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ABSTRACT 
 

EMPLOYING META-HEURISTICS AND FUZZY RANKING FUNCTIONS 
FOR DIRECT SOLUTION OF FUZZY MATHEMATICAL PROGRAMS 

 

 

GÖÇKEN, Tolunay 

Ph.D. in Industrial Engineering 

Supervisor: Prof.Dr. Adil BAYKASOĞLU 

February 2009, 148 pages 

 

 

Primary objective of this study is to present how fuzzy mathematical programming 

models can be solved by employing metaheuristic algorithms and ranking methods 

for fuzzy numbers without requiring a transformation into a crisp model. Up to date 

various solution approaches are proposed to solve different fuzzy mathematical 

programming models. The main difficulty in fuzzy mathematical programming is to 

solve fuzzy models using the existing solution algorithms. In the existing 

approaches to overcome this problem the crisp equivalent of the fuzzy models are 

obtained. In this study, a direct solution method is proposed to solve fuzzy 

mathematical programming problems with different fuzzy parameters and fuzzy 

mathematical programming problems with fuzzy decision variables. In the proposed 

direct solution method, ranking methods for fuzzy numbers and metaheuristic 

algorithms are used. The effectiveness of the proposed direct solution method is 

proved with different examples.  

 

Keywords: fuzzy mathematical programming, fuzzy decision variables, ranking 

methods for fuzzy numbers, classification of fuzzy mathematical programming 

models 
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ÖZET 
 

BULANIK MATEMATĐKSEL PROGRAMLARIN DOĞRUDAN 
ÇÖZÜMÜNDE META-SEZGĐSELLERĐN VE BULANIK SIRALAMA 

FONKSĐYONLARININ UYGULANMASI 
 

 

GÖÇKEN, Tolunay 

Doktora Tezi, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof.Dr. Adil BAYKASOĞLU 

Şubat 2009, 148 sayfa 

 

Bu çalışmada, bulanık matematiksel programlama modellerinin bulanık olmayan 

(kesin) modele dönüştürülmesine ihtiyaç duyulmadan bulanık sayı karşılaştırma 

yöntemleri ve meta-sezgisel algoritmalar kullanılarak çözülmesi amaçlanmıştır. 

Bugüne kadar, bulanık matematiksel programlama modellerini çözmek için çeşitli 

çözüm yaklaşımları önerilmiştir. Bulanık matematiksel programlamadaki esas zorluk 

bulanık modelin mevcut çözüm algoritmaları ile çözülememesidir. Önerilen 

yaklaşımlarda bu problemi aşmak için bulanık model kesin modele dönüştürülmeye 

çalışılmaktadır. Bu çalışmada, değişik parametrelerin bulanık sayı olarak 

tanımlandığı bulanık matematiksel programlama problemleri ve karar 

değişkenlerinin bulanık sayı olarak tanımlandığı bulanık matematiksel programlama 

problemlerini doğrudan çözmek için bir çözüm yöntemi önerilmiştir. Önerilen 

doğrudan çözüm yönteminde, bulanık sayı karşılaştırma metotları ve meta-sezgisel 

algoritmalar kullanılmıştır. Önerilen çözüm yönteminin geçerliliği değişik örneklerle 

gösterilmiştir.  

   

Anahtar Kelimeler: bulanık matematiksel programlama, bulanık karar değişkenleri, 

bulanık sayı karşılaştırma yöntemleri, bulanık matematiksel programlama 

modellerinin sınıflandırılması  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Introduction 

 

This chapter briefly introduces the context of the research and describes the fuzzy set 

theory, fuzzy numbers and fuzzy arithmetic, and fuzzy mathematical programming. 

Definition of fuzzy set and basic concepts of fuzzy set are explained in section 1.2. 

Fuzzy numbers and fuzzy arithmetic are described in section 1.3. Fuzzy 

mathematical programming is explained in section 1.4. Finally, the objective of the 

thesis and the methodology used in the solution procedure are explained and the 

organization of the thesis is presented.  

 

1.2. Fuzzy Set Theory 

 

Fuzzy set theory provides a means for representing uncertainties. Fuzzy set theory is 

a marvelous tool for modeling the kind of uncertainty associated with vagueness, 

with imprecision, and/or with a lack of information regarding a particular element of 

the problem at hand (Ross, 2004). 

 

In mathematics, grouping concepts are stated by sets. In classical set theory, a set 

encloses a member or does not enclose. But, for some events grouping is not so 

precise and clear. For example, ‘tall people’, ‘fat people’ or ‘cold day’ groupings and 

categories do not have sharp boundaries. In these sets, membership is defined by 

degrees or grades. These sets are known as fuzzy sets and the underlying theory is 

called fuzzy set theory. Fuzzy sets are used when sharp boundaries cannot be defined.  

 

 



 2 

1.2.1. Definition of the fuzzy set 

 

In crisp sets the transition for an element in the universe between membership and 

nonmembership in a given set is well-defined. For an element in a universe that 

contains fuzzy sets, this transition can be gradual. This transition among various 

degrees of membership can be thought of as conforming to the fact that the 

boundaries of the fuzzy set are vague and ambiguous (Ross, 2004, pp.34). 

 

A fuzzy set is a class of objects with a continuum of grades of membership (Zadeh, 

1965). 

 

If X is the universe whose generic element is denoted by x, a fuzzy set A in X is a 

function A : X → [0, 1] (Bector and Chandra, 2005, pp.21).    

 

For the function A, generally, µA is used and the fuzzy set A is characterized by its 

membership function µA : X → [0, 1]. The value µA(x) at x represents the grade of 

membership of x in A, the degree to which x belongs to fuzzy set A (Bector and 

Chandra, 2005, pp.21; Zadeh, 1965).  

 

An important difference between a fuzzy set and a crisp set is; a crisp set has a 

unique membership function but a fuzzy set can have an infinite number of 

membership functions to represent it. Another important difference is; elements in a 

fuzzy set, because their membership need not be complete (can be gradual), can also 

be members of other fuzzy sets on the same universe (Ross, 2004).  

 

The membership functions can be represented with very different shapes of graphs. It 

cannot be said a particular shape is much suitable. It turns out, however, that many 

applications are not very sensitive to variations in shape. So, generally, a simple 

shape, such as the triangular or trapezoidal shape is used to define membership 

functions (Klir and Yuan, 1995).  
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1.2.2. Basic concepts of fuzzy sets 

 

1.2.2.1. The α-cut and the strong α-cut 

 

Given a fuzzy set A
~
 defined on X and any number α ∈ [0,1], the α-cut, αA  and its 

variant the strong α-cut, +αA , are the crisp sets  

 

})({ ~ αµα ≥= xxA
A

         (1.1) 

 

})({ ~ αµα >=+ xxA
A

.         (1.2) 

 

The α-cut (or the strong α-cut) of a fuzzy set A
~
 is the crisp set αA  (or the crisp set 

+αA ) that contains all the elements of the universal set X whose membership grades 

in A
~
 are greater than or equal to (or only greater than) the specified value of α (Klir 

and Yuan, 1995). Any particular fuzzy set A
~
 can be transformed into an infinite 

number of α-cut sets, because there are an infinite number of values α on the interval 

[0,1] (Ross, 2005).   

 

1.2.2.2. The support of a fuzzy set 

 

The support of a fuzzy set A
~
 within a universal set X is the crisp set that contains all 

the elements of X that have nonzero membership grades in A
~
.  

 

}0)({)( ~ >= xxAS
A

µ          (1.3) 

 

The support of A
~
 is exactly the same as the strong α-cut of A

~
 for α=0 (Klir and 

Yuan, 1995; Bector and Chandra, 2005).  

 

1.2.2.3. The height of a fuzzy set 

 

The height, h( A
~
), of a fuzzy set A

~
 is the maximum membership value obtained by 

any element in that set.  
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)(sup)
~
( ~ xuAh

A
Xx∈

=          (1.4) 

 

If h( A
~
) = 1, then the fuzzy set A

~
 is called a normal fuzzy set, if h( A

~
) < 1 then it is 

called a subnormal fuzzy set (Klir and Yuan, 1995; Bector and Chandra, 2005).  

 

1.2.2.4. Empty fuzzy set 

  

A fuzzy set A
~
 is empty if and only if its membership function is identically zero, 

0)(~ =x
A

µ  for all x ∈ X (Zadeh, 1965, Bector and Chandra, 2005).  

 

1.2.2.5. Subset of a fuzzy set 

 

A fuzzy set A
~
 is a subset of a fuzzy set B

~
 or A

~
 is contained in B

~
 if )()( ~~ xx

BA
µµ ≤  

for all x ∈ X (Bector and Chandra, 2005). 

 

1.2.2.6. Equality of fuzzy sets  

  

Two fuzzy sets A
~
 and B

~
 are equal if and only if )()( ~~ xx

BA
µµ =  for all x ∈ X 

(Zadeh, 1965).  

 

1.2.2.7. Standard complement 

  

The standard complement of a fuzzy set A
~
 is another fuzzy set, A′

~
, whose 

membership function is defined as )(1)( ~~ xx
AA

µµ −=′  for all x ∈ X (Bector and 

Chandra, 2005).  

  

1.2.2.8. Union of fuzzy sets  

  

The union of two fuzzy sets A
~
 and B

~
 is a fuzzy set C

~
, written as BAC

~~~
∪= , 

whose membership function is defined as, 

 
))(),(max()( ~~~ xxx

BAC
µµµ =   for all x ∈ X,     (1.5) 
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or 
 

)()()( ~~~ xxx
BAC

µµµ ∨=   for all x ∈ X.     (1.6) 

 

The union of A
~
 and B

~
 is the smallest fuzzy set containing both A

~
 and B

~
 (Zadeh, 

1965). 

 

1.2.2.9. Intersection of fuzzy sets 

  

The intersection of two fuzzy sets A
~
 and B

~
 is a fuzzy set C

~
, written as BAC

~~~
∩= , 

whose membership function is defined as, 

 
))(),(min()( ~~~ xxx

BAC
µµµ =   for all x ∈ X,     (1.7) 

 
or 
 

)()()( ~~~ xxx
BAC

µµµ ∧=   for all x ∈ X.     (1.8) 

 

The intersection of A
~
 and B

~
 is the largest fuzzy set which is contained in both A

~
 

and B
~
 (Zadeh, 1965).  

 

1.2.2.10. Convexity of fuzzy sets 

  

A fuzzy set A
~
 in R is a convex fuzzy set if its α-cuts αA  are convex sets for all α ∈ 

(0,1]. A fuzzy set A
~
 in R is a convex fuzzy set if and only if for all x1, x2 ∈ R and 

10 ≤≤ λ , 

 
))(),(min())1(( 2~1~21~ xxxx

AAA
µµλλµ ≥−+ .      (1.9) 

 
The convexity of a fuzzy set does not mean that its membership function is a convex 

function. In fact, membership functions of convex fuzzy sets are functions that are 

quasi-concave and not convex (Bector and Chandra, 2005).    
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1.2.2.11. Bounded fuzzy set 

  

A fuzzy set A
~
 in R is a bounded fuzzy set if its α-cuts αA  are bounded sets for all α 

∈ (0,1] (Bector and Chandra, 2005). 

 

1.2.2.12. The properties of fuzzy sets 

  

Fuzzy sets follow the same properties as crisp sets. The following properties of crisp 

sets hold for fuzzy sets (Ross, 2004, Bector and Chandra, 2005).  

ABBA
~~~~

∪=∪  

ABBA
~~~~

∩=∩  (commutativity) 

CBACBA
~

)
~~

()
~~

(
~

∪∪=∪∪  

CBACBA
~

)
~~

()
~~

(
~

∩∩=∩∩   (associativity) 

)
~~

()
~~

()
~~

(
~

CABACBA ∪∩∪=∩∪  

)
~~

()
~~

()
~~

(
~

CABACBA ∩∪∩=∪∩  (distributivity) 

AXAandAA
~~~~

=∩=∅∪  

AXAandAA
~~~~

=∪=∅∩  (identity) 

If BA
~~

⊆  and CB
~~

⊆ , then CA
~~

⊆ . (transitivity) 

AA
~

)
~
( =′′  (involution) 

BABA ′∩′=′∪
~~

)
~~

(  

BABA ′∪′=′∩
~~

)
~~

(  (De Morgan’s law) 

The following two properties of crisp sets do not hold for fuzzy sets. 

∅=′∩ AA
~~

 (law of contradiction) 

XAA =′∪
~~

 (law of excluded middle) 

These two properties do not hold for fuzzy sets because of the characteristics of 

fuzzy sets, fuzzy sets can overlap and a set and its complement can also overlap.  
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1.3. Fuzzy Numbers and Fuzzy Arithmetic 

 
1.3.1. Fuzzy Numbers 

  

There are various types of fuzzy sets and one special type of them is fuzzy sets that 

are defined on the set R of real numbers. Membership functions of these sets have 

the form ]1,0[:
~

→RA  and can be viewed as fuzzy numbers or fuzzy intervals (Klir 

and Yuan, 1995). 

  

The term fuzzy number is used to handle imprecise numerical quantities, such as 

“numbers that are close to a given real number”, “about a given real number”, 

“several”, etc. (Chen and Hwang, 1992).               

 

A fuzzy set A
~
 in R is called a fuzzy number if it satisfies the following conditions  

(i) A
~
 is normal, 

(ii) Aα is a closed interval for every α ∈ (0, 1],  

(iii) The support of A
~
 is bounded (Bector and Chandra, 2005). 

 

The fuzzy set A
~
 must be normal, because the fuzzy set A

~
 is defined as “real 

numbers close to r” so the membership grade of r in this set must be equal to 1. The 

support of a fuzzy number must be bounded and all α-cuts of  A
~
 (for α ≠ 0) must be 

closed intervals to define meaningful arithmetic operations on fuzzy numbers in 

terms of standard arithmetic operations on closed interval. In addition to these, 

because of all α-cuts of a fuzzy number must be closed intervals for all α ∈ (0, 1], 

every fuzzy number is a convex fuzzy set (Klir and Yuan, 1995). 

 

The membership function of a fuzzy number A
~
 denotes the grade of truth that A

~
 

takes a specific number r (Chen and Hwang, 1992). The membership functions of 

fuzzy numbers may be, in general, piecewise defined functions and the following 

theorem shows this characterization (Klir and Yuan, 1995). 

 

Let A
~
 be a fuzzy set in R, then A

~
 is a fuzzy number if and only if there exists a 

closed interval [a, b] ≠ φ such that  
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







∞∈

−∞∈

∈

=

),,(),(

),,(),(

],,[,1

)(~

bxxr

axxl

bax

x
A

µ                                  (1.10) 

 
where (i) l is a function (-∞,a) to [0,1] that is increasing, continuous from the right 

and l(x) = 0 for x ∈(-∞, w1), w1 < a and (ii) r is a function from (b,∞) to [0,1] is 

decreasing continuous from the left and r(x) = 0 for x ∈ (w2,∞), w2 > b (Bector and 

Chandra, 2005).  

 

A fuzzy number can be represented in discrete or continuous form (Chen and Hwang, 

1992).  

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1010 20 30 40 50 60 70 80 90 100 x

µ(x)

x

µ(x)

30 40 50 60 70 80 90

0.30.3 0.5 0.8 1.0 0.8 0.5 0.3  

Figure 1.1. A discrete fuzzy number (Chen and Hwang, 1992) 
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0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

µ(x)

x

10 20 30 40 50 60 70 80

about 60

 

Figure 1.2. A continuous fuzzy number (Chen and Hwang, 1992) 

 

1.3.2. Fuzzy arithmetic  

  

Arithmetic of fuzzy numbers can be taken as a generalization of the interval 

arithmetic. The difference is, in interval arithmetic there is one (constant) level only, 

in fuzzy arithmetic there are several levels in [0,1]. All α-cuts of a fuzzy number are 

considered as an interval (Bector and Chandra, 2005). But, the approach based on the 

interval arithmetic is not the only approach for arithmetic of fuzzy numbers. There 

two different but equivalent approaches; the first approach is to use interval 

arithmetic on the α-cuts of fuzzy numbers. The second approach is based on the 

extension principle of Zadeh, by which operations on real numbers are extended to 

operations on fuzzy numbers (Klir and Yuan, 1995, Bector and Chandra, 2005).     

 

1.3.2.1. Fuzzy arithmetic based on α-cuts  

   

Let A
~
 and B

~
 are fuzzy numbers, Aα and Bα are α-cuts of these fuzzy numbers and * 

denotes any of the four basic arithmetic operations. Then a fuzzy set BA
~~

∗  on R can 

be defined as 

 

U
α

αα )(
~~

BABA ∗=∗                             (1.11) 

 
and 
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ααα BABA ∗=∗ )( ,   α ∈ (0,1].                           (1.12) 

 

A
~
 and B

~
 are fuzzy numbers, Aα, Bα and (A*B)α are closed intervals for each α ∈ 

(0,1], so, BA
~~

∗  will be a fuzzy number, not just a general fuzzy set (Klir and Yuan, 

1995, Bector and Chandra, 2005). 

 

If A
~
 and B

~
 are fuzzy numbers, the α level sets Aα and Bα can be written as 

],[ RL aaA ααα =  and ],[ RL bbB ααα = . For a given α ∈ (0,1], the basic arithmetic 

operations can be computed by applying the interval arithmetic on the closed 

intervals Aα and Bα as follows (Bector and Chandra, 2005). 

  
],[)( RRLL babaBA αααααα ++=+                           (1.13) 

 
],[)( LRRL babaBA αααααα −−=−                           (1.14) 

 
],[)( RRLL babaBA αααααα =⋅                             (1.15) 

 

],[0],,[)( RL

L

R

R

L

bb
b

a

b

a
BA αα

α

α

α

α
αα ∉=÷                            (1.16) 

 

The multiplication of a fuzzy number by a real number k > 0 can be defined as 

follows.  

 
],[)( RL kakaAkAk αααα =⋅=⋅                            (1.17) 

 

1.3.2.2. Fuzzy arithmetic based on extension principle 

  

Let A
~
 and B

~
 are fuzzy numbers and * denotes any of the four basic arithmetic 

operations. Then using Zadeh’s extension principle a fuzzy number BA
~~

∗  is defined 

as (Bector and Chandra, 2005) 

 
))(),(min(sup)( ~~~~ yxz

BA
yxz

BA
µµµ

∗=
∗

=     for all z ∈ R.                         (1.18) 
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The basic arithmetic operations can be computed by applying the extension principle 

as follows.  

 
))(),(min(sup)( ~~~

)(
~ yxz

BA
yxz

BA
µµµ

+=
+

=                           (1.19) 

 
))(),(min(sup)( ~~~

)(
~ yxz

BA
yxz

BA
µµµ

−=
−

=                            (1.20) 

 
))(),(min(sup)( ~~~~ yxz

BA
yxz

BA
µµµ

⋅=
⋅

=                            (1.21) 

 
))(),(min(sup)( ~~

/

~
)(

~ yxz
BA

yxz
BA

µµµ
=

÷
=                            (1.22) 

 
 
1.3.2.3. Special types of fuzzy numbers  

  

The set of fuzzy number is rather large and their arithmetic is in general 

computationally expensive, so, special types of fuzzy numbers are generally used in 

the literature and real life.  

 

1.3.2.3.1. L-R fuzzy number   

  

A fuzzy number A
~
 is called an L-R fuzzy number if its membership function 

]1,0[:~ →R
A

µ  has the following form  

 
















>+≤<






 −

≤≤

><≤−






 −

=

otherwise

bxb
bx

R

bxa

axa
ax

L

x
A

,0

,0),(,

,,1

,0,)(,

)(~

ββ
β

αα
α

µ                         (1.23) 

 

where L and R are piecewise continuous functions, L is increasing, R is decreasing 

and L(x) = L(-x), R(x) = R(-x), L(0)= R(0)=1. The L-R fuzzy number A
~
 can be 

written as LRbaA ),,,(
~

βα= . L and R are called as the left and right reference 

functions, a and b are starting and end points of the flat interval, α is the left spread 

and β is the right spread (Bector and Chandra, 2005). 
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1

a ba-α b+β

L((x-a)/ α) R((x-b)/β)

x

µ(x)

 

Figure 1.3. L-R fuzzy number (Bector and Chandra, 2005) 

 

If LRbaA ),,,(
~

11 βα=  and LRbaB ),,,(
~

22 δγ=  are two L-R fuzzy numbers the 

arithmetic operations of these two fuzzy numbers can be written as follows.  

