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ABSTRACT 
 

INVESTIGATION OF A NEW METHOD FOR DIRECT IIR  
 

DIGITAL FILTER REALIZATION USING FLATTENED COEFFICIENTS  
 
 
 

ŞEKEROĞLU, Ahmet 

Ph.D. in Electrical and Electronics Engineering 

Superviser: Prof.Dr.Arif NACAROĞLU 

September 2007, 98 Pages 

 

 

A new direct method for the conversion of FIR transfer function to IIR transfer 

function using flattened coefficients is presented. The non-linear equations are 

obtained by the long division coefficients of the IIR transfer function. The given 

coefficients of the FIR filter are equated to these equations and solved by using the 

non-linear system solution algorithms. To reduce the error between the IIR filter and 

given FIR filter, an error minimization algorithm is used and the presented method is 

compared with the other approximation methods. The effects of binary flattened 

coefficients are investigated. 
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ÖZET 
 
 

DÜZLEŞTİRİLMİŞ KATSAYILI IIR FİLTRELERİN DOĞRUDAN  

GERÇEKLEŞTİRİLMESİ İÇİN YENİ BİR METOT İNCELEMESİ 

 

 

ŞEKEROĞLU, Ahmet Seçkin 

Doktora Tezi, Elektrik ve Elektronik Müh. Bölümü 

Tez Yöneticisi: Prof. Dr. Arif NACAROĞLU 

Ekim 2007, 98 sayfa 

 

 
Düzleştirilmiş katsayılarla FIR transfer fonksiyonunun, yeni doğrudan bir metot ile 

IIR transfer fonksiyonuna dönüştürülmesi anlatıldı.  IIR transfer fonksiyonun 

katsayılarının uzun bölünmesi ile lineer olmayan denklemler elde edildi. Verilmiş 

FIR filtrelerinin katsayıları bu denklemlere eşitlendi ve lineer olmayan sistem çözüm 

algoritmaları ile çözüldü. FIR filtre ile IIR filtre arasındaki hatayı azaltmak için, hata 

azaltma algoritmaları kullanıldı ve sunulan bu yöntem diğer yöntemlerle 

karşılaştırıldı. İkili düzleştirilmiş katsayıların etkileri de araştırıldı. 

 

 
 
 
 
Anahtar Kelimeler: IIR filtre, FIR filtre, uzun bölme 
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CHAPTER 1 

 

1. INTRODUCTION 

Filtering is a process by which the frequency spectrum of a signal can be modified, 

reshaped, or manipulated according to some desired specification. It may entail 

amplifying or attenuating a range of frequency components, rejecting or isolating one 

specific frequency component, etc. The uses of filtering are manifold, e.g., to 

eliminate contamination such, to remove signal distortion brought about by an 

imperfect transmission channel or by inaccuracies in measurement, to separate two 

or more distinct signals which were purposely mixed in order to maximize channel 

utilization, to resolve signals into their frequency components, to demodulate signals, 

to convert discrete-time signals into continuous-time signals, and to bandlimit 

signals.  

 

The digital filter is a digital system that can be used to filter discrete-time signals. It 

can be implemented by means of software (computer programs), dedicated hardware, 

or a combination of software and hardware. Software digital filters may be 

implemented using a low-level language on a general purpose digital processing chip 

or in terms of a high-level language on a personal computer or workstation. Both 

software and hardware digital filters can be used to process real time or non-real-time 

(recorded) signals, except that the latter are usually much faster and process signals 

whose frequency spectra extend to much higher frequency. 

 

In the digital signal processing, in general, the digital filters are realized in two 

different ways [1]. Depending on its pole locations, these filters are called as 

Recursive (Infinite Impulse Response-IIR) or Nonrecursive (Finite Impulse 

Response-FIR). The main difference between these two filter types is that the poles 

of the FIR filters are located at the origin of the complex domain which guarantees 

the stability of this type of filters. Comparing the IIR realization, FIR realization is 

more convenient for the numerical design methods and relatively easier. However, 



one and most important advantage of the IIR filter is its less polynomial degree 

which requires less digital elements such as delay, multiplier and adder. In IIR filters, 

the approximation problem is usually solved through indirect methods. First, a 

continuous-time transfer function that satisfies certain specifications is obtained 

using the standard analog-filter approximations. Then obtained continuous time 

transfer function is transformed into the z-domain using any transformation methods 

presented in the later chapter of this thesis.  

 

IIR filters are useful for a high-speed design because they typically require a lower 

number of multipliers compared to other type of digital filter [2]. Unfortunately, it is 

hard to design linear phase IIR filter and they can be unstable if not designed 

properly. IIR filters also are very sensitive to filter coefficient quantization errors that 

occur due to using a finite number of bits to represent the filter coefficients. Ones the 

required transfer function is found as IIR filter, because of its lower degree versus 

FIR degree; it is much faster to find the output samples of the filtered data. The 

output calculation softwares use the simple multiplications and addition operations. 

 

The conventional techniques which are used to design a nonrecursive filters are well-

known approximation techniques. The mostly used approximation method is to the 

Fourier Series Approximation. The given magnitude characteristics of the design 

filter is decomposed in the form of the Fourier Series and these coefficients are 

equated to the FIR coefficients after some simple mathematical operations. The best 

approximation requires infinitely long series representation which needs infinite 

number of circuit elements. Since it is impossible and very expensive, the length of 

series is adjusted either by truncation, which is well known to be Rectangular 

windowing or truncation and correction is applied at the same time, which are known 

to be general windowing of the Fourier Series Approach. 

 

FIR filters have low sensitivity to filter coefficients quantization errors. This is an 

important property to have when implementing a filter a Digital Signal Processor or 

on an integrated circuit. FIR filters have the advantage of stability but usually have 

more coefficients and delay than the IIR filters for the same filter specification, that 

the required order in FIR filter can be as high as 5 to 10 times that in IIR filter. 

 



In this Thesis, a new direct method for the conversion of FIR transfer function to IIR 

transfer function with flattened coefficients is presented. It is a direct realization 

method for IIR filters that only the designed FIR filter coefficients are used for IIR 

filter approximation. The long division process is used to find an FIR filter whose 

coefficients can be obtained directly from the coefficients of numerator and 

denominator of the IIR filter. Although the long division results are infinitely long 

series and hence infinite number of equations may be obtained, only dominant 

equations as much as the number of unknowns (coefficients of IIR) are used.  

 

Non-linear equations obtained by the long division of IIR transfer function with the 

given coefficients of the FIR filter are solved by using the non-linear system solution 

algorithms. The large-scale algorithms are used for solving these non-linear 

equations. The solution of these non-linear equations gives the coefficients of IIR 

filter. Non-linear equation are be solved by using the Trust-region Dogleg method. 

IIR filter coefficients can be easily calculated from a given FIR filter the coefficients. 

The error between the FIR and IIR filter can be measured with en error function. In 

this study, a new algorithmic approach is used to reduce the error between the given 

FIR filter characteristics and approximated IIR equivalent.  

 

The number of equations increases, the time for solving the nonlinear equations 

increase, but the error decreases. We use the other terms of the long division results 

for the new equations. The initial conditions or starting points of the unknown 

coefficients are changed before solving new set of nonlinear equations to approach 

result with less iteration.  

 

The presented method is compared with the other approximation methods like 

Prony’s [3] and Yule-Walker [4,5] method for the magnitude characteristics of  

lowpass, highpass, bandpass. Magnitude and Phase responses of the filters are 

compared and errors are calculated against the FIR filter. The coefficient 

quantization effects are investigated in this study.  

 

In Chapter 2 introduces the types of filters. The two types of Digital Filters, 

Recursive and Nonrecursive filters are described in this chapter. Approximations for 

recursive filters are described by which a given continuous-time transfer function, 



e.g., impulse-invariant-response and bilinear transformation methods. Nonrecursive 

filter approximation methods are described in detail. Finite word length is 

investigated for digital filters. Coefficient quantization by MATLAB is described in 

this chapter. 

 

In Chapter 3 methods for conversion FIR to IIR filters are represented. Optimization 

methods for approximation of recursive and nonrecursive filter are introduced e.g., 

Prony’s Method, Yule-Walker Method. 

 

In Chapter 4, a new direct method for the conversion of FIR transfer function to IIR 

transfer function is presented. The obtained coefficients are flattened by using 

roundation techniques to simplify the circuit structure. 

 

In Chapter 5, this method is applied for different type of FIR filter. The IIR filter 

coefficients are obtained with the acceptable error and compared with other 

conversion methods. Phase and Magnitude and response of filters are plotted. The 

results are calculated with the help of MATLAB program in Appendix. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

CHAPTER 2 

 

2. LITERATURE SUMMARY 

2.1. Introduction 

Signals arise in almost every field of science and engineering, e.g., in acoustics, 

biomedical engineering, communications, control systems, radar, physics, 

seismology, and telemetry. Two classes of signals can be identified, namely, 

continuous-time and discrete-time signals. 

 

Continuous-time signals are one that is defined at each and every instant of time. 

Typical examples are a voltage waveform and the velocity of space vehicle as a time 

function. A discrete-time signals, on the other hand, is one that is defined at discrete 

instants of time, perhaps every millisecond, second, or day. Examples of this type of 

signal are the closing price of a particular commodity on stock exchange and daily 

precipitation as functions of time. 

 

A discrete-time signal, like a continuous-time signal, can be represented by a unique 

function of frequency referred to as the frequency spectrum of the signal. This is a 

description of the frequency content of the signal. 

 

Frequency spectrum of a signal can be modified, reshaped, or manipulated according 

to some desired specification. It may entail amplifying or attenuating a range of 

frequency components, rejecting or isolating one specific frequency component, etc. 

The uses of filtering are manifold, e.g., to eliminate contamination such, to remove 

signal distortion brought about by an imperfect transmission channel or by 

inaccuracies in measurement, to separate two or more distinct signals which were 

purposely mixed in order to maximize channel utilization, to resolve signals into 

their frequency components, to demodulate signals, to convert discrete-time signals 

into continuous-time signals, and to bandlimit signals [2]. 

 



2.2. Types of Filters 

There are two main kinds of filter, analog and digital. They are quite different in their 

physical makeup and in how they work. 

 

An analog filter uses analog electronic circuits made up from components such as 

resistors, capacitors and op amps to produce the required filtering effect. Such filter 

circuits are widely used in such applications as noise reduction, video signal 

enhancement, graphic equalizers in hi-fi systems, and many other areas.  

 

There are well-established standard techniques for designing an analog filter circuit 

for a given requirement. At all stages, the signal being filtered is an electrical voltage 

or current which is the direct analogue of the physical quantity (e.g. a sound or video 

signal or transducer output) involved.  

 

A digital filter uses a digital processor to perform numerical calculations on sampled 

values of the signal. The processor may be a general-purpose computer such as a PC, 

or a specialized DSP (Digital Signal Processor) chip.  

 

The analog input signal must first be sampled and digitized using an ADC (analog to 

digital converter). The resulting binary numbers, representing successive sampled 

values of the input signal, are transferred to the processor, which carries out 

numerical calculations on them. These calculations typically involve multiplying the 

input values by constants and adding the products together. If necessary, the results 

of these calculations, which now represent sampled values of the filtered signal, are 

output through a DAC (digital to analog converter) to convert the signal back to 

analog form. Note that in a digital filter, the signal is represented by a sequence of 

numbers, rather than a voltage or current [1].  

 

2.3. Digital Filters 

The digital filter is a digital system that can be used to filter discrete-time signals. It 

can be implemented by means of software (computer programs), dedicated hardware, 

or a combination of software and hardware. Software digital filters may be 

implemented using a low-level language on a general purpose digital processing chip 

or in terms of a high-level language on a personal computer or workstation. At the 



other extreme, hardware digital filters can be designed using a number of highly 

specialized interconnected VLSI chips. Both software and hard ware digital filters 

can be used to process real time or non-real-time (recorded) signals, except that the 

latter are usually much faster and process signals whose frequency spectra extend to 

much higher frequency. 

