(q0, q̄1). The remaining quark q1, which has less energy than

q0, then goes on to initiate another quark-antiquark creation (q2, q̄2) from which
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another hadron is formed. This process of q → q + hadron is repeated until the

remaining quark has insufficient energy to form a hadron.

q0

q
–

1

q1

q
–

2

q2

q
–

3

q3

h(q0,q
–

1)

h(q1,q
–

2)

h(q2,q
–

3)

Figure 2.3: Hadron production in the Field-Feynman model.

The model involves one arbitrary function f(η) which gives the probability

that the hadron containing the original quark leaves the remaining jet a fraction

η of its momentum. This ultimately determines the momentum distributions of

the hadrons. Field and Feynman chose f(η) to be of the form:

f(η) = 1 − a + 3aη2 (2.3)

where the parameter a is determined from experiment. It is assumed that this

function applies to all iterations of the cascade.

In addition, three other parameters are required to determine the properties

of the quark jets.

(1) The ratio of the production of strange quark to up or down quarks: Field

and Feynman assumed the quark flavours u, d and s to be produced in

the ratios 2 : 2 : 1, i.e., strange quark production is suppressed due to

the larger mass of the s quark.

(2) The spin of the primary mesons: Qualitatively one expects, from spin

counting, the ratio of pseudoscalar to vector meson production to be 1:3

multiplied by some factor which disfavours heavier states. However, due

to uncertainties in the knowledge of the quark masses the ratio cannot

be calculated. Experimentally the ratio is typically one, and so in the

model the two spin states are generated with equal probability.
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(3) The mean transverse momentum given to the primary mesons: This is

determined by requiring that the final hadrons (after decay) have a mean

transverse momentum of about 330 MeV/c, to coincide with experimen-

tal observations.

To enable the production of baryons, an extension to the model was pro-

posed by Meyer [12], in which it is assumed that occasionally two quark-antiquark

pairs, instead of one, are produced from the vacuum. The quarks and antiquarks

then align to form baryon-antibaryon pairs.

Although the Field-Feynman model does a reasonable job of parameteris-

ing experimental results, a number of problems prevent it from being regarded

as a true theory of hadronisation. For example, the model is based on the cas-

cade of a quark jet and so it is not obvious how one should model the cascade

of a gluon jet, this is important at LEP energies where multi-jet events are a

common occurrence. Also, at the end of the cascade there is always one quark

and one antiquark left over, with no simple way of combining them together to

form a hadron. This introduces problems with colour and energy-momentum

conservation.

The Field-Feynman model has been surpassed by models with a stronger

theoretical basis, two of which are the ‘string model’ and the ‘cluster model’. A

schematic illustration of these two models are given in Figure 2.4.

Figure 2.4: Schematic representation of the string and the cluster hadronisation
models.
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String Hadronisation

In the string model, hadron production is described in terms of the break-

up of a one-dimensional relativistic string. This picture is motivated by the

observation that due to the gluon self-coupling, the field lines of a static colour

field attract each other to form a flux tube with a transverse dimension of ∼ 1 fm.

This can be compared to the electromagnetic case in which the field lines spread

out to infinity; the two cases are illustrated in in Figure 2.5. The flux tube

picture is the basis for the Lund model [13].

e+ e-
(a)

(b) q
–

q

Figure 2.5: (a) The electric field lines between an electron and positron, spreading
out to infinity. (b) The colour field lines between a quark and antiquark, confined
in a narrow flux tube with a transverse dimension of ∼ 1 fm.

If the tube is assumed to be uniform along its length, then this leads

to a linearly rising potential and so the QCD potential grows linearly at large

distances. Such large distance behaviour is supported by lattice calculations and

provides a natural explanation for quark confinement.

In this string model the string is stretched between the original qq̄ pair. As

the partons move apart, the potential energy in the string increases until it breaks

by the production of a new q′q̄′ pair splitting the system into two colour-singlet

systems qq̄′ and q′q̄. At large enough energies further breaks of the daughter-

strings occur until only on-shell hadrons remain, each hadron corresponding to

a small piece of string, with a quark at one end and an antiquark at the other.

In this picture, gluons, having the colour structure of a quark-antiquark state,

act as kinks in the original string often producing (at LEP energies) independent

jets of hadrons clearly separated from the original quark and anti-quark jets.
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In the Lund Monte Carlo, the q′q̄′ pairs are generated using the idea of

quantum mechanical tunnelling. This picture leads to a suppression of heavy-

quark production, u : d : s : c ≈ 1 : 1 : 0.3 : 10−11. Therefore, charm (and heavier

quarks) are not expected to be produced in the soft hadronisation, but only in

perturbative parton shower branchings (g → qq̄) or in the original Z decay. Due

to the uncertainty in the quark masses the suppression of ss̄ production is left

as a free parameter. As in the Field and Feynman model, vector mesons and

pseudoscalar mesons are generated with equal probability, but, the ratio is left

as an adjustable parameter for future tuning.

A tunnelling mechanism can also be used to explain the production of

baryons. It is assumed that a break in the string can be caused by creation of

a diquark-antidiquark pair. A suppression of baryon production comes from the

assumption that the diquark mass is larger than the mass of a quark. However,

the production of baryons still remains one of the least well understood aspects

of particle production.

A spin-off of the Lund scheme has been proposed by the UCLA group [14].

In this model, all suppression of heavy hadron production enters through the

hadron mass and so does not require the ‘quark parameters’ used in the Lund

model, such as the s/u ratio. Spin counting is taken care of automatically by

Clebsch-Gordan coefficients and no separate parameter for the relative produc-

tion rates of vectors and pseudoscalars is introduced. The advantage of this

model over Lund is therefore a reduction in the number of free parameters.

Cluster Hadronisation

In the cluster hadronisation model, the shower from the perturbative phase

is stopped when the parton virtuality falls below some cut-off, t0 ≈ 0.7 GeV.

Gluons are then split into quark-antiquark pairs. Colour-neutral pairs of quarks

that are close in phase space then recombine into massive clusters which decay

isotropically into observable hadrons. The fundamental parameters in this model

are the virtuality cut-off, t0, and the QCD scale parameter, Λ, which determines

the scale of αs (Equation 2.1).

In the framework of Herwig, the hadronisation process is as follows. A

cluster C with flavour composition (qa, q̄b) and mass MC is decayed into two

hadrons h1 and h2 with flavours (qa, q̄r) and (qr, q̄b):

C(qa, q̄b) → h1(qa, q̄r) + h2(qr, q̄b) (2.4)

The quark (or diquark) flavour ‘qr’ is selected randomly, and with equal proba-

bility, from the possibilities d, u, s, c, b with the condition that

MC > [m(qa, q̄r)]lightest + [m(qr, q̄b)]lightest (2.5)
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where [m(qi, q̄j)]lightest is the mass of the lightest hadron in the model that has

flavour composition (qi, q̄j).

The decay daughters, h1 and h2, are selected randomly from a list of

hadrons which have the correct quark content, with a probability proportional to

their spin degeneracy. For example, an a+
2 (spin 2) is five times more likely to be

selected than a π+ (spin 0), should the flavour composition be (u, d̄). If the sum

of the masses h1 and h2 is greater than the mass of the decaying cluster then the

combination is rejected and another selection made with the above criteria. If

accepted, the common 3-momentum pcm of the two daughters in the rest frame

of the cluster parent is evaluated. The final probability to select a given pair of

hadrons is then proportional to the phase space weight Wdecay given by

Wdecay = pcm × (2S1 + 1) × (2S2 + 1) (2.6)

where S1 and S2 are the spin values of the two daughters h1 and h2. Wdecay then

determines whether the cluster decay C → h1 + h2 is accepted or not. In the

case of rejection, the process is started again with the selection of a new quark

or diquark flavour. If the decay channel is accepted, the daughters are decayed

isotropically in the rest frame of the parent cluster.

The model assumes that the process of hadronisation is dominated by the

clusters decaying into hadrons according to the available phase-space and the

hadrons permitted. This means that phase space alone has to account for the

relative production rates of mesons and their corresponding momentum distribu-

tions. For example, vector meson production is suppressed due the larger phase

space available for the lower mass pseudoscalar mesons, similarly strange meson

production is suppressed due to the larger mass of s quarks.

In addition to the fundamental parameters t0 and Λ, two additional param-

eters are introduced for the treatment of very low and very high mass clusters:

clusters with a mass above a cut-off value (default value = 3.65 GeV/c2) are

split into two clusters which are then allowed to decay isotropically into hadrons.

Clusters with a very small mass are allowed to decay into a single hadron. Baryon

production is achieved by introducing a probability that a gluon may branch into

a diquark-antidiquark pair.

The LPHD Model

An alternative approach to the hadronisation process is taken in the Local

Parton-Hadron Duality model (LPHD), where it is assumed that the properties

on the parton level are closely related to the corresponding hadronic proper-

ties. This implies that certain quantities, such as inclusive distributions, may be

studied without making reference to a hadronisation process.
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This idea of a local parton-hadron duality has been developed in particular

by the St. Petersburg group [15]. In an extreme interpretation, a one to one

correspondence is assumed between partons and hadrons, event by event, with

a suitable choice of partonic cut-off parameter, Q0. A ‘softer’ interpretation,

however, is usually favoured in which there is no absolute correspondence event

by event, but only in the average behaviour and in the fluctuations around that

average. A prediction of this model is that the average momentum of a particle

species is dependent on the hadron mass. This is related to the fact that the cut-

off, Q0, in a parton shower is not expected to be constant but correlated to the

final state hadronic mass. If the Q0 is increased then the probability of further

parton branching is reduced implying that a final state parton, in addition to

having a larger effective mass, will have a greater momentum.

2.3.4 Hadron Decays

In the final phase, the primary hadrons are decayed according to measured

branching ratios and lifetimes. In the versions of Jetset used in this analysis,

the generators include improved bottom and charm decay tables. The particles

visible at the detector level are mainly pions, most of which are the results of

decays, the fraction of pions directly from hadronisation being relatively small.

Conversely, the fraction of resonances originating directly from hadronisation

is high, and therefore inclusive resonance studies (for example, the ρ± vector

meson study presented in this analysis) provide information which is more closely

related to the dynamics of the fragmenting partons. However, inclusive resonance

distributions are sensitive to heavy flavour decay tables. The vector resonances

are, in addition, sensitive to tensor production; tensors occupy phase-space which

would otherwise be occupied by vectors.

In this thesis, the rate of production and the momentum distribution of

the ρ± vector meson is studied, providing a test of the fragmentation process

implemented in the Jetset, Pythia and Herwig Monte Carlos.

2.4 Bose-Einstein Correlations

The Bose-Einstein Correlation (BEC) leads to an enhancement of the two

particle differential cross-section for bosons which are close in phase-space. Since

most of the particles generated in hadronic events are pion triplets obeying Bose

statistics, BECs have been studied in pairs of charged pions in hadronic Z decays

[16], [17], and in the determination of W± mass as well [18]. The BEC is a

quantum mechanical phenomenon that must appear during the fragmentation
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state. Hence, the measurement of BECs can help the understanding of QCD

studies.

The data are usually analysed interms of the correlation coefficient C2. ππ

correlation is generally parametrised in the phenomenological form:

C2(Q) = 1 + λ exp(−Q2R2) (2.7)

where Q2 is the Lorentz invariant square of the 4-momentum difference of the

form

Q2 = −(p1 − p2)
2

= (~p1 − ~p2)
2 − (E1 − E2)2

= m2 − 4m2
π (2.8)

here m is the ππ invariant mass. λ is called the chaoticity parameter, typically

λ ∼ 1, and R can be identified with a source radius.

There are some local and global approaches to model BECs in Monte

Carlo simulations, [18]. The BEC algorithms is applied to the final state pi-

ons, for which the 4-momenta difference is calculated for each pair of iden-

tical pions. A shifted smaller Q′ is then found such that C2 of shifted to

the original Q distribution. Under the assumption of a spherical phase-space

(d3p/E ∝ Q2dQ/
√

Q2 + 4m2
π), Q′ is the solution of the equation:

∫ Q

0

Q2dQ
√

Q2 + 4m2
π

=

∫ Q′

0

C2(Q)
Q2dQ

√

Q2 + 4m2
π

(2.9)

After applying the corresponding 4-momemtum shift to each pion pairs, the

invariant mass of the the pairs are changed. So, it is not possible to conserve

both energy and momentum simultaneosly, and so comprimises are necessary.

The detailed study and results can be found in [18] and [19].

The experimental studies reveal that BECs affect the distribution of effec-

tive masses of π±π± pairs. It is shown that residual BECs affect significantly the

kinematics of very short lived resonances with decay lengths of ≈ 1 fm. This is

the case for the ρ0 meson [7], where BECs exits between the π+π− of the ρ0, and

pions emitted directly from the string. Such BECs distort both the ρ0 signal and

the background shapes.

Residual BECs also appear to affect the ρ± line shape [8]. It has been

shown in [16] that the background interference mechanisms (discussed in Section

9.4.4) can have similar phenomenological effects as the residual BEC. Since the

interference term describes the distortion in real data very well, residual BECs

are indirectly included in our study by the inclusion of a interference term to the

fits.
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CHAPTER 3

APPARATUS

3.1 Introduction

ALEPH (Apparatus for LEP pHysics) was one of the four detectors po-

sitioned around the LEP collider at CERN laboratory in Geneva/Switzerland

[20]. LEP produced its first collisions in July 1989 and since then, millions of

events have been recorded by the ALEPH particle detector. Its purpose was to

explore the Standard Model of particle physics and search for manifestations of

new physics. The ALEPH experiment was a large collaboration of several hun-

dred physicists and engineers from 32 universities and national laboratories from

around the world. The collaboration closed in 2004.

3.2 Large Electron-Positron Collider (LEP)

The experimental discovery of the neutral weak current in the early seven-

ties verified the theoretical postulate of electroweak unification. In order to study

the physics contained in this theoretical framework more precisely, the LEP col-

lider was proposed, with its design parameters being more clearly defined after

the discovery of the W and Z bosons by UA2 in 1983 [21, 22].

With a circumference of 27 km, the LEP collider at CERN is the largest

e+e− collider ever built. LEP operated at the Z peak between 1989 and 1995

with e+e− collisions around the Z resonance (91.2 GeV center of mass) for the

four LEP experiments ALEPH, DELPHI, L3 and OPAL, Figure 3.1. The collider

was upgraded in 1995 and ran until 2000 in its second phase where the collision

energy was doubled in order to produce pairs of on-shell W± bosons.

The machine enclosed in a tunnel situated between 50 to 170 meters below

ground. It consists of eight straight sections joined by eight arcs forming an

octagon with rounded corners. Electrons and positrons orbited in bunches (each

bunch containing ∼ 1012 particles) inside an evacuated beam pipe, the positrons
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Figure 3.1: Schematic view of LEP and the four detectors described in the text.
It has a circumference of 27 km and is located in an underground 3.8 m diameter
tunnel at a depth varying between 50 m and 170 m.
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orbiting clockwise (as viewed from above) and the electrons anticlockwise. The

orbits are controlled by electromagnets; 1320 quadrupole and sextupole magnets

focus the particles in all the sections, whilst 3392 dipoles bend the beams around

the curved sections. The resultant energy loss due to synchrotron radiation is

replaced by 128 copper radio frequency (RF) cavities positioned in the straight

sections of LEP.

The large circumference of LEP was designed to keep the synchrotron ra-

diation to a practical level, the rate of energy loss being inversely proportional

to the radius of curvature. Under the circular acceleration, an electron emits

synchrotron radiation, the energy radiated (power lost) per particle per turn

being

P =
4π

3

e2β2γ4

r
(3.1)

or expressing γ in terms of energy, E, and mass m, γ = E/mc2

P =
4π

3

e2β2E4

m4c8r
(3.2)

where r is the bending radius, β is the particle velocity, and γ = (1 − β2)−1/2.

The disadvantage of building large colliders is the very large cost; for this reason,

larger circular e+e− colliders are not expected to be built in the future.

Originally there were 4 bunches of electrons and 4 bunches of positrons in

circulation, this was increased to 8 bunches on 8 bunches in 1992, and finally

running with bunch trains in 1995. In 8 bunch mode the two beams collide, at the

center of each LEP detector, every 11 µs. The beams are focused by sextupoles,

creating a luminous region (the beam spot) of length 18 mm (in the z-direction),

and cross-section with σx ≈ 0.25 mm, and σy ≈ 0.015 mm (see Section 3.4.1

for a definition of the ALEPH coordinate system). The luminosity of LEP is

∼ 1032 cm−2s−1, producing Z bosons at a rate of ∼ 1 Hz (on peak).

3.2.1 Beam Injection and Acceleration

For part of the injection system, LEP exploited existing CERN installa-

tions, namely the Proton Synchrotron (PS) and the Super Proton Synchrotron

(SPS). Two purpose-built linear accelerators (linacs) were added to these to

complete the injection system shown in Figure 3.2. Electrons (from an electron

gun) and positrons (from a tungsten converter) are accelerated to 600 MeV by

the LEP injection linac (LIL), and stored in the electron-positron accumulator

(EPA). Once a sufficient number of particles have been collected they are trans-

ferred to the PS and accelerated to 3.5 GeV. The particles are then injected into

the SPS where they are accelerated to 20 GeV and finally injected into LEP. This

cycle is repeated until enough particles have accumulated, thus completing the
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‘fill’. The electrons and positrons are then accelerated to collision energy by the

RF cavities.

Figure 3.2: The LEP injection system.

3.3 Particle Detectors

The detectors employed in experiments in high-energy physics are required

to record the position, arrival time, momentum (energy) and identity of charged

and neutral particles. If we have an ‘ideal’ detector, we can reconstruct the

interaction, ie. obtain all possible information on it. This is then compared

to theoretical predictions and ultimately leads to a better understanding of the

interaction/properties of particles. An ideal detector measures all produced par-

ticles, their energy, momentum and type (mass, charge, life time, spin, decays).

Precise evaluation of position coordinates is required to determine the particle

trajectory and, in particular, its momentum (from the deflection in a magnetic

field); precise timing is often required in order to associate one particle with

another from the same interaction, frequently in situations where the total in-

teraction rate per unit time may be very high.
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Neutral particles are detected through their decay (e.g., K0 → π+π−)

and/or interaction with matter (e.g., π0 → γ + γ, γ → e−e+), leading to sec-

ondary charged particles. Different particle types interact differently with matter

(detector), e.g. photons do not feel a magnetic field. We need different types of

detectors to measure different types of particles. Thus, there is no single detector

to detect all kind of particles, so a combination of different detectors is employed.

An example is the ‘ALEPH’ detector.

3.4 The ALEPH Detector

3.4.1 Overview

Figure 3.3 shows a schematic view of the ALEPH detector with the main

subdetectors labelled.

ALEPH uses a coordinate system usually expressed in terms of Cartesian

(x, y, z) or cylindrical (r, φ, z) coordinates. In both cases, the z direction is along

the beam line with the e− direction defining the positive axis. The positive x

direction points to the center of LEP and the positive y direction is defined such

that (x, y, z) forms a right-handed coordinate system.

The detector is designed to measure the momenta of charged particles, to

measure the energy deposited in calorimeters by charged and neutral particles,

to identify the three lepton flavours, and to measure the distance of travel of

short-lived particles such as the tau lepton and the b and c hadrons.

