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In this thesis; a computer programming related with realizations of required filters
with the help of approximation procedures are presented. The program contains
Butterworth, Chebyshev and Inverse Chebyshev approximations to realize the
required LC filters. For the elliptic approximation, the zeros and denominator

polynomials of the low-pass and high-pass filter transfer functions are obtained.

Three types of approximations namely Butterworth, Chebeyshev, Inverse
Chebeyshev will be used to get the realized network elements. For Elliptic
approximation, the transfer function will be obtained. The characteristics of the
specific filters; pass band frequency (wp), the maximum deviation of the magnitude
characteristic (Kp), stop band frequency (ws), the minimum attenuation of the
magnitude characteristic (Ks) and the type of approximation required will be entered
to the computer program written in Visual C# by user, and the program will calculate
the value of network elements that realize the specific filter. Also pole locations,

quadratic factors and denominator coefficients of magnitude function N(s)used for

approximation will be shown in the display.
Key words: pass band frequency (wp), stop band frequency (ws), the maximum

deviation of the magnitude characteristic (Kp), the minimum attenuation of the

magnitude characteristic (Ks).
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OZET

AKTIF ve PASIF FILTRELERIN BILGISAYAR DESTEKLIi DIZAYNI ve
UYGULAMALARI

HASTAOGLU, Miisliim Serkan
Yiiksek Lisans Tezi, Elektrik Elektronik Miih. Boliimii
Tez Yoneticisi: Prof. Dr. Arif NACAROGLU
Aralik 2008, 50 sayfa

Bu tezde, yaklasim metotlar1 ile istenilen filtrelerin gerceklesmesini saglayan
bilgisayar programi sunulmustur. Caligilan bilgisayar programi, istenilen filtrenin
gerceklesmesini elde etmek igin, Butterworth, Chebyshev ve Ters Chebyshev tiirii
yaklagim metodlarini icermektedir. Eliptik tiir yaklasim metodu ile algak ve yiiksek

geciren filtrelerin transfer fonksiyonu elde edilecektir.

Filtre devresini gerceklestirecek devre elemanlarina ulagsmak icin 3 tip yaklagim
metodu kullanmilmistir. Bunlar Butterworth, Chebyshev ve Ters Chebyshev
yaklagimlardir. Eliptik yaklagim kullanilarak transfer fonksiyonu elde edilmistir.
Ozel filtreleri karakterize eden: geciren frekans (wp), ge¢cme bandi dalgalanma degeri
(Kp), durduran frekans (ws), durdurma bandi dalgalanma degeri (Ks) ve iizerinde
calisilacak yaklasim metodu, kullanici tarafindan programa girdi olarak verilecektir.
Visual C# ile yazilan program, ozel filtreyi gerceklestiren devre eleman degerlerini
hesaplayarak, ekrana devre ile beraber verecektir. Yaklasim metotlarinda, devre
eleman degerlerini vermeyi saglayan matematiksel fonksiyonlarin sonuglari, ekranda

goriilebilecektir.

Anahtar kelimeler: geciren frekans (wp), gecme bandi dalgalanma degeri (Kp),

durduran frekans (ws), durdurma bandi dalgalanma degeri (Ks).
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CHAPTER 1

INTRODUCTION

In this chapter a brief overview of the filters will be given. In the last decades the
progresses on the communication systems, especially high frequency
communications networks [1], has required high quality filters. Since in the real time
high frequency communication applications, analog filters have some advantages
versus the digital filters [2], quick and correct determination of the analog network
elements has been more important. Although there are some several indirect
synthesis techniques to design the analog filters, in the study, mathematical
approximation methods are investigated. This method works on any kind of filter

types including the transformations.

1.1 Definition of Filter

The sinusoidal steady frequency responses of the network are of significance in
many applications, especially in communications and control systems. A specific
application is in electric filters that block out or eliminate signals with unwanted
frequencies and pass signals of the desired frequencies. The filters are used in radio,

T.V. and telephone systems to separate one broadcast frequency from another [3].

Owing to their electronic structures, they may be classified either in terms of their
characteristics or types of the components. In many different applications, time
domain dependence of their characteristics may also be used for some applications

such as time-varying, periodically time-varying or adaptive filters.



1.2 Types of Filters

In terms of their frequency response characteristics, the filters may be classified in
many different names. Although the phase filters have some application areas such as
matching, equalization, etc., this study is focused on the magnitude characteristics
and therefore the amplitude filters. Due to the amplitude characteristics versus the
frequency domain, the filters, in general, may be classified as low pass, high pass,

single or multi band pass and stop band filters.

1.2.1 Low-pass filters

Almost in all audio and video applications the low-pass filters are commonly used.
They allow for easy passage of low-frequency harmonics of the signals from source
to load, and difficult passage of high-frequency terms. An ideal low-pass filter

magnitude characteristic is given in Figure 1.1. For low frequencies (@ < @_) the

gain, ideally assumed to be unity (or more for active structures) and also it is
assumed that the gain drops to zero as sharp as possible for frequencies greater

than @, . The decaying interval (transition region) should be as short as possible [4].

1.2.2 High-pass filters

The high-pass filter has the property that low frequencies (stop-band) are blocked
while high-frequencies (pass-band) are transmitted. As in the low-pass filters, the
transition region between stop-band and pass-band regions must be as narrow as
possible. Ideally the transition width is assumed to be zero and gain suddenly
increases to unity (for passive filters) at the cut-off frequency and for higher
frequencies. High-pass filters are also widely used in the communication and control

systems [5].
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Figurel.1 Ideal low-pass filter Figurel.2 Ideal high-pass filter

1.2.3 Band-pass filters

The third general filters type that will be considered here is the band pass filter. It has
the property that one band of frequencies (pass-band) is transmitted while two bands
of frequencies, namely, those below and above the pass-band are blocked (the stop
bands). In many communication applications the band-pass filters are used as
frequency (band) selection networks and sometimes not only the unique pass band
region but also more pass-band regions may be used for some specific applications.
The range of frequencies that is passed is called the bandwidth (BW) and is defined
the difference between the frequencies that define the edges of the pass band. Filter
circuits can be designed to accomplish this task by combining the properties of low-
pass and high-pass into a single filter. This case is only applicable for unique pass

band region. An ideal band-pass filter is shown in Figure 1.3 [6].