 

2.3.1. Recursive Filters 

A Recursive Filter or an Infinite Impulse Response (IIR) Filter is one whose impulse 

response is infinite duration. The response of a recursive filter is a function of 

elements in the excitation as well as the response sequence. In this case of a linear, 

time variant, causal filter 
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Figure 2.1. IIR filter structure 

 

IIR filters are useful for a high-speed design because they typically require a lower 

number of multipliers compared to other type of digital filter. IIR filters can also be 

designed to have a frequency response that is a discrete version of the frequency 

response of an analog filter. 
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Unfortunately, IIR filters do not have linear phase and they can be unstable if not 

designed properly. IIR filters also are very sensitive to filter coefficient quantization 

errors that occur due to using a finite number of bits to represent the filter 

coefficients.  

 

2.3.1.1. Approximations for Recursive Filters 

In IIR filters, the approximation problem is usually solved through indirect methods.  

First, a continuous-time transfer function that satisfies certain specifications is 

obtained using the standard analog-filter approximations such as Butterworth, 

Chebyshev, Inverse-Chebyshev, Eliptic, and Bessel approximations. 

 

Then corresponding discrete-time transfer function is obtained using one of the 

following transformation methods [6-10]. 

 

2.3.1.1.1. Invariant-Impulse Response Method 

HA(s) is given analog filter, a corresponding digital filter, represented by HD(z), can 

be derived by using the following procedure [4]. 

 -Deduce HA(s), the impulse response of the analog filter 

 -Replace t by nT in HA(t) 

-Form the z transform of HA(nT) 

 

2.3.1.1.2. Matched-z Transformation Method 

An alternative approximation method for design of recursive filters is so called 

matched-z-transformation method [9]. The method is simple to apply and given 

reasonable results for highpass and bandstop filters, but intent to increase the 

amplitude of the passband error relative to that of analog filter. 

In this method, each of the poles and zeros of analog filters are mapped directly from 

the s-plane to z-plane using the following equation 
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2.3.1.1.3. Bilinear Transformation Method 

The transfer function can be obtained by the Bilinear Transformation like 
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Let w and Ω  represents the frequency variable in the analog filter and the derived 

digital filter, 
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and, as a result, the digital filter the same frequency response as the analog filter. For 

higher frequencies, however, the relation between w and Ω  becomes nonlinear, and 

there is a distortion for the high frequencies. This is known as the warping effect 

[11,12]. If only the amplitude response is of concern, the warping effect can for all 

practical purposes be eliminated by prewarping the analog filter [1]. 

 

2.3.1.2. Digital Filter Transformations 

A normalized lowpass analog filter can be transformed to a denormalized lowpass, 

highpass, bandstop, or band pass filter employing the transformations shown in 

Constantinides [13]. 

 

The Constantinides transformations can be readily applied to filters with prescribed 

passband edges. The following procedure can be employed 

1. Obtain a lowpass transfer Function HN(z) using approximation methods 

2. Determine the passband edge pΩ in HN(z). 

3. Form )(zH N  according to appropriate transformations. 

 

 



2.3.2. Nonrecursive Filters  

A nonrecursive Filter or a Finite Impulse Response (FIR) digital filter is one whose 

impulse response is of finite duration. FIR filters are simple to design and they are 

guaranteed to be bounded input-bounded output stable. By designing the filter tabs to 

be symmetrical about the center tap position, a FIR filter can be guaranteed to have 

linear phase. This is desirable property for many applications such as music and 

video processing. 

 

The input-output of a nonrecursive filter can be expressed as 
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This equation can be realized by many different topologies. The one of which is 

known to be canonic is shown in Figure 2.2. 

 

FIR filters also have low sensitivity to filter coefficients quantization errors. This is 

an important property to have when implementing a filter a Digital Signal Processor 

or on an integrated circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. FIR filter structure 
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The approximation problem in non-recursive filter can be solved by using Fourier 

series or numerical analysis formula. The details of these methods are examined in 

this chapter. An alternative approach is based on the use of the Discrete Fourier 

Transforms. A third possibility is to use a powerful multivariable optimization 

algorithm known as Remez Exchance Algorithm. 

 

The methods of this chapter are in terms of closed-form solutions an, as a result, they 

are straightforward and involve a minimal amount of computation. Unfortunately, 

the designs obtained are suboptimal; that is, the required filter order to satisfy a set of 

prescribed specifications is not minimum. On the other hand, the use of the Remez 

Exchance Algorithm yields optimal designs, but a large amount of computation is 

required to complete a design, as may be expected. 

 

2.3.2.1. Approximation for Nonrecursive Filter 

In nonrecursive filters, the approximation problem is solved through direct methods 

which can involve the application of Fourier series, window functions, numerical 

analysis formulas, or discrete-Fourier transform.  

 

A nonrecursive causal filter can be characterized by the transfer functions 
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Its frequency response is given by 
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The phase and group delays of a filter are given by 
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For constant phase delay as well as group delay, the phase response must be linear, 
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and thus from Eq.(2.8) and Eq.(2.10) 
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Consequently  
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and accordingly 
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The solution of this equation can be shown to be 
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Therefore, a nonrecursive filter, unlike a recursive filter, can have constant phase and 

group delays over the entire baseband [1, 2]. 

 

2.3.2.2. Design Using the Fourier Series 

As the frequency response of a nonrecursive filter is a periodical function of w with 

period ws, it can be expressed as Fourier series. We can write 
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Hence with an analytic representation for the frequency response available, a 

corresponding transfer function can be readily derived. Unfortunately, however, this 

is noncausal and of infinite order. For a finite-order transfer function, the series of 

Eq.(2.22) can be truncated by assigning 
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Causality can be brought about by multiplying )(zH by 2)1( −− Nz  so that 
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This modification is permissible since the amplitude response will remain unchanged 

and the group delay will be increase by a constant .2/)1( TN −  

 

Note that if )( jwT
eH  in Eq.(2.20) is even function of w, then the impulse response 

obtained is symmetrical about n=0, and hence the filter zero group delay [1]. 

Consequently, the filter represented by the transfer function of Eq.(2.25) has constant 

group delay equal to .2/)1( TN −  



2.3.2.3. Use of Window Functions 

The passband and stopband oscillations observed are due to slow convergence in the 

Fourier series, which in turn, is causal by the discontinuity at the passband edge. 

These are known as Gibbs’ oscillations. As N increases, the frequency of these 

oscillations is seen to increase, and at both low and high frequencies their amplitude 

is decreased.  

 

An alternative and easy-to-apply technique for reduction of Gibbs’ oscillations is to 

precondition )(nTh  as given by Eq.(2.20) using a class of time domain functions 

known as window functions. Let 
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where )(nTw  represents a window function.  

The windowing causes the change in the amplitude characteristics of the FIR filter 

but linear phase feature of the filter unchanged. The most frequently used window 

functions are Rectangular, Blackman, Dolph-Chebyshev, Kaiser.   

 

2.3.3. Design of IIR Filters Using Optimization Methods 

An alternative method approach for the solution of the approximation problem in 

digital filters is through the application of optimization methods [14,15]. In these 

methods, a discrete-time transfer function is assumed and an error function is 

formulated on the basis of some desired amplitude and/or phase response. A norm of 

the error function is then minimized with respect to the transfer-function coefficients. 

As the value of the norm approached zero, the resulting amplitude or phase response 

approaches, the desired amplitude or phase response. These methods are iterative 

and, as a result, they usually involve a large amount of computation. However, unlike 

the closed-form methods, they are suitable for the design of filters having arbitrary 

amplitude or phase response.   



The application of optimization method of the design of recursive filters digital 

filters is considered. There is different kind of algorithms, such as quasi-Newton 

method which has been explored by Davidov,  Fletched, Powell, Broyden and others 

[1]. 

 

Formulation 

Assume that the amplitude response of a recursive filter is required to approach some 

specified amplitude response as closely as possible. Such a filter can be designed in 

two general steps, as follows: 

 

1. An objective function which is dependent on the difference between the 

actual and specified amplitude response is formulated. 

2. An objective function obtained is minimized with respect to the transfer 

function coefficients 

 

An Nth order recursive filter can be represented by the transfer function 
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where ija and ijb  are real coefficients, H0  is positive multiplier constant. The 

amplitude response of the filter can be expressed as 
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where                                   [ ]Tj Hbbbaax 0111011101 ,,.....,,,=                                (2.31) 

 

is a column vector with 4J+1 elements and w is the frequency. 

 

Let M0(w) be the specified amplitude response and, for the sake of exposition, 

assume that it is piecewise continuous, as illustrated in Fig.2.3. The difference 



between M(x,w) and M0(w) is, in effect, the approximation error and can be 

expressed as 
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Figure 2.3. Formulation of error function 

 

By sampling e(x,w) at frequencies w1,w2,….wk, as depicted in Figure 2.7,  the column 

vector 
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and can be formed where 
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The approximation problem at hand can be solved by finding 
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2.3.4. Design of FIR Using Optimization Methods 

The design of nonrecursive filters known as the weigthed-Chebyshev method. In this 

Method, an error function is formulated for the desired filter in the terms of linear 

combination of cosine functions and is then minimized by using a very efficient 

multivariable optimization algorithm known as the Remez Exchange Algorithm. 

When convergence is achieved, the error function becomes equiripple, as in other 

types of Chebyshev solutions. The amplitude of the error in different frequency 

bands interest is controlled by applying weighting the error function. 

 

The weigthed-Chebbyshev method is very flexible and can be used to obtain optimal 

solutions for most non-recursive filters, e.g.., digital differentiators, Hilbert 

transformers, and lowpass, highpass, bandpass, bandstop, and multiband filters with 

piecewise-constant amplitude responses. 

 

The development of the weighted-Chebyshev method began with a paper by 

Herrmann published in 1970 [16], which was followed soon after by a paper by 

Hofstetter, Oppenheim and Siegel [17]. These contributions were followed by a 

series of papers, during the seventies, by Parks, McClellan-Parks-Rabiner, and 

Herrmann [18-21]. These developments led, in turn, to the well-known McClellan-

Parks- Rabiner computer program for the design of nonrecursive filters, documented 

in [22], which has found widespread applications.  

The Remez Exchange Algorithm is an iterative multivariable algorithm which is 

naturally suited for solution of the minimax problem in Eq.(2.87). It is based on the 

second optimization method for [23] and involves the following basic steps: 

 

2.4. Effects of Word Length in Digital Filters 

In software as well as hardware digital filter implementations, numbers are stored in 

finite-length registers. Consequently, if coefficients and signal values cannot be 

accommodated in available registers, they must be quantized before they can be 

stored. Number quantization gives rise to three types of errors: 

 

1. Coefficient-quantization errors 

2. Product-quantization errors 

3. Input-quantization errors 



The transfer-function coefficients are normally evaluated to a high degree of 

precision during the approximation step. If coefficient-quantization is applied, the 

frequency response of the resulting filter may differ appreciably from the desired 

response, and if the quantization step is coarse, the filter may actually fail to meet the 

desired specifications. 

 

Product-quantization errors arise at the output of multipliers. Each time a signal 

represented by a digit is multiplied by a coefficient represents. Since a uniform 

register length must, in practice, be used throughout the filter, each multiplier output 

must be rounded or truncated before processing can continue. 

 

Input-quantization errors arise in applications where digital filters are used to process 

continuous-time signals. These are the errors inherent in the analog-to-digital 

conversion process.     

 

2.4.1. Coefficient Quantization 

Coefficient-quantization errors introduced perturbations in the zeros and poles of the 

transfer function, which in turn manifest themselves as errors in the frequency 

response. Product-quantization errors, on the other hand, can be regarded as noise 

source which gives rise to output roundoff noise. Since the importance of the two 

types of errors can vary considerably from application to application, it is frequently 

advantageous to use different word lengths for the coefficients and signal values. The 

coefficient word length can be chosen to satisfy a signal-to-noise ratio specification. 

