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ABSTRACT 

 
 

ANALYSIS OF FRACTURE MECHANICS VIA FINITE ELEMENTS  
AND ARTIFICIAL INTELLIGENCE 

 
 

ATMACA, Nihat 
PhD in Mechanical Engineering 

Supervisor: Prof. Dr. �brahim H. GÜZELBEY 
June 2007, 122 pages 

 
 

In this thesis, a finite element analysis has been carried out for accurate calculation and 

evaluation of the Stress Intensity Factor (SIF) in Linear Elastic Fracture Mechanics (LEFM) 

and J-integral in elasto-plastic Fracture Mechanics (EPFM). The direct relations between the 

parameters and some guide lines for future works have been investigated. This study also 

presents the influence of mesh refinement on the SIF and J-integral values of Mixed Mode 

(Mode I and Mode II) loading. Furthermore, the prediction of crack path has been performed 

numerically using maximum circumferential stress criterion. Finally, explicit formulations 

have been obtained in the evaluation of SIF and J-integral parameters using Neural Networks 

(NN’s) and Genetic Programming (GP).  

 

Keywords: Stress Intensity Factor, J-integral, Crack Path Prediction, Displacement  

Extrapolation Method, Finite Element Method, Artificial Intelligence, Neural Networks and 

Genetic Programming. 
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ÖZET 
 
 

SONLU ELEMANLAR VE YAPAY ZEKA �LE KIRILMA MEKAN��� ANAL�Z� 
 

ATMACA, Nihat 
Doktora Tezi, Makine Mühendisli�i 

Tez Yöneticisi: Prof. Dr. �brahim H. GÜZELBEY 
Haziran 2007, 121 sayfa 

 
 
 
Bu tezde, Lineer Elastik Kırılma Mekani�i (LEKM) problemleri için Gerilme �iddet Faktörü 

(G�F) ve Elasto-Plastik Kırılma Mekani�i (EPKM) problemleri için ise J-integral 

parametrelerinin do�ru bir �ekilde hesap edilebilmesi ve de�erlendirilmesi için bir sonlu 

eleman analizi yapılmı�tır. Bu parametreler arasındaki direk ili�kiler kullanılarak bir inceleme 

gerçekle�tirilmi� ve ilerideki çalı�malar için bazı kılavuz bilgiler önerilmi�tir. Bu çalı�mada 

ayrıca karı�ık mod (Mod I ve Mod II) yüklemeleri altında a� yo�unluk yapısının, G�F ve J-

integral de�erleri üzerindeki etkileri gösterilmektedir. Ayrıca çatlak yayılımının tahmini, 

maksimum halka gerilme kriteri yardımı ile yapılmı�tır. Son olarak, Sinir A�ları (SA) ve 

Genetik Programlama (GP) kullanılarak, G�F ve J-integral parametrelerinin de�erlendirilmesi 

için açık formüller elde edilmi�tir.  

 

Anahtar Kelimeler: Gerilme �iddet Faktörü, J-integral, Çatlak Yolu Tahmini, Deplasman 

Ekstrapolasyon Yöntemi, Sonlu Eleman Yöntemi, Yapay Zeka, Sinir A�ları ve Genetik 

Programlama 
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CHAPTER 1 

INTRODUCTION 

 

Fracture mechanics (FM) is one of the important branches of mechanics. FM can be 

defined as a quantitative analysis for evaluating structural behavior in terms of 

applied stress, crack length, and geometry of machine component. 

 

Design of machine elements requires the considerations of fracture due to 

environmental and working conditions and defects in materials. In many machine 

elements, failures of loaded structures have been frequently caused by growth of 

cracks or crack - like flaws in the structures or machines.  

 

Those defects may be in microscopic or macroscopic level. From a practical point of 

view, many cracks may be considered as harmless. If  a crack reaches a certain size 

and situated in a highly stress concentration region, it is regarded as a potential cause 

of fracture and failure. Therefore, engineers must understand and characterize cracks 

and their effects, and try to predict if and when they may become unsafe during the 

structures and machines operational service life (Wu, 2004).  

 

The identification of the mode of the failure and the application of a suitable failure 

criterion are the most important step in designing machine components. In the 

mechanical failure, the fracture can be characterized as the formation of new surfaces 

in the material. The essential feature of this process is breaking of interatomic bonds 

in the solid. However, fracture may be considered as the rupture separation of the 

structural component into two or more pieces due to the propagation of cracks from a 

macroscopic level. 

 

In the macroscopic approach to fracture, it is generally assumed that the material 

contains some flaws which may act as fracture nuclei and that the medium is a 

homogeneous continuum in the sense that the size of a dominant flaw is large in 

comparison with the characteristic microstructural dimension of the material. The 
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problem is, then, to study the influence of the applied loads, the flaw geometry and 

material behavior on the fracture process in the solid (Erdogan, 2000). 

In summary, fracture mechanics deals with the effect of a crack or flaw in a structure. 

The effect of the shape of a crack, working conditions and applied loads are the main 

interest of fracture mechanics. 

1.1 Research Objectives and Tasks 

The subject of this thesis is to solve fracture mechanics problems using Finite 

Element Method and Artificial Intelligence. For this purpose, an attempt has been 

made to develop a computer program for the two-dimensional fracture problems 

based on Finite Element Methods. The basic research tasks have been carried out 

through a number of phases, which are summarized as follows. 

 
i A comprehensive literature review on fracture mechanics has been carried out. 

ii Understanding previously developed FEM program by Guzelbey (1992) on the 

linear elastic, elastoplastic, finite strain and related programs. The program is 

capable of handling linear elastic and finite strain elasto-plastic analysis.  

iii Derivation of crack tip elements and related equations. 

iv Calculation of Stress Intensity Factor (SIF) and J-integral. 

v Application of Neural Network (NN) and Genetic Programming (GP) for the 

evaluation of SIF and J-integral parameters. 

vi Prediction of crack path for linear elastic fracture mechanics. 

It is essential for every developed program to be validated using cases with known 

solutions or comparing the results obtained from the developed programs with those 

obtained by means of commercial packages such as ANSYS finite element package. 

 

The derivation of the SIF and J-integral parameters has been carried out using the 

direct and indirect relations between the linear elastic and elasto-plastic fracture 

mechanics parameters with known extrapolation and energy approaches and new 

approaches using artificial intelligence techniques. A flexible algorithm has been 

designed for this purpose. This algorithm should applicable to further studies such as 

fatigue and impact analysis.  
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1.2 Thesis Layout 

 

A general literature review for linear elastic and elasto-plastic fracture mechanics, 

crack initiation and propagation analyses, numerical techniques and artificial 

intelligence in fracture mechanics is summarized in chapter 2. 

 

Fundamental principles of linear elastic fracture mechanics theory are presented and 

finite element and artificial intelligence methods for stress intensity factor 

calculations, criteria for crack path prediction are given in chapter 3. 

 

Basic concepts of elasto-plastic fracture mechanics and its common parameters of 

crack tip opening displacement method and J-integral method, artificial intelligence 

applications regarding J-integral calculations are given in chapter 4. 

 

Case studies of fracture mechanics are presented in chapter 5. 

  

In chapter 6 final conclusions and recommendations for future works are 

summarized. 
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CHAPTER 2 

LITERATURE REVIEW 

 
2.1 Introduction 

 

Fracture mechanics is a field of solid mechanics that deals with the mechanical 

behavior of cracked bodies. Fracture occurs due to various loading types. Those 

loading types are expressed in three modes as seen in Fig. 2.1. 

 

In Mode I, also named as Opening Mode, the crack surfaces move directly apart 

under a tensile stress perpendicular to the surfaces. In Mode II (Sliding Mode), the 

crack surfaces move normal to the crack front and remain in the crack plane under a 

shearing stress parallel to the plane. The mode is analogous to an edge dislocation. 

The crack surfaces move parallel to the crack front and remain in the crack plane 

under a shearing stress perpendicular to this plane in Mode III (Tearing Mode). It is 

analogous to a screw dislocation (Broek, 1986). 

 

 

 

 
 

 

 

                 a. Mode I   b. Mode II     c. Mode III 

Fig. 2.1 Modes of fracture  
 
2.2 Linear elastic fracture mechanics  
 

The first approaches to fracture mechanics from a mathematical point of view had 

been started with the studies of Inglis (1913), Griffith (1921) and Westergaard 

(1939). 

y 

z 

y 
x 

z 

y 
x 

z 

x 
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Inglis (1913) concentrated on the determination of the stress fields around an 

elliptical hole in a plate. Inglis claimed that his results are exact, and therefore it is 

applicable at the extreme limits of the elliptical form. Griffith (1921) assumed that 

growth of a crack requires creation of surface energy, which is supplied by the loss 

of strain energy accompanying the relaxation of local stresses as the crack advances. 

He developed a thermodynamic approach and proposed a theory assuming that there 

is a simple energy balance, consisting of a decrease in elastic strain energy within the 

stressed body as the crack extends, counteracted by the energy required to create new 

crack surfaces. This theory allows for the estimation of the theoretical strength of 

brittle solids and also gives the correct relationship between fracture strength and 

defect size.  Westergaard (1939) used the complex variable technique to solve crack 

problems. A complex stress function, which satisfied the nominal requirement of 

compatibility, as demanded by the bi-harmonic governing equation, was used in 

order to determine displacements and stress levels in the immediate neighborhood of 

a crack in an infinite plate subjected to a remote bi-axial stress. 

 

A design for materials containing flaws has been outlined (Sih and Mcdonald, 

1974). LEFM was used on high strength-low toughness materials in-the analysis of a 

structure due to the influence of a crack under mixed mode loading, where the crack 

will grow in a curved fashion.  

 

Karami and Fenner (1986) developed a multi-domain boundary integral equation 

method, employing an isoparametric quadratic representation of geometries and 

functions for the analysis of 2D LEFM problems. The multi-domain approach allows 

the two faces of a crack to be modeled in independent sub-regions of the body, thus 

avoiding singularity difficulties, and consequently making it possible to analyze 

crack closure problems with contact stresses over part of the cracked faces. The 

problems solved using the method, include slanted cracked plate under mixed-mode 

loading, and crack closure examples, also crack closure situations involving fully 

reversed bending of an edged cracked strip both with and without a superimposed 

tensile loading were analyzed.  

 

Banks-Sills (1991) has shown the application of the finite element method to linear 

elastic fracture mechanics problems. Pan (1997) used single domain method for the 
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analysis of LEFM’s in 2-D solids. Materials properties in the medium can be 

anisotropic as well as isotropic in Pan’s study. 

 

Erdo�an (2000), gave a summary of the key engineering applications of fracture 

mechanics and its methods and presented some important contributions and areas of 

future research in his studies. 

 

2.2.1 Stress intensity factor 

 

SIF is used in fracture mechanics to more accurately predict the stress state around a 

crack (crack tip) caused by a remote load or residual stresses. It has the symbol K 

which is a theoretical parameter applicable to a homogeneous elastic material. This 

parameter amplifies the magnitude of the applied stress that includes the geometrical 

parameter load types. The load types are categorized as Mode I, II or III given before 

in Fig.2.1. A crack can grow when the SIF reaches the fracture toughness of the 

material. 

 

Fracture toughness is a material property used to evaluate the ability of a material to 

resist a fracture resulting from crack growth. Materials with low fracture toughness 

value will probably experience brittle fracture and materials with large fracture 

toughness value will apparently experience ductile fracture.  

 

Tracey (1971) used the finite element method with inverse square root singularity 

elements to calculate the SIF’s. He showed that by using the above elements 

neighborhood of the crack tip in two typical crack configurations, SIF’s within 5% of 

the accepted values had been obtained. 

 

Cartwright and Rooke (1976) developed a “compounding” method for determining 

SIF’s at the tips of cracks in structures having complex geometrical configurations. 

This method is based on the systematic evaluation of the effects on one particular 

crack tip in the presence of other cracks, holes or other structural boundaries.  
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Vainshtok (1980) used a virtual crack variation technique based on curvilinear crack 

theory to calculate the SIF’s for mixed mode crack problems and concluded that the 

results obtained from the method satisfactory with results obtained using the energy 

method. 

 

Rook and Hutchins (1984) used an integral transform to calculate the SIF’s for a 

crack at the edge of a hole, which was loaded on its perimeter by a localized radial or 

tangential force. The calculated SIF’s can be used as numerical Green's functions to 

obtain Mode I and Mode II SIF’s. It was concluded that this Green's function 

technique allowed simple summation methods to be employed and avoided costly 

computer computation time. The method has been used successfully for crack growth 

in components subject to fretting.  

 

A predicted stiffness matrix was proposed which shortened CPU times by one third, 

and also raised the accuracy of the solutions. Analytic solutions to Mode III crack 

problems for elastic materials were investigated (Hsu-I-Min, 1989). Basic 

assumptions of infinitesimal deformations, homogeneous and isotropic material with 

linear-elastic and power-law hardening plastic constitutive relationship, and 

deformation plasticity are employed. Three crack problems are formulated and 

solved, namely, semi-infinite crack in an infinite strip, an edge crack in a semi-

infinite body, and an edge crack in a semi-infinite strip.  

 

Richard and Kuna (1990) presented an all-fracture mode specimen with which it is 

possible to conduct tests for pure Mode I, pure Mode II, pure Mode III as well as all 

possible combinations of all the modes of fracture as stated above. An FE analysis of 

this specimen was conducted where the stress intensity factors, KI, KII, and KIII were 

determined. The results showed that KII and KIII are coupled for in-plane shear and 

anti-plane shear loading. Fracture experiments under mixed-mode loading, using this 

new specimen, demonstrated the influence of the loading type on the orientation and 

on the structure of the fracture surface.  

 

Barsoum (1974) and Hensell and Shaw (1975) are used quarter-point isoparametric 

elements to obtain a good representation of the crack-tip field. The r-1/2  linear-elastic 

singularity for stresses and strains is obtained by shifting a quarter to the crack tip the 
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midside nodes of all surrounding elements. The original quarter point element has 

been extended and refined in some ways (Horvath, 1994). He used higher order 

singular isoparametric elements for crack problems. 

 

Guinea et al. (2000) evaluated Mode I SIF values using the displacement 

extrapolation technique. They showed the influences of element size, element shape 

and mesh arrangement on numerical Mode I SIF values.  

 

Gray et al. (2003) presented a modification to the quarter-point crack tip element 

and employed this element in 2-D boundary integral fracture analysis. They showed 

that the modified quarter point crack tip element produced highly accurate SIF’s.  

 

Xie et al. (2004) proposed an exact and very simple method based on a new concept 

of crack surface widening energy release rate to determine SIF’s for cracked 

structural rectangular thin-walled tubes. 

 

2.2.2 Energy release rate 

 

The Griffith energy criterion for fracture states that crack growth can occur if the 

energy required to form an additional crack can be delivered by the system. This 

parameter can be defined also as the rate of energy absorbed by the growth of the 

crack. 

 

Zenner and Holman (1944) concerned Griffith's concept to brittle fracture of 

metals. Later, Irwin (1957) showed that the energy approach is equivalent to the 

stress intensity approach, where fracture is seemed to have occurred when a critical 

stress distribution ahead of the crack tip is reached. Fracture may therefore be 

governed by a material property Kc, the critical stress intensity factor, or Gc the 

critical energy release rate. LEFM is based upon the equivalence of G and K, 

because the stress distribution around and close to the crack tip is always the same. 

 

Walsh and Pipes (1985) used the FEM and other energy release rate principles to 

determine Mode I SIF values for selected crack configurations. The method relates 
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the change in strain energy resulting from crack growth, to the change in the stiffness 

matrix of the structure containing the crack.  

 

Banks-Sills and Sherman  (1986) made a comparison between three methods of 

calculating SIF’s, i.e. displacement extrapolation, the J-integral and Griffiths energy 

calculations, and the stiffness derivative technique. It was observed that the stiffness 

derivative method yields the most accurate results, whereas displacement 

extrapolation was the easiest method to implement for special cases. 

 

2.3 Elasto plastic fracture mechanics 

 

When the plastic zone of the crack tip becomes large and spreads through the whole 

cracked section then the fracture stress can not be determined by means of LEFM. If 

the plastic zone is large compared to the crack size the EPFM calculations has to be 

applied on crack tip stress calculations. 

 

Zienkiewicz et al. (1969) prescribed a general elasto-plastic matrix formulation for 

the evaluation of incremental stress values for any surface with an associated flow 

rule. Computation of an "initial stress" was also given which, as it was claimed, gave 

convergence quicker than existing methods, and which allowed large load increments 

without violation of the yield criteria. Both Von Mises and Coulomb yield criteria 

were tested and stress distribution with strain and growth of the plastic regions 

shown.  

