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ABSTRACT 

IMAGE AND SPEECH SIGNAL ENHANCEMENT IN TIME-FREQUENCY 
DOMAIN VIA ADAPTIVE LIFTING STRUCTURES 

 
 

TAŞMAZ, Haci 
PhD in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Ergun ERÇELEBİ 
August 2009, 114 pages 

 
 

This thesis addresses the problem of image and speech enhancement for various 

noise environments using adaptive lifting schemes. A new space adaptive lifting 

scheme algorithm is proposed for 1-D (speech) and 2-D (image) signals. The space 

adaptive lifting schemes provide better signal representation and better enhancement 

results. The proposed speech enhancement method aims to remove the noise in 

order to improve the quality and the intelligibility of the enhanced speech signal. In 

order to improve the quality of the enhanced speech signal, an auditory model 

(Critical Bands) is integrated with the proposed speech enhancement method. The 

single channel estimators are employed for subbband speech enhancement since 

they are practical. The proposed image enhancement method is based on space 

adaptive 2-D lifting scheme. The aim of proposed image enhancement method is to 

remove the noise while retaining significant features of the image. The gray-level 

noisy images are decomposed into subbands using the proposed space adaptive 2-D 

lifting scheme algorithm. Spatial domain estimators and wavelet thresholding-based 

estimators are used for subband image enhancement. The experimental and 

objective evaluation results show the performance of proposed speech and image 

enhancement methods.  

Keywords: speech enhancement, space-adaptive lifting, wavelet, critical band 

analysis, single channel estimators, image enhancement.  
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ÖZET 

GÖRÜNTÜ VE KONUŞMA SİNYALLERİNİN ZAMAN-FREKANS 
BÖLGESİNDE UYARLAMALI LİFTİNG YAPILARI KULLANILARAK 

PEKİŞTİRİLMESİ 
 
 

TAŞMAZ, Haci 
Doktora Tezi, Elektrik-Elektronik Mühendisliği 

Tez yöneticisi: Doç. Dr. Ergun ERÇELEBİ 
Ağustos 2009, 114 sayfa 

 
 

Bu tezde, çeşitli gürültü ortamları için uyarlamalı kaldıraç yapıları kullanılarak 

konuşma ve görüntü pekiştirme problemi ele alınmaktadır. Tek boyutlu (konuşma) 

ve iki boyutlu (görüntü) işaretler için yeni bir uzam uyarlamalı kaldıraç yapısı 

önerilmektedir. Uzam uyarlamalı kaldıraç yapıları daha iyi bir işaret temsili ve daha 

iyi pekiştirme sonuçları sağlar. Önerilen konuşma pekiştirme yöntemi, pekiştirilen 

konuşma işaretinin kalitesini ve anlaşılabilirliğini geliştirmek için gürültüyü 

ayırmayı amaçlar. Pekiştirilen konuşma işaretinin kalitesini arttırmak için, bir işitsel 

model (Kritik Bandlar) önerilen konuşma pekiştirme metoduyla 

bütünleştirilmektedir. Altband konuşma pekiştirmesi için pratik olduklarından tek 

kanallı konuşma pekiştirme kestirimcileri kullanılmaktadır. Önerilen görüntü 

pekiştirme yöntemi uzam uyarlamalı iki boyutlu kaldıraç yapısına dayanmaktadır. 

Önerilen görüntü pekiştirme yönteminin amacı, görüntünün önemli detaylarını 

korurken gürültüyü ayırmaktır. Gri-düzeyi gürültülü görüntüler, önerilen iki boyutlu 

uzam uyarlamalı kaldıraç yapısı algoritması kullanılarak altbandlara ayrıştırılmıştır. 

Altband görüntü pekiştirmesi için uzamsal bölge kestirimcileri ve dalgacık eşik 

temelli kestirimciler kullanılmaktadır. Deneysel ve objektif değerlendirme sonuçları 

önerilen konuşma ve görüntü pekiştirme yönteminin başarısını göstermektedir. 

Anahtar kelimeler: konuşma pekiştirme, uzam-uyarlamalı kaldıraç, dalgacık, kritik 

band çözümlemesi, tek kanallı kestirimci, görüntü pekiştirme. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Speech Enhancement  

The most natural and efficient tool for communication between people is speech. 

Speech communication is often affected by noise and environmental conditions. The 

human auditory system is known to be robust against the most common adverse 

conditions; however, the speech acquisition devices are not so much robust against 

the adverse environments.  

When a speech acquisition device is used in such a noisy environment, the quality 

and the intelligibility of the transmitted speech is degraded due to the noise. This 

degradation may be very troublesome, especially in mobile communications where 

hands-free devices are used. Use of speech enhancement algorithms is always 

advisable in such communication devices [1].  

The problem of enhancing speech degraded by noise is largely open to research. 

Many effective techniques have been introduced over the past decade since there are 

many areas where it is necessary to enhance the quality of speech degraded by 

background noise. Some of these areas include: 

 Car interiors for cellular 

 Helicopter and aircraft cockpits  

 Hands free telephones 

 Automatic speech recognition (ASR) systems 

 Hearing aids and cochlear implants 

 Restoration of historical recordings 
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Although, the speech enhancement systems may vary depending on the place it is 

used, a general speech enhancement system is given in Figure 1. 

 

 
 

Figure 1.1 Description of a general speech enhancement system 
 

The aim of a speech enhancement system may be to improve the perceived quality 

while preserving the intelligibility of processed speech. This is achieved by 

minimizing the effect of noise in order to reduce the listener's fatigue or to obtain as 

much noise free records as possible. The speech quality is a subjective concept since 

the final speech quality should be assessed by the human listener. The quality of 

speech is the degree to which listeners perceive the naturalness or pleasantness while 

the intelligibility is the degree to which the speech is correctly understood by the 

listeners.  

 

1.1.1 Speech Characteristics 

Speech is non-stationary signal carrying information in its fluctuations varying with 

time and frequency. Moreover, the consecutive samples of speech signal are highly 

correlated. Generally, the speech signals are processed frame-by-frame, with frames 

having 10-30 ms durations during which the speech signal is considered to be quasi-

stationary. Speech bandwidth varies approximately from 50-4000 Hz. Speech signals 

are composed of voiced and unvoiced sounds. The voiced speech has high amplitude 

and energy at low frequencies and unvoiced speech has lower energy at higher 

frequencies. The speech is produced by human vocal tract. The vocal track is an 

acoustic tube which is limited by the vocal cords and the lips. The vocal track is 

characterized by its natural frequencies (formants) corresponding to resonances in its 

sound transmission characteristics [2, 3].  
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A simplified speech production model based on parameters of vocal tract is given in 

Figure 1.2. 

 
 

Figure 1.2 Digital model for speech production  
 

Another important concept in speech enhancement is the speech perception. The 

models taking into account the aspects of human perception are generally based on 

properties of the human auditory system. A speech enhancement system taking into 

account the aspects of human perception may lead to improved perceived quality and 

intelligibility of the enhanced speech. 

 

1.1.2 Noise Characteristics 

The nature of the noise is an important criterion in choosing a particular speech 

enhancement method. Choosing an appropriate noise model is also significant. 

Noises may have different statistical and spectral properties as given below. The 

following classification can be made based on the characteristics of the noise. 

 Uncorrelated noise: Additive background noise existing in many noisy 

environments (cars, offices, street, machines, windy conditions, factories and 

aircraft cockpits). It can be stationary, slowly varying or non-stationary.  

 Speech babble noise:  Noise interfering due to other speakers.  

 Correlated noise:  Reverberation and echoes.  

 Non-additive noise:  Noise caused by transmission line or transmission 
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channel distortion.  

Among these, the non-stationary noise is the most difficult noise type to remove 

when a priori information of noise is not available.  

  

1.1.3 Literature Summary for Speech Enhancement 

Speech enhancement systems designed so far, differ in the number of channel they 

use (single or dual-channel approaches) and the domain in which they operate (time 

domain, frequency domain or time-frequency domain).  

In dual-channel approach a second microphone provides a reference noise to better 

characterize changing noise statistics, which is necessary to deal with the non-

stationary noise. A well known dual-channel approach for noise cancellation has 

been proposed by Widrow et al.[4] where a primary sensor is used for the corrupted 

speech signal, while a second sensor for noise. One of the advantages of the dual-

channel approach is that it enables to process the speech corrupted with either 

stationary or non-stationary noise.  

Single-channel approaches are more difficult to implement since there is no reference 

noise source however, they are more general and widely preferred by researchers. In 

the single-channel approach the noise must be eliminated during the silence frames 

of the noisy speech and it is assumed that the noise is stationary during speech 

activity [5].  

Some of the popular single channel speech enhancement methods which have been 

developed in the last decade are as follows:   

The spectral subtraction based methods are the most popular among the many 

available single-channel speech enhancement methods for its effectiveness and 

easiness [6, 7]. The method is based on subtracting the estimate of average noise 

spectrum from the noisy speech spectrum to obtain the magnitude estimate of clean 

speech. The main drawback of spectral subtraction is that, it causes residual and 

unnatural musical noise. The residual noise refers to the broadband noise that has the 

same perceptual characteristics as the original noise. The musical noise is the 
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synthetic musical tones due to the presence of the random short-duration spectral 

peaks in the noise spectrum [8]. 

The single channel speech enhancement algorithms based on minimum mean-square 

error (MMSE) estimation have received considerable attention in the past two 

decades [9-11] and widely used by researchers owing to their success in elimination 

of musical noise. The methods are based on a priori signal-to-noise ratio (SNR) 

estimation, Gaussian statistics and short–time Fourier transform (STFT). By applying 

a spectral gain to each frequency bin in a short-time frame of the noisy speech signal 

the spectral components of clean speech can be estimated. Since the spectral 

components are assumed to be statistically independent Gaussian variables, the gain 

is adjusted individually as a function of the relative local SNR at each frequency bin.  

A vast amount of work has been emerged on the development of the soft decision 

noise suppression filters [12, 13]. In this approach, a spectral decomposition of a 

frame of noisy speech is performed and a specific spectral line is attenuated 

depending on the amount of measured noisy speech power exceeding an estimate of 

the background noise power.  

Model based speech enhancement methods can be found in [14, 15]. Model based 

approaches can be classified in two groups.  

 Speech enhancement based on speech production model (AR model)  

 Speech enhancement based on Hidden Markov Model (HMM). The HMM is 

based on statistical model of speech and noise which is estimated during a 

training sequences.  

The main disadvantage of AR models is that they are memoryless. If a given AR 

model is chosen for the current speech frame, certain AR models are more likely to 

occur in the following frame. 

The HMM is used to model the probability distribution (PD). The HMM based 

systems give better results than the traditional speech enhancement methods, 

especially at low SNRs for speech corrupted by non-stationary noise. However, 

HMM based models require a training sequence and they cause high computational 
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cost. After obtaining the statistical parameters of speech and noise by a training 

sequence, the speech is estimated either by maximum a posteriori (MAP) estimation, 

leading to an iterative algorithm or MMSE estimation, where the filter weights are 

directly estimated from the noisy signal.  

Most of the single channel speech enhancement methods designed so far aims to 

reduce the noise to improve the SNR of the enhanced speech signal. However, they 

can not improve the intelligibility of the enhanced speech signal. Recently, an 

increasing number of researchers have designed speech enhancement methods which 

include characteristics of the human auditory system [16-18] in order to improve the 

intelligibility of the speech signals. These perceptual models are generally based on 

critical-band decomposition or noise masking properties. The improvement in the 

intelligibility does not affect the objective quality of the speech signal, which means 

that a speech signal with good intelligibility may have poor objective quality or vise 

versa. 

In the past decade, the wavelet transform has become a popular tool in speech 

enhancement applications for analyzing the non-stationary signals. It was developed 

to overcome the shortcomings of the STFT which is also capable of analyzing non-

stationary signals. However, the limitation of STFT is that it uses a fixed window 

length for all frequencies. Once the window length is chosen, the time resolution is 

the same for all frequencies. On the other hand, the wavelet transform uses a variable 

window length. It provides good time resolution (poor frequency resolution) at high 

frequencies, while providing good frequency resolution (poor time resolution) at low 

frequencies [19-23]. 

A well-known wavelet-based speech enhancement method is wavelet thresholding 

(or shrinkage) proposed by Donoho at al. [24-26]. However, the STFT-based speech 

enhancement filters (or estimators) can be extended to the wavelet domain [27].  

Furthermore, the wavelet packet transform (WPT) provides easy handling of the 

spectral content of speech signal, variable frequency resolution in each subband and 

exploiting the frequency subbands of interest [28].  
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By adjusting the subbands of WPT according to critical-bands of the human auditory 
system, a perceptual filterbanks which lead to efficient speech enhancement 
algorithms can be designed [29-31].  

An alternative method for constructing biorthogonal wavelet transform, the lifting 

scheme [32, 33], has the following advantages over the classical wavelet transform. 

 it is a spatial domain method 

 easier to implement  

 allows faster and in-place calculations  

 allows nonlinear, adaptive, irregularly sampled and integer to integer 

wavelet transforms  

 easier to obtain inverse transform  

Furthermore, any wavelet transform can be factored into lifting steps [34]. Besides 

the above given advantages, the lifting scheme has a limitation. Since the filter 

structure is fixed, it can not adapt to the sudden changes in the input signal. 

However, a lifting scheme which adapts itself to the signal structure is desirable in 

many applications. This is achieved by allowing the lifting scheme to adapt its 

prediction or update filters to the local properties of the signal, which leads to 

adaptive lifting schemes [35]. 

The motivation behind introducing adaptivity into the lifting scheme is that, choosing 

better prediction filters (in the update-first lifting scheme) will give rise to more 

efficient signal representations. Some of the adaptive lifting algorithms developed by 

the researchers in the last decade include:  

G. Piella and H. Heijmans [35] designed an adaptive update lifting scheme. The 

adaptivity is achieved in the update stage and no bookkeeping is required for perfect 

reconstruction.  

Yonghong at al. [36] proposed a spatially adaptive lifting scheme for 1-D signal 

denoising. Their adaptive algorithm chooses the Haar wavelet near the edges and 
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CDF (2, 2) filter for smooth parts of the signal, based on comparing the derivative of 

samples with a threshold coefficient.  

R. L. Claypoole at al. [37,38], proposed “scale adaptive” and “space adaptive” 

update-first lifting algorithms for 1-D signal denoising. In the scale adaptive case, the 

prediction filter is adapted to the signal structure within each scale by minimizing 

prediction errors. In the space adaptive case, the prediction filter chosen from a 

family of prediction filter is adapted to the signal structure for each sample point, 

based on “edge avoiding prediction” method. 

 

1.2 Overview of Image Enhancement  

The image degradation caused by transmission errors, faulty acquisition devices or 

atmospheric disturbances is an important issue in image processing applications. 

Interpretation or visual perception of a noisy image is difficult for human observers.  

Such a noisy image needs to be enhanced. Furthermore, noisy images sent by 

satellites or medical devices cannot be directly processed. A pre-processing is always 

required where image enhancement is one of the important steps in the pre-

processing stage. 

The difficulties encountered in image enhancement are in general two types. The 

image edges are often blurred when noise is removed or when edges are retained and 

enhanced, image noise is strengthened too. Therefore, finding an image enhancement 

method which can both remove the noise and retain the edges or the other significant 

details of image is still a challenging task for researchers [39].  

The aim of image enhancement is to remove the noise content while preserving 

significant features of the image. Improved visual quality of an image (or better input 

for other image processing stages) can be achieved by aid of image enhancement. 

 

1.2.1 Image Characteristics 

An image may be represented by a two-dimensional function ),( yxf , where x  and 

y  are spatial coordinates. The amplitude of f at any pair of coordinate ),( yx  is 
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called as the intensity or gray level of the image at that point. The term gray level is 

used to describe the intensity of monochrome images.  

Color images are composed of a combination of individual 2-D images. For instance, 

in the RGB color system, a color image consists of three (red, green and blue) 

individual component images. Therefore, many of the techniques developed for gray-

level images can be extended to color images by processing the tree component 

images individually.  

An image may be continuous with respect to coordinates ),( yx  and amplitude of f . 

Both the coordinates and the amplitude need to be digitized to convert such an image 

to digital form. The process is called as sampling and quantizing. Thus, when yx,  

and amplitude of f are all finite discrete quantities (pixels), the image is called as 

digital image. According to coordinate convention used in MATLAB a digital image 

is represented as given in Figure 1.3. 