1.2.4 Band-stop filters

The band stop filters, also called as band-elimination filter, band-reject, or notch
filter has the property that are band of frequencies (the stop band) is blocked while
two bands of frequencies, namely those below and above the stop band are passed
(pass band). The range of frequencies that is blocked is called the bandwidth (BW)
and is defined as the difference between the frequencies that define the edges of the
stop band. In ideal case, as usually the transition band is assumed as narrow as

possible. A band-stop filter is shown in Figure 1.4 [7].
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Figurel.3 Ideal band-pass filter Figurel.4 Ideal band-stop filter
1.3 Analog Filters

Analog networks [8] which operate on continuous time signals are widely used in
communication, control and electronic applications. These networks use the analog
components such that the terminal characteristics may or may not be linear. In
particular, linear time-invariant (LTI) analog filters can be characterized by their

(continuous) impulse response h(f)where ¢ is time. Since the input signals

processed in analog networks are continuous, the analog networks do not require the
use of analog-digital converters and since the sampling is not used, the speed of these
networks are limited only by the time constants of the energy storage elements. For
time varying and time invariant cases the Fourier Transformation is possible used to
obtain the complex domain frequency characteristics which gives both magnitude
and phase characteristics of the analog network. The magnitude characteristics
similar to one shown in the previous section results as the analog filters. Instead of a
difference equation, analog filters may be described by a differential equation.
Instead of using the z transform to compute the transfer function, the Laplace
transform can be used. Every aspect of the theory of digital filters has its counterpart
in that of analog filters. In fact, one can think of analog filters as simply the limiting

case of digital filters as the sampling-rate is allowed to go to infinity [9].

1.4 Filter Approximation Methods

The majority of practical filter specifications are based on steady-state performance
requirements [10]. These are usually given for magnitude and/or phase

characteristics as a function of a real frequency variable @ (radians per second) or f



(hertz). The actual synthesis techniques used to find active or passive filter
realizations, however, invariably use the network function, a ratio of polynomials in
the complex frequency variable s, as a starting point. The process of relating
sinusoidal steady-state characteristics to a network function is called approximation.

Figure 1.5 illustrates the difference between synthesis and approximation.

Sinusoidal state approximation Network finction synthesis & ctive or passive
characteristic (1) I H (s (2 | fitter (3

Figurel.5 Difference between approximation and synthesis.

There are many mathematical approximation methods. In this study four of them will
be reviewed and these approximations will be used for the computer aided design of
the filters. These approximations methods are:

1) Butterworth Approximation

2 ) Chebeyshev Approximation

3 ) Inverse Chebeyshev Approximation

4 ) Elliptic Approximation

1.5 Use of Filter Approximation Methods

Especially in communication, when a filter is needed that separates some frequencies
from others within mixed-frequency signals, the specific characteristics are given and
with an approximation method given above, active or passive filter synthesis can be

calculated within a set of mathematical calculations

The similar approach is also used for the design of the phase filters, delay filters, etc.
but in general, gain approximation is more straight forward method to design an

amplitude filter.

The basic principle of approximation method is to predict the suitable @ domain
function which sketches the similar characteristics curve with the given properties.

Since the proposed functions are well known and @ to s domain transformations



result with the realizable transfer functions, they are still widely used and most

popular techniques for filter synthesis.

This thesis is organized as follows:

Basic filter parameter is given in Chapter 2. The general synthesis methods,
approximation methods, normalization and denormalizations are reviewed. The
procedure from s domain transfer functions analog filter implementation is given in

this chapter.

Chapter 3 presents the parameters used in the computer aided design of the analog
filters. Since the main aim of this study is to build up a computer program which is
used to design a filter, an interface is introduced in this chapter. Computer interface
is user independent and it is easy to use. The basic points of the prepared program

and algorithm are also presented in this chapter.

Chapter 4 presents the program. The computer program is run for some specific

examples and the results are given in this chapter.

The conclusion and future proposals of this work is given in Chapter 5. The program

is attached to the thesis on a CD.



CHAPTER 2

REVIEW OF FILTER DESIGN

Approximation types of filters with their specifications are the main subject studied

in this chapter.

2.1 Approximation

The majority of practical filter specifications are based on steady-state performance
requirements. The process of relating sinusoidal steady-state characteristics to a
network function is called approximation. One of the most frequently used types of
approximation is that relating the magnitude N(jw), specified either by a
mathematical expression, a set of data values, or a plotted vawe shape, to a rational
function F(s), so that in some specified sense F(jw) approximates N(jw). Ideally
of course it is predicted the two magnitude functions must be identical and in many
cases this is possible. Magnitude specification is usually given in decibels [20 log
N(@Gw)I], abbreviated dB. In fact the decibels of gain of a filter relate to the ratio

between input and output voltages dB = 20log(Vout /Vin) [11]

2.2 Maximally Flat Magnitude Squared Function | N(jw) |’

Firstly the properties the magnitude N(jw) must be overviewed. The necessary

properties beginning with considering the | N(jw)*| square root of N(jw) are:

INGw)* 1= N(w)N *(jw) = N(jw)N (= jw) 2.1)



where the superscript asterix indicates the complex conjugate and where the
justification for the right member of the equation is that, for rational functions with
real coefficients, the conjugate of function is found by the replacing the variable by

its conjugate, that is, by replacing jw with — jw. Now let N(s)have the form

2 3 4
c,tes+ce,s"+eys  to,s +a

N(s) = (2.2)
(5) d,+ds+d,s’ +d,s’ +d,s* +....
The term N(jw) will have the form:
—c,w’ +ewt — +jle,w—cw’ +.....
N(jw) = c, czw2 c W ].(CIW cw : ) 2.3)
dy—d,w +d,w" —....... +jdw—dw +.....)

Inserting this relation in the right member of equation (2.1), it is seen that first

property of | N(jw)’|, that it will be a ratio of even polynomials.
Evaluating (1) by letting w= s/ j, the function T(s*) may be defined as
T(s*)= IN(w)l? |W:S/j =N(s)*N(-s) 2.4)

In the right member of equation (2.4), the substitution of —s for s as the argument

of N(s)simply reflects the pole and zero positions of N(s)through the origin of s
plane. As a result the product of N(s) N(—s) has poles and zeros that symmetrically
located with respect to both the real and the imaginary axes. This is called quadrantal
symmetry. In general the numerator and denominator polynomials of T(s*) can
have three types of factors:

1) s* +as”> +b where a and b may be positive or negative

2) as® +b aand b have opposite signs

3) as® +b where a and b have same signs.



The first and second types have the necessary quadrantal symmetry but the third type
does not unless it has even multiplicity, that is, unless it appears(as’ +b)> ,
(as® +b)*, and so on. In this case the resulting even-order jw axis zeros have the

necessary symmetry.

Now it is summarized the properties of |N(jw)|> to be the magnitude squared

function of some rational function N(s), it is necessary and sufficient that: [10]

1) The function | N(jw)|* be ratio of even polynomials in @

2) In the function T'(s*)defined in equation (2.4), any poles and zeros on the jw

axis are of even order.

