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ABSTRACT 

 

COMPUTER AIDED DESIGN OF ACTIVE AND PASSIVE ANALOG 

FILTER AND ITS APPLICATIONS 

 

HASTAOĞLU, Müslüm Serkan 

M.Sc. in Electrical and Electronics Eng. 

Supervisor: Prof. Dr. Arif NACAROĞLU 

December 2008, 50 pages 

 

In this thesis; a computer programming related with realizations of required filters 

with the help of approximation procedures are presented. The program contains 

Butterworth, Chebyshev and Inverse Chebyshev approximations to realize the 

required LC filters. For the elliptic approximation, the zeros and denominator 

polynomials of the low-pass and high-pass filter transfer functions are obtained. 

 

Three types of approximations namely Butterworth, Chebeyshev, Inverse 

Chebeyshev will be used to get the realized network elements. For Elliptic 

approximation, the transfer function will be obtained. The characteristics of the 

specific filters; pass band frequency (wp), the maximum deviation of the magnitude 

characteristic (Kp), stop band frequency (ws), the minimum attenuation of the 

magnitude characteristic (Ks) and the type of approximation required will be entered 

to the computer program written in Visual C# by user, and the program will calculate 

the value of network elements that realize the specific filter. Also pole locations, 

quadratic factors and denominator coefficients of magnitude function )(sN used for 

approximation will be shown in the display. 

 

Key words: pass band frequency (wp), stop band frequency (ws), the maximum 

deviation of the magnitude characteristic (Kp), the minimum attenuation of the 

magnitude characteristic (Ks). 
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ÖZET 

 

AKTİF ve PASİF FİLTRELERİN BİLGİSAYAR DESTEKLİ DİZAYNI ve 

UYGULAMALARI 

 

HASTAOĞLU, Müslüm Serkan 

Yüksek Lisans Tezi, Elektrik Elektronik Müh. Bölümü 

Tez Yöneticisi: Prof. Dr. Arif NACAROĞLU 

Aralık 2008, 50 sayfa 

 

Bu tezde, yaklaşım metotları ile istenilen filtrelerin gerçekleşmesini sağlayan 

bilgisayar programı sunulmuştur. Çalışılan bilgisayar programı, istenilen filtrenin 

gerçekleşmesini elde etmek için, Butterworth, Chebyshev ve Ters Chebyshev türü 

yaklaşım metodlarını içermektedir. Eliptik tür yaklaşım metodu ile alçak ve yüksek 

geçiren filtrelerin transfer fonksiyonu elde edilecektir. 

 

Filtre devresini gerçekleştirecek devre elemanlarına ulaşmak için 3 tip yaklaşım 

metodu kullanılmıştır. Bunlar Butterworth, Chebyshev ve Ters Chebyshev 

yaklaşımlarıdır. Eliptik yaklaşım kullanılarak transfer fonksiyonu elde edilmiştir. 

Özel filtreleri karakterize eden: geçiren frekans (wp), geçme bandı dalgalanma değeri 

(Kp), durduran frekans (ws), durdurma bandı dalgalanma değeri (Ks) ve üzerinde 

çalışılacak yaklaşım metodu, kullanıcı tarafından programa girdi olarak verilecektir. 

Visual C# ile yazılan program, özel filtreyi gerçekleştiren devre eleman değerlerini 

hesaplayarak, ekrana devre ile beraber verecektir. Yaklaşım metotlarında, devre 

eleman değerlerini vermeyi sağlayan matematiksel fonksiyonların sonuçları, ekranda 

görülebilecektir. 

 

Anahtar kelimeler: geçiren frekans (wp), geçme bandı dalgalanma değeri (Kp), 

durduran frekans (ws), durdurma bandı dalgalanma değeri (Ks). 
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CHAPTER 1 

 

INTRODUCTION 

 

In this chapter a brief overview of the filters will be given. In the last decades the 

progresses on the communication systems, especially high frequency 

communications networks [1], has required high quality filters. Since in the real time 

high frequency communication applications, analog filters have some advantages 

versus the digital filters [2], quick and correct determination of the analog network 

elements has been more important. Although there are some several indirect 

synthesis techniques to design the analog filters, in the study, mathematical 

approximation methods are investigated. This method works on any kind of filter 

types including the transformations. 

 

1.1 Definition of Filter 

 

The sinusoidal steady frequency responses of the network are of significance in 

many applications, especially in communications and control systems. A specific 

application is in electric filters that block out or eliminate signals with unwanted 

frequencies and pass signals of the desired frequencies. The filters are used in radio, 

T.V. and telephone systems to separate one broadcast frequency from another [3]. 

 

Owing to their electronic structures, they may be classified either in terms of their 

characteristics or types of the components. In many different applications, time 

domain dependence of their characteristics may also be used for some applications 

such as time-varying, periodically time-varying or adaptive filters.
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1.2 Types of Filters 

 

In terms of their frequency response characteristics, the filters may be classified in 

many different names. Although the phase filters have some application areas such as 

matching, equalization, etc., this study is focused on the magnitude characteristics 

and therefore the amplitude filters. Due to the amplitude characteristics versus the 

frequency domain, the filters, in general, may be classified as low pass, high pass, 

single or multi band pass and stop band filters.  

  

1.2.1 Low-pass filters 

 

Almost in all audio and video applications the low-pass filters are commonly used. 

They allow for easy passage of low-frequency harmonics of the signals from source 

to load, and difficult passage of high-frequency terms. An ideal low-pass filter 

magnitude characteristic is given in Figure 1.1. For low frequencies ( cωω ≤ ) the 

gain, ideally assumed to be unity (or more for active structures) and also it is 

assumed that the gain drops to zero as sharp as possible for frequencies greater 

than cω . The decaying interval (transition region) should be as short as possible [4]. 

 

1.2.2 High-pass filters 

 

The high-pass filter has the property that low frequencies (stop-band) are blocked 

while high-frequencies (pass-band) are transmitted. As in the low-pass filters, the 

transition region between stop-band and pass-band regions must be as narrow as 

possible. Ideally the transition width is assumed to be zero and gain suddenly 

increases to unity (for passive filters) at the cut-off frequency and for higher 

frequencies. High-pass filters are also widely used in the communication and control 

systems [5]. 
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Figure1.1 Ideal low-pass filter         Figure1.2 Ideal high-pass filter 

 

1.2.3 Band-pass filters 

 

The third general filters type that will be considered here is the band pass filter. It has 

the property that one band of frequencies (pass-band) is transmitted while two bands 

of frequencies, namely, those below and above the pass-band are blocked (the stop 

bands). In many communication applications the band-pass filters are used as 

frequency (band) selection networks and sometimes not only the unique pass band 

region but also more pass-band regions may be used for some specific applications. 