Consider a digital filter characterized by H(z) and let 

 

M(w)   =  =)( jwT
eH amplitude response without quantization 

Mq(w) = amplitude response with quantization 

  

The effect of coefficient quantization is to introduce an error in M(w) given 

 

    ∆ M   =  M(w)  -  Mq(w)                     (2.35) 

 

The optimum word length can thus determined exactly by evaluating M∆  . 



An alternative approach is to employ a statistical method proposed by Avenhause 

[24,25]. This method yields a fairly accurate estimate of the required word length and 

is, in general, more efficient than the exact method outlined above. 

 

A different approach for study of quantization effects are proposed by Jenkins and 

Leon [26]. In this approach a computer-aided analysis scheme is used to generate 

confidence-interval error bound on the time domain response of the filter. This 

method can be used to study the effects of coefficient or product quantization in 

fixed-point or floating-point implementations. Furthermore, the quantization can be 

by rounding or truncation. 

 

2.4.2. Coefficient Quantization with MATLAB 

One important issue that must be considered when IIR filters are implemented on a 

fixed-point processor is that the filter coefficients that are actually used are quantized 

from the "exact" (high-precision floating point) values computed by MATLAB. 

Although quantization was not a concern when we worked with FIR filters, it can 

cause significant deviations from the expected response of an IIR filter.  

 

By default, MATLAB uses 64-bit floating point numbers in all of its computation. 

These floating point numbers can typically represent 15-16 digits of precision, far 

more than the DSP can represent internally. For this reason, when creating filters in 

MATLAB, we can generally regard the precision as "infinite," because it is high 

enough for any reasonable task.  

 

The DSP, on the other hand, operates using 16-bit fixed-point numbers in the range 

of -1.0 to 1.0−2-15. This gives the DSP only 4-5 digits of precision and only if the 

input is properly scaled to occupy the full range from -1 to 1.  

 

It is not difficult to use MATLAB to quantize the filter coefficients to the 16-bit 

precision used on the DSP. To do this, first take each vector of filter coefficients (that 

is, the A and B vectors) and divide by the smallest power of two such that the 

resulting absolute value of the largest filter coefficient is less than or equal to one. 

This is an easy but fairly reasonable approximation of how numbers outside the 

range of -1 to 1 are actually handled on the DSP.  



Next, quantization in Matlab is achieved as first, quantizing the resulting vectors to 

16 bits of precision by first multiplying them by 215=32768, rounding to the nearest 

integer (use round), and then dividing the resulting vectors by 32768. Then the 

resulting numbers are multiplied, which will be in the range of -1 to 1, back by the 

power of two that you divided out.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

CHAPTER 3 

 

3. RECENT METHODS FOR FIR TO IIR CONVERSION 

 

Non-recursive digital filters (FIR) have the advantage of stability, but usually have 

more coefficients and delay than the IIR filters with the same specifications (impulse 

response or frequency response).  For the same specifications the required order in a 

FIR filter can be as high as 5 to 10 times that the IIR filter. The need for recursive 

digital filters (IIR) arises from the usage of small digital computers and processors. 

 

The problem of conversion from a FIR filters to reduced order IIR filters has 

surfaced from time to time in signal processing literature for a number of years     

[27-29]. IIR approximation of linear-phase FIR filters has received particular 

attention, especially in the context of the delay equalization. 

 

One of the many possible avenues to FIR filters approximations via balanced state-

space realization. This method of dynamic system reduction has been a big attraction 

in certain reaches of system theory for the past decade, with a lot of attention on 

focusing on state-space reduction [30,31]. The state-space realization ought to be in 

the balance form that is such that the space-space realization has controllability and 

observability grammians equal and diagonal. 

 

In filter design and approximation, the concept of balance realization seems to have 

rarely used [32], although one especially pertinent application of concept may be 

found in [33]. A usual recipe for the reduction of a transfer function order is the 

following: Convert the transfer function into state-space form, calculate 

controllability and observability grammians, take the square roots of the singular 

values of their product (resulting in “the Hankel singular values”), determine 

necessary similarity transformation and balanced system realization, inspect the 

Hankel singular values and decide upon the reduced order state-space form into a 



transfer function if required. The original and reduced order system can then be 

compared against various criteria and a new order of approximation attempted if 

necessary. The primary principle used for system reduction lies in the elimination of 

subsystem associated with the smallest Hankel singular values. 

 

Several of today’s commercial software packages like MATLAB, C++ can be used to 

undertaken the various steps needed in the model reduction problem algorithms. 

Yule-Walker and Prony’s Method is other algorithms in MATLAB.  

There are several methods for FIR to IIR conversion. These are; 

 

3.1. Yule-Walker Method 

In recent years there has renewed interest in the development and application of 

autoregressive moving average (ARMA) techniques for high resolution spectral 

estimation.  Some of these techniques are based on maximizing a likelihood function, 

using some iterative nonlinear optimization procedure [4,5]. Another class of 

techniques is based on estimation of autoregressive (AR) and moving average (MA) 

parameters in two separate steps: the AR parameters are obtained as the solution of 

the so-called modified Yule-Walker (MYW) equations. MA is the spectral 

parameters. 

 

Yule-Walker performs a least-squares fit in the time domain. It computes the 

denominator coefficients using Modified Yule-Walker equations, with correlation 

computed by inverse Fourier transformation of the specified response. To compute 

the numerators, Yule-Walker takes the following step: 

 

1. Computes a numerator polynomial corresponding to additive decomposition 

of the power frequency response 

2. Evaluates the complete frequency response corresponding to the numerator 

and denominator polynomials. 

3. Uses spectral factorization technique to obtain the impulse response of the 

filter. 

4. Obtains the numerator polynomial by a least-squares fit to this impulse 

response. 



3.2. Prony's Method 

Prony's method is a technique for extracting the sinusoid or exponential signals by 

solving a set of linear equations for the coefficients of the recurrence equation that 

the signals satisfy. It is closely related to Pisarenko's method, which finds the 

smallest eigenvalue of an estimated covariance matrix.  

Prony's method is an algorithm for finding an IIR filter with a prescribed time 

domain impulse response. It has applications in filter design, exponential signal 

modeling, and system identification (parametric modeling) Prony’s implements the 

method described in [3].  

This method uses a variation of the covariance method of AR modeling to find the 

denominator coefficients b and then finds the numerator coefficients a for which the 

impulse response of the output filter matches exactly the first n + 1 samples of x. The 

filter is not necessarily stable, but potentially can recover the coefficients exactly if 

the data sequence is truly an autoregressive moving-average (ARMA) process of the 

correct order [34]. 

 

3.3. Least Square Inverse Method in Time Domain 

The corresponding introduces a method to approximation an FIR filter by an IIR 

filter in the time domain (the same approach applies to IIR filter order reduction). 

The method based on the Least-square Inverse (LSI), algorithm, which yields a 

stable IIR filter [35]. Unlike the other methods, the numerator of the approximated 

filter is part of FIR filter itself and no calculations and minimizations are needed to 

find the numerator coefficients. 

 

The proposed method is based on the LSI algorithm [36], which was used in a 

context related to IIR in [37].  

 

 

 

 



3.4. Balance Realization Technique 

Another method for conversion of FIR to IIR filter is Balance Realization technique. 

This method convert single-input/single –output FIR filters to corresponding IIR 

filter approximations, simultaneously (and hopefully substantially) reducing system 

order [38]. The starting point of this algorithm is a canonical controllable form of an 

FIR filter. By using Hankel Matrix factorization a simple formula for similarity 

transformation is derived, which leads to a balanced state-space realization. 

However, in order to avoid calculation of a possibly ill-conditioned balanced 

realization, a reduced state-space form of the system is used that is input/output 

equivalent to balanced system, but which is obtained without inverting matrices. 

 

3.5. Weighted Least Square Approximation  

This method is based on frequency weighted least-square error optimization using 

the Boyden-Flether-Goldfarb-Shanno (BFGS) method [39] The gradient of the cost 

function with respect to the design parameters, required for the implementation of the 

BFGS method, is derived. This method start by obtaining an initial IIR filter design 

using reduction of linear phase FIR filter. Based on this initial design the cost 

function is minimized using BFGS method. 

 

An initial IIR filter design is obtained from a linear phase FIR filter satisfying the 

design specifications. In most cases, frequency specifications are violated first in the 

transition band during model reduction [40]. To improve the approximation and 

obtain a low order IIR filter which satisfies the design specifications, a frequency 

weighted error function is optimized. The error function between the original 

specifications and the frequency response of the IIR design is minimized using the 

BFGS method, which is the ‘best’ quasi-Newton optimization method.  

 

3.6. Optimal Hankel-norm Approximation  

This method is based on the dominant part of the singular value decomposition of the 

Hankel Matrix formed from the modified impulse response of the desired filter, and 

those state components which are weakly coupled to both input and output are 

discarded [28,29,41] to reduce the model. The major objective of the proposed 

design approach is to minimize the error between the order-reduced filter’s response 

and the desired one in the Hankel norm sense [42-44]. The designed filter is obtained 



via the results of singular-value decomposition of the Hankel matrix, balanced 

realization and all pass functions, all in terms of the solutions to Lyapunov equations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

CHAPTER 4 
 

4. A NEW DIRECT METHOD FOR FIR TO IIR FILTER CONVERSION    

   WITH FLATTENED COEFFICIENTS                  

The main aim of this study is to obtain the corresponding IIR transfer function using 

the coefficients of the given (or calculated) FIR transfer function. The degree of the 

transfer function is defined and limited numbers of its coefficients are set to be 

unknown. To calculate these unknowns, the required number of equations must be 

obtained. The derivation of these equations are easily achieved using IIR to FIR 

conversion. An Infinite Impulse Response (recursive) filter can be represented by the 

following transfer function in the z-domain: 
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If at least one of the coefficients 1,....,1, −= Nibi    in Eq.(4.1) is non-zero, the 

corresponding system has infinite impulse response (IIR). If, on the other hand, all of 

these coefficients are zero, then all poles of the transfer function will be located in 

the origin of the z-plane and the corresponding system has finite impulse response 

(FIR). The transfer function of a FIR filter can simplified as follows: 
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It is very obvious that FIR transfer function is infinite power series of z-1 with real 

coefficients ci’s. There are some possible techniques to deduce Eq.(4.2) from 

Eq.(4.1), but the simplest one is to divide the numerator of Eq.(4.1) to its 

denominator by using polynomial division technique (long division). Hence ci’s may 

be written in terms of coefficients of the IIR transfer function. 

 

 



4.1. FIR to IIR Conversion 

The long division process can be used to find an FIR filter whose coefficients can be 

obtained directly from the coefficients of numerator and denominator of the IIR 

filter. Consider an IIR filter with a transfer function given by Eq.(4.1). If 10 =b , the 

coefficients of a FIR filter of the form Eq.(4.2) obtained from long division can be 

computed as  
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which turns out to be a recursive equation [45].  It can be concluded from Eq.(4.2) 

that the coefficients of the FIR filter can be generated from the coefficients of the 

numerator and denominator of the IIR filter and at most N recently generated 

coefficients of the FIR filter. The recursion can continue to obtain a FIR filter of any 

arbitrary order, typically greater then N. More specifically, the recursion can 

continue until the error between the resultant FIR filter and the original IIR filter 

sufficiently small. 

 

It should be noted that since the coefficients of the filter obtained from long division 

represent the samples of the impulse response, the stability of the filter implies that 

the samples converge to zero. 