The sufficiency of the two conditions given above is readily demonstrated by
factoring T'(s”) into the product N(s)* N(-s), taking the left-half-plane poles and
half of any even-order jw-axis pole pairs from T'(s*) as the poles of N(s) and
similarly assigning either right or left-half plane zeros and half of any even-order

jw-axis zeros from T(s>) as the zeros of N(s). This restriction of using only the

left-half-plane poles from T'(s*) is of course simply a stability consideration.

The necessary and sufficient conditions developed above for magnitude-squared
functions in general can be applied to specific filter characteristics. Considering the
determination of magnitude-square function that, in the low-frequency range starting
at zero, has as flat a characteristic as possible. One way of obtaining such flatness is
to set as many derivatives of the function as possible to zero at w=0 rad/s.

frequency. Such a function is called maximally flat. This can be done by writing an

expression for a general-squared function | N(jw) 1> as follows:

s 1+bw’ +b,w' +.....
1+aw’ +a,w* +....

INGw) I’ =H (2.5)

Dividing denominator into the numerator, it can be obtained



INGo) = H[1+ (b, —a,) + (b, —a, —a} —ab, o’ +....] (2.6)

Considering a general Mac Lauren series, i.e., a Taylor series expansion at the origin,

of an arbitrary function F (@) . This has the form

F(w)=F(0)+

M @) 3) o
FO w+ F o 0 + F O @ + F o ... (2.7)
1! 2! 3! 4!

where F“(0)is the ith derivative of F(w) evaluated at @ =0. Comparing this
expression with the expansion for | N(jw)|” given in equation (2.6) and recalling
that such an expansion must be unique, it is seen that due to the even nature of
IN(jw)1?, all its odd-ordered derivatives are already zero. In addition for the second
derivative to be zero, it is required that the coefficients a, and b, be equal. Similarly
for the fourth derivative to also be zero requires that, in addition, a, equalb,, etc.
Thus the general maximally flat magnitude squared function IN(jw)l* is

characterized by the restriction that

a =b. 2.8)

1 1

for as many coefficients as possible. [10]

10



2.3 Specifications

G
ain | I | Ep (dE)
] N SR
K (dE)
n” W
"o Wg radis
—] =

Transition
band

W o1 opas sband edge frequency

W, . stopband edge frequency
Ep  mammum dewation of magmtude
E; : minmum attermation of magnitude

Figure 2. 1 Low-pass filter specification

As it is seen in Figure 2.1 filtering specifications consist of a pass band set and a stop

band set. They have the form as below:

1. Passband: In the passband 0 <w <w/ radians per second (0 < f < f hertz)
the maximum deviation of the magnitude characteristic is K ,dB.
2. Stopband: In the stop band w = w radians per second ( f = f hertz) the

minimum attenuation of the magnitude characteristic is K dB. The attenuation is

measured from the greatest passband value of the characteristic.

To meet the specifications, the actual magnitude characteristics must lie out of the

shaded area.

11



It can be summarized that sets of specifications will be given are w/,(pass band

frequency), K, dB. (maximum deviation of magnitude characteristic ), w, (stop band

frequency) and Ks dB(minimum attenuation of magnitude characteristic ) [11]

Using the given parameters which defined the characteristics of the filter, the
corresponding and necessary “order” is calculated. The order for any approximation
method reveals the complexity of the filter. Higher order requires more components
in the design. For different approximations since different mathematical formulation
is used the various methods are used to find the polynomial characteristics
(coefficients of the polynomials) which satisfy the given properties. The normalized
transfer function N(s) must be obtained in such way that the coefficients must satisfy
the certain properties, especially the reliability. The algorithmic formulation of the

four different approximation procedures are given below in Sections 2.3.1 to 2.3.4.

2.3.1 Butterworth approximation

Let’s consider a low-pass network. To approximate such a low-pass function, we can
choose a magnitude squared function |N(jw)|” that satisfies the maximally flat

criteria at w=0 and will generate the desired flatness of the curve. To provide
eventual drop-off of the characteristics at higher frequencies, the numerator of

N(jw) will be a constant and all the coefficients of equation (2.5) will be zero. From
a maximally characteristics from equation (2.8), the coefficients a, must also be set

to zero, except the highest order one. The resulting magnitude-squared function has

the form

2

INGw)12=—2 2.9)
1+

2
W”

This function is called a normalized Butterworth function. It is also the simplest
known rational function that gives a maximally flat low-pass filter characteristic. For
high value of n, this function approximately unit for @ <1 and approximately zero for
@ >1 which is the basic principle of the function being belonging to the normalized

ideal case [12].

12



2.3.2 Chebyshev approximation

In the Butterworth approximation, the approximating effect is concentrated at a
single frequency resulting not enough sharp transition from pass band to stop band.
But now with a different type of approximation named equal-ripple characteristic the

approximating effect is spread over the entire pass band.

The normalized low-pass equal-ripple magnitude approximation may be developed

by writing the magnitude squared function | N(jw)|* in the form

H2

INGW) 1P =——
1+£2C,° (w)

(2.10)

where C, (w)is a polynomial of order n. If these polynomials have properties
0<C w)<1 for 0Sw<1 (2.11.a)

C, w)=1 for w1 (2.11.b)

sharp transition from pass band to stop band will be obtained. The value of &
determines the limit of variation in the pass band 0 < w <1 rad/s.
Functions having the form of equation (2.10) in which the quantities C, (w) are

Chebyshev polynomials are called Chebyshev functions or equal-ripple function

[13].

2.3.3 Inverse Chebyshev approximation

The Chebyshev magnitude approximation is characterized by equal-ripple behavior
in the pass band and monotonic behavior in the stop band. A related type of

magnitude characteristic named Inverse Chebeyshev has a monotonic behavior in its

pass band and an equal-ripple behavior in its stop band.

13



Consider a low-pass equal-ripple function, which in addition to being frequency
normalized for a cut off frequency of 1 rad/s, has also been normalized so that its

peak magnitude is unity. The Inverse Chebyshev characteristic

2 2
1
N, Gwy12=—£ G A/W) 2.12)

142021 w)

will give this consideration. Here [C stands for Inverse Chebyshev. This
characteristic has the desired monotonic pass band and equal-ripple stop band

behavior [14].
2.3.4 Elliptic approximation

The maximally flat and equal ripple approximations both may be written in the form

H2

INGw) 1P =—————
1+&*P° (w)

(2.13)

where P,"is a polynomial that for the maximally flat case is w>" and for the equal

ripple case is an. Now let’s replace P," with a rational function R," having both a

numerator and a denominator polynomial. By choosing a specific function called a
Chebyshev rational function, it is possible to produce a magnitude characteristic that

is equal ripple in both pass band and stop band.

The determination of the form of the rational function R, (w) in general requires the

use of Elliptic functions and Elliptic integrals, and the resulting network functions

are referred to as elliptic functions [15].