 

An incremental plasticity finite element formulation for the analysis of a complete 

field problem including the plastic region near the crack tip was presented by Tracey 

(1976). General applicability of the formulation was claimed and that it can be used 

for small scale yielding with material hardening. The distribution of the crack tip 

opening displacement (CTOD) at the crack tip was presented as a function of the 

elastic stress intensity factor and material properties.  

 

An elasto-plastic finite element analysis of a centrally cracked plate was conducted 

by Miller and Kfouri (1979). Comparison of features such as the crack tip zone, 
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plastic strain near the crack tip, CTOD, principal stresses in the crack tip region, and 

the J-Integral values, was made corresponding to different biaxial stress states.  

 

Aoki et al (1981), showed that the energy release rates associated with the 

translation, rotation, self-similar expansion and distortion of the fracture process 

region, are expressed by the newly introduced integrals J, L, M, and I. These 

integrals can be defined even if there exists plastic deformation, thermal strains, body 

forces or inertial forces.  

 

An Experimental and numerical investigations of the relationships between fracture 

toughness parameters (CTOD, K, and J) was carried out by Pilcer and Ohlson 

(1983). It was found that by using certain factors, taking account of strain hardening, 

the relations in the elastic range could be extended to the elasto-plastic range.  

 

Ahmad et al (1983) presented a program of integrated experimental finite element 

analysis for understanding crack growth initiation, propagation, and arrest under 

initial combined-mode dynamic loading conditions. Zien (1983), developed a finite 

element post processor to calculate an incremental plasticity-based J-integral for 

fracture mechanics evaluation. 

 

Atluri and Nishioka (1984) considered the relevance of certain path independent 

integrals in the presence of cracks and inelastic solids. The constitutive material 

properties considered include: (i) finite and infinitesimal elasticity, (ii) rate-

independent incremental flow theory of elasto-plasticity, and (iii) rate-sensitive 

behaviour including elasto-viscoplasticity and creep. In each case finite deformations 

are considered along with the effects of body forces, material acceleration, and 

arbitrary traction and displacement conditions on the crack face. Physical 

interpretation of each of the integrals, either in terms of crack tip energy release rates 

or simply energy-rate differences in the comparison of two cracked-bodies are 

considered.  

 

The modeling of an elasto-plastic crack tip using Green's function formulation for 2D 

problems was carried out by Cruse (1986). The work shows how even a crude model 

of the plastic strains can adequately represent the singular strain distribution.  
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2.3.1 J-Integral   

 

Using a path independent line integral known as the J-integral which describes the 

fracture conditions in a component experiencing both elastic and plastic deformation 

has been developed by Rice (1968). It is related to the energy available in the 

vicinity of a crack and Rice solved 2D crack problems in the presence of plastic 

deformation. 

 

The J-Integral as the energy release rate during crack extension has been presented 

by Sakata et al (1979) where the usefulness of the J-integral in fracture mechanics 

problems and in particular in the presence of body forces, inertial effects, thermal 

strains and preloadings has been shown and evaluated using FEM.  

 

A method for estimating the dynamic stress intensity factor by using the FEM and 

the path independent J-integral was developed by Kishimoto et al (1982). The 

formula allowed for mixed mode analysis where the SIF’s for pure and mixed modes 

were shown to agree well with published analytical results. This method was 

recommended because neither a refined crack tip mesh nor a special crack tip 

element was required. The J-integral method will be used in our optimum path 

calculations. 

 

Nguyen et al. (1990) proposed a coupled displacement crack length rate analysis 

based on path integrals derived from the expression of the J-integral.  

 

Courtin et al. (2005) showed the advantages of the J-integral approach for 

calculating the SIF’s when using the commercial finite element software ABAQUS. 

 

2.3.2 Crack tip opening displacement 

 

The CTOD parameter can be considered as strain based estimation of fracture 

toughness. However it can be separated into elastic and plastic components. The 

elastic part of the CTOD can be derived from the SIF and the plastic component can 

be obtained by assuming the specimen rotates about a plastic hinge. 
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The CTOD approach was first introduced by Wells (1962). The method proposes 

that crack extension can take place when the material at the crack tip has reached a 

permissible strain, and that the stresses and strains in the vicinity of a crack or defect 

are responsible of failure.  

 

In practice, the stresses at the crack tip always exceed the yield strength of the 

material, resulting in a localized plastic region around the crack tip. Failure is the 

progression of this plastic region through the structure. Dugdale’s strip yield model 

was utilized by Burdekin and Stone (1966), to find an expression for the CTOD. 

This method provided an improved rationale for the method.  

 

Turner (1975) concluded that either the CTOD (�), or the J-integral method offers a 

reasonable one term description of the conditions at the tip of an elasto-plastic crack.  

 

2.4 Crack initiation and propagation 

 

Crack initiation and propagation are essential to fracture. The manner through which 

the crack propagates through the material gives great insight into the mode of 

fracture. The modes of fracture have been explained in introduction section and the 

related figure can be seen from Fig. 2.1.  

 

Cracks usually initiate at some point of stress concentration. Examples of these 

common areas include scratches, fillets, threads, and dents. Crack propagation in a 

critical component or structure can determine whether failure fatal (catastrophic) or 

not (safe). 

  

Shanyi and Lee (1982) presented an FE analysis of slow crack growth for a centre 

cracked plate subject to monotonically increasing load until the point of fast fracture 

is reached. The formulation is based on an incremental theory of plasticity with 

isotropic hardening. Numerical results were compared with experimental data, where 

good correlation was shown to exist. 
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Broberg (1984) determined the crack growth properties of the process region. The 

conclusion of this paper was that the upper limit for the propagation velocity of a 

healing region is the velocity of irrotational waves.  

 

Saouma and Zatz (1984) determined the crack path and fatigue life using interactive 

computer graphics and the FEM in LEFM for a given problem. Automatic remeshing 

was also catered for.  

An analytical model based on crack closure which can account for the influence of 

initial residual stresses on crack growth and vice-versa was presented (Keyvanfar, 

1985).  

 

A comparison of the effects of crack tip plasticity on crack growth retardation 

through residual stresses ahead of the crack tip and through crack closure were 

investigated (Cruse and Raveendra, 1988). A comparison of elasto-plastic crack-

opening for long and short cracks in plane stress and plane strain was also 

investigated. Also a comparison of elasto-plastic crack-opening for long and short 

cracks in plane stress and plane strain was investigated.  

 

Four kinds of cracked specimens of brittle material were tested under all possible 

combinations of modes I,II, and III (Yishu, 1989). From the measured experimental 

data an empirical criterion of mixed-mode crack propagation was suggested. The test 

results indicated that the higher the Kıc value, the higher was the susceptibility to the 

coupling effect of KI and KIII, therefore the more the fracture toughness can be 

increased.  

 

Richard et al. (2005) presented theoretical crack prediction of the mixed mode 

loading conditions. The hypotheses and concepts described the superposition of 

Mode I and Mode II as well as the superposition of all three modes ( Mode I, II, III) 

for spatial loading conditions in the study. 

 

2.5 Artificial Intelligence 

 

Artificial Intelligence (AI) is a combination of computer science, physiology and 

philosophy. This inter-discipliner science area is focusing on creating machines that 
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can mimic human thought, understand speech and engage on behaviours that humans 

consider intelligent. Artificial Neural Networks (ANN) and Genetic Algorithm (GA) 

are the most popular AI techniques used by lots of researchers.  

 

The first step toward ANN came in 1943 when Warren McCulloch, a 

neurophysiologist, and a young mathematician, Walter Pitts, wrote a paper on how 

neurons might work. They modeled a simple neural network with electrical circuits.  

 

Hebb (1949) proposed `Hebb rule' which states that nets can learn from their 

experience in a training environment. `Hebb rule' has always played a striking role in 

the field of ANN studies.  

 

Throughout 1950s scientists implemented models called perceptrons based on the 

work of McCulloch and  Pits. Rosenblatt (1958) invented the Perceptron which has 

been a milestone in ANN studies.  

 

Widrow and  Hoff (1960) developed the models called ADALINE and 

MADALINE which was the first neural network to be applied to a real world 

problem. Then Marvin and Seymour (1969) published some intrinsic limitations of 

neural Networks which slowed down the implementations of ANN drastically.   

 

The studies in the field ANN almost stopped  for more than a decade until Hopfield 

(1982) invented The Hopfield network whose dynamics were guaranteed to 

converge. After this novel invention ANN studies have raised again.  

 

Rumelhart et al., (1986) were invented Backpropagation which opened a new era in 

ANN applications. 

 

Genetic algorithm (GA) is an optimization and search technique based on the 

principles of genetics and natural selection. A GA allows a population composed of 

many individuals to evolve under specified selection rules to a state that maximizes 

the “fitness” (i.e., minimizes the cost function).  
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GA method was developed by  Holland (1975) and finally popularized by one of his 

students, David Goldberg (1989), solved a difficult problem involving the control of 

gas-pipeline transmission for his dissertation (Haupt and Haupt 2004).   

 

Genetic programming (GP) is an extension to Genetic Algorithms proposed by Koza 

(1992). Koza defined GP as a domain-independent problem-solving approach in 

which computer programs were evolved to solve the problems based on the 

Darwinian principle of reproduction and survival of the fittest and analogs of 

naturally occurring genetic operations such as crossover and mutation. 

 

The fitness of each individual in a genetic algorithm is the measure the individual has 

been adapted to the problem that is solved employing this individual. It means that 

fitness is the measure of optimality of the solution offered, as represented by an 

individual from the genetic algorithm. The basis of genetic algorithms is the selection 

of individuals in accordance with their fitness; thus, fitness is obviously a critical 

criterion for optimization (Chambers, 2001). 

 

2.6 Conclusions 

 

It is clear from the literature review that a large amount of work has been carried out 

in the LEFM regime, mainly using finite element analysis. A variety of approaches 

and methods have developed to estimate or to find valid relations, which can 

describe or relate certain fracture mechanics parameters such as stress intensity 

factors, J-integrals, crack-opening displacements, and fracture toughness.  

 

It is also clear that there is no general relation, criterion, or method which is valid for 

all regimes of fracture problems. This is so because of other factors, such as 

plasticity, yielding, loading conditions, crack configurations, and material behavior, 

influencing the fracture process.  

 

A limited work has been done in the non-linear EPFM area. Additional 3-D non-

linear analysis of fracture of structures is quite rare in the literature.  Furthermore few 

studies are available on the application of NN and GP to fracture mechanics.  
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CHAPTER 3 

LINEAR ELASTIC FRACTURE MECHANICS 

 

3.1 Introduction 

The stress intensity factor K which describes the magnitude of the elastic crack tip 

stress field, can be used to correlate the crack growth and fracture behavior of 

materials, provided that the crack tip stress field remains predominantly elastic. This 

makes the SIF an extremely important parameter for the Linear Elastic Fracture 

Mechanics (LEFM) problems . 

There are basically three modes of fracture state (Fig 2.1). The three modes are: 

Opening, sliding and tearing modes (Modes I, II and III). All stress systems in the 

vicinity of a crack tip may be derived from the three modes of loading. Most 

materials are more susceptible to fracture by normal tensile stresses than by shear 

stresses (Guinea et al., 2000). 

 

There are generally two approaches in LEFM for the determination of SIF; energy 

balance approach and the stress intensity approach. 

 

Griffith (1921) is the pioneer in the energy balance approach. He stated that the 

crack propagation would occur if the energy released upon crack growth was 

sufficient to provide all the energy that is required for crack growth. Irwin (1957) 

showed that the energy balance postulated by Griffith should exist between the 

stored strain energy and the surface energy plus the work done in plastic 

deformation. He further concluded that the energy required to form new crack 

surfaces was significantly less than the work done in plastic deformation for ductile 

materials. So he defined the parameter G, which is the total stored energy absorbed 

during cracking per unit increase in crack length and per unit thickness. This 

parameter was called “the energy release rate” or “crack driving force”.  
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The alternative approach is the stress intensity approach. The stress intensity 

approach depends on the SIF which is used in fracture mechanics to more accurately 

predict the stress state (stress intensity) around the tip of a crack. When this stress 

state becomes critical a small crack grows and the material fails. The load at which 

this failure occurs is referred to as the fracture strength. Some large cracks seen in 

the materials were the result of small cracks and internal residual stresses not known 

at the time. 

 

Irwin (1960) showed that the stresses in the vicinity of a crack tip take the form: 
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where K is a constant, which gives the magnitude of the elastic stress field, and is 

called the stress intensity factor. The c and f (a/w) are dimensionless parameters that 

depend on the geometries of the specimen and the crack. These parameters can be 

determined from numerical approximation or experimental methods. Similar 

expressions may be obtained for all modes of loading, KI, KII, and KIII. 

 

The parameter, which governs fracture, may then be expressed as a critical value of 

the stress intensity factor ie: Kc, instead of the critical energy release rate Gc. The 

relationship between Kc and Gc  for  tensile  loading conditions is given by: 
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When the material is predominantly in plane strain and under maximum constraint, 

the value of KC tends to a limiting constant value. This value is called the plane strain 

fracture toughness, KIC, and may be considered a material property. If Mode I is 
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predominant and the other modes insignificant, and since KIC is a material constant, 

the sign of 
da

dK I  determines the stability of fracture propagation.   

 

3.2 Determination of SIF’s 

 

The behaviors of a crack can be determined by the stress field of the near crack-tip 

region and this quantified by the K. Thus an accurate knowledge of this fracture 

parameter can give useful data for future life of the component under investigation. 

There are mainly three types of methods for the determination of the SIF; analytical, 

numerical and experimental methods. 

 

The analytical methods for the derivation of the SIF have been the bases for the 

development of fracture mechanics. They have delivered the basic equations for the 

crack tip stress and displacement fields, which still serve as the starting point for 

many other solutions. The knowledge that the stress and displacements fields for 

either fracture mode always take the same form offers the possibility to determine the 

SIF in an indirect way.  

 

However, the analytical methods are the least interesting from an engineering point 

of view. In general, they try to satisfy the boundary conditions exactly. Usually this 

is possible only in the case of  an infinite plate or solid. In the analytical solutions it 

is tried to find an Airy stress function to solve the problem under consideration. 

 

Various numerical methods have been developed to derive SIF. These are finite 

difference, finite element and boundary element methods.  An effective method 

among these is the FEM. The application of the finite element method to determine 

crack-tip stress fields has seen rapid progress. The method has great versatility: it 

allows the analysis of complicated engineering geometries (bolted and welded 

structures), it enables treatment of 3-D problems, and it permits the use of elastic-

plastic elements to include crack tip plasticity. FE approximations are very promising 

for extensive use in engineering crack problems. 
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Experimental determination of the SIF is sometimes useful to obtain an 

approximate value. The SIF can not be measured directly in an experiment, but it can 

be found through the relations between K and a measurable quantity, such as strain, 

compliance, and displacement. Some methods are applicable only in laboratory 

experiments, but a few may have a limited use under service conditions, provided the 

load on the structure can be measured also. This would enable an appreciation of the 

danger involved in an unexpected service crack, pending a more elaborate analysis. 

A typical laboratory technique is the use of photoelasticity. Three dimensional 

problems can be investigated by employing the frozen-stress technique. In principle, 

any technique that can measure stresses or displacements can be applied for an 

experimental determination of the SIF. One of these techniques can be applied using 

the electrical resistance strain gauges (Broek, 1986). 

 

3.2.1 FEM for SIF calculations 

 

Numerical methods are extremely powerful tools for engineering analyses. 

With the advent of computers, there has been a tremendous explosion in the 

development and use of numerical methods. Of these, the FEM and its variants 

are the most commonly used methods in the analysis of practical engineering 

problems. The technique is based on the discretisation of an assembly into structural 

elements interconnected at a finite number of nodes. Forces can only be transmitted 

via these nodal points which are displaced appropriately. The nodal displacements 

for each element are evaluated and the resulting solutions are assembled into a 

matrix. Stress-strain relationships together with the minimum energy theorem are 

then applied which will reveal expressions relating forces, displacements and 

stiffness (Reddy, 2004). 

 

In the FE models, the crack region must be modeled with very fine meshes in order 

to obtain accurate stress values near crack tip. This can also be done considering 

special crack tip elements at crack tip. Although a number of special types of 

elements have been developed for use at the tips of cracks, one of the simplest 

approaches for linear elastic problems involves modifications to the isoparametric 

elements in the neighbourhood of the crack. The purpose of these modifications is to 

impose the r-1/2 stress and strain singularity which is known to exist near the tip of a 
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crack in an elastic material where r and θ are cylindrical polar co-ordinates of a point 

with respect to the crack (Fig. 3.1). 

 

 
 

Fig. 3.1 Cylindrical-polar coordinates of a crack (Fenner, 1986). 

 

The method of modification is only applicable to isoparametric elements employing 

polynomial shape functions of quadratic or higher degree. The mid-side nodes must 

be displaced to a point at a quarter of the element length from the node at which the 

singularity is to occur after this modification method. In other words, node shifting 

must be applied all elements which meet at the crack tip which is shown in Fig. 3.2. 