 

LRbbaaBA ),,,(
~
)(

~
2121 δβγα ++++=+                          (1.24) 

RLabbaA ),,,(),,,(
~

1111 αββα −−=−=−                          (1.25) 
 

For defining BA
~

)(
~

−  the original fuzzy number B
~
 should be a R-L fuzzy number so 

that B
~

−  becomes a L-R fuzzy number and BA
~

)(
~

−  can be computed.  

 

LR

RLLR

abba

babaBA

),,,(

)),,,()((),,,(
~
)(

~

2121

2211

γβδα

δγβα

++−−=

−+=−
                        (1.26) 

 

BA
~
)(

~
⋅  and BA

~
)(

~
÷  are not L-R fuzzy numbers in general and will need certain L-R 

approximations if they are to be used as approximate L-R fuzzy numbers (Bector and 

Chandra, 2005). Using in this way will add more uncertainty. But, the question of 

tradeoff between accuracy and simplicity is no easy question to answer. The user 

must choose using the extension principle or using the special fuzzy numbers and 

approximation formulas. BA
~
)(

~
⋅  and BA

~
)(

~
÷  can be written as follows (Chen and 

Hwang, 1992).  

  

0
~

,0
~

),,,(
~

)(
~

21212121 >>++−+=⋅ BAifbbaabbaaBA βδβδαγαγ                  (1.27) 
 

0
~

,0
~

),,,(
~

)(
~

21122121 ><−+−+−=⋅ BAifabababbaBA βγβγαδδα                  (1.28) 
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0
~

,0
~

),,,(
~

)(
~

21212121 <<+−−−−−=⋅ BAifaabbaabbBA αγαγβδβδ                 (1.29) 
 

0
~

,0
~

)
)(

,
)(

,,(
~
)(

~

22

21

22

21

2

1

2

1 >>
−

+

+

+
=÷ BAif

aa

ab

bb

ba

a

b

b

a
BA

γ
βγ

δ
αδ

                         (1.30) 

 

0
~

,0
~

)
)(

,
)(

,,(
~
)(

~

22

12

22

12

2

1

2

1 ><
+

−

−

−
=÷ BAif

bb

bb

aa

aa

b

b

a

a
BA

δ
δβ

γ
γα

                         (1.31) 

 

0
~
,0

~
)

)(
,

)(
,,(

~
)(

~

22

21

22

21

2

1

2

1 <<
+

−−

−

−−
=÷ BAif

bb

ba

aa

ab

b

a

a

b
BA

δ
αδ

γ
βγ

                        (1.32) 

 
 
1.3.2.3.2. Triangular fuzzy number 

  

A fuzzy number A
~
 is called a triangular fuzzy number if its membership function 

A
~µ  is defined as follows. 

 
















≤≤
−

−

≤≤
−

−

><

=

u

u

u

ul

l

l

ul

A

axa
aa

xa

axa
aa

ax

axax

x

,

,

,,0

)(~µ                           (1.33) 

 
Triangular fuzzy number is a more restricted form than L-R fuzzy number, because 

left and right reference functions must be linear. A
~
 is denoted by the triplet 

),,(
~

ul aaaA =  with al and au are the lower and upper bounds of A
~
. The triangular 

fuzzy number A
~
 has the shape of a triangle.  

 

The α-cut of the triangular fuzzy number ),,(
~

ul aaaA =  is the closed interval  

 
])(,)[(],[ uull

RL aaaaaaaaA +−−+−== ααααα ,   α ∈ [0,1].                      (1.34) 

 

If ),,(
~

ul aaaA =  and ),,(
~

ul bbbB =  are two triangular fuzzy numbers, BA
~~

∗  where 

* denotes  any  of  the  four  basic  arithmetic  operations  can  be computed using the 
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1

α

al a au

x

µA(x)

Aα  

Figure1.4. Triangular fuzzy number 
 

α-cuts, Aα and Bα for α ∈ [0, 1]. Arithmetic operations of fuzzy numbers 

),,(
~

ul aaaA =  and ),,(
~

ul bbbB =  can be written as follows (Bector and Chandra, 

2005).  

 

),,(
~
)(

~
uull bababaBA +++=+                             (1.35) 

 

),,(
~
)(

~
luul bababaBA −−−=−                            (1.36) 

 

0),,,(
~

>= kkakakaAk ul                             (1.37) 

 

BA
~
)(

~
⋅  and BA

~
)(

~
÷  will not be triangular fuzzy numbers but triangular shaped fuzzy 

numbers (Buckley et al., 2002). BA
~
)(

~
⋅  and BA

~
)(

~
÷  can be written as follows (Chen 

and Hwang, 1992). 

 

0
~

,0
~

),,(
~
)(

~
>>=⋅ BAifbaabbaBA uull                          (1.38) 

 

0
~

,0
~

),,(
~
)(

~
><=⋅ BAifbaabbaBA luul                          (1.39) 

 

0
~

,0
~

),,(
~
)(

~
<<=⋅ BAifbaabbaBA lluu                          (1.40) 

 

0
~
,0

~
),,(

~
)(

~
>>=÷ BAif

b

a

b

a

b

a
BA

l

u

u

l                          (1.41) 

 



 15 

0
~

,0
~

),,(
~
)(

~
><=÷ BAif

b

a

b

a

b

a
BA

l

l

u

u                          (1.42) 

 

0
~

,0
~

),,(
~
)(

~
<<=÷ BAif

b

a

b

a

b

a
BA

u

l

l

u                          (1.43) 

 
 
1.3.2.3.3. Trapezoidal fuzzy number 

  

A fuzzy number A
~
 is called a trapezoidal fuzzy number if its membership function 

A
~µ  is defined as follows (Bector and Chandra, 2005). 

 















≤<
−

−

≤≤

≤≤
−

−

><

=

u

u

u

l

l

l

ul

A

axa
aa

xa

axa

axa
aa

ax

axax

x

,

,1

,

,,0

)(~µ                           (1.44) 

  

In triangular fuzzy number there is one peak, in trapezoidal fuzzy number there are 

multiple peaks. The trapezoidal fuzzy number A
~
 is denoted by the quadruplet 

),,,(
~

ul aaaaA =  with al and au are the lower and upper bounds, and the ],[ aa  

interval is the most likely values for A
~
. The trapezoidal fuzzy number A

~
 has the 

shape of a trapezoid.  

 

1

α

al au

x

µA(x)

Aα

a a

 

Figure 1.5. Trapezoidal fuzzy number 
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The α-cut of the trapezoidal fuzzy number ),,,(
~

ul aaaaA =  is the closed interval  

 
])(,)[(],[ uull

RL aaaaaaaaA +−−+−== ααααα ,   α ∈ [0,1].                      (1.45) 

 

If ),,,(
~

ul aaaaA =  and ),,,(
~

ul bbbbB =  are two trapezoidal fuzzy numbers, BA
~~

∗  

where * denotes any of the four basic arithmetic operations can be computed using 

the α-cuts, Aα and Bα for α ∈ [0, 1]. Arithmetic operations of fuzzy numbers 

),,,(
~

ul aaaaA =  and ),,,(
~

ul bbbbB =  can be written as follows (Bector and 

Chandra, 2005).   

 

),,,(
~
)(

~
uull babababaBA ++++=+                            (1.46) 

 

),,,(
~
)(

~
luul babababaBA −−−−=−                          (1.47) 

 

0),,,,(
~

>= kkaakakkaAk ul                             (1.48) 

 

BA
~
)(

~
⋅  and BA

~
)(

~
÷  will not be trapezoidal fuzzy numbers but trapezoidal shaped 

fuzzy numbers (Buckley et al., 2002). BA
~
)(

~
⋅  and BA

~
)(

~
÷  can be written as follows 

(Chen and Hwang, 1992). 

 

0
~

,0
~

),,,(
~
)(

~
>>=⋅ BAifbabaabbaBA uull                         (1.49) 

0
~
,0

~
),,,(

~
)(

~
><=⋅ BAifbabababaBA luul                         (1.50) 

 

0
~

,0
~

),,,(
~
)(

~
<<=⋅ BAifbaabbabaBA lluu                          (1.51) 

 

0
~

,0
~

),,,(
~
)(

~
>>=÷ BAif

b

a

b

a

b

a

b

a
BA

l

u

u

l                           (1.52) 

 

0
~

,0
~

),,,(
~
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~
><=÷ BAif

b

a

b

a

b

a

b

a
BA

l

l

u

u                           (1.53) 

 

0
~
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~
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~
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~
<<=÷ BAif

b

a

b

a

b

a

b

a
BA

u

l

l

u                           (1.54) 
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1.4. Fuzzy Mathematical Programming 

 

Fuzzy mathematical programming is suggested to solve problems which could be 

formulated as mathematical programming models, the parameters of which are fuzzy 

rather than crisp numbers (Zimmermann, 1983).  

 

Most of the real life problems and models contain linguistic and/or imprecise 

variables and constraints. This can be due to different causes; usually, decision 

makers can state parameters on a system in terms of linguistic variables more easily 

and properly. Generally, collecting precise data is very hard, because the 

environment of the system is unstable or collecting precise data requires high 

information costs. In addition, decision maker might not be able to express his/her 

goals or constraints precisely but rather in a fuzzy sense.  

 

The mentioned impreciseness in a system does not exist because of randomness but 

rather because of fuzziness. In the past, to deal with imprecision the concepts and 

techniques of probability theory are used, so, it is accepted as if the imprecision is 

equal to randomness. Fuzziness is the major source of imprecision in many decision 

processes. The type of imprecision, fuzziness is associated with fuzzy set in which 

there is no sharp boundaries from membership to nonmembership. In fuzziness, there 

are grades of membership intermediate between full membership and 

nonmembership. But, in randomness, there is uncertainty concerning membership or 

nonmembership of an element in a nonfuzzy set. The evidence associated with 

whether or not a particular element belongs to the nonfuzzy set is incomplete or hard 

to obtain (Bellman and Zadeh, 1970, Lodwick and Jamison, 2007).       

 

Fuzzy set theory gives an opportunity to handle linguistic terms and vagueness in 

real life systems. For modeling systems which are imprecise by nature or which can 

not be defined precisely, fuzzy mathematical programming that is based on fuzzy set 

theory is generally used.  

 

In a mathematical programming problem, the fuzziness may appear in many different 

ways; the aspiration values of the objective(s), the limit values of resources (the right 
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hand value of the constraints), the coefficients of the objective(s) and the coefficients 

of the constraints can be stated as fuzzy numbers.  

 

In the literature, first, only the objectives (goal(s)) and the right hand value of 

constraint are defined as fuzzy. Bellman and Zadeh considered that in a fuzzy 

environment there is no distinction between objectives and constraints, as well as no 

difference between single and multiple objectives (symmetric approach). Following 

this symmetric fuzzy decision concept Zimmermann developed the first approach for 

solving fuzzy linear programming problems.  

 

Like conventional decision making, in fuzzy systems, the optimal decision is the 

selection of the activities which simultaneously satisfy objective function(s) and 

constraints. The fuzzy objective functions and the constraints are defined by their 

membership functions. The space of the solutions will be a fuzzy set and defined by 

its membership function. The logical ‘and’ corresponds to the ‘set-theoretic 

intersection’ in fuzzy environments. The fuzzy decision is the intersection of fuzzy 

constraints and fuzzy objective function(s). The relationship between constraints and 

objective function(s) in a fuzzy environment is fully symmetric; there is no 

difference between the constraints and objective(s) (Zimmermann, 1976, 1983).  

 

The membership function of the fuzzy decision set )(xDµ  is defined as follows; 

 
)}(),(min{)()()( 00 xxxxx CCD µµµµµ =Λ=                            (1.55) 

  
where µO(x) are the membership functions of the fuzzy goals and µC(x) are the 

membership functions of the fuzzy constraints.  

 

For finding the optimal fuzzy decision, the decision that is preferable to the others 

should be found. The decision xopt is defined as follows by Zimmermann (1976); 

 
)(max)( xx D

x
optD µµ = .                            (1.56)

  
The fuzzy decision process is graphically shown in Figure 1.6 (Zimmermann, 1976). 
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Figure 1.6. Fuzzy decision 
   

The fuzzy decision that is defined by Zimmermann (1976) is the origin of the fuzzy 

optimization, which is constituted on the symmetrical approach. But, if the other 

parameters of the model (objective coefficients, coefficients of constraints) are also 

fuzzy, the symmetrical approach can not be used easily. Therefore, for fuzzy 

mathematical programming models with various fuzzy parameters, different 

optimization algorithms are proposed. Ranking of fuzzy numbers can be used when 

the coefficients of constraints or objective coefficients are defined as fuzzy numbers.  

 

A fuzzy mathematical programming problem in which all of the parameters are fuzzy 

(objective function coefficients, coefficients of constraints and requirements or 

resources) can be stated as follows;   

 
max /min ( , )

. . ( , ) { , , } 1,..., , 1,...,

j j

j ij i

f x c

s t g x a b i m j n≤ ≥ = = =

%

%%
                       (1.57)           

                  
where xj are the decision variables, jc

~  are the fuzzy objective function coefficients, 

ija~  are the fuzzy coefficients of the constraints and ib
~  are right hand values of the 

constraints (limit values of resources, requirements etc.). The functions )~,( jj cxf  and 

)~,( ijj axg  can be linear or nonlinear functions. 

 

For solving fuzzy mathematical programming models various approaches have been 

proposed. The types of fuzzy mathematical programming models and the solution 

approaches will be discussed in the chapter 3. The time needed for solving the fuzzy 
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model depends on the assumptions made. When the membership functions are 

assumed to be linear the least effort is needed, so, generally, the fuzzy parameters in 

the mathematical programming models are defined as triangular or trapezoidal fuzzy 

numbers.  

 

1.5. Objectives of the Research 

  

The fuzzy mathematical programming models can reflect the real life systems more 

realistically. Therefore, there are many studies on fuzzy mathematical programming 

and various solution approaches are proposed for different fuzzy models, in the 

literature. In this research, fuzzy mathematical programming models are reviewed 

and classified according to the fuzzy components. The proposed solution approaches 

for fuzzy mathematical programming models are investigated. It has been reported 

that nearly in all proposed solution approaches, the fuzzy model is firstly transformed 

into its crisp equivalent and then solved with an appropriate method. One of the 

objectives of this study is to solve fuzzy mathematical programming problems 

directly.  

 

The existing methods for the solution of fuzzy mathematical programming problems 

can be divided into two groups, depending on the fuzziness of decision variables. In 

the first group, it is assumed that the parameters of the problem are fuzzy numbers 

while the decision variables are crisp ones. In the second group, the decision 

variables are assumed as fuzzy numbers. Finding fuzzy solutions instead of crisp 

solutions in an uncertain environment that provide ranges of flexibility look more 

appropriate. In the literature, there are few examples on fuzzy mathematical 

programming problems with fuzzy decision variables. The other objective of this 

study is to solve fully fuzzy mathematical programming problems (in which all 

parameters and decision variables are defined as fuzzy numbers) directly.  

 

This study mainly concentrates on the following themes; 

� review and classification of fuzzy mathematical programming models, 

� solution of fuzzy mathematical programming problems directly using the 

ranking methods for fuzzy numbers and metaheuristic algorithms, 
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� solution of fully fuzzy mathematical programming problems directly using 

the ranking methods for fuzzy numbers and metaheuristic algorithms, 

� for presenting the solution process and the effectiveness of the proposed 

direct solution method solving different fuzzy mathematical programming 

problems as examples.  

 

1.6. Methodology and Materials  

  

In this study, firstly the literature on fuzzy mathematical programming is reviewed 

and a new classification is presented according to the fuzzy components. This review 

has revealed that in all proposed solution approaches the fuzzy mathematical 

programming model is transformed to its crisp equivalent and solved by conventional 

methods. Besides, in the literature, there are few examples on fuzzy mathematical 

programming problems with fuzzy decision variables. However, it is more suitable to 

find fuzzy solutions instead of crisp solutions in an uncertain environment. In this 

study, to solve fuzzy mathematical programming problems and fully fuzzy 

mathematical programming problems directly, use of ranking methods for fuzzy 

numbers and metaheuristic algorithms is proposed.  

 

For presenting the effectiveness of the proposed direct solution method, a fuzzy peak 

load pricing problem, a fuzzy product mix problem, a fuzzy multi-item economic 

order quantity problem, a fuzzy multi-objective aggregate production planning 

problem and a fully fuzzy product mix problem are solved. In the proposed direct 

solution method, a ranking method for fuzzy numbers and a metaheuristic algorithm 

should be used. In this thesis, different ranking methods and the particle swarm 

optimization algorithm and the tabu search algorithm are used. For each example, 

computer programs in C language are prepared.  

 

1.7. Organization of the Thesis 

  

The brief contents of the following chapters in this thesis can be stated as follows: 

� In Chapter 2, some existing methods for ranking fuzzy numbers in the 

literature are briefly explained.  
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� In Chapter 3, a new classification of fuzzy mathematical programming 

models according to its components is presented and a review is given. 

� In Chapter 4, the proposed direct solution method is explained. The used 

metaheuristic algorithms are described briefly. Then, two small examples are 

solved using the proposed direct solution method with different fuzzy 

components. 

� In Chapter 5, a fuzzy multi-item economic order quantity problem and a 

fuzzy multi-objective aggregate production planning problem is solved using 

the proposed direct solution method. 

� In Chapter 6, solution of fully fuzzy mathematical programming problems 

using the proposed direct solution method is presented. A fully fuzzy product 

mix problem is solved.  

� In Chapter 7, a brief review of this study and the conclusions drawn from the 

study are presented.  
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CHAPTER 2 

 

RANKING OF FUZZY NUMBERS 

 

2.1. Introduction 

  

In this chapter, ranking of fuzzy numbers is reviewed. Some of the ranking methods 

exist in the literature and the selected ranking methods are briefly explained. 

 

2.2. Ranking Fuzzy Numbers 

 

Ranking of fuzzy numbers is one of very important area in fuzzy set theory. In 

decision making if there are fuzzy parameters, operations on fuzzy numbers and 

ranking are needed to be used. So, in the literature, ranking of fuzzy numbers have 

been studied widely.  

 

Ranking fuzzy numbers is not a simple process. Unlike real numbers, fuzzy numbers 

have no natural order (Wang and Kerre, 2001). Fuzzy numbers are not in linear order; 

they are usually in partial order. In ranking fuzzy numbers, it is not always possible 

to obtain a totally ordered set. Frequently, overlap of membership functions or small 

differences in the support of fuzzy numbers make comparison of fuzzy numbers a 

very difficult task (Chang and Lee, 1994).   

 

Since the study of fuzzy ranking began, various ranking methods that yield a totally 

ordered set have been proposed. However, there is no best method agreed. All the 

proposed ranking methods have advantages as well as disadvantages. The proposed 

ranking methods are based on extracting various features from fuzzy sets (numbers). 

The ranking method orders the fuzzy sets based on a specific feature. Because 

different ranking methods order fuzzy sets according to different features, normally 
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the obtained ranking order for the same sample of fuzzy sets (numbers) can be 

different (Prodanovic, 2001).     

 

There are various ranking methods for fuzzy numbers in the literature, and these 

methods are classified in different manners by authors. Delgado et al. (1988) have 

classified ranking methods as belonging to two different approaches. 