The general form of the elliptic magnitude characteristics is specified as:
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HZ

IN(w) | =———— (2.14)
1+ &R, (w)
The chebyshev rational function R (w) can be shown to
ni2 2y 2
M 2—’"2 for n even
=1 W — W,
R, (w)={ (2.15)
(=112 2 _ 2
Mw —"”_ forn odd
Ii;l W2 - Wzi2

2.3.5 Characteristics of 4 types of approximation

In the Figure 2.2, for 4 types of approximation pass band frequency, stop band
frequency, the maximum deviation of the magnitude characteristic, the minimum
attenuation of the magnitude characteristic can be seen and a comparison and a
summary can be made. As it is obvious from these figures, the elliptic approximation
gives sharper (close to ideal) characteristics from the others. But this property costs

the ripples in both pass band and stop band region.
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Figure 2.2 Behavior of Approximations

2.4 Normalization and Denormalization

The specifications usually given for the design of filters involve frequencies that
have values of thousands of cycles per second. Synthesis calculations, however, are
most easily done using frequencies of a few hertz or radians per second, since the
numerical computations are simplified by not having to carry along various powers
of 10. Such values are usually referred as normalized frequency values. Not only the
conversion of the scaling of the frequencies but also the characteristics of the transfer
functions such as low pass, high pass, band pass and band stop, requires the use of
transformations. To convert such normalized values to the real world frequencies
actually required in a given filter application including the change of the filter type or
vice verso, the process used is called frequency denormalization and frequency

transformation.
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2.4.1 Low pass to low pass transformation

If we consider p as the normalized complex-frequency variable for the low pass
equivalent and s as the denormalized one, then the frequency-denormalization

process from lowpass to low pass is defined by the relation

s=Q p (2.16)

where Q  is called the frequency-denormalization constant [16].

This transformation is also used in reverse case. In some applications, the
normalization and denormalization may be applied on the circuit elements. In general
all approximation techniques are modeled for normalized low pass filter case with 1
rad. cut off frequency. The implementation of the circuit is possible in first
normalized structure and then circuit transformation results with the actual networks
replacing all normalized L and C elements by their equivalent. The actual values of

the capacitors and inductors are found by dividing their normalized values to Q.

2.4.2 Low pass to high pass transformation

The frequency-denormalization process from lowpass to high pass is defined by the

relation

s=Q, /p (2.17)

This transformation is also used in reverse case. The implementation of the circuit is
possible in first normalized structure and then circuit transformation results with the
actual networks replacing all normalized L. and C elements by their equivalent. The
all capacitors in the normalized low pass equivalent are replaced by inductors with

the value of 1/Q C and all inductors in the normalized low pass equivalent are

replaced by capacitors with the value of 1/Q L as seen in Figure 2.3.
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Figure 2.3. Low pass to high pass transformation of LC structures.
2.4.3 Low pass to band pass transformation

The frequency-denormalization process from lowpass to band pass and vice versa is

defined by the relation

(I
p= ! {H ol ”2} (2.18)
o, s

The given band pass specifications such as wpl, wp2, ws1(edge of stopband region),
ws2(edge of stopband region), Kp(maximum attenuation in pass band region),
Ks(minimum attenuation in stop band region) are first transformed into normalized
low pass equivalent using equation (2.16) and then normalized low pass transfer
function and 1 ohm resistance terminated LC equivalent is obtained. The same
equation is used for denormalization of the transfer function replacing p and the
network is denormalized as actual band pass filter replacing inductors with series LC
resonator and capacitors with parallel LC resonator. The element values of the

resonators are determined using equation (2.18) as shown in Figure 2.4
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Figure 2.4 Low pass to band pass transformation of LC structures.
2.4.4 Low pass to band stop transformation
The given band stop specifications are converted into normalized low pass form in

two steps. First the data is changed into band pass formand then low pass form.

Therefore the equations

s=1/p (2.19)

and

p=—1 s 2" O (2.20)
0, -0, s

are both used. The network is denormalized as actual band stop filter replacing
inductors with paralel LC resonator and capacitors with series LC resonator. The
element values of the resonators are determined using equations (2.19) and (2.20). as

shown in Figure 2.5.
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Figure 2.5. Low pass to band stop transformation of LC structure.

2.5 Implementation

In analog circuit implementation, basically well-known analog, linear (or non-linear)
components such as resistors, capacitors, inductors, operational amplifiers, etc. are
used [17]. Ones the normalized or actual transfer function N(s) is obtained, the
maximum gain requirements answers whether the active or passive circuit elements
will be used in the implementation. For every high frequency applications, since the
gain of the operational amplifiers are not linear at high frequencies, the passive LC
structures are preferred [18]. The critical frequencies such as cut off, resonance are
cached by using series or parallel LC resonators in the passive structures. Voltage

divider approach helps to calculate the maximum gain of the filters.

On the other hand, if the required gain is greater than unity (amplifier), then it is
necessary to use the active circuit components such as transistor, operational
amplifiers. For high frequency applications transistorized amplifiers should be
designed while for considerably lower frequencies (audio, medium) operational
amplifiers may be used. One and most important property of the active filters is not

only their amplification properties but also the lack of the inductors in these circuits.
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In fact last two decades, resistors are also eliminated by using the switched capacitor
structures. In this study LC ladder implementation is computerized. In Figures
2.3.(a), (b) and (c) the low pass filter structures are given for the similar

characteristics [19].

Figure 2.6.(a) Passive RC LPF

Ca
51 SE —|
h:l—l'f -DCI -
- 1 Cl V|:|u1:
mg ; Vv <

Figure 2.6.(c) SC—LPF (S, and S, are switches)
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CHAPTER 3
COMPUTER AIDED DESIGN OF FILTERS

A set of computation is given for each type of the approximations in this chapter.
They were described according to their squared magnitude function in Chepter 2.
These computations using the given specifications of filters help us to get the
element number, pole locations of the required filter. Hence quadratic factors and
denominator coefficients are computed. Since computed values are normalized

values, these values will be multiplied by denormalization constantw , .

First of all, the mathematical models of the four different approximations are given.
The details of how the poles and zeros of the transfer function are obtained will be

then explained. The algorithm prepared to achieve all calculation steps will be given.