 

Theoretically, the FIR filter of Eq.(4.2) converges to the original IIR filter as the 

order of the resultant filter N goes to infinity. In general the infinity norm of the error 

between the original FIR and IIR filter will depend on the truncated terms in the long 

division. The differences of these filters’ impulse response can be written like, 
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If FIR filter coefficients are realized using one of the approximation method given in 

Chapter 2.  The simplicity of this process is directly related to the chosen order of IIR 

filter. Although the long division results are infinitely long series and hence infinite 



number of equations may be obtained, only dominant equations as much as the 

number of unknowns (coefficients of IIR) are used. 

 

Eq.(4.3) can be written as a matrix multiplication using k+1 terms of impulse 

response[46], 
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to compute ai and bi let us partition the matrices as 
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a: Column vector of the N+1 numerator coefficients of Eq.(4.1) 

b: Column vector of the N+1 denominator coefficients of Eq.(4.1) 

Ck: Column vector of the kast k-N terms of the impulse response, 

C1: (N+1) by (N+1) partition of the matrix in Eq.(4.5), 

C2: (k-N) b-by N partition of the matrix in Eq.(4.5). 

 

The lower k-N equation s are written as 

 

bCCk 20 +=                                                         (4.7) 

b can be calculated by Eq.(4.7) 

The upper N+1 equation of Eq.(4.6) can be written and a : 

 

bHa 1=                                                             (4.8) 

 



If k=N+N, C2 is square. If C2 is not singular, Eq.(4.7) and Eq.(4.8) can be solved 

respectively for a and b. If c2 is singular, Eq.(4.7) may have many solutions.  

 

4.1.1. Long Division for First Order IIR 

For N=1 in Eq.(4.1) a first order IIR filter transfer function is, 
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If 10 =b , the coefficients of a FIR filter  obtained by using Eq.(4.3) as, 
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Since there are only 3 unknowns, first three of these equations are chosen as 

dominant equations and then, we can easily calculate coefficients of IIR filter from a 

given FIR filter. 
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and the transfer function of  FIR filter  is 
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Hence the coefficients of the IIR filter transfer function may be obtained from the 

given FIR coefficients. It is obvious that a longer FIR series obtained by the long 

division will result smaller error between the IIR and FIR filters and longer FIR 

series closed form can be obtained by the higher order IIR filters.  

 

 

 



4.1.2. Long Division for Second Order IIR 

The same method is applied to the second order approximation. For N=2 in Eq.(4.1) 

a second order IIR filter transfer function is, 
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If 10 =b , the coefficients of a FIR filter  obtained by using Eq.(4.3), 
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It is clear that for second order or higher order IIR approximations, the solution of 

equations are becoming more difficult because of their non-linear behaviors. In 

Eq.(4.14), unknowns are bi’s and ci’s. The more explicit form of the Eq.(4.14) is 
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and hence the coefficients of the Nth order FIR function are written in terms of 

unknown coefficients of the IIR filter as, 
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The approach is based on the given (or calculated) FIR coefficients and hence the 

coefficients of FIR filter are known. For k=4, five terms of the impulse response ai 

and bi can be calculated by using Eq.(4.7) and Eq.(4.8) 
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For k=N+N, C2 is square and a and b can be solved easily. For k>N+N  C2 is singular, 

we may have many solutions.  

 

4.2. Minimization of the Error 

Non-linear equations can be solved by Trust-region method. IIR filter coefficients 

can be easily calculated from a given FIR filter the coefficients. The error between 

the FIR and IIR filter can be measured with en error function. An error function 

between the FIR and realized IIR filter can be written, 
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Other terms of Long Division can be used to minimize the error between the FIR and 

IIR filter. If we organize a new set of non-linear equations by the other terms of Long 

Division result, the error between the FIR and IIR filter can be minimized. The new 

set of nonlinear equations can be solved by Trust-region method. If we use more 

terms of long division and more nonlinear equation set, the error between the FIR 



and IIR filter is minimized. To minimize the error, the long division terms related 

with higher terms of FIR filter are equalized to zero.  
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If the number of equations increases, the time for solving the nonlinear equations 

increase, but the error decreases. 

 

For higher terms of impulse response, the large-scale algorithms are used for solving 

these non-linear equations. The solution of these non-linear equations gives the 

coefficients of IIR filter. There are different methods for solving these equations.  

4.3. Method for Solving Non-linear Equation 

Solving a nonlinear system of equations )(xF involves finding a solution such that 

every equation in the nonlinear system is 0. That is, there are n  equations and n  

unknowns. The objective is to find x is an element of the n-dimensional real numbers 

n
Rx ∈  such that 0)( =xF where 
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The assumption is that a zero, or root, of the system exists. These equations may 

represent economic constraints, for example, that must all be satisfied 



4.4. Trust-region Dogleg Implementation 

A non-linear system equation can be solved by using the Trust-region Dogleg 

implementation method. Firstly search direction is found. Newton's method says to 

solve for the search direction 
kd such that  
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where )( kxJ is the n-by-n Jacobian 
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Newton's method can run into difficulties. )( kxJ  may be singular, and so the 

Newton step kd  is not even defined. Also, the exact Newton step kd may be 

expensive to compute. In addition, Newton's method may not converge if the starting 

point is far from the solution. 

Using trust-region techniques (introduced in Trust-region methods for nonlinear 

minimization) improves robustness when starting far from the solution and handles 

the case when )( kxJ is singular. To use a trust-region strategy, a merit function is 

needed to decide if 1+kx is better or worse than kx . A possible choice is 
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But a minimum of )(df is not necessarily a root of ).(xF  

The Newton step kd is a root of 
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and so it is also a minimum of )(dm where 
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Then )(dm is a better choice of merit function than )(df , and so the trust-region sub 

problem is 
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This subproblem can be efficiently solved using a dogleg strategy. For an overview 

of trust-region methods, see Conn et al. [47] and Nocedal and Wright [48] studies. 

 

The above non-linear equation in Eq.(4.15) can be solved by this method.  
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If k goes to ∞ , the error between the filters will be zero. Theoretically it is difficult to 

solve that much of equations. An error between the FIR and IIR filter must be 

defined to limit the number of equations.  

The initial condition or starting point of the unknown coefficients must be change 

before solving new set of nonlinear equations. This decreases the computation time. 

A systematic algorithm is as follows; 

 



1. Design a )(zH FIR  filter transfer function and find the coefficients c0, c1,…,cN 

of  FIR in Eq.(4.2) from a given frequency response.  

2. By using Eq.(4.14), get the long division terms from a desired IIR transfer 

function  

3. Get the non-linear equations in Eq.(4.15),  

4. Solve the non-linear equations by Trust-Region method  

5. Get the coefficients of IIR filter )(zH IIR  

6. Compute the error IIRFIR−ε by Eq.(4.19) 

7. If IIRFIR−ε  is not small, repeat step 2 after using new set of non-linear 

equations by the help of  other terms of Eq.(4.20). 

8. End. 

 

The first sets of nonlinear equations are equalized to the coefficients of given FIR 

filter. To minimize the error, new nonlinear equations are equalized to zero.  All of 

these equations can be solved and the algorithms stops after reaching the desired 

error. Different examples are given in Chapter 5 and the MATLAB programs for 

these examples are in Appendix. 

 

4.5. Coefficient Quantization for flattening 

 

The transfer function coefficients are normally evaluated to a high degree of 

precision during the approximation step. If coefficient-quantization is applied, the 

frequency response of the resulting filter may differ appreciably from the desired 

response, and if the quantization step is coarse, the filter may actually fail to meet the 

desired specifications. Also the coefficient-quantization errors introduced 

perturbations in the zeros and poles of the transfer function, which in turn manifest 

themselves as errors in the frequency response.   

 

The IIR filter is characterized by the following transfer function 
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The quantized IIR filter transfer function is 
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qNa  and qNb  coefficients are quantized quantity 

 

                                     NNqN aaa ∆+= ;  NNqN bbb ∆+=                               (4.31) 

 

One important issue that must be considered when IIR filters are implemented on a 

fixed-point processor is that the filter coefficients that are actually used are quantized 

from the "exact" (high-precision floating point) values computed by MATLAB. 

Although quantization was not a concern when we worked with FIR filters, it can 

cause significant deviations from the expected response of an IIR filter. In this 

section, the coefficients quantization errors for this direct method for FIR to IIR filter 

is investigated. General information about coefficient quantization was given in 

Chapter 2. An error can be defined to show the effect of coefficient quantization. 
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HqIIR(ejwT) is frequency response of designed and quantizated  IIR filter from a given 

FIR filter. HqFIR(ejwT) is the frequency response of given quantizated  FIR filter. Error 

is calculated by MATLAB by the programs in Appendix. An optimum word-length 

can be found by the help of this method.  

 

For real-time processing, finite word lengths (typically 8 bits, 12 bits, and 16 bits) are 

used to represent the input and output signals, filter coefficients and the results of 

arithmetic operations. In these cases, it is nearly always necessary to analyze the 

effects of quantization on the filter performance. The result of coefficient 

quantization effects can be seen at the end of the examples in Appendix. 

 

 



 
 
 
 
 

CHAPTER 5 
 

5. SIMULATION OF ALGORITMH WITH SOME EXAMPLES 

In this chapter, the presented method is applied to the conversion of different 

(highpass, lowpass, bandpass) types of FIR filters, into the different (2nd, 3rd, 6th) 

order of IIR filters. The results are compared with Yule-Walker and Prony’s 

Methods. Magnitude and phase responses of filters are plotted. 

 
Example 1 
As a first example, lowpass FIR filter is considered. The cut of frequency of the filter 

is assumed to be one-tenth its sampling frequency and the order is taken to be 4. The 

FIR coefficients are windowed by using Hamming Window Function and the FIR 

transfer filter coefficients are calculated as, 

 

c0  
c1 
c2  

= 
= 
= 

 

0.028406470015011    
0.237008213590703    
0.469170632788571    

c3 
c4 

= 
= 

0.237008213590703    
0.028406470015011 

In this example the 4th order FIR transfer function is converted into the 2nd order IIR 

transfer function and the coefficients are calculated with the program in Appendix. 

The equations are organized like in Eq.(4.20) and solved by the Trust Region 

Method. Six equations are solved to find the coefficients of IIR-long6. The 6th term 

of the long division is equated to zero. Five terms of the long division result are 

equated to the FIR coefficients and starting points are calculated by using Eq.(4.7) 

and Eq.(4.8) for the solution the six non-linear equation. The starting points are 

a0  
a1 
a2 

= 
= 
= 

0.0284064700150   
0.2189081409886   
0.3255770287588 

b0 
b1 

b2 

 

= 
= 
= 

1.0000000000000 
-0.637181339058 
0.2613350715492 

 IIR-long7 coefficients are calculated by equating the 6th and 7th terms to zero. Same 

starting point is used for the solution of these equations. The coefficients of filters are 

calculated as given in Table 1. 

 

 



Table 1. Coefficients of filters 

 IIR –long6 IIR-long7 Prony’s Yule-Walker 
a0 0.0284060616657 0.0284060685785 0.0284064700150   0.3534142205801   
a1 0.2203492059878 0.2206308957142 0.2189081409886   0.3649129677769  
a2 0.3423836455649 0.3469322663466 0.3255770287588 0.0926306953779 
b0 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000 
b1 -

0.5700623384028 
-0.553849004811 -0.637181339058   -0.178738579109   

b2 0.1783374648999 0.1618833695938 0.2613350715492 0.0159884965057 
 

The error between the magnitudes of the given FIR and approximated IIR-long5, 

IIR-long6, Prony’s, and Yule-Walker  filters can be calculated by using the Eq.(4.19) 

and they are found to be 

 

6IIRFIR−ε      = 0.249764024523196         7IIRFIR−ε     = 0.244048807890771 

PRONYFIR−ε   = 0.465748387528172        
YULEFIR−ε    = 0.315869985678026 
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Figure 5.1. Frequency responses of  filters 

 

 



The normalized gain curve of the 4th order FIR characteristics and the gain of 2nd 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.1. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.2. The normalized phase response 4th order FIR characteristics and the gain 

of its 2nd order IIR, Prony’s, and Yule-Walker representations are plotted on Fig.5.3. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-14

-12

-10

-8

-6

-4

-2

0

M
ag

n
it

u
d

e(
d

B
)

Normalized Frequency (π  x rad/sample)

 

 

FIR-4.Ord.
Prony-2.Ord.
Yulewalk-2.Ord.
IIR-2.Ord-Long7

 
Figure 5.2. Frequency responses of filters 
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Figure 5.3. Phase responses of filters 

 

The error of our new direct FIR to IIR conversion method is better than the results of 

the Prony’s and Yule-Walker Method.  