- Ranking fuzzy numbers using crisp relations. In this case, the ranking 

methods use a ranking function and a crisp total order relation between fuzzy 

numbers is obtained. Fuzzy numbers are then ordered by ranking crisp 

numbers.  

- Giving a comparison index for each pair of fuzzy numbers. In this case, a 

fuzzy relation is obtained. The ordered results will be in the form like that 

‘fuzzy number A
~
 is slightly better than fuzzy number B

~
’.    

 

Chen and Hwang (1992) classified ranking methods into four categories. 

- Preference relation is utilized for ranking. Degree of optimality, hamming 

distance, α-cut and comparison function are the techniques involved in this 

category.  

- Fuzzy mean and spread. In this category probability distributions are applied.  

- Fuzzy scoring is used for ranking. Proportion to optimal, left/right scores, 

centroid index and area measurement are the techniques involved in this 

category.  

- Linguistic expression. This category includes intuition and linguistic 

approximation.  

 

Chang and Lee (1994) classified ranking methods as follows.  

- Methods using an α-cut. Fuzzy numbers are ranked by comparing their α-cuts. 

- Methods using the possibility concept. The possibility or necessity concepts 

are used to compare fuzzy numbers.     

- Methods with integration. In this case, fuzzy ranking method measures a 

fuzzy number by its mean value.  

- Methods using multiple indices. The results of multiple ranking functions are 

used as references to compare fuzzy numbers.  
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- Linguistic approach.  

 

In the literature, as specified before, there are various ranking methods for fuzzy 

numbers. In the selection of the ranking method, the shape of the fuzzy numbers, the 

obtained relation from the ranking method (crisp or fuzzy) and the ease of 

computation of the ranking method can be the major factors to be considered. As 

stated before, there is no best method agreed.    

 

2.3. A Review of Some Existing Methods for Ranking Fuzzy Numbers 

  

Some of the ranking methods exists in the literature will be briefly explained in this 

section.  

 

2.3.1. The preference order of fuzzy numbers  

  

Chen and Lu (2002) have defined a signal/noise ratio to evaluate quality of a fuzzy 

number. The defined ratio considers the middle point and spread of each α-cut of 

fuzzy numbers as the signal and noise. A fuzzy number with the stronger signal and 

the weaker noise is considered better. 

 

In the study of Chen and Lu, a few α-cuts of a fuzzy number is used to measure 

quantity, because a α-cut can signify the fuzzy number’s location on the x-axis at the 

specified α level.   

 

In the ranking method, a specified number of α-cut is used; for example k α-cuts. For 

the kth α-cut of fuzzy number iA
~
, the quantity of iA

~
 on the x-axis can be specified as 

 

kikiki lr ,,, )1()( βββ −+=∆         (2.1) 

 

where li,k is the minimum value of the kth α-cut of fuzzy number iA
~
, ri,k is the 

maximum value of the kth α-cut of fuzzy number iA
~
 and β(∈ [0,1]) is the index of 

optimism that reflects a decision maker’s degree of optimism. The large index of 

optimism infers that the decision maker is more optimistic. When β is taken as 1, 
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only the maximum value of the cut is considered. The small index of optimism infers 

that the decision maker is more pessimistic.   

 

The middle point of the kth α-cut of the fuzzy number iA
~
 ( iA

k
~α ) is defined as 

 

2

)( ,,
,

kiki

ki

lr
m

+
= .         (2.2) 

 

The spread of iA
k
~α  is defined as 

 

kikiki lr ,,, −=δ .         (2.3) 

 

The α-cuts of a fuzzy number can be thought as crisp intervals and the values in the 

crisp interval have been statistically considered to be a uniform distribution by Chen 

and Lu. Following this, the middle point and spread of each α-cut of fuzzy numbers 

are treated as the mean and approximate standard deviation of the uniform 

distribution.  

 

The signal/noise (S/N) ratio for the iA
k
~α  is defined as 

 

kikiki m ,,, δη =           (2.4) 

 
where ),0[, ∞∈kiη . 

 

The value of S/N ratio is infinite when the spread is equal to zero. So, S/N ratio is 

adjusted as  

 

ki

a

ki

,
, 1

1
1

η
η

+
−= .         (2.5) 

 

The comparison index for two fuzzy numbers iA
~
 and jA

~
 is defined as 
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where Nnknknkk ∈≤≤= ,,0,α  and n is the number of α-cuts. The ratio 

a

kj

a

ki ,, ηη  at each α level is included to measure the relative quality of α-cuts 

between two fuzzy numbers. The α levels are used as weights for strengthening the 

influence of α-cut with higher α levels. 

 

For two fuzzy numbers iA
~
 and jA

~
, the preference order is determined as follows. 

If 0)(, >βjiR  then ji AA
~~

> , 

if 0)(, =βjiR  then ji AA
~~

= , 

if 0)(, <βjiR  then ji AA
~~

< . 

 

In this ranking method, the number of α-cuts is not significant to final order. The 

degree of optimism β has close correlation with the order. For different β values 

different orderings are obtained. The fuzzy numbers with the larger mean and the 

smaller spread are considered better.  

 

2.3.2. Ranking fuzzy numbers according to centroids 

  

Cheng (1998) has proposed using a centroid based distance for ranking fuzzy 

numbers in his study. Chu and Tsao (2002) have proposed using the area between the 

centroid point and the origin to rank fuzzy numbers, because the method of Cheng 

cannot give true orders if the fuzzy numbers are negative. Wang et al. (2006) have 

found that the centroid formula of Cheng is incorrect and have given the correct 

formula. 

 

For a fuzzy number A
~
, suppose that the membership function is defined as follows.  
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The inverse functions of L

A
f ~  and R

A
f ~  are L

A
g ~  and R

A
g ~ .  

 

The centroid point of a fuzzy number corresponds to an x  value on the horizontal 

axis and a y  value on the vertical axis (Chu and Tsao, 2002). The formula of 

centroid of A
~
 is defined as 
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where the denominator ∫ −
w

L

A

R

A
dyygyg

0

~~ ))()((  represents the area under the inverse 

function of trapezoidal fuzzy number, while the numerator ∫ −
w

L

A

R

A
dyygygy

0

~~ ))()((  is 

the weighted average of the area (Wang et al., 2006).   

 

For a general trapezoidal fuzzy number );,,,(
~

wdcbaA =  the centroids can be 

written as follows (Wang et al., 2006).  
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The triangular fuzzy numbers are special forms of trapezoidal fuzzy numbers with    

b = c. for the triangular fuzzy number );,,(
~

wdbaA =  with a piecewise linear 

membership function the centroids are written as follows (Wang et al., 2006).  

 

)(
3

1
)

~
(0 dbaAx ++=                   (2.12) 

 

wAy
3

1
)

~
(0 = .                   (2.13)  

 

For normal triangular fuzzy numbers it will be 31)
~
(0 =Ay .  

 

The area between the centroid point ),( 00 yx  and the original point (0, 0) of the fuzzy 

number A
~
 is defined as (Chu and Tsao, 2002),  

 

)
~
()

~
()

~
( 00 AyAxAS ⋅=                   (2.14) 

 

The area S is used to rank fuzzy numbers. The bigger fuzzy number will be the fuzzy 

number with the bigger value of S. For any two fuzzy numbers iA
~
 and jA

~
,  

if )
~
()

~
( ji ASAS >  then ji AA

~~
> , 

if )
~
()

~
( ji ASAS =  then ji AA

~~
= , 

if )
~
()

~
( ji ASAS <  then ji AA

~~
< . 

 

According to definition of the S value, normal triangular fuzzy numbers can be 

compared or ranked directly in terms of their centroid coordinates on horizontal axis, 

since the centroid coordinates on vertical axis are same for all normal triangular 

fuzzy numbers (Wang et al., 2006). 

 

2.3.3. Ranking fuzzy numbers according to mean value and variance  

  

Hashemi et al. (2006) have proposed a solution method for fully fuzzified linear 

programming problems in their study. For using in the solution approach, they have 

proposed a ranking method for fuzzy numbers based on comparison of mean and 

standard deviation of fuzzy numbers.  
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In the study, it is accepted that a fuzzy number A
~
 is a convex normalized fuzzy 

subset of the real line R with bounded support. The set of all fuzzy numbers is 

denoted by F(R).  

 

For using in the ranking method the following definition is given in the study of 

Hashemi et al. (2006). 

 

A nonzero vector X is called lexicographically positive and denoted by          X >LG 0 

if the first nonzero component of X is positive. Also, a lexicographically nonnegative 

vector is either a zero vector or else a lexicographically positive vector, denoted by X 

≥LG 0.   

 

The possibilistic mean value and variance of the fuzzy number A
~
 denoted by )

~
(AM  

and )
~
(AVar  are defined as follows. 

 

∫ +=
1

0

)
~

sup
~

(inf)
~
( αα αα dAAAM                 (2.15) 

 

∫ −=
1

0

2)
~

inf
~

(sup21)
~
( αα αα dAAAVar                (2.16) 

 

The standard deviation of A
~
 is defined by 

)
~
()

~
( AVarASD = .                   (2.17) 

 

A symmetric fuzzy number A
~
 can be denoted by LaA ),(

~
γ=  and defined as  

 

0),/)(()(
~

≥−= γγaxLxA                 (2.18) 
 

where a and γ are the center and spread of A
~
, and L is the reference function.  

 

If the fuzzy number A
~
 is a symmetric fuzzy number, then the possibilistic mean 

value and variance of A
~
 can be defined as; 

 

aAM =)
~
(                    (2.19) 

 



 31 

6
)

~
(

2γ
=AVar                    (2.20) 

 

6
)

~
(

γ
=ASD .                             (2.21) 

 

Hashemi et al. (2006) have proposed a method for ranking fuzzy numbers using the 

concept of possibilistic mean value and standard deviation of fuzzy numbers.  

 

Consider the following function, 
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The ordering of two fuzzy numbers A
~
 and B

~
 is defined as follows. 
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Also, BA
~~

≤  can be written if and only if AB
~~

≥ . The function R is called 

lexicographic ranking function.   

 

2.3.4. Ranking method of Dorohonceanu and Marin  

  

In the study of Dorohonceanu and Marin (2002), a ranking method for fuzzy 

numbers and its extension which are based on the idea of determining the degree of 

membership that fuzzy relation “ A
~
 is greater than B

~
” belongs to the set of “greater” 

have been proposed.  
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The ranking method of Dorohonceanu and Marin based on the confidence interval 

comparison, since fuzzy numbers can be represented as ordered set of confidence 

intervals. A confidence interval is an interval of real numbers that provides a 

representation for an imprecise numerical value by means of its sharpest enclosing 

range (Dorohonceanu and Marin, 2002).  

 

From the linearity of the greater than relationship, using interpolation, for intervals 

[a1, a2] and [b1, b2] it is obtained that  

 

1212

12

aabb

ba
BA −+−

−
=>γ .                  (2.22) 

 

For any two confidence intervals A and B, the following equations are valid 

(Dorohonceanu and Marin, 2002). 

  
1=+ >> ABBA γγ  

 

ABBABA >> ≥⇔≥ γγ  
 

),max(,)( CBBACAwithCACBandBA >>> ≥≥⇒≥≥ γγγ  

 
),max(,) CBBACAwithCACBandBA <<< ≥≤⇒≤≤ γγγ  

 

The fuzzy number comparison method B2 is based on the fuzzy number 

representation in fuzzy arithmetic. It relies on the representation of fuzzy numbers as 

ordered set of confidence intervals, each of them providing the related numerical 

value at a given presumption level α ∈ [0,1]. It is stated by Dorohonceanu and Marin 

that the shapes of the convex fuzzy numbers do not need special computations during 

comparisons. 

 

For two fuzzy numbers A
~
 and B

~
, to compute the value of A

~
 greater than B

~
 the 

following algorithm is applied. 

 

For each level of presumption, α, the corresponding confidence intervals, Aα and Bα, 

are compared and the degree that Aα is greater than Bα is computed as γAα> Bα.  
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The degree of membership that fuzzy number A
~
 greater than fuzzy number B

~
 is 

computed by  
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where NOPL is the number of presumption levels and length denotes the length of 

the respective confidence interval.  

 

In their study, Dorohonceanu and Marin have proposed a variant of the B2 method to 

compare fuzzy numbers. In the variant of the B2 method (B2x), each part of constant 

monotony of the fuzzy number A
~
 is separately compared with the fuzzy number B

~
.  

 

In the variant method, the following algorithm is applied. Fuzzy number A
~
 is 

decomposed into two fuzzy intervals, A1 and A2. Then, the first interval A1 is 

compared with fuzzy number B
~
 and the degree that A1 is greater than B

~
 is 

computed. After that, the second interval A2 is similarly compared with fuzzy 

number B
~
 and the degree that A2 is greater than B

~
 is computed. The mean of these 

two resulted values will be considered as the degree that A
~
 is greater than B

~
.  
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The generalization of the above procedure is defined as follows. 

 

∑
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where n represents the number of distinctive intervals of absolute monotony of fuzzy 

numbers A
~
 (Dorohonceanu and Marin, 2002).  
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2.3.5. Ranking fuzzy numbers by distance minimization  

  

In their study, Asady and Zendehnam (2007) have obtained the nearest point with 

respect to a fuzzy number and by considering the nearest point have proposed a 

ranking method.  

 

It is defined that, a fuzzy number A
~
 in parametric form is a pair ),( aa  of function 

)(ra  and )(ra , 0 ≤ r ≤ 1. )(ra  is a bounded increasing left continuous function and 

)(ra  is a bounded decreasing left continuous function, 10),()( ≤≤≤ rrara .  

 

For arbitrary fuzzy numbers ),(
~

aaA =  and ),(
~

bbB = , the distance is defined as 

follows.  
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Interval of a fuzzy number A
~
 is defined as follows.  
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The middle point of interval )
~

(AEI  can be defined as follows.  
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The interval )
~

(AEI  is the nearest interval to the fuzzy number A
~
. It is tried to find a 

crisp point )
~
(AC , which is the nearest to A

~
 with respect to metric D. the distance 

between the fuzzy number A
~
 and a crisp point )

~
(AC  is defined as follows (Asady 

and Zendehnam, 2007).  
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It is stated by Asady and Zendehnam that, if A
~
 is a fuzzy number and )

~
(AC  is a 

crisp point then the function ))
~
(,

~
( ACAD  with respect to )

~
(AC  is minimum value if 

)
~
()

~
( AMAC =  and )

~
(AM  is unique.  

 

According to above theorem, if ),,,(
~

ul aaaaA =  is a trapezoidal fuzzy number, then 

the nearest point to A
~
 can be defined as follows.  
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If ),,(
~

ul aaaA =  is a triangular fuzzy number, then the nearest point will be 
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If ),,,(
~

ul aaaaA =  is a symmetric trapezoidal fuzzy number, then 

 

)(21)
~
( aaAM += .                  (2.32) 

 

If ),,(
~

ul aaaA =  is a symmetric triangular fuzzy number, then 

 

aAM =)
~
( .                    (2.33) 

 

The ranking of fuzzy numbers associated with the distance minimization have been 

defined as follows. For two fuzzy numbers A
~
 and B

~
,  

)
~
()

~
( BMAM >  if and only if BA

~~
> , 

)
~

()
~
( BMAM <  if and only if BA

~~
< , 

)
~
()

~
( BMAM =  if and only if BA

~~
= . 

The order “≥” and “≤” can be formulated as 

BA
~~

≥  if and only if BAorBA
~~~~

=> , 

BA
~~

≤  if and only if BAorBA
~~~~

=< .  
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2.3.6. Ranking fuzzy numbers with an area method using radius of gyration 

  

Deng at al. (2006) have proposed a modified area method to rank fuzzy numbers. It 

is said in the study that the modified method can effectively rank various fuzzy 

numbers and their images. In the proposed method fuzzy numbers are ranked with 

the radius of gyration (ROG) points. Radius of gyration is a concept in mechanics.  

 

An area A located in the xy plane and the element of area dA of coordinates x and y 

are considered. The moment of inertia of the area A with respect to the x axis, and the 

moment of inertia of the area A with respect to the y axis are defined as follows.         

 

∫=
A

x dAyI 2                    (2.34) 

 

∫=
A

y dAxI 2                    (2.35) 

 

The radius of gyration of an area A with respect to the x axis is defined as the 

quantity rx, the radius of gyration of an area A with respect to the y axis is defined as 

the quantity ry, that satisfies the relation, 

 
ArI xx

2=                    (2.36) 

 

ArI yy

2= .                   (2.37)

  

For an area made up of a number of simple shapes, the moment of inertia of the 

entire area is the sum of the moments of inertia of each of the individual area about 

the axis desired. 

 

a b c d
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1 2 3

x
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Figure 2.1. A generalized trapezoidal fuzzy number (a,b,c,d;w) 
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The moment of inertia of the generalized trapezoidal fuzzy number in figure 2.1 can 

be defined as follows. 
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The radius of gyration point of a generalized trapezoidal fuzzy number (a,b,c,d;w) 

can be calculated as follows.  
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The area between the radius of gyration point and original points of a fuzzy number 

will be; 
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The area S is used to rank fuzzy numbers. The bigger fuzzy number will be the fuzzy 

number with the bigger value of S. For any two fuzzy numbers iA
~
 and jA

~
 (Deng et 

al., 2006),  

if )
~
()

~
( ji ASAS >  then ji AA

~~
> , 

if )
~
()

~
( ji ASAS =  then ji AA

~~
= , 

if )
~
()

~
( ji ASAS <  then ji AA

~~
< . 

 

2.3.7. Ranking of fuzzy numbers using possibility programming  

 

Ranking of fuzzy numbers by using the possibility programming approach has been 

presented by Negi and Lee (1993) and Iskander (2002) stated some comments. 

Comparing fuzzy numbers using possibility programming approach depends on the 

type of the fuzzy numbers. 

 

The membership function of a triangular fuzzy number can be written as follows 

(Iskander, 2002). 
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where, w is the maximum value of the membership function (w ∈ [0,1]). If the fuzzy 

number is a normal fuzzy number w will be 1.  

 

Ranking of fuzzy numbers is given using the exceedance possibility and the strict 

exceedance possibility.  

 

If A
~
 and B

~
 are two triangular fuzzy numbers, ),,(

~
ul aaaA =  and ),,(

~
ul bbbB = , 

then the possibility that BA
~~

≥ , according to the exceedance possibility, is given by 
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and this possibility, in the case of the strict exceedance possibility can be presented 

as (Iskander, 2002); 
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The membership function of a trapezoidal fuzzy number can be written as follows 

(Iskander, 2002). 
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If A
~

 and B
~

 are two trapezoidal fuzzy numbers, ),,,(
~

ul aaaaA =  

and ),,,(
~

ul bbbbB = , then the possibility that BA
~~

≥ , according to the exceedance 

possibility, is given by 
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and this possibility, in the case of the strict exceedance possibility can be presented 

as (Iskander, 2002); 
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If two different fuzzy numbers (triangular and trapezoidal) are compared the 

following situations will be occurred.  

 

If A
~

 is a trapezoidal fuzzy number and B
~

 is a triangular fuzzy number, 

),,,(
~

ul aaaaA =  and ),,(
~

ul bbbB = , then the possibility that BA
~~

≥ , according to the 

exceedance possibility, is given by 
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and this possibility, in the case of the strict exceedance possibility can be presented 

as (Iskander, 2002); 
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If A
~

 is a triangular fuzzy number and B
~

 is a trapezoidal fuzzy number, 

),,(
~

ul aaaA =  and ),,,(
~

ul bbbbB = , then the possibility that BA
~~

≥ , according to the 

exceedance possibility, is given by 

 













≥

≥≥
−+−

−

≥

=≥

ul

lu

lu

lu

ab

baab
bbaa

wba

baw

BAPoss

,0

,,
)()(

)(

,

)
~~

(              (2.57) 

 
and this possibility, in the case of the strict exceedance possibility can be presented 

as (Iskander, 2002); 
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The α-cut approach can be utilized in possibility programming, α ∈ (0,w], by making 

any of the probabilities greater than or equal to α.  