The range of frequencies that is passed is called the bandwidth (BW) and is defined 

the difference between the frequencies that define the edges of the pass band. Filter 

circuits can be designed to accomplish this task by combining the properties of low-

pass and high-pass into a single filter. This case is only applicable for unique pass 

band region. An ideal band-pass filter is shown in Figure 1.3 [6]. 

 

1.2.4 Band-stop filters 

  

The band stop filters, also called as band-elimination filter, band-reject, or notch 

filter has the property that are band of frequencies (the stop band) is blocked while 

two bands of frequencies, namely those below and above the stop band are passed 

(pass band). The range of frequencies that is blocked is called the bandwidth (BW) 

and is defined as the difference between the frequencies that define the edges of the 

stop band. In ideal case, as usually the transition band is assumed as narrow as 

possible. A band-stop filter is shown in Figure 1.4 [7]. 
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Figure1.3 Ideal band-pass filter        Figure1.4 Ideal band-stop filter 

 

1.3 Analog Filters 

Analog networks [8] which operate on continuous time signals are widely used in 

communication, control and electronic applications. These networks use the analog 

components such that the terminal characteristics may or may not be linear. In 

particular, linear time-invariant (LTI) analog filters can be characterized by their 

(continuous) impulse response )(th where  is time. Since the input signals 

processed in analog networks are continuous, the analog networks do not require the 

use of analog-digital converters and since the sampling is not used, the speed of these 

networks are limited only by the time constants of the energy storage elements. For 

time varying and time invariant cases the Fourier Transformation is possible used to 

obtain the complex domain frequency characteristics which gives both magnitude 

and phase characteristics of the analog network. The magnitude characteristics 

similar to one shown in the previous section results as the analog filters.  Instead of a 

difference equation, analog filters may be described by a differential equation. 

Instead of using the z transform to compute the transfer function, the Laplace 

transform can be used. Every aspect of the theory of digital filters has its counterpart 

in that of analog filters. In fact, one can think of analog filters as simply the limiting 

case of digital filters as the sampling-rate is allowed to go to infinity [9]. 

1.4 Filter Approximation Methods  

The majority of practical filter specifications are based on steady-state performance 

requirements [10]. These are usually given for magnitude and/or phase 

characteristics as a function of a real frequency variable ω  (radians per second) or f 
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(hertz). The actual synthesis techniques used to find active or passive filter 

realizations, however, invariably use the network function, a ratio of polynomials in 

the complex frequency variable s, as a starting point. The process of relating 

sinusoidal steady-state characteristics to a network function is called approximation. 

Figure 1.5 illustrates the difference between synthesis and approximation. 

 

 

 

Figure1.5 Difference between approximation and synthesis. 

 

There are many mathematical approximation methods. In this study four of them will 

be reviewed and these approximations will be used for the computer aided design of 

the filters. These approximations methods are: 

1 ) Butterworth Approximation 

2 ) Chebeyshev Approximation 

3 ) Inverse Chebeyshev Approximation 

4 ) Elliptic Approximation 

 

1.5 Use of Filter Approximation Methods 

 

Especially in communication, when a filter is needed that separates some frequencies 

from others within mixed-frequency signals, the specific characteristics are given and 

with an approximation method given above, active or passive filter synthesis can be 

calculated within a set of mathematical calculations 

 

The similar approach is also used for the design of the phase filters, delay filters, etc. 

but in general, gain approximation is more straight forward method to design an 

amplitude filter. 

 

The basic principle of approximation method is to predict the suitable ω  domain 

function which sketches the similar characteristics curve with the given properties. 

Since the proposed functions are well known and ω  to s domain transformations 
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result with the realizable transfer functions, they are still widely used and most 

popular techniques for filter synthesis. 

 

This thesis is organized as follows: 

 

Basic filter parameter is given in Chapter 2. The general synthesis methods, 

approximation methods, normalization and denormalizations are reviewed. The 

procedure from s domain transfer functions analog filter implementation is given in 

this chapter. 

 

Chapter 3 presents the parameters used in the computer aided design of the analog 

filters. Since the main aim of this study is to build up a computer program which is 

used to design a filter, an interface is introduced in this chapter. Computer interface 

is user independent and it is easy to use. The basic points of the prepared program 

and algorithm are also presented in this chapter. 

 

Chapter 4 presents the program. The computer program is run for some specific 

examples and the results are given in this chapter. 

 

The conclusion and future proposals of this work is given in Chapter 5. The program 

is attached to the thesis on a CD. 
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CHAPTER 2 

 

REVIEW OF FILTER DESIGN 

 

Approximation types of filters with their specifications are the main subject studied 

in this chapter. 

 

2.1 Approximation 

 

The majority of practical filter specifications are based on steady-state performance 

requirements. The process of relating sinusoidal steady-state characteristics to a 

network function is called approximation. One of the most frequently used types of 

approximation is that relating the magnitude )( jwN , specified either by a 

mathematical expression, a set of data values, or a plotted vawe shape, to a rational 

function )(sF , so that in some specified sense )( jwF approximates )( jwN . Ideally 

of course it is predicted the two magnitude functions must be identical and in many 

cases this is possible. Magnitude specification is usually given in decibels [20 log 

N(jw)|], abbreviated dB. In fact the decibels of gain of a filter relate to the ratio 

between input and output voltages )/log(20 VinVoutdB = [11] 

 

2.2 Maximally Flat Magnitude Squared Function | )( jwN | 2  

 

Firstly the properties the magnitude )( jwN  must be overviewed. The necessary 

properties beginning with considering the | 2)( jwN | square root of )( jwN are: 

 

| 2)( jwN | = )()()(*)( jwNjwNjwNjwN −=      (2.1)
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where the superscript asterix indicates the complex conjugate and where the 

justification for the right member of the equation is that, for rational functions with 

real coefficients, the conjugate of function is found by the replacing the variable by 

its conjugate, that is, by replacing jw  with jw− . Now let )(sN have the form 

 

....

....
)(

4
4

3
3

2
21

4
4

3
3

2
21

+++++

+++++
=

sdsdsdsdd

scscscscc
sN

o

o                (2.2) 

 

The term )( jwN will have the form: 

 

......)(........

......)(........
)(

3
31

4
4

2
20

3
31

4
4

2
20

+−+−+−

+−+−+−
=

wdwdjwdwdd

wcwcjwcwcc
jwN              (2.3) 

 

Inserting this relation in the right member of equation (2.1), it is seen that first 

property of | 2)( jwN |, that it will be a ratio of even polynomials. 