 

The error between the FIR and IIR characteristics may be more reduced by using 

higher term of the long division of IIR filter. The application of the correction 

algorithm revealed that inclusion of more equations into the solution, the error 

becoming less. The seven term of the long division is used for this example. The 

number of term can be increase to reduce the error. But after several loops, the 

amount of the reduction is also becoming less. 

 

As it can be seen from the Fig.5.3. the passband phase responses of all three methods 

are nearly linear. Linearity is increasing by using higher order terms of long division 

of IIR filter’s transfer function. 

 

 

 

 



Example 2 

As a second example, highpass FIR filter is considered. The cut of frequency of the 

filter is assumed to be one-tenth its sampling frequency and the order is taken to be 4. 

The FIR coefficients are windowed by using Hamming Window Function and the 

FIR transfer filter coefficients are calculated as, 

  c0 
c1 
c2  
c3 
c4 

= 
= 
= 
= 
= 

-0.012383557765435 
-0.103321704609266 
 0.818123706312338   
-0.103321704609266   
-0.012383557765435      

  
The equations are organized with this new FIR filter coefficients and solved by the 

Trust Region Method. Seven equations are solved to find the coefficients of IIR-

long7. The 6th  and 7th term of the long division is equated to zero. Five terms of the 

long division result are equated to the FIR coefficients and starting points are 

calculated by using Eq.(4.7) and Eq.(4.8) for the solution the seven non-linear 

equation. The starting points are, 

a0  
a1 
a2 

= 
= 
= 

-0.0123835577654  
-0.1049350414862      
0.8042717023077 

b0 
b1 

b2 

 

= 
= 
= 

1.0000000000000 
0.1302805629443   
0.0315898040931 

 The coefficients of filters are found as in Table 2. 

 

Table 2. Coefficients of filters 

 IIR-long7 Prony’s Yule-Walker 
a0 -0.012383559938974 -0.012383557765435  0.806062166651525  
a1 -0.104923055295202 -0.104935041486200   -0.204599207918885   
a2 0.804391026636978 0.804271702307695 0.000491837357837 
b0 1.000000000000000 1.000000000000000   1.000000000000000  
b1 0.129649351551022 0.130280562944281   -0.007548545357371   
b2 0.030015220316801 0.031589804093057 0.009446692850085 

 

The error between the magnitudes of the given FIR and approximated IIR-long7,  

Prony’s, Yule-Walker  filters can be calculated by using the Eq.(4.19) and they are 

found to be 

7IIRFIR−ε       = 0.037849221444129 

PRONYFIR−ε   = 0.039052945167387 

YULEFIR−ε     = 0.315869985678026 
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Figure 5.4. Frequency responses of filters 
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Figure 5.5. Frequency responses of filters 



The normalized gain curve of the 4th order FIR characteristics and the gain of its 2nd 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.4. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.5. The normalized phase response 4th order FIR characteristics and the gain 

of its 2nd order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.6. 
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Figure 5.6. Phase responses of filters 

 
 

The errors of our new direct and Prony’s method for FIR to IIR conversion are better 

than the result of the Yule-Walker Method. In our method the error is the lowest one. 

Also the error is not changing so much for higher terms.  

 

As it can be seen from the Fig.5.6. the passband phase responses of all three methods 

are nearly linear. Yule-Walker phase response is not linear, but other methods’ phase 

responses are linear for all frequencies. 

 
 
 
 
 



Example 3 
 
In this example 6th order  lowpass FIR filter which has 0.2 cutoff frequency is 

converted to 2nd order IIR filter and the phase and magnitude characteristics are 

compared with the 2nd order Prony’s and Yule-Walker Methods. FIR filter 

coefficients are 

 
c0  
c1 
c2  
c3 
c4 

c5 

c6 

= 
= 
= 
= 
= 
= 
= 

0.013496923634082   
0.078450868623102   
0.240862474239631   
0.334379467006371 
0.240862474239631 
0.078450868623102   
0.013496923634082 

 
The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. Seven terms of the long division 

result are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 3. 

 

Table 3. Coefficients of filters 

 IIR-long14 Prony’s Yule-Walk 
a0 0.013496923679214 0.013496923634082   0.155002715725143   
a1 0.048332833271608 0.060923891043628   0.256849242694650   
a2 0.221717798891762 0.147323006902478 0.154735399032099 
b0 1.000000000000000 1.000000000000000  1.000000000000000  
b1 -1.122584659408244 -1.298590556978121   -0.488594993325217   
b2 0.425031618949297 0.617628881183580 0.090414527194376 

 

The error between the magnitudes of the given FIR and approximated IIR-long14, 

Prony’s, Yule-Walker  filters can be calculated by using the Eq.(4.19) as, 

 

14IIRFIR−ε      = 0.646677132795521 

PRONYFIR−ε   = 1.277760616211978 

YULEFIR−ε     = 0.488739970485410 
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Figure 5.7. Frequency responses of  filters 
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Figure 5.8. Frequency responses of  filters 



The normalized gain curve of the 6th order FIR characteristics and the gain of its 2nd 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.7. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.8. The normalized phase response 4th order FIR characteristics and the gain 

of its 2nd order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.9.  
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Figure 5.9. Phase responses of filters 

 
 
FIR filter has a zero at 0.8 frequencies so the magnitude of FIR filter is equal to zero, 

hence phase response of FIR is undefined at this frequency. The error of magnitude 

responses of IIR and Yule-Walker Filters are nearly same but Yule-Walker error is 

better because the order of FIR filter was increased to 6th.   

 

The passband phase responses of Prony’s method are not linear. However, IIR and 

Yule-Walker filters’ phase responses are nearly linear.  

 

 

 
 



Example 4 
 
In this example 6th order  highpass FIR filter which has 0.2 cutoff frequency is 

converted to 2nd order IIR filter and the phase and magnitude characteristics are 

compared with the 2nd order Prony’s and Yule-Walker Methods. FIR filter 

coefficients are 

 

c0  
c1 
c2  
c3 
c4 

c5 

c6 

= 
= 
= 
= 
= 
= 
= 

-0.007989489486156   
-0.046438907638285   
-0.142578283594034    
0.791742269116189   
-0.142578283594034 
-0.046438907638285   
-0.007989489486156 

 
The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. Seven terms of the long division 

result are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 4. 

 

Table 4. Coefficients of filters 

 IIR-long14 Prony Yule-Walker 
a0 -0.007989470323955  -0.007989489486156  0.766492910021975  
a1 -0.134160186837230  -0.049560598448024  -0.432834876170934   
a2 -0.515248455562996 -0.162335011992807 0.034519920421966 
b0 1.000000000000000   1.000000000000000   1.000000000000000  
b1 0.978833948597966   0.390724690876548   -0.195638425980272   
b2 0.459312301372243 0.201752636379674 0.042135146545861 

 

The error between the magnitudes of the given FIR and approximated IIR-long14, 

Prony’s, Yule-Walker  filters can be calculated by using the Eq.(4.19) as, 

 

14IIRFIR−ε      = 2.971219867751848 

PRONYFIR−ε   = 7.437283884000442 

YULEFIR−ε     = 0.198187797648411 
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Figure 5.10. Frequency responses of filters 
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Figure 5.11. Frequency responses of filters 



The normalized gain curve of the 6th order FIR characteristics and the gain of its 2nd 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.10. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.11. The normalized phase response 4th order FIR characteristics and the gain 

of its 2nd order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.12. 
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Figure 5.12. Phase responses of filters 

 
 
The equations are solved with the coefficients of Yule-Walker as a starting point to 

reduced the error. The new IIR coefficients of filters are found as  

 

a0 =   0.757078783755060  a1= -0.442249002352499   a2=0.025105794188449 
b0 =  1.000000000000000  b1=-0.191543817010068   b2=0.046229745608049 
 
The error is determined as 
 

14IIRFIR−ε =0.073965278573571 
 
 
 
 
 



6th Order  highpass FIR filter which has 0.8 cutoff frequency is converted to 2nd order 

IIR filter and the phase and magnitude characteristics are compared with the 2nd order 

Prony’s and Yule-Walker Methods to show the effect of cutoff frequency. IIR filter 

coefficients are 

 

   a0= -0.013496923620367   a1=0.047508056792700    a2= -0.224695245107251 
b0 = 1.000000000000000   b1=1.114409516168226    b2=0.419695846153642 

 
And the errors  
 

14IIRFIR−ε   = 0.645657132491772 

YULEFIR−ε  = 0.450856563632776 

PRONYFIR−ε =1.240948559393124 
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Figure 5.13. Frequency responses of filters for Yule-Walker starting point 
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Figure 5.14. Frequency responses of filters for 0.8 cutoff frequencies 
 
 
The errors with the calculated starting point were very bad because the converted 

FIR filter was a highpass filter. In highpass filters, magnitude values are dominant in 

high frequencies. The equations which are organized high terms of the long division 

can not be reduced with this starting point.  

 

Yule-Walker starting point was used to solve the equations to improve the error, and 

the magnitude response is plotted in Fig.5.13. It can be seen that the error of IIR filter 

with the Yule-Walker starting point is better than the Yule-Walker result. 

 

If we select the cut off frequency of the high pass filter as 0.8, all of the methods’ 

errors change. Yule-Walker error increases but IIR and Prony’s errors decrease. It 

shows that all of the methods success depend on the cutoff frequency. Another case 

for the high pass characteristics is that the sampling frequency is always limited with 

the assumed highest input frequency of the filter.   

 

 



Example 5 

 
In this example 8th order  lowpass FIR filter which has 0.2 cutoff frequency is 

converted to 2nd order IIR filter and the phase and magnitude characteristics are 

compared with the 2nd order Prony’s and Yule-Walker Methods. FIR filter 

coefficients are 

 
c0  
c1 
c2  
c3 
c4 

c5 

c6 

c7 
c8 

=
=
=
=
=
=
=
=
=

0.005069883484836  
0.029358162747516  
0.110743791265797    
0.219340680905496    
0.270974963192709 
0.219340680905496    
0.110743791265797    
0.029358162747516    
0.005069883484836   

 
The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. Nine terms of the long division 

result are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 5.  

 

Table 5. Coefficients of filters 

 IIR-long14 Prony Yule-Walker 
a0 0.005069883581037 0.005069883484836   0.126238992913244   
a1 -0.005649667296852 0.021423454011406   0.181092043390114   
a2 0.165048217184271 0.068713204152368 0.125943463891234 
b0 1.000000000000000  1.000000000000000  1.000000000000000  
b1 -1.393987752498314 -1.565067276169670   -0.690049565579207   
b2 0.573208005176267 0.772584360742831 0.163224518650762 

 

The error between the magnitudes of the given FIR and approximated IIR-long14, 

Prony’s, Yule-Walker filters can be calculated by using the Eq.(4.19) as, 

 

14IIRFIR−ε = 0.805999703942367 

PRONYFIR−ε =2.078930344149698 

YULEFIR−ε =0.776547050798376 
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Figure 5.15. Frequency responses of filters 
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Figure 5.16. Frequency responses of filters 



The normalized gain curve of the 8th order FIR characteristics and the gain of its 2nd 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.15. The 

characteristics are plotted in logarithmic scale to compare the stopband of the filters 

on Fig.5.16. The normalized phase response 8th order FIR characteristics and the gain 

of its 2nd order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.17. 
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Figure 5.17. Frequency responses of filters 

 
 

The error of Yule-Walker and IIR magnitude responses are nearly same but Prony’s 

error is very bad. All of the methods get difficulties to approach for the higher order 

FIR filter. The order of IIR filter had to increase to improve the conversion. 