Particular emphasis has been given to momentum resolution up to the

highest energies (by means of a large tracking system in a 1.5 T magnetic field),

to electron identification (by means of a highly segmented, projective electromag-

netic calorimeter, as well as ionisation measurement in the tracking system), and

to muon identification (with continuous tracking inside sufficient iron absorber

to eliminate the hadrons). Hadron (π, K, p) identification was not emphasized

but has turned out to be adequate for some analyses, examples of which can be

found in [23].

The tracking system involves three subdetectors: a silicon vertex detector,

a drift chamber with 30 cm outer radius, which is also important as part of

the trigger system, and a time projection chamber with 180 cm outer radius.

Calorimetry proceeds in two stages: electromagnetic and hadronic. A muon

detection system of two double-layers of streamer tubes surrounds the whole

detector. Finally, important for precise cross-section measurement are the highly

segmented luminosity calorimeters.

Presented here is a summary of the main features of the apparatus, more
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Figure 3.3: Schematic view of the ALEPH detector. Subdetectors are indicated
by different colors.
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detailed accounts can be found elsewhere [24, 25].

3.4.2 The Central Tracking Chambers

The Vertex Detector (VDET)

Close to the interaction point, tracking is performed by a silicon vertex

detector. Vertex detector hits are used to provide additional precision for tracks

already reconstructed in the outer tracking. From this, it is then possible to

reconstruct the decay topologies of short-lived particles with typical decay lengths

of as little as a few tenths of a millimetre. The configuration of the VDET is

shown in Figure 3.4.

The device is formed from 96 silicon wafers each of dimensions (5.12 ×
5.12 × 0.03) cm, arranged in two coaxial cylinders around the beam pipe. The

inner layer has nine wafers in azimuth, with average radius of 6.5 cm, and the

outer layer has 15 wafers with average radius 11.3 cm, both layers being four

wafers long giving a total length of 20 cm. Each wafer has 100 µm strip readout

both parallel (rφ) and perpendicular (rz) to the beam direction. The spatial

resolution, for normally incident tracks is: σrφ ≈ 12 µm, σz ≈ 10 µm.

The Inner Tracking Chamber (ITC)

The vertex detector is surrounded by a conventional cylindrical multiwire

drift chamber. It measures the rφ position of a track on eight concentric layers of

hexagonal drift cells at radii between 16 and 26 cm, with adjacent layers staggered

by half a cell width. The resolution depends on the drift length in the cell, with

an average of 150 µm. The position of tracks along the beam direction (z) is

determined by measuring the difference in arrival time of the signals at each

end of the wires. This, however, only has a resolution of about 5 cm. The

ITC tracking information is used to improve tracking resolution, and to provide

information for the first level trigger decision (made within 2-3 µs after a beam

crossing).

The Time Projection Chamber (TPC)

The TPC is ALEPH’s principal tracking detector providing 21 3D space-

point measurements for fully contained tracks at radii between 30 and 180 cm. A

view of the TPC is given in Figure 3.5, it consists of a gas volume (at atmospheric

pressure) bounded by inner and outer field cages and two end-plates. An electric

field is created between a central membrane and the two end-plates (dividing the

TPC chamber into two), giving a drift length of 2.2 m on each side. As charged
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Figure 3.4: Configuration of the original (1991) vertex detector. The VDET is
very close to the beam pipe in order to identify very short-lived particles (such as
τ leptons and B mesons) with a high resolution position. This detector consists
of two concentric arrays of silicon wafers surrounding the beam pipe.



25

particles pass through the chamber they leave a trail of ionised gas. The electrons

drift along the electric field lines towards one of the end-plates where they induce

ionisation avalanches in proportional wire chambers. These are detected as pulses

on cathode pads. The φ coordinate is calculated by interpolating the signals

induced on cathode pads and the r coordinate is given by the radial position of

the pads involved in the measurement. The z coordinate of a point on a track’s

trajectory is obtained from the electron drift time and the drift velocity.

The pulse height information on the wires provides information about the

energy lost by the particle as it traverses the TPC. The rate of energy loss

(dE/dx) is dependent on the particle mass and so can be used to identify different

particle species. Electron identification is good, with greater than 3σ separation

up to p ≈ 8 GeV/c. The π-K separation is roughly constant above p ≈ 2 GeV/c

at about 2σ, while the K-p separation is only about 1σ. Therefore, kaon and

proton identification can be accomplished only on a statistical basis; nonetheless,

it is an important means of reducing combinatorial background in some analyses.

Figure 3.5: A view of the time-projection chamber.

Each end-plate of the TPC is subdivided into eighteen individual wire

chambers (sectors), the arrangement is shown in Figure 3.6. The pad size is

6.2 mm × 30 mm (rδφ × δr) and the pad pitch in azimuth is 6.72 mm. The

geometry of the sectors is designed to minimise losses in track resolution due to
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the cracks between the sectors. The resolution is dependent on the angles which

a charged track makes with both the sense wires and the cathode pads. The

azimuthal coordinated resolution is σrφ = 180 µm at 0◦ pad crossing angle. The

z spatial resolution for wires is σz = 1.2 mm (with a small z dependence), and

0.8 mm for pads (at θ = 90◦).

Figure 3.6: The arrangement of the TPC sectors.

The transverse momentum resolution and impact parameter resolution are

shown in Table 3.1 for the TPC only, for the TPC and drift chamber, and for all

three tracking detectors together. At low momentum (less than 0.4 GeV) a con-

stant term of 0.5% should be added to the resolution due to multiple scattering.

Table 3.1: Momentum and impact parameter resolution for the TPC, the
TPC+ITC, and the TPC+ITC+VDET. At low momentum a constant term of
0.5% should be added to the momentum resolution due to multiple scattering.

Transverse momentum Impact parameter
resolution (pT in GeV) resolution

Detector ∆pT /pT σrφ(µm) σrz(µm)
TPC 1.2 × 10−3 pT 310 808
+ ITC 0.8 × 10−3 pT 107 808
+ VDET 0.6 × 10−3 pT 23 28
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3.4.3 The Principal Calorimeters

The energy and position coordinates of secondaries from high-energy in-

teractions can also, under suitable conditions, be measured by total absorption

methods. In the absorption process, the incident particle interacts in a large

detector mass, generating secondary particles which in turn generate tertiary

particles, and so on, so that all (or most) of the incident energy appears as

ionisation or excitation in the medium−hence the term calorimeter.

For electrons and photons of high energy, a dramatic result of the combined

phenomena of bremsstrahlung and pair production is the occurance of cascade

showers. A parent will radiate photons, which convert to pair, which radiate and

produce fresh pairs in turn, the number of particle increasing exponentially with

depth in the medium. A measurement of the position and charge of a shower

provides a measure of the position an energy of the electron or photon.

The Electromagnetic Calorimeter (ECAL)

The ECAL is a sampling proportional wire calorimeter consisting of lead

sheets and proportional wire chambers covering the angular range |cosθ| < 0.98.

The calorimeter stops and measures the energy of electrons and photons. The

ECAL is formed from a barrel surrounding the TPC, closed at each end by end-

caps. These are divided into 12 modules, each covering an azimuthal angle of 30◦,

Figure 3.7. The cracks between the modules, where the ECAL is not sensitive

to particles, constitute 2% of the barrel surface and 6% of the endcap surface.

To ensure that the cracks in the endcaps and the barrel are not coincident the

endcap modules are rotated through 15◦ azimuth.

The modules have 45 lead/wire-chamber layers, Figure 3.8, with a total

thickness of 22 radiation lengths. The energy and position of each shower is

read out using small cathode pads with dimensions ≈ (30 × 30) mm, arranged

to form towers pointing to the interaction point; each tower is read out in three

segments in depth, known as storeys, with thicknesses of 4, 9, and 9 radiation

lengths respectively. There are 74,000 such towers, corresponding to an average

granularity of 0.9◦×0.9◦. This fine segmentation is important in the identification

of photons, electrons and neutral pions. The angular resolution of the ECAL is

σθ,φ =

(

2.5√
E

+ 0.25

)

mrad, (3.3)

where E is measured in GeV. In addition, signals are also available from the wire

planes of each module, providing redundancy in the energy measurement and a

low-noise trigger.
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Figure 3.7: Schematic view of the ECAL modules.

Figure 3.8: ECAL lead/wire-chamber layers.
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The energy calibration procedure uses electrons from different sources cov-

ering the energy range from 1 to 45 GeV. These electrons originate from the

reactions e+e− → e+e−e+e− for the 1 to 10 GeV energy range, Z → (τ → eνν̄)

to cover the 10 to 30 GeV energy range, and Bhabha events for 45 GeV.

The energy resolution, determined by comparing the measured energy to

the track momentum or beam energy, is shown in Figure 3.9a as a function of

the electron energy. The corresponding fitted resolution is:

σE

E
=

0.18√
E

+ 0.009 (3.4)

where E is measured in GeV. General form of the form of the Equation 3.4 is:

σE

E
=

R√
E

+ k (3.5)

where R is called stochastic term (slope of Figure 3.9a) and k is the constant term

(intercept of Figure 3.9a). This equation can be explained as follows. Energy

measured, E, is proportional to number of electrons, n, which are counted in the

ECAL shower, because the number of charges is related with energy deposition

in any space. Thus:

E ∝ n

But, this counting is a statistical process carrying a statistical uncertainty
√

n

and so the statistical uncertainty on the energy measurement, the statistical

component of energy resolution, can be written as:

σE ∝
√

n

One can set up the ratio σE/E:

σE

E
∝ 1√

n

and use the relation E ∝ n:

σE

E
∝ 1√

E

Hence the last relation can be written as an equality by using proportionality

constant R,
σE

E
=

R√
E

(3.6)

It is clear why R is called the stochastic term. If we compare Equation 3.6 with

3.4, we see R = 18%.

The energy resolution of the ECAL depends not only on stochastic term

R but also on the constant term k. This term, however, is significant only at
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very high energy (≥ 100 GeV). The value for R and k depend on the particular

detector1 .

The energy resolution as a function of polar angle is plotted in Figure 3.9b

for electrons from Bhabha events. In the region around 40◦ in polar angle the

energy resolution is degraded, this corresponds to the overlap region where the

electromagnetic shower develops into both barrel and end-cap modules. In that

region the total thickness decreases, reaching only 16 radiation lengths, and in

addition there is more uninstrumented material due to end-plates of modules

and cables.

(a) (b)

Figure 3.9: Energy resolution of the electromagnetic calorimeter; (a) dependence
on energy, (b) dependence on polar angle for electrons from Z → e+e− decays.

The Hadron Calorimeter (HCAL) and Muon Chambers

The hadron calorimeter serves two purposes. It is used, together with the

electromagnetic calorimeter, to measure hadronic energy deposits, and it is part

of the muon identification system. It consists of 23 layers of plastic streamer tubes

separated by 5 cm thick iron slabs, giving a total of 7.2 interaction lengths at 90

degrees. The calorimeter is constructed from 36 modules, 24 in the barrel and 6

in each end-cap, and is read out capacitatively in 4788 projective towers with a

1 For example, new generation detectors for LHC, R = 10 % and k = 0.7 % for ATLAS
ECAL, and R = 4 % and k = 0.5 % for CMS ECAL.



31

typical tower coverage of 3.7◦×3.7◦, corresponding to 4×4 of the electromagnetic

calorimeter towers. The streamer wire signals are summed and used as part of

the trigger. The energy resolution of the hadron calorimeter for pions at normal

incidence is
σE

E
=

0.85√
E

(3.7)

where E is measured in GeV.

Outside the HCAL are another two double layers of streamer tubes which

form the muon chambers (acting as simple tracking devices). Two coordinates

are obtained from cathode strips both parallel and perpendicular to the wires in

each layer. In conjunction with HCAL, the muon chambers are used to identify

muons and keep hadron/muon misidentification to a minimum.

3.4.4 The Superconducting Solenoid

The ALEPH magnet is a liquid helium-cooled superconducting solenoid

with a magnetic field strength of 1.5 T at a current of 5000 A. The field provides

the curvature to charged tracks from which the momentum and sign of charged

particles can be determined.

3.4.5 The Luminosity Monitors

The precise measurement of electroweak parameters requires accurate knowl-

edge of the beam luminosity. The reaction rate for a process is given by R =

σL where σ is the interaction cross-section and L is the luminosity. Low angle

elastic (Bhabha) scattering is used to measure the luminosity as it is almost a

pure QED process with very little interference from the weak sector, and has a

well known cross-section.

The Silicon Calorimeter

The Silicon Luminosity Calorimeter (SiCAL) is ALEPH’s main detector

for providing luminosity measurements. It is positioned around the beam pipe

at each end of the detector and covers angles between 24 to 58 mrad from the

beam axis.

The SiCAL uses 12 silicon/tungsten layers (23.3 radiation lengths) to sam-

ple showers produced by Bhabhas. Finely spaced pads determine the angle of an

incident particle with a polar resolution of 0.15 mrad. The shower depth gives a

measure of the energy deposited with a resolution of 3.4% at 45.5 GeV.
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The Luminosity Calorimeter

The Luminosity Calorimeter (LCAL) is a lead/wire calorimeter, similar

in design to the ECAL, comprising 38 layers (24.6 radiation lengths). Modules

are positioned, on either side of ALEPH, just behind the SiCAL modules. The

LCAL monitors polar angles from 45 to 190 mrad with a resolution of 0.5 mrad

(at 45.5 GeV), and has an energy resolution of ∼ 0.15/
√

E + 0.01, where E is

measured in GeV.

BCAL

Online luminosity monitoring is provided by the Bhabha calorimeter (BCAL).

This is a sampling calorimeter made of layers of tungsten and plastic scintilla-

tor, with a single plane of silicon strips to provide position measurements. The

BCAL is positioned next to the beam pipe at 7.7 m from the interaction point,

receiving a Bhabha hit rate of ≈ 7 Hz.

3.4.6 ALEPH in Numbers

The ALEPH detector dimensions and resolutions are summarised in Table

3.2. The data is taken from [26].

Table 3.2: A summary table showing the sizes and resolutions of the some sub-
detectors of the ALEPH detector.

Detector Rinner cm Router cm Length cm Resolution

VDET 6.5 10.8 20 σ(r, φ) = 12 µm

σ(z) = 10 µm

ITC 12.8 28.8 200 σ(r, φ) = 20 µm

σ(r, φ) = 180 µm

TPC 31 180 470 σ(z) = 1 mm

σ(p) = 1.2 × 10−3p2 GeV/c

ECAL 185 225 477 σ(θ, φ) = 2.5/
√

E + 0.25 mrad

σ(E) = 0.18E + 0.01
√

E GeV

HCAL 300 468 700 σ(E) = 0.85E GeV

σ(φ) = 0.3o

SICAL 6.0 14.6 12 σ(z) = 7 cm

σ(E) = 0.23
√

E GeV

LCAL 10 52 42 σ(θ) = 2.5
√

E + 0.16 mrad

σ(E) = 0.15E + 0.01
√

E GeV
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3.5 Trigger and Data Acquisition Systems

3.5.1 The Trigger System

ALEPH employs a three-level triggering system in order to separate gen-

uine e+e− interactions from background, to reduce the frequency of accepted

events to a rate which can be written to tape, i.e. about 1-2 Hz, and to reduce

the dead-time of the detector. The background events are mainly from three

sources: beam-gas interactions, off-momentum particles from the beam hitting

either collimators or the vacuum pipe, and cosmic rays.

The maximum output acceptable from the level 1 trigger is a few hundred

Hertz in order to keep dead-time in the data acquisition to a minimum and to

ensure there are no TPC gating problems. To enable the trigger to be sensitive

to all areas of physics, it uses information from the HCAL, ECAL, LCAL and

the ITC. After a bunch crossing, there is a level 1 yes if:

• there are track candidates in the ITC;

• there is energy in a ‘trigger region’ of the ECAL or HCAL;

• the total energy in the barrel, in either endcap, or entire detector is larger

than given thresholds;

• there is a Bhabha event in the SiCAL.

Level 1 uses dedicated hardware to enable a decision to be reached in 5 µs,

therefore a level 1 no can be reached before the next bunch crossing. The level 1

trigger has a 100% efficiency for hadronic Z decays and (99.7 ± 0.2)% efficiency

for Bhabha events.

The second level trigger decision is made within 50 µs of the bunch crossing

and is used to verify the first level trigger. The trigger only involves the TPC;

trigger pads on the TPC end-plates are used to check for the presence of charged

particle trajectories in regions predicted by the Level-1 decision. Its aim is to

stop and clear data acquisition if it cannot confirm the Level-1 decision. A yes

decision initiates the readout from the front-end electronics and the data are

transferred through the DAQ system. This rate should be kept below 10 Hz in

order to keep the dead-time to a minimum; about 75% of the level 1 track-only

triggers are removed.

The third level trigger is a ‘software trigger’ and is only applied after the

readout of an event. The aim of this third-level event selection is to identify

genuine e+e− interactions and separate them from the background triggers, and

reduce the output frequency to the desired 1-2 Hz.
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3.5.2 The Data Acquisition System (DAQ)

The role of the DAQ is to read the electronic signals of events and format

the data so that they may be recorded for event reconstruction. A simplified

view of the DAQ system is presented in Figure 3.10, illustrating the flow of data

from the front-end electronics to the final stage of event reconstruction. The

main steps in the data flow are as follows:

(1) A timing signal, synchronised with the LEP bunch crossings, is sent to

the trigger supervisor from the T0 module.

(2) The trigger supervisor transmits the timing signal to the readout con-

trollers (ROCs) which, for most of the subdetectors, initiates the digiti-

sation in the front-end electronics. After compacting the data through

‘zero-suppression’, calibrations are applied and the reduced data format-

ted. The results are then stored in the ROCs’ output buffers.

(3) The Level 1 and Level 2 trigger decisions are made and transmitted to the

ROCs. A rejection halts the digitisation process and causes the ROCs

to be reset and prepared for the next event. If a trigger is accepted at

Level 2 then the whole event is digitized.

(4) After digitisation, each ROC sends a signal to the corresponding subde-

tector event builder (EB) for its data to be read out. These data are

processed by the EB and stored in its output buffers.

(5) With an event in its output buffer an EB sends a request to the main

event builder (MEB) to be read out. The MEB reads all the subdetector

EBs and assembles the whole event. After testing for completeness, the

event is passed to an event processor (EP) which performs the Level 3

trigger analysis. A Level 3 yes decision results in the event being writ-

ten to a disk and then to tape. The data are now available for event

reconstruction, this is the subject of the next chapter.
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Figure 3.10: A simplified outline of the data acquisition (DAQ) system, including
the trigger sequence.
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CHAPTER 4

EVENT RECONSTRUCTION AND

SIMULATION

4.1 Introduction

Recorded data containing the raw event information are reconstructed of-

fline by the JULIA program. Tracking and calorimeter reconstruction is per-

formed on both real and simulated data (simulated data will be discussed in

Section 4.6). The results from JULIA are formed into BOS banks and writ-

ten to Production Output Tapes (POTs) and then to Data Summary Tapes

(DSTs) ready for physics analysis; DSTs contain almost all the information from

the POTs, but with non-interesting events (i.e. noise and background) removed.

Figure 4.1 illustrates the flow of data from event production to the storage of

reconstructed events ready for physics analysis.