 

 
 

Figure 1.3 Coordinate convention for digital images 
 

The digital images are represented by matrices. For example, an image ),( yxf  of M 

rows and N columns is called as an image of size MxN and can be given in the 

matrix form as follows. 
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Some of the image (or graphic) formats supported by MATLAB is given in the 

Table1.1.  

 

   Table 1.1 Frequently used the image/graphic formats  
 

Format
name Description

TIFF

JPEG

GIF

BMP

PNG

Tagged Image file Format

Joint Photographic Expert Group

.tif,  .tiff

.gifGraphic Interchange Format

Windows Bitmap

Portable Network Graphics

.bmp

.png

.jpg, .jpeg

 
 

There are many data classes representing pixels in images. The numeric 

computations in MATLAB are performed using double quantities; hence this is also 

a frequently used data class used in image processing applications. Class uint8 is also 

used frequently, especially when reading image data from storage devices. The most 

frequently used data classes are as follows: 

 double  Double-precision floating point numbers in the approximate 

   range  308308 1010 to  (8 bytes per element) 

 uint8  Unsigned 8-bit integers in the range [0 , 255]   

   (1 byte per element) 
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 uint16   Unsigned 16-bit integers in the range [0 , 62535]    

   (2 bytes per element) 

 int8  Signed 8-bit integers in the range [-128 , 127]   

   (1 byte per element) 

 int16  Signed 16-bit integers in the range [-32768 , 32767]  

   (2 byte per element) 

 int32  Signed 32-bit integers in the range [-214748368 , 2147483647] 

   (4 byte per element) 

 single  Single-precision floating-point numbers with values in the  

   approximate range  3838 1010 to  (4 bytes per element) 

 char  Characters (2-byte per element) 

 logical  Values 0 or 1 (1 byte per element) 

The most common image types used in image processing applications are the 

intensity images, binary images, indexed images and RGB images. However, most 

gray-level image processing operations are performed using binary or intensity 

images [40, 41]. 

 Intensity images:  A data matrix whose values are scaled to represent 

intensities. (i.e., if the elements of an intensity image are of class uint8, it has 

integer values  in the range [0, 255]).  

 Binary images:  A binary image is a logical array of 0s and 1s.  

 Indexed images: An indexed image has two components: a data matrix of 

integers and a colormap matrix, map. Matrix map is an 3mx  array of class 

double containing floating point values in the range [0, 1]. An intensity image 

maps pixel intensity values to colormap values. 
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 RGB images:  An RGB color image is an 3MxNx  array of color pixels, where 

each color pixel consists of red, green and blue components of an RGB 

image. 

 

1.2.2 2-D Noise Characteristics 

The effect of noise is significant in image enhancement applications. Noise in spatial 

domain is defined by noise mean and noise variance. The general noise types in 

spatial domain are as follows: 

 Gaussian noise:  Image is corrupted by Gaussian noise with mean m  and 

variance .v  

 Salt & Pepper noise: Image is corrupted by Salt & Pepper noise with density 

d  (a percentage of the image area contains noise values).    

 Poisson noise: Poisson noise generated from the data, instead of adding noise 

to the data.     

    

1.2.3 Literature Summary for Image enhancement 

The image enhancement methods can be broadly divided into two groups. The spatial 

domain methods, based on direct handling of the pixels in an image and frequency 

domain methods, based on modification of the Fourier transform of an image [42].   

A vast literature has emerged recently on image enhancement using linear or 

nonlinear techniques. The linear techniques, such as low pass filtering, tend to blur 

edges and destroy important image details. One of the popular nonlinear techniques 

is the median filtering. In median filtering, a pixel (whether corrupted by noise or 

not) is replaced by its local median value within a window. Therefore, median 

filtering not only removes noise but also cause distortion. There is a trade off 

between noise removal and signal distortion [43]. 

Another method for noise removal is the nonlinear Wiener filtering. The classical 

Wiener filtering results in blurring edges in images [44].  
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Over the past decade, wavelet transform has received considerable attention between 

the scientists and researchers since it provides good time-frequency localization. The 

most popular wavelet based denoising techniques are wavelet thresholding or 

shrinkage techniques proposed by Donoho and Johnstone [24-26], where the noisy 

image is wavelet decomposed into subbands and noise is removed by removing 

coefficients that are smaller than some threshold. It is a simple and effective method 

however the choice of thresholding functions and threshold values are critical in 

enhancement schemes. The threshold value in universal thresholding [25] depends on 

the number of data samples. If the number of data samples is too small, the enhanced 

image is still noisy; on the other hand, if it is very large then the important details of 

the signal are removed. Similar wavelet-based image enhancement methods have 

been given in [45-50]. 

The classical wavelet transforms is based on shifting and scaling of a fixed function 

and on Fourier transform. An alternative way of constructing wavelets is the lifting 

scheme. The lifting scheme is a spatial domain method having some advantages over 

the classical lifting scheme [32, 33]. The advantages of the classical lifting scheme 

are given in detail in Section 1.1. Some of the lifting based image enhancement 

methods can be seen in [43, 51, 52]. 

The adaptation of lifting filters to the dominant signal structure leads to “adaptive 

lifting”. The motivation behind introducing adaptivity into the lifting steps is that, 

choosing better lifting filters (prediction or update filters) may lead to more efficient 

signal representations. Some prominent adaptive lifting algorithms proposed in the 

last decade are as follows:  

R. L. Claypoole at al. [37-38] proposed “scale adaptive” and “space adaptive” 

update-first lifting algorithms for image enhancement. In the scale adaptive case, 

prediction filter is adapted to signal structure within each scale by minimizing 

prediction errors. In the space adaptive case, the prediction filter chosen from a 

family of prediction filter is adapted to the signal structure for each sample point, 

based on the “edge avoiding prediction” method. 



 

 

 

14 

Jacek Stepien at al. [53] proposed an adaptive lifting based image enhancement 

method based on scale adaptive lifting scheme proposed in [38]. The subband 

coefficients are modified by using soft thresholding. 

 

1.3 Objective of the Thesis 

The objective of the thesis is to develop a single channel speech enhancement 

method and an image enhancement method in the adaptive lifting-based wavelet 

domain. The developed speech and image enhancement methods need to be 

handled individually with the following features. 

 The developed single-channel speech enhancement algorithm should be 

robust to various adverse environments. A vast number of methods have 

been proposed in the literature however, we should restrict ourselves to 

single channel speech enhancement methods based on STFT [5-15] to limit 

our scope. Choosing MMSE-based single channel speech enhancement 

methods may be advantageous, since it is known that they cause no musical 

noise which is a common problem encountered in the subtractive type 

algorithms. The speech enhancement methods developed so far generally use 

Gaussian noise for performance evaluation. Use of other noise types (white 

Gaussian noise (WGN), car interior noise, F16 cockpit noise, and speech 

babble noise) may result in more realistic performance evaluations. 

Moreover, the noise power spectral density (PSD) should be estimated 

directly from the noisy speech signal by aid of a voice activity detector 

(VAD) since no priori information of noise exists in realistic cases. 

 The developed speech enhancement algorithm has to operate in adaptive 

lifting- based wavelet domain: The wavelet transform is an efficient tool for 

speech enhancement applications since it allows time-frequency localization. 

A speech signal can be decomposed into different frequency subbands 

having different time resolutions by using wavelet transform. Moreover, 

wavelet packet transform provides a more balanced decomposition tree 

structure, which allows using subbands of interest. Enhancement of a 
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subband with certain frequency band may be more advantageous than 

enhancing original speech signal covering whole frequency band.  

 An adaptive lifting scheme algorithm may lead to further improvement since 

the lifting schemes uses a fixed lifting filter throughout the transform; 

however the adaptive lifting scheme uses different lifting filters depending 

on the characteristics of the speech signal. This feature of the adaptive lifting 

scheme may lead to better handling of the speech signal, so better 

enhancement results. 

 The developed speech enhancement algorithm has to take into account the 

aspects of human perception (critical bands): The MMSE-based estimators 

are capable of improving objective quality of speech however; they have no 

effect on the intelligibility or perceived quality of speech. Hence, a 

perceptual model taking into account the characteristics of human auditory 

system may result in improved intelligibility or perceived quality of speech. 

 The algorithms developed for speech enhancement have to be tested by using 

objective evaluation tests. Using objective quality evaluation tests which are 

well correlated to subjective results (such as Segmental SNR, Itakura-Saito 

distance). The objective tests (i.e. SNR test) are not always meaningful since 

the speech signals having different perceived qualities may have the same 

SNR results. Therefore, the objective evaluation results should be verified by 

using subjective listening tests or alternatively using standard objective tests, 

such as PESQ-MOS, which is developed for predicting subjective MOS 

results since the subjective tests cost much time and effort and many 

listeners.  

 The developed image enhancement method is to be based on spatial domain 

filtering methods and wavelet thresholding-based methods, all in the 

adaptive lifting based wavelet domain: The gray-level digital images (double 

or uint8) corrupted by independent white Gaussian noise needs to be used in 

the objective evaluations.  
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 The algorithms developed for image enhancement algorithms have to be 

tested by using standard evaluation tests.   

 The experimental results (i.e. signal waveforms, spectrograms and enhanced 

images) should be presented. 

 

1.4 Organization of the Thesis 

The organization of the thesis is as follows: 

In Chapter 1, the problems encountered in speech and image enhancement and the 

importance of speech and image enhancement are outlined. General information on 

the characteristics of noise, speech and image signals and a brief literature summary 

of the speech and image enhancement is also given. The objective and organization 

of the thesis is also given in Chapter 1. 

Chapter 2 includes a brief literature survey and mathematical background of 

wavelets, wavelet transforms and lifting schemes which are basic tools of the thesis.  

Chapter 3 is basically devoted to speech enhancement. The literature summary and 

theoretical background of popular single channel speech enhancement methods 

(estimators) have been given in detail in this chapter. The procedure of the proposed 

adaptive lifting scheme, perceptual filterbank and overall speech enhancement 

method are also given in Chapter 3. 

In Chapter 4, the theoretical backgrounds of popular image enhancement methods 

(spatial domain and wavelet thresholding-based methods) are given in detail. The 

procedure of the proposed adaptive 2-D lifting scheme and proposed image 

enhancement method are also given in Chapter 4. 

Chapter 5 includes the performance evaluation results of the speech and image 

enhancement methods proposed in the thesis. The objective and subjective evaluation 

methods are also outlined. Experimental results for both image and speech 

enhancement algorithms have also been demonstrated in Chapter 5. 
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Chapter 6 includes conclusions on the results of the proposed image and speech 

enhancement methods, main contributions to the subject and suggestions for the 

future work. 
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CHAPTER 2 

WAVELET TRANSFORMS AND LIFTING SCHEMES 

2.1  Introduction 

This chapter of the thesis includes a brief literature survey and mathematical 

background of wavelets, wavelet transforms and lifting schemes.  

J. Morlet [21, 57] was the first scientist who introduced the concept of wavelets. He 

faced with the problem of analyzing signals which had very high frequency 

components with short time durations, and low frequency components with long time 

durations. STFT was able to analyze either high frequency components using narrow 

windows (wideband frequency analysis), or low frequency components using wide 

windows (narrowband frequency analysis), but not both. He therefore, suggested the 

idea of using a different window function for analyzing different frequency bands. 

Furthermore, these windows were all generated by dilation or compression of a 

prototype Gaussian window. These window functions had compact support both in 

time and in frequency. Due to the "small and oscillatory" nature of these window 

functions, Morlet named his basis functions as wavelets of constant shape.  

Y. Meyer noticed that there was a great deal of redundancy in Morlet's choice of 

basis functions (wavelets) [21, 57]. Meyer developed wavelets with better 

localization properties and constructed orthogonal wavelet basis functions with very 

good time and frequency localization. Haar wavelets are the first and the simplest 

orthonormal wavelets; however, they are of little practical use due to their poor 

frequency localization. 

Ingrid Daubechies [57] developed the wavelet frames for discretization of time and 

scale variables of the wavelet transform, which allowed more freedom in the choice 

of basis functions at an expense of some redundancy. Furthermore, she made 

contributions on developing the discrete wavelet transforms (DWT).  
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S. Mallat [58] developed the idea of multiresolution analysis (MRA) for discrete 

wavelet transform (DWT). The main idea was decomposing a discrete signal into its 

dyadic frequency subbands by a series of low pass and high pass filters to compute 

its DWT. This new idea was known by electrical engineers for a long time as the 

quadrature mirror filters (QMF) and subband filtering. Mallat's work led to the good 

frequency localization idea of QMF and subband coding.  

Albert Cohen, Jean Feauveau and Daubechies [64] constructed the compactly 

supported biorthogonal wavelets (CDF family of biorthogonal wavelets), which are 

preferred by many researchers over the orthonormal basis functions. 

R. Coifman, Meyer and Victor Wickerhauser developed wavelet packets, a natural 

extension of MRA [59, 60]. The wavelet packet system was designed to allow a finer 

and adjustable frequency resolution at high frequencies. It gives a richer structure 

which allows adaptation to particular signals. 

Wim Sweldens [32, 33] developed an alternative method called as the lifting scheme 

or second generation wavelets for construction of biorthogonal wavelets. The main 

idea was building complicated biorthogonal systems using simple an invertible 

stages split, predict and update. The new method has the following advantages over 

the classical wavelet transform: It is a spatial domain method, easier to implement, 

allows faster and in-place calculations, allows nonlinear, adaptive, irregularly 

sampled and integer to integer wavelet transforms and inverse transform is easier to 

obtain. Furthermore, any wavelet transform can be factored into lifting stages [34]. 

The rest of this chapter will be mainly on CWT, DWT, MRA, filterbanks, wavelet 

bases and wavelet frames, orthogonal and biorthogonal wavelets, 1-D and 2-D DWT, 

DWPT, undecimated wavelet transform and lifting schemes.  

 

2.2  Continuous Wavelet Transform (CWT) 

The continuous wavelet transform [54-57] was developed because of the above 

stated limitations of the STFT.  The STFT which allowed analysis of non-stationary 

signals by segmenting them into stationary enough short frames and computing the 

Fourier transform of each frame. 
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Where )(tw  is the windowing function, f and  are frequency and shifting (time) 

parameters respectively and * is the complex conjugate operator and ),( fS τ  is the 

STFT of )(tx  at frequency f  and shifting  . For each frequency f, time localization 

is obtained through windowing )(tx  by )( tw , the windowing function centered 

at .t  The Fourier transform of this segmented signal provides the frequency 

localization [21]. 

The main drawback of STFT is that it provides constant resolution for all frequencies 

since it uses the same window for the analysis of the whole signal. If the signal has 

high frequency components for a short-time interval, a narrow window (compactly 

supported in time) would be enough for good time resolution. However, narrow 

windows mean wider frequency bands, resulting in poor frequency resolution. On the 

other hand, if the signal contains low frequency components of longer time interval, 

than a wider window is needed to obtain good frequency resolution (at the expense 

of time resolution). This is the motivation behind the wavelet transform (WT), which 

provides varying time and frequency resolutions by using variable window lengths 

[57]. 

The uncertainty principle prevents the possibility of having arbitrarily high resolution 

in both time and frequency, since it lower limits the time-bandwidth product of 

possible basis functions by )(. 4
1
  where   and   are absolute values of 

function and its Fourier transform respectively. However, there is a trade off between 

time and frequency resolutions in case of using a variable window size [20]. 

The continuous wavelet transform of a square-integrable function x (t)   L2(R) is 

given as 
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The mother wavelet )(t  is used to derive all the basis functions )(tab  which are 

sometimes called as daughter wavelets. The shifting (or translation) parameter 

b refers to the location of the wavelet function, as it is shifted through the signal. 

Hence, it corresponds to the time information in the wavelet transform. The scaling 

(or dilation) parameter a  refers to the scale (1/frequency) and corresponds to 

frequency information. The large scales expand the signal and provide the detailed 

low frequency information (transients or peaks) in the signal. On the other hand, 

small scales contract the signal and provide global high frequency information in the 

signal. Accordingly, the high frequencies appear as short bursts while low 

frequencies last throughout the entire signal. 

Fourier transform of the mother wavelet and the daughter wavelets can be given as  
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The scaling operation shows that an increase in resolution in one domain results in 

loss of resolution in the other domain. This actually reflects the trade-off that exists 

between time and frequency domain resolutions. The daughter wavelets )(, tba  

(wavelet basis functions) are used in decomposing the signal )(tx  and the CWT 

coefficients ),( baW  represent the projections of the signal on these bases.  