  

 

 

 

 
 
 
 
 
 



Example 6 
 
In this example 8th Order  highpass FIR filter which has 0.2 cutoff frequency is 

converted to 2nd Order IIR filter and the phase and magnitude characteristics are 

compared with the 2nd Order Prony’s and Yule-Walker Methods. FIR filter 

coefficients are 

c0  
c1 
c2  
c3 
c4 

c5 

c6 

c7 
c8 

= 
= 
= 
= 
= 
= 
= 
= 
= 

-0.003756386945668   
-0.021752101330026   
-0.082052483665337                           
-0.162514281220032   
 0.803084976121895 
-0.162514281220032 
-0.082052483665337   
-0.021752101330026   
-0.003756386945668 

 
The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. Nine terms of the long division 

result are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 6. 

 

Table 6. Coefficients of filters 

 IIR-long14 Prony Yule-Walker 
a0 -0.003756242194791   -0.003756386945668  0.767692891415730  
a1 0.031369071746033  -0.023310816047878  -0.484334635810019   
a2 -0.344415554178154 -0.092101227929036 0.001021221829623 
b0 1.000000000000000  1.000000000000000  1.000000000000000  
b1 0.043993439124884   0.414950520379499   -0.197275743939053   
b2 0.737797777091902 0.272255897022458  0.052267136180276 

 

The error between the magnitudes of the given FIR and approximated IIR-long14, 

Prony’s, Yule-Walker filters can be calculated by using the Eq.(4.19) as, 

 

14IIRFIR−ε   = 5.523751500237434 

PRONYFIR−ε = 8.472225809521374 

YULEFIR−ε   = 0.356148021279132 
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Figure 5.18. Frequency responses of filters 
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Figure 5.19. Frequency responses of filters 



The normalized gain curve of the 8th order FIR characteristics and the gain of its 2nd 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.18. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.19. The normalized phase response 8th order FIR characteristics and the gain 

of its 2nd order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.20. 
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Figure 5.20. Phase responses of filters 

 

The equations are solved with the coefficients of Yule-Walker as a starting point to 

reduced to error. The new IIR coefficients of filters are found as  

 
a1 = 0.748929205596222  a2=-0.503098320075367   a3=-0.017742460522346 
b0 =1.000000000000000   b1=-0.191034977486918   b2=0.058507823073133 
 
and the error becomes 
 

14IIRFIR−ε  =0.124502034020608 
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Figure 5.21. Frequency responses of filters with Yule-Walker starting point 

 
 

The errors with the calculated starting point were not good enough. There are mainly 

two reasons for this error. First, the designed high pass filter pass band region lies at 

the higher frequencies and due to the application of the Prony’s Method and since 8th 

order characteristics is tried to be realized by 2nd order IIR transfer function, the 

number of equations used to calculate the coefficients is not sufficient to determine 

the high frequency behaviors. For 2nd order IIR conversion only 5 terms of given 8 

terms of the FIR characteristics are used, therefore, Prony’s results are becoming bad 

because of the cancellation of the higher terms which are more dominant at the high 

frequencies. To reduce the error, Yule-Walker starting point was used to solve the 

equations, and magnitude response is plotted in Fig.5.13. The error of IIR filter with 

the Yule-Walker starting point better than the Yule-Walker result. 

 
 
 
 
 
 
 



Example 7 
 
12th order  lowpass FIR filter which has 0.2 cutoff frequency is converted to 3rd order 

IIR filter and the phase and magnitude characteristics are compared with the 3rd order 

Prony’s and Yule-Walker Methods. FIR filter coefficients are 

   c0  
c1 
c2  
c3 
c4 

c5 

c6 

c7 
c8 

c9 

c10 

c11 

c12 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

-0.002719748296487   
0 
0.015808536973329 
0.059408709991560 
0.127068629704170    
0.191410109532371    
0.218047524190116    
0.191410109532371 
0.127068629704170    
0.059408709991560    
0.015808536973329    
0 
-0.002719748296487 

 

The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. 13 terms of the long division result 

are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 7. 

  

Table 7. Coefficients of filters 

 IIR-long15 Prony Yule-Walker 
a0 -0.002651689085539   -0.002719748296487   0.049869547920393  
a1   0.012081901525158  0.006599990408012   0.076961670281446   
a2 -0.017933505105523   0.009677152299683   0.076866541713083   
a3 0.074412946338609 0.023220375704049 0.049878697319975 
b0 1.000000000000000  1.000000000000000  1.000000000000000  
b1 -2.191181472193112   -2.426691623095490   -1.229315655517132   
b2 1.807415058604954  2.254394159035298  0.621356133718209  
b3 -0.556124340865500 -0.799379104996508 -0.125344799661899 

 
The error between the magnitudes of the given FIR and approximated IIR-long15, 

Prony’s, Yule-Walker filters can be calculated by using the Eq.(4.19) as, 

15IIRFIR−ε    = 0.450955878866840 

PRONYFIR −ε =1.677070271323739 

YULEFIR−ε    = 0.506913640450293 
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Figure 5.22. Frequency responses of filters 
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Figure 5.23. Frequency responses of filters 



The normalized gain curve of the 12th order FIR characteristics and the gain of its 3rd 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.22 and Fig.5.23.  

The normalized phase response 12th order FIR characteristics and the gain of its 3rd 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.34 
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Figure 5.24. Frequency responses of filters 

 
In this example the order of IIR filter was increased to 3rd and 12th FIR filter was 

converted with this method. 15 terms of 3rd order IIR filter is used and it has been 

observed that the error of IIR filters is better than the Yule-Walker and Prony’s 

Metods. Phase responses of Yule-Walker and IIR filters are linear in the passband. 

 
Example 8 
 

In this example 12th order  highpass FIR filter which has 0.2 cutoff frequency is 

converted to 3rd order IIR filter and the phase and magnitude characteristics are 

compared with the 3rd order Prony’s and Yule-Walker Methods. Errors are found as, 

15IIRFIR−ε = 7.525858794869147 

PRONYFIR−ε =8.908661599801572 

YULEFIR−ε =0.332842444661047 

 



Example 9 
 
12th order  highpass FIR filter which has 0.8 cutoff frequency is converted to 3rd 

0rder IIR filter and the phase and magnitude characteristics are compared with the 3rd 

0rder Prony’s and Yule-Walker Methods. FIR filter coefficients are 

c0  
c1 
c2  
c3 
c4 

c5 

c6 

c7 
c8 

c9 

c10 

c11 

c12 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

-0.002719748296487    
 0 
 0.015808536973329   
-0.059408709991560 
 0.127068629704170   
-0.191410109532371    
 0.218047524190116   
-0.191410109532371 
 0.127068629704170   
-0.059408709991560    
 0.015808536973329    
 0 
-0.002719748296487 

 

The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. 13 terms of the long division result 

are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 8. 

 

Table 8. Coefficients of filters 

 IIR-long15 Prony Yule-Walker 
a0 -0.002719897970076  -0.002719748296487  0.047710508823657  
a1 -0.012622116942944  -0.006599990408012   -0.072439281070350   
a2 -0.019458240567353  0.009677152299683  0.073012825838114  
a3 -0.076172364624734 -0.023220375704050 -0.047987541684431 
b0 1.000000000000000  1.000000000000000  1.000000000000000  
b1 2.183108160074164   2.426691623095489   1.254093600477427   
b2 1.794019981998517   2.254394159035297   0.640024875006352   
b3 0.549914721370090 0.799379104996508 0.130239819143839 
 
The error between the magnitudes of the given FIR and approximated IIR-long14, 

Prony’s, Yule-Walker  filters can be calculated by using the Eq.(4.19) as, 

15IIRFIR−ε   = 0.431183888954051 

PRONYFIR−ε =1.650292952478328 

YULEFIR−ε   =0.449274562496702 
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Figure 5.25. Frequency responses of filters 
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Figure 5.26. Frequency responses of filters 



The normalized gain curve of the 12th order FIR characteristics and the gain of its 3rd 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.25. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.26. The normalized phase response 12th order FIR characteristics and the 

gain of its 3rd order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.27 
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Figure 5.27. Phase responses of filters 
 
 
In this example the order of IIR filter was increased to 3rd and 12th FIR filter is 

converted with this method. 15 terms of 3rd order IIR filter is used and the error of 

IIR filters is better than the Yule-Walker and Prony’s methods. Phase responses of 

Yule-Walker and IIR filters are linear in the passband 

 

 

 

 

 
 
 



Example 10 
 

In this example 12th order lowpass FIR filter which has 0.2 cutoff frequency is 

converted to 6th order IIR filter and the phase and magnitude characteristics are 

compared with the 6th order Prony’s and Yule-Walker Methods. FIR filter 

coefficients are 

c0= -0.002719748296487    
c1= 0  
c2= 0.015808536973329    
c3= 0.059408709991560    
c4=0.127068629704170 
c5= 0.191410109532371    
c6= 0.218047524190116    

c7= 0.191410109532371    
c8= 0.127068629704170    
c9= 0.059408709991560 
c10=0.015808536973329    
c11=0 
c12= -0.002719748296487 
 

The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. 13 terms of the long division result 

are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 9. 

 

Table 9. Coefficients of Filters 

 IIR-Long15 Prony Yule-Walker 
a0 -0.002719748294461   -0.002719748296487   0.019262218977579   
a1 0.007540320455926   0.011837766607666  0.022919081826142   
a2 0.005286997169218   -0.008473783559840   0.030849118919432   
a3 0.024730853009768   0.020362980071623  0.007948328469209  
a4 0.018557771079155 -0.013258448559617 -0.002756875216664 
a5 0.016743484908016   0.006227987884736   -0.014031211785969  
a6 0.009314547974308 0.000149921133293 -0.007505293927384 
b0 1.000000000000000  1.000000000000000  1.000000000000000  
b1 -2.772820105672409   -4.352522850352664   -2.333618439170037   
b2 3.873155797760231  8.928149919070274 2.403996513856158  
b3 -3.392700070136967   -10.942662791834671  -1.419115179127580   
b4 1.935590152775038 8.416329792047295 0.486034357452320 
b5 -0.675772060250289   -3.847640145396304   -0.084352537729126   
b6 0.112276132636499 0.819518446973069 0.004462802663846 

 
The error between the magnitudes of the given FIR and approximated IIR-long15,  

Prony’s, Yule-Walker  filters can be calculated by using the Eq.(4.19) as, 

IIRFIR−ε       = 0.016633391319893 

PRONYFIR−ε   = 2.232499545345478 

YULEFIR−ε     = 0.127856728044188 
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Figure 5.28. Frequency responses of filters 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

10

M
ag

n
it

u
d

e(
d

B
)

Normalized Frequency (π  x rad/sample)

 

 

FIR-12.Ord.
Prony-6.Ord.
Yulewalk-6.Ord.
IIR-6.Ord-Long15

Figure 5.29. Frequency responses of filters 



The normalized gain curve of the 12th order FIR characteristics and the gain of its 6th 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.4. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.5. The normalized phase response 12th order FIR characteristics and the gain 

of its 6th order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.6. 
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Figure 5.30. Phase responses of filters 
 
In this example the order of IIR filter was increased to 6th and 12th FIR filter is 

converted with this method. 15 terms of 6th order IIR long division results are used 

and the error of IIR filters is better than the Yule-Walker and Prony’s Metods. There 

is a significant difference between the errors of Yule-Walker and IIR filters.  

 

Phase responses of Yule-Walker and IIR filters are linear in the passband. 