3.1 Butterworth Approximation
3.1.1 Pole locations, quadratic factors (s2 +a;s+ 1) and Q’s of N(s)

The locations of the poles of a network function N(s)that has a Butterworth

magnitude characteristic may be found by using

2

, H
lN(]W)|2:1+w2” and (3.1)

T(s*) =IN(jw)’l

west j= N(8)* N(=s) (3.2)
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Thus we obtain

H2
wi=s? 1+(_1)ns2n

H2

N(s)* N(-s) = -

(3.3)

2n

Setting the denominator polynomial of equation (3.3) to zero, we find that poles are

located at the values of s that satisfy the relation

1/2n

s=[-17] (34)

Thus for even value of n s = (=1)""*" = e¢™’*" (k=1,3,5,....,4n-1), and for odd value
of n s=1)"" =e™*" (k=0,2,4,....,4n-2). From these relations, it is seen that the
poles of N(s)N(—s)are equal-angularly spaced around unit circle. Retaining only the
left-half plane singularities, to satisfy the stability in the same time the poles of

N(s)are given as p, =0, + jw, [2], where

akz—gnzk_lx k=1,2,3,...n (3.5)
2n

a&::COSZk__lﬂ k=1,2,3,...n (3.6)
2n

By multiplying real part of root by 2, you can geta, ;

a1=(—ﬁn2k_lﬂJ*2 (3.7)

The inverse of q, is the quality factorQ;

0=1/a, (3.8)
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3.1.2 Denominator coefficients of N(s)

The denominator polynomials characterized by the roots calculated above are called
Butterworth polynomial. The values of the polynomial coefficients for a polynomial

P(s)where
P(s)=a,+a,s+a,s+....... +a,s" (3.9)

are given by noting that, since all the poles are located on the unit circle,a, =1. The

other coefficients are determined by the iterative relation

cos[(k =1z /2n]
a, = a
sin(kz / n)

k=1,2,.....n (3.10)

k-1

Coefficients of the function is symmetric, so that

a() = an =

al = n-1

a2 = an—2

3.1.3 Order of N(s)

The following parameters are defined to determine the order of function required to

meet a given set of specifications

Q=—-=-% (3.11)
100411(“ _1
M :1/—100'“@ - (3.12)
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For the Butterworth case the required order n, is given by

_logM InM
logQd InQ

(3.13)

n,

The required order of the function is the next highest integer greater than n, .

equation (3.13) satisfy the maximum attenuation at the pass band edge. Since the
closest higher integer is chosen, the obtained transfer function always gives better

results then the requirements.

3.2 Chebyshev Approximation

3.2.1 Pole locations and quadratic factors (s° +a,s+a,) of N(s)
equation (3.1) is modified as

H2

IN(Gw) 1P = —————
1+£°C,° (w)

(3.14)

to obtain the ideal low pass characteristics. Since @™ is replaced by C> (@), which is

known as the Chebyshev function, the basic property of this function must be sharp

change (high derivative) around normalized unity frequency.

Replacing the @ in equation (3.14) by s/ j, the s domain complex transfer function

1s obtained as

2 H?

NE*NE)=INGOL, = 50T

(3.15)

Thus the poles of the product N(s)* N(—s)are the roots of C.(s/j)=-1/¢€’

orC,(s/ j)=%jl¢.

Using the trigonometric form for C, (w)
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C,(w)=cos(n cos' w) 0<w<l (3.16a)

C,(w) = cosh(n cosh™ w) w>1 (3.16b)

C”((o):%[(aﬁ o 1) +(o+ (02—1)_”} w>1 (3.16¢)

Hence

C (2= cos(n cos™ i_) _+ (3.17)
J j) e

To solve this equation, a complex function

|t

W=u+ jy=cos = (3.18)
J

is defined.

Substituting this expression in equation (3.15)

cosn(u+ jv) = cosnucoshnv — jsinnusinhny =+ J (3.19)

™

1s obtained.

Equating the real parts of the second and third members of this relation gives
cosnucoshny =0. Since coshnv>1 for all values of nv, this equality requires

cos nu = 0. This may be written in the form

2k -1
T
2n

k=1,2,3,.....2n (3.20)

u, =
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Equating the imaginary parts of equation (3.18) and recognizing that fort he values of

u defined by equation (3.19), sinnu = =*1

v:lsinh'll (3.21)
n &

is obtained where only the positive value for v are retained. equation 3.17 may now

put into the form
s = jcos(u, + jv) =sinu, sinhv+ jcosu, coshv (3.22)

This relation specifies the poles of the product N(s)N(—s). The left-half plane poles
are assigned to N(s)to complete the determination of the network function. Thus we

see that the poles of N(s) will be at p, =0, + ja, [10], where

0, =—siny, sinhv k=1,2,....,n (3.23.a)

w, = cosuk coshv k=1,2,.....n (3.23.b)

and where u, and v are defined as in equations (3.20) and (3.21).

The coefficient € is obtained by

1
2

After the pole locations are obtained in the form (s—o, + j@,) *(s—0, + j&,) the

quadratic factors are simply written in the form (s2 +a;s+ 1).
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3.2.2 Denominator coefficients of N(s)

Finding the roots of the denominator polynomial, since the poles are already
obtained, it is possible to write the denominator function either as the multiplication
of the subsequent second order s domain functions or completely in the polynomial
form. First case is very suitable for the RC-operational amplifier cascade realizations
while the later case is good for passive LC-ladder realizations. The denominator
obtained by using the given algorithm is Hurwitz and the coefficients are positive
real numbers. So the overall transfer function is passive LC-ladder realizable.

3.2.3 Order of N(s)

To determine the order of function required to meet a given set of specifications

Q="r="s (3.25)

100411(“ _1
M = 1/—100'“@ . (3.26)
are defined as in the previous chapter.

For the Chebyshev case the required order n_ is given by

-1
n :C"Sl;l__l]‘é (3.27)
COS

The required order of the function is the next highest integer greater than n_
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3.3 Inverse Chebyshev Approximation
3.3.1 Pole and zero locations and quadratic factors (s* + a,s+ay)of N(s)

In the Inverse Chebyshev approximation the reciprocal of the Chebyshev polynomial
is used. This causes the generation of the zeros as well as the poles as in equation

(3.28).

e2C 1/ w)
IN,.(jw)l?=——1 2
’C 1+£2C,7(1/w)

(3.28)
The poles of the function are determined by finding the roots of the denominator
polynomial after replacement of s/j for @ as in the previous approximations. Hence

the magnitude squared network function becomes

A(s)A(=s)

3.29
B(s)B(—s) G2

IN(jw)

L, =NEN(=s) =

where N(s)is the network function. A(s) is the numerator polynomial and B(s) is

its denominator polynomial. Equating the numerator and denominator of equations

(3.28) and (3.29), s domain polynomials are obtained as

A(s)A(=s) = €°C} (ij (3.30)
S

B(s)B(-s)=1+€°C’ (ij (3.31)
s
First let consider the numerator. Setting equation (3.29) to zero and using

)= cos(n cos™! 3) —+J (3.32)
j j) e
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C, (i_) = cos(n cos™ i) =0 (3.33)
J J

1s obtained.