The inverse CWT (or reconstruction formula) can be defined as 
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 In order for )(t  be admissible for C , it requires that 0)0(    and  )(W  

goes to zero )0)(( W  fast enough for C .  This means that )(t  is a 

function with zero-mean and finite energy in the time domain. Moreover, for (2.6) to 

be satisfied, a wavelet is constructed so that it has vanishing moments [61] of order m 

if 
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2.3  Discrete Wavelet Transform (DWT) 

The reconstruction equation given by (2.6) involves a redundant set of basis 

functions. A more convenient representation can be obtained by discretizing the 

shifting and scaling parameters a  and b  where only the required wavelet 

coefficients for the reconstruction of )(tx  are kept. The new representation is known 

as the Discrete Wavelet Transform (DWT) [19, 54-56, 58] with the wavelet basis 

function 
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 where                          

kj, , 10 a , 00 b ,                                       (2.10) 
 

which correspond to jaa  0  and jakbb  00 . Note here that the shifting step 

depends on the scaling; since long wavelets shift by large steps while short ones by 

small steps. Thus, discrete wavelet transform becomes 
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where 0a  and 0b  represents arbitrary reference scale and time values respectively 

and kj,  are the new scaling and shifting parameters respectively. Particularly, 

choosing 20 a  and 10 b  for dyadic grids, leads to the fast wavelet transform 

(FWT).  Thus, wavelet basis function  )(, tkj  becomes 

 

                                        )2(2)( 2/
, ktt jj
kj   ,                                      (2.12) 

  

where, ja  2  and jkb  2 .  The forward and inverse DWT can be defined as 
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where Zkj ,  and  .,.  in (2.13) represents the inner product between two 

functions.  The basis function )(, tkj  in equation (2.9) now provides an orthonormal 

basis that is no longer redundant. However, equation (2.14) still requires an infinite 

number of terms to describe the infinitely coarse, i.e. j  as well as the 

infinitely fine, j . 

 

2.4  Concept of Multiresolution   

The concept of multiresolution analysis [54-56] is used to construct orthonormal 

bases of wavelets. This multiresolution view can be interpreted as a successive 

approximation procedure. 

The multiresolution formulation is obviously designed to represent signals where a 

single is decomposed into finer and finer details. However, it is also valuable in 

representing signals where a time-frequency or time-scale description is desired even 

if no concept of resolution is needed.  
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In order to talk about the collection of functions or signals that can be represented by 

a sum of scaling or wavelet functions some ideas and terminology is needed from 

functional analysis. Some of these terminologies will be summarized here. 

A function space is a linear vector space (finite or infinite dimensional) where the 

vectors are the functions and the scalars are the real numbers (or sometimes complex 

numbers). The inner product is a scalar “a” obtained from two vectors )(tf  and 

)(tg  by an integral as given below. 

 

 dttgtftgtfa )()()(),( *                               (2.15) 
 

  The inner product is defines a norm or length of vectors which is defined by  

 

 fff ,                                           (2.16) 
 
 

Two signals (vectors) with nonzero norms are called orthogonal if their inner 

product is zero. A space which is particularly important in signal processing is )(2 RL  

which is the space of the )(tf  with a well defined integral of the square of the 

modulus of the function. The L here defines Lebesque integral; the 2 denotes the 

integral of the square of the modulus of the function and R states that the independent 

variable of integration t is a number over the whole real axis.  

In order to develop the wavelet expansion described in (2.10) an idea of expansion 

set or a basis set is needed. Let S is given as the vector space, if any Stf )( can be 

expressed as )()( tatf kk k , then the set of functions )(tk  are called as an 

expansion set for the space  S.  If the representation is unique the set is a basis. On 

the other hand, one can start with the expansion or bases set and define the space S as 

the set of all functions that can be expressed by )()( tatf kk k . This is called as 

the span of the basis set.  
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2.4.1 The Scaling Function 

In order to use the idea of multiresolution we will define the scaling function and 

then define the wavelet in terms of it. Let us describe a set of scaling functions in 

terms of integer shifts of the basic scaling function by 

 

 )()( kttk    for   2, LZk   .                                (2.17) 
 

The subspace of )(2 RL  spanned by these functions can be defined as  

 

)}({0 tspanV k
k

                                                 (2.18) 

 

for all the integers k  from minus to plus infinity.  The over bar in (2.18) denotes the 

closure, which means that 

 

)()( tatf kk k   for  any    0)( Vtf  .                            (2.19) 
 
The size of the subspace spanned can be changed by changing the time scale of the 
scaling functions. Accordingly, a two dimensional set of functions is generated from  
the basic scaling function by shifting and translation by 

 

)2(2)( 2/
, ktt jj
kj   .                                        (2.20) 

 
 

2.4.2 Multiresolution Analysis (MRA) 

The basic requirements of multiresolution analysis can be given by requiring a 

nesting of spanned spaces as 

 
2

21012 ...... LVVVVV                              (2.21) 
 

or, 

 

1 jj VV ,   Zm     for     2,}0{ LVV   .                   (2.22) 
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The space which contains high resolution will also contain those of lower 

resolutions. Because of the definition of jV , the spaces have to satisfy a natural 

scaling condition; 

 

1)2()(  jj VtfVtf .                                 (2.23) 
 

This insures that the elements in a space are simply the scaled versions of the 

elements in the next space. From (2.21) to (2.23), if  )(t  is in 0V , it is also in 1V , the 

space spanned by )2( t . This means that )(t  can be expressed in terms of a 

weighted sum of shifted  )2( t  as given below 

 

 
n

ntnht )2(2)()(  ,    Zn                            (2.24) 

 

where the coefficients )(nh are a sequence of real or perhaps complex numbers 

called scaling function coefficients (or the scaling filter or vector) and the 2  is the 

norm of the scaling function of scale 2. The (2.24) is referred to by different names, 

some of which are the refinement equation, multiresolution equation, or scaling 

equation, to describe different interpretations or different points of view.   

For example, the Haar scaling function is the simple, unit-width, unit-height pulse 

function )(t  shown in (2.25) and it is clear that )(t  can be constructed by using 

)2( t . 

 

)12()2()(  ttt                                            (2.25) 
 

The (2.25) is satisfied for the coefficients 2/1)0( h  and 2/1)1( h . 

 

2.4.3 Multiresolution Characteristics of DWT  

The important characteristics of a signal can better be described by defining a 

slightly different set of functions )(, tkj  that span the differences between the 
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spaces spanned by the various scales of the scaling function. These functions are 

called the wavelets as discussed before. 

There are many advantages to requiring that the scaling functions and wavelets be 

orthogonal since the orthogonal basis functions allow simple calculations of 

expansion coefficients. The orthogonal complement of  jV  and 1jV  is defined as 

jW . This means that all members of jV  are orthogonal to all members of jW .  We 

get  

 0)()()(),( ,,,,   dttttt ljkjljkj                           (2.26) 
 

for all Zlkj ,, . The following expression represents the relationship between 

various subspaces. Starting from  jW  when  0j  we have 

 
2

210 .... LVVV  .                                     (2.27)   
 

The wavelet spanned by the subspace 0W  can be defined as 

 

001 WVV  .                                                  (2.28) 
 

This gives in general, 

 

 ...100
2  WWVL                                       (2.29) 

 

The scale of the scaling function can be chosen arbitrarily. In practice, it is chosen to 

represent the coarsest detail of interest in a signal. 

Since the wavelets reside in the space spanned by the next narrower scaling function, 

10 VW  , they can be represented by a weighted sum of shifted scaling function )2( t   

as defined in  (2.30) as: 

 

 
n

ntnht )2(2)()( 1  ,     Zn                              (2.30) 
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for some set of coefficients )(1 nh . From the requirement that the wavelets span the 

“difference” or orthogonal complement spaces and the orthogonality of integer 

translates of the wavelet (or scaling) function. The wavelet coefficients are required 

by orthogonality to be related to the scaling function coefficients 

by )1()1()(1 nhnh n  . 

For )(nh  with finite even length-N )1()1()(1 nNhnh n  . The function 

generated by (2.24) gives the prototype or mother wavelet )(t for a class of 

expansion coefficients of the form )2(2)( 2/
, ktt jj
kj   . 

For example the Haar wavelet function is given in Figure (2.1) where, 

)12()2()(  ttt   and the wavelet coefficients are 2/1)0( h  and 

2/1)1( h . 

We have now constructed a set of functions )(, tkj  and )(, tkj that span all of )(2 RL  

according to (2.29).  For lower and upper resolution limits for scaling indexes are 

0j  and Lj  , any function )()( 2 RLtg  can be written as 

 

 
 

Figure 2.1  Haar wavelet:  a) Haar scaling function b) Haar wavelet function 
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)(),()(),0()(
1

0
,,0 tkjdtkctg

L

j n
kj

k
k 





                          (2.31) 

 
where, 

 
 )()(),0(),( , ttgkckjc kj , 

 )()(),( , ttgkjd kj .                                         (2.32)  
 

The coefficients ),( kjc  and ),( kjd  are referred to as approximation coefficients and 

detail coefficients respectively.  

 

2.5  DWT and Filterbank Representations 

The scaling and wavelet functions are not needed to be dealt with directly in many 

applications. Only the coefficients )(nh  and )(1 nh  in (2.24) and (2.30) and ),( kjc , 

),( kjd  in (2.32) need to be considered and they can be viewed as digital filters and 

digital signals respectively [20,44,58]. Although, it is possible to develop most of the 

results of wavelet theory using only filterbanks, we think that both the wavelet 

expansion and filterbank point of view are necessary for better understanding of this 

new concept. 

 

2.5.1 Analysis: From Fine to Coarse Scale 

Let us drive the relationship between the expansion coefficients at lower scale level 

in terms of those at higher scale levels in order to be able to work directly with the 

wavelet transform coefficients. From the equation (2.24) after scaling and translating 

(shifting) time variable, we have 

 

   

n n

jjj nktnhnktkmhkt )22(2)())2(2(2)2()2( 1   (2.33) 

 

Substituting   nkm  2 , we have 

 

  

n

jj mtkmhkt )2(2)2()2( 1 .                       (2.34) 
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If jV  is defined as 

 

 )2(2 2/ ktspanV jj

k
j   ,                                   (2.35) 

 

then, 

 

  


k

jj
jj ktkctfVtf )2(2)()()( 12/)1(

11                    (2.36) 

 
can be given at a scale of 1j  with scaling functions only and no wavelets. At one 

scale lower resolution, wavelets are necessary for the details not available at scale j . 

 

)2(2)()2(2)()( 2/2/ ktkdktkctf jj

k
j

k

jj
j                   (2.37) 

 

Where, the term 2/2 j  represents the unity norm of the basis functions at various 

scales. If   )(, tkj  and )(, tkj  are orthonormal or tight frame, the level j  scaling 

coefficients can be found by using inner product. 

 

dtkttfttfkc jj

kjj )2(2)()(),()( 2/2/

,                     (2.38) 
 

By using (2.34) and interchanging sum and integral we have 

 

dtmttfkmhkc jj

k
j )2(2)()2()( 2/)1(2/)1(

 

  .              (2.39) 

 

Since the integral part is equal to )(1 mc j , we obtain 

 

 
m

jj mckmhkc )()2()( 1 .                                (2.40) 

 

The wavelet coefficients can be obtained in the similar manner 

 

 
m

jj mckmhkd )()2()( 11 .                               (2.41) 
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2.5.2 Filtering and Down-Sampling 

In the digital signal processing, the filtering of a digital signal is achieved by 

convolving the sequence with filter coefficients, weights or impulse response. For 

input sequence is )(nx  and filter coefficients is )(nh , the output sequence )(ny  can 

be represented as 







1

0
)()()(

N

k
knxkhny .                                         (2.42) 

 

If the number of filter coefficients N  is finite, the filter is called as Finite Impulse 

Response (FIR) filter, if the number is infinite; it is called as Infinite Impulse 

Response (IIR) filter. The design problem is the selection of )(nh  to obtain some 

desired effects, removal of noise or some separate signals.  

What we deduce from (2.40) and (2.41) is filtering and down-sampling. It is seen 

from these equations that the scaling and wavelet coefficients at scale j  are filtered 

by two FIR filters )( nh   and )(1 nh   then down-sampling or decimating to give the 

expansion coefficients at the next coarser scale 1j .  

These structures implement Mallat’s algorithm [58] and have been developed in the 

engineering literature on filterbanks, Quadrature Mirror Filters (QMF), conjugate 

filters and perfect reconstruction (PR) filters. The perfect reconstruction criteria is 

given in Appendix A2. A two-band two stage analysis filterbank tree is given in 

Figure 2.2.    

 
 

Figure 2.2 Two-band, two-level wavelet analysis (decomposition) tree 
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Note that the FIR filter implemented by )( nh   or ( )( nho  ) is low-pass filter while 

the one implemented by )(1 nh   is high-pass filter. The number of data points is 

doubled by having two filters then it is halved after down-sampling (or decimation). 

Hence, the average number of data points before and after the system is the same. 

This means that there is no information lost and it is possible to completely recover 

the original signal. This is the basic idea behind the perfect reconstruction 

filterbanks. The filtering and decimation process can be continued on the scaling 

coefficients to obtain the tree structures with two, three or more scale levels. The 

decomposition tree structure obtained is called as constant-Q filterbank or octave-

band filterbanks in the filterbank terminology. 

 

2.5.3 Synthesis: From Coarse to Fine Scale 

As stated before, fine scale coefficients of the original signal can be reconstructed 

from the combination of the scale coefficients and the detail coefficients at a coarser 

scale. To derive this, let us consider a signal in the 1j  scaling function 

space 1)(  jVtf , 

 

  


k

jj
j ktkctf )2(2)()( 12/)1(

1  .                                   (2.43) 

 

In terms of the next scale which also requires the wavelets 

 

)2(2)()2(2)()( 2/2/2/ ktkdktkctf j

k

j
j

k

jj
j    .                 (2.44) 

 

Substituting (2.24) and (2.30) into (2.44) we have 

 

)22(2)()(

...)22(2)()()(

2/)1(2/)1(
1

2/)1(2/)1(

nktnhkd

nktnhkctf

j

n

j

k
j

n

jj

k
j















                     (2.45) 

 
Since all these functions are orthonormal, multiplying (2.43) and (2.45) by 

)2( 1 ktj    and integrating we obtain the original signal coefficients as,  
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m

j
m

jj mdmkhmcmkhkc )()2()()2()( 11 .                       (2.46) 

 

2.5.4 Up-sampling and Filtering  

The synthesis or reconstruction stage in the filterbank includes up-sampling followed 

by filtering. This is what (2.46) exactly does. The equation is evaluated by up-

sampling the j  level scale coefficient sequence )(1 kc j  then filtered by )(nh . The j  

level detail coefficient sequence )(1 kd j  is up-sampled and filtered by )(1 nh  in the 

same way. The results are added to give the j  level scaling coefficients. The 

operation is repeated for j  level scaling and detail coefficients to obtain the 1j  

level scaling coefficients (original signal). A two stages two band synthesis 

filterbank tree is given in Figure 2.3. 
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Figure 2.3 Two-level two-band wavelet synthesis (reconstruction) tree  
 

2.6 Wavelet Packet Transform 

The wavelet packet system was proposed by Ronald Coifman [59] to allow a finer 

and adjustable frequency resolution at high frequencies. It gives a richer structure 

which allows adaptation to particular signals [54, 60].  

The standard DWT involves a dyadic (2-Band) tree structure where only the low-

channel side is split down to a certain level. However, in the wavelet packet 

decomposition, each detail coefficient vector is also decomposed into two parts using 

the same approach as in approximation coefficients. This offers a richer analysis and 
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a more balanced decomposition tree structure. The full wavelet packet decomposition 

tree is given in Figure 2.4.  

Note here that a signal may be represented by a selected numbers of subbands 

without using every subband for a given resolution level. An algorithm can be 

constructed to choose the subbands for an optimization criterion (such as energy, 

entropy, variance etc.). Best-basis and best-level algorithms are the most popular 

algorithms for signal representation [55, 59-60].   