 
 

Fig. 3.2 A quadratic quadrilateral element with mid-side nodes shifted to the quarter-

points nearest the crack tip (Fenner, 1986) 
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The techniques for determining SIF using extrapolation methods the displacement 

and stress extrapolation methods are widely used in literature after application of 

crack tip element. In these techniques, values of displacements and stresses very 

close to the crack tip must be known. After determining the required stresses and 

displacements, the extrapolation techniques can be used to determine accurate SIF 

values.  

 

3.2.1.1 Displacement extrapolation method 

 

The DEM is based on the nodal displacements around the crack tip. To obtain a good 

representation of the crack-tip field, quarter-point isoparametric elements are used as 

suggested by Barsoum (1974) and Hensell and Shaw (1975). The r-1/2 linear-elastic 

singularity for stresses and strains is obtained by shifting a quarter to the crack tip the 

midside nodes of all surrounding elements. 

 

The stress distributions (Fig. 3.3) near the crack tip can be written in terms of the two 

stress intensity factors (Fenner, 1986) as 
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Where IK  and IIK are SIF’s and θ  is the angle between x-axis and radial line. 
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Fig. 3.3 Distribution of stresses in vicinity of crack tip (Hertzberg, 1996). 
 

If the constitutive and compatibility equations are applied to Eqs. (3.5), (3.6) and 

(3.7), the strains and displacement distribution can be obtained. In these equations θ  

depends on geometry, IK  and IIK  depend on the loading condition and r is a small 

distance. The stress intensity factor for Mode I, II and mixture mode can be obtained 

by stress and displacement extrapolation when the distance r approaches zero.   

 

However, the asymptotic expression of the displacement normal to the crack plane 

has been calculated for a bi-dimensional crack, under Mode I loading : 
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The displacement v normal to the crack plane is also given by Guinea et al (2000), 

Fenner (1986), Dechaumpai et al (2003) and Gray et al. (2003). In this 

formulation, parameters are; E, the modulus of elasticity, υ , the Poisson’s ratio, κ , 

an elastic parameter which is equivalent to υ43 −  for plane strain and ( ) ( )υυ +− 1/43  

for plane stress. iA  is the parameters  on the geometry and load on the specimen, and 

r and θ  are the polar coordinates, defined before in Fig 3.1. The normal 

displacement at crack tip, ( )0=rν , is seen to be zero as prescribed by the symmetry 

of Mode I. 

 a 



 23 

 

When the displacement ν  is evaluated along the crack faces ( )π±=θ , Eq. (3.8) 

only contains terms in 2/1r , 2/3r , 2/5r  etc. making the extrapolation with using Eq. 

(3.8) and ignoring higher order terms a set of approximate equation has been 

obtained by Guinea et al. (2000) for Mode I loading. The approximate equations: 
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where 'E  is the effective elastic modulus defined as equal to E  for plane stress and 

( )21/E υ−  for plane strain. 

 

Eqs. (3.9), (3.10) and (3.11) are based on the series expansion of displacements along 

the crack faces. Eq. (3.9) is a second order approximation with 2/1r and 2/3r  terms 

while Eq. (3.10) is a first order with 2/1r  term. The 4th equation is produced by 

matching the term 2/1r  with corresponding term of the element interpolation function 

of Eq. (3.8). 

 

Eqs. (3.9), (3.10) and (3.11) are estimations of Kı with the nodal displacements of the 

quarter point elements located on the upper face of the crack. Due to symmetry, 

similar results would be obtained for the lower face of the element. Now SIFs may 

be determined for a full model for Mode I and Mode II for Eq.(3.9) (Dechaumpai et 

al, 2003): 
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If the similar approach is applied to the Eqs. (3.10) and (3.11), a new set of equations 

is obtained as follows: 
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  ( )( ) ( )CAII uu
l

2
11

E
K −π

κ+υ+
=                (3.15) 

( )( ) ( ) ( )( )DBCAI 4
l

2
112

E
K ν−ν−ν−νπ

κ+υ+
=              (3.16) 

  ( )( ) ( ) ( )( )DBCAII uuuu4
l

2
112

E
K −−−π

κ+υ+
=            (3.17) 

 
For full model applications, Eqs. (3.14 - 3.15) and Eqs. (3.16-3.17) have been used in 

place of Eq. (3.12) and Eq. (3.13) respectively. In those equations, u and ν  are the 

displacement components in the x and y directions and their subscripts indicate the 

position of the nodes. 

 

Eqs. (3.12-3.17) are the different estimates of Kı and Kıı. The performance of the Kı 

and Kıı estimations has been done using some numerical analysis.  

 

3.2.1.2 Stress extrapolation method 

 
It is basically the same procedure as the displacement approach except the stress 

expressions are correlated with the stresses from the finite element analysis. Thus, 

the stress intensity factor can be obtained as: 

 

( ) ij
*

ij

I f
r2

K σ
θ
π=              (3.18) 

 
where σ∗ ij  are the stresses of a node with coordinates r and θ given before in Fig. 

3.1. 
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3.2.2 Artificial Intelligence for SIF calculations 
 
 
In recent years, AI methods have been widely used in engineering problems. 

However the calculation of SIF parameters of fracture mechanic problems with AI 

methods has not been used so common. The future life estimation of a component or 

structure under investigation mostly depends on the accurate knowledge of SIF. 

Although there are numerous analytical formulations in literature for the prediction 

of SIF parameter for common geometries, no unified analytical expression being 

valid for varying geometries has been proposed in literature so far.  

 

3.2.2.1 Neural Networks 

 

A neural network (NN’s) can be defined as a massively parallel distributed processor 

that has a natural propensity for storing experimental knowledge and making it 

available for use (Haykin, 2000). 

 

The basic element of a neural network is  the artificial neuron as shown in Fig. 3.4 

which consists of three main components namely as weights , bias ,and an  activation 

function. Each neuron receives inputs n21 x,...,x,x , attached with a  weight wi 

which shows the connection strength for that input for each connection. Each input is 

then multiplied by the corresponding weight of the neuron connection. A bias ib  can 

be defined as a type of connection weight with a constant nonzero value added to the 

summation of inputs and corresponding weights u, given in Eq. (3.19).  

    
=

+=
H

1j
ijiji bxwu              (3.19) 

 
The summation iu  is transformed using a scalar-to-scalar function called an 

"activation or transfer function", )u(F i  yielding a value called the unit's 

"activation", given in Eq. (3.20).  

 
    )u(fY ii =               (3.20) 
 
Activation functions serve to introduce nonlinearity into neural networks which 

makes NN’s so powerful. 
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Neural  networks  are  commonly  classified  by  their network topology, (i.e. 

feedback , feedforward) and learning or  training  algorithms (i.e. Supervised , 

Unsupervised). For example a multilayer feedforward neural network with 

backpropagation indicates the architecture and learning algorithm of the neural 

network. 

 

Back propagation algorithm is one of the most widely used supervised training 

methods for training multilayer neural Networks due to its simplicity and 

applicability. It is based on the generalized delta rule and was popularized by 

Rumelhart and coworkers (Rumelhart et al. 1986). As it is a supervised learning 

algorithm, there is a pair of inputs and corresponding output. The algorithm is simply 

based on a weight. It consists of two passes: a forward pass and a backward pass. In 

the forward pass, first, the weights of the network are randomly initialized and an 

output set is obtained for a given input set where weights are kept as fixed.  The  

error between the output of the network and the target value is propagated  backward 

during the backward pass and  used  to  update  the  weights  of  the  previous  layers 

as shown in Fig.3.5. (Haykin 2000, Hebb 1949,  Minsky and Seymour 1969, 

Rumelhart et al. 1986 and Zupan  and  Gasteiger 1993). 

 

 
Fig. 3.4 Basic elements of an artificial neuron 

 

The performance of a NN model mainly depends on the network architecture and 

parameter settings.  One of the most difficult tasks in NN studies is to find this 

optimal Network architecture which is based on determination of numbers of optimal 
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layers and neurons in the hidden layers by trial and error approach. The assignment 

of initial weights and other related parameters may also influence the performance of 

the NN in a great extent. However there is no well defined rule or procedure to have 

optimal network architecture and parameter settings where trial and error method still 

remains valid. This process is very time consuming. 

 

 
 

Fig.3.5.  Backpropagation algorithm 

 

In this thesis Matlab NN toolbox is used for NN applications. The prediction and 

formulation of Mode I and Mode II SIF values for varying geometries using NNs has 

been carried out. The case studies have been applied on the three well known fracture 

geometries: the center cracked, the double edge cracked and the single edge cracked 

models. 

 

FE results are divided into train and test sets where patterns in test set are randomly 

selected among the experimental database shown in bold characters given in Table 

A1. The training patterns for NNs have been obtained using ANSYS FE software 

package. The optimal NN architecture was found to be 4-11-1 architecture with 

hyperbolic tangent sigmoid transfer function (tansig). The training algorithm was 

quasi-Newton backpropagation (BFGS). All necessary neural procedures are 

performed by MATLAB NN Toolbox.  
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Explicit formulation of Mode I SIF value is obtained as a function of stress, crack 

width, plate width and crack type. 

 

The explicit formula is obtained using the weights of the trained network as follows:   

 


=

=
n

1i
iijj xwNet              (3.21) 

 
where Netj is the weighted sum of the jth neuron for the input received from the 

preceding layer with n neurons, wij is the weight between the jth neuron and the ith 

neuron in the preceding layer, xi is the output of the ith neuron in the preceding layer.  

The output of the jth neuron outj is calculated with a sigmoid function as follows: 

 

( ) ( )j

jj kNetexp1
1

Netfout
−+

==                            (3.22) 

where, k is a constant used to control the slope of the semi-linear region. 

Recalling Eqs. (3.20) and (3.21) the explicit formula is obtained by using the weights 

of the trained network given step by step as follows: 

          ii

N

1i
iji bxwu +=

=
  and     )u(fY ii =                   (3.23) 

 
 where iu  is the summation of the ith node and iY  the output of transfer function of 

this summation. 

 

3.2.2.2 Genetic Programming 

 

GP is an extension to Genetic Algorithms proposed by Koza (1992). GP reproduces 

computer programs to solve problems by executing the following steps (Fig. 3.6):  

1) Generate an initial population of random compositions of the functions and 

terminals of the problem (computer programs).  

2) Execute each program in the population and assign it a fitness value according to 

how well it solves the problem.  

3) Create a new population of computer programs. 



 29 

 i) Copy the best existing programs (Reproduction) 

 ii) Create new computer programs by mutation. 

 iii) Create new computer programs by crossover (sexual reproduction). 

 iv)  Select an architecture-altering operation from the programs stored so far.  

4) The best computer program that appeared in any generation, the best-so-far 

solution, is designated as the result of genetic programming (Koza, 1992). 

 

 

Fig. 3.6 Genetic Programming Flowchart (Koza,1992) 

Gene expression programming (GEP) software which is used in the present study is 

an extension to GP that evolves computer programs of different sizes and shapes 

encoded in linear chromosomes of fixed length. The chromosomes are composed of 

multiple genes, each gene encoding a smaller sub-program. Furthermore, the 

structural and functional organization of the linear chromosomes allows the 

unconstrained operation of important genetic operators such as mutation, 

transposition, and recombination. One strength of the GEP approach is that the 
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creation of genetic diversity is extremely simplified as genetic operators work at the 

chromosome level. Another strength of GEP consists of its unique, multigenic nature 

which allows the evolution of more complex programs composed of several sub-

programs. As a result GEP surpasses the old GP system in 100-10,000 times 

(Ferreira 2001, 2002). APS 3.0 (http://www.gepsoft.com/), a GEP software 

developed by Candida Ferreira is used in this study.  

 

The fundamental difference between GA, GP and GEP is due to the nature of the 

individuals: in GAs the individuals are linear strings of fixed length (chromosomes); 

in GP the individuals are nonlinear entities of different sizes and shapes (parse trees); 

and in GEP the individuals are encoded as linear strings of fixed length (the genome 

or chromosomes) which are afterwards expressed as nonlinear entities of different 

sizes and shapes (i.e., simple diagram representations or expression trees). Thus the 

two main parameters GEP are the chromosomes and expression trees (ETs). The 

process of information decoding (from the chromosomes to the ETs) is called 

translation which is based on a set of rules. The genetic code is very simple where 

there exist one-to-one relationships between the symbols of the chromosome and the 

functions or terminals they represent. The rules which are also very simple determine 

the spatial organization of the functions and terminals in the ETs and the type of 

interaction between sub-ETs (Ferreira 2001, 2002).  

 

That’s why two languages are utilized in GEP: the language of the genes and the 

language of ETs. A significant advantage of GEP is that it enables to infer exactly 

the phenotype given the sequence of a gene, and vice versa which is termed as Karva 

language. Consider, for example, the algebraic expression 

(d4* ( 3 0 1* 4d d d d− + ) )-  d4 can be represented by a diagram (Fig. 3.7) which is 

the expression tree: 
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Fig. 3.7 Expression tree (ET) 

FE results are divided into train and test sets where patterns in test set are randomly 

selected among the experimental database shown in bold characters given in Table 

A2. The training patterns for GP formulation have been obtained using ANSYS FE 

software package. A wide range of variables are chosen to represent a general model 

for GP. 

 

Explicit formulation of Mode I SIF is obtained as a function of stress, crack width, 

plate width and crack. 

 

3.3 FEM for Crack Path Prediction 

 

The prediction not only of when and how far a crack will grow, but of its path is 

important analysis of potential failures.  

 

The crack path prediction can be done numerically or experimentally. The 

calculation of crack tip field stress values becomes more important for the prediction 

of crack path while using the numerical methods. The resolution of the stress field 

around the crack tip and the prediction of crack path are the essential requirements 

for the numerical methods. The traditional FEM have been improved with these 

requirements (Zehnder A.T., 2007). 

 

Some criteria are explained briefly below but it is not important which criteria one 

uses because of the crack propagation criteria come in different characteristic 
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parameters but all lead to similar end results for fractures. The determination of KI 

and KII values has to be done using numerical solutions in domain. The domain form 

of the interaction integral is well-suited to extract the mixed-mode SIFs. The domain 

form of this interaction integral can be reduced to the Rice’s J-integral form in pure 

Mode I problems. However it is too difficult to separate KI and KII values in Mixed 

Mode problems with the Rice’s J-integral method. In this case we need to use 

extrapolation techniques around the crack tip. 

 

The crack growth may be stable or unstable. It depends on the rate of change in 

driving force, fracture energy and crack size. The conditions for stable crack can be 

expressed as follows: 

RG =      (3.24) 
and 

da
dR

da
dG ≤      (3.25) 

 
Unstable crack growth occurs when 

da
dR

da
dG >      (3.26) 

 
where G is the elastic energy release rate, R is the resistance to crack extension and a 

is the crack width. 

 

3.3.1 Fracture criteria for unstable crack growth 

 

The unstable crack growth deals especially with the following questions: 

• When does the crack growth become unstable? 

• In which direction does the unstable crack grow? 

• At what loading level or at what crack length does a structure fail? 

• What is the magnitude safety versus unstable crack growth/fracture in a 

structure? 

 

These questions can be answered by so-called fracture criteria for plane mixed mode 

problems. For pure Mode I loading unstable crack growth occurs if the Mode I stress 

intensity KI reaches the fracture toughness KIC. 
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ICI KK ≤      (3.27) 
The application of this criterion to a mixed-mode situation would result in a non-

conservative estimation for the risk of fracture. For a plane mixed-mode loading of a 

crack, besides the IK  also IIK  has an influence on the beginning of unstable crack 

growth, and thus on the fracture of components and structures (Richard H.A. et al., 

2005).  

 

If a crack is subjected to a combination of Mode-I and Mode-II loadings (Fig. 3.8), 

the crack will generally not propagate straight ahead. Direction of next step of crack 

growth is shown in Fig. 3.8 as dashed line on right with direction �* from the crack 

line.  

 
Fig. 3.8 2D crack under mixed-mode loading 

 

Far away from the crack the stress is βσ=σ 2
a22 sin , ββσ=σ cossina12 , 

βσ=σ 2
a11 cos . The resulting stress intensity factors are βπσ= 2

aI sinaK , 

ββπσ= cossinaK aII . At what stress level, aσ will the crack begin to grow and 

in what direction? 

 

Mixed-mode fracture theories include:  

(1) Maximum circumferential stress theory,  
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(2) Maximum energy release rate theory and  

(3) Minimum strain energy density theory,  

(4) Local symmetry. 

 

Only the theory of maximum circumferential stress, and of maximum energy release 

rate will be given here. We used the maximum circumferential stress criteria due to 

its simple applicability on mixed mode loading crack problems in crack propagation 

angle. 