The result is that the zeros z, = @, + jf, [10] of the Inverse Chebyshev function are

given by
1
a, =0 B = k=1,2,.....,n (3.34)
cosu,
u, = k=1, (3.35)
2n

Now let consider the denominator polynomial of the Inverse Chebyshev function.
The poles are found by setting equation (3.29)b to zero. The resulting equations are
almost the same as that used for finding the poles of a Chebyshev function whose

pass-band has the same attenuation (K ,) as the inverse Chebyshev but is defined for
0 to 1 rad/s and whose stop-band has the same attenuation (K ) as the inverse
Inverse Chebeyshev but starts at 1/@, radians per second. The only difference is
that the argument of the Chebyshev polynomial C;(-)is inverted and appears as j/s

rather than ass/j. As a result, the poles of the Inverse Chebyshev function are

simply the reciprocal of ones found for Chebyshev function. Thus they maybe

specified as [10]

b = ; k=1,2,....n (3.36)
o, +]0,
o, =—sinu, sinhv w, =cosu, coshv  k=1,2,....,n (3.37)
1 1 1
v=—sinh™ — E == 3.38
n £ 10()A1Kx _1 ( )
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and u, is defined in equation (3.35)

After the pole locations are obtained in the form (s—o0, + j@,)*(s—0, + jw,) the

quadratic structure is also obtained as (s2 +a,s+ 1).

3.3.2 Denominator coefficients of N(s)

Finding the roots of the denominator polynomial, since the poles are already
obtained, it is possible to write the denominator function either as the multiplication
of the subsequent second order s domain functions or completely in the polynomial
form. First case is very suitable fort he RC-operational amplifier cascade realizations
while the later case is good for passive LC-ladder realizations. The denominator
obtained by using the given algorithm is Hurwitz and the coefficients are positive

real numbers. So the overall transfer function is passive LC-ladder realizable.
3.3.3 Order of N(s)

To determine the order of function required to meet a given set of specifications

w
=% _J. (3.39)

wp f p

100‘“(.3 _1
M = 107 1 (3.40)
are defined as in the previous chapter.
For tthe Inverse Chebyshev case the required order n,_ is given by
-1
e = cosh M lM (3.41)
cosh™ Q

The required order of the function is the next highest integer greater than n,_
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3.4 Elliptic Approximation

3.4.1 Order of N(s)

For the determination of the order of an Elliptic Function the specifications are:

1) Passband: For 0 < @ < @, radians per second (0 < f < f hertz), the ripple of the
magnitude characteristic is K ,dB

2) Stopband: For w2 @, radians per second ( f = f hertz) , the equal-ripple

attenuation varies between a minimum of Ks dB and infinity.
To determine the order M and Q are used. The elliptic order n, then is found by

first determining the quantities.

1 1
CM) = (1+ 2M2j (3.42)

Ja-1

D)= m (3.43)
The order n, is given as

ng = Fy(C)F;(D) (3.44)
where

Fp(x)= %ln(x +2x7 +15x7) (3.45)

The required order of the function is the next highest integer greater thann, .
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3.5 Algorithm

The overall equations given in the previous sections of this chapter are computerized
and algorithm is prepared to process the given specification data to obtain the poles,
zeros, order and some specific circuit structures. To communicate the computer, user

independent easy interface is prepared.

The block diagram of the program code is given in Figure 3.1.

Entries: edge frequencies, Ks and Kp values, type of filter and the type of
approximation

| | | |
Butterworth Chebyshev Inv.Chebyshev Elliptic

v v v y
Computation Computation Computation Computation
of of of of
Order, Order, Order, Order, poles,
Poles, poles, poles, Quadratic
Quadratic Quadratic Quadratic factors,
factors, factors, factors, Zeros,
denominator Denominator Zeros, Denominator
coefficients. coefficients. Denominator coefficients.
LC ladder LC ladder coefficients.
structure structure LC ladder

structure

Figure 3.1 Program code flow diagram

The algorithm of the program for 4 different approximations is as:

Entries: edge frequencies ( ws, wp for LP/HP filter ws1,ws2,wpl,wp2 for band

pass/stop filter) Ks and Kp values and the type of approximation
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Butterworth function computations:

Poles : Equations (3.5) and (3.6)

Ao 1

Al values : Equation (3.7)

Denominator coefficients  : Equation (3.10)

Order : Equations (3.11), (3.12), (3.13)
Denormalization : Equation (2.16) (frequency-denormalization

constant is @ » )

Transformations : Equations (2.17), (2.18), (2.19), ( 2.20)

Inductance and Capacitance values in actual LC Ladder structure

Chebyshev function computations:

Poles : Equations (3.21), (3.23.a), (3.23.b), (3.24),
(3.32)
Ao and Al values : Multiplying every conjugate pair of roots by

each of them.

Denominator coefficients  : Multiplying every pair of roots by each of them,
store it at matrixes, and re-multiply until you
reach the order computed.

Order : Equations (3.25), (3.26), (3.27)

Denormalization : Equation (2.16) (frequency denormalization

constant is @, )

Transformations : Equations (2.17), (2.18), (2.19), (2.20)

Inductance and Capacitance values in actual LC Ladder structure

Inverse Chebyshev function computations:

Poles : Equations (3.35), (3.36), (3.37), (3.38)
Ao and Al values : Multiplying every pair of roots by each of them.
Denominator coefficients  : Multiplying every pair of roots by each of them,

store it at matrixes, and re multiply until you
reach the order computed.

Order : Equations (3.39), (3.40), (3.41)

Zero : Equations (3.34), (3.35)
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Denormalization : Equation (2.16) (frequency denormalization

constant is @, )

Transformations : Equations (2.17), (2.18), (2.19), (2.20)

Inductance and Capacitance values in actual LC Ladder structure

Elliptic function computations:

Order : Equations (3.42), (3.43), (3.44), (3.45)
Ao and A1l values : Multiplying every pair of roots by each of them.
Denominator coefficients  : Multiplying every pair of roots by each of them,

store it at matrixes, and re multiply until you

reach the order computed.

Order : Equations (3.39), (3.40), (3.41)
Zero : Equations (3.34), (3.35)
Denormalization : Equation (2.16) (frequency denormalization

constant is @ » )

Transformations : Equations (2.17), (2.18), (2.19), (2.20)

3.6 How The Program Works?

In the beginning window program asks for the filter type like high pass, low pass,
band pass and band stop. After the selection of the type, to get the required network
elements, according to the specifications needed for the filter design, critical edge
frequencies and band attenuations (Ks, Kp) are entered. The approximation will be
chosen from the following window by the user. Programming code take the values
and use the selected approximation and values and make the set of computations to
get order, poles, quadratic factors, denominator factors and actual LC network for
Butterworth, Chebyshev, Inverse Chebyshev approximations. For elliptic
approximation, the transfer function is obtained. On this window a basic circuit
structure is presented and transfer function elements are listed. The all circuit

element values listed are actual values of inductors and capacitors.
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The values got from denominator and numerator polynomial is given to Matlab
program as a.dat and b.dat files. These a.dat and b.dat values including denominator
and numerator polynomials can be used in matlab program to see the behaviour of

the filter resulted from approximation methods.