 
 
Figure 2.4  Wavelet packet decomposition tree at level 2 
 

2.7 Orthogonal and Biorthogonal Bases and Frame 

2.7.1 Orthogonal and Biorthogonal Bases 

A set of finite or infinite functions )(tf k  spans a vector space F  if any element of 

that space can be expressed as a linear combination of members of that set.  We 

define   Ffspan k
k

  as the vector space with elements of the space of the form:   

 


k

kk tfatg )()(                                               (2.47) 

 
with Zk  and Rat , . An inner product is usually defined for this space and is 

denoted  )(),( tgtf .  A norm is defined as  fff , . We say that the set 
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)(tf k  is a basis set or basis for a given space F  if the set of   ka  in (2.47) are 

unique for any particular Ftg )( . The set is called an orthogonal basis if 

0)(),(  tftf lk  for all lk  . In three dimensional Euclidean spaces, orthogonal 

basis vectors are coordinate vectors that are at right )90( o angles to each other. The  

set is sad to be an orthonormal basis if )()(),( lktftf lk     if in addition to 

being orthogonal, the basis vectors are normalized to unity i.e. 1)( tf k  for all k. 

It is clear from these definitions that, if we have an orthonormal basis, we can 

express any element in the vector space,   Ftg )(  as in (2.47), 

 

)()(),()( tftftgtg k
k

k  .                                  (2.48) 

 

Since by taking inner the product of )(tf k  with both sides of (2.48) we have  

 

 )(),( tftga kk                                               (2.49) 
 

Although the orthonormal bases are advantageous in many applications, there are 

cases where the basis system dictated by the problem is not and cannot be made 

orthogonal.  In such cases one should use dual basis set  )(~ tf k  whose elements are 

not orthogonal )(~ tf k  to each other, but to the corresponding elements of the 

expansion set  is 

    )()(~),( kltftf kl   .                                    (2.50) 
 

Since this type of orthogonality requires two sets of vectors, the expansion set and 

the dual set, the system is called as biorthogonal.  From (2.47) and (2.50) we have 

 

)()(
~

),()( tftftgtg k
k

k  .                               (2.51) 

 
The calculation of the expansion coefficients using inner product in (2.49) is called 

as the analysis part while the calculation of the signal from the coefficients and 

expansion vectors in (2.47) is called as synthesis part.  
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The analysis and synthesis operations are matrix-vector multiplications in finite 

dimensions. If the expansion vectors in (2.47) are a basis, the synthesis matrix has 

these basis vectors as columns and the matrix is a square and non-singular. If the 

matrix is orthogonal, its rows and columns are orthogonal; its inverse is its transpose 

and the identity operator is the matrix multiplied by its transpose.  If it is not 

orthogonal, then the identity is the matrix multiplied by its inverse and the dual basis 

consists of the rows of the inverse. If the matrix is singular, then its columns are not 

independent and, therefore, do not form a basis [54-56].    

   

2.7.2 Wavelet Frames  

Although, the conditions for a set function being an orthonormal basis are sufficient 

for the representation in (2.48) and the requirement of the set being a basis is 

sufficient for (2.51), they are not necessary. To be a basis, coefficients are required to 

be unique. In other words, the set is required to be independent and no element can 

be written as the linear combination of the others [54-56, 57].     

If the set of functions or vectors is dependent and allow the expansion described in 

(2.51), then the set is called as a frame. A frame is a spanning set which requires 

finite limits of an inequality bound of inner products.  

An expansion set )(tk  must satisfy the following equation in order to be a frame in 

a signal space 
222 , gBggA

k
k  φ                                    (2.52) 

 

for some A0   and B ,  for all signals  )(tg  in the space.  By dividing   (2.52) 

by 2g  shows that, A and B are bounds on the normalized energy of the inner 

product. They frame the normalized coefficient energy. If A=B, then the expansion 

set is called to be a tight frame which gives 

 

   22 , 
k

k ggA φ .                                             (2.53) 

 
The (2.54) is the generalized Parseval’s theorem for tight frames. For A=B=1, the   

tight frame becomes an orthonormal basis.  It can be shown for a tight frame that 
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)()(),()( 1 ttgtAtg k
k

k    .                                   (2.54) 

 
This is the same as the expansion using an orthonormal basis except for the 1A  term 

which represents a quantity for redundancy for the expansion set. 

 

2.8 Undecimated Wavelet Transform 

It is known from the basic laws of wavelets in the wavelet theory that, the DWT is 

not shift-invariant [54, 55].  

A typical wavelet based signal processing framework consists of the following steps. 

Wavelet transform, point processing of wavelet coefficients and inverse wavelet 

transform. As the wavelet transform is not shift-invariant, if the signal is shifted and 

processed as through the above explained steps and shift the output, the results are 

different for different shifts.   

A method to create a linear-shift invariant DWT can be achieved by constructing a 

frame from the orthogonal DWT added by shifted orthogonal DWT. Doing this, the 

result is still a frame but because of the redundancy, it is called as redundant discrete 

wavelet transform (RDWT). 

Another way to construct the RDWT is the wavelet filterbank approach.  The 

wavelet filterbanks can be modified by removing the decimators (down samplers) 

between each stage to give the coefficients of the tight frame expansion (the RDWT) 

of the signal. The new structure is called as undecimated filterbank. The undecimated 

DWT is shift-invariant; less effected by noise, quantization and error and has 

)log(NN computational complexity.  

The general procedure for undecimated wavelet transform (UWT) (sometimes called 

as stationary wavelets transform (SWT)) structure is given below in Figure 2.5. 

Given a signal jc  of length N, the first step of the SWT produces approximation   

coefficients 1jc  and detail coefficients 1jd . These vectors are obtained by 

convolving jc  with the low-pass filter )_( jLo  and with the high-pass 
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filter )_( jHi . Note that 1jc  and 1jd  are of length N instead of  N/2 as in the 

DWT case. 

The next step splits the approximation coefficients 1jc  in two parts using the same 

scheme, but with modified filters obtained by up-sampling the filters used for the 

previous step and replacing jc  by 1jc . Then, the SWT produces 2jc  and 2jd . The 

decomposition can further be continued in the same way.    

 
 

Figure 2.5 Undecimated wavelets transform   
 
 
2.9       2-D Wavelet and Wavelet Packet Transform  

When the input signal is two dimensional (2-D) the signal must be represented by  

2-D wavelet and 2-D scaling functions.  For a given set of wavelet scaling function 

),(   one 2-D scaling function and tree different 2-D wavelet can be constructed. 

The 2-D scaling function is  

 

)()(),(, jyixyxji   ,                                      (2.55) 
 

and the 2-D wavelet functions are 
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)()(),(]1[
, jyixyxji   , 

)()(),(]2[
, jyixyxji   , 

  )()(),(]1[
, jyixyxji   .                                   (2.56) 

 

The ),(]1[
, yxji ,  ),(]2[

, yxji  and  ),(]3[
, yxji  are horizontal, vertical and diagonal 

wavelet functions respectively. Hence, the wavelet functions satisfy 

 

   0),(,  








dxdyyxM
jiψ  for M=1, 2, 3.                              (2.57) 

 

The spectral subbands that are obtained from one level wavelet decomposition are 

labeled as LL, LH, HL, and HH. Where, LL denotes (low pass-low pass) 

approximation coefficients and LH (low-high), HL (high-high), HH (high-high) 

denote horizontal, vertical and diagonal wavelet coefficients respectively. After 2-D 

wavelet decomposition, an image signal is decomposed into four sub-images with 

sizes quarter of the original image due to down sampling. Figure 2.6 demonstrates 

the 2-D wavelet subbands at level one [55].  

Indeed, the 2-D wavelet transform of an image is nothing but the 1-D wavelet 

transform applied to an image in both x and y direction. Let we are given a 2-D input 

signal (image) of size (NxN). If 1-D wavelet transform is applied to the image in x-

direction (row operation) first, two sub-images say (L and H) of size NxN/2 

respectively will be obtained.  

If the 1-D wavelet transform is applied to the sub-images L and H along y-direction 

(column operation) four sub-images (LL1, LH1, HL1 and HH1) with size N/2x/N/2 

respectively will be obtained. The reduction in the size of the images is due to down-

sampling. The block diagram of the two dimensional (2-D) wavelet decomposition is 

given in Figure 2.6. The inverse 2-D wavelet transform can be performed by 

applying 1-D inverse wavelet transform in the reverse order (first in y-direction and 

then in x-direction) by using the reconstruction filters )(),( 10 kgkg instead of 

decomposition filters  )(),( 10 khkh . 
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Figure 2.6 Discrete 2-D wavelet packet decomposition tree at level one 
 

The 2-D wavelet packet transform mimics the 2-D wavelet transform. It represents 

the 1-D wavelet transform in x-direction first and then in y-direction as in the 2-D 

wavelet case. The difference is that, not only the approximation coefficients (LL1) 

but also the detail coefficients (LH1, HL1 and HH1) are decomposed at each level of 

decomposition. The 2-D wavelet packet algorithm is no more difficult than the 2-D 

wavelets; however it has more computational complexity.    

 

2.10 Biorthogonal Wavelet Systems 

A wavelet expansion system that is orthogonal across both translation and scale gives  

a clean, robust and symmetric representation with Parseval’s theorem. However, it 

also produces some limitations. Requiring orthogonality results in complicated 

design equations, prevents linear phase analysis and synthesis filterbanks and 

prevents asymmetric analysis and synthesis systems. This section is devoted to 

develop the biorthogonal wavelet system using non-orthogonal basis and dual basis 

to allow greater flexibility in achieving other goals at the expense of energy 

partitioning property which Parseval’s theorem states [54-56, 64-66]. 

 

 



 

 

 

41 

2.10.1   Two Channel Biorthogonal Filter Banks 

As explained previously, the analysis and synthesis filters are time reversal of each 

other for orthogonal wavelets, i.e. )()(~),()(~ ngngnhnh  . In case of 

biorthogonal wavelets we relax these limitations however; these four filters still have 

to satisfy some set of conditions for perfect reconstruction of the input. Figure 2.7 

shows a two channel biorthogonal filterbanks [54].   

 

 
    
Figure 2.7 Two channel biorthogonal filterbank; a) Decomposition b) Reconstruction  
 

)1(~)1()(),1()1()(~ nhngnhng nn                           (2.58) 
 

The four filters are cross-related by time reversal and by flipping signs of every other 

element. When hh 
~ , we get the familiar relationship between the scaling and 

wavelet coefficients for orthogonal wavelets, )1()1()( nhng n  .  

For biorthogonal case, we have  

 

)()2()(
~ kknhnh

n
                                          (2.59) 

 

where )(~ nh  is orthogonal to )(nh , but in orthogonal case we 

have )()2()( kknhnh
n

 , i.e., )(nh  is orthogonal to even translation of itself.   
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2.10.2    Advantages of Biorthogonal Wavelets 

The well known advantages of the biorthogonal wavelets can be itemized as follows: 

 The orthogonal wavelet filter and scaling filters must be the same length and 

must be even. This restriction is greatly relaxed for biorthogonal wavelets. 

 Symmetric wavelet and scaling functions are possible in the structure of 

biorthogonal wavelets.  

 In the biorthogonal systems, if we switch the role of the primary and dual, the 

system is still sound. Hence, we can choose the best arrangement for our 

applications. For example in image enhancement, we should use the smoother 

pairs to reconstruct the enhanced image for better visual appearance. 

 In statistical signal processing, white Gaussian noise remains white after 

orthogonal transform.  If the transforms are non-orthogonal, the noise 

becomes correlated or colored. Thus, when biorthogonal wavelets are used in 

estimation and detection one may need to adjust the algorithm to better 

address the colored noise. 

Since biorthogonal wavelet systems are very flexible, there are many approaches to 

design different biorthogonal systems. The key point is to design h  and h~  that 

satisfy )()2()(
~ kknhnh

n
  and  

nn
nhnh 2)(

~
)( , and have other 

desirable characteristics. Some of the popular biorthogonal wavelet families are 

Cohen-Daubechies-Feauveau (CDF) and Tian-Wells families of biorthogonal 

wavelets. 

 

2.11 Lifting Construction of Biorthogonal Wavelets 

The lifting wavelet transform or simply lifting scheme is an alternative method for 

construction of biorthogonal wavelets [(32–33, 54, 56, 62–66]. The lifting scheme 

offers several advantages over the classical wavelet transform. It is a spatial domain 

method, it is easier to implement, it allows faster and in-place calculations, it allows 

nonlinear, adaptive, irregularly sampled and integer to integer wavelet transforms, it 
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is easier to obtain inverse transform. Furthermore, any wavelet transform can be 

factored into lifting steps [34]. 

The classical 1-D lifting scheme consists of the following three steps;  

Split: Divide the original data set into even and odd indexed subsets. The original 

data set ][nx  is split into even indexed points ]2[][ nxnxe   and odd indexed points 

]12[][  nxnxo .            

Predict: Obtain wavelet coefficients (detail coefficients) ][nd , as the error in 

prediction of ][nxo  from ][nxe , using prediction operator P; 

 

 ][][][ nxPnxnd eo  ,                                               (2.60)  
 

Update: Generate scaling coefficients (approximation coefficients) ][nc , by 

combining even indexed points ][nxe  and detail coefficients ][nd , by applying 

update operator U  to the detail coefficients ][nd ; 

 

 ][][][ ndUnxnc e  .                                             (2.61) 
 

The general single level forward lifting scheme is given in Figure 2.8. 

The lifting steps can easily be inverted even if the lifting filters P and U are nonlinear 

or adaptive. Again the inverse lifting scheme is given in three steps; 

 
 

Figure 2.8 Forward lifting scheme 
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  ][][][ ndUncnxe  .                           (2.62)   
 

Undo predict:  From (2.60) we get, 

 

 ][][][ nxPndnx eo  .                                 (2.63)     
 

Merge:  Combining (2.62) and (2.63) the estimation of the original signal can be 

obtained.  

The inverse lifting scheme is given in Figure 2.9. 

 

 
 

Figure 2.9 The inverse lifting scheme 
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CHAPTER 3 

SPEECH ENHANCEMENT  

3.1  Introduction  

This chapter of the thesis contains theoretical background, characteristics and 

literature survey on the recently proposed single channel speech enhancement 

methods and related concepts, such as noise estimation, a priori SNR estimation and 

estimation of a priori probability of speech absence. The proposed adaptive lifting 

scheme and proposed perceptual filterbank are also determined within the first part 

of this chapter.   

A vast amount of literature has been emerged recently on the speech enhancement 

methods such as multi-channel approaches [4, 5, 65], single channel approaches [6-

23], and methods based on wavelet thresholding [24-26]. However, we have limited 

scope of the thesis (which includes speech enhancement and image enhancement in 

the lifting-wavelet domain) with the single channel methods.  Since, otherwise it 

would become excessively wide. Moreover, the single channel speech enhancement 

methods are the most practical and widely used methods requiring no extra sensor for 

noise source. The clean speech signal is estimated directly from the noisy speech 

signal in the single channel speech enhancement methods  

For practical applications, the most popular single channel approaches proposed in 

the last two decades have been tested.  

The methods depend on frame based analysis of the speech signals using STFT 

because of the nonstationary nature of the speech signals. The STFT uses a specific 

window function to multiply the signal and then calculates the DFT coefficients 

based on the assumption that the speech is stationary in the window. The noise 

estimation is performed based on speech-pause detection using VAD. The phase of 

the noisy speech signal is not modified, since the human auditory system is sensitive 

to magnitude or energy rather than the phase information. The spectral subtraction 
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method successively reduces the noise level but its main drawback is that, it causes 

excessive residual and musical noise.  

Speech is assumed to always exist in the input speech signal in most of the noise 

suppression methods. However, speech does not always exist in the input speech and 

this causes poor enhancement results. The frames which do not contain speech are 

detected by using voice activity detectors (VAD). The process is called as speech-

pause detection or hard decision filtering. The main disadvantage of hard decision 

filters is that, they cause musical noise and degrades the naturalness of the speech. 

To overcome the drawbacks of hard decision filters, Mc Cully and Malpass [12] 

proposed soft decision noise suppression filters. The method is based on modification 

of the gain function, according to probability of speech presence. The proposed 

estimator is maximum likelihood-short time spectral amplitude (ML-STSA) 

estimator, modified according to probability of speech presence. 

Ephraim and Malah proposed the minimum mean-square error short-time spectral 

amplitude (MMSE-STSA) and minimum mean-square error log-spectral amplitude 

MMSE LSA) estimator [9,10]. The estimators are derived based on minimizing the 

mean square error (MSE) of the short time spectra (or log-short time spectra) of 

amplitude estimation. 