 

2.4. Selected Ranking Methods  

  

Five ranking methods are selected to use in the solution of fuzzy mathematical 

programming models in our study. The ranking methods are selected according to the 

ease of computation and their accomplishment and consistency in ranking of fuzzy 

numbers. The selected five ranking methods will be briefly explained in the 

following.  

 

2.4.1. The signed distance method 

 

Yao and Wu (2000) have used signed distance to define ranking of fuzzy numbers. 

The signed distance used for fuzzy numbers has some similar properties to the 

properties induced by the signed distance in real numbers. The signed distance 

method for ranking fuzzy numbers can be explained briefly as follows.  

 

Let F be the family of the fuzzy numbers on R. The sign distance is defined as     

d
*(a,0) = a on R. Then for a, b ∈ R, d*(a, b) = a-b. For A

~
, B
~
 ∈ F, with α-cut          

(0 ≤ α ≤ 1), there is a closed interval A(α) =[AL(α), AR(α)]. Then, the signed distance 

of A
~
, B
~
 is defined as (Yao and Wu, 2000), 
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It can be proved that d is an extension of d*. And, 
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According to these definitions, the signed distance of a triangular fuzzy number 

),,(
~

ul aaaA =  is defined as, 
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The signed distance of a trapezoidal fuzzy number ),,,(
~

ul aaaaA =  is defined as  
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Let A
~
 and B

~
 are two triangular or trapezoidal fuzzy numbers, their ranking relation 

is defined as )0,
~
()0,

~
(

~~
BdAdBA ≤⇔≤  (Yao and Wu, 2000). 

 

2.4.2. Ranking of fuzzy numbers with integral value 

 

Liou and Wang (1992) proposed the method of ranking fuzzy numbers with integral 

value. Some ranking methods assume that the membership functions are normal. In 

the method of ranking fuzzy numbers with integral value the assumption of 

normality of membership functions is not required. Ranking fuzzy numbers with 

integral value is relatively simple in computation, especially in ranking of triangular 

and trapezoidal fuzzy numbers, and can be used to rank more than two fuzzy 

numbers simultaneously (Liou and Chen, 2006).  

 

Let the left and right side membership functions of a triangular fuzzy number 

),,(
~

ul aaaA =  are defined as follows (Liou and Chen, 2006). 
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and 
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Then ]1,0[],[:~ →aau l

L

A
 and ]1,0[],[:~ →u

R

A
aau . Since L

A
~µ  and R

A
~µ  are continuous 

and strictly increasing, the inverse function of L

A
~µ  and R

A
~µ  exist, denoted by L

A
g ~  

and R

A
g ~ , and ],[]1,0[:~ aag l

L

A
→  and ],[]1,0[:~ u

R

A
aag → , respectively. Both L

A
g ~  and 

R

A
g ~  are as follows (Liou and Chen, 2006). 
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and  
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The definition of integral values for the triangular fuzzy number A
~
 is written as 

follows (Liou and Chen, 2006). 
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where 0 ≤ α ≤ 1. 

 

The index of optimism α is representing the degree of optimism for a person. A 

larger α indicates a higher degree of optimism (Liou and Chen, 2006). The fuzzy 

numbers are ranked according to their integral values; the fuzzy number with the 

larger integral value is the bigger fuzzy number. 

 

2.4.3. Chen and Chen’s ranking method 

  

Chen and Chen (2003) has presented a method to evaluate the ranking order between 

generalized fuzzy numbers based on center of gravity points and standard deviations 

of generalized fuzzy numbers. The proposed ranking method can overcome the 

drawbacks of the existing centroid-index ranking methods.  
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If ),,,(
~

4321 aaaaAi = , i = 1,…,n are normal trapezoidal fuzzy numbers, the 

proposed ranking method of fuzzy numbers can be presented as follows.  

 

Step 1: Use the following equations to calculate the center of gravity point ( *
~

*
~ ,

iAiA
yx ) 

of each fuzzy number iA
~
, where ni ≤≤1 . 
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Step 2: Use the following equation to calculate the standard deviation 

iA
s ~ˆ  of each 

fuzzy number iA
~
, where ni ≤≤1 . 
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Step 3: Use equation () to calculate the ranking value )
~
( iARank  of each fuzzy 

number iA
~
, where ni ≤≤1 . 
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Step 4: Compute the ranking order of fuzzy numbers. For fuzzy numbers iA
~
 and jA

~
 

the ranking order is evaluated as follows (Chen and Chen, 2003). 

If )
~
()

~
( ji ARankARank < , then ji AA

~~
< , 

if )
~
()

~
( ji ARankARank = , then ji AA

~~
= , 

if )
~
()

~
( ji ARankARank > , then ji AA

~~
> . 
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2.4.4. Ranking of fuzzy numbers through the comparison of their expected 

intervals 

  

Jimenez (1996) has proposed a ranking method of fuzzy numbers based on the 

comparison of their expected intervals.  

 

The membership function of a fuzzy number ),,,(
~

ul aaaaA = can be written as; 
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In order to warrant the existence and integrability of the inverse functions )(1 xf A
−  

and )(1 xg A
− , it is assumed that )(xf A  is continuous and increasing, and )(xg A  is 

continuous and decreasing.  

 

The expected interval of a fuzzy number is defined as follows (Jimenez, 1996); 
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Integrating by parts and changing the variable α = fA(x), α = gA(x): 
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If fA and gA are linear, that is if the fuzzy number A
~
 is triangular or trapezoidal, its 

expected interval will be (Jimenez, 1996): 
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If there are two fuzzy numbers A
~
 and B

~
, the expected interval of BA

~~
−  is: 
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According to the ranking method of Jimenez, for any pair of fuzzy numbers A
~
 andB

~
, 

the degree in which A
~
 is bigger than B

~
 is defined as (Jimenez, 1996; Jimenez et al., 

2007); 
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where, )
~

,
~
( BAMµ  is the degree of preference of  A

~
 over B

~
. When 5.0)

~
,

~
( =BAMµ  it 

will be said that A
~
 andB

~
, are equal.  

 

2.4.5. Ranking fuzzy numbers based on left and right dominance    

  

Chen and Lu (2001) have proposed an approximate ranking approach based on the 

left and right dominance. This ranking approach follows the concept of are 

measurement. The ranking approach is useful when the membership functions of the 

fuzzy numbers cannot be acquired.  

 

The ranking method uses a few left and right spreads at some α-levels of fuzzy 

numbers to determine the dominance of one fuzzy number over the other. In the 

ranking method, the left (right) dominance is determined by summing the difference 

of the left (right) spreads at each α-level to calculate the degree to which one fuzzy 

number dominates the other at the left (right) hand side (Chen and Lu, 2001).   

 

For a fuzzy number A
~
, the α-cuts are convex subsets of R. In the ranking method, 

first, the number of α-cuts that are used are determined. The lower and upper limits 

of the kth α-cut for the fuzzy number iA
~
 are defined as 
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})({sup ~, kA
Rx

ki xxr αµ ≥=
∈

                     (2.79)           

 
where li,k and ri,k are left and right spreads. 

 

For two fuzzy numbers iA
~
 and jA

~
, the left (right) dominance L

jiD ,  (
R

jiD , ) of  iA
~
 over 

jA
~
 is the average difference of the left (right) spreads at some α-levels. The left and 

right dominance can be written as following formulas.  
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(n+1) is the number of α-cuts used to calculate the dominance. αk denotes the k

th α-

level and αk = k/n, k ∈ {0,1,…,n}. the distance between each two adjacent α-levels is 

equal; αk - αk-1 = 1/n, k ≥ 1. as n→∞, L

jiD ,  (
R

jiD , ) approximates the area difference of 

iA
~
 over jA

~
 according to the membership axis to the left (right) membership function.  

 

The total dominance is determined by combining the left and right dominance based 

on a decision maker’s degree of optimism. The total dominance of iA
~
 over jA

~
 with 

the index of optimism β ∈ [0,1] can be defined as the convex combination of L

jiD ,  

and R

jiD ,  by the following formula. 
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Two fuzzy numbers iA
~
 and jA

~
 can be ranked using )(, βjiD  as follows. 

If 0)(, >βjiD  then ji AA
~~

> , 

if 0)(, =βjiD  then ji AA
~~

= , 
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if 0)(, <βjiD  then ji AA
~~

< . 

 

In the study, it is shown that the ranking orders are consistent regardless of the 

number of α-cuts. Chen and Lu (2001) have stated that, if the membership functions 

of fuzzy numbers are simple, only a small number of α-cuts is necessary. The use of 

a greater number of α-cuts can obviously produce more accurate ordering.
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CHAPTER 3 

 

REVIEW AND CLASSIFICATION OF FUZZY 

MATHEMATICAL PROGRAMING MODELS 

 

3.1. Introduction 

  

In this chapter, a new classification of fuzzy mathematical programming models 

according to the fuzzy components is presented. In section 3.2, existing 

classifications for fuzzy mathematical programming models are given. In section 3.3, 

the new classification of fuzzy mathematical programming models according to the 

fuzzy components is explained and in the consequent subsections, some of the 

studies from the literature on each type of fuzzy models are reviewed briefly.  

 

3.2. Existing Classifications for Fuzzy Mathematical Programming Models 

 

In the literature, various authors classified fuzzy mathematical programs with respect 

to different criteria. Zimmermann (1987) classified fuzzy mathematical programs 

into two groups according to the solution method; symmetric and non-symmetric 

models (Kuruüzüm, 1998). 

 

Table 3.1. Zimmermann’s classification of fuzzy mathematical programming 

problems (Kuruüzüm, 1998) 

 OBJECTIVE(S) or GOALS 

 CRISP FUZZY 

CRISP Conventional Decision Symmetric Model 
CONSTRAINTS 

FUZZY Non-symmetric Model Symmetric Model 
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Leung (1988) classified fuzzy mathematical programming models into four 

categories:  

i. A precise objective and fuzzy constraints,  

ii. A fuzzy objective and precise constraints,  

iii. A fuzzy objective and fuzzy constraints, and  

iv. Robust programming (Lai and Hwang, 1994).  

 

Luhandjula (1989) categorized fuzzy mathematical programming models into three 

classes;  

i. Flexible programming,  

ii. Mathematical programming with fuzzy parameters, and  

iii. Fuzzy stochastic programming. 

Luhandjula (1989) also classified flexible programming methods into symmetrical 

and asymmetrical approaches, as did Zimmermann. He grouped mathematical 

programming problems with fuzzy parameters into two major classes; problems with 

a deterministic objective function and problems with a fuzzy objective function. 

Fuzzy stochastic programming concerns parameters involving both fuzzy and 

stochastic natures (Lai and Hwang, 1994).   

 

According to Fedrizzi et al. (1991), the fuzzification of the single or multiple 

objective linear programming model usually includes four forms of imprecision;  

i. Models with fuzzy constraints,  

ii. Models with fuzzy objectives (goals imposed on the objective functions),  

iii. Models with fuzzy coefficients on the variables, and  

iv. Combinations of the above (Lai and Hwang, 1994, Pires et al., 1996).  

 

Negoita (1981) distinguishes two types of imprecision in fuzzy optimization 

problems: 

i. Flexible programming for problems with fuzzy equations and objectives 

(vague nature) and  

ii. Robust programming for fuzzy coefficients or parameters (of an ambiguous 

nature) (Pires et al., 1996).  
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Rommelfanger and Slowinski (1999) presents the general fuzzy linear programming 

problem as where all parameters (coefficients of objective, coefficients of constraints 

and right hand values of constraints) and the goal(s) are defined as fuzzy. They state 

that the general system includes the following special cases: 

i. The objective function is crisp, 

ii. Some or all constraints are crisp, 

iii. Some or all constraints are soft. 

Rommelfanger and Slowinski (1999) point out that these special cases may be 

combined. When the objective function(s) and the left-hand sides of constraints are 

defined as crisp, the fuzzy sets express preferences concerning attainment of goal(s) 

and satisfaction of flexible constraints. This case corresponds to flexible 

programming. When the coefficients of objective function(s) and constraints are 

defined as fuzzy numbers, then fuzzy sets represent vague state of data under the 

form of possibility distributions (Rommelfanger and Slowinski, 1999).     

 

Inuiguchi and Ramik (2000) classify fuzzy mathematical programming into three 

categories based on uncertainties treated in the method; 

i. Fuzzy mathematical programming with vagueness, 

ii. Fuzzy mathematical programming with ambiguity, 

iii. Fuzzy mathematical programming with vagueness and ambiguity. 

 

Inuiguchi and Ramik (2000) point out that, two major types of uncertainties exist in 

real life, ambiguity and vagueness. Ambiguity is associated with one-to-relations, 

that is, situations in which the choice between two or more alternatives is left 

unspecified. Vagueness is associated with the difficulty of defining sharp boundaries. 

For example, the uncertain description ‘about 2 minutes’ shows the ambiguity of the 

true value, one value around 2 is true but not known exactly. The uncertain 

description, ‘substantially smaller than 900 minutes’ shows the vagueness of the 

aspiration level, does not define a sharp boundary of a set of satisfactory values but 

shows that values around 900 and smaller than 900 are to some extent and 

completely satisfactory. 

 

Inuiguchi and Ramik (2000) also described the categories of their classification as 

follows. The fuzzy mathematical programming problems in the first category are 
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decision-making problems with fuzzy goals and constraints. The fuzzy goals and 

constraints represent the flexibility of the target values of the objective functions and 

the elasticity of the constraints, and this type of fuzzy mathematical programming is 

called as ‘flexible programming’. The second includes ambiguous coefficients of 

objective functions and constraints but does not include fuzzy goals and constraints. 

The third type handles ambiguous coefficients as well as vague decision maker’s 

preference. This fuzzy mathematical programming is called as ‘robust programming’. 

 

As it can be seen from the literature the authors who dealt with fuzzy mathematical 

programming have made various classifications according to different criteria. In the 

following section, a new classification of fuzzy mathematical programming models 

is given according to the fuzzy components (the objective values, the objective 

coefficients, the right hand values, etc.).   

 

3.3. Classification of Fuzzy Mathematical Programming Models   

 

In this thesis, fuzzy mathematical programming models are classified according to 

the fuzzy components. In a fuzzy mathematical programming model, the aspiration 

level(s) of the objective(s) (z), the limit values of the constraints (b), the coefficients 

of the objectives (c) and the coefficients of the constraints (A) can be uncertain. In 

Table 3.2, the classes of the fuzzy mathematical programming models according to 

the fuzzy components. The classes are named as ‘types’ in Table 2 and fifteen types 

of the fuzzy mathematical programming models are defined in the classification. 

Different types of fuzzy mathematical programs are formed considering all possible 

situations. The possible situations are determined according to the counting 

technique. The number of combinations of r objects selected from n objects is 

denoted rnC  and is given by the formula !)!(! rrnnCrn −= . For example if one of the 

four parameters is fuzzy, there will be four types; 4!1)!14(!4 =− . If two of the four 

parameters is fuzzy, there will be six types; 6!2)!24(!4 =− . If three of the four 

parameters is fuzzy, there will be four types; 4!3)!34(!4 =− . Finally, if all parameters 

are fuzzy, there will be one type. Hence, it is determined that there are fifteen types 

of fuzzy mathematical programming models according to the fuzzy components. 

Type one fuzzy models (fuzzy models with fuzzy objectives (z)), include the fuzzy 
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goal programming models. The aspiration levels of the objectives are imprecise in 

fuzzy goal programming and these models are similar to type one fuzzy models. In 

the study of Baykasoğlu and Göçken (2008) the solution approaches for the classes 

of fuzzy mathematical programming models are reviewed and presented in the table 

of classes exhaustively. 

 

Table 3.2. Classification of fuzzy mathematical programming models 
 
  

Objective(s) 
(z) 

 
Constraints 

(b) 

 
Coefficients of 
the objectives 

(c) 

Coefficients of 
the constraints 

(A) 

Type 1 b    
Type 2  b   
Type 3   b  
Type 4    b 
Type 5 b b   
Type 6  b b  
Type 7   b b 
Type 8 b  b  
Type 9  b  b 
Type 10 b   b 
Type 11 b b b  
Type 12  b b b 
Type 13 b b  b 
Type 14 b  b b 
Type 15 b b b b 

 

In the following subsections, some of the studies from the literature on each type of 

fuzzy models are reviewed briefly.  

 

3.3.1. Type 1 fuzzy models 

  

Type 1 models include problems with fuzzy objectives and fuzzy goal programming 

models. Problems with fuzzy objective(s) and fuzzy limit values of constraints can be 

solved with Zimmermann’s max-min method. From the beginning of the studies on 

fuzzy decision-making, the authors solved this type of fuzzy models with various 

techniques but most of these techniques are based on Zimmermann’s max-min 

method. Zimmermann used the max-min operator of Bellman and Zadeh (Lai and 
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Hwang, 1994) for the first time to solve fuzzy multi-objective linear programming 

problems. Since Zimmermann’s max-min method is the basic of most of the studies 

on fuzzy mathematical programming, the max-min method is going to be described 

briefly. Type-1 fuzzy multi-objective mathematical program can be stated in the 

following form; 
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iijj
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===≥≤
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                     (3.1)                           

 
where, 0~

kf , ∀k, are fuzzy goals, xj are the decision variables, cj are coefficients of the 

objective function, aij are the coefficients of the constraints and bi are right hand 

values of the constraints. The functions ),( jjk cxf  and ),( ijj axg  can be linear or 

nonlinear functions. 

 

The decision set is defined as the intersection of the fuzzy objective(s). The decision 

set is characterized by its membership µD(x) as, 

 
)),(),...,,(),,((min)( 21 jjkjjjjD cxcxcxx µµµµ =                  (3.2)

                             
The optimal decision is the maximum value of the feasible decision set; 

 
)(max)( xx DoptD µµ =  .                     (3.3)               

 
The fuzzy multi-objective mathematical programming problems become ‘maximize 

µD(x), subjective x ∈ X’, 
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jjkk
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===≥≤

=µ
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This max-min problem is generally transformed to a conventional mathematical 

programming problem. It is taken that α is the overall satisfactory level of 

compromise and α = minkµk(xj,cj) (α is the minimum of the membership values of 

the objectives and it is tried to maximizeα, the overall satisfactory level). The max-

min problem becomes a conventional mathematical programming problem such that; 
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and 
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Another approach for solving multi-objective fuzzy linear programming problems is 

parametric approach that is proposed by Chanas (1983). For example a multi-

objective fuzzy linear programming problem can be written as follows. 
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In Chanas’s parametric approach, the problem is first assumed as a fuzzy linear 

program with a single objective and the other objectives are transferred into 

constraints. The fuzzy multi-objective linear-programming problem becomes a fuzzy 

linear programming problem with single objective as follows; 
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and the aspiration levels are *

iz  and tolerances are iil zzp ′−= * . 

 

Then, this fuzzy linear programming problem is transferred into a crisp parametric-

programming problem as follows; 
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The decision which objective is taken as only objective in the crisp problem is 

decided by the decision maker according to which objective is the most important. 

 

As indicated before, many of the previous studies in the literature are based on 

Zimmermann’s max-min approach. For example, Gen et al. (1997) solved a fuzzy 

nonlinear goal programming problem via firstly converting the problem into crisp 

form by using max-min method and then solved the converted crisp nonlinear 

problem by using a genetic algorithm.  Abboud et al. (1998) solved a manpower 

allocation problem. In the problem the target values are specified imprecisely. The 

fuzzy multi-objective manpower allocation problem converted into a crisp problem 

by using the max-min method and the resultant problem was solved by using a 

genetic algorithm based approach. Sinha (2003) used the max-min method for 

solving multi-level programming problems. Chakraborty and Gupta (2002) solved 

fuzzy multi objective linear fractional programming problems by using the max-min 

method in order to convert the problem into a crisp form and then the crisp problem 

is solved with classical linear programming methods.   