A more compact form of data storage is the Mini-DST, which is important

for analyses which process a large number of events. Mini-DSTs contain less

information and the data are integerised, so that these tapes can be staged to

disk more quickly, or stored permenantly on disk, and read more quickly by the

analysis program. Additionally, results of some time-consuming algorithms are

already available on the Mini-DSTs, further reducing processing time. The Mini-

DST is used in the analysis presented in this thesis. The total data (6.4 million

Monte Carlo and 4.2 real data events) occupies 100 Gbyte of disk space.

The reconstruction of data by JULIA is described here with emphasis on

track reconstruction in the TPC and γ/π0 reconstruction in the ECAL. The final

section describes event simulation.
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4.2 Track Reconstruction

Figure 4.2 shows examples of the reconstruction of tracks from coordinates

in the TPC. Each track is the result of fitting a helix to chains of 3-dimensional

space coordinates which are consistent with the trajectory of a charged particle.

Note that the tracks are curved in the xy projection, but straight in the z pro-

jection. The following sections describe details of TPC coordinate determination

and track fitting.

ALEPHREAL DATAe+e� collisions
analogue signals? KINGALMONTE CARLOevent generators

4-vectors?DAQ GALEPHreal data simulated dataJULIA
physics analysisreconstructed dataPOT, DST, Mini-DST?

QQQQ ����QQQQs ����+
Figure 4.1: The flow of data in the ALEPH experiment, including the simulated-
data chain.

4.2.1 TPC Coordinate Determination

The raw data collected from the TPC comes in two forms:

• The pad hits, which contain the pad number, arrival time and duration

of the pulse.
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Figure 4.2: Reconstruction of tracks from coordinates in the TPC. Two projec-
tions are shown: the xy projection, and the rz ( r2 = x2 + y2 ) projection.
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• Digitised pulse-heights per time-slice, or ‘buckets’, corresponding to each

pad hit.

Clusters and Pulses

Coordinate determination begins with the identification of clusters of pad

hits (pulses) on a given pad row in the plane of ‘pad number’ versus ‘drift time’.

A cluster is built, ignoring for the moment pulse-height information, by starting

with one hit and including hits on adjacent pads if they overlap the first by at

least one sample. An example of such a cluster is shown in Figure 4.3, the cluster

is formed by two nearby tracks which are not clearly distinguishable at this stage.

Figure 4.3: A TPC pad row cluster formed by two nearby tracks.

A good cluster satisfies the following criteria:

• A minimum of 2, and a maximum of 20 pads in the cluster.

• The minimum cluster length is 5 and the maximum is 35.

A rejected cluster is flagged as a ‘bad’ coordinate; such clusters are not included

in track reconstruction.

Subclusters and Subpulses

Once clusters have been established they are analysed again with the pulse-

height information included in order to separate, or at least recognise, within each

cluster the contributions coming from different particles. Figure 4.4 illustrates an

example of a cluster which is separated, in drift time (or z), into three subclusters

by inspecting the pulse-heights. The charge profile of each pulse is analysed for

evidence of multiple peaks. Peaks that are sufficiently isolated from others form
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subpulses. Groups of subpulses on adjacent pads are aligned with respect to time

(or z) and grouped into subclusters. Within a subcluster, each subpulse must

be on a separate pad. The charge profiles of the resulting subclusters are also

scanned for evidence of multiple peaks; if a valley between peaks is sufficiently

low then such a subcluster can be broken in rφ, otherwise it is flagged as being

unusable. Examples of such unusable clusters are shown circled in Figure 4.2:

the hits from the two tracks originating from a photon conversion in the TPC

gas are only resolved when the tracks are separated by a sufficient distance. For

each subpulse, both a charge estimate and a time estimate are made from the

digitisations. These are used in the reconstruction of coordinates.

Figure 4.4: An example of a complex cluster and how the reconstruction program
has broken it down into three contributions from which three individual coordi-
nates can be calculated.

Coordinates

Each ‘good’ subcluster is used to calculate a z and rφ coordinate. For the

rφ coordinate the sub-pulse charge estimator is used: a Gaussian fit is made if

the subcluster has 3 or less pads, or a charge-weighted average of the pad position
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is taken if the subcluster has more than 3 pads. The z coordinate is calculated

using both the charge estimator and the time estimator.

4.2.2 TPC Track Finding and Fitting

Track candidates are formed from TPC coordinates as follows. Sets of

coordinates which are consistent with an arc of a helix less than π radians are

formed into ‘chains’. Chains that are determined to belong to the same helix

(e.g. multiple arcs of a spiral) are linked together into a single ‘track candidate’.

To account for multiple scattering, the coordinate error estimates are increased

in accordance with the distance from the track origin. If an acceptable fit is not

obtained, then up to two points are removed from the fit, corresponding to those

that contribute the most to the χ2 of the overall fit. If this does not result in an

acceptable fit then a search is made for a kink in the track candidate, and if one

is found the track is split. If no significant kink is found then a search is made

for bad points by fitting a track candidate with one point at a time removed. If

none of these methods leads to a good fit the track candidate is kept without

modification. Details of the algorithms used to find and combine the chains into

track candidates can be found in [27].

The track finding efficiency in the TPC has been studied using Monte Carlo

simulation. In hadronic Z events, 98.6 % of tracks that cross at least four pad

rows in the TPC are reconstructed successfully; the small inefficiency, due to

track overlaps and cracks, is reproduced to better than 10−3 by the simulation.

The five helix parameters shown in Figure 4.5 are determined by fitting a

helix to the pad coordinates within the first half turn of each track candidate. A

Figure 4.5: Helix parameters used in the TPC tracking algorithms. For this case
all parameters are positive.

circle fit made in the xy plane yields ω (the inverse radius of curvature), d0 (the

impact parameter in the xy plane), and φ0 (the emission angle in the xy plane).
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A straight line fit in the sxy-z plane yields z0 (the z coordinate at the closest

approach to the z axis) and tanλ (the tangent of the dip angle). The circle fit

parameters are used to calculate the values of sxy.

4.2.3 TPC-ITC-VDET Track Association

Once TPC tracks have been identified, ITC and VDET coordinates are

added to improve the track measurement. The TPC tracks are projected back

into the ITC and a search is made for ITC coordinates within a ‘window’ defined

in z and φ around the trajectory. If no ITC hits are found in the first two outer

layers then the search is abandoned. If more than three hits are found, a fit is

performed and the ITC coordinates may be accepted, subject to a cut on the χ2

of the fit. Finally VDET hits are associated to tracks which extrapolate close to

them and the tracks are then refitted.

4.3 Ionisation Energy Loss

The TPC also provides information on a charged particle’s rate of loss

of energy due to ionisation (dE/dx). This information is obtained from the

measured ionisation on the TPC sense wires and is calculated as follows:

(1) The raw digitisations for each wire pulse are reduced to time and charge

estimates.

(2) The wire pulses are associated with the reconstructed TPC tracks. Indi-

vidual wire pulses that match to more than one track are ignored, as are

pulses which do not have a shape consistent with single track ionisation.

(3) The truncated mean dE/dx is calculated for each track: the dE/dx sam-

ples are distributed according to a Landau distribution and the mean is

calculated after discarding the upper 40% and lower 8% of the sample.

The upper truncation is to reject samples arising from hard scattering,

and the lower one reduces the dependence of the dE/dx estimator on

track angle and drift length.

4.4 Calorimeter Reconstruction

Data from the ECAL and HCAL are also processed by JULIA. This sec-

tion describes briefly the formation of calorimeter objects, the following section

describes in more detail the reconstruction and identification of photons in the

ECAL.
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Calorimeter Clusters and Objects

Clusters of energy deposition in the ECAL are formed by associating a

group of spatially connected storeys (i.e. storeys which possess a common cor-

ner). All storeys which have an energy exceeding the threshold tlow (typically set

to 30 MeV to minimise effects of noise) are used as input to the cluster finding

algorithms. A topological cluster is only retained if it contains at least one storey

above the threshold thigh (typically 90 MeV).

ECAL clusters are then associated with nearby charged tracks, clusters

which are more than 3 cm (about one pad width) from the entry point of a

charged track into the ECAL are considered to be neutral. Clusters associated

with minimum ionizing tracks, electrons, and neutral particles are distinguished.

Charged clusters with excess energy may have photons associated with them. A

similar process is carried out to form HCAL clusters. Calorimeter objects are

then formed from the calorimeter clusters with the possibility of more than one

particle contributing to each object. ECAL and HCAL objects which overlap are

merged into combined calorimeter objects. Further information on calorimeter

reconstruction can be found in [27].

4.5 Photon Reconstruction

The clustering algorithm described above builds large clusters, often merg-

ing energy from photons and hadronic interactions. For the purpose of improving

photon reconstruction, particularly in hadronic events, an extension to the above

algorithm is implemented. It uses the facts that electromagnetic showers gener-

ally start in the first segment in depth of the electromagnetic calorimeter and

that, unlike the cell patterns of hadronic clusters, storeys receiving energy from a

photon have a compact arrangement and most of them share a face with another

storey associated to the same photon. Figure 4.6 shows the energy deposits of

three photons in the ECAL, the showers begin in stack 1 (the first picture), they

have a maximum in stack 2, and have almost completely disappeared by stack 3.

It is apparent from the figure that the large cluster contains two subclusters due

to two photons, the algorithm for photon reconstruction described here attempts

to resolve these clusters by forming ‘G-clusters’ as follows.

4.5.1 G-clusters

G-clusters are formed as follows. The storeys of stack 1 of the ECAL are

scanned in the order of decreasing energy. A storey without a more energetic

neighbour defines a new G-cluster. Other storeys in the same stack are assigned
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Figure 4.6: Energy deposits of three photons in ECAL towers; the showers begin
in stack 1 (the first picture), they have a maximum in stack 2, and almost com-
pletely disappear by stack 3. All towers contributing to the cluster are shown in
each stack; empty boxes represent tower storeys containing zero energy.

to the cluster of their highest energy neighbour, storeys are considered neighbours

only when they share a common face. The procedure is repeated for storeys in

the second and third stacks but, when processing a storey, the algorithm looks

first for a neighbour in the previous stack. G-clusters found by the algorithm

are retained as photon candidates only if their energy is greater than 0.25 GeV,

and if there is no charged track impact at a distance of less than 2 cm from the

G-cluster barycentre. The efficiency and background depend strongly on the

density of particle impacts on the calorimeter.

Photon Position Calculation

The position of the photon impact point is given by the G-cluster barycen-

tre i.e. the energy-weighted mean of the coordinates of each storey centre. This

position is corrected for biases due to the finite size of the calorimeter cells.

Photon Energy Calculation

In order to reduce the sensitivity of the energy measurement to hadronic

background and clustering effects, the photon energy is computed from the en-

ergy collected in the four central towers of the cluster, and the expected value

of the fraction of energy in the four towers, F4. This fraction is computed from

the parametrisation of the shower shape for a single photon in the calorimeter.

The computation takes into account the calorimeter pad area and the distance

between the photon impact and the nearest tower corner, as well as the variation

with energy of the expected F4. Corrections to the energy are computed for

energy losses before and after the ECAL and energy loss in the region where the



45

ECAL barrel and endcaps overlap.

π0 Reconstruction

The reconstruction of neutral pions from G-clusters provides an improve-

ment in purity and efficiency. The identification of subclusters is particularly

useful for higher energy pions where the energy deposits of the daughter photons

overlap. Discussion of π0 reconstruction from G-cluster photons will be reserved

until Chapter 6 where the methods will be shown in detail as part of the analysis

presented in this thesis.

4.5.2 Merged Photons

The probability of resolving a π0 into two G-clusters decreases for energies

greater than 10 GeV. Further information is contained in the distribution, within

a single cluster, of the energy in the calorimeter. To extract it, energy weighted

moments of the two dimensional energy distribution are computed. Assuming

that the cluster contains only two photons, by using moments up to the third

order it is possible to reconstruct the two photon momenta and compute their

effective mass. This allows a check of the π0 hypothesis for unresolved high

energy clusters. An example of the use of this method can be found in [28].

In this thesis, as the signal-to-background improves at high energy, we do

not attempt to reconstruct unresolved high energy clusters.

4.5.3 Converted Photons

An alternative to taking photons from the ECAL is to take converted pho-

tons reconstructed in the TPC. About 7% of photons convert in the tracking

chambers and are therefore not reconstructed as neutral objects in the ECAL.

However, these photons may be reconstructed from their daughter particles iden-

tified in the TPC. This provides a much improved energy resolution1 [29]. This

method can be used to reconstruct, for example, Σ◦ baryons (decaying to Λγ).

However, the method suffers from very low efficiency. The efficiency can be signif-

icantly improved, particularly at low energy, by including single arm conversions

(where one electron or ‘arm’ is retained in the material of the detector) though

with a loss of energy resolution. Single arm conversions have been used in the

reconstruction of B∗ mesons (decaying to Bγ) [30].

For neutral pion reconstruction at low energy, converted photons provide π0

candidates of higher purity than that obtained from ECAL photons [31]. Again,

1 For low energy photons the improvement is around an order of magnitude.
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the problem is the very low efficiency; a combination of converted photons and

ECAL photons regains some efficiency though with a reduction in purity.

In this thesis, as the ρ± signal width is dominated by its resonant width,

the improved momentum resolution gained by reconstructing converted photons

is not an advantage. We therefore do not attempt to reconstruct converted

photons.

4.6 Event Simulation

For the purpose of model comparison, and as a means of measuring the

detector acceptance, a sample of 6.4 million Monte Carlo events are generated

with the Jestset [32] program and passed through a full detector simulation

and reconstruction program. After event selection, the number of Monte Carlo

events is 4.9 million. The generator is tuned to describe the ALEPH data using

the inclusive charged particle and event shape distributions [33].

For further model comparison and as a systematic check for the extrapola-

tion into the unmeasured region, the measured spectra were compared to those

of Pythia 6.4 [34] and Herwig 6.5 [35]. The model parameters were tuned

using ALEPH data in the same manner as mentioned above.

Event simulation proceeds in two steps: simulation of the physics under

investigation (carried out by event generators and the KINGAL program), and

simulation of the response of the detector to the KINGAL particles (carried out

by the GALEPH program).

4.6.1 KINGAL

The KINGAL package is effectively an interface between the event genera-

tors and GALEPH. The event generators use Monte Carlo simulation techniques

to produce the desired physics. The KINGAL output gives a 4-vector kinematic

representation of each simulated particle. Short-lived resonances are decayed

according to decay tables based on experimental data; longer-lived particles are

retained so that secondary vertices can be generated in GALEPH.

4.6.2 GALEPH

The Generator for ALEPH (GALEPH) is a detector simulation, represent-

ing the interaction of particles with the material of the detector, and the response

of the detector to the particles. It generates digitised pulses with the same format

as those produced by the data acquisition system.
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The GALEPH package uses the GHEISHA package to simulate hadronic

showers. Electromagnetic shower simulation is carried out using the GEANT

software [36]. Particle scattering as well as energy loss calculations are also

carried out by the GEANT package. The quality of the simulation can be seen

in the plots presented in Chapter 5, and is further discussed in Chapter 6.
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CHAPTER 5

EVENT SELECTION

Approximately 4.2 million hardonic Z0 decays at center-of-mass energies

within ±2 GeV of the Z0 peak mass where recorded by ALEPH in the period

between 1991 and 1995. After event selection cuts, described in the following

sections, the total number of events selected for the analysis is about 3.2 million.

Table 5.1 shows the contribution from each year of data taking.

Table 5.1: Selected hadronic events from each year of data taking.

Year Number of LEP Energy
hadronic events peak − 2, peak − 1, peak, peak + 1, peak + 2

1991 223,963 4%, 4%, 82%, 6%, 4%
1992 548,356 100%
1993 528,854 11%, 0%, 72%, 0%, 17%
1994 1,345,422 100%
1995 593,151 8%, 0%, 78%, 0%, 14%

total: 3,239,746

Event selection covers two main areas: the first is a selection on event

quality, the second is the selection of the hadronic signal Z → qq̄. These two

areas are discussed below in Sections 5.1 and 5.2.

5.1 Data Quality

Several checks are made in an attempt to ensure events are of reasonable

quality for analysis. For the real data ‘run quality’ is assigned to each run period

based on checks at various levels. From this information, runs which are passed

as good quality for the ECAL and TPC are selected. This includes runs with

software fixes for TPC track distortions. Individual events are selected only

if the relevant subdetectors have their high voltage on. A small fraction of the

selected events (2.6% in 1992 and 0.4% in 1993) have the VDET high voltage off.
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Whilst the absence of the VDET in these events produces a visible degradation

in tracking performance, particularly the impact parameter resolution, the effect

is considered small enough for them to be included.

To remove events which suffer from a low geometric acceptance, a cut is

applied on the polar angle of the event axis (with respect to the beam axis) as

defined by sphericity. Events are accepted if this angle is in the range 35◦ <

θ < 145◦ (|cosθ| < 0.82). Figure 5.1 shows the event polar angle distribution for

selected1 hadronic events. The cut ensures that most tracks in an event are well

Figure 5.1: Polar angle of the event axis (with respect to the beam axis) as defined
by sphericity for selected hadronic events. For event selection the polar angle θ
is required to be in the range; 35◦ < θ < 145◦ (|cosθ| < 0.82).

contained within the sensitive regions of the detector and therefore gives rise to a

large, well defined, acceptance. The sphericity angle cut dominates the efficiency

with which hadronic events are selected, reducing the number of hadronic events

by 18.6%.

5.2 Hadronic Event Selection

The ALEPH detector records a variety of events, most of which are decays

of the Z to its various modes, γγ events, and t-channel scattering of electrons.

The Z can decay via several channels: Z → qq̄, Z → ℓ+ℓ− and Z → νν̄. The

reaction Z → qq̄ is suppressed by the invisible reaction Z → νν̄, and so the more

1 Here ‘selected’ means events passing the complete event selection as described in this
chapter with the exception of the polar angle cut itself.
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species of neutrinos there are, the greater process the Z → qq̄ is suppressed. Table

5.2 lists the decay modes of the Z [9]. In addition to these there are a small num-

Table 5.2: Dominant decay modes of the Z Boson.

Z Decay Mode Fraction (%)

e+e− 3.363 ± 0.004
µ+µ− 3.366 ± 0.007
τ+τ− 3.370 ± 0.008

hadrons 69.910 ± 0.060
invisible 20.000 ± 0.060

ber of background processes such as beam-gas interactions, stray beam electrons,

cosmic rays and synchrotron radiation. Figure 5.2 shows the reconstruction of

a typical hadronic event in the ALEPH detector. The distinguishing feature of

hadronic events is the large multiplicity of visible particles, and the large frac-

tion of the center of mass energy that they carry. The hadronic event selection

applied here is that used in the Neutral Vector Meson paper [7] and is typical of

the hadronic selection which can be found in many ALEPH QCD papers.

5.2.1 Track Cuts

Hadronic events are selected on the basis of the total charged multiplicity

and energy within an event. For this, cuts are applied to select ‘good’ charged

tracks, removing some badly reconstructed tracks and ensuring track momenta

are well measured and that the tracks originate from the interaction point. This

gives rise to a more reliable estimate of the total charged multiplicity and energy

and a reasonable agreement with the Monte Carlo.

The selection of ‘good’ charged tracks is as follows. A track must have:

• at least 4 TPC coordinates

• a polar angle in the range 20◦ < θ < 160◦

• a transverse impact-parameter |d0| < 2 cm

• a longitudinal impact-parameter |z0| < 5 cm

• a transverse momentum pt > 200 MeV/c.