Both methods are based on the Gaussian statistical model and a priori SNR 

estimation which is reported to be the key parameter in the MMSE-STSA (or 

MMSE-LSA) estimators [12, 66]. It is widely reported [67] that the MMSE 

estimators cause no musical background noise.  

The gain functions of the above mentioned estimators have been also derived based 

on soft-decision aspects given in [12] when the probability of speech absence is 

taken into account [11]. The a priori SNR is estimated from the noisy speech signal 

via “Decision Directed” method. The noise PSD is estimated based on speech pause 

detection via a recursive equation based on probability of speech absence. The 

probability of speech absence is estimated frame-based for each frequency bin. 
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In general, the single channel speech enhancement methods improve the objective 

quality of the enhanced speech signal. However, they have no effect on the 

intelligibility of the enhanced speech signal. This means that, a speech signal with 

good SNR may have poor intelligibility or perceived quality or vise versa. Recently, 

many speech enhancement methods taking into account characteristics of the human 

auditory system have been developed [16–18], in order to improve the intelligibility 

of the speech signals. These perceptual models are generally based on the critical-

band decompositions or noise masking properties [16, 30, 31]. By adjusting the 

subbands of WPD tree according to critical-bands of the human auditory system, 

perceptual filterbanks which lead to efficient speech enhancement algorithms can be 

designed [29-31].  

The CDF (1, N)  group of CDF (Cohen, Daubechies, Feauveau) family lifting filters, 

based on the average interpolation  [68, 69]  have been employed in the proposed 

adaptive lifting scheme as also used in the proposed work in [37,38]. However, we 

introduced a new adaptive prediction method in the proposed adaptive lifting 

scheme. The motivation behind introducing adaptivity into the lifting scheme is that, 

choosing better prediction (or update) filters may give rise to more efficient signal 

representations.  

The subbands of the wavelet packet decomposition (WPD) tree structure obtained via 

the proposed adaptive lifting scheme have been adjusted according to critical bands. 

The new decomposition tree structure is called as critical-bands wavelet packet 

decomposition (CB-WPD) tree. Since the new decomposition tree structure 

corresponds to a perceptually motivated nonuniform filterbank, it is called as 

“perceptual filterbank” in the thesis. 

 

3.2  Single Channel Speech Enhancement Methods 

The term single channel means that there is only one microphone for both noise and 

speech signals. In other words, there is no separate microphone for noise source. 

Therefore, the estimation of noise from a noisy speech signal is critically important 

in the single channel speech enhancement methods. The noise is generally estimated 

during noise-only frames. The single channel methods are difficult to implement 
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however, they are the most widely used methods in the speech enhancement. In this 

section, the most widely used single channel methods such as spectral subtraction 

type speech enhancement methods [6-13], soft decision noise suppression filters [12] 

and MMSE-based estimators (STSA, LSA and MM-LSA) [9-11] are given in detail. 

 

3.2.1 Subtractive-Type Speech Enhancement methods  

The spectral subtraction is the most common subtractive type algorithm. It is based 

on estimation of magnitude (or power) spectrum of the original speech signal, by 

subtracting an estimate of the average noise spectrum from the noisy speech signal 

spectrum [6, 7, 67, 70].  

The methods are based on short-term spectral analysis of the speech and noise 

because of the nonstationary nature of the speech signals. The frame based analysis 

of the speech signal using the discrete Fourier transform (DFT) is called as short time 

Fourier transform (STFT). The STFT uses a specific window function ][nw  to 

multiply the signal and then calculates the DFT coefficients based on the assumption 

that the speech is stationary within the window.  The noise is estimated during 

speech pauses using VAD.  Generally, Hamming (or Hanning) window with % 50 

overlap is used in applications in order to avoid boundary (or block) effect. The 

discrete STFT is given in Appendix A1. 

 

3.2.1.1   Spectral Subtraction 

With ),(ˆ lkX  and ),(ˆ lkB  are estimated short-time spectra (kth frequency bin in lth 

discrete time frame) of original speech signal ][nx  and noise signal ][nb  

respectively, in discrete time domain. The noise estimate ),(ˆ lkB is obtained during 

speech pauses or non-speech frames by using a VAD and  ),(ˆ lkX  is estimated as 

follows. Let, 

   ),(),(ˆ),(),(ˆ lkj yelkBlkYlkX
γγγ





                                          (3.1) 



 


otherwise

lkXiflkXlkX
,0

0),(ˆ),,(ˆ
),(ˆ                                        (3.2) 
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Gain function for generalized spectral subtraction can be given as 
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lkG                  (3.3) 

 

Where, 1γ , for Magnitude Spectral Subtraction (MSS), and 2γ  for Power 

Spectral Subtraction (PSS) [6]. The amplitude spectrum (for magnitude spectral 

subtraction case) of estimated clean speech ),(ˆ lkX  can be obtained as 

 

),(),(),(ˆ lkYlkGlkX                                                (3.4) 

 

An estimate of the magnitude spectrum is combined with the phase of the noisy 

signal to restore the enhanced speech signal. The phase of the noisy signal is not 

modified, as it is known that, human auditory system is more sensitive to magnitude 

(or energy) and tends to ignore the phase information. After the inverse DFT and 

overlap add the enhanced speech signal is obtained in the time domain.  

The spectral subtraction method successively reduces the noise level but the main 

drawback of the method is that it causes excessive residual and musical noise. These 

musical tones have annoying nature for listeners. Block diagram of spectral 

subtraction method is given in Figure 3.1. 
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][ˆ nx][ny

 
Figure 3.1 Block diagram of spectral subtraction method  

 

3.2.1.2  STFT-Based Wiener Filter 

The Wiener filter (WF) is generally classified as a subtraction type filter.  A widely 

used gain function for STFT based Wiener filter is given in the form: 
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                                          (3.5) 

 

Where, ),(ˆ lkxx  and ),(ˆ lkdd  are the short-time power spectral density (PSD) 

estimates of ][nx  and, ][nb  respectively. The noise power is estimated during noise 

only frames as used in power spectral subtraction. The main drawback of Wiener 

filtering is that, it produces annoying tonal artifacts similar to spectral subtraction. 

The gain function for Wiener filter can also be given in the following form: 
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The term 2

2

),(ˆ

),(

lkD

lkY
 in (3.6) is called as a posteriori SNR estimation ),( lkSNR post  
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 Then rewriting (3.6) we have gain function for Wiener filter based on a posteriori 

SNR estimation as 

 

),(
11),(

lkSNR
lkG

post
W                                     (3.7) 

 

Similarly the gain functions of magnitude and power spectral subtraction in (3.3) can 

be given as follows, based on a posteriori SNR. 

 

),(
11),(

lkSNR
lkG

post
MSS   

),(
11),(

lkSNR
lkG

post
PSS                                     (3.8) 

 

The instantaneous SNR, a local estimate of the SNR, is given as   

 

1 postinst SNRSNR                                       (3.9) 
 

  A priori SNR estimate ( prioSNR ) is formulated as, 
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2
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lkD

lkXE
lkSNR prio                                 (3.10) 

 

The a priori SNR is estimated from the noisy speech signal by using the “Decision 

Directed” method [9]. 

 

3.2.2 MMSE-STSA  Estimation-Based Methods 

The minimum MMSE STSA estimator and STSA-Wiener estimator [9], minimum 

mean-square error log-spectral amplitude (MMSE-LSA) estimator have been 

outlined in this section.  

The methods are based on the Gaussian statistical model and a priori SNR 

estimation. The a priori SNR is reported to be a key parameter (rather than noise 
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variance) in the reduction of noise removal and speech distortion [12, 66]. 

Furthermore, it is widely reported [67] that, the MMSE based estimators cause no 

musical background noise. The gain functions of the above mentioned estimators 

have been also derived when the probability of speech absence is taken into account 

[9-11, 71]. The estimation of noise power spectral density (PSD) from the noisy 

speech signal via “Decision Directed” method and the estimation of probability of 

speech absence have been also outlined in this section.  

To derive the MMSE STSA estimator, the a priori probability distribution of the 

speech and noise Fourier expansion coefficients should be known. Since in practice 

they are unknown, one can measure each probability distribution or alternatively, 

assume a reasonable statistical model such as Gaussian statistical model [9-10].  

While the distortion measure of mean-square error of the spectra (the original STSA 

estimator) used in [9] is mathematically tractable and leads also to good results, it is 

not the most subjectively the meaningful one. It is well known that, a distortion 

measure which is based on the mean-square error of the log-spectra is more suitable 

for speech processing [10]. Such a distortion measure is therefore widely used for 

speech analysis and recognition. Therefore, it is of great interest to examine the 

STSA estimator which minimizes the mean-square error of the log- spectra (MMSE-

LSA estimator) in enhancing noisy speech.   

One useful approach to resolve this problem is to derive an MMSE-STSA estimator 

which takes into account the uncertainty of speech presence in the noisy 

observations. Such an estimator can be derived on the basis of the above Gaussian 

statistical model and by assuming that the speech does not always exist in the signal.  

 

3.2.2.1  Soft-Decision Based Gain Modification Taking Into Account Probability 

of Speech Absence 

Noise suppression properties of the above enhancement algorithms have been shown 

to improve when soft-decision based modification of the gain function depending on 

the probability of speech absence [9-12]. 
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Let, the noisy input signal ][ny  is given by, ][][][ nbnxny   in the discrete time 

domain, where ][nx is the clean speech signal and ][nb  is the noise signal and ][nx  

and ][nb  are assumed to be uncorrelated. The STFT is applied ][nx  to compute the 

overlapping windowed frames. In the frequency domain, kkk BXY    where 

)exp( kkk jAX   and )exp( kkk jRY  . Since the MMSE estimators are based on 

Gaussian statistics, the DFT coefficients of both speech and noise frames are 

assumed to be independent Gaussian random variables.  

The gain functions for the MMSE based estimators (MMSE-STSA, MMSE-LSA, 

and STSA-Wiener and MM-LSA) have been derived mainly based on two 

assumptions: The first one assumes that the speech always exists at kth bin (i.e. 

)0kq , and derives the frequency dependent gain functions based on this 

assumption [9-10]. The second one assumes that, speech does not always exist at kth 

bin, because of the quasi harmonic nature of the speech signal. Furthermore, it takes 

into account the probability of speech absence and modifies the gain functions based 

on this probability. The value of probability of speech absence can be chosen as a 

fixed value (i.e. 2.0kq  in [9] or 5.0kq  in [12]) for all frequency bins or more 

realistically it can be estimated for each frequency bin as )(lqk . The modified gain 

functions for the MMSE based estimators can be seen in [9-11, 71]  

Assume that, kC  is a function of short time amplitude kA  of the clean speech in the 

kth frequency bin taking into account the probability of speech absence, we have  

  

       k
kk

kkk
kk

kkk YHPHYCEYHPHYCEC 0011 ,,ˆ                    (3.11)  
 

Where, 

kH 0 : Speech absent at kth bin, 

kH1 : Speech present at kth bin. 

Where, }..{E and .}.{P  denote conditional expectation and conditional probability 

operators, respectively.  Since the second term in (3.11) is zero, we have 
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  k
kk

kkk YHPHYCEC 11,ˆ                                         (3.12) 

 

Where, )( 1 k
k YHP  is the soft decision modification of optimal estimator under signal 

presence uncertainty. 

 

Applying Bayes’ rule [9, 12] gives 
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Where }..{p denotes conditional probability density operator. 
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)(k  in (3.13) denotes the generalized likelihood ratio taking into account the 

uncertainty of speech presence and kq  is the probability of speech absence in the kth 

frequency bin. 

 

By considering the soft decision gain modification (or taking into account the 

probability of speech absence) the modified gain functions for the STSA, LSA and 

Wiener estimators can be obtained as given in the Sections 3.2.2.2-3.2.2.4. 

 

3.2.2.2    Modified STSA Estimator 

Substituting kk AC   in (3.12) the modified amplitude estimate ,)ˆ( mod kSTSAA for the 

MMSE-STSA estimator [9] can be obtained follows:   
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                                       (3.15) 

 

Since the gain modification )(kGM  is multiplicative, the modified gain function for 

the MMSE-STSA estimator )(mod kGSTSA   is given as follows. 
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Where, )(kGSTSA  is the original gain function (without taking into account speech 

presence uncertainty or without modification) for MMSE-STSA estimator given in 

detail in [9] as follows 
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From (3.16) and (3.17), the modified gain function for the MMSE-STSA estimator 

)(mod kGSTSA   can be obtained as follows: 
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            with   
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3.2.2.3    MM-LSA  Estimator 

Substituting kk AC log  in (3.12) the modified amplitude estimate kLSAA )ˆ( for the 

MMSE-LSA estimator [10] is obtained as given in (3.19).  
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                              (3.19) 

 

Since the soft decision gain modification of kR  in (14) is not multiplicative and it is 

explained in [10] that it did not result in meaningful improvement over using 

)(kGLSA  alone, the following multiplicatively modified LSA estimator (MM-LSA) 

was chosen to use [11,71]. 
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Where )(kGLSA and )(kG LSAMM   are the original and the multiplicatively-modified 

gain functions for the MMSE-LSA estimator. 

Since gain function for MMSE-LSA estimator is given in [11] as 
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From (3.20) and (3.21), the multiplicatively-modified gain function for MMSE-LSA 

estimators )(kG LSAMM   is obtained as follows 
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3.2.2.4    Modified Wiener Estimator 

The amplitude estimate for modified STSA-Wiener estimator )(mod kGW can be given 

as follows: 
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Since WG  (the original gain function for STSA-Wiener estimator) is given in [9, 67] 

as 
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From (3.23) and (3.24) the multiplicatively-modified gain function for STSA-Wiener 

estimator )(mod kGW  can be derived as follows 
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The k  denotes a posteriori SNR, kη  and k  denote unconditional and conditional a 

priori SNR respectively, )(kbλ  denotes noise power spectral density (PSD) (or noise 

power spectrum variance) and kq  denotes a priori probability of speech absence.   

Note here that, when 0kq  (speech always exists in kth bin), 1)1/(   in 

(3.13). In this case, the modified gain functions for LSA, STSA and Wiener 

estimators given in (3.18), (3.22) and (3.25) reduce to the standard gains functions 
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given in (3.17), (3.21) and (3.24). Furthermore, when 0kq  (speech always exists 

in kth bin), kk ηξ   in (3.26). 

When both the clean speech signal and noise signals are known, it is possible to 

obtain noise variance )(kbλ  and a priori SNR kη  as given in (3.26). However, in 

practical applications neither noise signal nor clean speech signal is available. We 

have only the noisy observation signal. Consequently, both the noise variance )(kbλ  

and the a priori SNR kη  should be estimated from the noisy observation signal as we 

do in this paper. In the rest of this section the estimation of )(kbλ , kη  and kq  

adaptively from the noisy observation signal is given in detail. 

 

3.2.2.5    Noise Power Spectral Density Estimation  

Noise power spectral density (PSD) estimation is critically important in the speech 

enhancement system since the accuracy of the noise estimation has a major impact 

on the performance of the overall system. If the noise is known to be stationary, then 

it is enough to estimate its PSD estimate only once, from an initial noise only period. 

In general, voice activity detector (VAD) based methods are used for the recursive 

estimation of noise PSD during speech pauses and updated during consecutive pause 

frames. It is useful to control the update rate by using a smoothing factor ( bα ) during 

the detected speech pauses since spectral changes may occur during periods of 

speech absence.  

In general, the noise PSD estimation based on pause detection using VAD is reliable 

for tracking the stationary noise; however, the highly nonstationary noises can not be 

sufficiently tracked by recursive noise PSD estimation during speech pauses. 

Moreover, the VAD based noise estimators are difficult to tune and their application 

at low SNRs often result in distortion in speech [72, 73]. 

The general equation used for recursive estimation of the noise PSD during noise-

only frames using VAD is as given in (3.27). 

 

)()1()1,(ˆ),(ˆ 2 lRlklk kbbbb αλαλ                                (3.27) 



 

 

 

59 

Where, ),(ˆ lkbλ  and )(2 lRk  denote estimated noise PSD estimate and noisy speech 

signal power spectrum respectively, at kth bin in lth noise frame, bα  (smoothing 

factor), is generally set to a value (0.8-0.98), and )1( l  denotes previous frame. The 

bα  value is chosen as (0.85) in the applications. 