The flow diagram of interface is given in Figure 3.2.

Select the type offilter in the firstwindow

\’

Enter the we,wp,Ke and Kp values inthe 2nd window and choose the approzimation you will use

)

According to the approzimation make the calculations.

Figure 3.2. Interface flow diagram

The program runs for limited values as written below:

1) Actual LC structure elements calculation is limited by 10 elements in Butterworth
and Chebyshev approximation. In Inverse Chebyshev approximation LC structure
elements calculation is limited by 4 elements. Elliptic approximation is calculated for
low-pass and high-pass filters and in the result transfer function is given as data.

Here LC structure elements aren’t given.

2) For low pass and high pass filters numerator and denominator coefficients
(coefficients resulted from zeros and poles) are limited by 10 coefficients. In the
band pass and band reject filters denominator coefficients are limited by 5
coefficients. Because for the order number 5, 10 coefficients will be get in the

numerator and denominator polynomial.

Summary:

1) Choose filter type
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™ Filter Types

LC FILTER DESIGN

LowPazz/HighPazs BandFazz/B andReject

Figure 3.3. First interface to select the filter type

2) If you choose LowPass/High pass the window below is seen. Here choose

low or high pass filter, then enter the values w6, K K, and select the

type of approximation.

™ LowoOr High Pass Filter, |ZHE|E|

Enter the Values and Select the type of filters

EVEN aDpD
wp[Hz orrad/s): ’7 Filter Type: (" LawPass Filter
wz[Hz or rad/s): " HighPass Filter
Ks(dB) : |7
Kp(dB] - |

Select the approximation lype
Buttenwarth | Chebpshey | InvChebush Eliptic

Drder of Function:

Results

Resulls

Figure 3.4. Second interface to enter datas and see results if you choose low/high

pass filter
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3) If you choose BandPass/stop filter the window below is seen. Here choose

band pass or stop filter, then enter the values 0,,0,,,0,,,®,,,K K,k and

select the type of approximation.

EH Band Pass / Band Reject |Z||E|fg|

Enterthe Values and Select the type of filters
EVEN opD
wpl [Hzor ladfs]li wp2 [Hz or lad!s],i
wsl [Hzor ladfs]:’i ws2 [Hz or lada’s]:’i
Ks[dB] : ’7 Kp[dB] : ’7

Select the approximation bype

Filter Type: " BandReject Fiker ¢ BandPass Filter
Order of Funclion : Buttervworth | Chebyshey InvChebysh
Resuk

Denominator Coeffections

A

Figure 3.5. Second interface to enter datas and see results if you choose band

pass/band reject filter

4) Enter the normalized polynomial coefficients into matlab to sketch the gain curve.
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CHAPTER 4

PROGRAM

In this chapter the details of the prepared program will be given and it will be run for

several examples.

4.1 Program

The program is written in visual C# [20, 21]. Program consists of many buttons,
labels. Every button and label works with its special code. [22].The program gives
the results in the screen [23, 24].

Since the programming code is so many pages, it is and the program exe files are

given in CD as in appendix A.

4.2 Filter Design Examples

Example 1) A Butterworth function must meet the following specifications for low-

pass filter.

@, =1500,@, =1000,K, =25,K, =1

Determine the

1) the required order

2) the denormalized pole locations

3) the denormalized quadratic factors

4) the normalized denominator coefficients.

5) the actual LC values.
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05 Lowor High Pass Filter

ws [Hz orrad/s): ’W
KpldB) : e

Select the approximation lype

wp[Hzorrad/s): 1000 Filter Type: + LowPass Filter = l ————Tfuf'—.
™ HighPass Filter 1 ey Lo
Ks(dB] : 25 T :I—

Enter the Values and Select the type of filters
EVEN

Actual element yalues

L1':0,0001736
C2':0,0005755
L3':0.0003414

Euttelworthl Chebyshev‘ InwChebyzh Eliptic Eg,gggugg?

Order of Function: 3

Results

CE':0,0016202
L7:0,0M7772
CA' 00018424

Denomalized Poles

Quadratic Factors

1/ s-pi)

[s2+als+1]: al

-173,648156422997 +984,807 THE752086
-433,933343955195 +366 02543614132
-76E, 04437378301 542 787692310764
-939.63256971 40313 +342 020285220741
-399,9939353353951

939,692701943229 342,01 8320347682
-766.044623376653 -jh42 787334863508
-500,000280223995 -866,026241996979
-173.64853801 3785 984 807EE3232205

Results

347 296312845334
593.993857910383
1632,00874757802
1879.30513828063

Normalized Denominatars

TéAl+als+as2+.al snl +2n

1
B, 758771187E6R57
1658172279534 36
31,163443024326

41 9864072581421
41,3864140930138
31,163464B652072
16,581 7373400675
5,75877971600268

Figure 4.1. Entering the specifications and selecting the approximation. (The values

computed and low-pass realizations of Butterworth elements)

To check the values, the program written below in MATLAB code gives us curve
gain. The filter program written in C# gives the numerator and denominator
coefficients to matlab/work/b.dat and matlab/work/b.dat. We must be careful here to
check the a.dat and b.dat files so that the coefficients seperators must be dot. From
C# program’s speciality, the coefficients sent to a.dat and b.dat files seperarators are
comma, we must change them by dot. Also the filter program gives the Kp value

entered as data from user to matlab/work/LHKp.dat and this value is used in the

program written below in MATLAB.

cle
clear all

close all
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a=load('a.dat")

b=load('b.dat")
w=[0.1.23456.7891.1112131415161.71.81.92];
h=freqs(b,a,w);

mag=abs(h); phase=angle(h);

Yot=w/(2*pi);

Yloglog(w,mag);
wl=[00.05.1.15.2.25.3.35.4.45.5.55.6.65.7.75.8.85.9.95 1.];
c=load('LHKp.dat'")

plot(w,20*log10(mag),w1,c)

J Figure 1

File Edit View Insert Tools Deskiop Window Help

DedE h RaQO® ¢ 0E 50

Figure 4.2. Gain curve for example 1
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Example 2) A Chebyshev function must meet the following specifications for high-

pass filter.

®, =1000,0, =1500,K, =25,K, =0.1

Determine the

1) the required order

2) the denormalized pole locations

3) the denormalized quadratic factors

4) the normalized denominator coefficients.

5) the actual LC values.