 

Evaluating (1) by letting jsw /= , the function )( 2
sT may be defined as 

 

| )( jwN | )(*)(
/

2
sNsN

jsw
−=

=
         (2.4) 

 

In the right member of equation (2.4), the substitution of s−  for s  as the argument 

of )(sN simply reflects the pole and zero positions of )(sN through the origin of s 

plane. As a result the product of )(sN )( sN −  has poles and zeros that symmetrically 

located with respect to both the real and the imaginary axes. This is called quadrantal 

symmetry. In general the numerator and denominator polynomials of  )( 2
sT  can 

have three types of factors: 

1) bass ++ 24  where a and b may be positive or negative 

2) bas +2  a and b have opposite signs 

3) bas +2  where a and b have same signs. 

 

=)( 2
sT
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The first and second types have the necessary quadrantal symmetry but the third type 

does not unless it has even multiplicity, that is, unless it appears 22 )( bas +  , 

42 )( bas + , and so on. In this case the resulting even-order ωj  axis zeros have the 

necessary symmetry. 

 

Now it is summarized the properties of | )( jwN | 2  to be the magnitude squared 

function of some rational function )(sN , it is necessary and sufficient that: [10] 

 

1) The function | )( jwN | 2  be ratio of even polynomials in ω  

2) In the function )( 2
sT defined in equation (2.4), any poles and zeros on the jw  

axis are of even order. 

 

The sufficiency of the two conditions given above is readily demonstrated by 

factoring )( 2
sT  into the product )(*)( sNsN − , taking the left-half-plane poles and 

half of any even-order ωj -axis pole pairs from )( 2
sT  as the poles of N(s) and 

similarly assigning either right or left-half plane zeros and half of any even-order 

ωj -axis zeros from )( 2
sT  as the zeros of N(s). This restriction of using only the 

left-half-plane poles from )( 2
sT  is of course simply a stability consideration. 

 

The necessary and sufficient conditions developed above for magnitude-squared 

functions in general can be applied to specific filter characteristics. Considering the 

determination of magnitude-square function that, in the low-frequency range starting 

at zero, has as flat a characteristic as possible. One way of obtaining such flatness is 

to set as many derivatives of the function as possible to zero at 0=w  rad/s. 

frequency. Such a function is called maximally flat. This can be done by writing an 

expression for a general-squared function | )( jwN | 2  as follows: 

 

| )( jwN | 2 =
.....1

.....1
4

2
2

1

4
2

2
12

+++

+++

wawa

wbwb
H                  (2.5) 

 

Dividing denominator into the numerator, it can be obtained 
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( ) ( )[ ].....1)( 4
11

2
122

2
11

22
+−−−+−+= ωωω baaababHjN    (2.6) 

 

Considering a general Mac Lauren series, i.e., a Taylor series expansion at the origin, 

of an arbitrary function )(ωF . This has the form 

 

.......
!4

)0(

!3

)0(

!2

)0(

!1

)0(
)0()( 4

)4(
3

)3(
2

)2()1(

ωωωωω
FFFF

FF ++++=         (2.7) 

 

where )0()(i
F is the ith derivative of )(ωF  evaluated at =ω 0. Comparing this 

expression with the expansion for | )( jwN | 2  given in equation (2.6) and recalling 

that such an expansion must be unique, it is seen that due to the even nature of 

| )( jwN | 2 , all its odd-ordered derivatives are already zero. In addition for the second 

derivative to be zero, it is required that the coefficients 1a  and 1b  be equal. Similarly 

for the fourth derivative to also be zero requires that, in addition, 2a  equal 2b , etc. 

Thus the general maximally flat magnitude squared function | )( jwN | 2  is 

characterized by the restriction that 

 

ii ba =                          (2.8) 

 

for as many coefficients as possible. [10] 
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2.3 Specifications 

 

 

 

 

Figure 2. 1 Low-pass filter specification 

 

As it is seen in Figure 2.1 filtering specifications consist of a pass band set and a stop 

band set. They have the form as below: 

1. Passband: In the passband pww ≤≤0 radians per second ( pff ≤≤0 hertz) 

the maximum deviation of the magnitude characteristic is pK dB. 

2. Stopband: In the stop band sww ≥ radians per second ( sff ≥ hertz) the 

minimum attenuation of the magnitude characteristic is sK dB. The attenuation is 

measured from the greatest passband value of the characteristic. 

 

To meet the specifications, the actual magnitude characteristics must lie out of the 

shaded area.  
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It can be summarized that sets of specifications will be given are pw (pass band 

frequency), sK dB. (maximum deviation of magnitude characteristic ), sw  (stop band 

frequency) and Ks dB(minimum attenuation of magnitude characteristic ) [11] 

 

Using the given parameters which defined the characteristics of the filter, the 

corresponding and necessary “order” is calculated. The order for any approximation 

method reveals the complexity of the filter. Higher order requires more components 

in the design. For different approximations since different mathematical formulation 

is used the various methods are used to find the polynomial characteristics 

(coefficients of the polynomials) which satisfy the given properties. The normalized 

transfer function N(s) must be obtained in such way that the coefficients must satisfy 

the certain properties, especially the reliability. The algorithmic formulation of the 

four different approximation procedures are given below in Sections  2.3.1 to 2.3.4. 

 

2.3.1 Butterworth approximation 

 

Let’s consider a low-pass network. To approximate such a low-pass function, we can 

choose a magnitude squared function | )( jwN | 2  that satisfies the maximally flat 

criteria at 0=w  and will generate the desired flatness of the curve. To provide 

eventual drop-off of the characteristics at higher frequencies, the numerator of 

)( jwN will be a constant and all the coefficients of equation (2.5) will be zero. From 

a maximally characteristics from equation (2.8), the coefficients ia  must also be set 

to zero, except the highest order one. The resulting magnitude-squared function has 

the form 

 

| )( jwN | 2 =
n

w

H
2

2

1+
                     (2.9) 

 

This function is called a normalized Butterworth function. It is also the simplest 

known rational function that gives a maximally flat low-pass filter characteristic. For 

high value of n, this function approximately unit for ω <1 and approximately zero for 

ω >1 which is the basic principle of the function being belonging to the normalized 

ideal case [12]. 
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2.3.2 Chebyshev approximation 

 

In the Butterworth approximation, the approximating effect is concentrated at a 

single frequency resulting not enough sharp transition from pass band to stop band.  

But now with a different type of approximation named equal-ripple characteristic the 

approximating effect is spread over the entire pass band. 