After all these cuts the ratio Monte Carlo / real data for the number of

tracks selected is 1.0042 ± 0.0002. This agreement illustrates the global tuning
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Figure 5.2: Reconstruction of a typical hadronic event in the ALEPH detector.
The distinguishing feature of hadronic events is the large multiplicity of visible
particles, and the large fraction of the center of mass energy that they carry.
The overall reconstructed energy in this event is 83 GeV, the charged component
totals 48 GeV from 18 selected tracks.
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of Jetset to fit the ALEPH data. The distributions of the track cuts are shown

in Figures 5.3 to 5.6 for selected2 tracks. The distributions are discussed next.

Number of TPC Coordinates

Figure 5.3 shows the distribution of the number of TPC coordinates for

selected tracks. Tracks with no TPC coordinates are those reconstructed only

in the ITC, such tracks tend to have a poorly measured z component of their

momentum vector. A cut of at least 4 TPC hits provides a starting point for the

selection of ‘good’ charged tracks.

Figure 5.3: Number of TPC coordinates for selected tracks.

Polar Angle

Figure 5.4 shows the distribution of the polar angle for selected tracks. The

cut is mostly redundant but removes the few tracks whose momentum resolution

is very poor due to a small path length in the xy plane of the TPC.

Impact Parameters

Whilst hadronic events typically have a high charged multiplicity, back-

ground events normally of low multiplicity can gain additional charged particles,

thereby mimicking low multiplicity hadronic events, due to a variety of pro-

cesses. These processes involve interactions with the material of the detector

2 Here ‘selected’ means tracks passing all other track cuts and events are selected as de-

scribed in Section 5.1.
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Figure 5.4: Polar angle for selected tracks.

such as nuclear interactions, photon conversions, back-scatter of particles from

the ECAL. Tracks can also be gained by the failure to link successive turns of

spirals, the decay of charged tracks, the return of spiraling tracks into the TPC,

and ‘imaginary’ tracks constructed by JULIA from bad or incorrectly assigned

TPC hits. These processes usually result in tracks which do not point back to

the interaction point, thus their effects can be minimised by making cuts on the

track impact parameters d0 and z0.

Figures 5.5 and 5.6 show the distribution of the impact parameters for

selected tracks. The cuts are loose (Figures 5.5b and 5.6b) allowing tracks origi-

nating from decays away from the interaction point, for example B meson decays,

to be selected. Figures 5.5c and 5.6c show the ratio real data / Monte Carlo for

the distributions. The Monte Carlo has a tighter distribution for both d0 and

z0. For the d0 cut the real data initially selects ≈ 5% less tracks in the ±0.05 cm

region, an excess is seen for larger values of d0 and by |d0| = 0.5 cm the number

of tracks in the Monte Carlo compared to the number in the real data agrees to

≈ 0.7%, by |d0| = 2.0 cm the agreement is ≈ 0.1%. The z0 distribution shows a

similar behaviour though this is less sensitive due to its much wider distribution.

Transverse Momentum

Figure 5.7 shows the distribution of the transverse momentum for selected

tracks. Applying a pt cut of 200 MeV/c removes tracks which turn tightly in the

TPC. Since such tracks do not transverse many TPC pad rows, they therefore

suffer from a poor momentum resolution.
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Figure 5.5: Transverse impact parameter for selected tracks. (a) Monte Carlo
and real data compared: the distribution in real data is wider than that in the
Monte Carlo. (b) The cut of 2 cm is loose allowing tracks from heavy flavour
decays away from the interaction point to be selected. (c) the ratio real data /
Monte Carlo shows the wider distribution in the real data.

Figure 5.6: Longitudinal impact parameter for selected tracks. Figures (a), (b)
and (c) follow the same form as Figure 5.5. The ratio real data / Monte Carlo
shows the wider distribution in the real data. The cut is loose reducing the effect
of the discrepancy.
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Figure 5.7: Transverse momentum for selected tracks. a cut of 200 MeV/c is
applied to ensure a reasonable momentum resolution.

5.2.2 Event Cuts

Figure 5.8 shows the event charged energy3 versus the event charged mul-

tiplicity for events in the real data after applying the event sphericity angle cut.

A clear separation of the hadronic event types can be seen. The hadronic signal

is selected with an efficiency of 94.9% and a purity of 99.6% by requiring events

to have:

• a minimum of 5 ‘good’ charged tracks, and

• a minimum of 15 GeV total ‘good’ charged energy.

The track multiplicity cut removes Z → ll̄ events. Most γγ events are

removed with the event polar angle cut, the rest are removed by the charged

energy cut. Figures 5.9a and 5.9b show a good agreement between Monte Carlo

and real data for the charged energy and multiplicity distributions for the selected

events4 . All event selection criterias has been summarised in Figure 5.10.

5.3 Event Background

The level of background after event selection is dominated by tau events

with a small contribution from γγ events. Background from other processes such

3 The pion mass is assumed for all charged tracks.
4 A good agreement is expected as the tuning of the Monte Carlo relies to a great extent

on measurements in the real data of charged track distributions.
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Figure 5.8: Charged energy, ECH , versus charged multiplicity, nCH , for events in
real data after ‘good’ charged track and event polar angle cuts have been applied.
The hadronic signal is selected by requiring at least 5 good charged tracks (cut 1)
and a charged energy of at least 15 GeV (cut 2).

Figure 5.9: Charge distributions for selected events, a) charged energy, and b)
charged multiplicity. The Monte Carlo is in good agreement with the real data.
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Figure 5.10: Flow chart of hadronic event selection.
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as decays of the Z to e+e− and µ+µ−, t-channel scattering of beam electrons,

beam-gas, and cosmic rays are much smaller [37]. From Monte Carlo studies the

contributions to the selected events are given in Table 5.3.

Table 5.3: The contributions of the hadronic and background events obtained
from Monte Carlo.

Selected event Contribution in %

Hadronic 99.625 ± 0.001
Tau 0.325 ± 0.002
γγ 0.050 ± 0.004

Without the cut on the event angle, the contribution from γγ events would

be comparable with that from tau events. The rate of ρ± production in tau events

is much smaller than that in hadronic events.
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CHAPTER 6

TRACK SELECTION FOR THE

ANALYSIS

6.1 Introduction

Particle identification is important to reduce the combinatorial background

and the size of reflections. In this chapter, the selection of charged and neutral

pions for the analysis of ρ± mesons, in decay channel ρ± → π±+π0, is described,

and the results are presented. The selection of charged pions is relatively trivial,

while neutral pion selection and reconstruction is much more complicated. All

selection performances are determined from Monte Carlo studies with aim to

maximise both purity and efficiency.

6.2 Charged Track Selection

The charged track selection for analysis involves cuts on the same param-

eters as in the track selection for event selection. The polar angle and TPC

coordinate multiplicity cuts are kept the same. The impact-parameter cuts are

tightened considerably to increase the purity of selected charged pions originat-

ing from ρ± decays. A small increase in the pt cut is introduced to improve the

agreement in the impact parameter distributions and remove poorly measured

tracks. Additionally, two cuts are applied to the χ of ionisation energy loss,

dE/dx, so as to remove some kaon and proton backgrounds. The charged track

selection for the analysis is as follows:

• at least 4 TPC coordinates

• a polar angle in the range 20◦ < θ < 160◦

• a transverse impact-parameter |d0| < 0.5 cm
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• a longitudinal impact-parameter |z0| < 3.0 cm

• a transverse momentum pt > 250 MeV/c.

• if available, −2 < χ(dE/dx) < 3 (with the π± hypothesis)

After all these cuts the ratio Monte Carlo / real data for the number of

tracks selected is 1.0031± 0.0002. The details of applying the cuts are described

in the following sections.

6.2.1 Impact Parameters

Tight cuts on the impact parameters are introduced to increase the recon-

structed purity of π± mesons from ρ± mesons owing to the following reasons:

(1) About 60% of the ρ± mesons originate from the string (interaction point).

The mean lifetime of a ρ± meson is τ = 4.3× 10−24 s and corresponding

cτ value is 1.3 fm, that is originating from the interaction point. The

remaining 40% are originating from decays such as B and D mesons

having cτ less than 0.5 mm. The list of dominant ρ± sources and their

cτ values are given Table 6.1. Charged pions from ρ± in all these sources

are expected to have small d0 values. This is illustrated in Figure 6.1

where the Monte Carlo are shown after all other track cuts applied except

for χ(dE/dx) cut.

(2) The tight cuts remove tracks from the decays of neutral hadrons away

from the interaction point, mostly K0
S, and tracks from photon conver-

sions. Figure 6.1 shows the Monte Carlo d0 distributions, for background

particles are much wider than for pions from ρ± decays.

According to Monte Carlo studies, the hard cuts |d0| = 0.5 cm and |z0| =

3.0 cm remove significant number of electron, muon and pion backgrounds, but

remove less than 2% of pions from ρ±.

Table 6.1: Some ρ± sources and their cτ values.

Particle Sample decay channel cτ (mm)

B± B± → D0 + ρ± 0.49
B0 B0 → D∓ + ρ± 0.46

D± D± → K0 + ρ± 0.31
D0 D0 → K∓ + ρ± 0.12
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Figure 6.1: Transverse impact parameter distributions for reconstructed tracks
from ρ±, K0

S, and photon conversions, after all other track cuts, execpt for
χ(dE/dx), have been applied.

6.2.2 Transverse Momentum

The cut on the transverse momentum is increased from 200 MeV/c to

250 MeV/c. The cut improves the average reconstructed momentum resolution

(see Section 6.4.4) and the agreement between Monte Carlo and real data for the

impact parameter distributions.

6.2.3 Ionisation Energy Loss

Charged particle identification is performed by the measurement of ionisa-

tion energy loss, dE/dx. A particle’s energy loss is sampled in the TPC by up to

338 wires. The deviation from an assumed hypothesis is expressed as χ(dE/dx):

χ(dE/dx) =
(dE

dx
)measured − (dE

dx
)expected

σdE/dx

(6.1)

where σdE/dx is the expected dE/dx resolution normalised with a sample of min-

imum ionising pions. Note that, not all charged tracks have dE/dx information.

Figure 6.2 shows the measured dE/dx as a function of particle momentum for

electrons, muons, poins, kaons and protons.

Figure 6.3a shows χ(dE/dx) distributions of all charged particles for Monte

Carlo and real data according to the π± hypothesis1 , the Monte Carlo predictions

1 i.e. the mass of charged pion is assigned to all charged particles.
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for the pions, kaons and protons are demonstrated as well. In Figure 6.3b,

the χ(dE/dx) distribution for charged pions from ρ± decays are compared to

the distributions for non-pionic charged particles. Two cuts are applied in the

selection of π± candidates. The cut positions are optimised such that the product

of the selection efficiency (ε) × purity (P) of the pions is maximum. The optimum

cuts correspond to a selection of the charged particles within −2 < χ(dE/dx) < 3.

Figure 6.2: Measured dE/dx versus particle momentum for electrons, muons,
poins, kaons and protons.

After the cuts of χ(dE/dx) are applied, about 40% of kaons and 65%

of protons are removed, and only 2% of pions from ρ± are removed. This is

illustrated in Figure 6.3b. Together, the cuts applied on impact parameters and

χ(dE/dx) allow us to select pions from ρ± mesons with 96% efficiency.
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Figure 6.3: χ(dE/dx) distributions according to the π± hypothesis, and the opti-
mum cuts selecting pions from ρ± with 98% efficiency. (a) Comparison of Monte
Carlo and real data, and Monte Carlo predictions for all tracks π±, K± and pp.
(b) Monte Carlo predictions for each species. After these cuts a large number of
the kaons, protons and electrons are removed while keeping most of the pions.
However, muons cannot be eliminated since the muon mass is very close to pion
mass.
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6.3 Neutral Pion Selection

6.3.1 π0 Reconstruction

Neutral pions decay to two photons (π0 → γγ) with a branching ratio

of 98.798 ± 0.032% [9]. For this analysis, photons are reconstructed using the

ECAL; photons converting to an e+e− pair within the material of the detector,

7% on average, are not selected. π0 candidates are selected from invariant mass

distributions of pairs of photons. Invariant mass spectra are formed using the

equation2

M2 = 2E1E2(1 − cos θ12) (6.2)

where M is the invariant mass of the reconstructed photons whose energies are E1

and E2 measured in the ECAL, and θ12 is the angle between two photons. Can-

didates are either true, forming a pion signal, or false, forming a combinatorial

background. This is illustrated in Figure 6.4.

Figure 6.4: An example of the invariant mass of photon pairs around a π0 peak.
Correct combinations of photon pairs result in a peak representing the π0 signal,
incorrect combinations result in a combinatorial background (doted line).

2 The derivation can be found in Appendix A.
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6.3.2 Photon Selection

Photon candidates are selected from electromagnetic clusters. A 1 GeV cut

on the photon energy is applied for both barrel and endcap regions of the ECAL

in order to gain a reasonable agreement between the Monte Carlo and real data to

avoid large systematic errors in the efficiency correction. A cut on photon energy

also improves π0 purity, especially importrant for the reconstruction of the ρ± at

low momentum. Figure 6.5 shows the energy spectrum of photons in the ECAL,

barrel, and endcap regions. In the lower energy zone, the distributions differ

significantly between Monte Carlo and real data. After 1 GeV, distributions are

in much better agreement each other.

Figure 6.5: Energy distributions for photons in (a) the ECAL, (b) the endcap and
(c) the barrel regions. Low energy photons are not modelled very well, especially
in barrel region.

Improvements in the agreement between the Monte Carlo and real data

after the 1 GeV photon energy cut are also clear in the polar angle distribution

for photons, Figure 6.6.
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Figure 6.6: Polar angle distribution of photons, (a) before the cuts on photon
energy, (b) after the photon energy cut of 1 GeV.

6.3.3 π0 Energy

The lower energy bound for π0 candidates is 2 GeV, i.e. twice the photon

energy cut. An upper bound of 18 GeV is introduced to remove the uncertainties

in the efficiency correction for very high energy π0s. The determination of π0

efficiencies is discussed in detail in Chapter 10.

6.3.4 π0 Topology

Invariant mass spectra are formed from pairs of photons passing the photon

selection criteria. The topology of the reconstructed π0 is found to be important.

Four topologies, illustrated in Figure 6.7, are defined3 as follows:

• topology 1: photon pairs taken from one ECAL cluster within which two

subclusters are resolved.

• topology 2: photon pairs taken from one ECAL cluster within which

more than two subclusters are resolved.

• topology 3: photon pairs taken from two ECAL clusters, within each of

which no subclusters are resolved.

3 For these definitions, ‘resolved subclusters’ are counted if they have at least 0.3 GeV

energy.
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• topology 4: photon pairs taken from two ECAL clusters, within one or

both of which more than one subcluster is resolved.

Topologies 1 and 3 are known as ‘clean’ topologies as they have no addi-

tional subclusters associated to them. Topologies 2 and 4 are ‘unclean’ as they

are contaminated by the chance merging of photons from different π0s or ‘fake’

photons from various processes such as fragmenting showers and remnants of

neutral hadrons whose shower begins in the ECAL.

Figure 6.7: Geometric representation of four possible π0 topologies.

6.3.5 π0 Mass Window

The π0 signal is selected from a mass window whose peak position and

width vary as a function of the reconstructed π0 energy and topology. The width

of the window is taken as ± 2σ, where σ is the half width at half height for the

reconstructed π0 signal. The reconstructed mass and width must be carefully

calibrated, this procedure is discussed in detail in Chapter 7.

6.3.6 π0 Ranking

A crucial step in the extraction of the ρ± signal is the improvement in the

purity of selected π0 candidates. The poor purity at low momentum is due to

the large multiplicity of low energy photons giving rise to a large combinatoric

background. The purity is improved by a ‘ranking’ method; all π0 candidates

that share photons with other candidates are ranked in an order determined by
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a π0 estimator based on the photon pair opening angle θ12 and the χ2 value from

the mass constraint. The details of Ranking can be found in Chapter 8.

6.3.7 π0 Mass Constraint

Uncertainties in the reconstructed momentum vector of a π0 are introduced

due to the finite ECAL spatial and energy resolution. By making use of the

relation:

m2
r = 2E1E2 (1 − cos θ12) (6.3)

relating the reconstructed π0 mass mr to the reconstructed photon energies E1

and E2 and their opening angle θ12, the momentum of π0 candidates can be

refitted [38] by constraining their mass to the nominal π0 mass, 135 MeV/c2.

This improves the momentum resolution and leads to a significant increase in

the signal significance. Two different refitting methods are used depending on

the topology of the π0 candidate. Detailed mathematical formulations can be

found in Appendix B.

Method 1

For π0 topologies 3 and 4 (low energy π0s) the photon opening angle is large,

and the uncertainty in the reconstructed momentum is almost entirely due to the

photon energy resolution. For the refitting, only the photon energies E1 and E2

are allowed to vary, whilst their directions are kept fixed. The calculation is done

with the technique of Lagrange multipliers (see App. B.3.1). The photon energies

are re-evaluated by minimising χ2. Since the exact solutions to the minimisation

are complex only approximate solutions are taken. The photon energies are

rescaled and the π0 invariant mass recalculated. The whole procedure is repeated

until the reconstructed invariant mass is within ±10−4 MeV/c2 of the nominal

π0 mass. If the original reconstructed invariant mass is close to the nominal

π0 mass then usually only one iteration is required, the number increases for

reconstructed masses further away from the nominal mass.

Method 2

For topologies 1 and 2 (high energy π0s) the photon pair opening angle

is small and so the angular resolution is no longer negligible compared to the

energy resolution. Also, for these topologies the opening angle is overestimated,

resulting in an underestimate of the π0 energy. The effect increases with energy

and is corrected for in the refit. In the refitting procedure E1, E2 and cos θ12
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are allowed to vary. The minimisation of the χ2 is performed by the Newtonian

method (see App. B.3.2).

6.4 Reconstruction Performances

Details of reconstruction efficiency, purity and momentum resolution, have

a direct effect on the reconstructed ρ± signal significance. Reconstruction per-

formances for selected pions are determined from Monte Carlo studies, some

distributions are presented in the following sections.

6.4.1 Momentum and Energy Distributions

The momentum spectra of generated and reconstructed π±, and energy

spectra of π0s, are given in Figure 6.8. For these plots, no upper energy is

applied to the π0s. The distributions help us to form the purity and efficiency

distributions of the pions.

Figure 6.8: Momentum distributions of π±s, and energy distributions of π0s.



70

6.4.2 Pion Purity

The purity, P, of the selected π±s and π0s are defined as follows:

Pπ± ≡ number of reconstructed good charged tracks matched to π±

number of reconstructed good charged tracks

Pπ0 ≡ number of reconstructed π0 candidates matched to π0

number of reconstructed π0 candidates

In Figure 6.9 the purity of the selected charged pions is shown. The purity is

initially about 100% falling gradually with increasing momentum. For charged

pions from ρ± decays, the purity is initially 1% increasing slowly with increasing

momentum and decreasing rapidly at very high energy.

In Figure 6.10 the purity of selected neutral pions is shown. The purity is

initially very low due to the large combinatorial background at low energy. The

purity rises with energy peaking at 80%. A similar behavior is seen for π0s from

ρ± decays.