 

Baykasoğlu and Göçken (2006) proposed a multiple-objective tabu-search-based 

solution method to solve fuzzy goal programs. A fuzzy aggregate production-

planning problem is solved directly (not transforming into a crisp equivalent) in the 

study. The goals of the problem are defined as fuzzy numbers. The membership 

functions of the goals are defined as linear functions. Three different methods, 

namely the preemptive method, the max-min method and the additive method, are 

used to handle fuzzy goals within the proposed tabu search algorithm. The tabu 

search algorithm of Baykasoğlu et al. (1999) that is developed to solve goal 

programs is used as a base for the proposed tabu search algorithm. Three versions of 

the tabu search algorithm that implements the above methods are developed. In the 
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developed three versions, the selection and updating stages are redefined; the other 

stages are identical with the tabu search algorithm of Baykasoğlu. In their study, it is 

shown that fuzzy goal programs can be solved directly by using meta-heuristic 

algorithms. 

 

3.3.2. Type 2 fuzzy models 

  

A fuzzy mathematical program in which the right hand side parameters (b) of the 

constraints are defined to be uncertain can be stated in the following form; 
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For the solution of this type of fuzzy problems different approaches are proposed and 

used in the literature. Most of these methods are based on the symmetric approach of 

Belman and Zadeh and the max-min method.  

 

Verdegay (1984) used the duality theory of linear programming for solving fuzzy 

linear programming problems with fuzzy constraints. This solution is based on the 

idea that the dual of a fuzzy linear programming problem with fuzzy objective must 

be a fuzzy linear programming problem with a fuzzy constraint set, and reciprocally. 

This idea is based on the general fact that in fuzzy mathematical programming, the 

objectives and constraints play the same roles. 

 

Rommelfanger (1996) used a solution method for type 2 fuzzy problems in which 

each soft constraint adds an additional objective to decision problem that is called 

fuzzy objective. A fuzzy linear programming problem written as follows 

 

njmmibaxg

njmibaxgts

cxf

iijj

iijj

jj

,...,1,,...,1),(

,...,1,,...,1
~

),(..

),(max

1

1

=+=≤

==≤                                                   (3.11)                   

 
 turns into a multi objective optimization problem as follows, 
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For comparing f(xj,cj) with the fuzzy objective functions ),( ijji axµ , f(xj,cj) is 

substituted with a function ),( jjf cxµ . ),(max jj
Xx

cxff
U∈

=  and ),(max jj
Xx

cxff
L∈−

=  

},...,2,1,),({ 0 mibaxgRxX iijj
n

jL =∀≤∈=  are computed. Then, the membership 

functions ),( jjf cxµ  are defined as Zimmermann did (1976). To determine a 

compromise solution for the multi-objective optimization problem 

)),(),...,,(),,((max
11 ijjmijjjj

Xx
axaxcxf

U

µµ
∈

, it is usually assumed in the literature 

that the total satisfaction of a decision maker may be described by 

 
)),(),...,,(),,((min)(

11 ijjmijjjjfD axaxcxx µµµαµ ==                         (3.13)

     
The objective is treated in the same manner as the soft constraints (symmetric). 

Consequently, a linear programming problem with soft constraints can be solved by a 

classical linear programming problem as follows; 
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Tang and Wang (1997) are proposed a non-symmetric model for the solution of 

fuzzy nonlinear programming problems. They used r-power type nonlinear 

membership function to describe the fuzzy available resources and fuzzy constraints, 

and penalty coefficients to describe the additional expenses brought by the tolerances 

of resources. In the proposed solution method first a satisfying solution method is 

found by using α- level cuts and then by using the max-min method a crisp optimal 

solution is found. With the max-min method an unconstrained optimization problem 

is obtained. But its objective function is not continuous and derivable, so it cannot be 

solved by traditional optimization methods. To solve this unconstrained optimization 

problem a genetic algorithm with mutation along the weighted gradient direction is 

suggested.  
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Shih et al. (2003) developed three alternative α-level-cuts approaches: single-cut, 

double-cuts, and multiple-cuts, for solving nonlinear programming design problems 

of structuring engineering with fuzzy resources in their paper. After transforming 

fuzzy model into crisp model with α-level cuts, if each α value for the objective and 

constraint functions have the same value than the method is single α-cut approach. If 

a final unique αf value exists in the objective function and a final common αg value 

exists in all constraints functions, than the method is double α-cuts approach. If each 

objective function and constraint has its own final optimum α value [i.e. αf and αi    

(i =1,2,...,m)], the method is called multiple α-cuts approach. 

 

In their article, Tanaka et al. (1984) solved fuzzy linear programming problems with 

fuzzy parameter b and fuzzy decision variables. They concerned to obtain a fuzzy 

solution reflecting ambiguity of fuzzy parameters.  

 

Tanaka et al. used triangular membership functions for the fuzzy parameters. They 

defined the membership function of a fuzzy parameter as, 
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where jj aa 0
0 ,  denote the upper limit and lower limit of the 0-level set of aj, 

respectively. 

 

The membership function of a fuzzy linear function 
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is defined as follows. 
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where ],...,[ 0
1

00
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The α-level set of the fuzzy set y is as follows, 
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Assuming that x ≥ 0, it is obtained that 
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Tanaka et al. (1984) written that “a is greater than b” can be defined as 

ababa =⇔≥ ],[max . And ba
α≥

~
 if kk ba )()( 00 >  and kk ba )()( 00 >  hold for all k ∈ 

[α,1]. 

 

The maximization of a fuzzy set y is defined as follows (Tanaka et al., 1984), 

 

)(maxmax 02
0
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where 121 =+ ww  and ]1,0[, 21 ∈ww . 

 

Using α-level sets of fuzzy parameters and linear equations and the comparison of 

fuzzy numbers, the fuzzy linear programming problem with fuzzy b and x is 

transformed into a conventional linear programming problem with twice the number 

of constraints of the fuzzy linear programming problem by Tanaka et al. 

 

The fuzzy linear programming problem with fuzzy b and x can be written as follows. 
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where ],...,[ 1 inii aaa = , ],...,[ 1 nccc =  and the level α is given a priori. ),( 0
0 xxx =  and 

),( 0
0 ii bbb =  are triangular fuzzy numbers.  

 

The above fuzzy linear programming problem can be reduced to the following 

conventional linear programming problem (Tanaka et al., 1984).  
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As it can be seen from the above examples, type 2 models can be solved by using the 

max-min method and α-cuts as type 1 models. Generally speaking by using these 

methods the fuzzy constrained problems are first transformed into crisp problems 

afterwards they are solved with an appropriate method. If membership functions are 

defined as nonlinear or if the problem becomes nonlinear after transformation, meta-

heuristics are used to solve it.   

 

3.3.3. Type 3 fuzzy models 

  

A fuzzy mathematical program with fuzzy objective coefficients can be stated as 

follows; 
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As in the other fuzzy models, α-cuts are used frequently for solving type 3 fuzzy 

models. Furthermore, several other different methods are also proposed by various 

authors.  

 

Verdegay (1984) transformed type 3 fuzzy models into a crisp parametric 

programming problem by using α-cuts. In a fuzzy linear programming with fuzzy 

objective coefficients there will be a membership function related to each cost taking 

part in the objective, which is an n-vector function of membership functions. 
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In the linear case; 
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Verdegay (1982) has showed that the fuzzy solution of a fuzzy linear-programming 

problem with fuzzy objective coefficients could be obtained according to α-cuts after 

solving the following parametric problem; 
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If  αµ −≥ 1)(c  then   
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As 

j
µ  is continuous and strictly monotone, 1−

j
µ  exists and   

 

)1(1)( 1 αµαµ −≥⇒−≥ −
jjjj cc .                       (3.28)                                                                 

 
So, problem (3.26) turns into the form, 
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This problem is equivalent to the following problem; 
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Each optimal solution of problem (3.30) is also optimal for problem (3.29). Then, the 

following problem is obtained finally; 
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For solving type-3 fuzzy problems Delgado et al. (1990) interrelated two approaches, 

a general approach that is proposed by Delgado et al. (1987) and a particular method 

proposed by Tanaka et al. (1984), and proposed a new method. This new method is 

based on the α-cuts and the upper and lower values of the fuzzy objective 

coefficients.  

 

In the procedure proposed by Wang and Wang (1997), the fuzzy multi objective 

linear programming problem is regarded to be an interval-valued mathematical 

programming problem. From the membership functions of the fuzzy costs, by using 

α-level cut, the costs intervals are obtained and the fuzzy multi-objective linear-

programming problem is transformed into a crisp interval-valued problem. 

 

Zhang et al. (2003) proposed a method that converts a type-3 fuzzy model into a 

multi-objective optimization model with four objectives. If the fuzzy coefficients are 

defined as trapezoidal fuzzy numbers, the objectives of the multi-objective 

optimization model are obtained by using boundary values of the fuzzy numbers. For 

example, for the fuzzy linear programming problem (Zhang et al., 2003);   
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where, the membership functions of 
~

1c  and 
~

2c  are 
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the following  multi-objective optimization is obtained 
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According to Zhang et al. the optimal solution to the multi-objective linear 

programming problem is an optimal solution to the fuzzy linear programming 

problem.  

 

Mavrotas et al. (2003) solved a type-3 linear fuzzy problem by converting the 

problem into a multi-objective linear programming problem as Zhang et al. did. If a 

fuzzy coefficient is defined as ),,( 321

~

iiii cccc = , then for all cij values, an objective 

(for example first objective is ∑= ii xcz 11 ) is formed. After solving this multi-

objective linear problem the optimal solution will be the optimal solution of the 

fuzzy linear programming problem. 

 

3.3.4. Type 4 fuzzy models 

 

A fuzzy mathematical program with fuzzy coefficients of constraints can be written 

in a general form as follows; 
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Buckley et al. (1999) argued that it is possible to train a layered, feed-forward neural 

net to approximate solutions to fuzzy linear programming problems. Various 

parameters of the problem can be defined as triangular fuzzy numbers. Authors made 

use of α-cuts and interval programming in order to solve the fuzzy linear 

programming problem.    

 

3.3.5. Type 5 fuzzy models 

  

A fuzzy mathematical program with fuzzy objectives and fuzzy right hand values can 

be stated as follows; 
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In the literature, for transforming type-5 fuzzy models into crisp models generally 

Zimmermann’s max-min method, α-cuts and Tiwari’s additive model is used. Some 

examples from the literature are given next.      

 

Zimmermann’s max-min approach (Kuruüzüm, 1998) is used for solving type-5 

fuzzy models. The relationship between the constraints and objective function(s) in a 

fuzzy environment is fully symmetric; there is no difference between the constraints 

and objective(s). The fuzzy decision is the selection of the activities which 

simultaneously satisfy objective function(s) and constraints. The fuzzy objective 

function(s) and the fuzzy constraints are characterized by the membership functions. 

The logical ‘and’ corresponds to the ‘intersection’ in the fuzzy environments, so the 

fuzzy decision is the intersection of fuzzy constraints’ and fuzzy objective(s)’ 

membership functions. The optimal point is the maximum point of this intersection 

area (Kuruüzüm, 1998). 

 

Chanas (1983) proposed a parametric approach for solving type-5 fuzzy models. 

Chanas (1983) indicated that, in the approach of the determination of a maximizing 
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decision, only the maximizing alternative is obtained and the information on a 

complete fuzzy decision is lost. A fuzzy decision provides some information on the 

other alternatives close to the maximizing solution. Parametric programming can 

analytically describe the set of solutions incorporating the whole range of possible 

values of the fuzzy decision. 

 

A fuzzy linear programming with fuzzy objective and fuzzy constraints can be 

written as follows; 
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The membership functions of the objective and the constraints are defined as 

follows; 
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where b0 is the possible best solution and the (b0-p0) is the possible worst solution of 

the objective function. The possibly best solution can be obtained by solving the 

linear program with the constraints that have the margin values and the possibly 

worst values can be obtained by solving the linear program with the constraints that 

have the values (bi - pi). The bi values are decided by the decision maker and the 

conditions, and the pi values are the values of the violation admissible. 
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According to Chanas (1983), the fuzzy problem (3.38) should be transformed into a 

parametric programming problem as follows; 
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where, parameter θ (0≤θ≤1) is the degree of constraints violation. 

 

For every admissible solution θx with a fixed parameter θ, the condition  µi(θx)≥1-θ , 

i=1,2,...,m  is valid. For every non-zero basic solution (if pi>0, i=1,2,...,m) there 

exists i such that µi(θx)=1-θ and therefore the common degree of satisfaction of 

constraints is θθµθµ −=Λ= 1)()( xi
i

xc . 

 

Chanas and Kuchta (1998) have solved the fuzzy integer transportation problem. The 

membership functions of the constraints are defined in different forms; linear, 

exponential, power shape and rational. The fuzzy integer transportation problem is 

solved with an iterative algorithm based on α-cuts. The problem is transformed into a 

crisp interval transportation problem and solved for different α values according to 

proposed iterative algorithm.   

 

Roy and Maiti (1998) solved multi-objective inventory models with fuzzy nonlinear 

programming. The objectives and the right hand values are defined as triangular 

fuzzy numbers. The membership functions are defined as linear functions. The fuzzy 

inventory model is solved with the fuzzy nonlinear programming method based on 

Zimmermann (1978) and Lee and Li (1993) and fuzzy additive goal programming 

method (Tiwari et al., 1987). By using these two methods fuzzy inventory model is 

transformed into crisp model and the resultant model is solved with a computer 

program based on the gradient method algorithm.   

 

Chen and Lin (2001) have used fuzzy multi-objective optimization to design the 

optimum dimensions of a conical convective spine. Membership functions of the 

objectives and the constraint are defined as linear functions. For solving the fuzzy 
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problem the max-min method is used. The maximization of the overall membership 

function is performed with a genetic algorithm. 

 

In their paper, Sasaki and Gen (2003) proposed a method for solving fuzzy multiple 

objective optimal system design problems with generalized upper bounding structure 

by hybridized genetic algorithms. The membership functions of the goals and 

constraints are defined as linear. The fuzzy multiple objective problem is 

transformed into a crisp single-objective nonlinear integer programming problem by 

using weighted additive method. The obtained crisp single-objective nonlinear 

integer programming problem was solved by using a hybrid genetic algorithm.  

 

Baykasoğlu et al. (2004) solved a multi-item fuzzy economic order quantity problem 

in their study. The goal and the limit values of the constraints are defined as fuzzy 

numbers. The membership functions of the fuzzy umbers are defined as linear 

functions. The problem is solved with tabu search and simulated annealing 

algorithms without converting the problem into a crisp problem. In the proposed tabu 

search and simulated annealing algorithms the max-min method of Bellman and 

Zadeh is used as the selection criteria.  

 

Amid et al. (2006) modeled a supplier selection problem as a fuzzy multi-objective 

problem. The objectives and demand constraint were defined as triangular fuzzy 

numbers. Membership functions were defined as linear according to Zimmermann 

(1978). The problem was solved according to the weighted additive method (Tiwari 

et al., 1987). 

 

Verma et al. (2005) proposed a dc load flow-based fuzzy optimization model in their 

study. They have used triangular and trapezoidal fuzzy numbers for the constraints’ 

right hand side values. The objective’s membership function is defined by finding 

maximum and minimum values of the objective can take. After defining membership 

functions the fuzzy model is solved by using the max-min method.    
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3.3.6. Type 6 fuzzy models 

  

Fuzzy mathematical programs with fuzzy objective coefficients and fuzzy right hand 

values can be stated as follows; 

 

njmibaxgts

cxf

iijj

jj

,...,1,,...,1
~
},,){,(..

)~,(minmax/

===≥≤
                               (3.42)        

 

Tang et al. (2000) has modeled a multi-product aggregate production planning 

problem as a fuzzy quadratic programming model with fuzzy objectives and fuzzy 

constraints. The fuzzy equations are defuzzified with a preferred acceptable level and 

the fuzzy model is transformed into a crisp model. The obtained crisp model is a 

quadratic programming model and can be solved with any conventional optimization 

technique.  

 

Liu and Kao (2004) have solved fuzzy transportation problems in their study. In their 

model, the cost coefficients, the supply and demand quantities were fuzzy triangular 

and trapezoidal numbers. The fuzzy model was solved with a method based on 

extension principle. A pair of crisp parametric problems is obtained for solving the 

fuzzy model. With this pair of problems, the lower and upper bounds of the objective 

function at different α levels are found. From different values of α, the membership 

function of the objective function is constructed. 

 

3.3.7. Type 7 fuzzy models 

 

A fuzzy mathematical programming model with fuzzy objective coefficients and 

fuzzy left hand values can be stated as follows; 

 

njmibaxgts

cxf

iijj

jj

,...,1,,...,1},,){~,(..

)~,(minmax/

===≥≤
                               (3.43)           

 

Sakawa and Yano (1989) have presented an interactive decision making method for 

multi-objective nonlinear programming problems with fuzzy parameters. In the 

presented method, firstly, the fuzzy problem is transformed into a non-fuzzy α-multi-
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objective nonlinear programming problem by using α-cuts. According to the 

presented interactive algorithm the individual minimum and maximum of each 

objective function under the given constraints for α = 0 and α = 1 is calculated. Then, 

the decision maker selects an initial value of α and reference levels for the objectives. 

For the specified α and reference values, the obtained non-fuzzy α-multi-objective 

nonlinear programming problem is transformed into a minimax problem and solved. 

The minimax problem is used for generating an α-Pareto optimal solution. If the 

decision maker does not satisfy with the current values of the objectives and α, 

he/she updates the reference levels and/or the degree of α and the problem is solved 

again.   

 

Iskander (2005) suggested an approach for solving a stochastic fuzzy linear 

programming problem.  The parameters, objective coefficients and constraint 

coefficients are defined as triangular or trapezoidal fuzzy numbers. In the suggested 

approach, two possibility and two necessity dominance indices that have been 

introduced by Dubois and Prade (1983) is used. The chance-constrained approach 

and the α-cut are used to transform the stochastic fuzzy problem into its 

deterministic-crisp equivalent, according to each of the four dominance indices. The 

α-cut technique is utilized for the membership functions to derive closed crisp 

intervals. For different values of α, and by comparing the closed crisp intervals, the 

solutions are generated according to each of the four dominance indices and the most 

proper solution is chosen. 

 

In their study, Abo-Sinna et al. (2006) have studied the stability of multi-objective 

dynamic programming problems with fuzzy parameters in the objective functions 

and in the constraints. Using α-cuts the fuzzy multi-objective dynamic programming 

problem is converted into a non-fuzzy parametric multi-objective dynamic 

programming problem. They have proposed an interactive fuzzy decision making 

algorithm for the determination of any subset of the parametric space which has the 

same corresponding α-Pareto optimal solution. 
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3.3.8. Type 9 fuzzy models 

  

Type 9 fuzzy models are fuzzy mathematical programming models in which 

coefficients of the constraints and right hand values are defined as fuzzy numbers. 

Type 9 fuzzy models can be stated as follows; 
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The ranking of fuzzy numbers are generally used for the solution of type 9 fuzzy 

models. For a decision vector, the left hand side of the soft constraints will be a fuzzy 

number and the right hand side will be another fuzzy number. For this decision 

vector, to decide the feasibility, the left hand side and the right hand side of the 

constraints should be compared. Therefore, ranking methods for fuzzy numbers are 

generally used.      

 

Nakahara (1998) proposed two kinds of ranking criteria for fuzzy numbers and 

showed how these ranking criteria can be used for solving fuzzy models in which the 

parameters of the constraints are fuzzy numbers. The proposed ranking criteria are 

specified by three parameters: type, α-level and the lowest permitted degree of fuzzy 

inequalities. The decision maker decides α-level and the lowest permitted degree, 

and the fuzzy constraint is transformed into a crisp equivalent according to the one of 

the ranking criteria.     