 

3.3.2 Maximum circumferential stress criteria  

 

The maximum circumferential stress theory postulates that a crack will grow in the 

direction, �*, of maximum circumferential stress, θθσ , when ( ) .Const,rr * ≥θσθθ  

Assuming that the constant is the same for mixed-mode loading as for pure Mode-I 

loading, from the Mode-I criterion ICI KK ≥ , the mixed-mode criterion can be 

written as  

( )
π

≥θσθθ 2
K

,rr IC*             (3.28) 

 

The directional criterion is that the crack will grow in the direction �* that satisfies 

 

0=
θ∂

σ∂ θθ , 0
2

2

<
θ∂
σ∂ θθ             (3.29) 

 

Combining the stress equations and re-arranging, the circumferential stress can be 

written as 

 

           ( ) �
�

�
�
�

� θθ−θ+θ
π

=θσθθ 2
cossin

2
3

K
2

)cos1(
2

cosK
r2

1
,r III

*            (3.30) 

 

which yields 

( ) 01cos3KsinK III =−θ+θ            (3.31) 
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and 
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K9K
K8KKK3

arccos              (3.32) 

 

Comparison of this theory with experimental results shows that the maximum 

circumferential stress theory predicts the angle of crack growth well but somewhat 

underestimates the envelope of failure. Nonetheless, at least for crack growth angle 

the maximum circumferential stress theory is quite accurate and is easily 

implemented in fracture simulations. 

 

3.3.3 Maximum energy release rate criteria 

 

The maximum energy release rate criterion states that the crack will propagate so as 

to maximize the energy release. Since 
s

G
∂
Π∂−= , this criterion is equivalent to 

saying that the crack grows so as to minimize the potential energy of the body, 

corresponding to the thermodynamic idea equilibrium systems seek their local 

energy minima (Zehnder A.T., 2007). 

 

Wu W.L. (2004) studied this problem for 2D cracks under Mode I and Mode II 

loading. He considers a straight crack that extends with a kink of length � and angle � 

from the pre-existing crack tip. The criterion can be stated as the crack will kink at 

the angle �* such that  

( )
0

G *

=
θ∂
θ∂

,
( )

0
G

2

*2

<
θ∂

θ∂
 and ( ) C

* GG ≥θ           (3.33) 

 

where ( ) ( )Π−Π
ε

≡θ
→ε Z0

1
limG , and ZΠ  is the potential energy for the kinked 

crack and Π  is the potential energy for the original crack. θG  cannot be calculated 

in closed-form, however an excellent approximation can be obtained. 

Both of the above criteria predict that a crack under pure Mode-I loading will 

continue to propagate straight ahead. In this case a
w
a

fK I πσ�
�

�
�
�

�=  and 
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Delete all temporary table 

 
Crack position=Model 

boundary 
Stop 

Copy initial data to temporary table 

Start 

   
Temporary 

Table 

F 

T 

Find critical elements which 
contains crack tip node 

Find crack position which are 
between two critical elements 
both have single neighbour.  

 

Apply additional nodes according to 
the new crack tip node 

Calculate SIF values, Crack direction, Crack 
intersection point(=new crack tip node). 

Determine crack position between 
two founded critical elements  

Upgrade topologies 

0K II = and the above theories predict that the crack will grow straight ahead, i.e. in 

the -x direction.  

 

3.3.4 Simulation of crack path prediction 

 

The flow chart of the used procedure for the crack path prediction is displayed and 

explained in Fig. 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Crack path prediction flow-chart 
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The crack tip node and the initial nodes located upper and lower part of the crack  

have been defined initially in data file of the FEM program. A critical area has been 

stated around the crack tip to find the crack path. The element topologies that consist 

of crack tip nodes are investigated for the critical elements area. This critical area can 

be seen from Fig. 3.10. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.10 The critical elements area and crack tip node. 

 

 

 

 

 

 

Fig.3.11 The parts of the critical elements area 
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Fig.3.12  The neighbouring elements 

 

Node numbers 1-13-14-12-15 of Fig. 3.11 are chosen for the crack path. It is obvious 

from Fig.3.11 node 1 is the crack tip node. E1, E2, E3 and E4 element topologies 

contains this crack tip node 1. All element topologies are compared with each other 

horizontally and vertically two by two in order to find the crack location. In these 

comparisons it is important to find the number of overlapping nodes. If these number 

of overlapping nodes is greater than one than it means that these two topologies 

compose a neighbouring elements. If the number of overlapping elements are equal 

to one, it represents the other neighbouring element which actually shows the crack 

region (Figs.3.12 and 3.13). 

 

As a result two elements with one neighbouring element remain where both are the 

neighbouring elements around the crack. It is now possible to find the potential crack 

direction. The initial upper and lower nodes and the crack tip node of the crack has 

been defined in the first statement of the data file. The KI and KII can be calculated 

using the quarter point nearest the crack tip nodes given in the data file and after 

finding the SIF values, the crack trajectory prediction angle � can be computed by 

Maximum Circumferential Stress Criterion (Eq. 3.32). The related formulas have 

given before in Eqs. (3.12-3.17) for the calculation of  KI and KII values. 
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Fig.3.13  The crack tip and quarter point nodes 

 

The new crack tip can be found using the crack path angle � in neighbouring element 

boundaries. The old crack tip has to be divided into two nodes and the new element 

topologies have to be redefined in another file. In the developed program we have 

this file with the same input name but a different extension name called .TPL. 

   

 
Fig. 3.14 Intersection point on vertical boundary of the element 

 

 
Fig. 3.15 Intersection point on horizontal boundary of the element 

 

If the intersection point is on vertical boundary of the element, one needs to define a 

horizontal line for the new element topologies. If the intersection point is on 

horizontal boundary of the element, one needs to define a vertical line for the new 

element topologies (Figs. 3.14 and 3.15). 
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The crack path prediction procedure will be used to simulate the crack growth 

trajectory of center edge, single edge crack model cases under Mode I and Mode II 

loading. 
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CHAPTER 4 

ELASTO-PLASTIC FRACTURE MECHANICS 

 

4.1 Introduction 

 

Linear elastic fracture mechanics is only valid as long as nonlinear material 

deformation is confined to a small region surrounding the crack tip. All materials 

have a finite strength, thus there will always be a small plasticized zone around the 

crack tip.  If this zone is small compared to the crack size, then linear elastic 

assumptions are correct; if not, LEFM is not applicable (thus it would be incorrect to 

use a K or G criterion) and a nonlinear model must be used. In this cases there are  

two approaches in Elasto Plastic Fracture Mechanics (EPFM) for the calculation of 

fracture parameters. The first one is a local criterion based on the crack tip opening 

displacement (CTOD). The second one is a global criterion based on the quasi-strain 

energy release rate J- integral. 

 
Under LEFM the crack tip opening displacement is clearly zero. However, when the 

material is allowed to yield, then the crack tip will blunt resulting in a non-zero crack 

tip opening displacement (CTOD). 

 

There are two approaches to determine the CTOD: First-order approximation based 

on a fictitious crack and a second-order approximation based on Dugdale’s model. 

 

The first-order approximation depends on the Irwin’s solutions (Irwin,1960). In this 

approximation the vertical displacement of a point next to the crack tip due to Mode I 

loading is given by Eq. (4.1). 
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If we substitute � = ±� we obtain the upper and lower displacements of the crack 

face, and due to symmetry their sum corresponds to the crack opening displacement. 

Hence the crack opening is given by 

 

πµ
+κ==

2
r

K
1

v2CTOD I             (4.2) 

 
If we determine the crack tip opening displacement a distance *

pr  away from the 

crack tip using Irwin’s plastic zone correction. 
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and using 
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υ−=κ

1
3

  for plane stress we obtain 

 

yld

2
I

E
K4
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The second-order approximation is based on Dugdale’s model. Kanninen (1985) has 

shown that the crack opening along the crack using Dugdale’s solution: 
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using the series expansion of log sec: 
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note that for small yldσσ , the CTOD can be approximated by 

yld
2 EKCTOD σ= . 

4.2 J- Integral 

 

Eshelby (1969) has defined a number of contour integrals that are path independent 

by virtue of the theorem of energy conservation. The two-dimensional form of one of 

these integrals can be written as: 

 

�
Γ
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�

� Γ
∂
∂−= d

x
u

twdyJ             (4.8) 

with 

�=
ε

εσ
0

ijij dw               (4.9) 

where; 

w is the strain energy density; 
 is a closed contour followed counter-clockwise, as 

shown in Fig. 4.1;  

t is the traction vector on a plane defined by the outward drawn normal n and 

t = �n; u the displacement vector, and d
 is the element of the arc along the path 
. 

 

 
Fig. 4.1 J-integral definition around a crack (Anderson, 1986) 

 

Althought Eshelby (1969) had defined a number of similar path independent contour 

integrals, he had not assigned to them a particular physical meaning. 
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4.2.1 Path independence of J-Integral 

 

It must be shown that the former is indeed equal to zero for a closed path before 

establishing of the connection between Eshelby’s (1969) expression for J-Integral 

and the energy release rate G. 
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assuming 
 to be defined counterclockwise, then dx = −nyd
, and dy = nxd
 and  

ti =nj�ij where nx, ny and nj are direction cosines. Substituting in Eq. (4.10); 
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and invoking Green’s theorem; 
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Γ Ω

Ωυ=Γυ ddn i,iii              (4.12) 
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Substituting the strain energy density, Eq. (4.8), the first term in the square bracket 

becomes; 
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The strain is given by 

( )i,jj,iij uu
2
1 +=ε               (4.15) 

 
Substituting in Eq. (4.15) given 
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On the other hand, we have 
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which is identical to the second term of Eq. (4.13). 

Thus the integrand of Eq. (4.10) vanishes and J = 0 for any closed contour. 

 

Having shown that indeed J = 0, this will be exploited to prove that around a crack, J 

is non-zero and is independent of the path. 

 

With reference to Fig. 4.2 if we consider the closed path 
 = 
1+
2+
3+
4 in which 


1 and 
3 are arbitrarily chosen contours. Obviously J = 0 over 
 in order to satisfy 

compatibility conditions, provided that the stresses and displacement gradients are 

continuous. Along paths 
2 and 
4, the traction vector ti = 0 and also dy = 0.  

 

Consequently, the contributions to J from 
2 and 
4 vanish. Taking into account the 

difference sense of integration along paths 
1 and 
3 we arrive at the conclusion that 

the values of J integrated over paths 
1 and 
3 are identical. Because these two paths 

were arbitrarily chosen, the path independence of J is assured. 

 
Fig 4.2 Closed contours for proof of J-intergal path independence  

(Anderson, 1986) 
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4.3 Artificial intelligence for J-Integral calculation 

 

The prediction and formulation of J-integral values for varying geometries using GP 

based FE (ANSYS) results in an interesting and new area in fracture mechanic 

problems.  

 

J–Integral calculations have been done with an ANSYS macro in the present study. 

For this purpose, a Fortran subroutine has been developed for ANSYS which reads 

the results from stress analysis and computes the appropriate line integral along a 

path through the integration points. The obtained J-integral values using ANSYS 

have been used for GP training and formulation.  

 

4.3.1 Neural networks 

 

The trained NN in this case study does not serve as a black box anymore as it is 

considered in most of the NN . It is an independent program to compute J-integral 

values for three different geometries for given set of appliedσ , a, w, and Type values as 

shown in Fig.4.3. 

  

 
 

Fig.4.3 NN Model for J-integral calculation 

 

Furthermore it is actually an explicit formulation that computes directly stress 

intensity factor for three different geometries which is given as a function of some 

fracture parameters: 

 

NN a 
w J-integral 

 

Type 

appliedσ  
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    J-integral= f ( appliedσ ,a ,w ,Type)                      (4.19) 
 
where, appliedσ  is the applied stress, a is the crack length, w is the plate width. Crack 

types will be given in Chapter 5. 

 

4.3.2 Genetic Programming  

 

The training patterns for GP formulation have been obtained using ANSYS FE 

software package. A wide range of variables are chosen to represent a general model 

for GP 

 

Explicit formulation of J-integral  is obtained as a function of stress, crack width, 

plate width and crack type which is the expression tree of  GP formulation given in 

MATLAB CODE. 
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CHAPTER 5  

CASE STUDIES 
 

5.1 Introduction 

 

In this study, a FORTRAN computer program has been developed to validate some 

case studies. In these case studies, the well known fracture geometries have been 

used to compare the results of the developed FE program, with ANSYS, analytical 

solutions and related references for this purpose. A number of J-integral calculations 

have been done using a macro written in ANSYS and FORTRAN program. AI 

techniques are also used to calculate SIF and J-integral parameters of some specific 

case studies. Finally, the crack path prediction has been carried out with the 

developed program for linear elastic fracture mechanics. 

 

The case studies are center cracked, double edge cracked, single edge cracked, three- 

point bending beam, compact tension specimen, off-center crack, single edge cracked 

model with mixed mode loading and U section model cases. They have been carried 

out and compared with literature and ANSYS. 

 

5.2 SIF calculations 

 

5.2.1 Mode I loading geometric models 

 

The center, double and single edge cracked models have been chosen for pure Mode 

I loading calculations. These calculations have been done using numerical 

extrapolation techniques (DEM and SEM) explained in Sections 3.2.1.1 and 3.2.1.2. 

Furthermore comparisons with analytical formulations and ANSYS have been 

carried out. In these comparisons crack width and applied stress have been taken as: 

w = 40 mm, � =100 N/mm2 for center, double edge and single edge cracked models 

respectively. All Mode I cases have been analyzed using developed FEM program 

and ANSYS and compared with the Broek (1986)’s analytical results. The 
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displacement and stress extrapolation methods have been used in the calculation of 

SIF values. The analytical formulas have also been compared in term of correction 

factors used in literature. 

 

5.2.1.1 Center cracked model 

 

The center cracked model geometry is shown in Fig.5.1. Due to symmetry, only a 

quarter of the model has been used (Fig.5.2) in the analysis. The analytical formulas 

for the SIF calculations are taken from Broek (1986).  

    �
�

�
�
�

�πσ=
w
a

faK I               (5.1) 

where  

�
�

�
�
�

� π=�
�

�
�
�

�

w
a

sec
w
a

f  

 

The other analytical formulas given in literature are applied for the graphical 

representation of f(a/w) correction factors with 2, 4, 6 and 8 mm crack lengths shown 

in Fig. 5.3 for the center cracked case.  

  

 
Fig. 5.1 Center cracked full geometry  

 

 

� 

    2a 

� 

2w 

2w 
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Fig. 5.2 Center cracked quarter geometry 

 

Comparison of correction factor conclusions 

A small deviation -as much as 1%- is observed with respect to the values given by 

Fedderson and Dixon (Ewalds and Wanhill 1986) for a/w ratio of 0.2 as seen in Fig. 

5.3. 
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Fig. 5.3 Comparison of correction factors for the center cracked model 

 

Comparison of Kı values conclusions 

In the center cracked case following material properties are used: 

 

Young’s modulus  E = 80000 MPa 

Poisson’s ratio � = 0.3 

Applied stress  � = 100 MPa 

Plate width  w= 20 mm 
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Crack length  a=2, 4, 6 and 8 mm. 

 

The SIF's for the range of crack lengths analyzed as given above, were calculated 

using Eq. (5.1) and are referred to as the analytical solution of Broek (1986). The 

numerically calculated SIF's were determined using the finite element program. The 

results for this case are displayed in Fig. 5.4; inspection of these graphs reveals that 

DEM, SEM and FE-ANSYS results are reasonably close to each other and to the 

analytical result for the mid range of crack lengths. The numerical results for short 

crack lengths are influenced by the plastic zone at the crack tip, and the analytical 

solution loses accuracy at larger crack lengths.  

 

Fig. 5.4 Center cracked model SIF analysis 

 

5.2.1.2 Double edge cracked model 

 

The double edge cracked model geometry is shown in Fig.5.5. Due to symmetry, 

only a quarter of the model has been used (Fig.5.6) in the analysis. The SIF values 

can be calculated by Broek (1986) as: 
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Fig. 5.5 Double edge cracked full geometry 

 

Other analytical formulas given in literature are applied and a graphical 

representation of f(a/w) correction factors with 2, 4, 6, and 8 mm crack lengths 

shown in Fig. 5.7 for the double edge cracked case. 

 

 
Fig. 5.6 Double edge cracked quarter geometry 
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Comparison of correction factor conclusions 

A very small deviation is observed for values of Ewalds and Wanhill (1986) for a/w 

ratio of 0.2 as seen in Fig. 5.7.  
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Fig. 5.7 Comparison of correction factors for the double edge cracked model 

 

Comparison of Kı values conclusions 

In the double edge cracked case following material properties are used: 

 

Young’s modulus  E = 80000 MPa 

Poisson’s ratio � = 0.3 

Applied stress  � = 100 MPa 

Plate width  w= 20 mm 

Crack length  a=2, 4, 6 and 8 mm. 