Some of the recently proposed methods for noise PSD estimation which does not 

need speech pause detection and noise estimation can be tracked also during speech 

activity. Malah at al. [11, 71] proposed a noise estimation method where a modified 

smoothing parameter has been used for controlling update rate of the noise spectrum 

estimate. The smoothing parameter ( bα ) is modified by using frame based estimation 

of probability of speech absence as  

)(ˆ1)1(1),( lqllk kbb  κγα ,     κk                            (3.28) 

 

Where b  is a constant (i.e. )2.0b , κ  denotes a set of frequency bins for which 

the update is performed, so that the κγ  is the mean of kγ over all κk . A different 

VAD which allow controlling the update rate during also speech frames have been 

used. The VAD operates based on a criterion that, the )(ˆ lqk  is larger than a threshold 

value or kγ  has a relatively low value (i.e. 4kγ ). 

Martin [71] has proposed an efficient noise estimator based on minimum statistics to 

track non-stationary noise. However, the buffer length necessary to bridge peaks of 

speech activity makes it difficult to tract any rapid variations in noise spectrum.  

Cohen [74] has used the minimum statistics as a voice activity detector and estimated 

the noise by a recursive averaging formula. The performance results are reported 

only for white Gaussian noise which is a poor approximation for noise containing 

high bursts.  

In our applications satisfactory results have been achieved by using a VAD based 

noise estimation method given in (3.27) where noise PSD is estimated and updated 

during the detected noise only frames. 
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3.2.2.6    A Priori SNR Estimation  

It is reported in [9, 12, 67] that a priori SNR estimate is a key parameter in the 

elimination of musical noise and reduction of speech distortion. The a priori SNR 

can be estimated from the noisy signal by using two methods, maximum likelihood 

(ML) estimator and “Decision Directed” (DD) method.  The priori SNR )(ˆ lkη  is 

estimated using DD method in [12] for lth time frame as given in (3.29).  
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Where [.]P , denotes half-wave rectification, )1(ˆ lAk  is the estimated speech 

spectrum at previous frame and  (weighting factor) generally takes the values in the 

range (0.9-0.99). ),(ˆ lkbλ  denotes the noise variance estimation, )(lk  and )(ˆ lkη   are 

a posteriori and a priori SNR estimates respectively. Since,     
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And hence,  

]0,max[][ xxP                                                   (3.31) 
 

The (3.12) can be rearranged as given in (3.15).   
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From (3.32) we derive, 
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Substituting (3.33) into (3.32) we have,  
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 0,1)(max)1()1()1,()(ˆ 2  lllkGl kkk γαγαη                  (3.34) 

 

Where G  in (24) denotes gain function of one of the STSA, LSA, Wiener estimators 

or their modified versions given in [9-11, 71].   is taken as 0.98 in the evaluations. 

 

3.2.2.7    Estimation of a Priori Probability of Speech Absence 

An important property of both MMSE-STSA and MMSE-LSA [9,10] estimators is 

that they are able to eliminate “musical noise” in the enhanced signal which plagues 

most other frequency domain algorithms. This can be attributed to the “decision 

directed” method which is used for estimation of a priori SNR. It is recommended to 

use a lower limit minη  for the estimated kη . A weighting factor  , in that estimator 

controls a tradeoff between noise reduction and signal distortion [11].  

The probability of speech absence )(lqk  is generally set to a fixed value (0.2 or 0.5) 

[9, 12]. It can also be adaptively estimated for each frequency bin ( k ) during 

consecutive frames ( l ) as )(lqk  [11, 71].  

To decide whether speech is present in the kth bin or not we consider the following 

composite hypothesis testing problem.  

                      min0 : ηη kK        (Speech present in kth bin) 
 min: ηη kAK        (Speech absent in kth bin) 

Where minη  (lower threshold value for priori SNR estimation) was chosen as (-25 

dB) in our applications. The 0K (null hypothesis) is used since; its rejection when 

true is graver than the alternative error of accepting when false. 

A good decision rule for this problem is equivalent to the Neyman-Pearson decision 

rule for the following hypothesis test between simple hypotheses. min
'
0 : nK k η  and 

min
' : ηηη  a

kkAK . This gives the test: 
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TH

K

AK
k γγ

0



                                                 (3.35) 

Where, THγ  (threshold value of posteriori SNR for hypothesis testing) is generally 

set to value ( 8.0THγ ). The following recursive equation is used for adaptive 

estimation of )(lqk . 

 

)()1()1(ˆ)(ˆ lIlqlq kqkqk αα                                        (3.36) 

 

Where, qα  denotes smoothing parameter for the probability of speech absence which 

is generally set to a value in the range (0.9-0.99) and )(lI k  is an index function that 

denotes the result of the test given in (3.35). 1)( lI k   if  0K  is rejected when true 

and 0)( lI k  if accepted when false[11, 71].  

 

3.2.2.8     Speech Enhancement Method 

We employ the MMSE based estimators modified according to probability of speech 

absence (Mod-WF, Mod-STSA and MM-LSA estimators).  Although, in [11,17] the 

noise PSD is estimated based on probability of speech absence, we achieved 

satisfactory results using VAD based pause detection. The noise PSD is estimated 

during the first ten segments and updated and smoothed during consecutive noise 

only frames by using (3.27). The priori SNR (which is a key parameter in the MMSE 

based methods) is estimated from the noisy speech signal using “Decision Directed” 

method as given in (3.34). The gain modification is performed by taking into account 

the probability of speech absence. The probability of speech absence kq  is generally 

set to a fixed value (0.2 or 0.5) [9, 12]. However, we adaptively estimated )(lqk  for 

each frequency bin ( k ) in a short time frame ( l ) as given in (44).  
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Figure 3.2 Block Diagram of modified MMSE Estimators. 

 
3.3     Proposed 1-D Adaptive Lifting Scheme 

In the proposed adaptive lifting scheme, the set of lifting filters CDF (1, N) have 

been used, based on the average interpolation [68, 69], as also used in the previously 

proposed work in [37,38]. The original work is based on edge detection and “edge 

avoiding prediction” method. However, we introduced a new adaptive prediction 

method in the proposed adaptive lifting scheme.  

The motivation behind introducing adaptivity into the lifting scheme is that, choosing 

better prediction or update filters may give rise to more efficient signal 

representations and enhancement results.  

 

The idea behind the “edge avoiding prediction” in [37-38] is as follows. The low 

order predictors well adapt to the edges or break points in the signal while high order 

predictors well adapt to smooth parts of the signal.  

The procedure of “edge avoiding prediction” in [37,38] is as follows.  High order 

predictor CDF(1,7) is used on smooth parts of the signal and low order predictors 

{CDF(1,1), CDF(1,3) and CDF(1,5) } are used on both sides of an odd indexed edge 

pixel. The “edge avoiding prediction” method is given below in Figure 3.3. 
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                           Figure 3.3 Edge avoiding prediction [37, 38] 

 

Since the space adaptive (update-first) lifting scheme is based on adapting the predict 

stage to the signal structure, the effectiveness of the algorithm is dependent on the 

sensitivity of prediction stage.   

From (3.38-3.41), if the prediction filter (one of the CDF (1, N) group filters)  is 

precisely chosen, the detail coefficient ][nd  minimizes since the value of odd pixel 

][nxo  will be approximately equal to its predicted value ])[( ncP . It is clear that, 

choosing the best prediction filter will result in better adaptation of the prediction 

filter to the signal structure. 

Based on this motivation, we have developed a new prediction algorithm which 

adaptively chooses the best predictor (among the set of predictors CDF (1, N)) 

providing the minimum detail coefficient (or minimum prediction error).  

Consequently, the prediction filter (or predictor) providing the minimum detail 

coefficient (for each pixel in the 2-D lifting construction) leads to better signal 

representation and better enhancement results. 

 

The lifting implementations of the CDF(1,N) group lifting filters with update-first 

strategy are all given below. 

Update stage: The low-pass update coefficients are obtained using Haar filter. 
 

])[][(
2
1][ nxnxnc eo                                         (3.37) 

 
Where,  ]12[][  nxnxo  denotes odd samples and ]2[][ nxnxe   denotes even 
samples. 
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Predict stage: The high pass detail coefficients are obtained as the residues of the 

prediction of odd samples. 

 CDF(1,1) lifting scheme (=Haar wavelet transform):  

 

 ][][][ ncnxnd o                                      (3.38) 
CDF(1,3) lifting scheme: 

 

)8/]1[][8/]1[(][][  ncncncnxnd o                  (3.39) 
 

CDF(1,5) lifting scheme:                  

)128/]2[3128/]1[22
...][128/]1[22128/]2[3(][][




ncnc
ncncncnxnd o          (3.40) 

 

CDF(1,7) lifting scheme: 

 

)1024/]3[51024/]2[441024/]1[201][
...1024/]1[2011024/]2[441024/]3[5(][][




ncncncnc
ncncncnxnd o    (3.41) 

 

The proposed forward adaptive lifting scheme given in Figure 3.4 a) is implemented 

by rearranging the detail coefficients as follows. 

Update Stage: The approximation coefficient ][nc  is obtained using (3.37).   

Predict Stage: The detail coefficient ][nd  is rearranged and given in the form: 

 

][][][][ nCncnxnd No                                     (3.42) 

Where NC , )7,5,3,1( N  in (3.42) is obtained from (3.38–3.41) based on the type of 

predict filters.  The N  is obtained for each  ( ][nc , ][nd ) pair for inverse transform.  

For CDF(1,1)  predict filter )1( N , from (3.38) and (3.42)          

                                                    0][][ 1  nCnCN                                          (3.43)  

For CDF(1,3)  predict filter )3( N , from (3.39) and (3.42)          
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 ][][ 3 nCnCN )8/]1[8/]1[(  ncnc                       (3.44) 

For CDF(1,5)  predict filter )5( N , from (3.40) and (3.42)                  

)128/]2[3128/]1[22
...128/]1[22128/]2[3(][][ 5




ncnc
ncncnCnCN             (3.45) 

For CDF(1,7)  predict filter )7( N , from (3.41) and (3.42)                      

)1024/]3[51024/]2[441024/]1[201
...1024/]1[2011024/]2[441024/]3[5(][][ 7




ncncnc
ncncncnCnCN  

(3.46) 

The detail coefficient ][nd  is obtained from (3.42) depending on NC  value given in 

(3.43) - (3.46)  which minimizes the ][nd , by using a comparison algorithm. 

The inverse adaptive lifting scheme, as given in Figure 3.4 b) can easily be 

constructed.  From (3.42)  

      ][][][][ nCncndnx No                                      (3.47) 

where, NC  value is given in (3.43) - (3.46). 

Using  (3,37)  we have 

            ][][2][ nxncnx oe  .                                        (3.48) 

The enhanced speech signal is obtained based on ][nxo  and ][nxe . The P  and U  in 

Figure 3.4 denotes the Haar predict and update filter )2/1,1(  UP  respectively. 
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Figure 3.4 Proposed 1-D adaptive lifting scheme, a) Forward adaptive Lifting 
Scheme, b) Inverse adaptive lifting scheme 
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Figure 3.5 Flowchart of proposed 1-D adaptive (forward) lifting scheme 
 

3.4 Proposed Perceptual Filterbank 

The perceptual filterbank has been designed as follows: The WPD tree (five levels) 

has been constructed via the adaptive lifting scheme and adjusted according to 

critical bands of the human auditory system. Since, 8 kHz sampling frequency has 

been chosen, 4 kHz bandwidth corresponding to 17 critical bands given in the Table 

1 has been used. The Table 1 has been presented based on [75-76].   



 

 

 

69 

For 8 kHz sampling rate, the following equation have been used  to calculate the 

frequency bandwidth values corresponding to nodes of the full wavelet packet 

decomposition (WPD) tree constructed via the proposed adaptive lifting scheme. 

 

Table 3.1 Critical-band frequencies of human auditory system  
 

 
 

)2/(2),( s
j Fpjbw                                                    (3.49) 

 

Where, ),( pjbw  represents the frequency bandwidth [Hz] value corresponding to 

node ),( nj  of the full WPD tree.  Note that, p  is also a function of j .  

 

    )5,...2,1,0(j ,          ( j : number of decomposition levels) 
    )12,...(0  jp ,       ( p :  position)  
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The frequency bandwidths ),( pjbw  of the full WPD tree has been adjusted, by 

choosing the closest values. The (five levels) full WPD tree and CB-WPD tree (sub-

tree) (bold lines only) constructed via the proposed adaptive lifting scheme is given 

Figure.5. The full tree corresponds to a uniform filterbank however; the CB-WPD 

tree (sub-tree) corresponds to a nonuniform filterbank which is called as “perceptual 

filterbank” in this thesis. Where y denotes the noisy input signal, ( 5,...3,2,1j ) 

denotes the number of decomposition levels and   171......ycyc  represent critical 

subbands. 

 

  
 

Figure 3.6   WPD tree (bold & dashed lines) and CB-WPD sub-tree (bold lines only) 
corresponding to proposed perceptual filterbank      
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Figure 3.7  Overall block diagram of proposed speech enhancement method with 
CB-WPD in adaptive lifting based wavelet (packet) domain and MMSE-based 
estimators. 
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CHAPTER 4 

IMAGE ENHANCEMENT  

4.1 Introduction 

Images are often corrupted by noises caused by decoding errors or noisy channels. 

Both have potential of degrading the image quality. The human perception is very 

sensitive to noise due to its strong amplitude. Removal of such noises without 

blurring edges and important details of image is still an important issue in image 

processing.   

The image enhancement methods can be broadly divided into two groups. The spatial 

domain methods based on direct manipulation of the pixels in an image and 

frequency domain methods based on modification of the Fourier transform of an 

image [42]. Wavelet based shrinkage or thresholding methods [24-26] have also 

received considerable attention in image denoising applications in last decades. 

Among the widely used spatial domain linear and nonlinear techniques are Wiener 

filter, Mean and Median filters. Classical Wiener filter which is a linear technique 

provides mathematical simplicity but has the disadvantage of blurring edges [43, 77]. 

The nonlinear mean filter cannot remove positive and negative impulse noises 

simultaneously. The median filter performs well, but it fails when the probability of 

impulse noise occurrence is high [78]. 

Median filter is one of the order-statistic nonlinear filters. In the median filtering, a 

pixel (whether corrupted by noise or not) is replaced by its local median value within 

a window. Although the median filtering can be successfully used to suppress 

impulsive noise while preserving edges, it often fails to provide sufficient smoothing 

of non-impulsive noise [52,79 ]. 

Over the past decade, wavelet transform has received considerable attention between 

the scientists and researchers since it provides good time-frequency localization. The 
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most popular wavelet based denoising techniques are wavelet thresholding or 

shrinkage proposed by Donoho and Johnstone [24-26], where the noisy image is 

wavelet decomposed into subbands and noise is removed by killing coefficients that 

are smaller than some threshold. It is a simple and effective method however the 

choice of thresholding functions and threshold values are critical in enhancement 

schemes. The threshold value in universal thresholding [25] depends on the number 

of data samples. If the number of data samples is too small, the enhanced image 

remains still noisy, on the other hand, if it is too large then the important details of 

the signal disappears.  

The classical wavelet transform is constructed by shifting and scaling of a fixed 

wavelet function based on Fourier transform. An alternative way of constructing 

biorthogonal wavelets is the lifting scheme. The lifting scheme is a spatial domain 

method which has some advantages over the classical lifting scheme [32, 33]. The 

advantages of the classical lifting scheme are:  

 It is a spatial domain method, 

 It is easier to implement,  

 It allows faster and in-place calculations,  

 It allows nonlinear, adaptive, irregularly sampled and integer to integer 

wavelet transforms,  

 It is easier to obtain inverse transform.  

Furthermore, any wavelet transform can be factored into lifting stages [34]. 

The adaptation of lifting filters to the signal structure leads to “adaptive lifting 

schemes”. The motivation behind introducing adaptivity into the lifting steps is that, 

choosing better lifting filters (predict or update filters) may lead to more efficient 

signal representations.  

The CDF( 1,N) group lifting filters have been exploited in the proposed adaptive 

lifting scheme as also used in the previously proposed work [37,38]. The prediction 

stage is adapted to the signal structure based on minimizing the detail coefficient (or 
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prediction error) . The original work is based on edge detection and “edge avoiding 

prediction” method. However, we proposed a new adaptive prediction method in the 

proposed adaptive lifting scheme. The procedure of edge avoiding prediction 

proposed in [37,38] is given in the Chapter 3, section 3.2. 