 

Fang et al. (1999) have proposed a solution method based on ranking of fuzzy 

numbers for the solution of type 9 fuzzy models. The fuzzy linear programming 

problem with fuzzy A and b is reduced to a linear semi-infinite programming 

problem by using a specific ranking method. The obtained linear semi-infinite 

programming problem is solved with a cutting plane algorithm.   

 

Liu (2001) has proposed a different method for solving type 9 fuzzy models based on 

the satisfaction degree of the constraints. The satisfaction degree of the constraints is 

measured according to a new ranking method. The definition of the ranking method 

depends on the type of the fuzzy numbers (triangular or trapezoidal). The fuzzy 
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linear programming problem with fuzzy parameters A and b are transformed into a 

crisp parametric programming problem according to the ranking method. The 

parameters of the obtained crisp parametric programming problem are the constraint 

satisfaction degrees. The objective distribution function can be obtained by solving 

the crisp parametric problem for different constraint satisfaction degrees. 

 

3.3.9. Type 11 fuzzy models  

  

A fuzzy mathematical programming model with fuzzy objectives, fuzzy objective 

coefficients and fuzzy right hand values can be stated as follows;  
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Mondal and Maiti (2002) have solved multi-item fuzzy economic order quantity 

models. The membership functions of the fuzzy parameters are assumed to be non-

increasing continuous linear membership functions. The fuzzy nonlinear model is 

transformed into a crisp nonlinear model by using the max-min method. The 

obtained crisp nonlinear model is solved according to a classical optimization 

technique (using Lagrange multipliers according to Kuhn and Tucker conditions) 

(Roy and Maiti, 1997) and genetic algorithm.  

 

Yadavalli et al. (2005) solved fuzzy multi-item economic order quantity models with 

no constraint and with one constraint. The only constraint is the limitation of the 

average number of stocked units in the model with one constraint. The set-up cost, 

the holding cost, the total cost and the average number of stocked units are defined as 

fuzzy numbers. The membership functions of the set-up cost and the holding cost are 

defined as linear. The membership functions of the total cost and the average number 

of stocked units are defined as linear, parabolic and cubic in three cases. The fuzzy 

parameters are transformed into crisp using α-cuts and the fuzzy model is 

transformed into a crisp maximization (the objective is max α) model. In the study, 

the multi-item inventory model is applied in manpower planning problem. 
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3.3.10. Type 12 fuzzy models  

 

Type 12 fuzzy models are the models with fuzzy parameters c, b and A. Type 12 

fuzzy models are studied frequently in the literature as. Various authors proposed 

different solution procedures.    

 

Type 12 fuzzy mathematical programming models can be stated as follows; 
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A parametric programming model has been proposed by Carlsson and Korhonen 

(1986) for type 12 problems. The fuzzy parameters are specified with intervals. The 

parameters are defined as R-type fuzzy numbers. The best value of the objective 

function, at a fixed level of precision, is tried to be found by using parameter values 

of the same level of precision. This process is the same as in α-cuts. The fuzzy 

problem is converted into a parametric programming problem by using α-cuts. The 

obtained crisp problem can be solved by using any conventional method.   

 

Gen et al. (1998) proposed a neural network technique for solving fuzzy multi-

objective linear programming problems in which parameters c, b, A are defined as 

fuzzy numbers. In the proposed procedure first the fuzzy multi-objective linear 

programming problem is transformed into crisp multi-objective linear programming 

problem by using α-cuts. Then the obtained crisp multi-objective linear 

programming problem is solved with each single objective to obtain positive and 

negative ideal solutions. After that, using positive and negative ideal values the crisp 

multi-objective linear programming problem is converted into a crisp linear 

programming problem. After this step the crisp linear programming problem is 

solved with proposed neural network technique based on a penalty method.  

 

Wang and Fang (2001) have solved a fuzzy aggregate production planning problem 

with multiple objectives. Some parameters in the objectives and the constraints are 

defined as trapezoidal fuzzy numbers. In their study, an interactive solution 

procedure is developed. In the proposed interactive solution procedure first the fuzzy 
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data are modeled (the fuzzy parameters are modeled as trapezoidal fuzzy numbers) 

and membership functions of fuzzy parameters and fuzzy constraints are defined. 

Then the membership function to obtain a satisfactory solution is determined. After 

defining membership functions, the fuzzy problem is converted into a crisp problem 

by using the max-min method. The attained crisp problem can be solved with any 

solution technique. After the solution is derived, the interactive decision process is 

implemented and the decision maker accepts the solution or modifies the problem.  

 

Sakawa and Nishizaki (2002) introduced an interactive fuzzy programming method 

through genetic algorithm for solving two-level non-convex programming problems 

with fuzzy parameters. The fuzzy parameters in the problem formulation process are 

assumed to be characterized as fuzzy numbers. Using the α-level sets of fuzzy 

numbers, the corresponding crisp two-level non-convex programming problem is 

attained. Fuzzy goals are assigned for the non-convex objective functions at both 

levels. According to these fuzzy goals, a membership function is quantified for each 

objective. After the membership functions of the objectives are constituted, the 

minimum of the membership values are tried to be maximized. The overall 

satisfactory solution is balanced between both levels. The satisfactory solution well 

balanced between both levels is obtained through a genetic algorithm.  

 

Iskander (2002) proposed an approach to solve fully fuzzified linear programming 

problems and fully fuzzified multi objective linear programming problems via 

comparison of fuzzy numbers using possibility programming. In the study it was 

assumed that the fuzzy parameters in the fuzzy model are defined as triangular or 

trapezoidal fuzzy numbers. First, using comparison of fuzzy numbers the possibility 

that x belongs to a feasible constraint i and the possibility that the objective function 

Z equal to any value z is presented. After that according to α-cuts and the 

membership functions presented for the possibilities of x belongs to a feasible 

constraint i and the objective function Z equal to any value z, the equivalent crisp 

problem is obtained. The obtained crisp problem is solved with any appropriate 

linear programming method.    

 

Chen and Weng (2003) solved a quality function deployment problem in fuzzy 

nature. The relationships between customer requirements and engineering design 
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requirements as well as among the design requirements are defined as fuzzy. A fuzzy 

model is formulated to determine the fulfillment level of each design requirement for 

maximizing the customer satisfaction. The membership functions of the fuzzy 

normalized relationships are defined via α-cuts and the extension principle. New 

expressions are proposed for the fuzzy numbers to obtain more shortened α-cuts, 

such that fuzzy numbers can be determined in terms of α-cuts with less uncertainty. 

After that, the formulated fuzzy model is solved using α-cuts and the defined 

membership functions.  

 

Jimenez et al. (2007) proposed a ranking method for fuzzy numbers (Jimenez, 1996) 

and used this ranking method for solving type 12 fuzzy models. The ranking method 

is used so as to define the feasibility degree of the decision vector and the acceptable 

optimal solution concept. In the proposed ranking method the expected interval and 

the expected value of a fuzzy number is used. The degree of one fuzzy number is 

bigger than another is defined with a membership function. The constraints of a 

fuzzy mathematical model will be transformed into crisp by using the ranking 

method to obtain α-feasible solutions. The fuzzy cost coefficients (c) are replaced 

with expected values to obtain α-acceptable optimal solution. After those 

transformations, the fuzzy problem is converted into a crisp α-parametric problem. 

For solving the obtained crisp α-parametric problem Jimenez et al. (2007) proposed 

an interactive method. In the crisp α-parametric problem there are two conflicting 

objectives: to improve the objective function value and to improve the degree of 

satisfaction of constraints. A better value to the optimal objective function implies a 

lesser degree of feasibility of the constraints. In the interactive method a reasonable 

solution is tried to be obtained (Jimenez et al., 2007). In the first step of the 

interactive method, the crisp α-parametric problem is solved for different α values 

(the α values are determined by the decision maker). For each α value the solution of 

the problem and the possibility distribution of the objective are obtained. After 

seeing the possibility distribution of the objective for each α value, a goal and a 

tolerance threshold can be determined for the objective. Then, in accordance with 

these values a membership function is defined for the objective. In the second step, 

the degree of satisfaction of the fuzzy goal by each α-acceptable solution is 

calculated by using the index proposed by Yager (1979). In the third step of the 
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method, it is tried to find a balanced solution between the feasibility degree and the 

degree of satisfaction using the max-min method. 

 

3.3.11. Type 13 fuzzy models   

 

Type 13 fuzzy models are the models with fuzzy parameters z, b and A. Type 13 

fuzzy mathematical programming models can be stated as follows; 
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Cadenas and Jimenez (1994) proposed a solution method for type 13 fuzzy models 

according to Bellman and Zadeh’s maximizing decision. An interactive method is 

introduced for the solution of type 13 multi-objective fuzzy programming problem. 

A decided linear ranking function will be used for transforming fuzzy constraint set 

into an ordinary constraint set. After transforming fuzzy constraint set into crisp 

constraint set, only the objective remains as fuzzy. This fuzzy model with fuzzy 

objectives can be solved according to Bellman and Zadeh’s maximizing decision. 

The membership function for each objective function is formed by obtaining the 

individual minimum and maximum values of each objective function in the given 

constraint domain. 

 

3.3.12. Type 15 fuzzy models 

 

In type 15 fuzzy models all parameters and the objective(s) of a mathematical 

programming problem are defined as fuzzy. Type 15 fuzzy models can be stated as 

follows; 

 

njmibaxgts

cxf

iijj

jj

,...,1,,...,1
~
},,){~,(..

)~,(
~

minmax/

===≥≤
                             (3.48)   

               

Roy and Maiti (1998) solved fuzzy multi-item inventory models of deteriorating 

items with stock-dependent demand. Two fuzzy models are constructed for the 

inventory problem. In one fuzzy model the objectives and the right hand side value 
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of one of the constraints are accepted as imprecise. In the other fuzzy model, some of 

c, b, A parameters and the objectives are fuzzy. The fuzzy parameters are defined as 

triangular fuzzy numbers and the membership functions of the goals of the objectives 

are defined as linear. The fuzzy models are solved with two methods and the 

solutions are compared. One of the methods is the fuzzy nonlinear programming 

method based on Zimmermann’s max-min method and the method of Lee and Li 

(1993). The other method is fuzzy additive goal programming method of Tiwari et al. 

(1987). The obtained crisp problems from the two methods are nonlinear. For the 

solution of the obtained crisp nonlinear programming problems, a computer program 

based on the gradient method algorithm is used. 

 

3.4. Conclusions 

 

In this section of the thesis, fuzzy mathematical programming models are reviewed 

and classified into fifteen types according to the fuzzy components they include. A 

literature review is carried out in order to see which types of problems are more 

frequently studied and what type of solution approaches are implemented. After the 

literature review, it is observed that the mostly frequently studied fuzzy mathematical 

programming models are;  

-the fuzzy mathematical programming models with fuzzy objective(s) (type 1 fuzzy 

models), 

-the fuzzy mathematical programming models with fuzzy right hand values of 

constraints (type 2 fuzzy models), 

-the fuzzy mathematical programming models with fuzzy cost coefficients (type 3 

fuzzy models),  

-the fuzzy mathematical programming models with fuzzy objective(s) and fuzzy 

right hand values of constraints (type 5 fuzzy models), 

-the fuzzy mathematical programming models with fuzzy cost coefficients, fuzzy 

right hand values of constraints and fuzzy coefficients of constraints (type 12 fuzzy 

models).  

 

In the literature, different solution approaches are proposed for the solution of these 

fifteen types of fuzzy models. Zimmermann’s max-min method and α-cuts are used 

very frequently as the solution approaches. These two methods can be applied to 
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almost all types of fuzzy models. For type 9 and type 12 fuzzy models, solution 

approaches which are based on ranking methods of fuzzy numbers are proposed. 

Besides these, some authors proposed different specific techniques. The most 

common idea of the proposed approaches is to transform the fuzzy model into a crisp 

model. After the transformation process, the obtained model is solved by using a 

conventional method according to the form of the resultant model (linear or 

nonlinear). The main challenge in solving fuzzy mathematical programming 

problems is to solve them directly. In transformation process some information can 

be lost, the number of constraints can be increased etc., so transformation is not 

always helpful. For a direct solution, employing fuzzy number ranking functions and 

procedures can be a very effective approach. 
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CHAPTER 4 

 

DIRECT SOLUTION OF FUZZY MATHEMATICAL 

PROGRAMMING MODELS 

 

4.1. Introduction 

  

In this chapter, the proposed direct solution of fuzzy mathematical programming 

models is explained and shown on two small examples. The explanation of the 

proposed solution method is given in section 4.2. The metaheuristic algorithms used 

in the solution process are explained briefly in section 4.3. Two small examples are 

solved using the proposed method in section 4.4.    

 

4.2. Direct Solution Method for Fuzzy Mathematical Programming Problems  

 

In the literature, there are various studies on solving fuzzy mathematical 

programming models. In a fuzzy mathematical programming model all or some of 

the parameters can be defined as fuzzy numbers. For fuzzy mathematical 

programming models with various fuzzy parameters, different optimization 

algorithms are proposed. However, most of the solution approaches are based on the 

fuzzy decision concept proposed by Zimmermann (1976). Other common approach 

is to use fuzzy ranking procedures as a part of the solution mechanism for solving 

fuzzy mathematical programs. In the literature, there are various studies in which 

different fuzzy ranking procedures used for the solution of fuzzy mathematical 

models (Tanaka et al. 1984, Campos and Verdegay 1989, Nakahara 1998, Fang et al. 

1999, Cadenas and Verdegay 2000, Iskander 2002, Jimenez et al. 2000, 2007, 

Baykasoğlu and Göçken 2007). In all these solution approaches, fuzzy mathematical 

programming models were first transformed into a crisp equivalent then solved by a 

classical solution approach.   
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In this thesis, a direct solution method is proposed for solving fuzzy mathematical 

programming problems. In the proposed direct solution method ranking methods for 

fuzzy numbers and metaheuristic algorithms are used. Ranking methods for fuzzy 

numbers are used to rank the objective function values and to determine the 

feasibility of the constraints. In a fuzzy mathematical programming problem, any of 

the parameters can be defined as fuzzy numbers. In this part of the thesis, the 

decision variables are accepted as crisp. When a crisp number is multiplied with a 

fuzzy number, the result will be the same kind of fuzzy number. If the cost 

coefficients of the objective function are defined as fuzzy numbers, the objective 

function values of the generated solution vectors will be fuzzy numbers. Therefore, 

in the selection of the best solution vector, ranking of fuzzy numbers is used. If the 

parameters of the constraints are defined as fuzzy numbers, the right hand values and 

left hand values of the constraints will be fuzzy numbers. So, the feasibility of the 

constraints for the generated solution vectors will be determined via ranking of two 

fuzzy numbers (i.e. comparing right and left hand side fuzzy numbers for the 

constraint functions). If only some of the parameters of the constraints are defined as 

fuzzy numbers, still, ranking methods for fuzzy numbers can be used (i,e. left hand 

side coefficients are defined as crisp). Because, ranking methods for fuzzy numbers 

can rank a fuzzy number with a crisp number.  

 

In the proposed direct solution method, ranking methods for fuzzy numbers are used 

to rank the objective function values and to determine the feasibility of the 

constraints. A metaheuristic algorithm is used to carry out the ranking process. The 

advantage of the direct solution method is that the fuzzy mathematical programming 

problems can be solved without any necessity to transform them into their crisp 

equivalents. In the transformation process, some information can be missed. 

Essentially, it can be very hard to transform many problems into their crisp 

equivalents and sometimes the obtained crisp equivalents can be nonlinear. When the 

obtained crisp equivalents are nonlinear,  meta-heuristics algorithms should be used 

again for the solution. Therefore transformation might not be always advantageous. 

Besides, in literature, the fuzzy parameters’ membership functions are accepted as 

linear and in this way the transformation process can be applied. For example, the 

ranking functions are used for transformation into crisp equivalent and usually the 

fuzzy parameters are defined as triangular or trapezoidal fuzzy number. The ranking 
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methods for triangular or trapezoidal fuzzy numbers are simple. But, when the fuzzy 

numbers are defined in different shapes, mathematically, the ranking methods not 

easy to use in transformation process.  

 

4.3. Metaheuristic Algorithms Used in the Direct Solution Method 

 

In the thesis, for the solution of the problems, two metaheuristic algorithms are used; 

the particle swarm optimization algorithm and the tabu search algorithm. These two 

metaheuristic are selected because the implementation of them is not very hard and 

they are adequate for problems with continuous variables. Some of the problems are 

solved via particle swarm optimization algorithm, some of them are solved via tabu 

search algorithm. These two metaheuristic algorithms are briefly explained in this 

section.  

 

4.3.1. The particle swarm optimization algorithm 

   

Particle swarm optimization (PSO) is an extremely simple algorithm that seems to be 

effective for optimizing a wide range of functions (Eberhart and Kennedy, 1995). 

 

A PSO algorithm maintains a swarm of particles, where each particle represents a 

potential solution. A swarm is similar to a population, while a particle is similar to an 

individual. The particles are flown through a multidimensional search space, where 

the position of each particle is adjusted according to its own experience and that of 

its neighbors (Engelbrecht, 2005).  

 

Two PSO algorithms have been developed which differ in the size of their 

neighborhoods; global best and local best PSO. For the global best PSO, the 

neighborhood for each particle is the entire swarm (Engelbrecht, 2005). In local best 

PSO, particles have information only of their own and their nearest array neighbours’ 

bests, rather than that of the entire group (Eberhart and Kennedy, 1995). In this thesis, 

global best PSO algorithm is used.  

 

Let xi(t) denote the position of particle i in the search space at the time step t. The 

position of the particle is changed by adding a velocity, vi(t), to the current position, 
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)1()()1( ++=+ tvtxtx iii                   (4.1) 

 

It is the velocity that drives the optimization process, and reflects both the 

experiential knowledge of the particle and socially exchanged information from the 

particle’s neighborhood (Engelbrecht, 2005). The PSO concept consists of, at each 

time step, changing the velocity of each particle toward its particle best and global 

best. Acceleration is weighted by a random term, with separate random numbers 

being generated for acceleration toward particle best and global best (Eberhart and 

Kennedy, 1995). 

 

For global best PSO, the velocity of particle i is calculated as (Engelbrecht, 2005); 

 
)]()(ˆ)[()]()()[()()1( 2211 txtytrctxtytrctwvtv ijjjijijjijij −+−+=+                              (4.2) 

 
where vij(t) is the velocity of particle i in dimension j=1,…,nx at time step t, xij(t) is 

the position of particle i in dimension j at time step t, w is the inertia weight, c1 and c2 

positive acceleration constants, r1j(t) and r2j(t) ~ U(0,1) are random values in the 

range [0,1], yij(t) is the personal best position of particle i, )(ˆ ty j
 is the global best 

position at time step t.   

 

Inertia weight w controls the impact of previous historical values of particle velocity 

on its current one. A larger inertia weight pressures toward global exploration while 

a smaller inertia weight pressures toward fine-tuning the current search area. The 

acceleration constants c1 and c2 represent the weighting of the stochastic acceleration 

terms that pull each particle towards pbest and gbest positions. Thus, adjustment of 

these constants changes the amount of tension in the system (Dong et al., 2005) 
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The global best PSO algorithm can be summarized as follows (Engelbrecht, 2005). 

 

Create and initialize an nx-dimensional swarm, S; 
repeat 
 for each particle i=1,…,S.ns do 
  // set the personal best position 
  if f(S.xi) < f(S.yi) then 
      S.yi = S.xi ; 
  end 
  // set the global best position  
  if f(S.yi) < f(S. ŷ ) then 
      S. ŷ = S.yi ; 

  end 
 end 
 for each particle i = 1,…,S.ns do 
    update the velocity using equation (2); 
    update the position using equation (1); 
 end 
until stopping condition is true.  
   