 

The SIF's for the range of crack lengths analyzed as given above, were calculated 

using Eq. (5.2) and are referred to as the analytical solution. The numerically 

calculated SIF's were determined using the finite element program. The results for 

this case are displayed in Fig. 5.8. Results for double edge cracked plate case are in 

good agreement with those obtained by extrapolation techniques, analytic solution 

and ANSYS. 
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Fig. 5.8 Double edge cracked model SIF analysis 

 

5.2.1.3 Single edge cracked model 

 

The single edge cracked model geometry is shown in Fig.5.9. Due to symmetry, half 

model has been used (Fig.5.10) in the analysis. The SIF values can be calculated by 

Broek (1986) formulae.  
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The other analytical formulas are applied and a graphical representation of f(a/w) 

correction factors with 2, 4, 6, and 8 mm crack lengths shown in Fig. 5.11 for the 

single edge cracked case. 
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Fig. 5.9 Single edge cracked full geometry 

 

 

 
Fig. 5.10 Single edge cracked half geometry 

 

Comparison of correction factor conclusions 

The correction factors of single edge crack of Broek (1986), Anderson (1986) and 

Tada et al. (1986) for a/w ratio of 0.2 are better than the center and double edge 

crack results as seen in Fig. 5.11.  

� 

2a 

� 

2w 

2w 
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Fig. 5.11 Comparison of correction factors for the single edge cracked model 

 

Comparison of Kı values conclusions 

In the single edge cracked case following material properties are used: 

 

Young’s modulus  E = 80000 MPa 

Poisson’s ratio � = 0.3 

Applied stress  � = 100 MPa 

Plate width  w= 20 mm 

Crack length  a=2, 4, 6 and 8 mm. 

 

The SIF for the range of crack lengths has been calculated using Eq. (5.3) and then 

compared with the analytical solution. The numerically calculated SIFs have been 

determined using the finite element program. The results for this case are presented 

in Fig. 5.12; inspection of these graphs reveals that the accuracy of the SIF values is 

acceptable up to a/w = 0.15 for the single edge cracked plate case. After this ratio 

(0.15), the accuracy is violated and the difference reaches 20% at 0.2 ratios.   
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Fig. 5.12 Single edge cracked model SIF analysis 

 

5.2.2 Mixed mode loading geometric models 

 

The different cases of crack problems especially using mixed mode loading (single 

edge crack and off center crack) have been solved with the commercial finite element 

program ANSYS and with the DEM formulas given in Eqs. (3.31-3.36). Results of 

these different estimations have been compared with the results of literature [Guinea 

et al. (2000), Dechaumphai et al. (2003), Gray et al. (2003), Kanninen  (1985) and 

Guzelbey et al. (2004)].  

 

5.2.2.1 Single edge cracked model with mixed mode loading 

 

Single edge cracked case with mixed mode loading full geometry and its FE mesh 

configuration are shown in Figs. 5.13 and 5.14. This single edge cracked case is 

subjected to a far field shear stress 1=τ  unit along the top edge and has a crack 

length a=3.5 units. It is fixed at the bottom edge. Other geometric parameters studied 

are: W=7 units and H=16 units.  

 

The FE analysis is performed using the modulus of elasticity and the Poisson’s ratio 

values of 30x106 and 0.25, respectively (Rao and Rahman, 2000). The plane strain 

and stress conditions are assumed separately in the analysis. The SIFs Kı and Kıı for 
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this problem have been calculated 34.00 and 4.55 by reference Rao and Rahman 

(2000) respectively. These values are taken as reference values for comparisons.  

 

Several mesh configurations around the crack tip are analyzed, as shown in Fig. 5.15. 

The mesh used in the analysis consists of 6-node triangular elements for crack region 

and 8-node quadrilateral elements for the remaining regions.  

 
Fig. 5.13 Single edge cracked with mixed mode loading 

 
 

Fig. 5.14 Single edge cracked deformed FE mesh for a=3.5, (1240 nodes and 499  

elements) 
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 a) 4 elements           b) 8 elements             c) 12 elements 

 

       

d) 16 elements       e) 20 elements 

 

Fig. 5.15 Crack-tip modeling for single edge cracked model 

 

Influence of the size of the finite elements: 

Effect of the size of the elements on Kı and Kıı are illustrated in Figs. 5.16-5.20 for 

the single edge cracked geometry. The figures show the results obtained with 

triangular meshes with element sizes ranging from 0.05 to 0.09 Wl /  ratios, where l  

represents the distance between nodes at the crack tip, W  is the width of the single 

edge cracked sample and n is the number of elements around the crack tip. The 

geometry and FE mesh configuration has been defined in Figs. 5.13 and 5.14. 

 

In Fig. 5.16, Kı values are obtained using the Eqs. (3.12), (3.14) and (3.16). A 

regular increase of deviation is observed for Kı values with l/W ratio. Variation for 

Eq. (3.14) and (3.16) takes place at an increased rate compared to Eq. (3.12). Effect 

of n on the deviation values are observed to be minor compared to l/W ratio. Hence 

smaller l/W ratio is more suitable for Eqs. (3.14) and (3.16). Fig. 5.17 is used for 

analysis of effect of l/W ratio on Eq. (3.12) which is drawn at a decreased scale and 

only for n=12. From Fig. 5.17, deviation is nearly equal, about 0.35%, up to 0.07 l/W 

ratio; after that point an increased deviation is observed.  

 



 60 

Kı value computed by Rao and Rahman (2000) seems to converge properly with 

the methods analyzed in this thesis. The procedure based on Eq. (3.12) gives rather 

good results with coarse meshes and simple angular discretizations for Kı values. 

Effect of mesh size on Kıı is examined in Figs. 5.18-5.20.  

 

From the Figs. %.16-5.20, n seems to be selected greater than 8. If it is selected to be 

greater or equal to 12, deviation value observed at close values to each other. Hence, 

let us investigate figures only for n =12. Eq. (3.17), in Fig. 5.20 seems to give exact 

result for l/W=0.05. Up to 0.07, error increases only by 0.05%. Beyond this point 

rapid increase of error is observed. 

 

The largest differences in Kı and Kıı are produced by Eqs. (3.15) and (3.16), where 

the Kı has been obtained forcing the 2/1r  term of the interpolation function for the 

singular element to coincide with the theoretical asymptotic expansion and Kıı is a 

first order estimation. In these situations, the accuracy of practical mesh 

configuration is typically between 2 and 5% for Kı and Kıı.  

 

A local refinement of the mesh in the crack tip zone improved the estimations of Kı 

and Kıı up to a maximum value for an element size of l/W=0.07. Beyond this point a 

coarse mesh may give worse results for both Kı and Kıı. This result may be the main 

conclusion from the analysis of the meshes for the single edge cracked case. 

 

 

Fig. 5.16 Percent difference of Kı values for single-edge cracked model  

as a function of n=8, 12, 16 and 20 
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Fig. 5.17 Percent difference of Kı values for single-edge cracked model  

with the Eq. (3.12) as a function of n= 12 
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Fig. 5.18 Percent difference of Kıı values for single-edge cracked model  

with the Eq. (3.13)  as a function of n =8, 12, 16 and 20 
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Fig. 5.19 Percent difference of Kıı values for single-edge cracked model  

with the Eq. (3.15) as a function of n =8, 12, 16 and 20 
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Fig. 5.20 Percent difference of Kıı values for single-edge cracked model 

with the Eq.(3.17) as a function of n =8, 12, 16 and 20 

 

Influence of stress state and Poisson’s ratio 

The stress state is a secondary variable for the mathematical equivalence between the 

stress field in plane stress and plane strain situations. The plane stress and plane 

strain’s performance depends on the suitable representation of the elastic 

displacement field. The plane stress and plane strain states are not equivalent except 

in some very simple loading cases as a result of the numerical approximation. 
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Poisson’s ratio influences can be seen in the computation of Kı and Kıı, and its effect 

is greater for a plane strain condition from the Figs. 5.21~5.24. Investigating Figs. 

5.21~5.24, it is observed that, whatever the stress state is, Eq. (3.12) for Mode I and 

Eq. (3.17) for Mode II gives the best results. n is taken as 8 and 12 in these 

calculations. Almost all cases give better results for n=12. Comparing Figs. 5.21 and 

5.23 for the first mode and Figs. 5.22 and 5.24 for the second mode, in terms of 

stress state; close values are obtained for n=12. In Figs. 5.21 and 5.23 the deviation 

is about 0.25% for the first mode. The deviation value is about 0.5% for the second 

mode in Figs. 5.22 and 5.24. Another observation from the analyses may be about 

the effect of Poisson’s ratio: Eqs. (3.12) and (3.17) give results with nearly constant 

deviations for plane stress case. In the case of plane strain again constant deviation is 

observed in a range of Poisson’s ratio from 0 to 0.45. Beyond 0.45 up to 0.49 

deviations in Kı value increases for Eq. (3.12) in Fig. 5.23, but for Kıı value, it 

decreases in that range as observed in Fig. 5.24. 

 

Stress state is another parameter to investigate its effect on the variation of SIF 

values. In the Fig. 5.25 variation of Kı and Kıı is plotted for different stress states. 

 

In the case of first mode, Fig. 5.25a indicates Kı value is independent of Stress State 

and up to Poisson’s Ratio of 0.4, beyond this point plane strain situation deviates 

from plane stress. Hence, especially for metals, using a null Poisson’s Ratio is 

advantageous during calculations. This conclusion was also stated by Guinea et al. 

(2000) for the first mode of fracture.  

 

If Fig. 5.25b is investigated; in the case of second mode, when plane stress belong to 

the problem handled, again null Poisson’s Ratio will give a correct result. But if the 

plane strain is the case then the exact value of Poisson’s Ratio must be used.   

 

 



 64 

-4

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5
Poisson's Ratio

Pe
rc

en
t D

iff
er

en
ce

Eq3.12(n=8) Eq3.14(n=8) Eq3.16(n=8)
Eq3.12(n=12) Eq3.14((n=12) Eq3.16(n=12)

 
 
 

Fig. 5.21 Percent difference of Kı values for single-edge cracked model as a function 

of Poisson’s ratio and plane stress state (n =8 and 12 elements around the crack tip) 
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Fig. 5.22 Percent difference of Kıı values for single-edge cracked model as a 

function of Poisson’s ratio and plane stress state (n =8 and 12 elements around the 

crack tip) 
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 Fig. 5.23 Percent difference of Kı values for single-edge cracked model as a 

function of Poisson’s ratio and plane strain state (n =8 and 12 elements around the 

crack tip) 
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Fig. 5.24 Percent difference of Kıı values for single-edge cracked model as a 

function of Poisson’s ratio and plane strain state (n = 8 and 12 elements around the 

crack tip) 

5.2.2.2 Off- center cracked model 

 

Off-center cracked example is a mixed mode case in a finite body with a crack whose 

location and orientation are arbitrary. It has been subjected to the remote uniaxial 

tension � applied along the y-axis as shown in Fig. 5.26. 
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The FE analysis is performed using the modulus of elasticity and the poisson’s ratio 

0.36 and 0.27 respectively (Gray et al. 2003). The plane strain and stress conditions 

are assumed separately in the analysis. Numerical results of SIFs, for mode-I and 

mode-II at both crack tips A and B has been given by reference Gray et al. (2003) 

for different crack angles with standard and modified crack tip quarter point. Several 

mesh configurations around the crack tip has been analyzed. The mesh used in the 

analysis consists of 6-node triangular elements for crack region and 8-node 

quadrilateral elements for the remaining regions. Some mesh configurations for �=0o, 

30o and 60o can be seen in Figure 5.27. 
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Fig. 5.25 Effect of stress state and poisson’s ratio on numerical SIF values 
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Fig. 5.26 Off-center crack model 

 

 
a) �=0o , 824nodes,       b) �=30o 816nodes, c) �=60o773nodes, 

       250 elements                      246 elements      233 elements 

 

Fig. 5.27 Some FE mesh configurations of off-center crack geometry for a=0.5 

 

Test calculation with off-center crack example 

 

A test calculation has been done by using off-center crack example. Its geometrical 

and some FE configurations can be seen in Figs. 5.26 and 5.27. According to the 

figures, following geometric data are studied: 2W=2H=2, 2a=0.5, =0 and ex = ey 

=0.5. The SIFs provided by DEM Eqs. (3.12) and (3.17) and given by references 

Gray et al. (2003) and Yuanhan (1991) are compared with each other.  
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The Kı and Kıı results given in Fig. 5.28 are consistent with the literature (Gray et 

al., 2003 and Yuanhan, 1991) for the �=0o, 30o and 60o crack angles. The results are 

changing with a maximum difference of about 2% for Kı and 3% for Kıı, compared 

to those of references. The differences in the results are considered to be reasonable 

because different numerical approaches are used in the compared studies. 

 

In most studies, Kı is considered to be dominant in crack. This assumption is true if 

the crack is making an angle smaller than 30o with applied load. Fig. 5.28 indicates 

that, if the angle reaches 30o then Kıı value reaches about half of the Kı which is not 

a negligible value. After 60o, Kıı becomes the dominant parameter for crack.   
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Fig. 5.28 Kı and Kıı values for off-center cracked model as a function of angle � (0o, 

30o, 60o) 

 

5.3 J-Integral calculations 

 

J integral calculations have been performed to determine the influence of the shape 

of the paths using center cracked model, to determine the influence of the node 

numbers on paths using single edge cracked model, to determine the effect of the 

obtained path shape and node numbers on it using three point bending beam and 

compact tension specimens. 

 

 

Kı 

Kıı 
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5.3.1 Center cracked model 

 

The center cracked model geometry and its quarter model were shown before in 

Fig.5.1 and Fig.5.2. But in this model we have used different dimensions to make a 

comparison with the reference values of Isida (1971).  

 

In this center cracked case, crack lengths are taken as 10, 20, 30, 40, and 50 units, the 

width,  w, 100 units, and the thickness, t, 1 unit. Default values of elastic modulus, E, 

and poisson’s ratio, ν  are 1 and 0 respectively. The plane stress state is assumed. 

 

The SIF value has been calculated as (Isida 1971): 

 

a334.1K ı πσ=                (5.4) 

 

which is claimed to be accurate up to four significant figures.  

 

Paths used in the analysis are shown in Figs. 5.29, 5.30 and 5.31 for a/w=0.5. 

 

5.3.1.1 Influence of the shape of the paths with center crack example 

 

The effect of the shape of the path on the J-Integral values is illustrated in Tables 5.1-

5.5. The tables show the results obtained with circular, rectangular and triangular 

meshes with crack lengths ranging from 0.1 to 0.5 a/w ratios, where a represents 

crack length and w is the width of the center cracked example. The smallest errors 

have been observed for a/w=0.3 except for PATH 5. 

 

The results given in Table 5.1 showing that the PATH 1 J-Integral percentage error 

values for the rectangular and triangular values are on an acceptable level (0-4.7 %) 

but the circular path values are comparatively large (0-7.3 %). 

 

In Tables 5.2, 5.3, 5.4 and 5.5, the percent errors of PATH 2, PATH 3, PATH 4 and 

PATH 5 are between 0-2 percent. All of them are smaller than PATH 1. Although 
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PATH 2 has the highest error among the PATH 2, 3, 4 and 5, it is still on an 

acceptable level.  