 

The normalized low-pass equal-ripple magnitude approximation may be developed 

by writing the magnitude squared function | )( jwN | 2  in the form 

 

| )( jwN | 2 =
)(1 22

2

wC

H

nε+
                 (2.10) 

 

where )(wCn
is a polynomial of order n. If these polynomials have properties 

 

1)(0 2
≤≤ wCn   for 10 ≤≤ w                           (2.11.a) 

 

1)(2
≥wCn   for 1≥w                  (2.11.b) 

 

sharp transition from pass band to stop band will be obtained. The value of ε  

determines the limit of variation in the pass band 10 ≤≤ w  rad/s. 

Functions having the form of equation (2.10) in which the quantities )(wCn are 

Chebyshev polynomials are called Chebyshev functions or equal-ripple function 

[13]. 

 

2.3.3 Inverse Chebyshev approximation 

 

The Chebyshev magnitude approximation is characterized by equal-ripple behavior 

in the pass band and monotonic behavior in the stop band. A related type of 

magnitude characteristic named Inverse Chebeyshev has a monotonic behavior in its 

pass band and an equal-ripple behavior in its stop band. 
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Consider a low-pass equal-ripple function, which in addition to being frequency 

normalized for a cut off frequency of 1 rad/s, has also been normalized so that its 

peak magnitude is unity. The Inverse Chebyshev characteristic 

 

| )( jwN IC |
)/1(1

)/1(
22

22
2

wC

wC

n

n

ε

ε

+
=                 (2.12) 

 

will give this consideration. Here IC  stands for Inverse Chebyshev. This 

characteristic has the desired monotonic pass band and equal-ripple stop band 

behavior [14]. 

 

2.3.4 Elliptic approximation 

 

The maximally flat and equal ripple approximations both may be written in the form 

 

| )( jwN | 2 =
)(1 22

2

wP

H

nε+
                   (2.13) 

 

where n
P2 is a polynomial that for the maximally flat case is nw2  and for the equal 

ripple case is 2

nC . Now let’s replace n
P2  with a rational function n

R2  having both a 

numerator and a denominator polynomial. By choosing a specific function called a 

Chebyshev rational function, it is possible to produce a magnitude characteristic that 

is equal ripple in both pass band and stop band. 

 

The determination of the form of the rational function )(wRn  in general requires the 

use of Elliptic functions and Elliptic integrals, and the resulting network functions 

are referred to as elliptic functions [15]. 

 

The general form of the elliptic magnitude characteristics is specified as: 
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| )( jwN | 2 =
)(1 22

2

wR

H

nε+
                          (2.14) 

 

 The chebyshev rational function )(wRn
 can be shown to 

 

  ∏
= −

−2/

1
22

22n

i zi

pi

ww

ww
M  for n even 

=)(wRn
{                    (2.15) 

  ∏
−

= −

−2/)1(

1
22

22n

i zi

pi

ww

ww
Mw    for n odd 

  

2.3.5 Characteristics of 4 types of approximation 

 

In the Figure 2.2, for 4 types of approximation pass band frequency, stop band 

frequency, the maximum deviation of the magnitude characteristic, the minimum 

attenuation of the magnitude characteristic can be seen and a comparison and a 

summary can be made. As it is obvious from these figures, the elliptic approximation 

gives sharper (close to ideal) characteristics from the others. But this property costs 

the ripples in both pass band and stop band region. 
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Figure 2.2 Behavior of Approximations 

   

2.4 Normalization and Denormalization 

 

The specifications usually given for the design of filters involve frequencies that 

have values of thousands of cycles per second. Synthesis calculations, however, are 

most easily done using frequencies of a few hertz or radians per second, since the 

numerical computations are simplified by not having to carry along various powers 

of 10. Such values are usually referred as normalized frequency values. Not only the 

conversion of the scaling of the frequencies but also the characteristics of the transfer 

functions such as low pass, high pass, band pass and band stop, requires the use of 

transformations.  To convert such normalized values to the real world frequencies 

actually required in a given filter application including the change of the filter type or 

vice verso, the process used is called frequency denormalization and frequency 

transformation.  
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2.4.1 Low pass to low pass transformation 

 

If we consider p as the normalized complex-frequency variable for the low pass 

equivalent and s as the denormalized one, then the frequency-denormalization 

process from lowpass to low pass is defined by the relation 

 

ps nΩ=                    (2.16) 

 

where 
nΩ  is called the frequency-denormalization constant [16]. 

 

This transformation is also used in reverse case. In some applications, the 

normalization and denormalization may be applied on the circuit elements. In general 

all approximation techniques are modeled for normalized low pass filter case with 1 

rad. cut off frequency. The implementation of the circuit is possible in first 

normalized structure and then circuit transformation results with the actual networks 

replacing all normalized L and C elements by their equivalent. The actual values of 

the capacitors and inductors are found by dividing their normalized values to  
nΩ . 

 

2.4.2 Low pass to high pass transformation 

 

The frequency-denormalization process from lowpass to high pass is defined by the 

relation  

 

s= nΩ /p                   (2.17) 

 

This transformation is also used in reverse case. The implementation of the circuit is 

possible in first normalized structure and then circuit transformation results with the 

actual networks replacing all normalized L and C elements by their equivalent. The 

all capacitors in the normalized low pass equivalent are replaced by inductors with 

the value of 1/ nΩ C and all inductors in the normalized low pass equivalent are 

replaced by capacitors with the value of 1/ nΩ L as seen in Figure 2.3. 
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Figure 2.3. Low pass to high pass transformation of LC structures.   

 

2.4.3 Low pass to band pass transformation 

 

The frequency-denormalization process from lowpass to band pass and vice versa is 

defined by the relation  

 









+

−
=

s
sp

pp

pp

21

12

*1 ωω

ωω
                 (2.18) 

 

The given band pass specifications such as wp1, wp2, ws1(edge of stopband region), 

ws2(edge of stopband region), Kp(maximum attenuation in pass band region), 

Ks(minimum attenuation in stop band region) are first transformed into normalized 

low pass equivalent using equation (2.16) and then normalized low pass transfer 

function and 1 ohm resistance terminated LC equivalent is obtained. The same 

equation is used for denormalization of the transfer function replacing p and the 

network is denormalized as actual band pass filter replacing inductors with series LC 

resonator and capacitors with parallel LC resonator. The element values of the 

resonators are determined using equation (2.18) as shown in Figure 2.4 
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Figure 2.4 Low pass to band pass transformation of LC structures. 

 

2.4.4 Low pass to band stop transformation 

 

The given band stop specifications are converted into normalized low pass form in 

two steps. First the data is changed into band pass formand then low pass form. 