4.3.2. Tabu search algorithm 

 

Tabu search has its origins in combinatorial procedures applied to nonlinear covering 

problems in late 1970s. tabu search is a higher level heuristic procedure for solving 

optimization problems, designed to guide other methods to escape the trap of local 

optimality. Tabu search is a stochastic neighborhood search algorithm that is first 

suggested and applied by Glover (1990, 1993). The basic tabu search algorithm 

operates starts from a randomly selected or a known feasible solution. From this 

initial solution, a set of neighborhood solutions are generated using a number of 

previously determined movement strategies. The objective function is evaluated for 

each solution in the set of neighborhood solutions and the best neighbor replaces the 

current solution, even though it may be worse than the initial solution: in this way it 

is possible to escape from the local minima (or maxima) of the objective function. 

The algorithm iterates, repeating the procedure with the new solution, until some 

given stopping condition(s) is reached. However, the algorithm as described above 

may recycle. To avoid this situation, certain attributes of the last k replaced solutions 

are stored in a list, which is called the tabu list. The neighbors of the current solution 

that satisfy conditions given by the tabu list are systematically eliminated unless they 

meet an aspiration criterion, so at each iteration the algorithm is forced to select a 
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point not recently selected. The main stages of a tabu search algorithm are; initial 

solution, generation of neighbors, selection, aspiration, and updating (Baykasoğlu 

and Göçken, 2006). The flowchart of the simple tabu search algorithm is given in 

figure 4.1.  

 

Start

Initial solution
Randomly select a feasible solution s as

initial current point

Generation of neighbors
Apply to s available moves to generate
n feasible neighbors not belonging to

the tabu list

Selection
Select the best neighbor of s as the

 new current point

Update
Update the tabu list and the current

best solution

Stopping conditions
reached?

Exhibit the best point
found

Stop

N

Y

 

Figure 4.1. Flowchart of the simple tabu search algorithm (Baykasoğlu et al., 1999a) 
 

Baykasoğlu et al. (1999a) adapted tabu search algorithm for solving multiple 

objective optimization problems. The solution structure of the tabu search algorithm 

enables to work with more than one solution (neighborhood solutions) at a time. This 

situation gives the opportunity to evaluate multiple goals simultaneously. To enable 

the original tabu search algorithm to work with more than one goal the selection and 

updating stages are redefined. Other stages are identical to the original tabu search 
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algorithm (Baykasoğlu et al., 1999a). In section 5.2 for solving fuzzy aggregate 

production planning problem the tabu search algorithm for multiple goals is used.   

 

The  main stages of the tabu search algorithm can be defined as follows. 

 

Initial solution: An initial random feasible solution vector (or a previously known 

feasible solution vector) that satisfies all hard constraints. 

 

Generation of neighborhood solutions: A neighbor solution is obtained by changing 

the value of a randomly selected decision variable from the solution vector. Tabu 

search works with population of solutions therefore; this action is performed 

repetitively to obtain previously determined numbers of neighbor solutions (S*). To 

generate a neighbor for any type of variable, new values are formulated as follows 

(Baykasoglu et al. 1999a, 1999b). 
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Discrete variable x d if x di l random stepd i li

*
( [( ( ) )* ])= =+ −integer 2* 1  

Continuous variable x x random stepci i i
* ( * ( ) ) *= + −2 1  

(4.3) 

 
where: 

xi :    Value of the ith variable prior to the neighborhood move. 

xi
* :   Value of the ith variable after the neighborhood move. 

random( ):   Random number generator, where random( )∈(0,1). 

stepii , stepdi , stepci :  Step size for integer, discrete and real  variables. 

dl :    The l th element of the discrete variable subset Xd. 

integer[ ]:   Function to convert a real value to an integer value. 

 

According to the types of variables used in the model, the appropriate movement 

strategies are used to generate a previously determined number of feasible, non-tabu, 

neighborhood solutions from the current seed solution (Baykasoğlu and Göçken, 

2006). 
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Selection of the current best solution vector: The selection of the current best 

solution vector from neighborhood solutions is performed simply as follows. For 

each neighborhood solution vector, the objective function values are calculated and 

then if the objective is maximization the one with the maximum value, if the 

objective is minimization the one with the minimum value is selected as the current 

best solution.  

 

If the problem is a multiple objective optimization problem, selection of the current 

best solution is performed using the pareto optimality logic (Baykasoğlu, 2001). If 

the problem is a multiple objective optimization problem and priorities are given to 

the objectives, the current best solution is decided according to these priorities. The 

current best solution will be the solution that maximizes or minimizes the objective 

of first priority. If the values of the first prior objective for two feasible solutions are 

equal, the solution that maximizes or minimizes the second prior objective will be 

selected and so on. 

 

Updating the best-known solution vector: The initial feasible solution vector is also 

recorded as the best-known initial solution vector. In the subsequent iterations, the 

best solution vector for each method is updated as follows. The objective function 

value for the current best solution vector and the best-known solution vector are 

compared. The best-known solution vector is updated in the case of improvement. If 

the problem is a multiple objective optimization problem and priorities are given to 

the objectives, the first priority objective value for the current best solution vector 

and the best solution vector is checked. If the current best solution has the 

maximum/minimum objective function value, the best solution vector is updated and 

the current best solution will be the new best-known solution. If the objective 

function values for the first priority objective of the current best solution vector and 

the best-known solution vector are equal, the objective function values for second 

priority goal are checked. If the current best solution has the maximum/minimum 

objective function value, the best solution vector will be updated and the current best 

solution will be the new best-known solution, and so on. 

 

Tabu list: Accepted solutions for an arbitrarily defined number of previous moves 

are considered as tabu, because to allow one of them may trap the algorithm into 
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cycling. The tabu list is circular; when it is full, a new item replaces the head of the 

list. 

 

Aspiration criteria: Any move that improves the best-known solution is accepted, 

even if the move is tabu. 

 

Termination: If a previously determined number of iterations is reached, or if there 

is no improvement in the best-known solution in the last n iterations the algorithm 

terminates. 

 

4.4. Solution of Two Examples Using the Proposed Direct Solution Method  

  

Two example problems are solved using the proposed direct solution method, a peak 

load pricing problem and a product mix problem. In each instance, different 

parameters of the problems are defined as triangular fuzzy numbers and solved using 

the proposed direct solution method.  

 

4.4.1. Peak load pricing problem 

  

A peak load pricing example is handled and solved using the proposed direct solution 

method to prove that fuzzy mathematical programming problems can be solved 

effectively by using ranking methods of fuzzy numbers without any necessity of 

transformation into crisp equivalent. As stated before, some information can be 

missed in transformation process and the obtained crisp equivalent can be nonlinear. 

When the obtained crisp equivalent is nonlinear, a meta-heuristics algorithm should 

be used again for the solution. Therefore, transformation might not be always 

advantageous. The handled peak load problem is a nonlinear problem, so after the 

transformation the obtained crisp problem will be a nonlinear problem.  

 

The crisp mathematical programming model of the handled peak load pricing 

problem can be written as follows (Ribeiro and Varela, 2003).     
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The solution of the crisp mathematical programming model of the handled peak load 

pricing problem is F = 26.53, P = 70.31, C = 27.5 and objective function value z = 

2202.3.  

 

In the following subsections, different parameters of the peak load pricing problem 

are defined as triangular fuzzy numbers. In each instance, the problem is solved 

using the proposed direct solution method. The peak load pricing problem is solved 

by employing four different fuzzy ranking methods (the signed distance method, the 

integral value method, Chen and Chen’s method and the ranking of fuzzy numbers 

through the comparison of their expected intervals) and the PSO algorithm. In order 

to solve the problem directly, the global best PSO algorithm is used. In the solution 

of the problem, the parameters of the algorithm are taken as follows; inertia weight  

w = 0.4, individual and sociality weights c1 = c2 = 1.4962, n = 20 and the number of 

iterations is 1000. For the solution of the problem computer programs are written in 

C language. For each ranking method, different computer programs are written for 

the solution of the problem. But, for the same ranking method for each instance only 

the data is changed. The ranking methods for fuzzy numbers can rank a fuzzy 

number with a crisp number and two crisp numbers with each other truly.  

 

4.4.1.1. The peak load pricing problem with fuzzy objective function coefficients  

  

In this stage, only the coefficients of the objective function are determined as 

triangular fuzzy numbers and solved with the proposed method. The peak load 

pricing problem with fuzzy objective function coefficients can be written in 

mathematical form as follows.  
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The solution of the problem using the signed distance method is; F = 26.53,              

P = 70.31, C = 27.5 and the triangular possibility distribution of the objective 

function is z = (1982.066; 2002.296; 2422.525). Triangular possibility distribution of 

the objective function is determined after finding the optimal solution vector. The 

cost coefficients of the problem are triangular fuzzy numbers, so by calculating the 

objective function value by using minimum, middle and maximum points of the cost 

coefficients separately, the possibility distribution of the objective function can be 

obtained. The solution is same as the crisp solution. 

 

The solution of the problem using the Chen and Chen’s method is; is same as the 

solution obtained from the signed distance method and the crisp solution.     

 

The problem is solved for different alpha values using the integral value method. The 

problem is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions and 

the possibility distributions of the objective for each α value are given in table 4.1.  

  

Table 4.1. α-acceptable solutions of the peak load pricing problem with fuzzy 
objective function coefficients for the integral value method 
 
Feasibility 
degree, α 

Decision vector Possibility distribution of the 

objective value, )(~0 αz  

0.5 F = 26.54, P = 70.347, C = 27.48 (1982.066; 2202.295; 2422.524) 

0.6 F = 26.54, P = 70.327, C = 27.49 (1982.066; 2202.296; 2422.525) 

0.7 F = 26.54, P = 70.347, C = 27.48 (1982.066; 2202.295; 2422.524) 

0.8 F = 26.54, P = 70.347, C = 27.48 (1982.066; 2202.295; 2422.524) 

0.9 F = 26.533, P = 70.325, C = 27.49 (1982.066; 2202.296; 2422.525) 

1.0 F = 26.531, P = 70.369, C = 27.468 (1982.065; 2202.294; 2422.523) 
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For different α values, the solutions differ slightly as seen in the table. The solutions 

are nearly the same with the solutions obtained from the signed distance and the 

Chen and Chen’s method (Chen and Chen, 2003).  

 

For the expected interval method the problem is solved for different alpha values. 

The problem is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions 

and the possibility distributions of the objective for each α value are given in table 

4.2.  

  

Table 4.2. α-acceptable solutions of the peak load pricing problem with fuzzy 
objective function coefficients for the expected interval method  
 
Feasibility 
degree, α 

Decision vector Possibility distribution of the 

objective value, )(~0 αz  

0.5 F = 26.522, P = 70.327, C = 27.488 (1982.066; 2202.296; 2422.525) 

0.6 F = 28.357, P = 72.684, C = 27.229 (1970.679; 2189.643; 2408.607) 

0.7 F = 25.393, P = 69.149, C = 28.463 (1976.048; 2195.608; 2415.169) 

0.8 F = 31.398, P = 81.483, C = 25.817 (1883.553; 2092.837; 2302.121) 

0.9 F = 28.983, P = 70.061, C = 30.298 (1954.643; 2171.826; 2389.009) 

1.0 F = 32.531, P = 63.285, C = 37.101 (1870.478; 2078.309; 2286.140) 

 

The solutions obtained by using the expected interval method is different from the 

solutions obtained by using the other methods.  

   

4.4.1.2. The peak load pricing problem with fuzzy right hand values  

  

In this stage, only the right hand values of the constraints are defined as triangular 

fuzzy numbers and solved with the proposed method. The peak load pricing problem 

with fuzzy right hand values of the constraints can be written in mathematical form 

as follows.  
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The solution of the problem obtained using the signed distance method is;                 

F = 26.516, P = 70.151, C = 27.576 and the objective function value is z = 2002.284. 

 

The solution of the problem obtained using the Chen and Chen’s method is the same 

as the solution obtained using the signed distance method.  

 

The solutions of the problem obtained using the integral value method for each α 

value are given in table 4.3.  

  

Table 4.3. α-acceptable solutions of the peak load pricing problem with fuzzy right 
hand values for the integral value method  
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 F = 26.525, P = 70.258, C = 27.523 2202.295 

0.6 F = 26.531, P = 70.272, C = 28.117 2196.295 

0.7 F = 26.518, P = 70.284, C = 28.709 2190.296 

0.8 F = 26.533, P = 70.171, C = 29.367 2184.287 

0.9 F = 26.523, P = 70.266, C = 29.919 2178.295 

1.0 F = 26.533, P = 70.298, C = 30.504 2172.296 

 

For the expected interval method the problem is solved for α = {0.5; 0.6; 0.7; 0.8; 

0.9; 1.0}. The obtained solutions and the objective fuction value for each α value are 

given in table 4.4.  

  

Table 4.4. α-acceptable solutions of the peak load pricing problem with fuzzy right 
hand values for the expected interval method  
 
Feasibility 
degree, α 

Decision vector The objective function value 

0.5 F = 26.526, P = 70.258, C = 27.523 2202.295 

0.6 F = 26.531, P = 70.272, C = 28.117 2196.295 

0.7 F = 26.518, P = 70.284, C = 28.709 2190.296 

0.8 F = 26.533, P = 70.171, C = 29.367 2184.287 

0.9 F = 26.523, P = 70.266, C = 29.919 2178.295 

1.0 F = 26.533, P = 70.298, C = 30.504 2172.296 
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The solutions obtained by using the expected interval method is same as the solutions 

obtained by using the integral value method.  

 

4.4.1.3. The peak load pricing problem with fuzzy left hand values  

  

In this stage, only the left hand values of the constraints are defined as triangular 

fuzzy numbers and solved with the proposed method. The peak load pricing problem 

with fuzzy coefficients of the constraints can be written in mathematical form as 

follows.  
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The solution of the peak load pricing problem with fuzzy left hand values obtained 

using the signed distance method is; F = 26.537, P = 70.316, C = 27.495 and the 

objective function value is z = 2002.296. 

 

The solution of the peak load pricing problem with fuzzy left hand values obtained 

using the Chen and Chen’s method (Chen and Chen, 2003) is; F = 26.539,                

P = 70.364, C = 27.471 and the objective function value is z = 2002.294. It is slightly 

different from the solution obtained using the signed distance method.  

 

For the integral value method the peak load pricing problem with fuzzy left hand 

values is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The solutions of the problem 

obtained using the integral value method for each α value are given in table 4.5.  
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Table 4.5. α-acceptable solutions of the peak load pricing problem with fuzzy left 
hand values for the integral value method  
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 F = 26.534, P = 70.341, C = 27.483 2202.295 

0.6 F = 26.534, P = 70.297, C = 26.910 2208.237 

0.7 F = 26.529, P = 70.378, C = 26.287 2214.058 

0.8 F = 26.529, P = 70.268, C = 25.771 2219.771 

0.9 F = 26.525, P = 70.297, C = 25.196 2225.373 

1.0 F = 26.528, P = 70.328, C = 24.631 2230867 

 

For the expected interval method the peak load pricing problem with fuzzy left hand 

values is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions and the 

objective fuction value for each α value are given in table 4.6.  

  

Table 4.6. α-acceptable solutions of the peak load pricing problem with fuzzy left 
hand values for the expected interval method  
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 F = 26.528, P = 70.332, C = 27.486 2202.296 

0.6 F = 26.529, P = 70.293, C = 28.112 2196.235 

0.7 F = 26.522, P = 70.232, C = 28.761 2190.048 

0.8 F = 26.536, P = 70.283, C = 29.367 2183.739 

0.9 F = 26.528, P = 70.293, C = 30.006 2177.296 

1.0 F = 26.527, P = 70.306, C = 30.658 2170.717 

 

The solutions obtained by using the four ranking methods are different from each 

other.  

 

4.4.1.4. The peak load pricing problem with fuzzy left and right hand values  

  

In this stage, all the parameters of the constraints are defined as triangular fuzzy 

numbers and solved with the proposed method. The peak load pricing problem with 

fuzzy left and right hand values can be written in mathematical form as follows.  
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The solution of the peak load pricing problem with fuzzy left and right hand values 

obtained using the signed distance method is; F = 26.533, P = 70.253, C = 27.527 

and the objective function value is z = 2002.294. 

 

The solution of the peak load pricing problem with fuzzy left and right hand values 

obtained using the Chen and Chen’s method is; F = 26.538, P = 70.299, C = 27.504 

and the objective function value is z = 2002.296. It is slightly different from the 

solution obtained using the signed distance method.  

 

For the integral value method the peak load pricing problem with fuzzy left and right 

hand values is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The solutions of the 

problem obtained using the integral value method for each α value are given in table 

4.7.  

 

Table 4.7. α-acceptable solutions of the peak load pricing problem with fuzzy left 
and right hand values for the integral value method  
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 F = 26.532, P = 70.274, C = 27.516 2202.295 

0.6 F = 26.532, P = 70.274, C = 27.516 2202.295 

0.7 F = 26.532, P = 70.274, C = 27.516 2202.295 

0.8 F = 26.532, P = 70.274, C = 27.516 2202.295 

0.9 F = 26.532, P = 70.274, C = 27.516 2202.295 

1.0 F = 26.532, P = 70.278, C = 27.513 2202.296 

 

For the integral value method except α value 1.0, for all α values the same solutions 

are obtained. Besides, the solution for α value 1.0 is very slightly different from 

others.  



 95 

For the expected interval method the peak load pricing problem with fuzzy left and 

right hand values is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained 

solutions and the objective fuction value for each α value are given in table 4.8.  

  

Table 4.8. α-acceptable solutions of the peak load pricing problem with fuzzy left 
and right hand values for the expected interval method  
 

Feasibility 
degree, α 

Decision vector The objective function value 

0.5 F = 26.532, P = 70.278, C = 27.513 2202.296 

0.6 F = 26.533, P = 70.303, C = 28.713 2190.175 

0.7 F = 26.528, P = 70.267, C = 29.968 2177.805 

0.8 F = 26.539, P = 70.260, C = 31.235 2165.181 

0.9 F = 26.514, P = 70.232, C = 32.535 2152.293 

1.0 F = 26.531, P = 70.314, C = 33.811 2139.138 

 

The solutions obtained by using the four ranking methods are different from each 

other.  

 

4.4.1.5. The peak load pricing problem with fuzzy parameters  

  

In this stage, all of the parameters of the peak load pricing problem are defined as 

triangular fuzzy numbers and solved with the proposed method. The peak load 

pricing problem with fuzzy parameters can be written in mathematical form as 

follows.  
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The solution of the peak load pricing problem with fuzzy parameters obtained using 

the signed distance method is; F = 26.533, P = 70.253, C = 27.527 and the triangular 

possibility distribution of the objective function is z = (1982.065; 2002.294; 
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2422.524). This solution is same as the solution of the peak load pricing problem 

with fuzzy left and right hand values obtained using the signed distance method.  

 

The solution of the peak load pricing problem with fuzzy parameters obtained using 

the Chen and Chen’s method is; F = 26.532, P = 70.247, C = 27.529 and the 

triangular possibility distribution of the objective function is z = (1982.065; 2002.294; 

2422.523). It is slightly different from the solution obtained using the signed distance 

method.  

 

For the integral value method the peak load pricing problem with fuzzy parameters is 

solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The solutions of the problem obtained 

using the integral value method for each α value are given in table 4.9.  

 

Table 4.9. α-acceptable solutions of the peak load pricing problem with fuzzy 
parameters for the integral value method  
 

Feasibility 
degree, α 

Decision vector 
Possibility distribution of the 

objective value, )(~0 αz  

0.5 F = 26.532, P = 70.274, C = 27.516 (1982.066; 2202.295; 2422.525) 

0.6 F = 26.532, P = 70.274, C = 27.516 (1982.066; 2202.295; 2422.525) 

0.7 F = 26.529, P = 70.267, C = 27.519 (1982.066; 2202.295; 2422.524) 

0.8 F = 26.529, P = 70.267, C = 27.519 (1982.066; 2202.295; 2422.524) 

0.9 F = 26.529, P = 70.267, C = 27.519 (1982.066; 2202.295; 2422.524) 

1.0 F = 26.529, P = 70.293, C = 27.506 (1982.066; 2202.296; 2422.525) 

 

For the integral value method for α values 0.5 and 0.6, for α values 0.7, 0.8 and 0.9 

the same solutions are obtained. Besides, the solution for α value 1.0 is very slightly 

different from others. For α values 0.5 and 0.6, the solutions are same as the 

solutions of the peak load pricing problem with fuzzy left and right hand values. 