The percent error, Kε  is calculated as ( )
Isida,I

Isida,II
K K

KK
100%

−
×=ε  

 

 

Fig. 5.29. Circular paths for center crack example with a/w=0.5 ratio 

 

 

Fig. 5.30. Rectangular paths for center crack example with a/w=0.5 ratio 

PATH1  PATH2 PATH3 PATH4 PATH5 
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Fig. 5.31. Triangular paths for center crack example with a/w=0.5 ratio 

 

Table 5.1 Percent error of PATH 1 J-Integral values with different paths 
 
a/w ANSYS circular rectangular Triangular 

0.1 -0.55624 7.323857 2.719407 -1.48331 
0.2 -0.3176 6.424137 -4.74953 -3.04605 
0.3 0.312976 6.841482 -0.18609 3.535781 
0.4 -0.15028 7.304637 -2.67819 -1.57793 
0.5 0.296927 7.129825 -1.03388 -0.99381 

 

Table 5.2 Percent error of PATH 2 J-Integral values with different paths 
 
a/w ANSYS circular rectangular Triangular 

0.1 -0.55624 -0.55624 -0.18541 -0.92707 
0.2 -0.3176 0.014436 -1.45806 -1.68904 
0.3 0.312976 0.135341 -0.38911 -0.52445 
0.4 -0.15028 -0.20395 -1.57793 -2.0234 
0.5 0.296927 0.003577 -0.92656 -1.35585 

 
 
Table 5.3 Percent error of PATH 3 J-Integral values with different paths 
 

 

 

a/w ANSYS circular rectangular Triangular 

0.1 -0.55624 -0.74166 -1.23609 -1.3597 
0.2 -0.3176 0.418652 -1.60243 -1.83341 
0.3 0.312976 0.439858 -0.05921 -0.2876 
0.4 -0.15028 -0.03757 -1.34178 -1.65307 
0.5 0.296927 0.118055 -0.86216 -1.00812 
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Table 5.4 Percent error of PATH 4 J-Integral values with different paths 
 
a/w ANSYS circular rectangular triangular 

0.1 -0.55624 -0.86527 -0.74166 -0.92707 
0.2 -0.3176 0.591887 -1.58799 -1.77566 
0.3 0.312976 0.482152 -0.30452 -0.10151 
0.4 -0.15028 -0.20395 -0.62258 -0.95535 
0.5 0.296927 -0.09945 -0.28262 -0.61174 

 
 
Table 5.5 Percent error of PATH 5 J-Integral values with different paths 
 
a/w ANSYS circular rectangular Triangular 

0.1 -0.55624 -0.55624 1.545117 0.185414 
0.2 -0.3176 0.822867 -0.9961 -1.68904 
0.3 0.312976 0.490611 -0.65979 -0.94739 
0.4 -0.15028 -0.33276 -0.61185 -0.92314 
0.5 0.296927 -0.08944 0.261153 -0.00358 

 

5.3.2 Single edge cracked model 

 

The single-edge cracked model geometry and its half model were shown before in  

Figs. 5.9 and 5.10. The dimensions used in this case are different to make a 

comparison with the reference of Murakami (1987).  

 

The single edge cracked case has a crack length, a, the width, b and the thickness t, 

0.5, 1 and 1 respectively. As we said before the default values of E and ν , 1 and 0 

respectively with plane stress state assumption have been used. 

 

The SIF has been calculated by Murakami (1987) as: 
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5.3.2.1 Influence of the node numbers on paths with single edge crack example 

The analyses have been repeated with 9-11-13-15-17-19 nodes on circular paths, 4-6-

8-10-12 -14 nodes on rectangular paths and 3-5-7-9-11-13 nodes on triangular paths 

(Figs. 5.32, 5.33, and 5.34). In these analyses a/w=0.3 has been used.  

 

Fig. 5.35 shows that the increase of node numbers on circular path has a slight 

positive effect up to 19 nodes. This positive effect is approximately 0.3 % and does  

not cause a significant change in J-Integral values. However the percent error is 

seriously decreasing with a decreasing number of nodes on rectangular (4 nodes) and 

triangular paths (3 nodes) (Figs.  5.36 and 5.37). 

 

   
a) 9 nodes   b) 11 nodes   c) 13 nodes  

 

   
d) 15 nodes   e) 17 nodes   f) 19 nodes 

 

Fig.5.32 Number of nodes used in circular paths 
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a) 4 nodes   b) 6 nodes   c) 8 nodes  

 
d) 10 nodes   e) 12 nodes   f) 14 nodes  

 

Fig.5.33 Number of nodes used in rectangular paths 

 

 
a) 3 nodes   b) 5 nodes   c) 7 nodes 

 

 
d) 9 nodes   e) 11 nodes   f) 13 nodes 

 

Fig.5.34 Number of nodes used in triangular paths 

 

The analyses have been done with coarse and fine meshes for the same node 

numbers on paths. 943 nodes and 298 elements, 910 nodes and 280 elements and 811 

nodes and 370 elements have been used with circular, rectangular and triangular 

paths respectively for coarse meshes. 3601 nodes and 1160 elements, 3497 nodes and 

1120 elements and 6241 nodes and 3052 elements have been used with circular, 

rectangular and triangular paths respectively for fine meshes. The results are shown 

in Figs. 5.35, 5.36 and 5.37. 
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All the percent errors are on an acceptable level. But the finer mesh models give 

better results.The circular path is more accurate than triangular and rectangular paths. 
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Fig.5.35 Percent error of J-Integral for circular path 
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Fig.5.36 Percent error of J-Integral for rectangular path 
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Fig.5.37 Percent error of J-Integral for triangular path 
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5.3.3 Three point bending beam 

 

The three-point bending beam with a span-to-depth ratio of four is a test geometry 

shown in Fig.5.38. A half of the model was used (Fig. 5.39). The SIF was calculated 

by Srawley (1976) as: 

 

DB
F6

775.1K ı =                (5.6) 

 

This case has a crack length, a, the width S and and the height, D, 50, 400 and 100 

respectively. An a/D ratio of 0.5 has been used with a unit thickness.  

 

 

            Fig.5.38 Three point bending beam; full model 

 

 
Fig.5.39 Three point bending beam; half model 
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a 
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5.3.4 Compact tension specimen 

 

The compact tension specimen is the second test geometry shown in Fig.5.40. Half 

of the model has been used (Fig.5.41). The SIF was calculated by Murakami (1987) 

as: 

 
2/3432
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The specimen has a crack length, a, 3mm, the width, w, 50.8mm, and the thickness, t, 

1 mm. Plane stress condition is used. The modulus of elasticity, E and Poisson’s 

ratio, �, are chosen 30x106 Pa and 0.25 respectively (Murakami, 1987). 

 

 
Fig.5.40 Compact tension specimen model 
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P=1000 
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Fig.5.41 Compact tension specimen half model 

 

5.3.5. J-Integral path effect on the test calculations 

 

The obtained results for the convenient path (PATH 2 for circular paths with 19 

nodes and PATH 2 for rectangular and triangular paths with 4 and 3 nodes 

respectively) are applied to two well known fracture problems: the compact tension 

and three point bending example. The geometrical and material properties are given 

in sections 5.3.3 and 5.3.4 and Figs. 5.38~5.41. The results are compared with 

ANSYS and literature. 

 

It can be seen from tables 5.6 and 5.7 that the obtained results for circular path are in 

good agreement with the literature and ANSYS. The results of triangular and 

rectangular paths are also on an acceptable level.  

 

Table 5.6 Compact tension specimen 

J-Integral values of different paths 
Murakami (1987) ANSYS circular rectangular triangular 

0.0156 0.0158 0.0159 0.0162 0.0169 
 
Table 5.7 Three point bending specimen 

J-Integral values of different paths(*10-8) 
Srawley (1976)       ANSYS circular rectangular triangular 

3.544 3.467 3.455 3.426 3.398 
 

P 

Crack tip a 

  w 
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5.4. SIF formulations using artificial intelligence techniques 

 

The prediction and formulation of KI values for varying geometries using NNs and 

GP based FE (ANSYS) has been carried out. 

  

Analytical solution and numerical analysis (DEM) have been applied to determine 

the SIF of the three well known geometries: the center cracked, the double edge 

cracked and the single edge cracked models. The crack geometries are given in Fig. 

5.42. 

 

 

a) TYPE1        b) TYPE2                c) TYPE3 

Fig. 5.42 Types of the crack geometries (Kutuk M.A. et al., 2007) 

 

All of the three models have dimensions with [20*20, 40*40, 60*60 and 80*80] mm 

cross sections and 1mm thickness. The SIF values for a series of crack lengths are 

determined (for a=2, 3, 4, 5 and 6 mm). Rectangular eight-node isoparametric and 

six-node elements are used for the configurations with the following material 

properties and loading:  

 

E = 80000 N/mm2,  

 = 0.3   

� =60, 80, 100 and 120 N/mm2. 

 

Plane stress state is assumed and three-point Gaussian numerical integration has been 

used in the analysis. 
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The center cracked geometry is shown in Fig. 5.43a. Quarter symmetry is used in 

modeling as shown in Fig. 5.43b. The SIF for the opening mode KI is calculated by 

the reference of Broek (1986) given in Eq. (5.1). 

 

Finite element fine mesh configuration of the center cracked case is shown in Fig. 

5.43c for 2mm crack length. In addition, 1477 nodes and 472 elements for 3mm 

crack length, 1516 nodes and 485 elements for 4mm crack length, 1530 nodes and 

489 elements for 5mm crack length and 1470 nodes and 469 elements for 6mm crack 

length have been used in FE mesh configurations. 

 

 
a) Center crack                  b) Quarter model       c) FE Mesh for  

               a=2, 1510 nodes  
       and  487 elements           

Fig. 5.43 Center cracked model geometry 

 

The double cracked geometry is shown in Fig. 5.44a. Due to the symmetry, only a 

quarter of the geometry is used, as shown in Fig. 5.44b. SIF for the opening mode 

(KI) is given by Broek (1986) in Eq. (5.2) 

 

Finite element fine mesh configuration of the double edge cracked case is shown in 

Fig. 5.44c for 2mm crack length. The same numbers of nodes and elements have 

been used in FE mesh configurations for 3, 4, 5, and 6mm crack lengths. 
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  a) Double edge crack         b) Quarter model             c) FE Mesh for  
               a=2,  1510 nodes  
               and  487 elements 

Fig. 5.44 Double edge cracked model geometry 

 

In the single cracked case half symmetry was used for modeling, with only the 

displacement restrained in the x direction (shown in Fig. 5.45a and Fig.5.45b. The 

analytical solution is given by Broek(1986) in Eq. (5.3). 

 

Finite element fine mesh configuration of the single cracked case is shown in Fig. 

5.45c for 2mm crack length. In FE mesh configurations for 3mm crack length, 3384 

nodes and 1093 elements, for 4mm crack length, 3465 nodes and 1124 elements, for 

5mm crack length, 3247 nodes and 1048 elements, and for 6mm crack length, 3253 

nodes and 1052 elements have been used. 

 

 
a) Single edge crack         b) Half model  c) FE mesh for a=2, 3357  

           nodes  and  1082 elements           
 

Fig. 5.45 Single cracked model geometry 

 

The FE analysis is performed using the same material properties and mesh 

configurations given for the numerical analysis. The mesh used in the analysis 
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consists of triangular elements for crack region and 8-node quadrilateral elements for 

the remaining regions (i.e.PLANE82 type element in ANSYS). 

 

5.4.1 Neural Networks formulation of SIF 

 

FE results are divided into train and test sets where patterns in the test set are 

randomly selected among the experimental database shown in bold characters given 

in Table A1. The training patterns for NNs have been obtained using ANSYS FE 

software package. A wide range of variables are chosen to represent a general model 

for NN with a data set of 167 training patterns and 25 testing patterns. The optimal 

NN architecture was found to be 4-11-1 architecture with hyperbolic tangent sigmoid 

transfer function (tansig). The training algorithm was quasi-Newton backpropagation 

(BFGS). All necessary neural procedures are performed by MATLAB NN Toolbox.  

The statistical parameters and performance of training and test sets for the KI are 

given in Table 5.8 and Fig.5.46. It has been seen that the errors are quite satisfactory 

for each case for test set and training sets.  

 

Table 5.8 Statistical parameters of the NN used for KI 

 

 
 
 
 
 
 
 
 
 

  Training set Test  set 

MAPE ( % ) 

(Mean absolute % Error) 2.5 3,8 

Mean (Test/ FE) 1.0025 1.0052 

R (%) 99.98 99.92 

COV 0.041 0,038 
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Fig. 5.46 Performance of NN results vs. FE results 

 

The trained NN in the present study does not serve as a black box anymore as it is 

considered in most of the NN . It is an independent program to compute KI values for 

three different geometries for a given set of appliedσ , a, w, and Type values as shown 

in Fig.5.47. 

 

 
 

Fig.5.47 NN Model for KI calculation 

 

Furthermore it is actually an explicit formulation that computes directly the SIF for 

three different geometries which is given as a function of some fracture parameters: 

 

NN a 

w 

   KI 
 

Type 

appliedσ  
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    KI= f ( appliedσ ,a ,w ,Type)                                    (5.8) 
 

where, appliedσ  is the applied stress, a is the crack length, w is the plate width. Type 1 

is for the Center cracked geometry, Type 2 is for the Double cracked geometry and 

Type 3 is for the Single cracked geometry which was shown in Fig.5.42. 

It should be noted that the input parameters have been normalized by �*/120; a*/10; 

w * /80; type * /3, where �*, a * , w * and type *  are the initial values of applied stress, 

crack length, plate width and type of the geometry respectively. The output in the 

NN model is normalized by 5. 

KI values of the three types of geometries can be obtained as the final output given 

as:  
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Using Eq. (5.9) it is now possible to calculate the exact SIF values for a crack of any 

of the three types existing on a plate of finite dimensions.  

 

The center, double and single edge crack cases are solved with the commercial finite 

element program ANSYS, DEM developed in this study and the explicit formulation 

(Eq. 5.9) obtained using ANN (Kutuk M.A. et al., 2007). The results of the three 

different methods are compared with the results of analytical formula proposed by 

Broek (1986) in Figs. 5.48, 5.49 and 5.50. 

 

5.4.2 Genetic Programming formulation of SIF  

 

FE results are divided into train and test sets where patterns in test set are randomly 

selected among the experimental database shown in bold characters given in Table 

A2. The training patterns for GP formulation have been obtained using ANSYS FE 

software package. A wide range of variables are chosen to represent a general model 

for GP with a data set of 167 training patterns and 25 testing patterns. The statistical 

parameters and performance of training and test sets for the KI are given in Table 5.9 

and Fig.5.51. It has been seen that the errors are quite satisfactory for each case for 

test set and training sets. 

 

Table 5.9 Statistical parameters of the GP Model used for KI 

Training set Test  set 

MAPE ( % ) 

(Mean absolute % Error) 5 8.8 
Mean (Test/ FE) 1.008 0.982 
R (%) 0.986 0.979 
COV 0.058 0.095 
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Explicit formulation of SIF is obtained as a function of stress, crack width, plate 

width and crack type from Fig. 5.47 which is the expression tree of GP formulation 

given as follows (in MATLAB CODE): 

 

SIF=((G1C11/((d(1)*G1C11)-G1C16))+d(1))*((d(3)-

(d(3)/(G2C13/d(1))))+d(3))*(d(0)/(((d(3)-G3C11)/(G3C11/d(1)))+d(2))); 

Where constants are 

G1C11 = -79.7; G1C16 = -40.7; G2C13 = 20.3; G3C11 = -65.8 

It should be noted that parameters in the formulation stand for the following: 

d(0)= σ  

d(1)= a 

d(2)= w 

d(3)= Crack Type 

After substituting the corresponding values, the final equation becomes: 
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5.4.3 Conclusions for SIF with Neural Networks 

 

The outcomes from different solution procedures of the center crack, double crack 

and single crack geometries are compared in Figs. 5.48, 5.49 and 5.50 respectively. 

 

Investigating Figs. 5.48, 5.49 and 5.50, it is clear that the outcomes of all three 

methods, ANSYS, DEM and Eq.(5.9) are in good agreement for all types of cracks. 

Similarity among the figures is also observed for separation of analytical results from 

the others. The models used in ANSYS and DEM are real models of the crack 

problems, while the analytical formulations are approximations for the present 

problems. Hence deviation of the analytical values is considered to be the main result 

of approximation. 
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As the equation is obtained after training of NN using the outcomes of ANSYS, the 

results of the equation will be very close to that of numerical methods.  
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Fig. 5.48 Center cracked model analysis 
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Fig. 5.49 Double edge cracked model analysis 
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Fig. 5.50 Single edge cracked model analysis 

 

5.4.4 Conclusions for SIF with Genetic Programming 

 

As a result, the proposed GP formulation is quite accurate, fast and of practical use 

compared to design codes and existing models. It should be noted that empirical 

formulations in fracture mechanics are mostly based on predefined functions where 

regression analyses of these functions are later performed. However, in the case of 

GP approach there is no predefined function to be considered i.e. GP creates 

randomly formed functions and selects the one that best fits the experimental results. 

Moreover, there is no restriction in the complexity and structure of the randomly 

formed functions, either.  

 

The statistical parameters and performance of training and test sets for the KI are 

given in Table 5.9 and Fig.5.51. It has been seen that the errors are quite satisfactory 

for each case for test set and training sets. 
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Fig. 5.51 Performance of GP results vs. FE results 

 

5.5. J-integral formulations using artificial intelligence techniques 

 

The prediction and formulation of J-integral values for varying geometries using 

NNs and GP based FE (ANSYS) results is another new area in fracture mechanic 

problems. 

 

J–Integral calculations have been done with an ANSYS macro. For this purpose, a 

Fortran subroutine has been developed for ANSYS which reads the results from 

stress analysis and computes the appropriate line integral along a path through the 

integration points. The obtained J-integral values using ANSYS have been used for 

NN’s and GP training and formulation.  

 

The crack geometries were given before in Fig. 5.42. The same material properties 

and loading conditions used in the SIF calculations have taken in J-integral analysis. 
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5.5.1 Neural Networks formulation of J-Integral 

 

The computation of J-integral for three different geometries has been done with an 

independent program for given set of appliedσ , a, w, and Type values as shown in 

Fig.5.52. 