6.4.3 Pion Efficiency

The selection efficiency, ε, of π±s and π0s can be defined as follows:

επ± ≡ number of reconstructed good charged tracks matched to π±

number of π± generated at the truth level

επ0 ≡ number of reconstructed π0 candidates matched to π0

number of π0 generated at the truth level

The selection efficiency for charged and neutral pions are shown in Figure 6.11

and 6.12. The generated and reconstructed π± momentum and π0 energy spectra

are shown in Figure 6.8.
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Figure 6.9: Purity of reconstructed charged pions as a function of momentum for
all pions, and pions from the ρ± meson. The maximum ρ± pion purity is about
4% and falls rapidly to zero at 40 GeV/c.

Figure 6.10: Purity of reconstructed neutral pions as a function of energy for all
pions and pions from the ρ± meson.
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Figure 6.11: Charged pion selection efficiencies.

Figure 6.12: Neutral pion selection efficiencies.
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6.4.4 Momentum and Energy Resolution

The momentum resolution, σp, for charged particles, is measured from the

Monte Carlo and defined as the ‘half width at half maximum’ for the distribu-

tion prec/ptru. The residual, δp , is defined as the displacement of the peak of

the distributions from one. The results are shown in Figure 6.13. Resolution

reduces at high momentum because the tracks become very straight, and at low

momentum due to scattering of the particle with the gas in the TPC.

Figure 6.13: Measured momentum resolution, σp, and residuals, δp, as a function
of momentum for all reconstructed charged particles.

Similarly, the energy resolution, σE , and the residual, δE , can be inferred

from the distribution of Erec/Etru for π0s. An example distribution before and

after refitting is shown in Figure 6.14. The distribution before kinematic fit is

wider and has larger residual. The plots for σE and δE as a function of π0 energy

are shown in 6.15. From these figures, improvement in the energy resolution and

residuals, due to the mass constraint, are clearly seen.
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E(rec) / E(tru)

Figure 6.14: An example of π0 Erec/Etru distribution, before (dashed line) and
after (solid line) the kinematic fit.

Figure 6.15: Energy resolution, σE, and residuals, δE, as a function of energy for
all reconstructed π0s. The ‘refitted’ values (full circles) are results for π0s after
a mass constraint has been applied.
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CHAPTER 7

π0 CALIBRATION

7.1 Introduction

π0 candidates are built by combining pairs of photons. Selecting π0s from

a mass window around the reconstructed π0 peak provides an initial rejection of

most of the combinatorial background. To define a selection mass window, the

signal peak and width needs to be defined. These parameters are seen to vary

with π0 energy and topology, therefore, a detailed calibration study has been

performed for this analysis.

Figure 7.1 shows that the position of the peak and width change with

increasing π0 energy. The running of the peak position is due to detector ef-

fects [39]. The change in the width can be explained by a simple expression.

Theoretically, the width of the signal, σM , varies with pion energy as follows1

σM

M
=

1

2

[

σE1

E1

⊕ σE2

E2

⊕ σθ12

tan(θ12/2)

]

(7.1)

where σE1
and σE2

are the energy resolution of the photons whose energies are E1

and E2, σθ12
is the spatial resolution of the calorimeter for the measured angular

separation, θ12, of the two photons. However, there are additional detector effects

and so this formulation is only approximate.

The peak position and width depends not only on the energy but also

topology due to clusterisation effects. Details of the mass window calibration are

given next.

7.2 Calibration

Using Monte Carlo, we can flag the true π0 signal and plot its mass spectra

in energy intervals, E, and for different topologies, T . Studying the π0 signal

1 The derivation can be found in Appendix A.
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Figure 7.1: Example π0 peaks for reconstructed mass spectra (solid line) and
Monte Carlo matched signal (dashed line): With increasing π0 energy (from top
plot to bottom plot), the position of the peak is seen to increase.
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peak position, m, and width, σ, we can calibrate (i.e. parametrise) two functions:

m(E, T ) and σ(E, T )

Figure 7.2 is an example of a Monte Carlo matched π0 signal used for

generating calibration fitting data.

Figure 7.2: Example of a Monte Carlo matched π0 signal fitted with a Gaussian
curve, used for generating calibration data.

The calibration procedure is as follows:

1. The mass spectra is plotted for the matched π0 signal for each topology

in 1 GeV energy intervals.

2. The peak (signal) is fitted with a Gaussian from which the positions a

and b, taken at half height, are measured.

3. The half width at half maximum (HWHM) σ = (b−a)/2, and the center

of the mass window, m = (b + a)/2 are evaluated.

The results for all energy intervals are presented in Figures 7.3 and 7.4. A 4th

order polynomial fit function is selected for topology 1 and 2, and 3rd order for

topology 3 and 4, to parameterise the points. The functions have the general

form:

P4(E, T ) = a0 + a1E + a2E
2 + a3E

3 + a4E
4 (for T = 1, 2)

P3(E, T ) = a0 + a1E + a2E
2 + a3E

3 (for T = 3, 4) (7.2)
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Figure 7.3: π0 mass vs energy for each topology and corresponding calibration
functions.
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Figure 7.4: π0 width vs energy for each topology and corresponding calibration
functions.
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The parameters (i.e. coefficients ai of the polynomials) are determined by the

least-square fitting method. The results are given in Table 7.1:

Table 7.1: Results for the mass and width parameters obtained from the polyno-
mial regression in the π0 calibration.

Mass parameters
Toplogy a0 a1 a2 a3 a4

1 118.86 4.2403 -0.2767 0.0121 -0.00014
2 125.81 3.7536 -0.3050 0.0136 -0.00006
3 166.76 -11.539 2.1059 -0.1086 -
4 140.87 1.2325 0.1704 -0.0059 -

Width parameters
Toplogy a0 a1 a2 a3 a4

1 36.203 -4.8385 0.4166 -0.01438 0.00021
2 34.801 -2.7759 0.2247 -0.01183 0.00036
3 45.590 -9.6605 1.1898 -0.04386 -
4 46.614 -8.4634 0.9544 -0.02736 -

7.3 Corrections

Two corrections are required in calibration related to topologies and the

use of calibration functions in the real data.

Correction 1

In Figure 7.3 and 7.4, low statistics for energies above 10 GeV make it difficult

to calibrate the peak positions and width for topology 3 and 4. Therefore, for

energies above 10 GeV the functions from topology 1 and 2 are used for topology

3 and 4 respectively with a +10 MeV/c2 shift.

Correction 2

The parameters of Equations 7.2 are calculated just for the Monte Carlo signal.

In the reconstruction level, when we look at the comparison of the peak position

between Monte Carlo and real data, we see that there is a small difference, δ,

being nearly constant for all energies, in the the peak positions. An example is

shown in Figure 7.5.

In general, the difference is of the order of a few MeV/c2 and it is also de-

pendent on the topology. Figure 7.6 shows all mass differences for each topology.

Note that the real data values are always less than Monte Carlo values. Different

constant correction factors are selected for different topologies. The factors are
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shown as dashed lines in Figure 7.7. Numerically they are:

For topology 1 : 3.80 MeV/c2

For topology 2 : 2.46 MeV/c2

For topology 3 : 6.91 MeV/c2

For topology 4 : 3.46 MeV/c2

When we use real data we subtract these values from the mass functions obtained

from Monte Carlo studies. However, the widths are assumed to be the same.

Figure 7.5: An example of a mass difference, δ, between Monte Carlo and real
data. It is required to make a small correction for real data with respect to the
Monte Carlo.
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Figure 7.6: π0 peak mass vs energy for each topology. The peak mass in the real
data is always less than that in the Monte Carlo by a few MeV/c2.
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Figure 7.7: π0 peak mass vs energy difference between Monte Carlo and real data
for each topology. The correction factors (shown as dashed line) are average
values of the points in the selected regions.
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7.4 Calibration Performance

The selection algorithm is applied both to Monte Carlo and real data for

each topology. The calibration functions appear to select properly the π0 candi-

dates around the peak positions for all energy intervals. Examples for a selected

energy interval are shown in Figure 7.8.

Figure 7.8: An example to show the performance of the π0 calibration for each
topology. Two photon invariant mass spectra around the π0 peak, for π0 energy
between 2 GeV < Eπ0 < 3 GeV, are plotted for reconstruction level (solid line),
π0 signal (dashed line) and ±2σ mass window (dotted line). The plots in the left
column are for Monte Carlo , and right column are for real data. These results
indicate that the calibration functions give a correct selection of the π0 peak.
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CHAPTER 8

THE RANKING METHOD

8.1 Introduction

The selection of π0 mesons in the two photon decay mode in particle in-

teractions can be a relatively simple task where candidates are selected from a

mass window around the signal peaks. However, in environments where particle

multiplicities are high, greater analysis and optimisation is required if one is to

gain optimal selection efficiency and purity.

In this chapter, first, a statistical treatment of π0 reconstruction is pre-

sented. Then, the standard method is introduced for the selection of π0 candi-

dates. Later, the π0 estimators for distinguishing between background and signal

are developed, and finally, the detailed study of a Ranking Method for increasing

the purity of reconstructed π0s is presented.

8.2 π0 Reconstruction

Consider n photons that are taken (measured) from the ECAL. Assuming

each photon originates from a π0, we can form π0 candidates by building photon

pairs as follows:

PHOTONS SELECTED PAIRS (combinations)

1 12 23 34 45 ... (n-1)n

2 13 24 35 . .

3 14 25 . . .

4 15 . . .

5 . . . 4n

. . . 3n

. . 2n

n 1n
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The number of π0 candidates obtained from n photons taken a pair at a time is:

C(n, 2) =
n!

2!(n − 2)!
=

n(n − 1)

2
(8.1)

Hence, n(n− 1)/2 candidates form signal and background, S + B. But only n/2

of them are true forming S. From now on, the purity (or signal probability):

P =
S

S + B
=

n/2

n(n − 1)/2
=

1

n − 1
(8.2)

and signal-to-background ratio is:

S

B
=

n/2

n(n − 1)/2 − n/2
=

1

n − 2
(8.3)

The result indicates that the purity and S:B decreases approximately propor-

tional to the number of pions in the event (e.g. for n = 20, P ≈ 5%). The

selection of neutral pions with a high purity and a high efficiency is important

in the formation of ρ± mass spectra. The poor purity of low energy π0s can

be improved by removing some combinatorics: initially by selecting candidates

from a mass window, and secondly by forming additional discriminators. This is

discussed further in the following sections.

8.3 The Standard Method

In the standard method, π0 candidates are directly selected from a mass

window (around the π0 peak) of the two-photon invariant mass spectra as illus-

trated in Figure 8.1.

The selection of π0s with a high purity and efficiency is important. In this

study, we define the purity (P) and efficiency (ε) as follows:

P =
S

S + B
(8.4)

ε =
S

S0

(8.5)

Here, S is the number of selected signal, B is the number of background for the

given mass window, and S0 is the total number of signal within ±6σ mass window,

where σ, defined as half width at half maximum, represents the calibrated mass

resolution.
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The purity of the selected π0s can be improved by tightening the mass

window from, for example, ±3σ to ±2σ though with a reduction in efficiency. An

optimal selection window, where both the purity and efficiency are maximised,

can be determined. We define the optimisation condition such that the product

ε × P is maximum. This is equivalent to maximising the signal significance.

Figure 8.2 shows the effect of varying the selection mass window between ±1σ

and ±6σ. The optimal width is about ±2σ (±1.7σ) where the product ε × P
is high; in some analyses a wide mass window of ±3σ is preferred to avoid

systematic uncertainties in the efficiency corrections.

Figure 8.1: A mass window around the pion peak can be selected to remove
most of the background. The width of the window can be described in terms of
a number of σs representing the mass resolution. A width of ±2σ or ±3σ is
common selecting true pions while rejecting most of the background.

8.4 π0 Estimators

Initial mass window selection (e.g. ±3σ), forms the starting point to study

a method for improving the signal significance. An estimator, obtained from

kinematic properties of the π0s, can be used to discriminate between π0 signal and

background. Three basic estimators are built from the following distributions:

• chi-square (χ2) values from the mass constraint (Equation B.2)

• photon pair opening angles, θ12

• 2D scatter distribution of χ2 vs θ12
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The one-dimensional distributions are given in Figure 8.3a and Figure 8.3b.

True π0s tend to have smaller χ2 values and smaller opening angles than false π0s.

The estimators, based on these distributions, can therefore be used to attempt

to distinguish between correct combinations (signal) and wrong combinations

(background) of photon pairs.

Combining the estimators into a two-dimensional distribution increases the

potential for discrimination, this distribution is shown in Figure 8.3c. Various

forms for a discriminating function have been investigated, including rectangular

and triangular shapes and ellipses. For the data used in this study, an ellipse is

found to perform the best. The solid curve shown in Figure 8.3c, and has the

form:

(χ2/A)2 + (θ12/B)2 = 1 (8.6)

The discriminating function (i.e. the parameters A and B in Equation 8.6) is

optimised such that the product of efficiency and purity is maximum for the data.

This function can be used directly in the selection of π0 candidates. However,

greater performance can be gained by using this function as an estimator in a

Ranking method detailed in the next section.

Figure 8.2: Effect of varying the mass window on the π0 selection efficiency,
purity, and their product. The π0 mass window width is varied from ±1σ to ±6σ.
The selection efficiency of the π0s are calculated with respect to ±6σ window since
100% of the π0 signal is inside in this window. Improvement in the purity can
be gained by tightening the mass window though with a reduction in efficiency.
Statistically, an optimal selection mass window can be found by maximising the
product ε × P. The optimum value is around ±2σ.
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Figure 8.3: Ranking estimators for π0. (a) The distributions of χ2 (from a mass
constraint), (b) photon pair opening angle, θ12. True pions are represented by
solid lines, incorrect combinations of photons yield false pions (combinatorial
background) are represented by dashed lines. (c) scatter plot of χ2 versus θ12,
signals are represented by circles, backgrounds by crosses. The combinatorial
background tends to have larger χ2 and θ12 values than true pions, this feature is
used to discriminate between pions and background.
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8.5 Ranking

After the initial mass window selection, additional improvement is achieved

by applying the estimator indirectly with a ‘Ranking’ method. The algorithm is

as follows:

1. Pion estimator values are calculated for each pion candidate in an event.

2. Pions are then ranked in order of their estimator with the smallest esti-

mator values (most likely to be true pions) nearer the top of the list.

3. A scan is then made through the list for pairs of pions which share

photons. When such a pair exists, one or both of the candidates must

be false; the candidate with the largest estimator value is removed.

The Ranking method involves three main steps; first parameters for the

Ranking estimator are found, then the Ranking estimator is optimised, and fi-

nally the Ranking and selection procedure is applied. More information about

the Ranking method can be found in [40].

An example of the Ranking method is shown below for an event where five

pions candidates, selected from a ±3σ mass window, are reconstructed from the

photons of four pions.

Selected candidates before Ranking Selected candidates after Ranking

Pion Photon Truth Pion Photon Truth

# est. 1 2 info. # est. 1 2 info.

= ==== == == ===== = ==== == == =====

A 0.05 A1 A2 TRUE A 0.05 A1 A2 TRUE

B 0.14 B1 B2 TRUE B 0.14 B1 B2 TRUE

C 0.24 C1 C2 TRUE C 0.24 C1 C2 TRUE

X 0.29 A1 B2 FALSE D 0.33 D1 D2 TRUE

D 0.33 D1 D2 TRUE

P = S/(S + B) = 4/(4 + 1) = 0.80 P = S/(S + B) = 4/(4 + 0) = 1.00

The photons are labeled A1, A2, B1, B2, C1, C2 and D1, D2 representing the

photons from the four true pions A, B, C, and D. The fifth false pion candidate is

reconstructed from photons A1 and B2. As the mass of this false pion is in the

region of the pion mass signal and its pion estimator is small (less than 1.0) this

candidate is not rejected by the standard method; it is however rejected in the

Ranking method where in this example pion A removes pion X from the list as

they both share photon A1. Note that you can compare the purities given at the
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end of each table. In this example the Ranking algorithm has removed the false

pion with no loss of true pions. This ideal behavior is not always the case as

frequently true pions are removed and/or some false pions are preserved. This

is illustrated in the next example containing 11 π0 candidates.

Selected candidates before Ranking Selected candidates after Ranking

Pion Photon Truth Pion Photon Truth

# est. 1 2 info. # est. 1 2 info.

= ==== == == ===== = ==== == == =====

A 0.01 A1 A2 TRUE A 0.01 A1 A2 TRUE

0.02 X C2 FALSE 0.02 X C2 FALSE

B 0.03 B1 B2 TRUE B 0.03 B1 B2 TRUE

C 0.05 C1 C2 TRUE D 0.46 D1 D2 TRUE

0.08 Y C2 FALSE 0.55 C1 F2 FALSE

0.10 X Y FALSE E 0.58 E1 E2 TRUE

D 0.46 D1 D2 TRUE

0.55 C1 F1 FALSE

0.55 C1 F2 FALSE

E 0.58 E1 E2 TRUE

F 0.64 F1 F2 TRUE

0.81 E2 F1 FALSE

0.84 Z E2 FALSE

P = S/(S + B) = 6/(6 + 7) = 0.46 P = S/(S + B) = 4/(4 + 2) = 0.67

Here, only four out of the six true pions are selected, and, two out of the seven

false candidates are not rejected. The list contains six photon pairs from six pions

(A to F) plus three solitary photons (X, Y, and Z) with their partner photons

removed by a 1 GeV energy cut. Pion C is removed by the combination of

photons X and C2 which results, by chance, in a pion candidate with a smaller

estimator value. Pion F having a relatively large estimator value is removed by

the combination of photons C1 and F1 (this combination surviving due to the

earlier removal of pion C).

On average however, Ranking greatly improves the selection purity relative

to the standard method with some additional reduction in selection efficiency.

For this example event, even with a loss of two signals, it is clear to see that

the purity gain is about 20% after Ranking. More detailed comparisons of the

standard and Ranking method are presented in the next section.
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8.6 Performance of the Ranking Method

To investigate the performance of the Ranking method, the width of the

mass window, and pion energy, are varied. The Ranking selection performance is

compared to the performance of the standard method where the π0 discrimination

is based only on a mass window cut. Performance is measured in terms of the

product efficiency ε and purity P. Results of this study are discussed in detail

below.

8.6.1 π0 Estimator Effect

As described in Section 8.4, the χ2 and θ12 can be used as discriminators.

Figure 8.4 shows a comparison of these two discriminators used as Ranking es-

timators. Each estimator improves on the standard method. But the estimator

obtained from the 2D distribution of χ2 vs θ12 has the best performance for each

value of the mass window, therefore, this estimator is used in our analysis. Note

that, the 2D-estimator function, Equation 8.6, is re-optimised for the Ranking

method, the optimal function is found to be:

R = (0.04 χ2)2 + θ2
12 (8.7)

Figure 8.4: Comparison of the product ε × P values for three π0 estimators and
the standard method. Here the mass window width is varied. All of the Ranking
estimators improve the product ε × P values relative to the standard method.
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8.6.2 π0 Energy

Figure 8.5 shows the response of the two selection methods with respect

to pion energy. Purity and product ε×P is improved with a small reduction in

efficiency, when applying Ranking. Improvements are seen throughout the whole

energy range, with the greatest improvements between 3 and 12 GeV.

Figure 8.5: Energy distribution of pions before and after Ranking. Ranking yields
improvement in pion purity and product ε×P with a small reduction in efficiency.

8.6.3 Mass Window

Figure 8.6 shows the effect of varying the selection mass window between

±1σ and ±6σ. Reducing the width of the window (cutting tighter into the signal

peak) increases the signal-to-background ratio thereby increasing purity though

at the expense of efficiency which falls rapidly for cuts below ±2σ. For both

methods, the optimal width is typically around ±2σ where ε × P is maximum.