Therefore the equations  

 

ps /1=                              (2.19) 

 

and 

 









+

−
=

s
sp

pp

pp

21

12

*1 ωω

ωω
                (2.20) 

 

are both used. The network is denormalized as actual band stop filter replacing 

inductors with paralel LC resonator and capacitors with series LC resonator. The 

element values of the resonators are determined using equations (2.19) and (2.20). as 

shown in Figure 2.5. 
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Figure 2.5. Low pass to band stop transformation of LC structure. 

 

2.5 Implementation 

 

In analog circuit implementation, basically well-known analog, linear (or non-linear) 

components such as resistors, capacitors, inductors, operational amplifiers, etc. are 

used [17]. Ones the normalized or actual transfer function N(s) is obtained, the 

maximum gain requirements answers whether the active or passive circuit elements 

will be used in the implementation. For every high frequency applications, since the 

gain of the operational amplifiers are not linear at high frequencies, the passive LC 

structures are preferred [18]. The critical frequencies such as cut off, resonance are 

cached by using series or parallel LC resonators in the passive structures. Voltage 

divider approach helps to calculate the maximum gain of the filters. 

 

On the other hand, if the required gain is greater than unity (amplifier), then it is 

necessary to use the active circuit components such as transistor, operational 

amplifiers. For high frequency applications transistorized amplifiers should be 

designed while for considerably lower frequencies (audio, medium) operational 

amplifiers may be used. One and most important property of the active filters is not 

only their amplification properties but also the lack of the inductors in these circuits. 
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In fact last two decades, resistors are also eliminated by using the switched capacitor 

structures. In this study LC ladder implementation is computerized. In Figures 

2.3.(a), (b) and (c) the low pass filter structures are given for the similar 

characteristics [19]. 

 

 

 

Figure 2.6.(a) Passive RC LPF 

 

 

 

Figure 2.6.(b) Active RC LPF 
 
 

 

 

Figure 2.6.(c) SC – LPF ( 1S  and 2S  are switches) 
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CHAPTER 3 

 

COMPUTER AIDED DESIGN OF FILTERS 

 

A set of computation is given for each type of the approximations in this chapter. 

They were described according to their squared magnitude function in Chepter 2. 

These computations using the given specifications of filters help us to get the 

element number, pole locations of the required filter. Hence quadratic factors and 

denominator coefficients are computed. Since computed values are normalized 

values, these values will be multiplied by denormalization constant pw .  

 

First of all, the mathematical models of the four different approximations are given. 

The details of how the poles and zeros of the transfer function are obtained will be 

then explained. The algorithm prepared to achieve all calculation steps will be given. 

 

3.1 Butterworth Approximation 

 

3.1.1 Pole locations, quadratic factors ( )11
2 ++ sas  and Q’s of N(s) 

 

The locations of the poles of a network function )(sN that has a Butterworth 

magnitude characteristic may be found by using 

 

| )( jwN | 2 =
n

w

H
2

2

1+
 and                 (3.1) 

 

=)( 2
sT | 2)( jwN | )(*)(/ sNsNjsw −==                (3.2) 
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Thus we obtain 

 

nnswn
s

H

w

H
sNsN

2

2

2

2

)1(11
)(*)( 22

−+
=

+
=−

=
                           (3.3) 

 

Setting the denominator polynomial of equation (3.3) to zero, we find that poles are 

located at the values of s that satisfy the relation 

 

[ ] nns
2/1

)1(−−=                     (3.4) 

 

Thus for even value of n nkjn
es

2/2/1)1( π=−=  (k=1,3,5,….,4n-1), and for odd value 

of n nkjn
es

2/2/1)1( π==  (k=0,2,4,….,4n-2). From these relations, it is seen that the 

poles of )()( sNsN − are equal-angularly spaced around unit circle. Retaining only the 

left-half plane singularities, to satisfy the stability in the same time the poles of 

)(sN are given as kkk jwp += σ  [2], where 

 

πσ
n

k
k

2

12
sin

−
−=   k=1,2,3,….n                 (3.5) 

 

πω
n

k
k

2

12
cos

−
=   k=1, 2, 3,….n                            (3.6) 

 

By multiplying real part of root by 2, you can get 1a ; 

 

2*
2

12
sin1 







 −
−= π

n

k
a         (3.7) 

 

The inverse of 1a  is the quality factorQ ; 

 

 1/1 aQ =          (3.8) 
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3.1.2 Denominator coefficients of N(s) 

 

The denominator polynomials characterized by the roots calculated above are called 

Butterworth polynomial. The values of the polynomial coefficients for a polynomial 

)(sP where 

 

n

n sasasaasP ++++= .......)( 210        (3.9) 

 

are given by noting that, since all the poles are located on the unit circle, 10 =a . The 

other coefficients are determined by the iterative relation 

 

[ ]
1

)/sin(

2/)1(cos
−

−
= kk a

nk

nk
a

π

π
  k=1,2,….,n              (3.10) 

 

Coefficients of the function is symmetric, so that 

 

22

11

0 1

−

−

=

=

==

n

n

n

aa

aa

aa

 

      . 

      . 

      .  

 

3.1.3 Order of N(s) 

 

The following parameters are defined to determine the order of function required to 

meet a given set of specifications 

 

p

s

p

s

f

f
==Ω

ω

ω
                   (3.11) 

110

110
1.0

1.0

−

−
=

Kp

K s

M                    (3.12) 
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For the Butterworth case the required order bn  is given by 

 

Ω
=

Ω
=

ln

ln

log

log MM
nb

                  (3.13) 

 

The required order of the function is the next highest integer greater than 
bn . 

equation (3.13) satisfy the maximum attenuation at the pass band edge. Since the 

closest higher integer is chosen, the obtained transfer function always gives better 

results then the requirements. 

 

3.2 Chebyshev Approximation 

 

3.2.1 Pole locations and quadratic factors )( 01
2

asas ++ of )(sN  

 

equation (3.1) is modified as  

 

| )( jwN | 2 =
)(1 22

2

wC

H

nε+
                 (3.14) 

 

to obtain the ideal low pass characteristics. Since n2ω  is replaced by )(2 ωnC , which is 

known as the Chebyshev function, the basic property of this function must be sharp 

change (high derivative) around normalized unity frequency. 

 

Replacing the ω  in equation (3.14) by js / , the s domain complex transfer function 

is obtained as 

 

)/(1
)()(*)(

22

2
2

/ jsC

H
jwNsNsN

n

js ε+
==−                (3.15) 

Thus the poles of the product )(*)( sNsN − are the roots of 22 /1)/( ε−=jsCn
 

or ε/)/( jjsCn ±= .  