  

 

 
 

Fig.5.52 NN Model for J-integral calculation. 

 

Furthermore it is actually an explicit formulation that computes directly stress 

intensity factor for three different geometries which is given as a function of some 

fracture parameters which are defined before: 

 

    J-integral= f ( appliedσ ,a ,w ,Type)                      (5.11) 

The explicit formula is obtained using the weights of the trained network given as 

follows:   


=

=
n

1i
iijj xwNet         (5.12) 

 

where Netj is the weighted sum of the jth neuron for the input received from the 

preceding layer with n neurons, wij is the weight between the jth neuron and the ith 

neuron in the preceding layer, xi is the output of the ith neuron in the preceding layer. 

The output of the jth neuron outj is calculated with a sigmoid function as follows: 

 

NN a 
w J-integral 

 

Type 

appliedσ  
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( ) ( )j

jj kNetexp1
1

Netfout
−+

==                   (5.13) 

 

where, k is a constant used to control the slope of the semi-linear region. 

Recalling Eqs. (5.11) and  (5.12) the explicit formula is obtained by using the 

weights of the trained network given step by step as follows: 

 ii

N

1i
iji bxwu +=

=
  and     )u(fY ii =               (5.14) 

where iu  is the summation of the ith node and iY the output of transfer function of 

this summation. It should be noted that the input parameters have been normalized 

by �*/120; a*/10; w * /80; type * /3, where �*, a * , w * and type *  are the initial values 

of applied stress, crack length, plate width and type of the geometry respectively. 

The output in the NN model is normalized by 5. 

J-integral values of the three types of geometries can be obtained as the final output 

given as:  

  ( ) 5*1
e1

2
egralintJ

443.3KJIHGFEDCBA2 ��

�
��

� −
+

=− +++++++++++−      (5.15) 

where; 

 

( ) ��

�
��

�

+
−= +−+−σ− 8804.5Typ87134.0w13524.0a2589.26408.2e1

46405.0
A  

( ) ��

�
��

�

+
−= +−+−σ− 5017.2Typ7084.1w6756.3a29585.01708.3e1

03106.0
B  

( ) ��

�
��

�

+
−= +−+−σ− 3699.3Typ0648.7w44385.0a7096.100758.0e1

02843.0
C  

( ) ��

�
��

�

+
= −+−+σ 7426.5Typ3179.2w6103.4a0799.38116.1e1

3925.2
D  

( ) ��

�
��

�

+
−= +−++σ− 2284.5Typ1258.1w43135.0a4449.1283.10e1

01627.0
E  
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( ) ��

�
��

�

+
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021426.0
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�
��

�

+
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�
��

�

+
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H  
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��
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I  

( ) ��

�
��

�

+
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J  

( ) ��

�
��

�

+
= −−−+σ 2849.1Typ555.7w2548.6a2115.40078.2e1

0617.1
K  

 

The calculation of the J-integral values for any three crack types existing on a plate 

of finite dimensions can be done using Eq. (5.15). 

 

5.5.1.1 Parametric studies on J-integral calculations 

 

It is obvious from statistical results (R=0.99) above that the proposed NN model 

accurately learned to map the relationship between the J-integral value and varying 

parameters. Thus the trained NN proposed in this study has been used to conduct an 

extensive parametric study to investigate the effect of varying parameters on J-

integral value. The response surface of each parametric study is also obtained for a 

comprehensive investigation.  Interesting outcomes are observed on the graphs of 

trends. The trend of J-integral value for various parameters is shown in Figs. 5.53, 

5.54 and 5.55. As seen from Fig. 5.53 a sharp increase in J-integral value is observed 

for increasing values of applied stress “�”. This increase is drastically observed after 

applied stress value exceeds 35 particularly for Type 3 crack type. As seen from Fig. 

5.54 the increase is relatively less for increasing crack length “a” with all Types. 

Regarding Fig. 5.55, sudden decrease is observed in J-integral values particularly for 

values of plate widths (w)s ranging from 35 to 45. Type 2 is less affected in this 

situation as compared with Type 1 and 3. For increasing values of plate width J-

integral values show almost the same smooth linear trend. 
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Fig. 5.53 Trend of J-integral vs  σ  (a=10 mm, w=40 mm) 
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Fig. 5.54 Trend of J-integral vs a ( σ =25 MPa, w=40 mm) 
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Fig. 5.55 Trend of J-integral vs w ( σ =25 MPa, a=10 mm) 

 

5.5.2 Genetic Programming formulation of J-integral 

 

FE results are divided into train and test sets where patterns in test set are randomly 

selected among the experimental database shown in bold characters given in Table 

A2. The training patterns for GP formulation have been obtained using ANSYS FE 

software package. A wide range of variables are chosen to represent a general model 

for NN with a data set of 167 training patterns and 25 testing patterns. The statistical 

parameters and performance of training and test sets for the J-integral are given in 

Table 5.10 and Fig.5.56. It has been seen that the errors are quite satisfactory for 

each case for test set and training sets. 

 

Explicit formulation of J-integral  is obtained as a function of stress, crack width, 

plate width and crack type from Fig 5.57 which is the expression tree of  GP 

formulation given as follows (in MATLAB CODE): 

 

J = ((d(2)+(d(0)-G1C0))/((d(2)*G1C11)-(d(2)*d(1))))* (exp((((d(3)^3)-

d(2))/(d(2)+d(2))))*d(1)) * (d(1)+ln(((G3C16+d(0))/d(3)))); 
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Where constants are 

G1C0 = 52.35;  G1C11 = 50.15;  G3C16 = -57.79; 

It should be noted that parameters in the formulation stand for the following: 

d(0)= σ  

 d(1)= a 

d(2)= w 

d(3)= Crack Type 

After putting the corresponding values, the final equation becomes: 

 

��
�

�
��
�

�
��
�

�
��
�

� −σ+��
�

�
��
�

�
�
�

�
�
�

�

−
−σ+=

−

Type
79.57

lnae*a
w*aw15.50

35.52w
J w2

wType3

  (5.16) 

 

5.5.3 Conclusions for J-integral with Neural Networks 

 

The NN models are chosen to be the same as in SIF calculations. (single, double and 

center crack cases). The data obtained by FE for these 3 cases were combined 

together and formed the unified database for the training set of the NN model. The 

NN results are compared with FE results and are found to be quite accurate. Thus 

parametric studies are performed by the use of the proposed NN model to investigate 

the effect of varying parameters on the J-integral value.  

It is obvious from Table 5.10 that statistical results (R=0.99) that the proposed NN 

model accurately learned to map the relationship between the J-integral value and 

varying parameters. Thus the trained NN proposed in this study was used to conduct 

an extensive parametric study to investigate the effect of varying parameters on J-

integral value 

The proposed NN model is also presented in explicit form in Eq. (5.15) which is 

derived by the weights and biases of the trained NN. The obtained explicit 

formulation is shown to be valid for common three cases of crack. Parametric studies 

are also performed to prove the generalization capability of the explicit formulation 

obtained by NNs.  
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5.5.4 Conclusions for J-integral with Genetic Programming 

 

The data obtained by FE for the 3 cases (single, double and center) have been 

combined together and formed the unified database for the training set of the GP 

model. The GP results are compared with FE results and are found to be quite 

accurate. Thus parametric studies are later performed by the use of the proposed GP 

formulation to investigate the effect of varying parameters on the J-integral value. 

The obtained GP formulation is shown to be valid for common three cases of crack.  

 

The statistical parameters and performance of training and test sets for the J-integral 

are given in Table 5.10 and Fig. 5.56. It has been seen that the errors are again quite 

satisfactory for each case for test and training sets. 

 

Table 5.10 Statistical parameters of the GP Model used for J-integral 

 

  Training set Test  set 

MAPE ( % ) (Mean absolute % Error) 36.2 43.5 
Mean (Test/ FE) 1.22 1.30 
R (%) 0.961 0.96 
COV 0.41 0.49 
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Fig. 5.56 Performance of GP results vs. FE results 

 

5.5.5 General conclusions  

 

Approximate equations are available in literature for calculation of SIF. The 

approximate equations for finite sized specimens need to be modified prior to use. 

On the other hand, numerical methods are much more flexible than analytical 

solutions but numerical approach requires much time for modeling and solution of 

the problem to determine SIF. NN and GP are considered to be a tool for generating 

an analytical equation for SIF calculations. 

  

The explicit formulations [Eqs. (5.9), (5.10), (5.15) and (5.16)] are obtained as the 

outcome of NN’s and GP. The proposed models are valid for the ranges of the 

training set of common three cases of crack. Thus NN and GP results are comparable 

in accuracy to the results of numerical methods due to in Figs. 5.46-5.56. As a result, 

the proposed models and the formulation of SIF and J-integral values of common 

three cases of crack are quite accurate, fast and practical for special type problem 

solutions. 
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5.6 The crack path prediction 

 

The FEM is used to get the SIF values with displacement extrapolation method and 

the crack path. The flow chart of procedure used to predict the crack path is given 

before in Fig. 3.9. The procedure is used to simulate the crack growth path of a 

center edge cracked and single edge cracked plate under Mode-I loading; single edge 

cracked plate and off-center cracked example under a mixed mode loading. The 

geometrical and material properties are given in previous sections on SIF 

calculations. 

 

The predicted crack paths can be seen from Figs. 5.57 and 5.58 for Mode I loading 

and Figs. 5.59 and 5.60 for mixed mode loading. The crack propagates straight ahead 

for Mode I loading. It is an expected result because of  zero Kıı values. The results 

for the single edge cracked with mixed mode loading example show the predicted 

crack paths that closely resemble the solution given in reference Rao BN. and 

Rahman S. (2000). 

 

Fig 5.57 Crack path predictions of center edge cracked model 
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Fig 5.58 Crack path predictions of single edge cracked model 

 

 

Fig 5.59 Crack path predictions of single edge cracked with mixed mode loading  

model 
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Fig 5.60 Crack path predictions of off-center cracked model 

 
Case studies prove that the developed program has a stable algorithm. The program 

can be used safely to calculate the SIF, J-integral values and crack path prediction for 

mixed mode loadings. 
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CHAPTER 6 

CONCLUSIONS 
 

This thesis presents an attempt to develop the formulations and computer programs for 

two-dimensional fracture mechanics problems. It is quite clear from previous chapters 

that most of the research objectives have been achieved, and the following original 

contributions have been made to the subject: 

 

(i) An existing finite element elasto-plastic algorithm has been improved for 

fracture parameters analysis.  

(ii) DEM and SEM have been compared successfully 

(iii) The developed algorithms for SIF and J-integral calculations and crack path 

prediction are capable of performing a wide  range of applications. 

(iv) NN and GP have been applied to fracture problems successfully.  

(v) Prediction of crack path has been applied to Mode I and mixed mode loading 

cases. 

 

Several programs have been developed in FORTRAN 90, a number of case studies 

have been analysed using those programs, and the results were compared with those 

obtained either from analytical solutions or by means of ANSYS. The developed 

computer program has been validated for the models given below: 

 

(i) Center cracked model for SIF calculations 

(ii) Double edge cracked model for SIF calculations 

(iii) Single edge cracked model for SIF calculations 

(iv) Single edge cracked model with mixed mode loading for SIF calculations 

(v) Off-center cracked model for SIF calculations 

(vi) Center cracked model for J-integral calculations 

(vii) Single edge cracked model for J-integral calculations 

(viii) Three point bending beam 
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(ix) Compact tension specimen 

(x) Center cracked model for crack path prediction 

(xi) Single edge cracked model for crack path prediction 

(xii) Single edge cracked model with mixed mode loading for crack path prediction 

(xiii) Off-center cracked model for crack path prediction 

 

The results showed good agreement with analytical results, related references and 

ANSYS. 

 

Considering the results of SIF calculations in this work, the following conclusions can 

be drawn: 

 

(i) The comparison of displacement and stress extrapolation method is in good 

agreement for the calculation of Mode I SIF values for crack tip element.  

(ii) DEM gives very accurate predictions, even for coarse meshes, if a good 

angular discretization is made around the crack tip. 

(iii) SEM is not used for Mode II SIF calculations. Stresses have lower precision 

because they are computed from the nodal displacement solutions. 

(iv) The geometry of the selected case, crack size, element type and mesh 

discretization are important factors for the Mode I and Mode II SIF results. 

(v) NN and GP are considered as alternative tools for generating an analytical 

equation using numerical data. 

(vi) It should be noted that soft computing techniques are only valid for the range 

of parameters used for NN or GP training. 

 

Considering the results of J-integral calculations in this work, the following conclusions 

can be extracted: 

 

(i) J-Integral values can give very accurate predictions, even for coarse meshes. 

If a suitable path with the optimum number of nodes and a suitable mesh are 

used around the crack tip, it will give a very accurate result. 

(ii) The explicit formulation of J-integral can give very accurate results for the given 

geometric models and training sets. 
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RECOMMENDATIONS FOR FUTURE WORK 

 

i. The developed program may be converted to a three-dimensional fracture 

mechanics program. 

ii. This study may be extended to fatigue analysis. 

iii. It can be combined with impact analysis for plates. 

iv. Viscoelastoplastic problems may be considered for plates 

v. Thermoplastic analysis may be studied. 

vi. Penetration of plates can be studied considering fracture and impact analysis. 

vii. Crack propagation for EPFM 

viii. Multi-crack propagation 
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APPENDIX 

 
Table A1. FE results vs. NN results for SIF 

*Bold cases are test sets. 

� a w type FE NN FE/NN 
60 2 20 1 159.11 161.16 0.99 
60 2 20 2 177.48 177.59 1.00 
60 2 20 3 185.23 187.5 0.99 
60 2 40 2 174.5 173.41 1.01 
60 2 40 1 152.86 152.67 1.00 
60 2 40 3 173.52 171.22 1.01 
60 2 60 2 170.14 173.03 0.98 
60 2 60 1 151.63 152.57 0.99 
60 2 60 3 171.13 170.03 1.01 
60 2 80 2 169.1 174.38 0.97 
60 2 80 1 157.01 153.69 1.02 
60 2 80 3 169.7 171.83 0.99 
60 4 20 1 259.16 259.89 1.00 
60 4 20 2 273.56 272.18 1.01 
60 4 20 3 316.84 317.57 1.00 
60 4 40 1 225.05 227.3 0.99 
60 4 40 2 251.1 254.46 0.99 
60 4 40 3 262.04 264.2 0.99 
60 4 60 1 218.57 217.5 1.00 
60 4 60 2 244.94 246.92 0.99 
60 4 60 3 250.08 253.28 0.99 
60 4 80 1 216.5 212.05 1.02 
60 4 80 2 242.81 239.7 1.01 
60 4 80 3 245.72 245.5 1.00 
60 6 20 2 361.47 365.94 0.99 
60 6 20 1 389.85 384.54 1.01 
60 6 20 3 482.2 475.01 1.02 
60 6 40 1 293.3 292.81 1.00 
60 6 40 2 321.28 322.15 1.00 
60 6 40 3 350.78 348.28 1.01 
60 6 60 1 275.78 276.95 1.00 
60 6 60 2 307.72 310.62 0.99 
60 6 60 3 321.11 323.75 0.99 
60 6 80 1 269.5 266.94 1.01 
60 6 80 2 301.83 300.32 1.01 
60 6 80 3 309.63 312.8 0.99 
60 8 20 1 600.08 606.93 0.99 
60 8 20 2 494.48 486.28 1.02 
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60 8 20 3 700.19 714.28 0.98 
60 8 40 1 366.64 364.38 1.01 
60 8 40 2 387.05 387.17 1.00 
60 8 40 3 448.22 443.58 1.01 
60 8 60 1 331.16 328.79 1.01 
60 8 60 2 365.7 365.53 1.00 
60 8 60 3 392.65 389.22 1.01 
60 8 80 1 318.4 318.15 1.00 
60 8 80 2 355.28 354.88 1.00 
60 8 80 3 370.98 373.14 0.99 
80 2 20 1 212.14 212.39 1.00 
80 2 20 2 236.64 234.57 1.01 
80 2 20 3 246.97 250.69 0.99 
80 2 40 1 203.81 201.64 1.01 
80 2 40 2 228.53 228.75 1.00 
80 2 40 3 231.36 225.41 1.03 
80 2 60 1 202.18 202.28 1.00 
80 2 60 2 226.86 230.09 0.99 
80 2 60 3 228.18 225.75 1.01 
80 2 80 2 225.47 230.3 0.98 
80 2 80 1 200.74 202.77 0.99 
80 2 80 3 226.26 227.7 0.99 
80 4 20 3 464.23 426.63 1.09 
80 4 20 1 345.55 346.78 1.00 
80 4 20 2 374.49 365.87 1.02 
80 4 40 1 300.07 300.22 1.00 
80 4 40 2 334.8 336.72 0.99 
80 4 40 3 349.38 351.03 1.00 
80 4 60 1 291.42 290.98 1.00 
80 4 60 2 326.59 326.9 1.00 
80 4 60 3 333.43 333.68 1.00 
80 4 80 1 288.66 285.4 1.01 
80 4 80 2 323.74 319.88 1.01 
80 4 80 3 327.63 326.16 1.00 
80 6 20 1 515.36 515.14 1.00 
80 6 20 2 481.96 493.06 0.98 
80 6 20 3 642.93 633.09 1.02 
80 6 40 2 428.38 432.42 0.99 
80 6 40 1 392.75 393.27 1.00 
80 6 40 3 467.71 468.09 1.00 
80 6 60 1 367.36 369.66 0.99 
80 6 60 2 410.29 412.19 1.00 
80 6 60 3 428.15 430.59 0.99 
80 6 80 1 359.33 359.56 1.00 
80 6 80 2 404.75 399.44 1.01 
80 6 80 3 412.85 413.85 1.00 
80 8 20 2 659.3 648.39 1.02 
80 8 20 1 800.11 796.76 1.00 
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80 8 20 3 933.58 931.88 1.00 
80 8 40 1 488.85 491.34 0.99 
80 8 40 2 516.06 520.5 0.99 
80 8 40 3 597.63 594.65 1.01 
80 8 60 1 441.55 441.47 1.00 
80 8 60 2 487.6 489.67 1.00 
80 8 60 3 523.54 522.39 1.00 
80 8 80 1 424.53 425.05 1.00 
80 8 80 2 473.71 471.53 1.00 
80 8 80 3 494.64 496.85 1.00 
100 2 20 1 265.18 265.71 1.00 
100 2 20 2 295.8 293.79 1.01 
100 2 20 3 308.72 313.34 0.99 
100 2 40 1 254.76 253.44 1.01 
100 2 40 2 285.66 288.08 0.99 
100 2 40 3 289.2 283.51 1.02 
100 2 60 2 283.57 289.27 0.98 
100 2 60 1 252.72 254.29 0.99 
100 2 60 3 285.22 283.85 1.00 
100 2 80 2 281.84 288.2 0.98 
100 2 80 1 250.92 253.68 0.99 
100 2 80 3 282.83 284.99 0.99 
100 4 20 2 455.94 453.57 1.01 
100 4 20 1 431.93 431.6 1.00 
100 4 20 3 528.07 531.49 0.99 
100 4 40 1 375.09 376.98 0.99 
100 4 40 2 418.5 420.58 1.00 
100 4 40 3 438.66 436.81 1.00 
100 4 60 1 364.28 366.72 0.99 
100 4 60 2 408.23 410.74 0.99 
100 4 60 3 416.79 418.37 1.00 
100 4 80 1 360.83 359.23 1.00 
100 4 80 2 404.68 401.83 1.01 
100 4 80 3 409.54 409.3 1.00 
100 6 20 1 644.2 643.4 1.00 
100 6 20 2 607.52 615.75 0.99 
100 6 20 3 803.66 795.8 1.01 
100 6 40 1 488.84 489.16 1.00 
100 6 40 2 535.47 536.14 1.00 
100 6 40 3 584.64 582.44 1.00 
100 6 60 1 459.63 463.76 0.99 
100 6 60 2 512.86 515.03 1.00 
100 6 60 3 535.19 536.75 1.00 
100 6 80 1 449.16 452.47 0.99 
100 6 80 2 503.05 501.58 1.00 
100 6 80 3 516.06 519.2 0.99 
100 8 20 2 824.13 817.41 1.01 
100 8 20 1 1000.1 996.14 1.00 
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100 8 20 3 1167 1164.7 1.00 
100 8 40 3 747.04 747.95 1.00 
100 8 40 1 611.06 611.92 1.00 
100 8 40 2 645.08 649.99 0.99 
100 8 60 1 551.94 549.17 1.01 
100 8 60 2 609.5 608.88 1.00 
100 8 60 3 654.42 651.54 1.00 
100 8 80 1 530.66 533.03 1.00 
100 8 80 2 592.14 590.3 1.00 
100 8 80 3 618.3 621.53 0.99 
120 2 20 1 318.21 317.16 1.00 
120 2 20 2 354.95 351.05 1.01 
120 2 20 3 370.46 376.64 0.98 
120 2 40 1 305.71 302.46 1.01 
120 2 40 2 342.79 344.5 1.00 
120 2 40 3 347.04 338.6 1.02 
120 2 60 1 303.27 304.27 1.00 
120 2 60 2 340.29 346.74 0.98 
120 2 60 3 342.27 339.34 1.01 
120 2 80 2 338.2 345.32 0.98 
120 2 80 1 301.11 303.41 0.99 
120 2 80 3 339.39 340.44 1.00 
120 4 20 1 518.32 517.94 1.00 
120 4 20 2 547.13 542.39 1.01 
120 4 20 3 633.68 641.33 0.99 
120 4 40 1 450.1 449.53 1.00 
120 4 40 2 502.2 502.45 1.00 
120 4 40 3 526.4 523.1 1.01 
120 4 60 1 437.14 437.97 1.00 
120 4 60 2 489.88 491.51 1.00 
120 4 60 3 500.15 500.7 1.00 
120 4 80 1 432.99 429.45 1.01 
120 4 80 2 485.61 481.11 1.01 
120 4 80 3 489.6 489.63 1.00 
120 6 20 2 722.93 738.55 0.98 
120 6 20 1 773.04 776.47 1.00 
120 6 20 3 964.39 963.51 1.00 
120 6 40 1 586.61 583.61 1.01 
120 6 40 2 642.57 641.27 1.00 
120 6 40 3 701.57 700.49 1.00 
120 6 60 1 551.56 552.6 1.00 
120 6 60 2 615.44 616.34 1.00 
120 6 60 3 642.23 644.54 1.00 
120 6 80 1 538.99 539.25 1.00 
120 6 80 2 603.66 599.99 1.01 
120 6 80 3 619.27 622.61 0.99 
120 8 20 1 1200.2 1202.5 1.00 
120 8 20 2 988.96 988.17 1.00 
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120 8 20 3 1400.4 1402.1 1.00 
120 8 40 1 733.28 734.3 1.00 
120 8 40 2 778.8 779.14 1.00 
120 8 40 3 896.44 900.23 1.00 
120 8 60 1 662.32 656.42 1.01 
120 8 60 2 731.4 731.3 1.00 
120 8 60 3 785.31 783.62 1.00 
120 8 80 3 739.88 748.48 0.99 
120 8 80 1 636.79 636.24 1.00 
120 8 80 2 710.57 708.86 1.00 

 

Table A2. FE results vs. GP results for SIF 

*Bold cases are test sets. 

 

� a w TYPE FE GP FE/GP 
60 2 20 1 159.11 171.53 0.93 
60 2 20 2 177.48 180.85 0.98 
60 2 20 3 185.23 190.20 0.97 
60 4 20 1 259.16 275.64 0.94 
60 4 20 2 273.56 292.92 0.93 
60 4 20 3 316.84 310.32 1.02 
60 6 20 1 389.85 402.67 0.97 
60 6 20 2 361.47 432.18 0.84 
60 6 20 3 482.20 462.09 1.04 
60 8 20 1 600.08 539.32 1.11 
60 8 20 2 494.48 586.41 0.84 
60 8 20 3 700.19 634.49 1.10 
80 2 20 1 212.14 228.70 0.93 
80 2 20 2 236.64 241.13 0.98 
80 2 20 3 246.97 253.60 0.97 
80 4 20 1 345.55 367.52 0.94 
80 4 20 2 374.49 390.55 0.96 
80 4 20 3 464.23 413.76 1.12 
80 6 20 1 515.36 536.89 0.96 
80 6 20 2 481.96 576.24 0.84 
80 6 20 3 642.93 616.12 1.04 
80 8 20 1 800.11 719.09 1.11 
80 8 20 2 659.30 781.88 0.84 
80 8 20 3 933.58 845.99 1.10 
100 2 20 1 265.18 285.88 0.93 
100 2 20 2 295.80 301.41 0.98 
100 2 20 3 308.72 317.00 0.97 
100 4 20 1 431.93 459.41 0.94 
100 4 20 2 455.94 488.19 0.93 
100 4 20 3 528.07 517.20 1.02 
100 6 20 1 644.20 671.12 0.96 
100 6 20 2 607.52 720.31 0.84 
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100 6 20 3 803.66 770.15 1.04 
100 8 20 1 1000.1 898.86 1.11 
100 8 20 2 824.13 977.35 0.84 
100 8 20 3 1167.0 1057.49 1.10 
120 2 20 1 318.21 343.06 0.93 
120 2 20 2 354.95 361.69 0.98 
120 2 20 3 370.46 380.39 0.97 
120 4 20 1 518.32 551.29 0.94 
120 4 20 2 547.13 585.83 0.93 
120 4 20 3 633.68 620.64 1.02 
120 6 20 1 773.04 805.34 0.96 
120 6 20 2 722.93 864.37 0.84 
120 6 20 3 964.39 924.18 1.04 
120 8 20 1 1200.2 1078.63 1.11 
120 8 20 2 988.96 1172.82 0.84 
120 8 20 3 1400.4 1268.98 1.10 
60 2 40 1 152.86 158.09 0.97 
60 2 40 2 174.50 162.49 1.07 
60 2 40 3 173.52 166.89 1.04 
60 4 40 1 225.05 237.33 0.95 
60 4 40 2 251.10 244.91 1.03 
60 4 40 3 262.04 252.52 1.04 
60 6 40 1 293.30 319.39 0.92 
60 6 40 2 321.28 331.23 0.97 
60 6 40 3 350.78 343.13 1.02 
60 8 40 1 366.64 386.61 0.95 
60 8 40 2 387.05 403.46 0.96 
60 8 40 3 448.22 420.44 1.07 
80 2 40 1 203.81 210.79 0.97 
80 2 40 2 228.53 216.65 1.05 
80 2 40 3 231.36 222.52 1.04 
80 4 40 1 300.07 316.44 0.95 
80 4 40 2 334.80 326.55 1.03 
80 4 40 3 349.38 336.69 1.04 
80 6 40 1 392.75 425.86 0.92 
80 6 40 2 428.38 441.64 0.97 
80 6 40 3 467.71 457.50 1.02 
80 8 40 1 488.85 515.47 0.95 
80 8 40 2 516.06 537.94 0.96 
80 8 40 3 597.63 560.58 1.07 
100 2 40 1 254.76 263.48 0.97 
100 2 40 2 285.66 270.81 1.05 
100 2 40 3 289.20 278.15 1.04 
100 4 40 1 375.09 395.56 0.95 
100 4 40 2 418.50 408.19 1.03 
100 4 40 3 438.66 420.86 1.04 
100 6 40 1 488.84 532.32 0.92 
100 6 40 2 535.47 552.05 0.97 
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100 6 40 3 584.64 571.88 1.02 
100 8 40 1 611.06 644.34 0.95 
100 8 40 2 645.08 672.43 0.96 
100 8 40 3 747.04 700.73 1.07 
120 2 40 1 305.71 316.18 0.97 
120 2 40 2 342.79 324.97 1.05 
120 2 40 3 347.04 333.78 1.04 
120 4 40 1 450.10 474.67 0.95 
120 4 40 2 502.20 489.83 1.03 
120 4 40 3 526.40 505.03 1.04 
120 6 40 1 586.61 638.79 0.92 
120 6 40 2 642.57 662.46 0.97 
120 6 40 3 701.57 686.25 1.02 
120 8 40 1 733.28 773.21 0.95 
120 8 40 2 778.80 806.91 0.97 
120 8 40 3 896.44 840.87 1.07 
60 2 60 1 151.63 153.92 0.99 
60 2 60 2 170.14 156.80 1.09 
60 2 60 3 171.13 159.68 1.07 
60 4 60 1 218.57 226.42 0.97 
60 4 60 2 244.94 231.27 1.06 
60 4 60 3 250.08 236.14 1.06 
60 6 60 1 275.78 297.91 0.93 
60 6 60 2 307.72 305.31 1.01 
60 6 60 3 321.11 312.73 1.03 
60 8 60 1 331.16 351.64 0.94 
60 8 60 2 365.70 361.90 1.01 
60 8 60 3 392.65 372.20 1.05 
80 2 60 1 202.18 205.23 0.99 
80 2 60 2 226.86 209.07 1.09 
80 2 60 3 228.18 212.91 1.07 
80 4 60 1 291.42 301.89 0.97 
80 4 60 2 326.59 308.36 1.06 
80 4 60 3 333.43 314.85 1.06 
80 6 60 1 367.36 397.21 0.92 
80 6 60 2 410.29 407.08 1.01 
80 6 60 3 428.15 416.98 1.03 
80 8 60 1 441.55 468.85 0.94 
80 8 60 2 487.60 482.53 1.01 
80 8 60 3 523.54 496.27 1.05 
100 2 60 1 252.72 256.54 0.99 
100 2 60 2 283.57 261.33 1.09 
100 2 60 3 285.22 266.13 1.07 
100 4 60 1 364.28 377.36 0.97 
100 4 60 2 408.23 385.45 1.06 
100 4 60 3 416.79 393.56 1.06 
100 6 60 1 459.63 496.51 0.93 
100 6 60 2 512.86 508.85 1.01 
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100 6 60 3 535.19 521.22 1.03 
100 8 60 1 551.94 586.07 0.94 
100 8 60 2 609.50 603.16 1.01 
100 8 60 3 654.42 620.34 1.05 
120 2 60 1 303.27 307.85 0.99 
120 2 60 2 340.29 313.60 1.09 
120 2 60 3 342.27 319.36 1.07 
120 4 60 1 437.14 452.83 0.97 
120 4 60 2 489.88 462.54 1.06 
120 4 60 3 500.15 472.27 1.06 
120 6 60 1 551.56 595.82 0.93 
120 6 60 2 615.44 610.62 1.01 
120 6 60 3 642.23 625.47 1.03 
120 8 60 1 662.32 703.28 0.94 
120 8 60 2 731.40 723.79 1.01 
120 8 60 3 785.31 744.40 1.05 
60 2 80 1 157.01 151.90 1.03 
60 2 80 2 169.10 154.03 1.10 
60 2 80 3 169.70 156.17 1.09 
60 4 80 1 216.50 221.25 0.98 
60 4 80 2 242.81 224.82 1.08 
60 4 80 3 245.72 228.40 1.08 
60 6 80 1 269.50 288.05 0.94 
60 6 80 2 301.83 293.43 1.03 
60 6 80 3 309.63 298.83 1.04 
60 8 80 1 318.40 336.13 0.95 
60 8 80 2 355.28 343.50 1.03 
60 8 80 3 370.98 350.90 1.06 
80 2 80 1 200.74 202.53 0.99 
80 2 80 2 225.47 205.38 1.10 
80 2 80 3 226.26 208.23 1.09 
80 4 80 1 288.66 295.00 0.98 
80 4 80 2 323.74 299.76 1.08 
80 4 80 3 327.63 304.53 1.08 
80 6 80 1 359.33 384.07 0.94 
80 6 80 2 404.75 391.24 1.03 
80 6 80 3 412.85 398.44 1.04 
80 8 80 1 424.53 448.18 0.95 
80 8 80 2 473.71 458.00 1.03 
80 8 80 3 494.64 467.87 1.06 
100 2 80 1 250.92 253.16 0.99 
100 2 80 2 281.84 256.72 1.10 
100 2 80 3 282.83 260.29 1.09 
100 4 80 1 360.83 368.75 0.98 
100 4 80 2 404.68 374.70 1.08 
100 4 80 3 409.54 380.66 1.08 
100 6 80 1 449.16 480.08 0.94 
100 6 80 2 503.05 489.06 1.03 
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100 6 80 3 516.06 498.05 1.04 
100 8 80 1 530.66 560.22 0.95 
100 8 80 2 592.14 572.51 1.03 
100 8 80 3 618.30 584.83 1.06 
120 2 80 1 301.11 303.79 0.99 
120 2 80 2 338.20 308.07 1.10 
120 2 80 3 339.39 312.34 1.09 
120 4 80 1 432.99 442.50 0.98 
120 4 80 2 485.61 449.64 1.08 
120 4 80 3 489.60 456.80 1.07 
120 6 80 1 538.99 576.10 0.94 
120 6 80 2 603.66 586.87 1.03 
120 6 80 3 619.27 597.66 1.04 
120 8 80 1 636.79 672.26 0.95 
120 8 80 2 710.57 687.01 1.03 
120 8 80 3 739.88 701.80 1.05 

 Mean 1.00 
 Std dev. 0.06 
 R 0.98 

  MAPE 0.06 
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