 
 
 
 
 
 
 



Example 11 
 
In this example 12th order highpass FIR filter which has 0.2 cutoff frequency is 

converted to 6th Order IIR filter and the phase and magnitude characteristics are 

compared with the 6th Order Prony’s and Yule-Walker Methods. FIR filter 

coefficients are 

c0=0.002487166176877    
c1=0  
c2=-0.014456653403097   
c3=-0.054328312033057   
c4=-0.116202222959594 
c5= -0.175041473858523    
c6=0.797603848588469   

c7=-0.175041473858523    
c8=0.116202222959594   
c9=-0.054328312033057 
c10= -0.014456653403097   
c11=0 
c12=0.002487166176877    
 

The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. 13 terms of the long division result 

are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 10. 

 

Table 10. Coefficients of filters 

 IIR-Long15  Prony Yule-Walker 
a0 0.002487166187841   0.005457371000672   0.693703838524968  
a1 0.000792602981558  0 -0.582167447105887  
a2 -0.013706853559393  0.036842536190572  -0.166303192018513   
a3 -0.058133867260105  0 0.021832098168283   
a4    -0.136297950864468 -0.221670656166991 0.063197091757782 

a5 -0.227837828911509   0 0.046723170091386  
a6  0.700543491436302 0.220397197020872 -0.011294496667860 
b0 1.000000000000000   1.000000000000000 1.000000000000000  
b1 0.313193439961132   0.000000000000001   -0.180509394991830  
b2 0.273342886072584   0.938467853575626   -0.080526259682802  
b3 0.200785644003198   0.000000000000001   -0.036532266477873  
b4 0.126142582310235 0.647307834964657 -0.011937699700733 
b5 0.068297735463401   0.000000000000001      0.013257928304138  
b6 0.028979384198530 0.296710397276996 -0.017690565980665 

 
The error between the magnitudes of the given FIR and approximated IIR-long15,  

Prony’s, Yule-Walker  filters can be calculated by using the Eq.(4.19) as, 

IIRFIR−ε       = 0.197178997967998 

PRONYFIR−ε  = 0.320204191229605 

YULEFIR−ε     =0.092780986513754 
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Figure 5.31. Frequency responses of filters 
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Figure 5.32. Frequency responses of filters 



The normalized gain curve of the 12th order FIR characteristics and the gain of its 6th 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.31. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.32. The normalized phase response 12th order FIR characteristics and the 

gain of its 6th order IIR, Prony’s, Yule-Walker representations are plotted on 

Fig.5.33. 
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Figure 5.33. Phase responses of filters 
 
 

In this example the order of IIR filter was increased to 6th and 12th FIR filter is 

converted with this method. 15 terms of 6th order IIR long division results are used 

and the error of IIR filters is nearly same with the Yule-Walker Metod.  

 

Phase responses of Yule-Walker, Prony’s and IIR filters are linear in the passband. 

Prony’s and IIR filters are nearly linear in all frequencies. 

 
 
 
 
 



Example 12 
 
In this example 12th order bandpass FIR filter which has passband between the 0.3 

and 0.7 frequencies is converted to 6th order IIR filter and the phase and magnitude 

characteristics are compared with the 6th Order Prony’s and Yule-Walker Methods. 

FIR filter coefficients are 

c0=0.005457371000672 
c1=0  
c2=0.031720968941406   
c3=0  
c4=0.254972364809816 
c5= 0  
c6=0.437528074498901                   

c7=0 
c8=-0.254972364809816   
c9=0 
c10= 0.031720968941406                   
c11=0 
c12=0.005457371000672 
 

The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. 13 terms of the long division result 

are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 11. 

 

Table 11. Coefficients of Filters 

 IIR –Long15 Prony Yule-Walker 
a0 0.005457370997285 0.005457371000672   0.237884984115334  
a1 0.000000000003804 0 -0.020570930502208  
a2 0.036153565920184   0.036842536190572  -0.343739398225173   
a3 0.000000000036720 0    0.030511405180535   
a4 -0.226777616896603 -0.221670656166991 0.106467752436635 

a5 -0.000000001110893 0 -0.010641721985738   
a6 0.257385829891254 0.220397197020872 0.017903797213262 
b0 1.000000000000000 1.000000000000000 1.000000000000000  
b1 0.778160027354846 0.000000000000001   -0.039857361724509   
b2 0.000000003719506 0.938467853575626   0.419344686526277  
b3 0.000000004530558 0.000000000000001      -0.004051229999570   
b4 0.398952289306462 0.647307834964657 0.118112308761217 
b5 0.000000002265440 0.000000000000001   -0.000732375998110   
b6 0.112696003118024 0.296710397276996 0.018839515908309 

 
The error between the magnitudes of the given FIR and approximated IIR-long15, 

Prony’s, Yule-Walker filters can be calculated by using the Eq.(4.19) as, 

IIRFIR−ε       = 0.188878628184022 

PRONYFIR−ε  = 0.659527064041658 

YULEFIR−ε     = 0.210240826900779 
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Figure 5.34. Frequency responses of filters 
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Figure 5.35. Frequency responses of filters 



The normalized gain curve of the 12th order FIR characteristics and the gain of its 6th 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.34. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on  Fig.5.35. The normalized phase response 12th order FIR characteristics and the 

gain of its 6th order IIR, Prony’s, Yule-Walker representations are plotted on 

Fig.5.36. 
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Figure 5.36. Phase responses of filters 
 
 
 
In this example the order of IIR filter was increased to 6th and 12th FIR filter is 

converted with this method. 15 terms of 6th order IIR long division results are used 

and the error of IIR filters is better than the Yule-Walker and Prony’s Metods.  

 

Phase responses of Yule-Walker and IIR filters are linear in the passband. 

 
 
 
 
 



Example 13 
 
In this example 12th Order arbitrary frequency response FIR filter is converted to 6th 

Order IIR filter and the phase and magnitude characteristics are compared with the 

6th Order Prony’s and Yule-Walker Methods. FIR filter coefficients are 

c0=0.012689734583583   
c1=0  
c2=-0.075479149435609 
c3=0  
c4=-0.088927318590436 
c5= 0  
c6=0.402343750000000   

c7=0 
c8=-0.088927318590436   
c9=0 
c10= -0.075479149435609    
c11=0 
c12=0.012689734583583 
 

The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. 13 terms of the long division result 

are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as in Table 12. 

 

Table 12. Coefficients of Filters 

 IIR-long15 Prony Yule-Walker 
a0 0.012689734584362 0.012689734583583  0.367279445806776 
a1 0.000000000002885 0 0.004084890652672 
a2 -0.071988081319712 -0.071711428985743 -0.244979561019126  
a3 -0.000000000025012 0     -0.004476379015173  
a4 -0.106098612325383  -0.107888287670756 -0.076417541533428 

a5 -0.000000000067567   0    0.002171215998614   
a6 0.362457725202785 0.356490834081067 0.054388906025997 
b0 1.000000000000000   1.000000000000000 1.000000000000000 
b1 0.000000000298994 0 0.028939990676344 
b2 0.272026050090196   0.296910894790524 -0.114164324280983 
b3 0.000000000323808   0 0.002712165011677 
b4 0.234434626223041 0.271842779209678 0.028400613477566 
b5 0.000000000413867   0 0.000228687654152  
b6 0.047157236519489 0.084244123704320 -0.017172285450162 

 
The error between the magnitudes of the given FIR and approximated IIR-long15, 

Prony’s, Yule-Walker  filters can be calculated by using the Eq.(4.19) as, 

IIRFIR−ε       = 0.157746612352874 

PRONYFIR−ε  = 0.204388573426533 

YULEFIR−ε     =0.156863565518397 
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Figure 5.37. Frequency responses of filters 
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Figure 5.38. Frequency responses of filters 



The normalized gain curve of the 12th order FIR characteristics and the gain of its 6th 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.37. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.38. The normalized phase response 12th order FIR characteristics and the 

gain of its 6th order IIR, Prony’s, Yule-Walker representations are plotted on 

Fig.5.39. 
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Figure 5.39. Frequency responses of filters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 14   
 
In this example 15th order lowpass FIR filter which has 0.2 cutoff frequency is 

converted to 6th order IIR filter and the phase and magnitude characteristics are 

compared with the 6th order Prony’s and Yule-Walker Methods. FIR filter 

coefficients are 

c0=-0.003471276445115   
c1=-0.004851203731090   
c2=-0.004245630750047    
c3=0.008891029945241  
c4=0.044237316275544    
c5= 0.100233107352696     
c6=0.160100278194831    
c7=0.199106379157941 

c8=0.199106379157941    
c9=0.160100278194831    
c10= 0.100233107352696    
c11=0.044237316275544    
c12=0.008891029945241 
c13=-0.004245630750047    
c14=-0.004851203731090   
c15=-0.003471276445115   

The equations are organized with these new FIR coefficients and solved by the Trust 

Region Method with the calculated starting point. 16 terms of the long division result 

are equated to the FIR coefficients and starting points are calculated by using 

Eq.(4.7) and Eq.(4.8). The coefficients of filters are found as 

 

Table 13. Coefficients of filters 

 IIR-long19  Prony Yule-Walker 
a0 -0.003358854462931   -0.003471276445115   0.019948272500534   
a1 0.003405139390548  0.011317653283646  0.016979826822949   
a2 -0.000807737808617   -0.016180435035325   0.027536020738919   
a3 0.009379029292630 0.023472987137416 0.017754439358695 
a4    0.023442456281692 -0.012225396685590   0.009700320418275   

a5 0.007512861472165     0.003903038256586   0.001383598012662  
a6 0.030584528591641 0.000205865938038 -0.001566005278995 
b0 1.000000000000000   1.000000000000000 1.000000000000000 
b1 -2.454872639421747   -4.657899556657375   -2.372922782859964   
b2 2.671142318992081  9.947702103118671 2.629042593767042  
b3 -1.619850697458879 -12.405973953133509 -1.676147628149048 
b4 0.615528132179041  9.506251153043911  0.628755331994045  
b5 -0.184450404500229   -4.241427118152392   -0.125542365948521   
b6 0.043848949570486 0.862051491620245 0.009601143253991 

 

The error between the magnitudes of the given FIR and approximated IIR-long19, 

Prony’s, Yule-Walker  filters can be calculated by using the Eq.(4.19) as, 

IIRFIR−ε       = 0.078826319159028 

PRONYFIR−ε  = 2.528988481964258 

YULEFIR−ε     =0.138553927954529 
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Figure 5.40. Frequency responses of filters 
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Figure 5.41. Frequency responses of filters 



The normalized gain curve of the 12th order FIR characteristics and the gain of its 6th 

order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.40. The 

characteristics are plotted in logarithmic scale to compare the stopbands of the filters 

on Fig.5.41. The normalized phase response 12th order FIR characteristics and the 

gain of its 6th order IIR, Prony’s, Yule-Walker representations are plotted on Fig.5.42 
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Figure 5.42. Phase responses of filters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 15 
 
An algorithm is prepared for roundation of coefficients of IIR, FIR, Yule-Walker 

filters from 1 bit to 20 bit for the Example 13. QFIR, QIIR, QYULE coefficients are 

the quantized coefficients of the FIR, IIR, Yule-Walker filters.  Errors are calculated 

like in Eq.(4.32) to show the effect of coefficient quantization 

 

Table 14. Errors between the  quantized and un-quantized filters 

Bit QFIR-FIR QIIR-IIR QYULE-YULE 

1 4.5075 NaN NaN 
2 2.4051 NaN 4.4994 
3 1.2804 NaN 4.4994 
4 0.6566 4.506 4.4994 
5 0.354 2.0209 2.6012 
6 0.2034 0.6922 0.2353 
7 0.1131 0.2295 0.2643 
8 0.037 0.1095 0.1563 
9 0.0265 0.1113 0.0352 