In this thesis, we proposed an image enhancement method based on space adaptive 

(update-first) 2-D adaptive lifting scheme. Spatial domain filters (median and 

adaptive Wiener filters) and wavelet based thresholding methods (Visu Shrink, 

Bayes Shrink, Normal Shrink and Level-dependent thresholding (LDP)) are used for 

subband image enhancement.  

 

4.2 Image Enhancement Methods  

In this thesis, we have used special domain median and adaptive Wiener filters [43, 

77-79] and wavelet-based thresholding methods Visu Shrink, Bayes Shrink, Normal 

Shrink and (LDP) methods in the space adaptive 2-D lifting-scheme [24-26]. 

  

4.3 Spatial Domain Methods 

The spatial domain methods are based on direct manipulation of the pixels in an 

image. The widely used spatial domain linear and nonlinear techniques are Wiener 

filter, Mean and Median filters [43, 77-79]. 

 

4.3.1   Spatial Domain Adaptive Wiener Filter 

Let us consider an image ),( jix  is corrupted with Gaussian white noise ),( jib  then 

the noisy image can be expressed as follows, 

 

),(),(),( jibjixjiy                                         (4.1) 
 

where ),( jix and ),( jiy   denote the original image and noisy images respectively. 

Here we assume that, the noise is stationary with zero mean and 2
bσ  variance and 

uncorrelated with the original image. If the original image ),( jix  is considered 

locally stationary within a small region, it can be modeled by: 
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),(),( jibmjix xx σ                                         (4.2) 
 

Where, xm and xσ  are local mean and standard deviation respectively and ),( jib  is 

white noise with zero mean and unit variance. Within the local region, spatial domain 

wiener filter (SDWF) that minimizes the mean square error (MSE) between the 

original image ),( jix and the enhanced image ),(ˆ jix  is given as follows. 

 

)),((),(ˆ
22

2

x
bx

x
x mjiymjix 




σσ
σ

                     (4.3) 

 

),( jimx  and ),( jixσ are estimated from the noisy observation signal and updated at 

each pixel in (4.4). 
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Substituting ),(ˆ jimx  and ),(ˆ jixσ  into (3) we get, 

 

)],(ˆ),([
),(ˆ

),(ˆ
),(ˆ),(ˆ

22

2

jimjiy
ji

ji
jimjix x

bx

x
x 




σσ
σ

                    (4.5) 

 
The filter size )12)(12(  nm is fixed over the entire observed image and is 

generally chosen as 5x5 [43].  

 

4.3.2  Spatial Domain Median Filter 

The standard spatial domain median filter is based on sliding a window of odd length 

over an image, ranking of the pixels in a neighborhood of size (3x3, 5x5, 7x7...) 

according to brightness within the input window. Center pixel in the window is then 

replaced by the median of the pixels within the window [52].  In case of the spatial 
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domain mean filter [77], the center pixel in the window is replaced by the mean of 

the pixels within the window. 

 

4.4  Image Denoising Based on Wavelet Thresholding 

One of the important features of the wavelet based denoising is that, it maps the 

white Gaussian noise in the signal domain and in the transform domain. Since the 

noise energy is heavily concentrated in the high band detail coefficients (while signal 

energy is concentrated in the low band approximate coefficients), applying a 

thresholding technique to the detail coefficients enables removing noise from the 

image. There are two types of thresholding techniques called as “soft thresholding” 

and “hard thresholding”. The soft thresholding is more preferred than the hard 

thresholding since it causes fewer artifacts [47]. The shrinkage methods used in our 

applications are all based on soft thresholding. 

The soft thresholding (shrinkage) function of the wavelet coefficient matrix w  with 

threshold  T  can be expressed as follows:  

 

TwifTw
Twif

TwifTwsoft







0

λ

                                      (4.6) 

 

 Similarly, the hard thresholding function is expressed as follows: 

 

  
otherwise

Twifwhard

0
λ

                (4.7) 

 

The most commonly used shrinkage functions exist in the literature are as follows 

 

4.4.1  Visu Shrink 

Visu Shrink (Visually calibrated adaptive smoothing) [25] is the most popular 

shrinkage method used for image denoising. The ‘universal’ threshold selection is 

given as Mb log2σ , where bσ  is noise variance and M is number of sample/pixel. 
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Visu Shrink is known to be providing overly smoothed images. The noise standard 

deviation is estimated as the median absolute deviation (MAD) of the finest scale 

wavelet coefficient matrix (HH1). 

 

 
1

6745.0
ˆ HHsubbandYwhere

Ymedian
i

i
b σ                        (4.8) 

 

4.4.2  Bayes Shrink 

Bayes Shrink is an adaptive data-driven threshold for image denoising via wavelet 

soft thresholding [50]. It uses the threshold, 

 

x

bT
σ
σ
ˆ
ˆ 2

                            (4.9) 

 
2ˆ bσ is the estimated noise variance and 2ˆ xσ is the estimated signal variance under 

consideration. 

 

)0,ˆˆmax(ˆ 22
bYx σσσ                          (4.10) 

 

Where  

 





N

k
kY Y

N 1

21σ̂                                          (4.11) 

 

Yσ̂ , is the estimation of the standard deviation of the noisy observation coefficient 

matrix kY  on the subband under consideration and N is the number of pixels in 

the kY . 

 

4.4.3 Normal Shrink 

Normal Shrink [48] performs soft thresholding with the data driven subband 

dependent threshold T, which is given as, 
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Y

bT
σ
σβ
ˆ
ˆ 2

                                                  (4.12) 

 

Where, the scale parameter β  is computed once for each scale using the following 

equation. 

)log(
J
Lkβ                                               (4.13) 

 

Where, kL  is the length of the subband at kth scale and J  is the total number of 

scales  Jk ....3,2,1 . The standard deviation estimates of noise and noisy 

observations at kth scale ( bσ̂ and Yσ̂ ) were previously given in (4.8) and (4. 11). 

 

4.5 2-D lifting Construction  

The general 2-D separable lifting implementation of an image is performed by first 

applying 1-D lifting wavelet transform horizontally on rows and then vertically on 

columns (or vice versa). Four subbands (LL1, HL1, LH1, and HH1) can be acquired 

after 1-level, 2-D lifting decomposition of a given image W. The Figure.4.1 

demonstrates the 2-D lifting construction procedure exploited in our applications.  

Decomposition can be further continued by applying the same procedure on sub-

image (LL1) similarly as in the case of original image W. Thus, after 2-level lifting 

decomposition of sub-image (LL1), four subband coefficients (LL2, HL2, LH2, and 

 

 Figure 4.1  Procedure of the 2-D lifting scheme  
 

HH2) are obtained. 2-levels, 2-D lifting wavelet decomposition stages for an image 

(W) are given in Figures 4.2- 4.3. 
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Figure 4.2  Two levels, 2-D lifting wavelet decomposition tree 
 

In the 1-level decomposition, LL1 is the approximation coefficients sub-matrix; 

HL1, LH1 and HH1 are horizontal, vertical and diagonal detail coefficients sub-

matrices.  

After subband image enhancement, the inverse 2-D lifting scheme can easily be 

constructed by applying a reverse procedure to the one given in Figure.4.1. 

 
 

 Figure 4.3  2-D lifting wavelet decomposition  a) original image 
           b) 1-level decomposition  c) 2-levels decomposition 
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4.6 Proposed Adaptive 2-D Lifting Scheme   

The adaptive 2-D lifting scheme proposed in this thesis is based on adaptive 1-D 

lifting scheme (given in Chapter 3, Section 3.2). The adaptive 1-D lifting scheme is 

applied horizontally (on rows) and then vertically (on columns) of a given noisy test 

image using the procedure given in Section 4.5. The procedure and motivations 

behind the adaptive prediction method “edge avoiding prediction” proposed in 

[37,38] and our proposed adaptive prediction method are given in the Chapter 3, 

Section 3.2  in detail. 
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CHAPTER 5 

PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS 

5.1 Introduction   

This chapter describes the performance evaluation of the proposed speech and image 

enhancement algorithms. Objective quality evaluation tests signal to noise ratio 

(SNR), segmental signal to noise ratio (SegSNR), Itakura-Saito distance (IS) tests 

and perceptual evaluation of speech quality (PESQ-MOS) (which predicts the 

subjective MOS results) are employed for performance assessments of the developed 

speech enhancement algorithms. All the noise signals (white Gaussian noise (WGN), 

F16 cockpit noise, car interior noise and babble noise) have been taken from Noisex-

92 database.  The noisy signals have been obtained by adding noise the original 

(clean) signals at noise levels in the range [-5, 10] dB SNR. The performance results 

are obtained by averaging the performance results of four different speech sentences 

(half spoken by females and half by males) taken from Harward speech database. 

The experimental results (speech signal waveforms and spectrograms) obtained for 

the English sentence “A pot of tea helps to pass the evening” spoken by a male 

speaker are demonstrated in this chapter. The estimators magnitude spectral 

subtraction (MSS) and MMSE based methods modified short-time spectral amplitude 

(Mod-STSA) estimator, multiplicatively modified-log spectral amplitude (MM-LSA) 

estimator, Wiener filter (WF) and modified Wiener filter (Mod-WF) have been tested 

and their results have also been demonstrated.  All the tested methods are used in the 

adaptive lifting-wavelet domain using (CB-WPD) or perceptual filterbank as given in 

detail in Chapter 3, Section 3.3.  

The well known objective quality evaluation test (PSNR) is used for performance 

evaluation of the image enhancement algorithms proposed in this thesis. The 

proposed image enhancement methods are spatial domain methods (median and 

adaptive wiener filters and wavelet-based thresholding methods (Visu Shrink, Bayes 

Shrink, Normal Shrink and Level-dependent thresholding). 
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5.2 Performance Evaluation for Speech Enhancement Algorithms 

The performance of proposed speech enhancement method is tested by using the 

objective and subjective evaluation tests. The objective tests are the signal to noise 

ratio (SNR), segmental signal to noise ratio (SegSNR) and Itakura-Saito (IS) 

distance. The subjective evaluation is performed by using (PESQ-MOS) test. The 

original, noisy and enhanced speech signal waveforms and corresponding 

spectrograms are also demonstrated in this chapter. 

 

5.2.1 Objective Evaluation Methods 

5.2.1.1    Signal to Noise Ratio (SNR)  

The following equation is computed for evaluation of SNR results of noisy and 

enhanced speech signals.  The SNR is calculated in decibels (dB). 
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Where )(nx denotes original signal, )(ˆ nx  denotes processed (enhanced) signal, and 

N  denotes number of samples in original speech signal. The SNR (sometimes called 

as global or instantaneous SNR) is the most common measure of speech quality; 

however it is not well correlated with human auditory system.  

 

5.2.1.2     Segmental Signal to Noise Ratio  (SegSNR)  

The frame based segmental SNR is a reasonable measure of speech quality. It is 

formed by averaging frame level estimates as follows.  
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Where )(nx  denotes original signal, )(ˆ nx  denotes enhanced signal, M denotes 

number of frames and N denotes number of samples in each short time frame.  Since 

the frames with SNRs above (35 dB) do not reflect the human perceptual differences, 

they are generally replaced with (35 dB). Similarly, during periods of silence, SNR 

values may become very negative since signal energies are small. These frames also 

do not truly reflect the perceptual contributions of the signal. Therefore a lower 

threshold is often set for much realistic frame based SNR calculation. Here, we have 

chosen (-10 dB) SNR as the lower threshold.  

 

5.2.1.3    Itakura-Saito Distance (IS) 

For xa   and  xa ˆ
  being linear prediction coefficients (LPC) vector of clean and 

processed speech signal respectively and xR  denotes (R+1) x (R+1) (Toeplitz) 

autocorrelation matrix. The R is the order of LPC analysis. The Itakura-Saito 

distance (IS) measure is given by: 
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                              (5.3)   

 

Where, 2
x̂σ  and 2

xσ  represent the all-pole gains for the processed and original speech 

frame respectively. The IS measure is well correlated to subjective results.  Note that, 

the lower the IS measure (close to zero) the better the is perceived quality of the 

enhanced speech.  

 

5.2.2 Subjective Evaluation Methods 

The subjective evaluation methods include the methods which focus on speech 

intelligibility and those which focus on overall quality [80].  The most often used 

intelligibility tests are Modified Rhyme Test (MRT) and Diagnostic Rhyme Test 

(DRT). The quality tests aim to obtain an overall idea on the perceptual 

characteristics of speech such as intelligibility, acceptability, naturalness, etc.  The 

most frequently used quality test is Mean Opinion Score (MOS) where a five-point 

score as given in the Table. 5.1. The MOS test gives an idea of mean impression of 
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listeners. In order to obtain a reliable result, many listeners must be present since 

opinion of single listeners may be much different.  

 

            Table: 5.1 MOS quality score 
 

Quality of Speech Scale 

Bad 1 

Poor 2 

Fair 3 

Good 4 

Excellent 5 

 

The subjective tests provide very reliable results however, they are time and money 

consuming and it is difficult to reproduce in the same conditions. Hence, it is 

desirable to develop objective measures based on characteristics of the speech signal 

for prediction of subjective results. This kind of measures such as Log-Area Ratio 

(LAR) and Perceptual Speech Quality measure (PSQM) are the most correlated ones 

with subjective results [81]. The ITU standard PESQ (ITU-T Recommendation 

P.862, 2001) [82] is an advanced version of the PSQM which predicts subjective 

MOS for a wide range of speech distortions in transmission systems.  

 

5.3 Objective Evaluation Results  

In this section we obtained segmental SNR (SegSNR) improvement and Itakura-

Saito distance (IS) measure for various noise types (white Gaussian noise (WGN), 

F16 cockpit noise, car interior noise and babble noise at various noise levels in the 

range [-5, 10] dB SNR. All noise materials have been taken from Noisex-92 database 

and speech materials from Harward sentences database. The proposed algorithms 

have been tested by four different speech sentences (two spoken by a female and two 

spoken by a male speaker). Objective evaluation results have been obtained by using 

following enhancement algorithms: Magnitude spectral subtraction (MSS), Wiener 

filter (WF), modified-Wiener filter (Mod-WF), modified-short-time spectral 

amplitude (Mod-STSA) estimator, multiplicatively modified-log spectral amplitude 

(MM-LSA) estimator.  The modifications have been performed by taking into 
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account the probability of speech absence, where the probability of speech absence  

),( lkq  is adaptively estimated). Figures 5.1 to 5.4 demonstrate the (SegSNR) 

improvement and (IS) measures for various noise types and enhancement algorithms. 

Noisy input signals have been obtained by adding the noise signals to the original 

speech signals at [-5, 10] dB SNR. The speech signal waveforms and spectrograms 

of the original, noisy and the enhanced speech signals are demonstrated in the 

Figures 5.4-5.8. 

For all the experiments and objective quality tests, 32 ms Hamming window with % 

50 overlap and 256 point DFT is applied to a speech signal with 8 kHz sampling rate. 

The first ten segments were assumed to be noise only frames. The noise PSD is 

estimated through these segments and updated during the consecutive noise frames. 