 

Using the trigonometric form for )(wCn  
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)coscos()( 1
wnCn

−=ω      10 ≤≤ ω       (3.16a) 

 

)coshcosh()( 1
wnCn

−=ω      1≥ω           (3.16b) 

 

( ) ( ) 




 −++−+=
−nn

nC 11
2

1
)( 22 ωωωωω   1≥ω             (3.16c) 

 

Hence 

 

ε

j

j

s
n

j

s
Cn ±=








= −1coscos)(                    (3.17) 

 

To solve this equation, a complex function 

 

j

s
jvu

1cos−=+=ω                      (3.18) 

 

is defined. 

 

Substituting this expression in equation (3.15) 

 

ε

j
nvnujnvnujvun ±=−=+ sinhsincoshcos)(cos              (3.19) 

 

is obtained. 

 

Equating the real parts of the second and third members of this relation gives 

0coshcos =nvnu . Since 1cosh ≥nv  for all values of nv , this equality requires 

0cos =nu . This may be written in the form 

 

π
n

k
uk

2

12 −
=      k=1,2,3,….,2n             (3.20) 
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Equating the imaginary parts of equation (3.18) and recognizing that fort he values of 

u defined by equation (3.19), 1sin ±=nu  

 

ε

1
sinh

1 1−=
n

v                   (3.21) 

 

is obtained where only the positive value for v are retained. equation 3.17 may now 

put into the form 

 

vujvujvujs kkk coshcossinhsin)cos( +=+=               (3.22) 

 

This relation specifies the poles of the product )()( sNsN − . The left-half plane poles 

are assigned to )(sN to complete the determination of the network function. Thus we 

see that the poles of )(sN  will be at kkk jp ωσ +=  [10], where 

 

vukk sinhsin−=σ    k=1,2,….,n           (3.23.a) 

vukk coshcos=ω    k=1,2,….,n           (3.23.b) 

 

and where ku and v are defined as in equations (3.20) and (3.21). 

 

 

 

The coefficient ε  is obtained by  

 

110

1
1.0

2

−
=

sK
ε                   (3.24) 

 

After the pole locations are obtained in the form )(*)( 2211 ωσωσ jsjs +−+−  the 

quadratic factors are simply written in the form ( )11
2 ++ sas . 
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3.2.2 Denominator coefficients of N(s) 

 

Finding the roots of the denominator polynomial, since the poles are already 

obtained, it is possible to write the denominator function either as the multiplication 

of the subsequent second order s domain functions or completely in the polynomial 

form. First case is very suitable for the RC-operational amplifier cascade realizations 

while the later case is good for passive LC-ladder realizations. The denominator 

obtained by using the given algorithm is Hurwitz and the coefficients are positive 

real numbers. So the overall transfer function is passive LC-ladder realizable. 

 

3.2.3 Order of N(s) 

 

To determine the order of function required to meet a given set of specifications 

 

p

s

p

s

f

f
==Ω

ω

ω
                   (3.25) 

 

110

110
1.0

1.0

−

−
=

Kp

K s

M                                         (3.26) 

 

are defined as in the previous chapter. 

 

 For the Chebyshev case the required order 
cn  is given by 

 

Ω
=

−

−

1

1

cosh

cosh M
nc                                         (3.27) 

 

The required order of the function is the next highest integer greater than cn  
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3.3 Inverse Chebyshev Approximation 

 

3.3.1 Pole and zero locations and quadratic factors )( 01
2

asas ++ of )(sN  

 

In the Inverse Chebyshev approximation the reciprocal of the Chebyshev polynomial 

is used. This causes the generation of the zeros as well as the poles as in equation 

(3.28). 

 

| )( jwN IC |
)/1(1

)/1(
22

22
2

wC

wC

n

n

ε

ε

+
=                 (3.28) 

 

The poles of the function are determined by finding the roots of the denominator 

polynomial after replacement of s/j for ω  as in the previous approximations. Hence 

the magnitude squared network function becomes 

 

)()(

)()(
)()()(

2

/ sBsB

sAsA
sNsNjwN

js −

−
=−=                           (3.29) 

 

where )(sN is the network function. )(sA  is the numerator polynomial and )(sB  is 

its denominator polynomial. Equating the numerator and denominator of equations 

(3.28) and (3.29), s domain polynomials are obtained as 

 









=−

s

j
CsAsA n

22)()( ε                  (3.30) 

 









+=−

s

j
CsBsB n

221)()( ε                             (3.31) 

 

First let consider the numerator. Setting equation (3.29) to zero and using 

 

ε

j

j

s
n

j

s
Cn ±=








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0coscos)( 1 =







= −

j

s
n

j

s
Cn                             (3.33) 

 

is obtained. 

 

The result is that the zeros kkk jz βα +=  [10] of the Inverse Chebyshev function are 

given by 

 

0=kα   
k

k
ucos

1
=β    k=1,2,….,n            (3.34) 

 

π
n

k
uk

2

12 −
=                                                     (3.35) 

 

Now let consider the denominator polynomial of the Inverse Chebyshev function. 

The poles are found by setting equation (3.29)b to zero. The resulting equations are 

almost the same as that used for finding the poles of a Chebyshev function whose 

pass-band has the same attenuation ( pK ) as the inverse Chebyshev but is defined for 

0 to 1 rad/s and whose stop-band has the same attenuation ( SK ) as the inverse 

Inverse Chebeyshev but starts at pω/1  radians per second. The only difference is 

that the argument of the Chebyshev polynomial )(2 ⋅nC is inverted and appears as sj /  

rather than as js / . As a result, the poles of the Inverse Chebyshev function are 

simply the reciprocal of ones found for Chebyshev function. Thus they maybe 

specified as [10] 
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=
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    k=1,2,….,n                 (3.36) 

 

vukk sinhsin−=σ   vukk coshcos=ω  k=1,2,…,n                 (3.37) 
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and 
ku is defined in equation (3.35) 

 

After the pole locations are obtained in the form )(*)( 2211 ωσωσ jsjs +−+−  the 

quadratic structure is also obtained as ( )11
2 ++ sas . 

 

3.3.2 Denominator coefficients of N(s) 

 

Finding the roots of the denominator polynomial, since the poles are already 

obtained, it is possible to write the denominator function either as the multiplication 

of the subsequent second order s domain functions or completely in the polynomial 

form. First case is very suitable fort he RC-operational amplifier cascade realizations 

while the later case is good for passive LC-ladder realizations. The denominator 

obtained by using the given algorithm is Hurwitz and the coefficients are positive 

real numbers. So the overall transfer function is passive LC-ladder realizable. 

 

3.3.3 Order of N(s) 

 

To determine the order of function required to meet a given set of specifications 

p

s
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==Ω

ω

ω
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are defined as in the previous chapter. 