While the Ranking method gives less efficiency, the improvement in purity results

in a larger ε × P value and therefore large signal significance. The fall in the
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ε × P value with increasing mass window is not sharp. This is an important

feature allowing one to chose a wider mass window (e.g. ±3σ or ±4σ) without a

significant loss in ε×P, thus avoiding systematic errors relating to the selection

of the π0 peak.

Figure 8.6: Comparison of purity, efficiency, and product (ε×P) values for two
pion selection methods as a function of mass window width. The improvement
in the pion purity is about 21% with a loss in efficiency of 20% in the Ranking
method. But, the ε × P values are much better than the standard method. So,
the Ranking method allows us to select a wider mass window.

8.6.4 Invariant Mass

It is interesting to see shape of the two-photon invariant mass spectra

before and after Ranking, Figure 8.7. Most of the background is killed by the

Ranking method. So, the mass spectra within ±3σ π0 mass window contains a

lot of signal and the Ranking mass spectra looks similar to the a signal peak.
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Figure 8.7: Two-photon invariant mass spectra before and after Ranking. The
Ranking method is applied to ±3σ mass window. The Ranking method kills 66%
of background and 18% of signal.

8.7 Example Applications

The performance of the Ranking method for the selection of π0 is demon-

strated in two examples applied to the real data.

Example 1

One of the decay modes of the η and ω is three pions: η → π+π−π0, ω → π+π−π0.

Combinatorial background is very large in the three-pion mass spectra making

extraction of an accurate value for the signal difficult. To attempt to reduce

this background, the Ranking method is employed to improve the purity of π0

selection. Figure 8.8 shows an example of one such mass spectra before and after

Ranking. The Ranking method yields significant improvement in π0 purity. Af-

ter Ranking, η and ω signals seems to be clearer, fitting errors are reduced both

statistically (less background) and systematically (more stable fits).

Example 2

The ρ± meson decays into two pions: ρ± → π0π±. The same procedure as in

Example 1 is applied. Results are shown in Figure 8.9. The ρ± signal is clearer

after Ranking.
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Figure 8.8: Three-pion invariant mass spectra, for two different momentum in-
tervals, xp = pparticle/pbeam, before, and after, applying Ranking to improve the
purity of π0. All charged particles are assumed to be π± and π0 candidates are
selected from ±3σ mass window. η and ω signals are seen around 548 MeV/c2

and 780 MeV/c2, respectively. After Ranking, the signals appear clearer. When
fitting mass spectra whose background is very large Ranking both improves the
statistical significance of the fit and the fit stability.

Figure 8.9: Two-pion invariant mass spectra, before, and after Ranking. ρ±

signals seen around 775 MeV/c2. After Ranking, the signal is clearer.
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CHAPTER 9

EXTRACTION OF THE ρ±(770)

SIGNAL

9.1 Introduction

The rate and cross-section of the ρ± meson is extracted from the invariant

mass distributions of their daughter pions, ρ± → π± + π0 (BR ≈ 100%), by

fitting the invariant mass to a sum of a background and signal functions.

It is found that the extraction of the ρ± yield from mass spectra is com-

plicated by the large width of the resonance, by the residual Bose-Einstein cor-

relations that affects both signal and background shape, by the reflections from

other mesons (especially ω → π0π+π−), by the partially reconstructed signal,

and by low signal-to-background ratio due to large combinatorics.

9.2 Two-Pion Invariant Mass

Charged and neutral pion candidates are selected as described in Chapter

6. The invariant mass, m(π±, π0), of the ρ± meson is calculated from:

m2(π±, π0) = E2
ρ± − p2

ρ±

= (Eπ± + Eπ0)2 − (~pπ± + ~pπ0)2 (9.1)

where E2
π = p2

π + m2
π with mπ± ≈ 140 MeV/c2 and mπ0 ≈ 135 MeV/c2 for the

charged and the neutral particles respectively, ~pπ are the measured momentum

vectors, and Eπ are the calculated particle energies. Combinations of the pions

originating from ρ± mesons, yields a wide signal peak. Wrong combinations

(one, or both, pions not originating from ρ±) result in a smooth combinatorial

background.
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9.3 Signal Reconstruction

The data are analysed in

• six intervals of scaled momentum: xp = pρ/pbeam

• nine intervals of scaled energy: xE = Eρ/Ebeam

Here pbeam ≈ Ebeam (about 45.6 GeV) is the LEP beam momentum or en-

ergy. The result of measurements in xp intervals are compared with those of

the ALEPH ρ0 measurement in [7], and the result for xE intervals are compared

with the OPAL measurements in [8]. These intervals are shown in Table 9.1.

Since signal to background is too small for lower momenta and energy, only

xp > 0.05 and xE > 0.05 is considered.

Table 9.1: Scaled momentum and scaled energy intervals and ranges.

Interval xp range xE range
1 0.05 ≤ xp < 0.10 0.050 ≤ xE < 0.100
2 0.10 ≤ xp < 0.20 0.100 ≤ xE < 0.125
3 0.20 ≤ xp < 0.30 0.125 ≤ xE < 0.150
4 0.30 ≤ xp < 0.40 0.150 ≤ xE < 0.200
5 0.40 ≤ xp < 0.50 0.200 ≤ xE < 0.300
6 0.50 ≤ xp < 1.00 0.300 ≤ xE < 0.400
7 0.400 ≤ xE < 0.600
8 0.600 ≤ xE < 0.800
9 0.800 ≤ xE < 1.000

Using the Monte Carlo, one can study the theoretical shape of the momen-

tum and energy distributions for the generated and reconstructed ρ± mesons.

The scaled momentum and the scaled energy spectra, and reconstruction effi-

ciencies for the measurement of the ρ± meson are shown in Figure 9.1.

Figure 9.1a shows Monte Carlo momentum distributions for generated ρ±

mesons (dotted line) and for reconstructed ρ± mesons (solid line). Figure 9.1b

shows the ρ± reconstruction efficiency calculated by dividing the reconstructed

spectra by the generated one. The six momentum intervals are indicated as

well. Similarly, the scaled energy distributions for generated and reconstructed

ρ± mesons, and corresponding reconstruction efficiency together with the nine

energy different intervals are shown in Figure 9.1c and 9.1d respectively. Note

that, for xp = xE > 0.05, the two distributions are approximately the same.

The mean efficiency in each interval is used to correct the extracted signal

in both Monte Carlo and real data.
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Figure 9.1: Scaled momentum and energy spectra and reconstruction efficiencies
for the ρ± meson in the Monte Carlo. (a) Distribution of xp for generated ρ±s
(dotted line) and for reconstructed ρ±s (solid line). (b) Reconstruction efficiency
and the six momentum intervals used in extracting ρ± mesons. Similarly, xE

distributions and corresponding reconstruction efficiency together with the nine
energy intervals are shown in Figure (c) and (d) respectively.
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9.4 Signal Extraction and Fitting Procedure

To extract the production rate of the ρ±, the invariant mass distribution

is fitted (using the method of least squares) as a sum of a background and signal

function. In this section, Monte Carlo models for each component contributing

to the π0π± invariant mass will be described in detail.

9.4.1 Signal Shape

The basic line shape for the ρ± signal is a relativistic p-wave Breit-Wigner:

RBW (m) =
m · m0 · Γ(m)

(m2 − m2
0)

2 + m2
0 · Γ2(m)

(9.2)

where m is the two-pion invariant mass evaluated from the Equation 9.1, m0 is

the resonance peak mass, and Γ is the mass dependent width. Various parame-

terisations for the Γ have been suggested in [16]. An example is:

Γ(m) = Γ0 ·
(

q

q0

)3
2q2

0

q2
0 + q2

(9.3)

where Γ0 is the nominal width (i.e. FWHM of the resonance), q is the mo-

mentum of the decay products in the rest frame of the parent, and q0 is the

momentum when m = m0 [7]. q can be written in terms of the particle masses

as follows:

q2 =
m2 − m2

π± + m2
π0

4m2
− m2

π0 (9.4)

Monte Carlo studies can be used to check how well the fitting method

reproduces the number of ρ±s. However, Jetset uses a non-relativistic Breit-

Wigner shape:

BW (m) =
(Γ0/2)2

(m − m0)2 + (Γ0/2)2
(9.5)

with the tails of the distribution truncated outside the mass range 0.3 and 1.3

GeV/c2. Therefore, the shape of the ρ± is determined separately for the real

data and the Monte Carlo samples.

Figure 9.2 shows the BW and RBW function plots for the nominal values,

m0 = 775.8 ± 0.5 MeV/c2 and Γ0 = 151.5 ± 1.2 MeV/c2 [9]. The BW function

is symmetric, while the RBW is not. The lower tail of the RBW goes to zero at

the mass threshold of m = 0.28 GeV/c2. The upper tail, according to Equation

9.2, is endless, with about 90% of the signal is contained below the mass of 2

GeV/c2.

An important consideration is the effect of partially reconstructed ρ± mesons

where a π0 is reconstructed from one photon originating from the ρ± signal and

one that is not. Such a combination contains most of the kinematics of the ρ±
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signal and for this reason the partial signal has a similar, but wider shape. Note

that π0 Ranking reduces the number of partially reconstructed ρ±s, and does not

permit a signal to be reconstructed twice (once fully reconstructed, and again

partially reconstructed).

Figure 9.2: Two normalised ρ± signal profiles for the nominal values m0 and Γ0.
(a) The non-relativistic Breit-Wigner and resonance parameters, m0 and Γ0. (b)
The relativistic Breit-Wigner is used to extract the real data signals.

The width and peak mass of the resonance are different to the nominal

values due to resolution effects, which is dominated by the π0 component. The

mass resolution Γres and the peak mass mres parameters of ρ± mesons are deter-

mined in the Monte Carlo. An example of fits to the Monte Carlo for the fully

and partially reconstructed signals are shown in Figure 9.3. The normalisation

(HF and HP ), the mass (mres,F and mres,P ) and the full width (Γres,F and Γres,P )

are free parameters.

Figure 9.4, for the Monte Carlo, shows the variation of the width and peak

as a function of xp and xE for both fully and partially reconstructed ρ± signals.

The position of the peak increases with increasing momentum of the ρ±. mres

values evaluated for both have nearly the same behaviour, Figure 9.4a and 9.4b.

Γres values for the fully reconstructed signal rises with increasing momentum, but

the partial signal width is relatively wider and constant around 0.205 GeV/c2,

Figure 9.4c and 9.4d.
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In general, the reconstruction resolution parameters are far from the gen-

erated values. In the fits, nominal m0 and Γ0 values are replaced by mres and

Γres respectively. However, the height of the partial signal is parameterised as a

function of the fully reconstructed signal height, because the height of partial sig-

nal peak is correlated with fully reconstructed ρ±. Consequently, only the height

of the fully reconstructed signal is left as a free parameter. The Monte Carlo

predictions for the ratio, r = HF /HP , of the fully and partially reconstructed

signal heights are shown in Figure 9.5. The plot is only for default cuts. Note

that the ratio r has a strong dependence on the photon energy cut, Eγ.

As a summary, the signal function is parametrised as a sum of two rel-

ativistic Breit-Wigner functions; RBWF(m) for fully reconstructed signal and

RBWP(m)/r for partial signal. Each function is convoluted with its own mass

resolution, Γres. Hence, the mathematical expression of the signal function is as

follows:

fs(m) = p0[RBWF(m) + RBWP(m)/r] (9.6)

where p0 is the normalisation constant determined in the fits. Note that RBW

in Equation 9.6 are replaced by BW in the Monte Carlo fits. An example of a fit

to the Monte Carlo signal is shown in Figure 9.6, the signal function is truncated

at 0.4 and 1.2 GeV/c2.

Figure 9.3: Sample fits to the Monte Carlo for (a) fully and (b) partially recon-
structed signals. The normalisation, mass and the width are free parameters.
Their mass resolutions are indicated as well.
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Figure 9.4: Variations of the measured peak mass mres, and mass resolution Γres

as a function of xp and xE for fully and partially reconstructed signals. Figures
(a) and (b) show the increase in the mass with increasing momentum. The
measured masses are very close to each other. Figures (c) and (d) show that the
measured mass resolution is always larger than the nominal width. Γres values
for the fully reconstructed signal rise with increasing resonance momenta whereas
the partial signal is constant at about 0.205 GeV/c2. The differences from the
nominal values are due to detector effects.
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Figure 9.5: Ratio of heights of the fully and partially reconstructed signals as a
function of xp and xE for the default analysis cuts.

Figure 9.6: An example of a fit to a Monte Carlo signal. The signal is composed
of two Breit-Wigner functions with different mass resolutions. The height of the
partial signal is parametrised as a function of the height of the fully reconstructed
signal.
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9.4.2 Combinatorial Background

The combinatorial background is parameterised by the smooth function:

fb(m) = p1m
p2

t × exp(p3mt + p4m
2
t + p5m

3
t ) (9.7)

where mt = m − mπ0 − mπ± is the cut off function, m is the invariant mass of

π0π± system, and p1 to p5 are free parameters adjusted by the fitting procedure.

Figure 9.7a shows an example fit to the Monte Carlo.

9.4.3 Reflections

The π0π± mass spectra contain reflections from ω(782) → π0π+π−, η(548) →
π0π+π−, and K∗±(892) → π0K±. Appropriate functions representing each re-

flection are selected and fitted to the Monte Carlo. While the height of the

functions are fixed in the Monte Carlo, in real data the height of each reflection

function is scaled by a value obtained from the measured ratio of the real data

rate in Ref. [9] to the Monte Carlo rate. The scale parameters, sp and sE cor-

responding to xp and xE ranges, and their uncertainties, are listed in Table 9.2.

Finally, these functions are added to the background function. The models for

each reflection are described below.

Table 9.2: Scale parameters sp and sE for each xp and xE bin. The values are
obtained from the ratio of the real data rates to the Monte Carlo. Errors are the
sum in quadrature of the statistical and systematic errors.

sp values
xP bin ω η K∗±

1 0.69 ± 0.11 1.05 ± 0.18 1.11 ± 0.20
2 0.75 ± 0.05 1.03 ± 0.17 1.12 ± 0.15
3 0.88 ± 0.05 1.14 ± 0.08 0.97 ± 0.18
4 0.89 ± 0.04 1.20 ± 0.08 0.89 ± 0.14
5 0.82 ± 0.03 1.38 ± 0.08 1.16 ± 0.15
6 0.56 ± 0.04 1.08 ± 0.07 1.05 ± 0.25

sE values
xE bin ω η K∗±

1 0.64 ± 0.10 0.95 ± 0.15 0.99 ± 0.20
2 0.77 ± 0.05 1.02 ± 0.15 1.04 ± 0.16
3 0.82 ± 0.05 1.07 ± 0.10 1.06 ± 0.15
4 0.86 ± 0.05 1.13 ± 0.09 1.07 ± 0.14
5 0.87 ± 0.03 1.22 ± 0.08 1.07 ± 0.12
6 0.84 ± 0.04 1.33 ± 0.08 1.04 ± 0.16
7 0.76 ± 0.05 1.47 ± 0.10 1.00 ± 0.20
8 0.67 ± 0.06 1.63 ± 0.15 0.94 ± 0.21
9 0.58 ± 0.10 1.76 ± 0.20 0.89 ± 0.25
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ω Reflection

The π0π± mass distribution of ω → π0π+π− decays forms a broad peak at

about 0.5 GeV/c2. The ω reflection is modelled by the function:

fω(m) = Hω sin2

[

π
m − mL

mU − mL

]

(9.8)

where fω(m) is restricted to the first half cycle, Hω is the normalisation, mL and

mU are the lower and upper intercept values of the function. An example fit to

the Monte Carlo illustrating these parameters is shown in Figure 9.7b.

η Reflection

The η reflection distorts the π0π± mass distribution close to π0π± thresh-

old. The model function can be choosen as:

fη(m) = Hη sin

[

π
m − mL

mU − mL

]

(9.9)

where fω(m) is restricted to the first half cycle. An example fit to the Monte

Carlo is given in Figure 9.7c.

K∗± Reflection

The K∗± signal in the π0K± mass spectra yields a peak in the π0π± mass

distribution close to ρ± peak. Assigning the pion mass to kaons results in a K∗±

reflection. The size of this reflection is reduced by the cuts applied to χ(dE/dx),

consequently it is dominated at higher xp and xE ranges. The mathematical

form of the model function is as follows:

fK∗(m) = HK∗ × exp

[

m ·
(

m − mK∗

wK∗

)2
]

(9.10)

An example fit to the Monte Carlo is given in Figure 9.7d.

9.4.4 Interference with Coherent Background

The real data mass spectra appears to be shifted to a lower mass with

respect to Monte Carlo. An example of this is demonstrated in Figure 9.8.

The distortion in real data can be described succesfully by the interference

effect, believed to originate from residual BECs, between the amplitudes of the

ρ± and coherent (non-resonant) background. Note that this effect is not included

in the Monte Carlo. A successful parameterisation is performed by the Söding

model, used by [41] in the analysis of inclusive ρ0 production, and by OPAL
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Figure 9.7: Sample fits to Monte Carlo for (a) the combinatorial background (b)
the ω reflection (c) the η reflection and (d) the K∗± reflection. These model
functions are fixed in the Monte Carlo. In real data fits, the height of each
reflection is normalised to the real data measurements.
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group [8] in the analysis of ρ± production. To include the interference effect, the

fit function is extended by adding the following term:

fi(m) = C

(

m2
res − m2

mΓ(m)

)

fs(m) (9.11)

where C is related to the strength of the interference and determined from data

fits. Figure 9.9 shows the variation of the C value as a function of both xp and

xE . C tends to have large values (0.7 or 0.8) at lower xp and xE corresponding

to a large mass shift, and falls toward 0 at large xp and xE corresponding to no

mass shift. This is consistent with the observations of [41] and [8].

Figure 9.8: An example two-pion mass spectra for real data and Monte Carlo.
The real data mass spectra seems to be shifted to lower mass. The shift can be
explained by residual BECs.

The interference term (Equation 9.11) represents a model of the distor-

tion that effects both the signal and backgound shapes. This can be shown by

removing the interference term from the total invariant mass spectrum. Figure

9.10 shows the resulting shape of the interference term subtracted real data mass

spectra for some C values. C = 0.0 corresponds to the original distribution. The

Monte Carlo and real data disagree with each other for C = 0.1 and C = 0.5.

However, the distributions are in good agreement for C = 0.3 which is close to

its fitted value of 0.28 (see Figure 9.9). Therefore, the real data without the

interference term has a similar distribution to the Monte Carlo.
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Figure 9.9: Distribution of C values as a function of xp and xE. The error bars
respresent the quadratic sum of statistical and systematic errors.