 

For the expected interval method the peak load pricing problem with fuzzy 

parameters is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions and 

the objective function value for each α value are given in table 4.10.  
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Table 4.10. α-acceptable solutions of the peak load pricing problem with fuzzy 
parameters for the expected interval method  
 

Feasibility 
degree, α 

Decision vector 
Possibility distribution of the 

objective value, )(~0 αz  

0.5 F = 26.534, P = 70.247, C = 27.529 (1982.065; 2202.294; 2422.523) 

0.6 F = 27.568, P = 67.569, C = 33.479 (19362.645; 2151.827; 2367.010) 

0.7 F = 33.920, P = 67.714, C = 34.324 (1883.348; 2092.608; 2301.869) 

0.8 F = 36.275, P = 73.037, C = 35.239 (1824.872; 2027.635; 2230.399) 

0.9 F = 38.070, P = 80.259, C = 35.058 (1735.893; 1928.770; 2121.647) 

1.0 F = 32.531, P = 63.285, C = 43.101 (1816.478; 2018.309; 2220.140) 

 

The solutions obtained by using the expected interval method are very different from 

the solutions obtained by using the other methods.  

 

4.4.2. The product mix problem 

  

A product mix problem is solved using the proposed direct solution method in this 

subsection. In the problem, three products are produced and these three products are 

processed through three departments. The constraints are time capacity constraints 

for the departments and it is wanted to determine the number of units to produce for 

each product to maximize the revenue. The crisp mathematical programming model 

of the product mix problem can be written as follows (Buckley et al., 2002). 
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The solution of the crisp mathematical programming model of the handled product 

mix problem is x1 = 0, x2 = 27, x3 = 16 and objective function value z = 312.  

 

In the following subsections, different parameters of the product mix problem are 

defined as triangular fuzzy numbers. In each instance, the problem is solved using 

the proposed direct solution method. The product mix problem is solved by 
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employing four different fuzzy ranking methods and the PSO algorithm. In order to 

solve the problem directly, the global best PSO algorithm is used. In the solution of 

the problem, the parameters of the algorithm are taken as follows; inertia weight      

w = 0.4, individual and sociality weights c1 = c2 = 1.4962, the number of particles     

n = 20 and the number of iterations is 1000. For the solution of the problem 

computer programs are written in C language. For each ranking method, different 

computer programs are written for the solution of the problem. 

 

4.4.2.1. The product mix problem with fuzzy objective function coefficients  

  

In this stage, only the coefficients of the objective function of the product mix 

problem are determined as triangular fuzzy numbers and solved with the proposed 

method. The product mix problem with fuzzy objective function coefficients can be 

written in mathematical form as follows.  
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             (4.11) 

 

The solution of the product mix problem with fuzzy objective function coefficients 

using the signed distance method is; X1 = 0, X2 = 24.141, X3 = 19.812 and the 

triangular possibility distribution of the objective function is z = (292.005; 312.000; 

331.995). The solution of the problem using the Chen and Chen’s method is same as 

the solution obtained from the signed distance method.     

 

The product mix problem with fuzzy objective function coefficients is solved for 

different alpha values using the integral value method. The problem is solved for      

α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions and the possibility 

distributions of the objective for each α value are given in table 4.11.  
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Table 4.11. α-acceptable solutions of the product mix problem with fuzzy objective 
function coefficients for the integral value method 
 

Feasibility 
degree, α 

Decision vector 
Possibility distribution of the 

objective value, )(~0 αz  

0.5 X1 = 0, X2 = 12.5891, X3 = 35.2145 (291.620; 312.000; 332.380) 

0.6 X1 = 0, X2 = 12.5896, X3 = 35.2139 (291.620; 312.000; 332.380) 

0.7 X1 = 0, X2 = 12.5891, X3 = 35.2146 (291.620; 312.000; 332.380) 

0.8 X1 = 0, X2 = 12.5765, X3 = 35.2314 (291.619; 312.000; 332.381) 

0.9 X1 = 0, X2 = 8.7694, X3 = 40.3074 (291.492; 312.000; 332.508) 

1.0 
X1 = 0.0009, X2 = 3.1449, 

X3 = 47.8051 
(291.300; 311.995; 332.689) 

 

For different α values, the solutions differ slightly as seen in the table. The solutions 

are nearly the same with each other for different α values.  

 

For the expected interval method the product mix problem with fuzzy objective 

function coefficients is solved for different alpha values. The problem is solved for  

α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions and the possibility 

distributions of the objective for each α value are given in table 4.12.  

  

Table 4.12. α-acceptable solutions of the product mix problem with fuzzy objective 
function coefficients for the expected interval method  
 

Feasibility 
degree, α Decision vector 

Possibility distribution of the 

objective value, )(~0 αz  

0.5 X1 = 0, X2 = 24.1412, X3 = 19.8118 (292.005; 312.000; 331.995) 

0.6 X1 = 0.0591, X2 = 24.5409, X3 = 19.0027 (290.814; 310.698; 330.581) 

0.7 X1 = 0.8580, X2 = 24.2326, X3 = 17.6937 (285.805; 305.171; 324.536) 

0.8 X1 = 0.8580, X2 = 24.2326, X3 = 17.6937 (285.805; 305.171; 324.536) 

0.9 X1 = 2.2467, X2 = 23.9888, X3 = 15.2532 (278.365; 296.910; 315.455) 

1.0 X1 = 2.2467, X2 = 23.9888, X3 =1 5.2532 (278.365; 296.910; 315.455) 

 

The solutions obtained by using the integral value method are different from the 

solutions obtained by using the other methods. The solutions obtained by using the 

signed distance method, Chen and Chen’s method and the expected interval method 

for α = 0.5 are same.  
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4.4.2.2. The product mix problem with fuzzy right hand values  

  

In this stage, only the right hand values of the constraints of the product mix problem 

are defined as triangular fuzzy numbers and solved with the proposed method. The 

product mix problem with fuzzy right hand values of the constraints can be written in 

mathematical form as follows.  
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               (4.12) 

 

The solution of the product mix problem with fuzzy right hand values obtained using 

the signed distance method is; X1 = 0, X2 = 19.6643, X3 = 25.7810 and the objective 

function value is z = 312.000. The solution of the problem obtained using the Chen 

and Chen’s method is same as the solution obtained using the signed distance method.  

 

The product mix problem with fuzzy right hand values is solved for different            

α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0} using the integral value method. The obtained 

solutions and the objective function values for each α value are given in table 4.13.  

 

Table 4.13. α-acceptable solutions of the product mix problem with fuzzy right hand 
values for the integral value method 
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 X1 = 0, X2 = 22.2248, X3 = 22.3670 312.000 

0.6 X1 = 0, X2 = 26.2476, X3 = 17.1032 312.600 

0.7 X1 = 0, X2 = 21.7944, X3 = 23.1408 313.200 

0.8 X1 = 0, X2 = 21.8811, X3 = 23.1252 313.800 

0.9 X1 = 0, X2 = 22.1201, X3 = 22.9066 314.400 

1.0 X1 = 0, X2 = 20.7411, X3 =24.8451 315.000 

 

For different α values, different solutions are obtained using the integral value 

method.  



 101 

For the expected interval method the product mix problem with fuzzy right hand 

values is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions and the 

objective function value for each α value are given in table 4.14.  

  

Table 4.14. α-acceptable solutions of the product mix problem with fuzzy right hand 
values for the expected interval method  
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 X1 = 0, X2 = 19.6641, X3 = 25.7812 312.000 

0.6 X1 = 0, X2 = 21.3210, X3 = 23.4720 311.400 

0.7 X1 = 0, X2 = 17.7334, X3 = 28.1554 310.800 

0.8 X1 = 0, X2 = 20.7038, X3 = 24.0949 310.200 

0.9 X1 = 0, X2 = 19.3631, X3 = 25.7826 309.600 

1.0 X1 = 0, X2 = 19.6799, X3 =25.2601 309.000 

 

The solutions obtained by using the signed distance method, Chen and Chen’s 

method and the expected interval method for α = 0.5 are nearly the same. 

 

4.4.2.3. The product mix problem with fuzzy left hand values  

  

In this stage, only the left hand values of the constraints of the product mix problem 

are defined as triangular fuzzy numbers and solved with the proposed method. The 

product mix problem with fuzzy coefficients of the constraints can be written in 

mathematical form as follows.  
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            (4.13) 

 

The solution of the product mix problem with fuzzy left hand values obtained using 

the signed distance method is; X1 = 0, X2 = 13.4892, X3 = 34.0144 and the objective 

function value is z = 312.000. The solution of the problem obtained using the Chen 

and Chen’s method is same as the solution obtained using the signed distance method.  
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The product mix problem with fuzzy left hand values is solved for α = {0.5; 0.6; 0.7; 

0.8; 0.9; 1.0} using the integral value method. The obtained solutions and the 

objective function values for each α value are given in table 4.15.  

 

Table 4.15. α-acceptable solutions of the product mix problem with fuzzy left hand 
values for the integral value method 
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 X1 = 0, X2 = 18.7373, X3 = 27.0169 312.000 

0.6 X1 = 0, X2 = 14.0802, X3 = 32.9677 310.448 

0.7 X1 = 0, X2 = 12.9824, X3 = 34.1753 308.911 

0.8 X1 = 0, X2 = 19.5804, X3 = 25.1244 307.389 

0.9 X1 = 0, X2 = 13.5666, X3 = 32.8916 305.882 

1.0 X1 = 0, X2 = 12.1909, X3 = 34.4772 304.390 

 

For different α values, different solutions are obtained using the integral value 

method.  

 

For the expected interval method the product mix problem with fuzzy left hand 

values is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions and the 

objective function value for each α value are given in table 4.16.  

  

Table 4.16. α-acceptable solutions of the product mix problem with fuzzy left hand 
values for the expected interval method  
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 X1 = 0, X2 = 13.4892, X3 = 34.0144 312.000 

0.6 X1 = 0, X2 = 14.1450, X3 = 32.8812 310.448 

0.7 X1 = 0, X2 = 26.0091, X3 = 16.8064 308.911 

0.8 X1 = 0, X2 = 12.1460, X3 = 35.0369 307.389 

0.9 X1 = 0, X2 = 12.2193, X3 = 34.6880 305.882 

1.0 X1 = 0, X2 = 0.5983, X3 = 49.9340 304.390 

  

For different α values, different solutions are obtained using the expected interval 

method. The solutions obtained by using the signed distance method, Chen and 

Chen’s method and the expected interval method for α = 0.5 are same. 
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4.4.2.4. The product mix problem with fuzzy left and right hand values  

  

In this stage, all the parameters of the constraints of the product mix problem are 

defined as triangular fuzzy numbers and solved with the proposed method. The 

product mix problem with fuzzy left and right hand values can be written in 

mathematical form as follows.  
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           (4.14) 

 

The solution of the product mix problem with fuzzy left and right hand values 

obtained using the signed distance method is; X1 = 0, X2 = 19.1466, X3 = 26.4712 and 

the objective function value is z = 312.000. The solution of the problem obtained 

using the Chen and Chen’s method is same as the solution obtained using the signed 

distance method. 

 

The product mix problem with fuzzy left and right hand values is solved for              

α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0} using the integral value method. The obtained 

solutions and the objective function values for each α value are given in table 4.17.  

 

Table 4.17. α-acceptable solutions of the product mix problem with fuzzy left and 
right hand values for the integral value method 
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 X1 = 0, X2 = 25.9560, X3 = 17.3921 312.000 

0.6 X1 = 0, X2 = 26.3263, X3 = 16.7391 311.045 

0.7 X1 = 0, X2 = 26.8014, X3 = 15.9479 310.099 

0.8 X1 = 0, X2 = 26.7328, X3 = 15.8834 309.163 

0.9 X1 = 0, X2 = 25.4564, X3 = 17.4306 308.235 

1.0 X1 = 0, X2 = 26.4571, X3 = 15.9434 307.317 
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For different α values, different solutions are obtained using the integral value 

method. As seen from the table, the objective function value decreases as the α value 

increases.  

 

For the expected interval method the product mix problem with fuzzy left and right 

hand values is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions 

and the objective function value for each α value are given in table 4.18.  

  

Table 4.18. α-acceptable solutions of the product mix problem with fuzzy left and 
right hand values for the expected interval method  
 

Feasibility 
degree, α 

Decision vector 
The objective function 

value 

0.5 X1 = 0, X2 = 19.1466, X3 = 26.4712 312.000 

0.6 X1 = 0, X2 = 18.1533, X3 = 27.4373 309.851 

0.7 X1 = 0, X2 = 22.1857, X3 = 21.7062 307.723 

0.8 X1 = 0, X2 = 25.7349, X3 = 16.6228 305.616 

0.9 X1 = 0, X2 = 25.9221, X3 = 16.0254 303.529 

1.0 X1 = 0, X2 = 25.8301, X3 = 15.8037 301.463 

  

For different α values, different solutions are obtained using the expected interval 

method. As seen from the table, the objective function value decreases as the α value 

increases. The solutions obtained by using the signed distance method, Chen and 

Chen’s method and the expected interval method for α = 0.5 are same. 

 

4.4.1.5. The product mix problem with fuzzy parameters  

  

In this stage, all of the parameters of the product mix problem are defined as 

triangular fuzzy numbers and solved with the proposed method. The product mix 

problem with fuzzy parameters can be written in mathematical form as follows.  
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The solution of the product mix problem with fuzzy parameters obtained using the 

signed distance method is; X1 = 0, X2 = 19.1466, X3 = 26.4712 and the triangular 

possibility distribution of the objective function is z = (291.838; 312.000; 332.162). 

The solution of the problem obtained using the Chen and Chen’s method is same as 

the solution obtained using the signed distance method. This solution is same as the 

solution of the product mix problem with fuzzy left and right hand values obtained 

using the signed distance method and the Chen and Chen’s method. 

 

The product mix problem with fuzzy parameters is solved for  α = {0.5; 0.6; 0.7; 0.8; 

0.9; 1.0} using the integral value method. The obtained solutions and the triangular 

possibility distribution of the objective function for each α value are given in table 

4.19.  

 

Table 4.19. α-acceptable solutions of the product mix problem with fuzzy parameters 
for the integral value method 
 

Feasibility 
degree, α Decision vector 

Possibility distribution of the 

objective value, )(~0 αz  

0.5 X1 = 0, X2 = 25.9560, X3 = 17.3921 (292.065; 312.000; 331.935) 

0.6 X1 = 0, X2 = 26.3262, X3 = 16.7392 (291.186; 311.045; 330.904) 

0.7 X1 = 0, X2 = 26.8014, X3 = 15.9480 (290.319; 310.099; 329.879) 

0.8 X1 = 0.0018, X2 = 3.8664, X3 = 46.3681 (288.670; 309.151; 329.632) 

0.9 X1 = 0, X2 = 25.4564, X3 = 17.4307 (288.535; 308.235; 327.936) 

1.0 X1 = 0, X2 = 26.4571, X3 = 15.9434 (287.711; 307.317; 326.923) 

 

The solutions obtained for each α value except α = 0.8 are same as the solutions of 

the product mix problem with fuzzy left and right hand values obtained using the 

integral value method.  
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The product mix problem with fuzzy parameters is solved using the expected interval 

method for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions and the 

triangular possibility distribution of the objective function value for each α value are 

given in table 4.20.  

 

Table 4.20. α-acceptable solutions of the product mix problem with fuzzy parameters 
for the expected interval method  
 

Feasibility 
degree, α 

Decision vector 
Possibility distribution of the 

objective value, )(~0 αz  

0.5 X1 = 0, X2 = 19.1466, X3 = 26.4713 (291.838; 312.000; 332.162) 

0.6 X1 = 0.0323, X2 = 11.4793, X3 = 36.1552 (288.751; 308.959; 329.167) 

0.7 X1 = 0.4776, X2 = 8.0200, X3 = 39.5244 (284.257; 304.172; 324.087) 

0.8 X1 = 0.1147, X2 = 10.8593, X3 = 35.9602 (283.488; 303.324; 323.161) 

0.9 X1 = 1.6433, X2 = 23.1035, X3 = 16.1113 (273.031; 291.356; 309.681) 

1.0 X1 = 4.1314, X2 = 8.6822, X3 = 30.2628 (258.551; 275.823; 293.096) 

  

For different α values, different solutions are obtained using the expected interval 

method. As seen from the table, the objective function value decreases as the α value 

increases. The solutions obtained by using the signed distance method, Chen and 

Chen’s method and the expected interval method for α = 0.5 are same. 

 

4.5. Conclusion 

  

In this chapter, the proposed direct solution method is presented. In the literature, 

fuzzy mathematical programming problems are generally solved after a 

transformation process into crisp equivalent. This transformation process can be hard 

and after transformation some information can be missed. In literature, the fuzzy 

parameters’ membership functions are accepted as linear and in this way the 

transformation process can be applied. For example, the ranking functions are used 

for transformation into crisp equivalent and usually the fuzzy parameters are defined 

as triangular or trapezoidal fuzzy number. The ranking methods for triangular or 

trapezoidal fuzzy numbers are simple. But, when the fuzzy numbers are defined in 

different shapes, mathematically, the ranking methods not easy to use in 

transformation process. Using the proposed direct solution method, a fuzzy 
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mathematical programming problem can be solved without any necessity of 

transformation into its crisp equivalent. So, the fuzzy parameters can be defined in 

different shapes. In the proposed direct solution method, to rank the objective 

function values and to determine the feasibility of the constraints ranking methods 

for fuzzy numbers are used. A metaheuristic algorithm is used to carry out the 

ranking process. In this chapter, two mathematical programming problems are solved 

using the proposed direct solution method. The problems are solved by the proposed 

direct solution method using four different ranking methods of fuzzy numbers. The 

problems are solved by defining different parameters of the problems as fuzzy 

triangular fuzzy numbers. From the solutions, it has been observed that fuzzy 

decision making problems can be solved effectively by using ranking methods of 

fuzzy numbers without any necessity of transformation into crisp equivalent.  
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CHAPTER 5 

 

APPLICATION OF THE PROPOSED DIRECT SOLUTION 

METHOD TO SOME INDUSTRIAL ENGINEERING PROBLEMS 

 

5.1. Introduction 

 

In this chapter, a fuzzy multi-item economic order quantity problem and a fuzzy 

multi-objective aggregate production planning problem is solved using the proposed 

direct solution method. The solution of the fuzzy multi-item economic order quantity 

problem is given in section 5.2 and the solution of the fuzzy multi-objective 

aggregate production planning problem is given in section 5.3. 

 

5.2. Solution of Fuzzy Multi-item Economic Order Quantity Problem  

 

5.2.1. The fuzzy multi-item economic order quantity problem    

 

Inventory management is very important for many service and manufacturing 

industries. A proper control of inventory can significantly enhance a company’s 

profit. The purpose of the economic order quantity (EOQ) model is to find the 

optimal order quantity of inventory items at each time such that the combination of 

the order cost and the stock cost is minimal (Wang et al., 2007). EOQ models are 

used for determining the quantity of item(s) to purchase from suppliers or to process 

through a production facility (Stockton and Quinn, 1993). Inventory management is 

used to decide when and how much to replenish the companies’ inventory under a 

minimum of total cost. An EOQ model can be defined as only the minimization of 

the cost function or minimization of cost function under limitations like that budget, 

warehouse space, number of orders, etc. 
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There are a variety of EOQ models available and all originate from the classical 

EOQ model (Stockton and Quinn, 1993). In reality, it is very hard to define 

parameters of the EOQ model precisely. