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iii

ABSTRACT

APPLICATIONS OF A NOVEL APPROACH TO RELATIVISTIC AND
NON-RELATIVISTIC PROBLEMS IN PHYSICS

KOÇAK, Mehmet

Ph.D. in Engineering Physics

Supervisor: Prof. Dr. Bülent GÖNÜL

July 2007, 59 pages

We have developed an algebraic approach for the treatment of time-independent
Schrödinger equation with constant/non-constant masses within the frame of
non-relativistic quantum theory. The model developed then has been success-
fully applied in various fields of physics involving exactly/approximately solvable
potentials. The first part of the thesis work is devoted to the presentation of these
applications, such as the application results for non-central potentials, applica-
bility of the scheme for scattering theory and careful analysis of the application
results for quantum systems with position-dependent masses in arbitrary dimen-
sions.

After gaining confidence from the successful applications of this novel for-
malism to non-relativistic systems, we have extended our investigations by study-
ing the applicability of the model also for the relativistic considerations in the
light of Klein-Gordon and Dirac equations involving only bound quantum states.
These considerations require naturally the split of the relativistic equations into
two parts, unlike the other models in the literature, which provide a clear visu-
alization of the relativistic contributions, in an explicit manner, to the solution
in the non-relativistic limit.

Key words: Schrödinger Equation, Dirac Equation, Klein-Gordon Equation,
Exactly-solvable Systems, Non-central Potentials, Position-dependent Mass.
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ÖZET

RÖLATİVİSTİK VE RÖLATİVİSTİK OLMAYAN FİZİK PROBLEMLERİNE
YENİ BİR YAKLAŞIMIN UYGULAMALARI

KOÇAK, Mehmet

Doktora Tezi, Fiz. Müh.

Tez Yöneticisi: Prof. Dr Bülent GÖNÜL

Temmuz 2007, 59 sayfa

Rölativistik olmayan kuantum mekaniği çerçevesinde sabit/değişken kütleli
zamandan bağımsız Schrödinger dalga denkleminin çözümü için analitik bir metod
geliştirildi. Bu metod, tam ve yaklaşık olarak çözülebilen potansiyel içeren
farklı fizik problemlerine başarıyla uygulandı. Tez çalışmasının ilk kısmında,
bahsedilen uygulama sonuçları tartışıldı. Bu uygulamalardan bazıları söz konusu
modelin kullanımı ile merkezcil olmayan potansiyel içeren Schrödinger denklemi-
nin çözümü, modelin quantum saçılma teorisine uygulanabilirliği ve keyfi boyutta
değişken kütle içeren Schrödinger denkleminin yeni model çerçevesin- de dikkatle
incelenmesidir.

Modelimizin rölativistik olmayan sistemlere başarılı uygulamalarından edin-
diğimiz güvenle; Klein-Gordon ve Dirac denklemlerini göz önünde bulundurarak,
geliştirilen analitik çözüm tekniğinin rölativistik problemlere de uygulanabilirliği
araştırıldı. Literatürde mevcut diğer modellerden farklı olarak; yeni uygulama
neticesinde rölativistik denklemler, doğal ve belirgin olarak iki ayrı denkleme
ayrılır ki bu sonuç rölativistik düzeltmelerin tam ve kesin olarak gözlenebilirliğini
sağlar.

Anahtar kelimeler: Schrödinger Denklemi, Dirac Denklemi, Klein-Gordon
Denklemi, Tam Çözülebilir Sistemler, Merkezcil olmayan Potansiyeller, Değişken
Kütleler.
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CHAPTER 1

INTRODUCTION

An exact solution of physical systems has a great importance. Especially,

in the case of Schrödinger equation there is only a few selected problems that

can be exactly solvable. At this point perturbation theory (PT), which comprises

mathematical methods that are used to find an approximate solution to a prob-

lem, has a vital role. PT is applicable if the problem at hand can be formulated

by adding a small term to the mathematical description of the exactly solvable

problem. In this manner, there are lot’s of problems for example magnetic in-

teraction (spin-orbit coupling), the electrostatic repulsion of electrons and the

influence of external fields. The inter-connection between exactly-solvable sys-

tems and PT has formed one of the purpose of this thesis to reveal a new and

more effective method to deal with analytical solution of quantum mechanical

problems.

Actually, a number of models have been developed to treat perturbative

systems. For instance, performing explicit calculations in non-relativistic quan-

tum mechanics using the familiar Rayleigh-Schrödinger perturbation expansion

is rendered difficult by the presence of summations over all intermediate unper-

turbed eigenstates. Alternative perturbation procedures have been proposed to

avoid this difficulty, notably the logarithmic perturbation theory (LPT) [1-4] and

the Dalgarno-Lewis technique [5-8]. The virtue of LPT is its avoidance of the

cumbersome summation over states for second- and higher-order corrections in

Rayleigh-Schrödinger perturbation theory. Unfortunately, it has problems of its

own in calculating corrections to excited states, owing to presence of nodes in

the wave functions. Various schemes have been proposed to circumvent these

singularities [4, 9, 10].

Such is the status of LPT after over 20 years of active development. Mean-

while, supersymmetric quantum mechanics (SSQM) [11, 12] has been developed

immensely since the first models were introduced [13, 14]. Several approximation

methods using SSQM formalism have been proposed, including the supersym-
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metric perturbation theory (SSPT) of Cooper and Roy [15]. Recently, Lee [16]

has shown that SSPT and LPT are entirely equivalent and fortuitously, each

turns out to resolve difficulties encountered in the other. Namely, LPT formulas

for energy corrections obviate tedious procedures in the SSQM method, while

the use of SSQM partner potentials with virtually identical bound state spectra

solves difficulties with excited states encountered in LPT. Although the iterative

procedure in SSPT may not actually reduce the calculational workload, it does

cast the calculations into a physically-motivated, visualizable framework.

In this thesis, starting from the first principles, we have developed a more

economical scheme which yields simple but closed perturbation theory formulae

leading to the Riccati equation from which one can actually obtain all the pertur-

bation corrections to both energy level shifts and wave functions for all states, un-

like the other models mentioned above. In the application of the present method

to the nth excited state, one requires knowledge of the unperturbed eigenfunction

but no knowledge of the other eigenvalues or eigenfunctions is necessary. The

procedure introduced here does not involve either tedious explicit factoring out

of the zeros of unperturbed eigenfunction [1, 2] or introduction of ghost states [4]

as were the cases encountered for applying LPT to excited states. The present

model also offers explicit expressions for the energy corrections, which are absent

in SSPT, and provides a clean route to the excited states, which are cumbersome

to analyze in both LPT and SSPT. Therefore, our results can be thought of as

a generalization of logarithmic and supersymmetric based perturbation theories.

This is one of the vital points in the present work.

In the following Chapter we have introduced the model and discussed

briefly the physics behind the formulation. In Chapter 3 the model applied to

non-relativistic problems. Section 3.1 involves an application leading to closed

solutions which provide a search the reason behind exact solvability of some

non-central but separable potentials. To the best of our knowledge, this ques-

tion has not been discussed in the literature. To show the effectiveness of the

formalism, we also have extended it to the scattering domain in Section 3.2 and

compared the results obtained with those in the literature. In Section 3.3 we

have considered effective mass Hamiltonians with spatially varying mass within

the frame of the model underlined and discussed the interrelation between the

exact solvability and ambiguity parameters in such Hamiltonians. This is one

of the ongoing debates in the literature. Finally, Section 3.4 involves a careful

extension of one-dimensional calculations to higher dimensions.

Chapter 4 illustrates further applications of the formalism to some other

interesting problems in the relativistic region. For instance, Section 4.1 involves

powerful applications of the model of interest via the Klein-Gordon equation in-
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volving different interactions. These applications clarify the appearance of the

relativistic equation in the non-relativistic limit for the potentials considered and

shed a light to discuss explicitly relativistic contributions. In the similar manner,

we have analyzed Dirac equation in Section 4.2, and suggested a refined and im-

proved model to solve relativistic equations in terms of orthogonal polynomials.

This more flexible and elegant prescription works for all exactly and quasi-exactly

solvable potential family. In addition, now the excited state wave functions can

be easily expressed simultaneously with the ground-state solution, unlike the pre-

vious model used through the thesis work. This is a considerable improvement

in the formalism presented. We finally note that, the compact scheme of this

remarkable new formalism is also applicable for the all non-relativistic problems

with constant and position-dependent masses.
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CHAPTER 2

FORMALISM

An exact solution of the Schrödinger equation exists only for a few idealized

problems; hence sometimes it has to be solved using an approximation method

such as the perturbation theories (PT) available in the literature [1-10, 15, 16],

which constitute one of the most powerful tools available in the study of quantum

mechanics in the atoms and molecules. PT are applied to those cases in which the

real system can be described by a small change in an exactly solvable idealized

system. In this form we can describe a great number of problems encountered

especially in atomic physics, in which the nucleus provides the strong central

potential for the electrons; further interactions of less strength are described

by the perturbation. But in spite of widespread application of this theory, its

basic analytical properties are poorly understood. Within this context, the main

objective in this Chapter is to use the spirit of the perturbation theories to be

able to introduce a novel and more flexible formalism to treat all the potentials

in non-relativistic quantum theory, which would also clarify the vague points in

PT.

Let us first start with basic definitions in the supersymmetric quantum

theory (SUSYQM), which is well known in the literature [11]. The goal in SSQM

is to solve the Riccati equation,

W 2(r)− h̄√
2m

W ′(r) = V (r)− E0 , (2.1)

where V (r) is the potential of interest and E0 is the corresponding ground state

energy. If we find W (r), the so called superpotential, we have of course found

the ground state wave function via,

ψ0(r) = N exp

[
−
√

2m

h̄

∫ r

W (z)dz

]
, (2.2)

where N is the normalization constant. If V (r) is a shape invariant potential, we

can in fact obtain the entire spectrum of bound state energies and wave functions
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via ladder operators [11]. Through the present work, this basic ingredient of

SSQM given by (2.1) and (2.2) will be later extended and used for the treatment

of excited states.

Now, suppose that we are interested in a potential for which we do not

know W (r) exactly, and the corresponding Hamiltonian is not factorizable but

almost factorizable. More specifically, we assume that V (r) differs by a small

amount from a potential V0(r) plus angular momentum barrier if any, for which

one solves the Riccati equation explicitly. For the consideration of spherically

symmetric potentials, the corresponding Schrödinger equation for the radial wave

function has the form

h̄2

2m

ψ′′n(r)

ψn(r)
= [V (r)− En] , V (r) =

[
V0(r) +

h̄2

2m

`(` + 1)

r2

]
+ ∆V (r), (2.3)

where ∆V is a perturbing potential. Let us write the wave function ψn as

ψn(r) = χn(r)φn(r) , (2.4)

in which χn is the known normalized eigenfunction of the unperturbed Schrödinger

equation whereas φn is a moderating function corresponding to the perturbing

potential. Substituting (2.4) into (2.3) yields

h̄2

2m

(
χ′′n
χn

+
φ′′n
φn

+ 2
χ′n
χn

φ′n
φn

)
= V − En . (2.5)

Instead of setting the functions χn and φn, we will set their logarithmic derivatives

using the spirit of Eqs. (2.1) and (2.2);

Wn = − h̄√
2m

χ′n
χn

, ∆Wn = − h̄√
2m

φ′n
φn

(2.6)

which leads to

h̄2

2m

χ′′n
χn

= W 2
n −

h̄√
2m

W ′
n =

[
V0(r) +

h̄2

2m

`(` + 1)

r2

]
− εn , (2.7)

where εn is the eigenvalue of the unperturbed and exactly solvable potential, and

h̄2

2m

(
φ′′n
φn

+ 2
χ′n
χn

φ′n
φn

)
= ∆W 2

n −
h̄√
2m

∆W ′
n + 2Wn∆Wn = ∆V (r)−∆εn , (2.8)

in which ∆εn is the eigenvalue for the perturbed potential, and En = εn + ∆εn.

Then, Eq. (2.5), and subsequently Eq. (2.3), reduces to

(Wn + ∆Wn)2 − h̄√
2m

(Wn + ∆Wn)′ = V − En , (2.9)

which is similar to Eq. (2.1). In principle as one knows explicitly the solution of

Eq. (2.7), namely the whole spectrum and corresponding eigenfunctions of the
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unperturbed interaction potential, the aim here is to solve only Eq. (2.8), which

is the main result of this study, leading to the solution of Eqs. (2.3) and (2.9).

Eq. (2.8) is a closed analytical form in comparing to lengthy expressions

in perturbation theories existed in the literature, in particular for the excited

states. In this respect, the present formulation has a more general form than the

available perturbation theories. Though this point will be clear below and also in

the next Chapters through the applications, it would be convenient at this stage

to clarify how Eq. (2.8) involves in a compact form the standard perturbation

theory expressions.

For the perturbation technique, we have initially assumed that we could

split the given potential in two parts, Eq. (2.3). The main part corresponds

to a shape invariant potential, Eq. (2.7), for which the superpotential is known

analytically and the remaining part is treated as a perturbation, Eq. (2.8). If

necessary, one can expand the functions related to the perturbation in terms of

the perturbation parameter λ,

∆V (r; λ) =
∞∑

k=1

λk∆Vk(r) ,

∆Wn(r; λ) =
∞∑

k=1

λk∆Wnk(r) ,

∆εn(λ) =
∞∑

k=1

λk∆εnk , (2.10)

where λ will eventually be set equal to one. Substitution of the above expansion

into Eq. (2.8) by equating terms with the same power of λ on both sides yields

up to O (λ3)

2Wn∆Wn1 − h̄√
2m

∆W ′
n1 = ∆V1 −∆εn1 , (2.11)

∆W 2
n1 + 2Wn∆Wn2 − h̄√

2m
∆W ′

n2 = ∆V2 −∆εn2 , (2.12)

2 (Wn∆Wn3 + ∆Wn1∆Wn2)− h̄√
2m

∆W ′
n3 = ∆V3 −∆εn3 , (2.13)

which are exactly SSPT expressions appeared in [15, 16] but for the case n = 0.

Eq. (2.8) and its expansion, Eqs. (2.11-2.13), give a flexibility for the easy calcu-

lations of the perturbative corrections to energy and wave functions for the nth

state of interest through an appropriately chosen perturbed superpotential, un-

like the other perturbation theories. We will show in the next Chapters through

the applications that this feature of the present model leads to a simple frame-

work in obtaining the corrections to all states without using complicated and

tedious mathematical procedures. It is noted that through the thesis work the

natural units (h̄ = 2m = 1) will be used.
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CHAPTER 3

APPLICATIONS TO

NON-RELATIVISTIC PROBLEMS

3.1 Systematic Search of Exactly Solvable

Non-Central Potentials

Gaining confidence from the recent applications [17-19] of the model pre-

sented in the previous Chapter, we aim in this section to illustrate the idea of this

basic but powerful technique can also be readily used to search exact solvability of

non-central potentials, which would clarify the systematic behind such algebraic

treatments. To our knowledge, such work does not exist in the literature.

Analytically solvable potentials are important for a number of reasons such

as providing model problems to analyze, to start perturbation theory expansions

from, or to provide complete sets of basis functions for solving real problems. In

this respect, using the ideas of supersymmetry and shape invariance [11], many

authors [20-23] obtained the solutions of a wide class of non-central potentials in

a closed form. Additionally, in a recent work [24] similar techniques have been

used to determine the spectrum of a vibrational molecular system and using

some well-known shape invariant potentials the authors have obtained energy

levels of triatomic molecules for 12 classes of non-central but separable potentials.

Nevertheless, the answer of the natural question that why some of the non-central

potentials can be solved exactly has not been discussed in the literature, which

is the task of this section.

For the consideration of exactly solvable non-central potentials,

U(r, θ, ϕ) = U1(r) +
U2(θ)

r2
+

U3(ϕ)

r2 sin2(θ)
, (3.1)

the time-independent Schrödinger equation reads

d2R

dr2
+

2

r

dR

dr
+

[
E − U1 − `(` + 1)

r2

]
R = 0, (3.2)
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d2P

dθ2
+ cot θ

dP

dθ
+

[
`(` + 1)− m2

sin2(θ)
− U2

]
P = 0 (3.3)

d2φ

dϕ2
+ (m2 − U3)φ = 0 (3.4)

where the total wave function is Ψ(r, θ, ϕ) = R(r)P (θ)φ(ϕ) and ` = 0, 1, 2, ..., n−
1 together with m = 0,±1, ...,±` are respectively the orbital and azimuthal

quantum numbers. Here, the crucial point is that each part of the physically total

interaction potential, namely U1, U2 and U3, should be analytically solvable. As

Eqs. (3.2) and (3.4), having an exactly solvable potential, were well discussed in

the literature based in particular on the supersymmetric quantum theory [11], we

apply the presented technique to only Eq. (3.3) to discuss the systematic behind

such equations. However, one should bear in mind that the same procedure also

can be employed easily in Eqs. (3.2) and (3.4), if necessary.

To proceed we use a mapping function θ = f(z) which transforms Eq. (3.3)

into

d2P

dz2
+

(
−f ′′

f ′
+ f ′ cot f

)
dP

dz
+ f ′2

[
`(` + 1)− m2

sin2 f
− U2(f)

]
P = 0. (3.5)

The aim here is to have a Schrödinger-like equation, therefore the second term

above is removed with the choice of θ ≡ f = 2 tan−1(ez) which yields sin θ =

sec hz, cos θ = − tanh z, leading to

−d2P

dz2
+ [U2(z)− `(` + 1) sec h2z]P = −m2P (3.6)

Now, the question is which forms of U2 reproduce analytical solutions. To answer

this question one needs to use the discussion given by Eqs. (2.3) through (2.9).

As the whole interaction potential is,

V (z) = V0(z) + ∆V (z) = −`(` + 1) sec h2z + U2(z), (3.7)

in case the angular part of the potential U2 = 0 in (3.6), the remain piece leads to

the well-known shape invariant exactly solvable potential [11]. It can be readily

solved by the supersymmetric quantum theory,

Wn=0(z) = ` tanh z, εn = −(`− n)2, n = 0, 1, 2, ... (3.8)

where Wn=0 and εn denote respectively the superpotential and energy eigenvalue

for the unperturbed potential, V0 = −`(`+1) sec h2z. Note that the correspond-

ing wave functions reproduce standard properties of the spherical harmonics [21].

At this stage, with the consideration of Eq. (2.8)

∆W 2
n=0(z)−∆W ′

n=0(z) + 2(` tanh z)∆Wn=0(z) = ∆V (z)−∆εn=0, (3.9)
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one arrives at

∆Wn=0 =
b

`
, ∆εn=0 = −b2

`2
, ∆V (z) = 2b tanh z, (3.10)

where b is a constant. It makes clear that the full interaction potential has now

the form of the Rosen-Morse II potential. A brief study of all shape invariant

exactly solvable potentials [11] in one dimensional space, together with the results

obtained in [22], clarify the physically meaningful choice of b as to be b = −γ
2

with

γ be another constant relating to the system of interest. For the completeness,

one should now take consider the whole superpotential,

W total
n=0 (z) = Wn=0(z) + ∆Wn=0(z) = ` tanh z − γ

2`
, (3.11)

which will reproduce the whole spectrum. Proceeding within the framework of

supersymmetric quantum mechanics, the energy spectrum for the total potential

V = −`(` + 1) sec h2z − γ tanh z is given in the form

En = −(`− n)2 − γ2

4(`− n)2
= εn + ∆εn, (3.12)

which is the proof of the stated theory. To see the exactly solvable form of the

angular potential U2, we use inverse mapping sec hz = sin θ, tanh z = − cos θ and

bearing in mind Eqs. (3.1) and (3.5), then arrives at

U2(θ) =
γ cos θ

r2 sin2(θ)
. (3.13)

From the mathematical point of view, r2 sin2 θ in the calculations of exactly

solvable forms of U2 comes naturally, see Eqs. (3.1) and (3.5). Hence one can

generalize the above potential involving a constant, if necessary, related to the

physical system considered. In this case, such potentials are given as

U2(θ) =
β + γ cos θ

r2 sin2(θ)
, (3.14)

in which β appears, from Eq. (3.5), only on RHS of Eq. (3.6) as a piece of energy

value. Considering Eqs. (3.6) and (3.12) for the presence of β, we obtain

` = n +

[
(m2 + β) +

√
(m2 + β2)− γ2

2

] 1
2

. (3.15)

This `- value is used in the energy expression given for the central potential

U1(r) to introduce the complete spectrum of analytically solvable non-central

potentials. The present result agrees with Eq. (2.10) of Ref. [22], where the

generalized Coulomb potential was discussed.
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Clearly, Eq. (3.9) is the most significant equation of this section, which

defines exactly the possible forms of U2(θ) yielding analytical solutions. The main

point here of course is to be able to find an analytical expression for ∆W and

subsequently ∆V for the definition of the total θ-dependent perturbing potential,

which requires exactly the satisfaction of Eq. (3.9) leading to a closed form for

the complete spectrum.

One should however note that although we have focussed here on the eigen-

values, calculation of the corresponding eigenfunctions within the same model is

quite straightforward, see Eq. (2.2). In addition, we believe that this generaliza-

tion would considerably extend the list of exactly solvable non-central potentials

for which the solution can be obtained algebraically in a simple and elegant

manner as discussed here.

A similar study is conducted here for the shape invariant Pösch-Teller II

type potential [11], within the frame of Eqs. (3.6) through (3.9). This choice

requires

∆Wn=0(z) = −α coth z, (3.16)

which, from (3.9), reproduces

∆V (z) = U2(z) = α(α− 1) csc h2z , ∆εn=0 = −α(α− 2`). (3.17)

Thus, the full angle dependent potential in (3.6) turns into V = −`(`+1) sec h2z+

α(α−1) csc h2z having a complete spectrum in the form of En = −(`−α−2n)2 =

εn + ∆εn. Using the same algebraic procedure as before, one obtains the related

exactly solvable non-central potential as

U2(θ) =
δ

r2 sin2(θ)
+

c

r2 cos2(θ)
, (3.18)

in which δ and c = α(α−1) are constants. As explained in the previous example,

δ appears as a piece of energy eigenvalue on RHS of Eq. (3.6), therefore

m2 + δ = (`− α− 2n)2 (3.19)

from which one defines the ` - value as

` = 2n +

(
1

2
±

√
1

4
+ c

)
+ (m2 + δ)

1
2 , (3.20)

that is the same result with compared to (26) of [22], and also agrees with the

related references in [22]. If U1(r) is taken as the harmonic oscillator potential,

then the whole non-central potential with U3(ϕ) = 0 corresponds to the gener-

alized oscillatory potential. To find the full spectrum for such a potential, Eq.

(3.20) is invoked to the energy spectrum of U1(r) [22].
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In this section, we have attempted to explore the effectiveness of the re-

cently developed formalism through which we have made successfully the com-

plete mathematical analysis of the reason behind exact solvability of some Schrödinger

equations with a class of non-central but separable potentials, for which the com-

plete spectrum and eigenfunctions can be written down algebraically using the

well known results for the shape invariant potentials. Generalization of our tech-

nique to other non-central potentials is quite straightforward and use of the

present model may also be useful for solving other quantum mechanical compli-

cated systems analytically.

The work presented here was published in [25].

3.2 An Approach To Potential Scattering

In the studies [17-19] and [25, 26] published recently, a time-independent

novel perturbation theory presented in the previous Chapter has been developed

in the bound state domain, which is non-perturbative, self-consistent and sys-

tematically improvable, and used to treat successfully significant problems in

different fields of physics. With the confidence gained from these applications,

we aim through the present work to show that similar techniques can also be

used in the continuum, which would be useful in particular for calculations in

nuclear physics.

It is well known that there are many scattering problems in which the

interaction between the projectile and the target decomposes naturally into two

parts (V = V0 + ∆V ) as done in the earlier application in this thesis work. This

division is especially useful if the scattering wave function under the action one

part can be obtained exactly (V0), while the effect of the other (∆V ) can be

treated in some approximation as in the present formalism.

For simplicity, we here confine ourselves to s−wave scattering from a po-

tential which is assumed that vanishes beyond a finite radius R. The associated

total wave function behaves at large distances

Ψ(r) =
1

k
sin(kr + δ), r ≥ R, (3.21)

where δ is the s−wave phase shift.

Our present treatment of scattering has concerned itself primarily with

determining how the solutions of the free Schrödinger equation are affected by the

presence of the interaction. Within the framework of the present formalism we

suppose that the solutions of Eq.(2.7) are known, or are easily found, to give the

corresponding phase shift δ0. Considering the expansion δ = δ0 +λδ1 +λ2δ2 + ...,
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as in Eq.(2.10), we aim here to derive explicitly solvable and easily accessible

expressions for the phase shift contributions at successive perturbation orders.

3.2.1 First-Order Phase Shift Correction

Keeping in mind Eq.(3.21) and considering the discussion in previous sec-

tion, at the first perturbation order one has

(W + λ∆W1) = −k cot(kr + δ0 + λδ1), Wn = −χ′

χ
= −k cot(kr + δ0), (3.22)

from where the superpotential relating to the perturbing interaction

∆W1(r) =
kδ1

sin2(kr + δ0)
, (3.23)

is obtained assuming that sin λδ1
∼= λδ1 and cos λδ1

∼= 1.

In the second step, one needs to employ Eq. (2.11) to arrive at another

expression for ∆W1. Rearranging the terms, ∆W ′
1 − 2W∆W1 = (∆ε1 − ∆V1)

and multiply both sides by the integrating factor exp(−2
∫ r

0
W (z)dz), which is

the square of the unperturbed wave function χ2(r) through Eq.(2.6), one obtain

d

dr

[
χ2(r)∆W1(r)

]
= χ2(r)(∆ε1 −∆V1). (3.24)

The integration, and the remove of ∆ε1 term due to the consideration of elastic

scattering process here, yields

∆W1(r) = − 1

χ2(r)

∫ r

0

χ2(z)∆V1(z)dz. (3.25)

As χ = 1
k

sin(kr + δ0) in the asymptotic region, comparison of Eqs.(3.23) and

(3.25) reproduces the first-order change in the phase shift

δ1 = −k

∫ ∞

0

χ2(r)∆V1(r)dr. (3.26)

If necessary, the corresponding change in the wave function can easily be ob-

tained by the substitution of Eq.(3.25) into (2.6), φ1 = exp(− ∫
∆W1). For the

reliability of the present expression obtained, Eq (3.26), one may compare it with

that reproduced by other methods. For example, in the limiting case where the

unperturbed potential vanishes, the unperturbed s−wave function is reduced to

a plane wave χ(r) = sin(kr)/k, and the first-order change in the phase shift

becomes

δ1 = −1

k

∫ ∞

0

sin2(kr)∆V1(r)dr (3.27)
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which is just the first Born approximation for the phase shift [27]. In addition,

the well known expression for s−wave scattering amplitude by the two-potential

formula in scattering theory [27],

f1 = −e2iδ0

∫ ∞

0

χ2(r)∆V1(r)dr (3.28)

where the phase factor in front of the integration arises because of the standing

wave boundary conditions, justifies once more our result since f1 = −e2iδ0δ1/k

and, equating this to the above equation leads immediately to Eq.(3.26).

The present result has a widespread applicability, which may also be used

in the treatment of scattering length problems. At low-energy limit, the phase

shift is related to the scattering length δk→0 → −ka where a = a0+λa1+λ2a2+...

may be expanded in a perturbation series similar to the phase shift. Outside the

range of the potential, the unperturbed wave function behaves as χ → (r − a0).

Thus, the first correction to the scattering length is

a1 = lim
r→∞

[∫ r

0

(z − a0)
2∆V1(z)dz

]
(3.29)

which can be calculated for a given ∆V1. The scattering length has an important

physical significance. In the low-energy limit only the s−wave makes a nonzero

contribution to the cross section, so that the angular distribution of the scattering

is spherically symmetric and the total cross section is 4π(a0 +λa1 + ...)2. This is

also exactly the result obtained in most textbooks for the low-energy scattering

of a hard sphere of radius. Thus the scattering length is the effective radius of

the target at zero energy.

As a last example, consider the case of the angular momentum barrier as

the unperturbed potential V0 = `(` + 1)/r2 that produces [rj`(kr)] with a phase

shift δ0 = −`π/2. For a trivial perturbation let us choose ∆V1 = λ/r2, due to

which the angular momentum is slightly perturbed ` ≈ ` + λ/(2` + 1) + O(λ2).

Therefore the phase shift correction at first-order is δ1 = −π/2(2` + 1). Again,

this exact result confirms the reliability of Eq. (3.26).

3.2.2 Second-Order Phase Shift Correction

To solve Eq.(2.12) which is our second-order perturbation equation, for

∆W2 we mimic the preceding calculation. The integration factor is the same.

In fact, examining Eqs.(2.11) and (2.12), the only difference is that the quantity

∆V1 − ∆ε1 is replaced by ∆V2 − ∆W 2
1 − ∆ε2. As ∆ε2 term is zero due to the

process of interest, ∆W2 is thus

∆W2(r) = − 1

χ2(r)

∫ r

0

χ2(z)
[
∆W 2

1 (z)−∆V2(z)
]
dz. (3.30)
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Bearing in mind that χ = 1
k

sin(kr + δ0) for the region r ≥ R, the second-order

expansion in the superpotential similar to Eq.(3.22) provides another expression

for ∆W2 which is

∆W2(r) = kδ2
1

cot(kr + δ0)

sin2(kr + δ0)
+

kδ2

sin2(kr + δ0)
(3.31)

Comparison of Eqs.(3.30) and (3.31), together with the substitution of (3.23) in

(3.30), leads to an auxiliary function for the second order phase shift correction,

δ2(r) = −1

k

∫ r

0

∆V2(z) sin2(kz + δ0)dz + kδ2
1

∫ r

0

dz

sin2(kz + δ0)
− δ2

1 cot(kr + δ0),

(3.32)

where a singularity appears in the second integral at z = 0. This problem can

be circumvented by replacing the lower limit of the integral with R. Assuming

∆V = ∆V1 as in realistic problems of nuclear physics, which means that ∆V2 = 0,

the r−dependent phase shift correction in the second-order is given in the form

of

δ2(r) = δ2
1 cot(kR + δ0)− 2δ2

1 cot(kr + δ0). (3.33)

As an alternative treatment, which leads to a concrete comparison, one can go

back to Eq.(3.30) and split χ2∆W 2
1 term in two parts as (χ2∆W1)(∆W1) allowing

to invoke Eq.(3.25). In this case the comparison of the result with the expansion

in (3.31) gives

δ2 = −k

∫ ∞

0

χ2(r)∆V1(r)dr

∫ r

R

dz

χ2(z)

[∫ R

z

χ2(y)∆V1(y)dy − δ1

k

]
+δ2

1 cot(kR+δ0)

(3.34)

which is in agreement with the work in [28]. In addition, the use of (3.26) in

(3.33) transforms it into Eq. (3.34). Furthermore, the reader is reminded that

the second Born approximation for the phase shift can be most easily derived

using the variable phase equation approach [29],

δ2 = 2k2

∫ ∞

0

χ2(r)∆V1(r) cot(kr)dr

∫ r

0

χ2(y)∆V1(y)dy (3.35)

which, in the light of Eq. (3.24), is the same result as we find from Eq (3.34), by

putting δ0 = 0 . Higher order terms can also be evaluated in the same manner.

The new model introduced in Chapter 2 for time-independent perturba-

tion theory has been successfully extended from the bound state region to the

scattering domain. For the clarification, the work has been carried out with the

consideration of s−wave scattering only. However, generalization of the formal-

ism to higher partial waves in the scattering domain does not cause any problem.

The inclusion of the centrifugal barrier contribution in the effective potential for

instance leads to the replacement of the s−wave phase shift with δ` − `π/2 due
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to the related wave function χ(r) = sin(kr + δ` − `π/2)/k in the asymptotic

region, supposing both the unperturbed and perturbed potentials vanish at a

large r > R1 which means that in the region R1 < r ≤ R there is then only

the centrifugal barrier contribution. This inclusion requires simply to repeat the

present calculations for the replacement in the phase shift.

It should be stressed that, anything that can be achieved from the present

formalism must also be obtainable from the works [28, 30] in the literature.

For instance, considering the bound state region, Bender’s formalism [30] can

be simplified by introducing the auxiliary function FN(r) such that the whole

wave function ΨN(r) = χ(r)FN(r) where denotes the perturbation order. The

first-order correction can then be written as d
dr

[
χ2 dF

dr

]
= (∆V1 −∆ε1)χ

2 which

corresponds exactly to the present treatment by Eq.(3.24) when we identify

∆W1 = dF/dr. The higher order calculations can be linked to ours in the similar

manner. Whereas, the works of Milward and Wilkin [28] may be related to the

present formalism in both domain, the bound and scattering region by making a

relation between their probability density distributions/derivatives and our ∆W

functions, such as ∆W0 = −P ′
0/2P0 at the zeroth order, ∆W1 = (−P1/2P0)

′ at

the first order and ∆W2 = (−P2/2P0)
′ at the second order etc. Nevertheless, the

present technique provides a clean and explicit route for the calculations without

tedious and cumbersome integrals.

The energy variation of the scattering wave function and phase shift can

also be studied by perturbing in the energy. We wish to stress that all these

effects depend purely upon the perturbation and the unperturbed wave function;

explicit knowledge of the unperturbed potential is not necessary.

The work presented in this section appeared in [31].

3.3 Remarks on Exact Solvability of Quan-

tum Systems with Non-Constant Mass

The study of quantum mechanical systems with position dependent mass

has raised some important conceptional questions, such as the ordering ambiguity

of the momentum and mass operators in the kinetic energy term, the boundary

conditions at abrupt interfaces characterized by discontinuities in the mass func-

tion, etc. Therefore, the form of the effective mass Hamiltonian has been a

controversial subject in the literature. In recent years there has been a growing

interest in the study of such systems due to the applications in condensed matter

physics and other areas involving quantum many body problem. These applica-

tions have stimulated a lot of work in the literature regarding the development of
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techniques for the treatment of such systems, for a recent review, see [32-37] and

the related references therein. In all these works the main concern is in obtain-

ing the energy spectra and/or wave functions for quantum systems with spatially

dependent effective mass. Moreover, exact solvability requirements result in con-

straints on the potential functions for the given mass distribution. Though there

has been a large consensus in favor of BenDaniel and Duke Hamiltonian (BDD)

[38] proposed in the literature as an appropriate one, the question of the exact

form of the kinetic energy operator is still an open problem for such systems.

Within this context, the present section involves an alternative scheme

to obtain unambiguously the Schrödinger equation with non-constant particle

mass, which makes clear the relationship between the exact solvability of the

Schrödinger equation and the ordering ambiguity. The model explored here re-

stricts naturally the possible choices of ordering and provide us a clear compari-

son between the solutions of different but physically plausible effective Hamilto-

nians clarifying the physics behind ambiguity.

To achieve our goal defined above, the present non-perturbative formalism

is employed here. In this unified model, the BDD Hamiltonian is considered as

an unperturbed term while modifications due to other effective Hamiltonians are

treated as an additional potential in the same framework. This realization is of

prime significance in the calculation of physical processes, which so far did not

receive adequate attention.

There are several ways to define the kinetic energy operator when the mass

is variable. Since the momentum and mass operators no longer commute, the

generalization of the Hamiltonian is not trivial and this kind of physical problem

is intrinsically ambiguous. Starting with the von Roos effective mass kinetic

energy operator [39], which has the advantage of an inbuilt Hermicity,

HνR =
1

4
[mα(ẑ)p̂mβ(ẑ)p̂mγ(ẑ) + mγ(ẑ)p̂mβ(ẑ)p̂mα(ẑ)] + V (ẑ), (3.36)

where α+β+γ = −1. By the correspondence in wave mechanics p̂ → −ih̄ d
dz

, ẑ →
z and on setting

m(z) = m0M(z), h̄ = 2m0 = 1, (3.37)

where M(z) is the dimensionless form of the mass function, the effective mass

equation can be written in a differential form,

− d

dz

[
1

M(z)

dΨ(z)

dz

]
+ V eff (z)Ψ(z) = EΨ(z), (3.38)

Here, V eff (z) is termed the effective potential energy whose algebraic form de-



17

pends on the Hamiltonian employed

V eff (z) = V0(z) + Uαγ(z) = V0(z)− (
α + γ

2
)
M ′′

M2
+ (αγ + α + γ)

M ′2

M3
, (3.39)

in which the first and second derivatives of M(z) with respect to z are denoted by

M ′ and M ′′, respectively. The effective potential is the sum of the real potential

profile V0(z) and the modification Uαγ(z) emerged from the location dependence

of the effective mass. A different Hamiltonian leads to a different modification

term. Some of them are the ones of BDD [38] (α = γ = 0), Bastard [40] (α = −1),

Zhu-Kroemer (ZK) [41] (α = γ = −1
2
) and Li-Kuhn [42] (β = γ = −1

2
).

Considering the supersymmetric treatment of effective mass Hamiltonians

by Plastino and his co-workers [43]

AΨ =
1√
M

dΨ

dz
+ WΨ, A+Ψ = − d

dz

(
Ψ√
M

)
+ WΨ, (3.40)

where A and A+ are linear operators and W (z) is a superpotential, the super-

symmetric Hamiltonians are expressed as

H1 = A+A = − 1

M

d2

dz2
−

(
1

M

)′
d

dz
+ W 2 −

(
W√
M

)′
, (3.41)

and

H2 = AA+ = H1 +
2W ′
√

M
−

(
1√
M

)(
1√
M

)′′
. (3.42)

From which, supersymmetric partner potentials are

V SUSY
1 = W 2−

(
W√
M

)′
, V SUSY

2 = V SUSY
1 +

2W ′
√

M
−

(
1√
M

)(
1√
M

)′′
. (3.43)

At this stage, we use the spirit of our non-perturbative approach expressing the

total wave function as a product,

Ψ(z) = Φ(z)Θ(z). (3.44)

In the above equation, Φ denotes the wave function corresponding to the unper-

turbed piece of the effective potential in Eq. (3.39) while Θ is the moderating

function due to the modified term Uαγ therein.

The use of (3.44) in (3.38) yields

1

M

(
Φ′′

Φ
+

Θ′′

Θ
+ 2

Φ′

Φ

Θ′

Θ

)
− M ′

M2

(
Φ′

Φ
+

Θ′

Θ

)
= Veff − E, (3.45)

which reduces to the usual Schrödinger equation with a constant mass when

M → 1. With the consideration of (3.41), where the superpotential now can be

given as

W (z) = W0(z) + ∆W (z), (3.46)
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with W0 and ∆W being superpotentials corresponding to the unperturbed po-

tential (V0) and modification term (Uαγ) respectively, Eq. (3.45) is transformed

into a couple of equation,

W 2
0 −

(
W0√
M

)′
= V0 − E0, W0 = − 1√

M

Φ′

Φ
, (3.47)

∆W 2 −
(

∆W√
M

)′
+ 2W0∆W = Uαγ −∆E, ∆W = − 1√

M

Θ′

Θ
. (3.48)

In the above equations, E = E0 +∆E due to Veff = V0 +Uαγ. Therefore one can

easily see the contributions, if any, to the energy and wave function due to the

use of effective Hamiltonians other than BDD which represents the unperturbed

Hamiltonian in the present scenario since it has no modification term, see (3.39).

We are familiar with (3.47) as a standard supersymmetric treatment of the

Schrödinger equation for the exact solutions. However, Eq. (3.48) is new and

is the most significant piece of the work presented in this section. Because it is

a non-perturbative approach by Riccati equation, which reproduces the whole

corrections coming from Uαγ if, of course, Eq. (3.48) is exactly solvable.

To proceed we remind a general consensus [36] that the resolution of the

ordering ambiguity in this problem could come from a scheme that starts with

the relativistic Dirac equation with spatially varying mass then taking the non-

relativistic limit. This is due to the fact that the Dirac equation is inherently

free from the ordering ambiguity and that taking the non-relativistic limit is a

well defined procedure. Bearing in mind this point we propose a correct choice

of ∆W as

∆W =

(
α + γ

2

)
M ′

M3/2
, (3.49)

which directs us to find correct ordering parameter(s) leading to the physically

plausible effective Hamiltonian(s). Through Eq. (3.48), the parameters get de-

coupled in a natural way and the ambiguity in the choice of proper kinetic energy

operator disappears. Substituting (3.49) into (3.48), we obtain

∆W 2 −
(

∆W√
M

)′
= Uαγ, ∆E = −2W0∆W, (3.50)

if either α = γ = 0 which yields the BDD Hamiltonian or α = γ = −1
2

corre-

sponding to the ZK Hamiltonian. It is stressed that the results are independent

of any choice of M(z) and in case α = γ = 0 Eq. (3.48) vanishes. This restriction

is in agreement with the discussion in Ref. [44] and also with the work of Bagchi

et all [34].

Though the present formalism has a wide spread applicability, for clarity

we now simply consider the two examples which were investigated in Ref. [43].
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This consideration will shed a light in understanding the interrelation between

the BDD and ZK effective Hamiltonians bearing in mind the results presented

in [43] for the systems of interest.

The simplest case of the shape invariance integrability condition [11], lead-

ing to exactly solvable potentials, corresponds a uniform energy shift ε between

partner potentials,

V SUSY
2 (z, ε)− V SUSY

1 (z, ε) = ε = 2E0 (3.51)

since ∆E term appearing in the partners due to Uαγ cancels each other. The

replacement of (3.43) into (3.51) gives

2 (W ′
0 + ∆W ′)√

M
−

(
1√
M

)(
1√
M

)′′
= ε, (3.52)

from which one finds the superpotentials leading to the hamiltonian with V0,

W0(z) = −1

2

(
1√
M

)′
+

ε

2

∫ z √
M(y)dy, (3.53)

since ∆W = −(M ′/2M3/2) =
(
1/
√

M
)′

. To finalize the full treatment, one

needs the total superpotential, W = W0 + ∆W from which the results in [43],

Eq. (35) and the subsequent equations, can easily be reproduced.

From this short discussion, it is obvious that (i) there will be no contri-

bution to E0 due to the modification term. For this reason total energies in

both system having a constant mass and position dependent mass are equal. (ii)

From (3.48), the contribution of Uαγ to the unperturbed wave function is (for

the ground state)

Θn=0(z) = exp

(
−

∫ z √
M(y)∆W (y)dy

)
= m1/2. (3.54)

Thus, going back to (3.44) along with Eqs. (3.47) and (3.53), the full un-

normalized ground state wave function is expressed as

Ψn=0(z) =
[
m−1/4(z)Φ(z̄)

]
m1/2(z) = m1/4(z)Φ(z̄), (3.55)

where z̄ =
∫ z √

M(y)dy, which supports the reliability of the present formalism

[32]. The excited state wave functions can be determined [11] in algebraic fashion

by successive application of the linear operators in (3.40) upon the ground state

wave function. (iii) The both choice, namely the BDD and ZK Hamiltonians

are represented with a unique superpotential leading to exactly equivalent wave

functions for shape invariant potentials. (iv) From (3.43), as α = γ = −1
2

, one

gets

V SUSY
2 =

(
V SUSY

1 + Uαγ

)
+

2W ′
√

M
, (3.56)



20

pointing a duality between BDD and ZK schemes, which reveals the suggestions

in [32, 34].

Let us proceed with another example in Ref. [43] where the superpotential

leads to a Morse-like spectra,

W (z, A) = A + f(z), (3.57)

in which, within the frame of the present formalism, f(z) = f0(z) + ∆f(z) that

turns the form of (3.57) into

W (z, A) = [A + f0(z)] + ∆f(z) = W0 + ∆W (z) (3.58)

From the shape invariance condition V SUSY
2 (z, A) = V SUSY

1 (z, A−λ)+R(A) used

in the supersymmetric quantum theory [11], where A is the potential parameter

and R involving both parameter, A and λ , leads to the ground state energy of

the system. In the light of the work carried out in [43], the substitution of (3.58)

in (3.43) within the frame of shape invariance condition above produces

2 (f ′0 + ∆f ′)√
M

− 1√
M

(
1√
M

)′′
= λ

(
1√
M

)′
− 2λ (f0 + ∆f) . (3.59)

Remembering ∆W = ∆f =
(

1√
M

)′
for α = γ = −1

2
, the above equation is

rearranged as

f ′0(z) + b1(z)f0(z) = b2(z), (3.60)

where

b1 = λ
√

M, b2 = −
[
λ

2

√
M

(
1√
M

)′
+

1

2

(
1√
M

)′′]
. (3.61)

From (3.59) it is clear that ∆f term affects only b2, since when ∆f → 0 b2 →
−b2. The solution of differential equation in (3.60) gives

f0(z) =

{
C +

∫ z

b2(y)dy exp

[∫ x

b1(t)dt

]}
× exp

[
−

∫ z

b1(y)dy

]
, (3.62)

where C is an integration constant. Employing the mass function used in [43],

M = [(α + z2)/(1 + z2)]
2
, we obtain

W (z) = W0 + ∆W =

=

(
A + Cexp [−λ {z + (α− 1) arctan x}]− z(α− 1)

(α + z2)2

)
+ 2

z(α− 1)

(α + z2)2 , (3.63)

that is Eq. (53) in [43]. From (3.47), the corresponding potential function,

energy and wave function can be expressed as in [43], which are out of interest
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in this section. Generalization of the above discussion to a formalism which is

applicable to all spatially varying masses, yields

W (z) = W0 + ∆W =

{
A + Cexp

[
−

∫ z

b1(y)dy

]
−

(
1

2
√

M

)′}
+

(
1√
M

)′

(3.64)

Plastino and co-workers [43] studied this problem in case α = γ = 0 considering

only the BDD Hamiltonian and arrived at Eq. (53) in their work, which addresses

(3.63) in our work. This means that BDD and ZK effective Hamiltonians in fact

reproduce same results employing an identical superpotential, which once more

supports the realization introduced by (3.56) that they are their supersymmetric

partners.

In this section we have discussed the problem of solvability and ordering

ambiguity in quantum mechanics for the systems with a position dependent mass.

The present scheme restricts the possible choices of ordering. Proceeding with

this consideration it has been observed that the only physically allowable BDD

and ZK Hamiltonians for exactly solvable systems are in fact their supersymmet-

ric partners that reproduce identical results in their independent considerations

due to use of an identical superpotential. We hope that this observation would

make a contribution to the ongoing debate in the literature regarding the iso-

spectral effective mass Hamiltonians.

The work presented in this section was published in [45].

3.4 N−Dimensional Schrödinger Equations

with Position-Dependent Mass

Additionally to the successful applications illustrated in the previous sec-

tions, and our other published works in [17-19, 25, 26, 31, 45] dealing with

various fields of physics, we will in this section extend further our calculations.

In the previous section, we have investigated the relation between the solutions

of physically acceptable effective mass Hamiltonians proposed in the literature

for the treatment of one dimensional problems. Using our expertise taken from

these applications, we aim here to tackle the more difficult problem of generat-

ing exact solutions for position-dependent mass Schrödinger equations (PDMSE)

in N−dimension, as the most of the related works in the literature have been

devoted to one-dimensional systems [46-48].

The concept of PDMSE is known to play an important role in different

branches of physics. This formalism has been extensively used in nuclei, quan-

tum liquids, 3He and metal clusters. Another area wherein the such concepts
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provide very useful tool is the study of electronic properties of many condensed-

matter systems, such as semiconductors and quantum dots. In particular, recent

progress in crystal-growth techniques for producing non-uniform semiconductor

specimens, wherein the carrier effective mass depends on position, has consider-

ably enhanced the interest in the theoretical description of semiconductor het-

erostructures. It has also recently been signalled in the rapidly growing field of

PT-symmetric or more generally pseudo-Hermitian quantum mechanics. For an

excellent recent review, leading to the related references, the reader is referred

to [46-49].

Tracking down solvable potentials in PDMSE has always aroused interest.

Apart from being useful in understanding of many physical phenomena, the

importance of searching for them also stems from the fact that they very often

provide a good starting point for undertaking perturbative calculations of more

complex systems.

As is well known, the general form of radial PDMSE with Hermitian Hamil-

tonians in one-dimension gives rise to

− d

dz

[
1

M(z)

dΦ(z)

dz

]
+ V eff (z)Φ(z) = λΦ(z) , (3.65)

where the effective potential

V eff (z) = V0(z) + Uαγ(z) = V0(z)− (α + γ)

2

M ′′

M2
+ (αγ + α + γ)

M ′2

M3
, (3.66)

depends on the mass term and ambiguity parameters. Here a prime denotes

derivative with respect to the variable, M(z) is the dimensionless form of the mass

function m(z) = m0M(z) and we have set h̄ = 2m0 = 1. The effective potential is

the sum of the real potential profile V0(z) and the modification Uαγ(z) emerged

from the location dependence of the effective mass. A different Hamiltonian

leads to a different modification term. Some of them are the ones proposed by

BenDaniel-Duke [38] (α = γ = 0), Bastard [40] (α = −1), Zhu-Kroemer [41]

(α = γ = −1/2) and Li-Kuhn [42] (γ = −1/2, α = 0).

Considering the works in [45, 50], the radial piece of PDMSE in arbitrary

dimensions for spherically symmetric potentials and mass functions reads

{
d2

dr2
+

M ′

M

(
N − 1

2r
− d

dr

)
− L(L + N + 2) + (N − 1)(N − 3)/4

r2
+ M [E − Veff (r)]

}
Ψ(r) ,

(3.67)

where we assume that Ψ(r) = F (r)G(r) which leads to

1

M

(
F ′′

F
+

G′′

G
+ 2

F ′

F

G′

G

)
− M ′

M2

(
F ′

F
+

G′

G

)
= Ueff − E. (3.68)
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The effective potential in higher dimensions (N > 1) now is transformed to the

form

Ueff (r) = V0(r) + Uαγ(r)− M ′

M2

(N − 1)

2r
+

L(L + N − 2) + (N − 1)(N − 3)/4

Mr2
,

(3.69)

in which L is the angular momentum. As the one-dimensional calculations re-

quire N = 1 and L = 0, Eq.(3.69) reduces in this case to Ueff (r) = Veff (r) =

V0 + Uαγ as in Ref. [45] discussed also in the previous section, which provides us

a reliable testing ground.

Keeping in mind the spirit of the technique used simply in the previous

section, we split Eq. (3.68) in two parts deviating from the treatments in [46-49]

W 2(r)−
[
W (r)√

M

]′
= V0(r)− ε, W = − F ′

√
MF

, (3.70)

where ε is the corresponding energy of the required quantum state Fn (n =

0, 1, 2, ...) for V0 which is assumed in this model as an exactly solvable mass-

dependent potential, and

∆W 2(r)−
[
∆W (r)√

M

]′
+ 2W (r)∆W (r) = ∆V (r)−∆E, ∆W (r) = − G′

√
MG

,

(3.71)

where

∆V (r) = Uαγ(r)− M ′

M2

(N − 1)

2r
+

L(L + N − 2) + (N − 1)(N − 3)/4

Mr2
(3.72)

Note that the total energy appearing in (3.68) is E = ε + ∆E and, in one-

dimension the modification term ∆V becomes Uαγ as in Ref. [45]. This clarifies

that the corrections due to the higher dimensions arise because of the second

and third term on RHS of Eq. (3.72).

From the present theoretical consideration, Eq. (3.70) has an algebraic

solution leading to closed analytical expressions for the wave functions and energy

eigenvalues, hence one needs to solve Eq. (3.71) exactly. To proceed further, with

the consideration of relativistic Dirac equations having no ambiguity parameters,

we confidently choose

∆W (r) =
(α + γ)

2

M ′

M3/2
− (N + 2L− 1)

2
√

Mr
, (3.73)

in which the second term disappears for N = 1 as in [45]. Within the frame of

Eq. (3.71), this choice leads us

W (r)∆W (r) =
M ′

2rM2

[
(α + γ)(N − 1)

2
+ (α + γ + 1)L

]
− ∆E

2
, (3.74)

that is the backbone of the present section.
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From the definition of the effective potential in Eq. (3.66), we also note that

the use of Eqs. (3.71) and (3.72) naturally restricts the choice of some ambiguity

parameters yielding different physically acceptable effective mass Hamiltonians,

allowing only α = γ = 0 (Ben-Daniel Duke Hamiltonian) and α = γ = −1/2

(Zhu-Kroemer Hamiltonian) cases. This observation clarifies that the unper-

turbed part (V0) of the effective potential in (3.70) should correspond to the case

α = γ = 0, having well known solutions in one dimension, while α = γ = −1/2

is used to calculate Uαγ in (3.72). Obviously, all the corrections coming from the

higher dimensions to the energy and well-behaved wave function terms can be

systematically calculated for a given M with the consideration of Eqs. (3.71-3.74)

in the light of corresponding W in (3.70).

Recently, some researches have been devoted to the analysis of the classi-

fication of quantum systems with position-dependent mass regarding their exact

solvability. On a similar basis, Plastino and his co-workers [43] applied an ap-

proach within the supersymmetric quantum mechanical framework, for the case

α = γ = 0, to such systems and succeeded to show that some one-dimensional

systems with non-constant mass have a supersymmetric partner with the same

effective mass. They were also able to solve exactly some particular cases by con-

structing the superpotential [W (r)] from the form of the effective mass [M(r)]

and generalize the concept of the shape invariance for these systems.

For illustration, the superpotential expressions given by [43] for the systems

having harmonic oscillator and Morse-like spectra can be easily used in Eq. (3.70)

to serve explicit expressions for the corrections to the one-dimensional solutions

obtained by considering the Ben-Daniel-Duke effective Hamiltonian in their [43]

calculations. This simple investigation enables us testing our results, because all

the corrections should disappear in case N = 1 and α = γ = 0 leading to the

expressions in [43]. For clarity, this section involves only the application on the

harmonic oscillator system. However, the generalization of the present model

yielding self-consistent calculations, reproducing W (r) term within the model

for any system of interest, will be discussed later.

According to Ref. [43], W (r) term in Eqs. (3.70) and (3.74) is

W (r) =
ω

2

∫ r √
M(z)dz +

1

2

(
1√
M

)′
, ω = 2εn=0 , (3.75)

for the system having harmonic oscillator spectra. Hence, use of Eqs. (3.71)

through (3.74) gives

∆E = M ′
rM2

[
(α+γ)(N−1)

2
+ L(α + γ + 1)

]
+ (N+2L−1)ω

2r
√

M

∫ r √
M(z)dz

+( 1√
M

)′
{

(α + γ)

[
ω

∫ r √
M(z)dz +

(
1√
M

)′]
+ (N+2L−1)

2r
√

M

}
,

(3.76)
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which is the explicit form of the energy corrections for a given smooth mass.

Clearly, it can be seen that for a constant mass M → 1, Eq. (3.76) reduces to

(N + 2L− 1)ω/2 for arbitrary dimensions [50] while in one dimension it goes to

zero for a non-constant mass in case α = γ = 0 [43]. Furthermore, from Eqs.

(3.71) and (3.73), the modification term for the corresponding wave function is

G(r) = exp

(
−

∫ r √
M(z)∆W (z)dz

)
= r(N+2L−1)/2M−(α+γ)/2. (3.77)

As Eq. (3.70) is analytically solvable having a closed expression for W (r) given

by Eq. (3.75) reproducing explicit expressions for ε and F , the corresponding

total energy and wave function can easily be calculated through E = ε + ∆E

and Ψ = FG for the system of interest with a location dependent mass. At this

stage it is also noted that the formalism suggested here seems superior to the

usual treatment in supersymmetric quantum theory that in principle start with

the ground state and builds up excited state wave functions by the use of some

linear operators (A±) whereas there is no such restriction in the present theory

providing flexible investigations.

Although the procedure used in the formalism seems reasonable, the use

of other works as in the previous section for an appropriate W (r) term to solve

Eq. (3.70) may be seen as a drawback of the model. To remove this seeming

deficiency, we propose here a unified treatment within the model considering the

recent work in [51].

Many of the special functions H(g) of mathematics represent solutions to

differential equations of the form

d2H(g)

dg2
+ Q(g)

dH(g)

dg
+ R(g)H(g) = 0 , (3.78)

where the functions Q(g) and R(g) are well defined for any particular function

[52]. Since in this section we are interested in bound state wave functions, we

should restrict ourselves to polynomial solutions of Eq. (3.78). Bearing in mind

Eq. (3.78), the substitution of Φ(z) = H[g(z)]f(z) in Eq. (3.65) leads to the

second-order differential equation

1

M

(
f ′′

f
+

H ′′g′2

H
+

g′′H ′

H
+ 2

H ′g′f ′

Hf

)
− M ′

M2

(
f ′

f
+

H ′g′

H

)
= Veff − λ , (3.79)

in which primes denote derivatives with respect to g and z for the functions H(g),

g(z) and f(z) respectively. With the confidence gained by the similarity between

Eqs. (3.79) and (3.68), one can safely use the present treatment splitting Eq.

(3.79) in two pieces

W 2(z)−
[
W (z)√

M

]′
= V0(z)− ε, W = − f ′√

Mf
, (3.80)
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and

∆W 2(z)−
[
∆W (z)√

M

]′
+ 2W (z)∆W (z) = ∆V (z)−∆E, ∆W = − H ′g′√

MH
,

(3.81)

which is similar to Eqs. (3.70) and (3.71), where λ = ε+∆E and Veff = V0+∆V .

After all, it can be clearly seen that Eq. (3.80) is the one required for

obtaining an explicit expression for W term used in Eq. (3.70) corresponding to

an exactly solvable system considered in one-dimension (α = γ = 0). However,

to proceed further, the functions f and g should be solved as H, Q and R are

known in principle. Now, equating like terms between the resulting expression

in (3.78) and (3.79) gives

Q[g(z)] =
1

g′

(
g′′

g′
+

2f ′

f
− M ′

M

)
, R[g(z)] =

1

g′2

[
f ′′

f
− M ′

M

f ′

f
+ M(E − V )

]
,

(3.82)

where, from the definition of Q,

f(z) ≈ (
M

g′
)1/2 exp

[
1

2

∫ g(z)

Q(g)dg

]
. (3.83)

Consideration of Eqs. (3.79) through (3.82) suggests a novel prescription

∆V (z)−∆E = −g′2

M
R[g(z)] , (3.84)

which, for plausible M and R functions, provides a reliable expression for g(z).

It is remarked that in the constant mass case M → 1 this procedure reduces to

the well known formalism which has been thoroughly investigated [53-55] that,

together with [51], justify our new proposal in solving PDMSE. The more detailed

investigation of this treatment will be discussed elsewhere.

In this section, a general method has been presented to address the question

of corrections to the solution in one-dimension for a large class of N− dimensional

and exactly solvable PDMSE. We have also described how to extend the method

to the case where the necessary function W (r) in (3.70) generating algebraically

solvable potentials in one dimension are present, which initiates calculations in

the model leading to explicit expressions for the modifications due to both the

use of physically plausible Zhu-Kroemer effective Hamiltonian (α = γ = −1/2)

and higher dimensional treatments. The main results are consistent with the

other related works in the literature, which allow a non-perturbative treatment

of these issues.

Although, for clarity we have illustrated an application of the method for

an easily accessible case of interest, it can be readily employed in various typical

situations. In view of the importance in calculating such corrections in physics,
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we believe that the present model would serve as a useful toolbox to treat even

more realistic situations which now occur in experimental observations with the

advent of the quantum technology.

The work discussed here appeared in [56].
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CHAPTER 4

APPLICATIONS TO RELATIVISTIC

PROBLEMS

After successful applications [17-19, 25, 26, 31, 45] of the recently intro-

duced new model to some non-relativistic problems in various fields of physics

which are discussed in detail in the previous Chapter, we consider here the appli-

cation of the model to some other interesting problems in the relativistic region

as well. These applications will involve the well known Klein- Gordon (K-G) and

Dirac equations.

These two relativistic equations have a lot of attraction in the last few

years [57-62]. In addition to these works, we approach to the same problem in

a different perspective to improve the framework of the model used through the

thesis study. These alternative treatment will provide safely the separation of

the relativistic and non-relativistic contributions in an explicit algebraic form,

which has not been discussed earlier in the literature as in the present considera-

tion. Thus, the ground-state and excited-state wave functions can be generated

systematically in a unique frame in terms of orthogonal polynomials. This is a

considerable refinement of the previously used model.

4.1 Practicing with K-G Equation

4.1.1 A Search on Klein-Gordon Equation

Due to the significance of exactly solvable relativistic equations for the

systems under the influence of strong potentials in the vast area of physics,

a considerable increasing interest in the study of the Klein-Gordon and Dirac

equations has appeared in the literature. However, to our knowledge the relation

between the strengths of the vector and scaler potentials and the relativistic

corrections coming to the non-relativistic solutions has not been fully explored,

although the literature involves many valuable applications on this matter.
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Within this context, and using the spirit of the works in [17-19, 25, 26, 31,

45], the work presented in this Chapter deals with the K-G equation which is

carefully decomposed here in two pieces to see unambiguously the behavior of

the spinless particle in the non-relativistic domain and the modifications brought

by the relativistic effects. Before proceeding, one needs to visualize the possible

non-relativistic limit of this equation through a crude approximation, which will

provide a better understanding in building the formalism presented here.

We remind that in the presence of vector and scalar potentials the (1+1)-

dimensional time-independent K-G equation for a spinless particle of rest mass

m reads

−(h̄c)2Ψ′′
n + (mc2 + VS)2Ψn = (En − VV )2Ψn , n = 0, 1, 2, ... (4.1)

where E is the relativistic energy of the particle, c is the velocity of the light

and h̄ is the Planck constant. The vector and scalar potentials are given by

VV (r) and VS(r) , respectively. In the non-relativistic approximation (potential

energies small compared to mc2 and E ∼= mc2 ), Eq. (4.1) becomes

− h̄2

2m
Ψ′′

n + (VS + VV )Ψn ≈ (En −mc2)Ψn . (4.2)

Eq. (4.2) shows that Ψ obeys the Schrödinger equation with binding energy

equal to E − mc2 , and without distinguishing the contributions of vector and

scalar potentials.

Now, bearing in mind this form of the K-G equation in the non-relativistic

domain and our earlier treatments in the previous sections, we suggest that the

full relativistic wave function in (4.1) may be expressed as Ψ = χφ where χ

denotes the behavior of the wave function in the non-relativistic region and φ

is the modification function due to the relativistic effects. This consideration

transforms Eq. (4.1) into a couple of equation

χ′′n
χn

= 2(mVS + EnVV )− εn , (4.3)

φ′′n
φn

+ 2
χ′

χ

φ′n
φn

= (V 2
S − V 2

V )−∆εn , (4.4)

where again the natural units h̄ = c = 1 is employed as in the previous sections.

This would provide for a clear comparison with the other works in the litera-

ture. In the above equations, ε and ∆ε represent the binding energy within the

non-relativistic limit and the modification term because of the relativistic con-

sideration (if any), respectively. Note that E2−m2 = ε+∆ε and the relativistic

corrections are involved within the frame of Eq. (4.4) in a non-perturbative way.

This simple but more flexible presentation of the K-G formalism is compatible
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with the crude approximation, Eq. (4.2) used for revealing the appearance of K-

G equation in the non-relativistic limit, and also confirms the nice discussion in

Ref. [58] about the possible misinterpretation in the related literature regarding

the relativistic extensions of the given potentials which behave in a similar man-

ner at the non-relativistic domain. Additionally, it is noticeable that relativistic

contributions in case VS = ±VV disappear whereas they can be calculated ex-

plicitly through (4.4), which will be discussed below by the examples. Eq. (4.3),

yields the free particle solution if VS = −VV because E ≈ m in the limit where

this equation is valid while (4.3) reproduces Schrödinger like non-relativistic so-

lutions for the case VS = VV , which overall justify the reliability of the formalism

when the ongoing discussions considered in the literature, e.g. [58, 60].

For practical calculations, Eqs. (4.3) and (4.4) are expressed by the Riccati

equation,

W 2
n −

W ′
n√

2m
= 2(mVS + EnVV )− εn, Wn = − 1√

2m

χ′n
χn

, (4.5)

∆W 2
n −

∆W ′
n√

2m
+ 2Wn∆Wn = (V 2

S − V 2
V )−∆εn, ∆Wn = − 1√

2m

φ′n
φn

. (4.6)

It is worth to note that if the whole potential (2mVS + 2mVV + V 2
S − V 2

V ) is

an exactly solvable then the above equations reduce to a simple form within

the framework of the usual supersymmetric quantum theory [11] where a unified

treatment like Eq.(4.5) is employed with W SUSY
n = Wn + ∆Wn. However, if

Eq. (4.6) has no analytical solution one cannot use W SUSY
n concept in dealing

with such problems. To overcome this drawback of the formalism, the elegant

reliable technique leading to approximate solutions of (4.6) has been introduced

in Chapter 2 and its applications discussed in Chapter 3 and their published forms

appeared in Ref. [17-19, 25, 26, 31, 45] for any state of interest. Therefore, the

standard treatment of the supersymmetric quantum mechanics may be seen as

a particular case of the present scheme.

As an illustrative example, we start with the well known Hulthén potential

which is frequently used in the literature to justify theoretical models introduced.

Considering the related works [47, 62], the scaler and vector potentials are chosen

as

VS(r) = − S0

eαr − 1
, VV (r) = − V0

eαr − 1
, (4.7)

which, in the light of Eq. (4.5), restricts us to define

Wn=0 = −α/
√

2m

eαr − 1
+ A , (4.8)

leading to A =

√
m/2

α

(
U0 − α2

2m

)
where U0 = 2(mS0 +En=0V0). The correspond-
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ing non-relativistic energy and unnormalized wave function in the ground state

εn=0 = −A2 = −(2mU0 − α2)2

8mα2
, χn=0 = e−

√
2m
R

Wn=0dz = (1− e−αr)e−
√

2mAr ,

(4.9)

which are in agreement with the work [63] performed in the non-relativistic frame.

From Eq.(4.4), bound states requirements such that VS > VV and E2 − m2 =

ε+∆ε < 0 subsequently m > E are satisfied. In this case, with the consideration

of (4.6), we set ∆W

∆W = −δ(α/
√

2m)

eαr − 1
+ B , (4.10)

from where B = −
√

m/2δU0/α(δ + 1). It is stressed that for δ → 0, the rela-

tivistic effects due to strong interactions die away because ∆W → 0, together

with ∆V → 0 and ∆ε → 0. From equations (4.6) and (4.10), in case δ > 0, the

relativistic contributions to the non-relativistic solutions are

∆εn=0 = −B(B + 2A) =
δU0

2α2(δ + 1)2

[
mU0(δ + 2)− α2(δ + 1)

]
,

φn=0 = e−
√

2m
R

∆Wn=0dz = (1− e−αr)δe−
√

2mBr . (4.11)

Thus, the full solutions corresponding the total potential −U0/(1− eαr)+ (V 2
S0
−

V 2
V0

)/(1− eαr)2 are

E2
n=0 −m2 = εn=0 + ∆εn=0 = − 1

8mα2

[
2mU0

δ + 1
− α2

]2

,

Ψn=0 = χn=0φn=0 = (1− e−αr)δ+1e−[ mU0
α(δ+1)

+α
2 ]r . (4.12)

The results agree with [62]. The justification of the scenario used in terms of the

findings above can also be easily observed if one starts directly from the K-G

equation and use the introduced form of W SUSY
n=0 in a Riccati equation similar to

(4.5) but for the whole potential. However, such a treatment is not so practical

due to the screening of the relativistic contributions in the calculated results.

Though we have considered only the ground state solutions here, the ex-

tension of the prescription used to the excited states does not cause any problem

if the potential in (4.5) has an algebraic solution. For the clarification of this

point, the reader is referred to [31]. It is importantly stressed that neither the

Hulthén potential [63] nor the effective Hulthén like potential appeared here are

shape invariant [11], unlike the wrong consideration in the recent analysis of the

same problem [47]. Therefore, an algebraic expression for the whole spectrum of

the total potential is not available.
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Furthermore, as the use of (4.10) in (4.6) reproduces δ(δ+1) α2

2m
= S2

0−V 2
0 ,

one can safely express the parameter δ, related to the relativistic contributions

through strong interactions in case the scaler potential is larger than the vector

potential, in the explicit form

δ = −1

2
+

√
2m

α2
(S2

0 − V 2
0 ) +

1

4
, (4.13)

which supports the earlier work in [62] and physically interesting discussion

therein regarding the relation between the reasonable solutions and the strengths

of vector/tensor potentials through the parameter δ.

As the second illustration, we focus on the recently investigated [59] mixed

perturbed Coulomb like scalar and vector potentials,

VS(r) =
S0

r
+ S1r + S2r

2, VV (r) =
V0

r
+ V1r + V2r

2. (4.14)

Although this problem has been well discussed in the literature with the con-

sideration of exact solvability depending on the potential parameters, there is

an alternative case stayed behind the study in [59], which is one of the subject

of this section. Secondly, and more significantly, the theoretical consideration

here proposes a scheme for a systematic treatment of the relativistic effects if

the corresponding equation, Eq. (4.4) or Eq. (4.6), is not analytically solvable,

whereas the work in [59] lacks of such flexibility.

By the use of Eq. (4.5) and considering the whole discussion in this section,

one finds the corresponding solution in a closed algebraic form for the potential,

2 [(mS0 + EnV0)/r + (mS1 + EnV1)r + (mS2 + EnV2)r
2], in the non-relativistic

region where VS = ±VV , with the choice

Wn=0 =

√
m

2
a− 1√

2mr
+
√

cr, (4.15)

in which a = −2(mS0 + EnV0) and c = 2(mS2 + EnV2). This choice, with the

natural restriction on the potential parameters such that

mS1 + EnV1 = −(mS0 + EnV0)
√

4m(mS2 + EnV2), (4.16)

reveals the binding energy at the non-relativistic limit as

εn = −(b2/4c)+
√

c(2n+3)/
√

2m = −2m(mS0+EnV0)
2+(2n+3)

√
(S2 + EnV2/m)

(4.17)

where b = 2(mS1 + EnV1). The wave function in this domain can readily be cal-

culated in the light of (4.5). A detailed study of a similar problem in arbitrary

dimensions can be found in [17]. The reader is also referred to the related refer-

ences therein for the complicated relationship between the potential parameters

and the radial quantum number (n = 0, 1, 2...).
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In spite of the shape invariance character of the potential in the non-

relativistic limit discussed above, having a closed algebraic form for the whole

spectrum, the inclusion of the relativistic effects (V 2
S − V 2

V > 0) turns the total

potential into the quasi-exactly solvable case [50], which is indeed interesting

from the physical point of view. In the contrary, it is reminded that for instance

the usual exponential potential has no analytical solution at the non-relativistic

domain but the relativistic contribution transforms it an exactly solvable Morse

like potential. At this point however, we suggest an alternative scenario for the

approximate calculation of relativistic contributions for any quantum state, as

long as Eq. (4.5) is analytically solvable as in the present case. Namely, if one

expands Eq. (4.6), up to e.g. third order then obtains, as discussed in Section

3.2

2Wn∆Wn1 − ∆W ′
n1√

2m
= ∆V1 −∆εn1, (4.18)

∆W 2
n1 + 2Wn∆Wn2 − ∆W ′

n2√
2m

= ∆V2 −∆εn2, (4.19)

2(Wn∆Wn3 + ∆Wn1∆Wn2)− ∆W ′
n3√

2m
= ∆V3 −∆εn3, (4.20)

keeping in mind that

∆V (r; λ) =
∞∑

k=1

λk∆Vk(r), ∆Wn(r; λ) =
∞∑

k=1

λk∆Wnk(r), ∆εn(λ) =
∞∑

k=1

λk∆εnk

(4.21)

where λ and k denote the perturbation parameter and perturbation order, re-

spectively. It should be remarked that as the system is algebraically solvable in

the non-relativistic domain, which means that the corresponding wave functions

for the all states are known explicitly, one can easily define Wn = −χ′n/
√

2mχn

to be used through Eqs. (4.18-4.20).

To proceed further, considering the perturbation potential shifted by 2(S0S1−
V0V1) because of the relativistic effects,

∆V = V 2
S−V 2

V =
(S2

0 − V 2
0 )

r2
+2(S0S2−V0V2)r+(S2

1−V 2
1 )r2+2(S1S2−V1V2)r

3+(S2
2−V 2

2 )r4,

(4.22)

one needs to chose proper ∆Wnk values to satisfy equations at successive pertur-

bation orders such as (4.18-4.20) which lead to the approximate energy ∆εn =∑
k ∆εnk and wave function φn = e−

√
2m
R P

k ∆Wnkdz values to obtain the modified

relativistic extension, E2
n −m2 = εn + ∆εn and Ψn = χnφn, of the results in the

non-relativistic domain. Though, this formalism does not seem so practical, in

particular for the system under consideration due to the quite complicated rela-

tionship between the potential parameters in higher quantum states, it could be

easy for the other physical systems, see the work [31], and may work efficiently.
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The work presented in this section was published in [64].

4.1.2 Bound State Solutions of Klein-Gordon Equation

with the Kratzer Potential

The solution of Kratzer potential within the frame of non-relativistic physics

is well known in the literature, see for instance [50]. By means of the increas-

ing interest to the exact solutions for the relativistic equations, the solution of

Kratzer potential is recently investigated [61] in the light of K-G equation, but

only for the consideration of equal scalar and vector potentials leading to approxi-

mate energy solutions. In this section, which is based on the discussion presented

in the previous section, we consider the general case where the scalar potential is

unequal to the vector potential, bearing in mind the existence of bound states.

The results obtained are compared to those in [61] to clarify the importance of

the present formalism revealing that the consideration of mixed equal potentials

such as [61] does not in usual reproduce the relativistic effects. In fact, such

calculations give solely an idea about the appearance of K-G equations in the

non-relativistic border.

Now, let us focus on the scalar and vector potentials in the form

VS =
A1

r2
− B1

r
, VV =

A2

r2
− B2

r
, (4.23)

which, in the light of Eq. (4.5), restricts us to define

Wn=0 = −c + 1

r
+

k

2(c + 1)
, c > 0, k > 0 (4.24)

where k = 2mB1 + 2EB2 and

c =
(A1B1 − A2B2)√

A2
1 − A2

2

(4.25)

or

c(c + 1) = 2mA1 + 2EA2

c = −1

2
+

√
1

4
+ 2(mA1 + EA2). (4.26)

Although we have two definitions of c, (4.25) and (4.26), we will use only the

physically acceptable one which is (4.26). Because (4.25), which has no physical

meaning, doesn’t reproduce physically acceptable c-values when compared to the

works of Castro [60] in case A1 = A2 = 0. Thus, the corresponding full non-

relativistic energy spectrum and unnormalized wave function in the ground state

are in the form of

εn = − k2

4(n + c + 1)2
, χn=0 = rc+1e−

kr
2(c+1) , (4.27)
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that is in agreement with those in [50] that was performed in the non-relativistic

frame.

With the consideration of (4.6), we set ∆W as

∆W = − a

r2
, a > 0 (4.28)

where a =
√

A2
1 − A2

2. The procedure until here shows us that A1 > A2, |B1| <
|B2|, and thus the requirement for bound states such that VS > VV and E2−m2 =

ε+∆ε < 0, subsequently m > E are satisfied. For the case VV = ±VS , a vanishes,

consequently ∆W → 0, together with ∆V → 0. From equation (4.6) and (4.26),

in case a > 0, the relativistic contributions to the non-relativistic solutions are

∆εn = 0, φn=0 = e−
√

2m
R

∆Wn=0dz = e−
a
r . (4.29)

Hence, the full solutions corresponding the total potential 2mVS +2EnVV +V 2
S −

V 2
V are

E2
n−m2 = εn+∆εn = − k2

4(n + c + 1)2
= − 4(mB1 + EnB2)

2

[
2n + 1 +

√
1 + 8(mA1 + EnA2)

]2 < 0,

(4.30)

ψn=0 = χn=0φn=0 = rc+1 exp

(
−a

r
− kr

2(c + 1)

)
. (4.31)

Though the energy correction is zero in this specifically chosen example, however

this is not the case in general for other problems [64]. It is stressed at this point

that one can directly solve infact the K-G equation, without use of a separation

procedure as in the present scheme, employing the total form of W SUSY
n=0 above in

a Riccati equation similar to (4.5) in connection with the whole potential. How-

ever, such a treatment is not so practical due to the screening of the relativistic

contributions in the calculation results.

To test the reliability of (4.30) let A1 = A2 = 0, then

En = m
− B1B2

(n+1)2
±

√
1− B2

1−B2
2

(n+1)2

1 +
B2

2

(n+1)2

, (4.32)

that overlaps with result in [60].

Since we know the solution of the problem, we will start to analyze some

special cases.

(1) In the case of a pure scalar potential, VV = 0, where we have A2 =

B2 = 0 and V = VS = A1

r2 − B1

r
> 0,

En = ±m

√
1− 4B2

1[
2n + 1 +

√
1 + 8mA1

]2 , (4.33)
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so that the bound state energy levels for particles and antiparticles are symmetric

about En=0. If A1 = 0 then Eq. (4.33) reduces to the solution in [60].

(2) In the pure vector potential case, VS = 0, we have only a potential

term V = VV = A2

r2 − B2

r
; A1 = B1 = 0. Then we have bound state energy

E2
n −m2 = − 4E2

nB2
2[

2n + 1 +
√

1 + 8EnA2

]2 , (4.34)

the expression of En is so complicated in order to to observe its physical meaning.

Because of this we use power series to have an approximate energy solution

En = m

[
1− B2

2

2(n + 1 + 2mA2)2

]
. (4.35)

In this circumstances, the energy spectrum consists of energy levels either for

particle VV > 0 or for antiparticles VV < 0. To compare with the study in Ref.

[60] we choose A2 = 0, then (4.30) will have same bound state energy

En = ± m√
1 +

B2
2

(n+1)2

. (4.36)

(3) For VV = ±VS, it is note that relativistic contributions disappear in

this case. So we are dealing only with the non-relativistic limit solutions. There

are two conditions which first one is (i) VV = VS, it requires the equality of

parameters of both potentials, A2 = A1 and B2 = B1 , c(c+1) = 2mA1+2EA2 =

2(m + E)A1 with k = 2(m + E)B1. In the light of this point and together with

Eq. (4.30) one obtains

E2
n −m2 = − 4(m + En)2B2

1[
2n + 1 +

√
1 + 8(m + En)A1

]2 , (4.37)

to avoid from a complicated expression for En , we set
√

m− En = α and then

expand (4.37) as a power series of α. Leaving out the α2 and higher terms because

of their negligible small values as compared to α, we find α = 2
√

2mB1

[2n+1+
√

1+16mA1]
,

and then from m− En = α2

En = m− 8mB2
1[

2n + 1 +
√

1 + 16mA1

]2 . (4.38)

This result agrees with the circumstance in Ref. [61]. The second test is done

by Castro [60]; when we assume A1 = 0 in (4.37) we get

En = m

[
(n + 1)2 −B2

1

(n + 1)2 + B2
1

]
, (4.39)

that is same with the case in [60]. Energy levels obtained in (4.38) and (4.39)

correspond to bound states of particles. In this case there are no energy levels
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for antiparticles. The second condition for the third case is (ii) VV = −VS where

A2 = −A1 and B2 = −B1 then the energy spectrum

E2
n −m2 = − 4(m− En)2B2

1[
2n + 1 +

√
1 + 8(m− En)A1

]2 , (4.40)

as in the previous case we are using power series expansion about the
√

m− En =

α one obtains

En = −m

(
2(n + 1)2

B2
1

− 1

)
, (4.41)

which for A1 = 0 Eq. (4.40) reduces to Castro’s [60] related situation

En = −m

[
(n + 1)2 −B2

1

(n + 1)2 + B2
1

]
(4.42)

in contrast to previous case , now energy levels in (4.41) and (4.42) correspond

to antiparticles and so there is no any energy spectrum for the particles.

The present systematic study obviously recovers a number of earlier results

for many different potentials in a natural unified way and also leads to new

findings. The idea put forward in this section would be used to explore a great

number of relativistic systems and can be also extended to the case of the Dirac

equation that is discussed in detail in the following section.

The work discussed here appeared in [65]

4.2 Practicing with Dirac Equation

In the previous section we have attempted to understand the nature of K-G

equation within the formalism used through the thesis work. Now, we will apply

the same model to the Dirac equation involving spin 1/2 cases, and attempt to

improve it in order to remove deficiencies in the model

4.2.1 Non-relativistic Limit

Dirac equation for scalar and vector potentials is given by [66] (h̄ = c = 1)

HΨ = {α.p + β(m + VS) + VV }Ψ (4.43)

where p is the momentum operator, E and m are the energy and rest mass of

the particle, VS and VV are scalar and vector potentials respectively.

To separate angular part of Eqn. (4.43) from the radial part one follows

Ψ`
jm =

[
iG`j

r
ϕ`

jm
F`j

r
σ.r
r

ϕ`
jm

]
(4.44)
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where σ represents the Pauli spin matrices [67] and

G`j =

{
G+

j j = ` + 1/2

G−
j j = `− 1/2

}
F`j =

{
F+

j j = ` + 1/2

F−
j j = `− 1/2

}

ϕ`
jm =

{
ϕ+

jm j = ` + 1/2

ϕ−jm j = `− 1/2

}
.

Then using the relations

σ.p
f(r)

r
ϕ`

jm = − i

r
(
df

dr
+

kf

r
)
σ.r

r2
ϕ`

jm (4.45)

and

σ.p
σ.r

r2

f(r)

r
ϕ`

jm = − i

r
(
df

dr
− kf

r
)ϕ`

jm (4.46)

where

k =

{
−(` + 1) = −(j + 1/2) j = ` + 1/2

+` = +(j + 1/2) j = `− 1/2

}
,

the radial equations are

−dF (r)

dr
+

k

r
F (r) = (E −m− VS − VV )G(r) (4.47)

dG(r)

dr
+

k

r
G(r) = (E + m + VS − VV )F (r). (4.48)

From (4.47) and (4.48), omitting the derivatives of VS and VV , we obtain
{
− d2

dr2
+

k(k + 1)

r2
+ (V 2

S − V 2
V ) + (2mVS + 2EVV )

}
G = (E2 −m2)G. (4.49)

Eqn. (4.49) is similar to (4.1) with an additional barrier like term which shows

the spin effect of the Dirac equation. When k = −1, which means ` = 0, this

spin effect term disappears, then Eqn. (4.49) reduces to K-G equation.

The full relativistic spin-up wave function G may be expressed as G = χφ,

considering our previous treatments, where χ denotes the behavior of the wave

function in the non-relativistic region and φ is the modification function due

to relativistic effect. This substitution transform Eq. (4.49) into a couple of

equation expressed by the Riccati equation.

W 2
n −

W ′
n√

2m
= 2(mVS + EnVV ) +

k(k + 1)

r2
− εn, Wn = − 1√

2m

χ′n
χn

, (4.50)

∆W 2
n −

∆W ′
n√

2m
+ 2Wn∆Wn = (V 2

S − V 2
V )−∆εn, ∆Wn = − 1√

2m

φ′n
φn

. (4.51)

With the consideration of the scalar and vector potentials in the form

VS =
A1

r2
− B1

r
, VV =

A2

r2
− B2

r
, (4.52)

for which one needs to define

Wn=0 = −c + 1

r
+

b

2(c + 1)
, c > 0, b > 0, (4.53)
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and following the similar procedure in section (4.1.2) we find

εn = − b2

4(n + c + 1)2
, χn=0 = rc+1e−

br
2(c+1) , (4.54)

where b = 2mB1 + 2EB2 and c = −1
2

+
√

1
4

+ 2(mA1 + EA2) + k(k + 1) and

assuming

∆W = − a

r2
, a > 0 (4.55)

thus the relativistic contributions to the non-relativistic solutions are

∆εn = 0, φn=0 = e−
√

2m
R

∆Wn=0dz = e−
a
r , (4.56)

where a =
√

A2
1 − A2

2. So, the full solutions corresponding the total potential

(2mVS + 2EnVV + V 2
S − V 2

V + k(k+1)
r2 ) are

E2
n−m2 = εn+∆εn = − b2

4(n + c + 1)2
= − 4(mB1 + EnB2)

2

[
2n + 1 +

√
1 + 8(mA1 + EnA2) + 4k(k + 1)

]2 < 0,

(4.57)

G`j(r) = χn=0φn=0 = rc+1 exp

(
−a

r
− br

2(c + 1)

)
. (4.58)

There is no energy correction, unlike the case in Section 4.1.2, nevertheless we

have now a modification term for the wave function. However, we can not say

this is the general case for other problems.

For a comparison, if

VS = VV =
1

2
(
Â

r2
− B̂

r
) (4.59)

which causes to disappearance of relativistic effects, hence the non-relativistic

energy expression will approximately be

En = m− 2mB̂2

[
2n + 1 +

√
(2k − 1)2 + 8mÂ

]2 (4.60)

which overlaps with those in [61].

Although we have analyzed the results only for one of the spinors of the

particle, such investigation can easily be repeated for the other spinor that is

denoted by F (r), following the same procedure.

Finally, we note that in case k = −1, all the results obtained here are

transformed to those given by the K-G equation for ` = 0 case represented in

section (4.1.2). This justifies the reliability of the present results.
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4.2.2 A Search on Dirac Equation via Orthogonal Poly-

nomials

Exact solutions of systems in physics has a great importance. To provide

such solutions the method carried out in the earlier sections needs to use the

linear operators which has a great algebraic difficulty. To overcome this drawback

in the formalism, we propose here to use orthogonal polynomials.

For a particle in a field, Dirac equation is transformed to Eq. (4.49), that

is given as
{
− d2

dr2
+

k(k + 1)

r2
+ (V 2

S − V 2
V ) + (2mVS + 2εVV )

}
G = (ε2 −m2)G , (4.61)

where ε and m are the energy and rest mass of the particle, VS and VV are the

scalar and vector potentials respectively. This Schrödinger-like equation can be

defined as
G′′(r)
G(r)

= V (r)− E , (4.62)

where V (r) = k(k+1)
r2 + (V 2

S − V 2
V ) + (2mVS + 2εVV ) and E = ε2 −m2. As is well

known, the solution of (4.62) generally takes the form for exactly solvable cases

G(r) = f(r)F [s(r)]. (4.63)

The substitution of (4.63) into (4.62) yields the second-order differential equation

(
f ′′

f
+

F ′′s′2

F
+

s′′F ′

F
+

2F ′s′f ′

Ff

)
= V − E , (4.64)

and rearranging (4.64) for a more useful form, one gets

F ′′ +
(

s′′

s′2
+ 2

f ′

s′f

)
F ′ +

(
f ′′

s′2f
+

E − V

s′2

)
F = 0 . (4.65)

Eq. (4.65) is in the form of the most familiar second-order differential

equations to the hypergeometric type [52],

F ′′(s) +
τ(s)

σ(s)
F ′(s) +

σ̃(s)

σ2(s)
F (s) = 0 , (4.66)

where σ and σ̃ are at most second degree polynomials, and τ is a first degree

polynomial. The form of τ(s)
σ(s)

and σ̃(s)
σ2(s)

is well defined for any special function

F (g) [52, 54]. From (4.66) it follows that

s′′

s′2
+ 2

f ′

s′f
=

τ(s)

σ(s)
,

f ′′

fs′2
+

E − V

s′2
=

σ̃

σ2
. (4.67)

From our earlier works, the energy and potential terms in (4.67) can be de-

composed in two pieces, which provides a clear understanding for the individual
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contributions of the F and f terms to the whole of the solutions, such that

E − V = (Ef + EF ) − (Vf + VF ). Therefore, the second equality in (4.67) is

transformed to a couple of equation

f ′′

f
= Vf − Ef , − σ̃

σ2
s′2 = VF − EF , (4.68)

where f can be expressed in an explicit form, due to the first part in (4.67)

f(r) = (s′)−1/2 exp

[
1

2

∫ s(r) τ(s)

σ(s)
ds

]
. (4.69)

Since the corresponding σ, σ̃ and τ terms are well known for a given polynomial

(F ), the transformation function (s) in (4.68), and afterwards f in (4.69), are

easily defined. So, from (4.63), the corresponding total wave function is readily

obtained for the whole spectrum.

The potential and total energy terms for the Dirac equation in this case

f ′′

f
= Vf − Ef , Vf = 2mVS + 2εVV +

k(k + 1)

r2
, (4.70)

−Λ

σ
s′2 = VF − EF , VF = V 2

S − V 2
V , (4.71)

and

Ef + EF = ε2 −m2 . (4.72)

To understand how efficiently this method works, some physically possible

potentials are solved in the following sections to obtain their eigenvalues and

eigenfunctions, within the frame of the present formalism.

Dirac oscillator

We first choose the vector and scalar potentials having equal magnitudes to

get an exact solutions for this system. Otherwise the system considered becomes

quasi-exactly solvable, hence we set VV = VS = ar2. In this respect, right-hand

sides of equations (4.70) and (4.71) gives

Vf = 2a(m + ε)r2 +
k(k + 1)

r2
, VF = 0 , (4.73)

where, for spin-up case, k = −(` + 1) with ` being the angular momentum

quantum number.

Considering the generalized Laguerre polynomials Lα
n(s) related to conflu-

ent hypergeometric functions, one sees that [52]

σ = s , τ = α + 1− s , Λ = n . (4.74)
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From Eq. (4.68), and keeping in mind that the right-hand side of (4.68) should

involve the three dimensional harmonic oscillator, obviously one realizes that

s = 1
2
ωr2. Then, substituting (4.74) with the s−definition it is not hard to find

that

f = Crα+1/2e
−ωr2

4 , (4.75)

where C = 1√
2
(ω

2
)

α
2 . This makes possible to predict Vf and Ef as

f ′′

f
= Vf − Ef , Ef = (α + 1)ω ,

Vf =
1

4
ω2r2 +

(α− 1/2)(α + 1/2)

r2
, (4.76)

where α = −(k + 1/2) = ` + 1
2
. To find also VF and EF , we should concentrate

on −Λ
σ
s′2 = VF − EF . After some simple algebra we find

VF = 0 , EF = 2nω . (4.77)

Thus, the full energy spectrum and wave functions are given as

E = Ef + EF = (α + 1 + 2n)ω = (2n + ` + 3/2)ω ,

Ψ = fF = Cs
(`+1)

2 e−
s
2 L

(`+ 1
2
)

n (s) . (4.78)

Consequently, the relativistic energy of the Dirac oscillator reads

ε2
n = m2 + (2n + ` + 3/2)ω. (4.79)

The results obtained are in agreement with those in [54] which considers only

the non-relativistic case, and also, for proper parameters these results are agree

well with the study of Alhaidari [70].

Hence, it is importantly noted that, choosing the equal magnitudes for

vector and tensor potentials we have obtained the appearance of the Dirac equa-

tion in the non-relativistic limit, removing the relativistic corrections. We also

remark that the present algebraic treatments have been performed for spin-up

case. Obviously, following similar procedure, one can easily repeat the same

calculations for the spin-down case where now k = +`.

To find the Dirac equation for antiparticles we can use Eqs. (4.47) and

(4.48) that can be written as

−F ′′(r) +
k(k − 1)

r2
F + (V 2

S − V 2
V )F = (ε2 −m2)F , (4.80)

repeating the same procedure just discussed, we obtain the same results as in

Eqs. (4.76) and (4.77), but now k = α + 1
2

= −(` + 1). This small difference
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changes the energy spectrum and the behavior of wave function that the total

energy and eigenfunction in Eq. (4.78) reads

E = Ef + EF = (α + 1 + 2n)ω = (2n− `− 1/2)ω ,

Ψ = fF = Ds
−(`+1)

2 e−
s
2 L

−(`+ 3
2
)

n (s). (4.81)

In this case the relativistic energy for antiparticles becomes

ε2
n = m2 − (2n− `− 1/2)ω . (4.82)

Dirac-Coulomb Problem

The relativistic hydrogen atom is also an exactly solvable system within the

frame of Dirac equation where the piece of potentials are now properly defined

as
f ′′

f
= Vf − Ef , Vf = V 2

S − V 2
V , (4.83)

− σ̃

σ2
s′2 = VF − EF , VF = 2mVS + 2εVV +

k(k + 1)

r2
. (4.84)

For again the equal vector and scalar potentials; VV = VS = − b
r

one gets

Vf = 0 , VF = −2(m + ε)b

r
+

k(k + 1)

r2
. (4.85)

In order to apply the present orthogonal polynomial technique, we choose the

most suitable generalized Laguerre polynomial [F = e−s/2s
α+1

2 Lα
n(s)] where

σ = 1 , τ = 0 , σ̃ =
2n + α + 1

2s
+

1− α2

4s2
− 1

4
, (4.86)

leading to s = ar, and to be in convenience with [54], we set a = e2

n+`+1
that

reduces s = e2

n+`+1
r. Then, Eq. (4.68) reads

f =
(n + ` + 1)

1
2

e
= constant = C. (4.87)

This means that f ′′
f

= Vf − Ef = 0, while

VF = −2(m + ε)b

r
+

`(` + 1)

r2
, EF = − e4

4(n + ` + 1)2
, (4.88)

where k = −(` + 1) and α = 2` + 1. Thus for this system, the full energy

spectrum and wave functions are

E = Ef + EF = EF = − e4

4(n + ` + 1)2
, (4.89)
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Ψ = fF = Ae−s/2s
α+1

2 Lα
n(s) = Ce−s/2s`+1L2`+1

n (s). (4.90)

Therefore, the relativistic energy for the Dirac-coulomb problem is found as

ε2
n = m2 − e4

4(n + ` + 1)2
. (4.91)

The results are in agreement with [54] and, with a suitable parameters, overlap

with those of [70]. Repeating the same calculations for antiparticles we get total

energy spectrum and eigenfunctions as

E = Ef + EF = EF = − e4

4(n− `− 1)2
, (4.92)

Ψ = fF = Be−s/2s
α+1

2 Lα
n(s) = Be−s/2s−(`+1)L−2`−3

n (s). (4.93)

where k = α+1
2

= −(`+1) in this case. And the corresponding relativistic energy

now becomes

ε2
n = m2 − e4

4(n− `− 1)2
. (4.94)

Dirac-Morse Problem

Another exactly solvable system in Dirac equation is the Morse potential

which describes the interaction of atoms in the diatomic molecules. For this

problem the pieces of the potentials are described as in the form of

f ′′

f
= Vf − Ef , Vf = V 2

S − V 2
V , (4.95)

− σ̃

σ2
s′2 = VF − EF , VF = 2mVS + 2εVV , (4.96)

where VS = −De−ar + [
√

A2 + m2 −m]; VV = −Ce−ar then, one gets

Vf = (D2−C2)e−2ar−2D[
√

A2 + m2−m]e−ar+A2−2m[
√

A2 + m2−m] , (4.97)

and

VF = −2(mD + εC)e−ar + 2m[
√

A2 + m2 −m] . (4.98)

The sum of these two potentials is the well known Morse potential

Vtot = (D2 − C2)e−2ar − 2
(
D
√

A2 + m2 + εC
)

e−ar + A2. (4.99)

Choosing the generalized Laguerre polynomials for this problem,

σ = s , τ = α + 1− s , Λ = n , (4.100)
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one, from Eq. (4.68), gets s = 2B
a

e−ax with

VF = −2naBe−ax, EF = 0. (4.101)

Substituting the definition of s into (4.69) we obtain the function f

f =
1√
α

sα/2e−
s
2 , (4.102)

and also substituting f into (4.68) the other piece of potential and energy are

extracted as

Vf = B2e−2ax − (1 + α)aBe−ax , Ef = −a2α2

4
. (4.103)

Thus, the total potential

V = Vf + VF = B2e−2ax − aB(2n + 1 + α)e−ax , (4.104)

and the full energy spectrum, together with wave functions read,

E = Ef + EF = −(A− na)2 , Ψ = fF =
1√
a
sα/2e−

s
2 Lα

n(s) , (4.105)

where A = a
2
(2n + α), and the relativistic energy is

ε2
n = m2 − (A− na)2 . (4.106)

These results overlaps with those in [70] and [71].