 

All the computations are performed using a PC Intel Pentium IV, 1.73 GHz 

processor and 1.99 GB RAM.   
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a) b) 

  
c) d) 

 

Figure 5.1 SegSNR improvement vs. input SNR for the noise types:  a) WGN, b) F16 
cockpit noise, c) Car interior noise, d) Speech babble noise and the estimators: MSS 
(dashed, *), WF (dash-dot, ◊), Mod-STSA (bold,  ), MM-LSA (bold, □) and Mod-
WF (bold, o) using an English sentence “A pot of tea helps to pass the evening” 
spoken by a male speaker.     
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a) b) 

  
c) d) 

 

Figure 5.2 IS measure vs. input SNR for the noise types: a) WGN, b) F16 cockpit 
noise, c) Car interior noise, d) Speech babble noise and the estimators: MSS (dashed, 
*), WF (dash-dot, ◊), Mod-STSA (bold,  ), MM-LSA (bold, □) and Mod-WF (bold, 
o) using an English sentence “A pot of tea helps to pass the evening” spoken by a 
male speaker.     
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a) b) 

  
c) d) 

 

Figure 5.3 PESQ-MOS vs. input SNR for the noise types:  a) WGN, b) F16 cockpit 
noise, c) Car interior noise, d) Speech babble noise and the estimators: MSS (dashed, 
*) , WF (dash-dot, ◊), Mod-STSA (bold,  ), MM-LSA (bold, □) and Mod-WF (bold, 
o) using an English sentence “A pot of tea helps to pass the evening” spoken by a 
male speaker.    
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5.4 Experimental Results of Speech Enhancement Algorithms 

 
 
Figure 5.4 Original (clean) speech signal “A pot of tea helps to pass the evening” 
         spoken by a male speaker a) signal waveform   b) signal spectrogram 
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Figure 5.5   Noisy speech signals obtained at 0 dB SNR by adding a) WGN (SegSNR 
= -5.29 dB, IS=1.85, PESQ-MOS= 1.43), b) F16 cockpit noise (SegSNR = -5.16 dB, 
IS=0.25, PESQ-MOS=1.78), c) Car interior noise (SegSNR = -3.82 dB, IS=0.09, 
PESQ-MOS=3.82), d) Speech babble noise (SegSNR = -5.18 dB, IS=0.06, PESQ-
MOS=2.05). The original speech signal is “A pot of tea helps to pass the evening” 
spoken by a male speaker.   
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Figure 5.6   Spectrograms of the noisy speech signals obtained at 0 dB SNR by 
adding:  a) WGN (SegSNR = -5.29 dB, IS=1.85, PESQ-MOS= 1.43), b) F16 cockpit 
noise (SegSNR = -5.16 dB, IS=0.25, PESQ-MOS=1.78), c) Car interior noise 
(SegSNR = -3.82 dB, IS=0.09, PESQ-MOS=3.82), d) Speech babble noise (SegSNR 
= -5.18 dB, IS=0.06, PESQ-MOS=2.05). The original speech signal is “A pot of tea 
helps to pass the evening” spoken by a male speaker.   
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Figure 5.7   Enhanced speech signals using Mod-WF via the proposed adaptive 
lifting scheme:  a) WGN (SegSNR improvement=5.32 dB, IS=0.14, PESQ-MOS= 
1.80), b) F16 cockpit noise (SegSNR improvement=4.78 dB, IS=0.06, PESQ-
MOS=2.00), c) Car interior noise (SegSNR improvement = 11.69 dB, IS=0.003, 
PESQ-MOS=3.34), d) Speech babble noise (SegSNR improvement = 3.82 dB, 
IS=0.03, PESQ-MOS=2.10). The original speech signal is “A pot of tea helps to pass 
the evening” spoken by a male speaker.  
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Figure 5. 8 Enhanced speech signals using Mod-WF via the proposed adaptive lifting 
scheme: a) WGN (SegSNR improvement=5.32 dB, IS=0.14, PESQ-MOS= 1.80), b) 
F16 cockpit noise (SegSNR improvement=4.78 dB, IS=0.06, PESQ-MOS=2.00), c) 
Car interior noise (SegSNR improvement = 11.69 dB, IS=0.003, PESQ-MOS=3.34), 
d) Speech babble noise (SegSNR improvement = 3.82 dB, IS=0.03, PESQ-
MOS=2.10). The original speech signal is “A pot of tea helps to pass the evening” 
spoken by a male speaker. 
 

5.5 Performance Evaluation for Image Enhancement Algorithms 

The performance of proposed speech enhancement algorithms is tested by using 

Peak-Signal-to-Ratio (PSNR) test. The PSNR test is a general and reliable objective 

quality measurement test for the image enhancement applications. The spatial 

domain methods, Median filter and adaptive Wiener filter and wavelet thresholding 
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based methods, Bayes-Shrink, Normal-Shrink, Visu-Shrink and Level-Dependent 

thresholding methods are used based on soft thresholding criteria. The methods are 

all used in the lifting-wavelet domain. The original test image is degraded by adding 

uncorrelated white Gaussian noise at standard deviations (STDs) of (10, 15, 20, 25, 

30). The noisy image is decomposed into subbands using the proposed adaptive    2-

D lifting scheme. The detail noisy subbands (sub-images) LH, HL and HH are 

enhanced or (denoised) using the proposed image enhancement methods. The 

enhanced (processed) image is reconstructed via the inverse 2-D lifting scheme. The 

mathematical derivation of the PSNR test is given in the following section. The 

PSNR results obtained at various standard deviations (10, 15, 20, 25, 30) for the test 

images (Lena, Boat and Barbara, 512x512) are given in Figures 5.9-5.11. 

Furthermore, the experimental results (original, noisy and enhanced images) obtained 

for the test images (Lena, Boat and Barbara, 512x512) at STD of 25 are given in the 

Figures 5.12-5.13. 

 

5.5.1 Peak Signal to Noise Ratio Test 

The performance of the proposed image enhancement algorithm is tested by applying 

the peak signal to noise ratio (PSNR) test to the results of the enhancement 

algorithm.  The PSNR test is a well known and reliable objective evaluation test 

which is used for the image enhancement applications Let and ),( yxw be the restored 

and the original images where the image size is MxN. The mean square (MSE) error 

between two images can be given as: 

 
 


M

x

N

y
yxwyxw

MN
MSE

1 1

2),(),(ˆ1                             (5.7) 

 

Peak Signal-to-Noise Ratio (PSNR) is given in (dB) as: 

 











MSE
SPSNR

2

log10                                          (5.8) 

 
Where ‘S’ is the maximum pixel value which is equal to 255 for 8 bits/pixel image 
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5.6 Performance Evaluation Results for Image Enhancement Algorithms 

 
 

Figure 5.9 Performance curves for image enhancement algorithms for image (Lena, 
512x512) for various standard deviations. Noisy image, (bold), Bayes Shrink 
(dashed, ●) , Normal Shrink(bold, ), Visu Shrink ( bold, ), LDT (bold ,), Median 
Filter ( bold, ),  Ad-WF2 ( bold, *)  

 

 
 

Figure 5.10 Performance curves for image enhancement algorithms for image (Boat, 
512x512) for various standard deviations. Noisy image, (bold), Bayes Shrink 
(dashed, ●) , Normal Shrink(bold, ), Visu Shrink ( bold, ), LDT (bold ,), Median 
Filter ( bold, ),  Ad-WF2 ( bold, *) 
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Figure 5.11 Performance curves for image enhancement algorithms for image 
(Barbara, 512x512) for various standard deviations. Noisy image, (bold), Bayes 
Shrink (dashed, ●) , Normal Shrink(bold, ), Visu Shrink ( bold, ), LDT (bold ,), 
Median Filter ( bold, ),  Ad-WF2 ( bold, *)  
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5.7 Experimental Results  of  Image Enhancement Methods 

LENA (512x512)                      BOAT (512x512)                   BARBARA (512x512)                                        

 
a) 

 
PSNR=20.22      PSNR= 20.28                                  PSNR=20.30 

b) 

 

Figure 5.12. Original and noisy images, from left to right (Lena, Boat and Barbara, 
512x512)   
a) Original images  

b) Noisy images (STD=25) 
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LENA (512x512)                    BOAT (512x512)                    BARBARA (512x512) 

 
PSNR =29.14     PSNR= 27.07                           PSNR=25.52 

a)  

 
PSNR =28.04     PSNR= 25.48                           PSNR=23.50 

b)  

 
PSNR =28.42     PSNR=26.15                            PSNR=24.56 

c)  

 
PSNR =27.06     PSNR= 25.59                           PSNR=24.59 

d)  
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LENA (512x512)                     BOAT (512x512)                    BARBARA (512x512) 

 
PSNR =27.10     PSNR=25.56                            PSNR=23.91 

e)  

 
PSNR = 27.35      PSNR= 25.87                           PSNR=24.10 

f)  

 

Figure 5.13 Enhanced images, from left to right (Lena, Boat and Barbara, 512x512), 
(STD=25) using various enhancements methods: 
 
a) Enhanced images using Ad-WF2             
b) Enhanced images using Median Filter  
c) Enhanced image using Bayes Shrink     
d) Enhanced images using Normal Shrink  
e) Enhanced images using Visu Shrink       
f) Enhanced images using LDT 
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CHAPTER 6 

RESULTS AND CONCLUSIONS 

This chapter includes summary of conclusions on the performance evaluation results 

presented in Chapter 5 and major contributions. The possible directions for the future 

work are also given in the scope of this chapter. 

 

6.1 Conclusions on the Results of the Proposed Speech Enhancement Method 

The proposed speech enhancement method is based on space adaptive (1-D) lifting 

scheme using wavelet packet decomposition. The wavelet packet decomposition is 

advantageous over the wavelet decomposition since it allows better signal handling 

and analyzing the subbands of interest (i.e. allows critical-band decomposition). The 

advantages of the lifting scheme have been given in Chapter 1 and Chapter 3 in 

detail. The adaptive lifting schemes give rise to more efficient signal representations 

since it uses different lifting filters different sample points during the transform. 

However, the classical lifting scheme always uses the same lifting filter throughout 

the transform which does not provide a good signal representation since a high order 

filter does not well adapt to the signal structure on an edge or discontinuity point in 

the signal. Similarly, a low order filter does not well adapt to the signal structure on 

smooth parts. 

It is known that the classical speech enhancement methods aim to improve the SNR 

of speech and they have no effect on the perceptual quality or intelligibility of the 

enhanced speech. In order to improve the quality or intelligibility of enhanced 

speech, we have taken into account the aspects of human auditory system. The 

subbands of the signal have been adjusted according to the Critical Bands of the 

human auditory system. Such a decomposition is called as CB-WPD or “perceptual 

filterbank” since the CB-WPD tree structure represents the human auditory system. 

For subband speech enhancement, we basically focus on the MMSE-based 

estimators. These estimators (STSA, LSA, and STSA-Wiener) are well known 
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popular estimators. The estimator is based on a priori SNR estimation, noise PSD 

estimation and estimation of priori probability of speech absence. The priori SNR is 

a key parameter in these estimators and it is estimated directly from the noisy 

observation signal using “decision directed method”. The noise PSD is estimated 

from the noisy speech based on pause detection using VAD. Another important 

parameter in the estimators is the priori probability of speech absence. The estimators 

are modified taking into account the priori probability of speech absence. The 

MMSE-based estimators provide a trade-off between noise suppression and signal 

distortion when the parameters of the estimators are well tuned.  

Following conclusions are extracted from the evaluation results of the proposed 

speech enhancement algorithms and itemized as follows: 

1- The Mod-WF provides the best SegSNR, IS distance and PESQ-MOS results 

 (especially for WGN). The MM-LSA and the Mod-STSA methods provides 

 the second and third best results.  The MSS provides the worst results.  

2-  For WGN the SegSNR improvement IS and PESQ-MOS results for all the 

  estimators are compatible to each other. 

     (This may be due to the fact that, the estimators employed for subband speech 

  enhancement are based on Gaussian  statistical model) 

3-    The classical WF also provides reasonable results. The only disadvantage is 

  the clipping the sound at the beginning of the speech. 

4-   Space-adaptive lifting scheme provides good signal representation and 

 enhancement results.  

5-   Integrating a perceptual filterbank with the proposed speech enhancement 

  method leads to improved quality and intelligibility. 

6-    Proposed speech enhancement method causes insignificant speech  

  distortion  and a reasonable computational cost (14 s.)   
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6.2 Conclusions on the Results of the Proposed Image Enhancement Method 

The proposed image enhancement method is based on 2-D adaptive lifting scheme. 

The noisy test image (corrupted by WGN) is decomposed into sub-images using the 

proposed adaptive 2-D lifting scheme with 2-levels decomposition. The noisy 

subbands are enhanced or (denoised) using spatial domain modified 2-D Wiener and 

median filters and wavelet based thresholding methods (soft thresholding) Bayes 

Shrink, Normal Shrink, Visu Shrink and  LDT.  

The following conclusions are drawn from the results of the proposed image 

enhancement method. 

1-  The adaptive 2-D Wiener filter (Ad.WF2) provides the best enhancement 

results  among all the spatial domain and thresholding methods. 

2-  Bayes Shrink provides the best image enhancement results among the wavelet 

  thresholding methods. 

3-  The proposed 2-D space-adaptive lifting scheme provides good edge 

 preserving ability than the classical lifting scheme with CDF(1.3) filter. 

4  The experimental and evaluation (PSNR) results show that the proposed 

 image enhancement method provides good visual quality and satisfactory  

 evaluation results. 

 

6.3  Main Contributions 

The following original contributions are made to the subject. 

1- Development of a new adaptive prediction method (in the proposed space 

 adaptive (1-D) lifting scheme).  

2-   Development of a perceptual filterbank using Critical-band decomposition. 

3- Modification of MMSE-STSA and MMSE-LSA and STSA-Wiener Filters

 by taking into account a priori probability of speech absence, where 
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 probability of speech absence is estimated adaptively for each spectral bin in 

 each short time frame as )(lqk . 

      (As we know, the Mod-STSA and Mod-WF with adaptively estimated a 

 priori  probability of speech absence )(lqk , are not used in the literature 

 before). 

4- Development of a 2-D “space-adaptive” lifting scheme algorithm (forward 

 and inverse lifting schemes), by applying proposed 1-D space-adaptive 

 lifting scheme algorithm to the 2-D images. 

 

6.4  Suggestions for Future Work 

1- The proposed space-adaptive (1-D and 2-D) lifting scheme algorithms carry 

 the potential of further improvement by exploiting the other wavelet 

 filters into the lifting  scheme.  

2-  The scale-adaptive lifting scheme may further reduce the computational cost.  

3-  One disadvantage of the proposed space adaptive lifting scheme algorithm is 

 that, it  requires bookkeeping for inverse transform which causes extra 

 computational load. An adaptive lifting scheme needing no bookkeeping  may 

 be more efficient.  

4-  The other statistical models (Gamma, Laplacian) may cause further improved 

 noise suppression (for speech enhancement). 

5-  The proposed space-adaptive 2-D lifting scheme based image enhancement 

 method can be applied to the other fields such as enhancement of medical, 

 satellite and geographical images. 

 



 

 

 

104 

 
 
 
 
 

APPENDICES 

A1.  SHORT-TIME FOURIER TRANSFORM (STFT) 

The Fourier transforms DFT (or FFT) do not clearly show how the frequency content 

of a signal changes over time. That information is hidden in the phase and it is not 

revealed by the plot of the magnitude of the spectrum.  To see how the frequency 

content of a signal changes over time, we can segment the signal and compute the 

spectrum of each segment. The result can be improved if:  

a) Segments are overlapping,  

b) Each segment is multiplied by a window that is tapered at its endpoints.  

Several parameters must be chosen:  

 Window length.  

 The type of window.( Hamming, Hanning, …) 

 Amount of overlap between windows.  

 Amount of zero padding, if any.  

Mathematical definition of Discrete Short Time Fourier Transform (STFT): 

nj
L

n
k

kemLnnxmX ωωω 




 ][][),(
1

0
           (A.1) 

Where,                        

k
Nk
 2

 :   Discrete frequency, N: FFT length, ][nx : Input signal at time n, ][nω :  

Window function of length L,  X(m,ω): DFT( or FFT) window data centered about 

time mL,  L: Window length,  R: Distance between two consecutive windows 

(window hop size),  L-R: Overlap. ( R-L = 0,…0  zero padding). 
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A2.  PERFECT RECONSTRUCTION (PR) CRITERIA 

 

Let us consider the critically sampled two channel (single level) wavelet filterbank 

because it is the simplest and most important case in practice and leads to wavelets. 

Let ][nx  and ][ˆ nx  are the original and reconstructed signals; )(zH and )(zG  are 

low-pass and high-pass analysis filters and )(~ zH  and )(~ zG are low-pass and high-

pass synthesis filters. 

The overall system response of the filterbank in frequency domain can be given as: 

 

  )()(~)()(~)(
2
1)(ˆ  XGGHHX   

  )()(~)()(~)(
2
1   XGGHH  

= ljeX  )(                 (A.2)  
 
 

Where the first term is a linear shift invariant (LSI) system response related to 

distortion and the second term with (   ) reflects the system aliasing. For the 

perfect reconstruction (PR) filterbank the filters have to satisfy the following two PR 

conditions. 

1- Distortion-free (DF) condition: 

 

  ljeGGHH   2)(~)()(~)(   

  lzzGzGzHzH  2)(~)()(~)(                                                           (A.3) 

 

2- Aliasing-free (AF) condition: 

 

  0)(~)()(~)(   GGHH   

  0)(~)()(~)(  zGzGzHzH                                                            (A.4) 
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