Figure 9.10: Two pion invariant mass spectrum for the Monte Carlo, and the
interference term subtracted real data for some values of the C parameter. C=0
corresponds to original spectra. Data and Monte Carlo disagree with each other
for C=0.1 and 0.5. However, the real data spectra is in good agreement with
the Monte Carlo for C=0.3 which is close to its fitted value of 0.28. It can be
concluded that the mass shift in the data can be explained by the interference
effect successfully.
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9.4.5 Total Fit Function

The total fit function is built by adding six model functions as follows:

F (m) = fs(m) + fb(m) + fi(m) + fω(m) + fη(m) + fK∗(m)

= p0

[

RBWF(m) +
RBWP(m)

r

] [

1 + p6

(

m2
res − m2

mΓ(m)

)]

+ p1m
p2

t × exp(p3mt + p4m
2
t + p5m

3
t ) (9.12)

+ Hω sin2

[

π
m − mL

mU − mL

]

+ Hη sin

[

π
m − mL

mU − mL

]

+ HK∗ × exp

[

m ·
(

m − mK∗

wK∗

)2
]

where pi are free parameters. p6 is equivalent to the C parameter in Equation

9.11. Note that, for the Monte Carlo, fi(m) is omitted, and the function RBW

is replaced by BW . An example fit to real data mass spectra, illustrating each

component, is shown in Figure 9.11. Figure 9.12 shows the extracted signal

and the interference term for the same data in Figure 9.11. Details of the fit

components and extracted functions for each momentum and energy bin are

shown in Appendix D.

9.4.6 Signal Extraction

Figures 9.13 and 9.14 show the fits to the real data for each xp and xE

range respectively. The fitting range is in general between 0.4-1.9 GeV/c2. For

each fit the normalisation of the signal is free while the width and mass are fixed

to the values determined in the fit to the Monte Carlo signal. A statistical error

is assigned from the uncertainty in the fitted normalisation parameter p0.

9.5 Rates and the Differential Cross Section

The final results will be presented, for each measured momentum and en-

ergy intervals in the form of the ρ± production rate per event and the differential

cross-section. These two quantities are calculated as follows.

The production rate, R, is calculated for each momentum and energy in-

tervals by correcting the fitted signal S for the reconstruction efficiency ε and

normalising to one event. The rates are corrected for the brancing ratio which is

BR(ρ± → π± + π0) ≈ 0.9995 for the ρ±. The calculation is as follows:

R =
S

N

1

ε

1

BR
=

S

N

1

ε
(9.13)
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Figure 9.11: Two-pion invariant mass spectrum. The data points are well de-
scribed by the fit. The contributions from the signal, background and reflections
are shown as well.

Figure 9.12: The extracted signal, resonance curve and interference term found
in the fit for the same data in Figure 9.11.
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Figure 9.13: Fits made to the real data invariant mass spectra for six xp intervals.
The extracted signal curve are also shown as well. The detail of the fit components
are shown in Appendix D.
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Figure 9.14: Fits made to the real data invariant mass spectra for nine xE inter-
vals. The extracted signals are shown as well. The detail of the fit components
are shown in Appendix D.
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where N is the total number of hadronic events obtained as:

N = Ngen

(

NDA

NMC

)

(9.14)

where Ngen is the number of generated events before event selection in the Monte

Carlo, NDA and NMC are the numbers of accepted events after preselection in

data and Monte Carlo, respectively. The efficiency is defined as

ε =
Srec

Sgen

(9.15)

where Srec is the number of reconstructed ρ± mesons in the Monte Carlo (macthed

to the generated level) and Sgen is the number of generated ρ± mesons in the

Monte Carlo (before event selection cuts).

Dividing the rates by the width of the momentum intervals, δxp, gives the

values for the differential cross-section, 1/σtot · dσ/dxp, for each interval:

1

σtot

dσ

dxp
=

R

δxp
=

1

δxp

S

N

1

ε
(9.16)

Similarly for the energy intervals:

1

σtot

dσ

dxE
=

R

δxE
=

1

δxE

S

N

1

ε
(9.17)

Combining the above equations yields:

R =

(

S

Srec

)(

Sgen

Ngen

)(

NMC

NDA

)

and
1

σtot

dσ

dx
=

R

δx
(9.18)

where x can be xp or xE . Tables 11.1 and 11.2 show the results of the above

calculations together with statistical and systematic errors for xp and xE intervals

respectively.

9.6 Comparison of Data and Monte Carlo

The ratio of the fitted signal S to the number of reconstructed ρ± mesons

Srec in the Monte Carlo as a function of both xp and xE are plotted in Figure

9.15. For comparison, the ratio of the ALEPH data measurements to OPAL data

is given in Figure 9.16 as well. The error bars represent the quadratic sum of the

statistical and systematic contributions.
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Figure 9.15: Ratio of the fitted signal to the number of reconstructed ρ± mesons
in the Monte Carlo. Error bars represent the sum in quadrature of the statistical
and systematical errors. The dotted line shows a 10% disagreemnet.

Figure 9.16: Ratio of the ALEPH rates to the OPAL rates. The dotted line
indicated a 10% disagreement.
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CHAPTER 10

SYSTEMATIC ERROR ANALYSIS

10.1 Introduction

While statistical errors originate from counting uncertainties (statistical

uncertainties) that result in measured values being randomly high or low, sys-

tematic errors originate from detector effects, uncertainties in models and mea-

surement procedures that result in measured values being systematically high or

low.

The study of systematic uncertainties for this analysis takes various forms;

the details are given in the following sections. The results, including statistical

errors, are summarised in Tables 10.4 and 10.5 at the end of this chapter.

10.2 Source of Systematic Errors

In this study, the possible source of systematic errors are categorised into

five groups; track selection cuts, fitting procedure, reflection models, signal func-

tion and efficiency correction. An additional systematic error due to the un-

certainty in the extraploation to full xp and xE ranges is included in the final

results.

10.2.1 Track Selection Cuts

The calculation of the efficiency corrections relies on an adequate reproduc-

tion of the detector acceptances by the Monte Carlo. Repeating the measurement

with different (though reasonable) values of cuts applied to the track selection

results in variations in the measured ρ± rate. Such variations can be interpreted

as discrepancies between the calculated efficiency and the true efficiency for the

reconstruction of the ρ± signal. However, it is expected that varying cuts will also

give rise to statistical variations that are already accounted for in the assignment
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of statistical errors. This is supported by the observation that, variations due

to track selection cuts are seen to be random in magnitude and sign in general.

Therefore the following results for systematic errors due to track selection cuts

are considered to be over-estimates (conservative).

All default values of the cuts and their variations are summurised at the

end of this section in Table 10.1. The largest variation in the measured rate for

each cut in each xp and xE interval is assigned to the systematic error.

Photon Energy, Eγ

A cut of 1.0 GeV is applied on the energy of photons. The cut is increased

to 1.2 GeV and decreased to 0.8 GeV. The largest contribution in the track

selection cuts comes from this cut which dominates especially at low xp and xE

(about 6%). The fluctuations tend to be larger in the real data with respect to

Monte Carlo.

π0 Energy, Eπ0

A cut of 18 GeV is applied on the energy of neutral pion candidates. The

cut is increased to 20 GeV and decreased to 16 GeV. The maximum variations

are observed at low and highest xp and xE (about 4%).

π0 Mass Window, σ

A mass window of ±2.0σ is used to select π0 candidates from the two-

photon invariant mass spectra. The cut is varied to ±1.5σ and ±3.0σ. Maximum

fluctuations are less than 5% for each momentum and energy bins.

π0 Matching, λ

In π0 matching, a search for the best match between the generated and re-

constructed candidates is performed. The procedure of π0 matching is described

in Appendix C in detail. A λ parameter discriminating between the the best

matches and true matches is defined in the matching procedure.

A cut of λ < 0.3 is applied to a π0 candidate to flag it as a true match.

Changing the value of the cut results in a systematic error since it affects the

calculation of the efficiency correction for the ρ± meson. The cut is increased to

0.4 and decreased to 0.2. The maximum difference in the number of matched

π0s is taken as the systematic error. The variations are nearly constant and less

than 1% for each momentum and energy bin.
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Transverse Impact Parameter, d0

The cut applied to the transverse impact parameter of charged tracks is

0.5 cm. This cut is decreased to 0.3 cm and increased to 1.0 cm. The largest

variation is found to be about 5%, occuring in the lowest xp bin.

Ionisation Energy Loss, χ(dE/dx)

A cut of −2 < χ(dE/dx) < 3 is applied on energy loss for charged tracks.

The rate extraction procedure is repeated after omitting the cuts completely.

The difference is taken as a systematic error.

Table 10.1: Summary of the applied track cuts and variations in their values,
used in the systematic error analysis.

Source of error Default value Changes
Eγ 1.0 GeV 0.8, 1.2 GeV
Eπ0 18 GeV 16, 20 GeV
σ ±2.0 ±1.5, ±3.0
λ 0.3 0.2, 0.4
d0 0.5 cm 0.3, 1.0 cm
χ(dE/dx) [−2, 3] removed

10.2.2 Fitting Procedure

Uncertainties in the fitting procedure are a significant source of systematic

errors. The fluctuations in the extracted rates are found to be random in mag-

nitude and sign. In the fitting procedure, the mass range covered by the fits in

general is 400-1900 MeV/c2. The mass range is varied by ±40 MeV/c2. These

fitting ranges are given in Table 10.2.

Table 10.2: The default and modified fit ranges used in the systematic error
analysis.

xp or Default range Increased range Decreased range
xE bin MeV/c2 MeV/c2 MeV/c2

1 500 - 1900 496 - 1940 540 - 1860
2 440 - 1900 400 - 1940 480 - 1860

3-9 400 - 1900 360 - 1940 440 - 1860
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10.2.3 Reflection Models

As described in Section 9.4.3, reflections from ω, η and K∗± mesons are

modelled and their shapes are fixed in the Monte Carlo. In real data fits, the

height of each reflection is normalised, by the scale parameters sp and sE, to

the real data measurements. The value of sp (and sE) for each momentum bin

is varied by its corresponding uncertainty, i.e. ± one standard deviation taken

from Table 9.2. The procedure is repeated for each reflection independently, the

largest variations in the measured rate are taken as the systematic error. The

fluctuations are mainly due to the ω reflection.

10.2.4 Signal Function

The width and mass of the resonance are taken from the Monte Carlo.

In the fits the width is varied by ±5%. The largest variations in the values

for the extracted signals are taken as the systematic uncertainties. Maximum

fluctuations are about 3% for each momentum and energy bin.

One of the significant contributions to the systematic errors comes from

the consideration of the partially reconstructed signal which can be considered

either a part of signal or background. The difference in the evaluated rates are

taken as a systematic error. Maximum fluctuations are less than 4%.

10.2.5 Efficiency Correction

Efficiency ε, defined in Equation 9.15, has a statistical uncertainty due to

counting of the reconstructed Monte Carlo signals Srec. Consequently, the uncer-

tainty in Srec causes a variation in the calculated rate and therefore a systematic

error. The fluctuations are about 0.2% for all momentum and energy bins except

for highest bins.

10.2.6 Extrapolation to xp = 0 and xE = 0

The measurement covers only the regions where xp > 0.05 and xE > 0.05.

To estimate the total production rate, the total measured rate is extrapolated to

xp = 0 and xE = 0 using the fragmentation function in the Monte Carlo. The

unmeasured fraction of the total rate in the real data is about 40% for xp < 0.05

and 38% for xE < 0.05. The procedure relies on the Monte Carlo to give the

correct scale factor for the extrapolation. To estimate the uncertainty in the

scale factor the calculation is repeated for different Monte Carlos, the results are

listed in Table 10.3. The largest difference, about 1.6%, is between Jetset and

Pythia. This value is taken as an additional systematic uncertainty.
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Table 10.3: Estimated values of unmeasured fraction and corresponding scale
factors for different Monte Carlo programs.

Monte Carlo Program Unmeasured Fraction Scale Factor
xp < 0.05 xE < 0.05 xp = 0 xE = 0

Jetset 7.4 (ALEPH tuning) 40.0 % 37.9 % 1.666 1.610
Pythia 6.4 (default tuning) 40.9 % 38.8 % 1.693 1.635
Herwig 6.5 (default tuning) 40.2 % 38.1 % 1.673 1.615

10.3 Summary of Errors

Table 10.4 and 10.5 summarise the statistical and systematic errors for the

ρ± measurement in xp and xE intervals respectively. For the systematic errors,

the individual errors from each source are shown for each measured momentum

and energy intervals.

The total error ‘eall’ for the total measured ranges, calculated for each error

source, is taken as the sum of the errors, ei, in each interval (horizontally in the

table) weighted by the rate, Ri, in each interval. For this, the quadratic sum

eall =

√

∑

(eiRi)2

∑

Ri
(10.1)

is taken in the cases where systematic errors are considered to be uncorrelated

between momentum or energy intervals, i.e. they are considered to be dominated

by statistical variations. However, the linear sum

e∗all =

∑

eiRi
∑

Ri
(10.2)

is used for the cases (flagged by a ‘∗’ symbol) where the errors are considered to

be correlated.

The total systematic error, etot, for each momentum and energy interval,

including the summed interval ‘all’, is calculated by taking the quadratic sum of

each error source ek (vertically in the table). Hence

etot =
√

∑

e2
k (10.3)

The last row of each table shows the total error for all, and each momentum

and energy interval, calculated as the quadratic sum of the total systematic error

and the statistical error.

The systematic errors dominate the uncertainty in the measured ρ± rate.

However, a large component of these errors are considered to be mostly due

to the instability of the fitting procedure in the presence of varyng signal and

background. The assignment of systematic errors is therfore considered to be

conservative.
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Table 10.4: Systematic and statistical errors for the ρ± rate in each measured
momentum interval. All values are expressed in % rounded to one decimal place.

Source of error measured xp interval
eall 1 2 3 4 5 6

Fit range 1.9 0.4 2.4 2.1 4.4 0.8 6.8
Eff. correction 0.1 0.2 0.2 0.2 0.2 0.2 0.4
Signal width 1.6 3.6 3.2 2.1 2.8 3.5 5.6
Partial signal ∗3.0 2.7 3.4 3.5 3.3 3.0 2.1
ω rate ∗1.5 2.0 1.7 1.5 0.7 0.3 0.8
η rate ∗0.3 0.0 0.0 0.5 1.1 0.2 0.0
K∗± rate ∗0.7 0.0 1.2 2.7 0.1 0.1 2.8
π0 matching ∗0.7 0.6 0.7 0.8 0.7 0.9 0.6
Eγ 2.6 6.0 6.1 3.1 3.2 3.2 3.0
Eπ0 1.5 3.5 3.7 2.4 1.5 1.6 4.6
π0 mass window 1.3 2.6 3.1 2.7 3.5 2.3 3.3
χ(dE/dx) 1.1 2.8 1.3 1.7 0.7 1.6 2.6
d0 2.0 5.2 1.9 2.7 0.8 0.4 3.7
Systematic error
(etot) 5.7 10.7 10.0 8.0 8.1 6.5 12.3
Statistical error 1.1 2.5 2.2 1.6 0.9 0.9 2.2
Total error 5.8 11.0 10.2 8.1 8.1 6.6 12.5

Table 10.5: Systematic and statistical errors for the ρ± rate in each measured
energy interval. All values are expressed in % rounded to one decimal place.

Source of Error measured xE interval
eall 1 2 3 4 5 6 7 8 9

Fit range 1.9 4.7 2.6 3.9 3.3 1.5 2.2 3.7 2.8 2.5
Eff. correction 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.6 1.8
Signal width 1.6 3.4 3.9 3.8 3.4 3.5 3.3 3.4 3.6 2.8
Partial signal ∗3.2 2.9 3.6 3.5 3.7 3.4 3.0 2.7 1.3 1.9
ω rate ∗1.7 1.6 2.9 3.2 1.0 2.2 0.3 0.4 0.2 0.1
η rate ∗1.5 1.7 2.3 2.5 2.2 0.3 0.2 0.2 1.2 0.0
K∗± rate ∗0.5 0.0 2.7 1.6 0.3 0.1 0.1 0.3 1.9 2.6
π0 matching ∗0.7 0.6 0.7 0.7 0.8 0.7 0.8 0.8 0.6 0.5
Eγ 2.8 6.3 5.0 4.0 4.5 6.4 3.8 4.3 2.5 4.4
Eπ0 1.2 3.0 2.4 3.5 0.7 0.4 1.0 3.1 0.2 8.8
π0 mass window 2.0 4.7 4.7 4.3 3.8 2.8 2.2 3.0 2.2 5.9
χ(dE/dx) 1.1 2.3 4.9 2.5 1.7 0.6 2.1 1.0 4.1 5.7
d0 0.8 1.7 4.0 2.5 0.7 0.4 0.2 0.4 1.1 3.2
Systematic error
(etot) 6.1 11.3 12.3 11.0 9.0 9.0 7.1 8.5 7.6 14.2
Statistical error 1.0 2.3 2.7 2.4 1.2 0.9 1.2 1.2 3.4 6.3
Total error 6.2 11.5 12.6 11.3 9.1 9.1 7.2 8.6 8.3 15.5
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CHAPTER 11

RESULTS AND CONCLUSION

11.1 Results

In this section, the results obtained from the ALEPH measurement for

ρ± meson are presented, and compared with the OPAL measurement in [8] and

Monte Carlo event generator programs.

11.1.1 Rates and Differential Cross-sections

Table 11.1 and 11.2 shows the results for the ρ± rates and differential cross-

sections in each measured momentum and energy intervals respectively. The

errors correspond to statistical and systematic errors respectively. The result of

summing over the measured xp and xE intervals is shown; the final row in each

table gives the result of extrapolating this to xp = 0 and xE = 0 together with

an extra error of about 1.6% representing the uncertainty in the extrapolation.

The differential cross-sections as a function of xp are compared to Monte

Carlo predictions in Figure 11.1. A similar plot is constructed for the xE intervals

to compare the ALEPH results with OPAL measurements in Figure 11.2. The

errors shown are the quadratic sum of statistical and systematic contributions.

Note that while the first interval shown in Figure 11.2 is unmeasured for ALEPH,

OPAL presents in [8] measurements down to xE = 0.016.