 

For tthe Inverse Chebyshev case the required order ıcn  is given by 

 

Ω
=

−

−

1

1

cosh

cosh M
nıc                              (3.41) 

 

The required order of the function is the next highest integer greater than ıcn  
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3.4 Elliptic Approximation 

 

3.4.1 Order of N(s) 

 

For the determination of the order of an Elliptic Function the specifications are: 

 

1) Passband: For pωω ≤≤0  radians per second ( pff ≤≤0  hertz), the ripple of the 

magnitude characteristic is pK dB 

2) Stopband: For sωω ≥  radians per second ( sff ≥ hertz) , the equal-ripple 

attenuation varies between a minimum of Ks dB and infinity. 

To determine the order M and Ω  are used. The elliptic order En  then is found by 

first determining the quantities. 
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−Ω
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The order En  is given as 

 

)()( DFCFn EEE =                   (3.44) 

 

where  

 

)152ln(
1

)( 95
xxxxFE ++=

π
                (3.45) 

 

The required order of the function is the next highest integer greater than En . 
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3.5 Algorithm 

 

The overall equations given in the previous sections of this chapter are computerized 

and algorithm is prepared to process the given specification data to obtain the poles, 

zeros, order and some specific circuit structures. To communicate the computer, user 

independent easy interface is prepared.  

 

The block diagram of the program code is given in Figure 3.1. 

 

 

 

 

 

Figure 3.1 Program code flow diagram 

 

The algorithm of the program for 4 different approximations is as: 

 

Entries: edge frequencies ( ws, wp for LP/HP filter ws1,ws2,wp1,wp2 for band 

pass/stop filter) Ks and Kp values and the type of approximation 

 

Entries: edge frequencies, Ks and Kp values, type of filter and the type of 
approximation 
 

Chebyshev Inv.Chebyshev Elliptic Butterworth 

Computation 
of 
Order, 
Poles, 
Quadratic 
factors, 
denominator 
coefficients. 
LC ladder 
structure 

Computation 
of 
Order, 
poles, 
Quadratic 
factors, 
Denominator 
coefficients. 
LC ladder 
structure 
 

Computation 
of 
Order, 
poles, 
Quadratic 
factors, 
Zeros,  
Denominator 
coefficients.  
LC ladder 
structure 
 

Computation 
of 
Order, poles, 
Quadratic 
factors, 
Zeros, 
Denominator 
coefficients. 
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Butterworth function computations: 

Poles    : Equations (3.5) and (3.6) 

Ao     : 1  

A1 values   : Equation (3.7) 

Denominator coefficients : Equation (3.10) 

Order    : Equations (3.11), (3.12), (3.13)  

Denormalization  : Equation (2.16) (frequency-denormalization  

constant is pω ) 

Transformations  : Equations (2.17), (2.18), (2.19), ( 2.20) 

Inductance and Capacitance values in actual LC Ladder structure 

 

Chebyshev function computations: 

Poles    : Equations (3.21), (3.23.a), (3.23.b), (3.24),  

(3.32) 

Ao and A1 values : Multiplying every conjugate pair of roots by 

                                                 each of them. 

Denominator coefficients : Multiplying every pair of roots by each of them, 

                                                  store it at matrixes, and re-multiply until you 

                                                  reach the order computed. 

Order : Equations (3.25), (3.26), (3.27) 

Denormalization : Equation (2.16) (frequency denormalization    

constant is pω  ) 

Transformations  : Equations (2.17), (2.18), (2.19), (2.20) 

Inductance and Capacitance values in actual LC Ladder structure 

 

Inverse Chebyshev function computations: 

Poles    : Equations (3.35), (3.36), (3.37), (3.38) 

Ao and A1 values  : Multiplying every pair of roots by each of them. 

Denominator coefficients : Multiplying every pair of roots by each of them, 

                                                 store it at matrixes, and re multiply until you 

                                                  reach the order computed. 

Order    : Equations (3.39), (3.40), (3.41) 

Zero    : Equations (3.34), (3.35) 
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Denormalization : Equation (2.16) (frequency denormalization    

constant is pω  ) 

Transformations  : Equations (2.17), (2.18), (2.19), (2.20) 

Inductance and Capacitance values in actual LC Ladder structure 

 

 

Elliptic function computations: 

Order    : Equations (3.42), (3.43), (3.44), (3.45)  

Ao and A1 values  : Multiplying every pair of roots by each of them. 

Denominator coefficients : Multiplying every pair of roots by each of them, 

                                                 store it at matrixes, and re multiply until you 

                                                  reach the order computed. 

Order    : Equations (3.39), (3.40), (3.41) 

Zero    : Equations (3.34), (3.35) 

Denormalization : Equation (2.16) (frequency denormalization    

constant is pω  ) 

Transformations  : Equations (2.17), (2.18), (2.19), (2.20) 

 

3.6 How The Program Works? 

 

In the beginning window program asks for the filter type like high pass, low pass, 

band pass and band stop. After the selection of the type, to get the required network 

elements, according to the specifications needed for the filter design, critical edge 

frequencies and band attenuations (Ks, Kp) are entered. The approximation will be 

chosen from the following window by the user. Programming code take the values 

and use the selected approximation and values and make the set of computations to 

get order, poles, quadratic factors, denominator factors and actual LC network for 

Butterworth, Chebyshev, Inverse Chebyshev approximations. For elliptic 

approximation, the transfer function is obtained. On this window a basic circuit 

structure is presented and transfer function elements are listed. The all circuit 

element values listed are actual values of ınductors and capacitors. 
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The values got from denominator and numerator polynomial is given to Matlab 

program as a.dat and b.dat files. These a.dat and b.dat values including denominator 

and numerator polynomials can be used in matlab program to see the behaviour of 

the filter resulted from approximation methods. 

 

The flow diagram of interface is given in Figure 3.2. 

 

 

 

Figure 3.2. Interface flow diagram 

 

The program runs for limited values as written below: 

 

1) Actual LC structure elements calculation is limited by 10 elements in Butterworth 

and Chebyshev approximation. In Inverse Chebyshev approximation LC structure 

elements calculation is limited by 4 elements. Elliptic approximation is calculated for 

low-pass and high-pass filters and in the result transfer function is given as data. 

Here LC structure elements aren’t given. 

 

2) For low pass and high pass filters numerator and denominator coefficients 

(coefficients resulted from zeros and poles) are limited by 10 coefficients. In the 

band pass and band reject filters denominator coefficients are limited by 5 

coefficients. Because for the order number 5, 10 coefficients will be get in the 

numerator and denominator polynomial.  