Low Or High Pass Filter

Enter the Values and Select the type of filters

EVEN opD
wp [Hz orrad/s): 1500 Filter Type: " LowFass Filter J- . | e "_ l |— —— ——I—|—l—
ws[Hzorrad/s):  [1gop ' HighPass Fier ) 1 g, ?l. S 1 WO H, B E N N 3
Ks(dB] : m [ 1 | | [ |
Kp(dB] : 1 Actual element vdues

C1':0,000731 646330081 6E2

S — L2':0.00155363940029519

Selectthe approximation lype C£3:0,000367471429096388

L4':0,000405860627 46053
C5':0,00043323802096872

Buttenwarth | Chebyshey InvChebysh

Order of Function: 5

Eliptic:

Results

Denommalized Poles Quadratic Factors

1/z-pi]

[s2+alz+a0) : al - al

135774058731 636 +1502 72003333041
-918,330187 352105 +2138,09498570925
5181 46632871419

-418.33112214531 2138.09568224317
-135,774262340488 1502, 7 2025682614

Results

Z2TRE02.29213639  271.548117463331
5241114,46344673 1636,66037470421

Normalized Denominatars

z/al+al o+ a2 2+ .and g(h 1)+ 50

8.14155134351229
7.B2716926927002
13.7495836323149
7.93309637759345
4,72644938058355

Figure 4.3. Entering the specifications and selecting the approximation. (The values

computed and high-pass realizations of Chebyshev elements)
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To check the values, the program written below in MATLAB code gives us curve
gain. The filter program written in C# gives the numerator and denominator
coefficients to matlab/work/b.dat and matlab/work/b.dat. We must be careful here to
check the a.dat and b.dat files so that the coefficients seperators must be dot. From
C# program’s speciality, the coefficients sent to a.dat and b.dat files seperarators are
comma, we must change them by dot. Also the filter program gives the Kp value
entered as data from user to matlab/work/LHKp.dat and this value is used in the

program written below in MATLAB.

cle

clear all

close all

a=load('a.dat")

b=load('b.dat")
w=[0.12345.6.7891.1.11.21314151.61.71.81.92.];
h=freqs(b,a,w);

mag=abs(h); phase=angle(h);

Yof=w/(2*pi);

Yloglog(w,mag);
wl=[1.1.051.11.151.21.251313514145151.551.61.651.71.75 1.8 1.85
1.91.952.];

c=load('LHKp.dat")

plot(w,20*log10(mag),w1,c)
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) Figure 1

File Edit Wiew Insert Tools Desktop ‘Window Help

DedE K a0 € 0B 8O0

20

Figure 4.4. Gain curve for example 2

Example 3) An inverse Chebyshev function must meet the following specifications

for band-pass filter.

®, =1000,@,, =2500,®,, =1600,®,, =2000,K, =3,K, =1

Determine the

1) the required order

2) the normalized pole locations

3) the normalized zeros

4) the normalized numerator polynomials
5) the normalized denominator coefficients.

6) the actual element values
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[™ Band Pass / Band Reject

Enterthe Values and Select the type of filters
EVEN opD

wpl [Hz orrad/s]|1200 wp2 [Hz orrad/s)| 2000 3 B

ws1 [Hz orrad/s){1000 ws2 [Hz orrad/s){ 2500 ﬁ_[:] 1 2 J: g

Ks(dB] : E] Kp[dB] : 1 e i . #

Filter Type: " BandReject Fiker ™ BandPass Filter Selectthe approximation ype:

Order of Function: 3 Butterworth ‘ Chebyshey | InyChebyzh |

Results
Normalized Poles A

s2kE e A s2k it + o
Normalized Poles Actual Element Yalues
K =800
C = 2400000
-0.248525569213993 +0.971629651953896 C1:0.0002583801 36223552 L1%0.001608875
-2,02359264185019 C2'0,0045885 [2'5,20933333333333E-10
-0.24852582041545 -0.971629762768075 C2:0.0063158753467123 L2:0.000255375
Normalized Zeroz i
-
Results
b0+ b1 51+ b(n1)s(2n-1] +bns2n /a0 + a1 21 + . aln-1)s(2n-1) +an e2n

Numerator coefficients

57E0000000000

1]

BE53333 26956661

1]

1

1]

il

Normalized Denominator coefficients

1.3824E+18

1.16151265397062E 416

14603906342163.3

EA36093127,78143

BOB7461.22590413

2016, 51502425454

1

A

Figure 4.5. Entering the specifications and selecting the approximation. (The values

computed and band-pass realizations of Inverse Chebyshev elements)

cle

clear all

close all

a=load('a.dat")

b=load('b.dat")

w=[100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950
1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700
1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500
25502600 2650 2700 2750 2800 2850 2900 2950 3000 3100 3150 3200 3250 3300
3350 3400 3450 3500];

h=freqs(b,a,w);

mag=abs(h); phase=angle(h);
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1.851.9 1.952.];
plot(w,20*log10(mag))

J Figure 1 '-_|'E|g|
File Edit Wiew Insert Tools Deskbop Window Help L

DedE W RQ0N® € 0B =50

'125 T T T T T T

-130

-135 +

40}

145+

-150 -

-185

-160

-165

-1710

| 1 | 1 1 |
1] 500 1000 1500 2000 2500 3000 3500

Figure 4.5. Gain curve for example 3
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CHAPTER 5

DISCUSSIONS

In the communication and control applications, the elimination of the harmonics
from the signal content has significant importance. In many analog or digital
communication networks, the filters are widely used as well the modulators,

convertors, oscillators, etc.

In both linear and non-linear electronics, the filter part of the network may be linear
or non-linear filters. In this study the linear passive filter design is considered.
Altough the approximation theories used in LC filter design is very well known, here
it is aimed to computize the all complex mathematical expansions and to build up the

package of finding filter design program.

In general although the actual filter specifications includes the edge frequencies and
the attenuations of the stop band and pass band regions, the approximation
algorithms convert the given data into the normalized low pass structure. It is some
times useful to change the network elements by their actual values or actual transfer

function is directly obtained by using the transformation.

Another basic purpose of this work is to prepare an interface for the users and to
make the use of this program easy for the users. The program may be used as

laboratory applications.

The inputs of the program are only the specification parameters (critical edge
frequencies and corresponding attenuations) and the type of the approximation. In
the program normalization and denormalization transformations are also included.

Hence “ready to use” circuits may be obtained.
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Since the elliptic filter realization has many different possible choices, in this study,
only the order of the elliptic filter and transfer function is calculated for low pass and

high pass filters.
As a future proposal; the computer program may be re-developed for the

implementation of the obtained actual or normalized transfer function by using the

RC operational amplifier, switched capacitor circuits or multi terminal structures.
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