11.1.2 Total Multiplicity

The ALEPH result for the total multiplicity per hadronic event, N(ρ±), is

compared with the OPAL result and Monte Carlo programs in the second column

of Table 11.3 and in Figure 11.3a.
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Table 11.1: Measured multiplicities and differential cross-sections for the ρ± in
xp intervals. The result of summing over the measured xp intervals is also given,
including extrapolation to full xp range with an additional error due to the un-
certainty in the extrapolation.

xp range Multiplicity ρ±(770)/ Z decay 1/σhaddσ/dxp

0.05-0.10 0.5622 ± 0.0142 ± 0.0603 11.2434 ± 0.2840 ± 1.2069
0.10-0.15 0.3162 ± 0.0068 ± 0.0315 6.3246 ± 0.1364 ± 0.6299
0.15-0.20 0.2338 ± 0.0037 ± 0.0187 4.6756 ± 0.0736 ± 0.3731
0.20-0.30 0.2335 ± 0.0022 ± 0.0189 2.3347 ± 0.0216 ± 0.1889
0.30-0.50 0.1663 ± 0.0015 ± 0.0109 0.8316 ± 0.0073 ± 0.0545
0.50-1.00 0.0412 ± 0.0009 ± 0.0051 0.0823 ± 0.0018 ± 0.0102

0.05-1.00 1.5532 ± 0.0164 ± 0.0880
all xp 2.5872 ± 0.0273 ± 0.1466 ± 0.0428

Table 11.2: Measured multiplicities and differential cross-sections for the ρ± in
xE intervals. The result of summing over the measured xE intervals is also
given, including extrapolation to full xE range with an additional error due to
the uncertainty in the extrapolation.

xE range Multiplicity ρ±(770)/ Z decay 1/σhaddσ/dxE

0.050-0.100 0.6050 ± 0.0137 ± 0.0683 12.0992 ± 0.2740 ± 1.3650
0.100-0.125 0.1679 ± 0.0046 ± 0.0206 6.7153 ± 0.1840 ± 0.8237
0.125-0.150 0.1450 ± 0.0035 ± 0.0160 5.7990 ± 0.1400 ± 0.6407
0.150-0.200 0.2258 ± 0.0027 ± 0.0204 4.5151 ± 0.1090 ± 0.4072
0.200-0.300 0.2506 ± 0.0023 ± 0.0226 2.5056 ± 0.0230 ± 0.2259
0.300-0.400 0.1151 ± 0.0014 ± 0.0082 1.1511 ± 0.0140 ± 0.0820
0.400-0.600 0.0820 ± 0.0010 ± 0.0070 0.4102 ± 0.0050 ± 0.0349
0.600-0.800 0.0146 ± 0.0005 ± 0.0011 0.0729 ± 0.0025 ± 0.0055
0.800-1.000 0.0016 ± 0.0001 ± 0.0002 0.0078 ± 0.0005 ± 0.0011

0.050-1.000 1.6076 ± 0.0154 ± 0.0981
all xE 2.5878 ± 0.0248 ± 0.1579 ± 0.0408



124

Figure 11.1: Differential cross-sections for the ρ± as a function of xp in com-
parision with the Monte Carlo predictions. The errors shown are the quadratic
sum of the statistical and systematic contributions. Jetset 7.4 is ALEPH tuned,
while Pythia and Herwig have default tuning. The first interval is unmeasured
for ALEPH.
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Figure 11.2: Differential cross-sections for the ρ± as a function of xE in com-
parision with OPAL measurements and the Monte Carlo predictions. The errors
shown are the quadratic sum of the statistical and systematic contributions. Jet-

set 7.4 is ALEPH tuned, while Pythia and Herwig have default tuning. The
first interval is unmeasured for ALEPH. OPAL measurements below xE = 0.05
are omitted.
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11.1.3 Isospin Dependence

The production rates of ρ± can be compared with its isospin partner, the

ρ0. The ratio of the rates, 2N(ρ0)/N(ρ±), is expected to be one, since I = 1

for ρ triplet. The value of the 2N(ρ0)/N(ρ±) is obtained using the ALEPH

measurement in [7] and the result is compared with the OPAL value in [8] and

Monte Carlo predictions in the last column of the Table 11.3 and in Figure 11.3b.

The deviation from unity comes from heavy flavour decays such as η′ → ρ0γ.

Table 11.3: Comparison of the total multiplicity of the ρ±, N(ρ±) and the ratio
2N(ρ0)/N(ρ±) as measured by ALEPH to OPAL and Monte Carlo predictions.
Errors are statistical and systematic respectively.

Data set N(ρ±) 2N(ρ0)/N(ρ±)
ALEPH data 2.59 ± 0.03 ± 0.15 1.12 ± 0.05 ± 0.17
OPAL data 2.40 ± 0.06 ± 0.43 1.08 ± 0.04 ± 0.20
Jetset 7.4 2.77 1.06
Pythia 6.4 2.85 1.07
Herwig 6.5 1.93 1.04

Figure 11.3: Comparison of ALEPH measurement of (a) N(ρ±) and (b)
2N(ρ0)/N(ρ±) with the OPAL data and Monte Carlo models. The values are
taken from Table 11.3. The error bars in bold are statistical errors.
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11.1.4 The Cross-Section as a Function of ξp

In Figure 11.4 the measured cross-section for the ρ±, in comparison with the

OPAL data and Monte Carlo predictions, is given as a function of ξp = ln(1/xp).

The modified leading logarithm approximation combined with the local parton-

hadron duality model [42] predicts that the position of the maximum is correlated

with the mass of the particle, i.e. the momentum spectrum is expected to be

harder for particles with higher masses. However, this position may be modified

by heavy flavour decays.

Figure 11.4: Differential cross-section for the ρ± as a function of ξp. For com-
parision, OPAL data and the Monte Carlo models are shown as well. The errors
shown are the quadratic sum statistical and systematic contributions.

11.2 Summary

The inclusive production of the ρ±(770) vector meson in 3,239,746 selected

hadronic Z decays has been studied. The results obtained from ALEPH data

fits are presented and compared with the OPAL measurements and Monte Carlo

predictions. ρ± mesons are reconstructed from the decay mode ρ± → π0 + π±

(BR ≈ 1). The measurement covers a momentum interval of xp > 0.05 and

energy interval xE > 0.05 where xp = p/pbeam and xE = E/pbeam; these exclude

∼ 40% of ρ±s from measurement.
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Charged track cuts and neutral pion selection via the Ranking method has

been optimised to increase the signal significance of the ρ± meson.

Distortions in the invariant mass spectra caused by residual Bose-Einstein

Correlations are found to be important in the extraction of ρ± rates from two

pion invariant mass spectra. This effect is not included in the Monte Carlo

programs. The Söding Model, used elsewhere [41] to describe background inter-

ference effects, appears to work well as a model of these distortions and is used

successfully in this analysis.

The measured ρ± multiplicities and cross-sections are given in Tables 11.1

and 11.2, and the cross-sections are compared to Monte Carlo models in Figures

11.1 and 11.2 including a comparison to the OPAL meaurements in Figure 11.2.

11.3 Conclusion

Inclusive production of ρ± mesons in hadronic Z decays has been observed

with the ALEPH detector after a suitable treatment of background and BECs.

A Ranking method, to improve π0 purity, is found significantly increase signal

significance, and reduce partially reconstructed signal.

The measured differential cross-section of ρ± are in good agreement with

OPAL measurements within the error bars. While the ALEPH analysis is unable

to measure below xE = 0.05, OPAL successfully measures down to xE = 0.016.

However, ALEPH provides a significantly more accurate measurement at high

xE (above xE = 0.3). Except for Herwig (default tuning), Monte Carlo rates

obtained from ALEPH tuned Jetset and default tuned Pythia are consistent

with real data measurements of the two independent experiments. The calculated

total rate (2.59 per event) lies between the OPAL measurement (2.40 per event)

and prediction of Jetset (2.77 per event).

For the ratio 2N(ρ0)/N(ρ±) the predictions lie about one standard devia-

tion from the measured value, Pythia giving the closest agreement.

The model for residual Bose-Einstein Correlations used in this analysis

is the same as the OPAL experiment. This model successfully describes the

distortion in two pion invariant mass spectra, that is dominated below 1 GeV/c2.
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11.4 Future Work

The skill and experiences gained from performing this Ph. D. study can be

applied to future work in a number possible of areas:

• Particle production involving π0 decay products where careful calibra-

tion and application of Ranking can improve on, or make possible new

measurements at LEP and LHC.

• A measurement of a±
0 (980) → ηπ±, a decay that is difficult due to its

low rate and large combinatorial background. Similar treatments of the

π0 can be made to η selection. Presently only OPAL has measured the

a±
0 at LEP with a poor accuracy, N(a±

0 ) = 0.27 ± 0.11.

• Bose-Einstein correlations have shown to be important at LEP where

particle multiplicities are high. It is therefore important for Bose-Einstein

correlations to be implemented correctly in Monte Carlo models. Much

work needs to be done in this area.

While there are more possibilities for studies at LEP, the center of attention

is now on LHC where pp collisions at
√

s = 14 TeV will soon begin. The

possibility of the discovery of new physics is exciting, and, at least in the absence

of new physics, there is an opportunity for the study of Standard Model in greater

detail.
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APPENDIX A

π0 FORMULAE

A.1 Two-Photon Invariant Mass Formula

Consider the decay process of the neutral pion, π0 → γ1+γ2. Using natural

units, the invariant mass of the photon pairs can be calculated from:

M2 = E2 − p2

= (E1 + E2)
2 − (~p1 + ~p2)

2

= (E1 + E2)
2 − (px1

+ px2
)2 − (py1

+ py2
)2 − (pz1

+ pz2
)2 (A.1)

where E1 and E2 are the energies of photons that can be found by:

E2
i = p2

i + m2
γ (A.2)

here i = 1, 2 and p2
i = p2

xi
+ p2

yi
+ p2

zi
. px,y,z is the momentum components of sum

of the photons. mγ is assumed to be the mass of the photon, thus mγ = 0. For

the π0 we can perform reconstruction from two photons. From the conservation

of momentum:

~pπ0 = ~p = ~p1 + ~p2 (A.3)

Now we can find p2 via A.3 and definition of dot product of two vectors:

~p.~p = p2 = p2
1 + p2

2 + 2p1p2 cos θ12 (A.4)

where θ12 is the angle between two photons. γ1 and γ2 are assigned to zero mass,

so E = p. Thus Equation A.4 becomes:

p2 = E2
1 + E2

2 + 2E1E2 cos θ12 (A.5)

If we substitute the final result of p2 into Equation A.1, then:

M2 = 2E1E2(1 − cos θ12) (A.6)

We obtain measurements of E1, E2 and θ12 from the electromagnetic calorimeter.
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A.2 π0 Mass Resolution Formula

Mass resolution formula can be derived directly from the invariant mass

relation. Equation A.6 can be re-arranged as follows:

M =
√

2E1E2(1 − cos θ12) (A.7)

If we assume that E1, E2 and θ12 are independent variables, then statistically

the mass resolution σM can be found from:

σM =
∂M

∂E1

σE1
⊕ ∂M

∂E2

σE2
⊕ ∂M

∂θ12

σθ12

=

√

(

∂M

∂E1

)2

σ2
E1

+

(

∂M

∂E2

)2

σ2
E2

+

(

∂M

∂θ12

)2

σ2
θ12

(A.8)

where the square of partial derivatives are:

(

∂M

∂E1

)2

=

(

2E2(1 − cos θ12)

2
√

2E1E2(1 − cos θ12)

)2

=
E2(1 − cos θ12)

2E1

(

∂M

∂E2

)2

=

(

2E1(1 − cos θ12)

2
√

2E1E2(1 − cos θ12)

)2

=
E1(1 − cos θ12)

2E2

(

∂M

∂θ12

)2

=

(

2E1E2 sin θ12

2
√

2E1E2(1 − cos θ12)

)2

=
E1E2 sin2 θ12

2(1 − cos θ12)
(A.9)

One can set up the ratio σM/M , after substituting Equations A.9 into A.8.

σM

M
=

√

σ2
E1

4E2
1

+
σ2

E2

4E2
2

+
σ2

θ12

4

sin2 θ12

(1 − cos θ12)2

=
1

2

√

σ2
E1

E2
1

+
σ2

E2

E2
2

+
σ2

θ12

tan2(θ12/2)

=
1

2

[

σE1

E1

⊕ σE2

E2

⊕ σθ12

tan(θ12/2)

]

(A.10)

The trigonometric expression in Equation A.10 can be transformed as follows:

sin2 θ12

(1 − cos θ12)2
=

1 − cos2 θ12

(1 − cos θ12)2
=

(1 − cos θ12)(1 + cos θ12)

(1 − cos θ12)(1 − cos θ12)
=

1 + cos θ12

1 − cos θ12

Using half-angle formula, cosβ = cos2(β/2) − sin2(β/2), we can write:

1 + cos θ12

1 − cos θ12

=
1 + cos2(θ12/2) − sin2(θ12/2)

1 − cos2(θ12/2) + sin2(θ12/2)
=

cos2(θ12/2)

sin2(θ12/2)
=

1

tan2(θ12/2)

Hence:
sin2 θ12

(1 − cos θ12)2
=

1

tan2(θ12/2)
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APPENDIX B

DESCRIPTION OF THE π0

REFITTING METHODS

B.1 Refitting Low Energy π0s

If we let ω1, ω2 be measured energies of the two photons, and θγγ the

opening angle between their directions, the reconstructed squared invariant mass

of the π0 is given by:

µ2 = 2ω1ω2(1 − cos θγγ) (B.1)

We can look for E1 and E2 minimising the chi-square form:

χ2 =

(

E1 − ω1

σ1

)2

+

(

E2 − ω2

σ2

)2

+ λ(m2 − 2E1E2(1 − cos θγγ)) (B.2)

where σ1 and σ2 are the errors on the photon energies, m is the true π0 mass

and λ is the Lagrange Multiplicator (see Appendix B.3.1). We can minimise the

χ2 for E1 and E2 as:

E1 = ω1 + (
m2 − µ2

µ2
) × ω1ω2

ω1 + ω2

(B.3)

E2 = ω2 + (
m2 − µ2

µ2
) × ω1ω2

ω1 + ω2

(B.4)

These equations are used in our computer program to re-define the photon en-

ergies. Then, we evaluate again the π0 invariant mass and iterate until nominal

mass π0 within ± 0.0001 MeV/c2. Usually only 2 or 3 iterations are needed.

Note that, no effects of σ1 and σ2 are shown in equations B.3 and B.4 because

σ1,2 = R
√

(E1,2) where R is the resolution parameter of the ECAL.

B.2 Refitting High Energy π0s

At high energy, the angular resolution is no longer negligible compared to

the energy resolution, and one has to take it into account in the fitting procedure.
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Therefore, in this case one must be minimise the chi-square form:

χ2 = (
E1 − ω1

σ1

)2 + (
E2 − ω2

σ2

)2 + (
cos θγγ − K

σcos θγγ

)2 (B.5)

with the mass constraint on the opening angle

M2
π0 = 2E1E2(1 − K) (B.6)

Here the fitted parameters are E1 and E2, the best evaluation of the energies of

the photons; other parameter K, which is the best evaluation of the cosine of

the opening angle, is obtained from the π0 mass constrained. The minimisation

is performed by the Newtonian Method which is described in Section B.3.2.

B.3 Multidimensional Optimisation

B.3.1 The Method of Lagrange Multipliers

A method for obtaining the relative maximum or minimum values of a

function F (x, y, z) subjected to a constraint condition φ(x, y, z) = 0, consists of

the formation of the auxiliary function:

G(x, y, z) = F (x, y, z) + λφ(x, y, z) (B.7)

subject to the conditions:

∂G

∂x
= 0,

∂G

∂y
= 0,

∂G

∂z
= 0 (B.8)

which are necessary conditions for relative maximum or minimum. The param-

eter λ, which is independent of x, y, z, is called a Lagrange Multiplier.

The method can be generalised. If we wish to find the relative maximum

or minimum values of a function F (x1, x2, x3, . . . , xn) subject to the constraint

conditions φ1(x1, . . . , xn) = 0, φ2(x1, . . . , xn) = 0,. . . , φk(x1, . . . , xn) = 0, we

form the auxiliary function:

G(x1, x2, . . . , xn) = F + λ1φ1 + λ2φ2 + · · · + λkφk (B.9)

subject to the (necessary) conditions:

∂G

∂x1

= 0,
∂G

∂x2

= 0, . . . ,
∂G

∂xn
= 0 (B.10)

where λ1, λ2, . . ., λk, which are independent of x1,x2, . . ., xn, are the Lagrange

Multipliers.
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B.3.2 The Newtonian Method

The Newton-Raphson method is an open method that finds the roots x of

a function such that f(x) = 0. Taylor’s expansion about x = xi gives:

xi+1 ≈ xi −
f(xi)

f ′(xi)
(B.11)

A similar open approach can be used to find an optimum of f(x) by defining

a new function, g(x) = f ′(x). Thus because the same optimal value x∗ satisfies

both g(x∗) = f ′(x∗) = 0. We can use the following:

xi+1 ≈ xi −
f ′(xi)

f ′′(xi)
(B.12)

as a technique to find the maximum or minimum of f(x).

This method can be extended to multivariate cases. Write a second order

Taylor series for f(x) near x = xi,

f(x) = f(xi) + ∇fT (xi)(x − xi) +
1

2
(x − xi)

T Hi(x − xi) (B.13)

where H is the Hessian matrix. Hessian of f is evaluated from:

Hf(x1, x2, . . . , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2

∂2f
∂x2∂x3

. . . ∂2f
∂x2∂xn

∂2f
∂x3∂x1

∂2f
∂x3∂x2

∂2f
∂x2

3

. . . ∂2f
∂x3∂xn

...
...

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

∂2f
∂x3∂xn

. . . ∂2f
∂x2

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(B.14)

At the minimum:

∂f(x)

∂xj
= 0 (for j = 1, 2, 3, . . . , n)

Thus,

∇f = ∇f(xi) + Hi(x − xi) = 0 (B.15)

if H is nonsingular:

xi+1 = xi − H−1
i ∇f (B.16)

which can be shown to converge quadratically near the optimum.
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APPENDIX C

π0 MATCHING

Matching reconstructed π0 candidates to the generated π0s is done on a

spatial basis, taking advantage of the high granularity of the ECAL. The energy

resolution is relatively poor and so the energy measurements are not used in the

procedure. The procedure, which considers only selected π0 candidates, is as

follows:

1. Each photon, R1 and R2, from a reconstructed π0 is presented with

photons, G1 and G2, from a generated π0.

2. The opening angles, αRG, between the reconstructed photons and gen-

erated photons is calculated. Four combinations are possible: α11, α12,

α21, and α22.

3. From these angles two sums are calculated: βa = α11 + α22, and βb =

α12 + α21, representing the two possible matching orientations. The

orientation, a or b, giving the smallest value of β is taken as the match.

4. The above procedure is repeated until all generated π0s have been pre-

sented to the reconstructed π0. The candidate with the smallest value

of β is flagged the best matching candidate.

5. Finally the best matching candidates, one for each reconstructed π0, are

flagged as a true match if the value of β is less than 1.4◦.

In Figure C.1 distributions of λ = 1000 (1 − cos β) are shown in four energy

intervals for best and all matches. A clear spike is seen for low values of λ where

true matches are expected to be found. At higher values of λ a background

appears corresponding to the incorrect orientation of true matching π0s, the

background becomes closer to the spike for higher energy π0s due to the smaller

opening angles. These features demonstrate the spatial resolving power of the
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ECAL, for example photons are clearly resolved to much better than a λ value

of 0.3 = 1.4◦.

A cut of λ < 0.3 = 1.4◦ is applied to a π0 candidate to flag it as a true

match. A continuum extends to large values of λ representing the matching

of generated π0s to fake reconstructed π0s. It is this continuum which forms

the background to correctly matched π0s and therefore is responsible for the

uncertainties in the matching procedure. The chosen value of λ is an attempt

to minimise the background whilst keeping all the correctly matched π0s. An

additional problem occurs for very high energy π0s where the opening angles are

very small. For these the background begins to merge with the spike and the

matching becomes ambiguous. To eliminate this problem an upper limit of 18

GeV is placed on the selection of π0 candidates.

Figure C.1: The distribution of λ = 1000 (1 − cos β) in four energy intervals for
the all and best matches. A cut of λ < 0.3 = 1.4◦ is applied to a π0 candidate to
flag it as a true match.
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APPENDIX D

DETAILED REAL DATA FITS

The detail of the fit components contributing π0π± invariant mass spectra

and corresponding extracted signal and interference functions for all xp and xE

intervals are shown in Figures from D.1 to D.4.

Figure D.1: Fits made to the real data invariant mass spectra for all xp intervals
and the detail of the fit components.
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Figure D.2: The extracted signal, resonance curve and interference term for all
xp intervals corresponding to the data in Figure D.1.
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Figure D.3: Fits made to the real data invariant mass spectra for all xE intervals
and the detail of the fit components.
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Figure D.4: The extracted signal, resonance curve and interference term for all
xp intervals corresponding to the data in Figure D.3.