 

Summary: 

1) Choose filter type 
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Figure 3.3. Fırst interface to select the filter type 

 

2) If you choose LowPass/High pass the window below is seen. Here choose 

low or high pass filter, then enter the values psps KK ,,,ωω  and select the 

type of approximation.  

 

 

 

Figure 3.4. Second interface to enter datas and see results if you choose low/high 

pass filter 
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3) If you choose BandPass/stop filter the window below is seen. Here choose 

band pass or stop filter, then enter the values pspsps KK ,,,,, 2211 ωωωω  and 

select the type of approximation.  

 

 

 

Figure 3.5. Second interface to enter datas and see results if you choose band 

pass/band reject filter 

 

4) Enter the normalized polynomial coefficients into matlab to sketch the gain curve. 
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CHAPTER 4 

 

PROGRAM 

 

In this chapter the details of the prepared program will be given and it will be run for 

several examples. 

 

4.1 Program 

 

The program is written in visual C# [20, 21]. Program consists of many buttons, 

labels. Every button and label works with its special code. [22].The program gives 

the results in the screen [23, 24].  

Since the programming code is so many pages, it is and the program exe files are 

given in CD as in appendix A. 

 

4.2 Filter Design Examples 

 

Example 1) A Butterworth function must meet the following specifications for low-

pass filter. 

 

1,25,1000,1500 ==== psps KKωω  

 

Determine the 

1) the required order 

2) the denormalized pole locations 

3) the denormalized quadratic factors 

4) the normalized denominator coefficients. 

5) the actual LC values. 
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Figure 4.1. Entering the specifications and selecting the approximation. (The values 

computed and low-pass realizations of Butterworth elements) 

 

To check the values, the program written below in MATLAB code gives us curve 

gain. The filter program written in C# gives the numerator and denominator 

coefficients to matlab/work/b.dat and matlab/work/b.dat. We must be careful here to 

check the a.dat and b.dat files so that the coefficients seperators must be dot. From 

C# program’s speciality, the coefficients sent to a.dat and b.dat files seperarators are 

comma, we must change them by dot. Also the filter program gives the Kp value 

entered as data from user to matlab/work/LHKp.dat and this value is used in the 

program written below in MATLAB. 

 

 

clc 

clear all 

close all 



 41 

a=load('a.dat') 

b=load('b.dat') 

w=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.]; 

h=freqs(b,a,w); 

mag=abs(h); phase=angle(h); 

%f=w/(2*pi); 

%loglog(w,mag); 

w1=[0 0.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1.]; 

c=load('LHKp.dat') 

plot(w,20*log10(mag),w1,c) 

 

 

 

 

Figure 4.2. Gain curve for example 1 
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Example 2) A Chebyshev function must meet the following specifications for high-

pass filter.  

 

1.0,25,1500,1000 ==== psps KKωω  

 

Determine the 

1) the required order 

2) the denormalized pole locations 

3) the denormalized quadratic factors 

4) the normalized denominator coefficients. 

5) the actual LC values. 

 

 

 

Figure 4.3. Entering the specifications and selecting the approximation. (The values 

computed and high-pass realizations of Chebyshev elements) 
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To check the values, the program written below in MATLAB code gives us curve 

gain. The filter program written in C# gives the numerator and denominator 

coefficients to matlab/work/b.dat and matlab/work/b.dat. We must be careful here to 

check the a.dat and b.dat files so that the coefficients seperators must be dot. From 

C# program’s speciality, the coefficients sent to a.dat and b.dat files seperarators are 

comma, we must change them by dot. Also the filter program gives the Kp value 

entered as data from user to matlab/work/LHKp.dat and this value is used in the 

program written below in MATLAB. 

 

clc 

clear all 

close all 

a=load('a.dat') 

b=load('b.dat') 

w=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.]; 

h=freqs(b,a,w); 

mag=abs(h); phase=angle(h); 

%f=w/(2*pi); 

%loglog(w,mag); 

w1=[1. 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 

1.9 1.95 2.]; 

c=load('LHKp.dat') 

plot(w,20*log10(mag),w1,c) 
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Figure 4.4. Gain curve for example 2 

 

Example 3) An inverse Chebyshev function must meet the following specifications 

for band-pass filter.  

 

1,3,2000,1600,2500,1000 2121 ====== psppss KKωωωω  

 

Determine the 

1) the required order 

2) the normalized pole locations 

3) the normalized zeros 

4) the normalized numerator polynomials 

5) the normalized denominator coefficients. 

6) the actual element values 
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Figure 4.5. Entering the specifications and selecting the approximation. (The values 

computed and band-pass realizations of Inverse Chebyshev elements) 

 

clc 

clear all 

close all 

a=load('a.dat') 

b=load('b.dat') 

w=[100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 

1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 

2550 2600 2650 2700 2750 2800 2850 2900 2950 3000 3100 3150 3200 3250 3300 

3350 3400 3450 3500]; 

h=freqs(b,a,w); 

mag=abs(h); phase=angle(h); 
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1.85 1.9 1.95 2.]; 

plot(w,20*log10(mag)) 

 

 

 

Figure 4.5. Gain curve for example 3 
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CHAPTER 5 

 

DISCUSSIONS 

 

In the communication and control applications, the elimination of the harmonics 

from the signal content has significant importance. In many analog or digital 

communication networks, the filters are widely used as well the modulators, 

convertors, oscillators, etc. 

 

In both linear and non-linear electronics, the filter part of the network may be linear 

or non-linear filters. In this study the linear passive filter design is considered. 

Altough the approximation theories used in LC filter design is very well known, here 

it is aimed to computize the all complex mathematical expansions and to build up the 

package of finding filter design program. 

 

In general although the actual filter specifications includes the edge frequencies and 

the attenuations of the stop band and pass band regions, the approximation 

algorithms convert the given data into the normalized low pass structure. It is some 

times useful to change the network elements by their actual values or actual transfer 

function is directly obtained by using the transformation.   

 

Another basic purpose of this work is to prepare an interface for the users and to 

make the use of this program easy for the users. The program may be used as 

laboratory applications. 

 

The inputs of the program are only the specification parameters (critical edge 

frequencies and corresponding attenuations) and the type of the approximation. In  

the program normalization and denormalization transformations are also included. 

Hence “ready to use” circuits may be obtained. 
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Since the elliptic filter realization has many different possible choices, in this study, 

only the order of the elliptic filter and transfer function is calculated for low pass and 

high pass filters. 

 

As a future proposal; the computer program may be re-developed for the 

implementation of the obtained actual or normalized transfer function by using the 

RC operational amplifier, switched capacitor circuits or multi terminal structures. 
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