10 0.0117 0.0466 0.0714 
11 0.0052 0.0099 0.0155 
12 0.0037 0.0046 0.0186 
13 0.0017 0.0065 0.0085 
14 0.0008 0.0034 0.0007 
15 0.0004 0.0015 0.0008 
16 0.0002 0.0008 0.0009 
17 0.0001 0.0003 0.0002 
18 0.0001 0.0001 0.0003 
19 0 0 0 
20 0 0 0.0001 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Errors are plotted against the number of bit roundation in Fig.5.43 
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Figure 5.43. Bit roundation errors of filters 

 

The results given in Table 15 for this example show that more bit results with less 

error. 10 and 12 bit roundation of coefficients gives a acceptable error. After the 

roundation of 12, the error is not so much changing. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



Example 16 
 
An algorithm is prepared for roundation of coefficients of IIR, FIR, Yule-Walker 

filters from 1 bit to 20 bit for the Example 11. QFIR, QIIR, QYULE coefficients are 

the quantized coefficients of the FIR, IIR, Yule-Walker filters.  Errors are calculated 

like in Eq.(4.32) to show the effect of coefficient quantization 

 

Table 15. Errors between the quantized and un-quantized filters 

Bit QFIR-FIR QIIR-IIR QYULE-YULE 

1 4.2161 3.6364 2.3228 
2 2.4451 2.022 1.5749 
3 1.3208 1.3589 1.4378 
4 0.398 0.3819 0.3953 
5 0.398 0.2439 0.2037 
6 0.176 0.125 0.1654 
7 0.0688 0.0458 0.0642 
8 0.0369 0.0365 0.0227 
9 0.0265 0.0133 0.0101 

10 0.0107 0.0082 0.0065 
11 0.0059 0.0027 0.0042 
12 0.0022 0.0023 0.0015 
13 0.0011 0.0009 0.0008 
14 0.0004 0.0004 0.0005 
15 0.0004 0.0003 0.0003 
16 0.0002 0.0001 0.0001 
17 0 0.0001 0 
18 0 0 0 
19 0 0 0 
20 0 0 0 

 
 Errors are plotted against the number of bit roundation in Fig.5.44. 
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Figure 5.44. Bit roundation errors of filters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 17 
 
An algorithm is prepared for roundation of coefficients of IIR, FIR, Yule-Walker 

filters from 1 bit to 20 bit for the Example 12. QFIR, QIIR, QYULE coefficients are 

the quantized coefficients of the FIR, IIR, Yule-Walker filters.  Errors are calculated 

like in Eq.(4.32) to show the effect of coefficient quantization. 

 

Table 16. Errors between the quantized and un-quantized filters 

bit QFIR-FIR QIIR-IIR QYULE-YULE 

1 3.848 2.8269 2.1157 
2 0.8781 1.7828 1.11 
3 0.8781 0.3489 0.3421 
4 0.5064 0.4067 0.471 
5 0.1184 0.2337 0.2317 
6 0.1184 0.0595 0.0404 
7 0.0595 0.0523 0.0372 
8 0.031 0.0179 0.0285 
9 0.0173 0.008 0.0242 

10 0.01 0.0099 0.0039 
11 0.002 0.0036 0.0029 
12 0.002 0.0016 0.002 
13 0.0009 0.0013 0.0012 
14 0.0007 0.0003 0.0006 
15 0.0002 0.0001 0.0002 
16 0.0001 0.0002 0.0001 
17 0.0001 0.0001 0 
18 0 0 0 
19 0 0 0 
20 0 0 0 

 
 Errors are plotted against the number of bit roundation in Fig.5.45 
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Figure 5.45. Bit roundation errors of filters 
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APPENDIX 
   

File name: myfilter5.m 

%Non-linear equations is defined as a function of MATLAB in this program 

%Coefficients of IIR filter is defined like 

% a0=x(1) 

% a1=x(2) 

% a2=x(3) 

% b1=x(4) 

% b2=x(5) 

function f=flow20410(x) 
a=0.028406470015011 
b=0.237008213590703 
c=0.469170632788571 
d=0.237008213590703 
e=0.028406470015011 
  
f=[x(1)-a; 
    x(2)-x(1)*x(4)-b; 
    x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)-c; 
    -x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4))-d; 
    -x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-
x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-e; 
    -x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-
x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))-x(5)*(-x(4)*(x(3)-
x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4))); 
    -x(4)*(-x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-
x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))-x(5)*(-x(4)*(x(3)-
x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4))))-x(5)*(-x(4)*(-x(4)*(x(3)-
x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-
x(1)*x(4))-x(5)*x(1))); 
    -x(4)*(-x(4)*(-x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-
x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))-x(5)*(-
x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4))))-x(5)*(-x(4)*(-
x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-
x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))))-x(5)*(-x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-
x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-
x(5)*x(1)))-x(5)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-
x(1)*x(4)))); 
    -x(4)*(-x(4)*(-x(4)*(-x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-
x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))-x(5)*(-



x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4))))-x(5)*(-x(4)*(-
x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-
x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))))-x(5)*(-x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-
x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-
x(5)*x(1)))-x(5)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-
x(1)*x(4)))))-x(5)*(-x(4)*(-x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-
x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))-
x(5)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4))))-x(5)*(-
x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-
x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))); 
    -x(4)*(-x(4)*(-x(4)*(-x(4)*(-x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-
x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))-
x(5)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4))))-x(5)*(-
x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-
x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))))-x(5)*(-x(4)*(-x(4)*(-x(4)*(x(3)-
x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-
x(1)*x(4))-x(5)*x(1)))-x(5)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-
x(5)*(x(2)-x(1)*x(4)))))-x(5)*(-x(4)*(-x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-
x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-
x(5)*x(1)))-x(5)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-
x(1)*x(4))))-x(5)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-
x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))))-x(5)*(-x(4)*(-x(4)*(-
x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-
x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))-x(5)*(-x(4)*(x(3)-x(4)*(x(2)-
x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4))))-x(5)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-
x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-
x(5)*x(1))))-x(5)*(-x(4)*(-x(4)*(-x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-
x(5)*(x(2)-x(1)*x(4)))-x(5)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1)))-x(5)*(-
x(4)*(x(3)-x(4)*(x(2)-x(1)*x(4))-x(5)*x(1))-x(5)*(x(2)-x(1)*x(4)))))] 
  
 
 

File name: ahmet5.m 

Solution of 5 non-linear equation 

x0 = [1;1;1;1;1];           % Make a starting guess at the solution 

options=optimset('Display','iter');   % Option to display output 

[x,fval] = fsolve(@myfilter6,x0,options)  % Call optimizer 

 

 

 

 

 

 

 



Filename Error.m 
 
The results of  ahmet5.m are used for calculation errors and plottings 
 
format long 
 
a=[0.028406470015011 0.218908140988611 0.325577028758799] 
b=[1.000000000000000 -0.637181339058579 0.261335071549222] 
[hlong5,w]=freqz(a,b,128);  
 
aa=[0.028406061665725 0.220349205987817 0.342383645564858] 
bb=[1 -0.570062338402709 0.178337464899862] 
[hlong6,w]=freqz(aa,bb,128); 
 
 
aaa=[0.028406068578503 0.220630895714169 0.346932266346568] 
bbb=[1 -0.553849004810709 0.161883369593791] 
[hlong7,w]=freqz(aaa,bbb,128); 
 
d=fir1(4,.2); 
[hfir,w]=freqz(d,1,128); 
 
ahfir=abs(hfir); 
t = 0:(1/127):1 
f=t' 
m =ahfir 
[by,ay] = yulewalk(2,f,m); 
[hy,w] = freqz(by,ay,128)   
 
 
[bb1,aa1]=prony(d,2,2); 
[hp,w]=freqz(bb1,aa1,128) 
 
ahfir=abs(hfir); 
ahlong5=abs(hlong5); 
ahlong6=abs(hlong6); 
ahlong7=abs(hlong7); 
 
ahy=abs(hy); 
ahp=abs(hp); 
 
plot(w/pi,(abs(hfir)),'-',w/pi,(abs(hp)),'--',w/pi,(abs(hy)),':',w/pi,(abs(hlong7)),'-.'); 
ylabel('Magnitude') 
xlabel('Normalized Frequency (\pi x rad/sample)') 
legend('FIR-4.Ord.','Prony-2.Ord.','Yulewalk-2.Ord.','IIR-2.Ord-Long7',1); 
 
plot(w/pi,10*log10(abs(hfir)),'-',w/pi,10*log10(abs(hp)),'--
',w/pi,10*log10(abs(hy)),':',w/pi,10*log10(abs(hlong7)),'-.'); 
ylabel('Magnitude(dB)') 
xlabel('Normalized Frequency (\pi x rad/sample)') 



legend('FIR-4.Ord.','Prony-2.Ord.','Yulewalk-2.Ord.','IIR-2.Ord-Long7',1); 
 
 
plot(w/pi,unwrap(angle(hfir)),'-',w/pi,unwrap(angle(hp)),'--
',w/pi,unwrap(angle(hy)),':',w/pi,unwrap(angle(hlong7)),'-.')  
legend('FIR-4.Ord.','Prony-2.Ord.','Yulewalk-2.Ord.','IIR-2.Ord-Long7',3); 
ylabel('Phase(rad)') 
xlabel('Normalized Frequency (\pi x rad/sample)') 
 
ef5=abs(ahfir-ahlong5); 
ef6=abs(ahfir-ahlong6); 
ef7=abs(ahfir-ahlong7); 
ef10=abs(ahfir-ahy); 
ef9=abs(ahfir-ahp); 
 
errorlong5=(ef5'*ef5)^0.5 
errorlong6=(ef6'*ef6)^0.5 
errorlong7=(ef7'*ef7)^0.5 
erroryulewalk=(ef10'*ef10)^0.5 
errorprony=(ef9'*ef9)^0.5 
 

 

Filename: quantization.m 

 

FIR IIR and Yule-Walker  filter coefficients are quantized by rounding, and  up to 1 

to 20 digit 

    
format long 
  
a15=[-0.003358854462931 0.003405139390548 -0.000807737808617 
0.009379029292630 0.023442456281692 0.007512861472165 0.030584528591641] 
b15=[1 -2.454872639421747 2.671142318992081 -1.619850697458879 
0.615528132179041 -0.184450404500229 0.043848949570486] 
[hlong15,w]=freqz(a15,b15,128);  
  
d=fir1(15,.2); 
[hfir,w]=freqz(d,1,128); 
ahfir=abs(hfir); 
t = 0:(1/127):1 
f=t' 
m =ahfir 
[by,ay] = yulewalk(6,f,m); 
[hy,w] = freqz(by,ay,128) 
  
  
ahy=abs(hy); 
  



ahlong15=abs(hlong15); 
  
for p=1:20 
k(p)=p 
    q=quantizer([40,p],'round'); 
    qa15=quantize(q,a15); 
    qb15=quantize(q,b15); 
     qay=quantize(q,ay); 
    qby=quantize(q,by); 
     
    qd=quantize(q,d); 
   
     [qhy,w]=freqz(qby,qay,128);  
    [qhfir,w]=freqz(qd,1,128); 
 [qhlong15,w]=freqz(qa15,qb15,128);   
 aqhlong15=abs(qhlong15); 
 aqhfir=abs(qhfir); 
 aqhy=abs(qhy); 
s1=(aqhlong15-ahlong15); 
s2=(aqhfir-ahfir); 
s3=(aqhy-ahy); 
FIRE(p)=(s2'*s2)^0.5 
IIRE(p)=(s1'*s1)^0.5 
YULEE(p)=(s3'*s3)^0.5 
end 
plot(k,IIRE,':',k,FIRE,'-',k,YULEE,'--') 
legend('QFIR-FIR','QIIR-IIR','QYULE-YULE',1); 
ylabel('Difference of Error') 
xlabel('Number of Bit Roundation') 
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