Dirac- Rosen-Morse-I Type Potential

For another application, one may set

VS = VV = (A tanh(ar) + B)2, (4.107)

which requires Vf = V 2
S − V 2

V = 0, and using (3.71) one defines

Vf = −2(m + ε)
[
A2 sec h2(ar)− 2AB tanh(ar)

]
+ 2(m + ε)(A2 + B2). (4.108)

Now, we must decide which type of Jacobi polynomials should be used to ob-

tain the exact solution for the potential in (4.108). We follow that F = (1 −
s)(α+1)/2(1 + s)(β+1)/2Pα,β

n (s)

σ = 1 , τ = 0 , σ̃ =
1− α2

4(1− s2)
+

1− β2

4(1 + s2)
+

2n(n + α + β + 1) + (α + 1)(β + 1)

2(1− s2)
,

(4.109)

and to define s-function,

− σ̃

σ2
s′2 = VF−EF = −(1− α2)s′2

4(1− s2)
−(1− β2)s′2

4(1 + s2)
− [2n(n + α + β + 1) + (α + 1)(β + 1)] s′2

2(1− s2)
.

(4.110)
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Since we have to get a constant (E) on the left-hand side, there must be at

least one term on the right-hand side, from which a constant arises. In the most

general case this must be one of the terms containing the parameters n, α, and

β of the Jacobi polynomials. Thus, from s′2
1−s2

2
= a2 we found s = tanh ar, where

a is a constant. Due to this, we find

VF = −a2

[
(α + β)(α + β + 2)

4
− q

]
sec h2(ar)+

a2(α2 − β2)

2
tanh(ar) , (4.111)

EF = a2

[
1− (α2 + β2)

2

]
, (4.112)

where q = n(n + α + β + 1). From the values of s, τ and σ one can now define

the other part of the wave function f , considering (4.69),

f =
1√
a
(1− s)−1/2(1 + s)−1/2 . (4.113)

Remember that the left-hand side of (4.68), with substitution of f , gives us

Vf = 0 , Ef = −a2 . (4.114)

In sum,

Vtot = −a2

[
(α + β)(α + β + 2)

4
− q

]
sec h(ar)+

a2(α2 − β2)

2
tanh(ar) , (4.115)

E = Ef + EF = ε2 −m2 = −(C − na)2 − D2

(C − na)2
, (4.116)

Ψ = fF = (1− s)α/2(1 + s)β/2Pα,β
n (s) , (4.117)

where to be in convenience with the literature [54] we set α = −γ + n + λ
γ−n

,

β = −γ + n− λ
γ−n

while C = γa and D = λa. Finally, we obtain the relativistic

energy of the system as

ε2
n = m2 − (C − na)2 − D2

(C − na)2
. (4.118)

The results are also in agreement with [72] for suitable parameters.

Dirac- Eckart-I Type Potential

It is well known that the one-dimensional form of this potential is exactly

solvable and shape invariant in non-relativistic quantum mechanics as in the

others discussed above. In order to obtain an exactly solvable analytical solution

for such a potential, in also for relativistic case, we again consider the special

case for the scalar and vector potentials having equal magnitudes, VS(r) = VV (r)

which can be introduced to be

VS = VV = (−A coth(ar) + B)2 , (4.119)
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providing that Vf = V 2
S − V 2

V = 0, and

VF = 2(m+ε)A2 csc(h)2(ar)−4(m+ε)AB coth(ar)+2(m+ε)(A2+B2) . (4.120)

To finalize, we choose the best suitable Jacobi polynomials [F = (1−s)(α+1)/2(1+

s)(β+1)/2Pα,β
n (s)]

σ = 1 , τ = 0 , σ̃ =
1− α2

4(1− s2)
+

1− β2

4(1 + s2)
+

2n(n + α + β + 1) + (α + 1)(β + 1)

2(1− s2)
,

(4.121)

leading to s′2
1−s2

2
= a2. One solution of this equation is s = coth(ar). Then, it

yields

VF = a2

[
q − (α + β)(α + β + 2)

4

]
csc h2(ar)− a2(β2 − α2)

2
coth(ar) , (4.122)

EF = −(C + na)2 − D2

(C + na)2
, (4.123)

where q = n(n + α + β + 1), α = −(γ + n) + λ
γ+n

, β = −(γ + n) − λ
γ+n

while

C = γa and D = λa2. Now, we realize that

f =
1√
a
(1− s)−1/2(1 + s)−1/2 . (4.124)

Replacing f into (4.68) gives us

Vf = 0 , Ef = −a2 . (4.125)

Thus, the total potential term the and full spectrum solutions are explicitly given

as

Vtot = a2

[
q − (α + β)(α + β + 2)

4

]
csc h2(ar)− a2(β2 − α2)

2
coth(ar) . (4.126)

E = Ef + EF = ε2 −m2 = −(C + na)2 − D2

(C + na)2
, (4.127)

Ψ = fF = (1− s)α/2(1 + s)β/2Pα,β
n (s) , (4.128)

The relativistic energy of the system therefore

ε2
n = m2 − (C + na)2 − D2

(C + na)2
. (4.129)

The results found in this section are in agreement with those of [72] for appro-

priate parameters. All results obtained are tabulated in Table 1.

Throughout the study in this last section, we have realized that some

physically meaningful systems can be solved exactly if the the strengths of the

vector and scalar potentials are equal to each other, except the Dirac-Morse

problem. Otherwise, the systems of interest becomes quasi-exactly solvable and

one may need in this case to propose a more refined model to solve uniquely the

Schrödinger, Klein-Gordon and Dirac equations in terms of orthogonal polyno-

mials.
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Oscillator Coulomb Morse

VS ar2 −b/r −Ae−ar + (
√

B2 + m2 −m)
VV ar2 −b/r −Ce−ar

s 1
2
ωr2 (e2/(n + ` + 1))r (2D/a)e−ax ; D2 = A2 − C2

σ s 1 s
τ α + 1− s 0 α + 1− s

σ̃ ns 2n+α+1
2s

+ 1−α2

4s2 − 1
4

ns

ε (m2 + (2n + ` + 3/2)ω)
1
2

(
m2 − e4

4(n+`+1)2

) 1
2

(
m2 + B2 − a2α2

4

) 1
2

Ψ s
(2α+1)

4 e−
s
2 L

(α)
n (s) s

α+1
2 e−s/2Lα

n(s) sα/2e−
s
2 Lα

n(s)

α ` + 1/2 2` + 1 2(A
√

B2+m2+εC)

a
√

A2−C2 − 1− 2n

Rosen−Morse Eckart
VS (A tanh(ar) + B)2 (−A coth(ar) + B)2

VV (A tanh(ar) + B)2 (−A coth(ar) + B)2

s tanh ar coth ar
σ 1 1
τ 0 0

σ̃ 1−α2

4(1−s2)
+ 1−β2

4(1+s2)
+ cn

(1−s2)
1−α2

4(1−s2)
+ 1−β2

4(1+s2)
+ cn

(1−s2)

ε
(
m2 + η − a2(α2+β2)

2

) 1
2

(
m2 + ζ − a2(α2+β2)

2

) 1
2

Ψ (1− s)α/2(1 + s)β/2Pα,β
n (s) (s− 1)α/2(1 + s)β/2Pα,β

n (s)

α γ − n + λ
γ−n

−γ − n + λ
γ+n

β γ − n− λ
γ−n

−γ − n− λ
γ+n

cn n(n + α + β + 1) + 1
2
(α + 1)(β + 1) n(n + α + β + 1) + 1

2
(α + 1)(β + 1)

Table 4.1: Relativistic energy and unnormalized eigenfunctions of the five po-
tentials deduced within the present Dirac formalism discussed in Section 4.2.2.
In the treatment of Rosen-Morse and Eckart potentials, the notation carried out
in [73] is used.
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CHAPTER 5

CONCLUSION

No single approximation method available in the literature is ideal for ev-

ery problem. SSPT and LPT based theories avoid the Rayleigh-Schrödinger

summation, but it can lead to nasty integrals and more effort in particular for

excited states. The method is valuable when the integrals can be done exactly

or by a reliable numerical procedure. Otherwise, the Rayleigh-Schrödinger sum-

mation, even when it does not give an exact answer, starts not to look so bad

after all. This was the motivation behind the work introduced in this thesis. The

present perturbation model appears in this respect to be superior for the excited

states and provides a quick route to the calculation of all corrections within the

frame of the perturbation theory, which considerably simplify one’s calculational

workload.

The power and elegancy of the unified model developed in this thesis which

is, in a sense, complete are illustrated via applications to non-relativistic and

relativistic problems. Firstly, we have attempted to explore the effectiveness of

the formalism introduced through which we have made successfully the complete

mathematical analysis of the reason behind exact solvability of some Schrödinger

equations with a class of non-central but separable potentials, for which the

complete spectrum and eigenfunctions can be written down algebraically using

the well known results for the shape invariant potentials.

With the second example, the theory put forward here has been success-

fully extended from the bound state region to the scattering domain. For the

clarification, the work has been carried out with the consideration of s−wave

scattering only, considering phase shifts at low orders. However, generalization

of the formalism to higher partial waves in the scattering domain does not cause

any problem. The energy variation of the scattering wave function and phase

shift can of course be studied if required by perturbing in the energy. We wish

to stress that all these effects depend purely upon the perturbation and the un-

perturbed wave function; explicit knowledge of the unperturbed potential is not
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necessary.

The third illustration in the first part of the thesis, as another application in

non-relativistic domain, has discussed the problem of exact solvability and order-

ing ambiguity in quantum mechanics for the systems with a position-dependent

mass. The present scheme has restricted the possible choices of ordering. Pro-

ceeding with this consideration it has been observed that the only physically

allowable BDD and ZK Hamiltonians only for exactly solvable potentials are

in fact their supersymmetric partners that reproduce identical results in their

independent considerations due to use of an identical superpotential. We hope

that this observation would make a contribution to the ongoing debate in the

literature regarding the isospectral effective mass Hamiltonians.

As a last application of the model in the non-relativistic region, a general

method has been presented to address the question of corrections to the solu-

tion in one-dimension for a large class of N− dimensional and exactly solvable

PDMSE. We have also described how to extend the method from the case where

the required function W (r) in (3.70) generates algebraically solvable potentials

in one dimension. The procedure suggested in there initiates calculations in the

model leading to explicit expressions for the modifications due to both the use

of physically plausible Zhu-Kroemer effective Hamiltonian (α = γ = −1/2) and

higher dimensional treatments. The main results are consistent with the other

related works in the literature, which allow a non-perturbative treatment of these

issues.

Although, we have illustrated some simple but interesting applications of

the method for non-relativistic systems, through Chapter 3, it can be readily

employed in various other typical situations. In view of the importance in calcu-

lating such corrections in physics, we believe that the present prescription would

serve as a useful toolbox to treat even more realistic situations which now occur

in experimental observations with the advent of the quantum technology.

In the case of relativistic systems, Klein-Gordon and Dirac equations have

been analyzed carefully. These applications have justified once more, additional

to our previous non-relativistic considerations, the success and power of the

model employed in the calculations. During the discussions in Chapter 4, we

have suggested that a relativistic problem may be treated as modifications plus

the solution in non-relativistic limit. For this purpose, the system of interest has

divided in two parts; first part constitutes the exactly solvable portion and the

second part corresponds to the corrections to this non-relativistic part. Appli-

cations of the technique to different potentials in the relativistic region confirm

the reliability of the unified treatment leading to accurate and explicit solutions.

In the final section of Chapter 4, we have also attempted to improve the
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model used through the thesis. The refined new model by passes the difficulties

in calculating excited state wave functions, unlike our previous model where one

needs to use linear operators which lead to tedious and cumbersome calcula-

tions. The improved model, however, provides simply the entire spectrum wave

functions in a unique frame in terms of special functions. This refinement in

the model can also easily be used for Schrödinger equation with constant/non-

constant masses.

Hence, the solutions (in terms of orthogonal polynomials) of Dirac equation

with analytically solvable potentials have been investigated in the last section of

the thesis within the refined model by transforming the relativistic equation into

a Schrödinger like one. Earlier results have been discussed and certain solutions

of a large class of potentials have been given in this section. The work presented

there involves significant idea of connecting the methods used in the analysis

of exactly solvable potentials in non-relativistic quantum mechanics with the

solution procedure of Dirac equation. A straightforward generalization would of

course be the application of the scheme to other relativistic equations for integer

spin cases. Beyond its intrinsic importance as a new solution for a fundamental

equation in physics, we also expect the present simple method would find a

widespread application in the study of different quantum mechanical and nuclear

scattering systems. Along this line, the works are in progress.
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[17] Özer O and Gönül B, Mod.Phys. Lett. A18 (2003) 2581.

[18] Gönül B, Chinese Phys.lett. 21 (2004) 1685.

[19] Gönül B, Chinese Phys.lett. 21 (2004) 2330.

[20] Khare A and Bhaduri R K, Am. J. Phys. 62 (1994) 1008.

[21] Dutt R, Gangopadhyaya A and Sukhatme U P, Am. J. Phys. 65 (1997) 400.
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9. GÖNÜL B and KOÇAK M Explicit Solutions for N-Dimensional

Schrödinger Equations with Position-Dependent Mass, J.Math.Phys. 47

(2006) 102101.
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chy and the Hulthén potential, Phys. Lett. A275 (2000) 238.
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10. KOÇAK M Bound State Solutions of Klein-Gordon Equation with the Kratzer

Potential, Chinese Phys.lett. 24 (2007) 315.
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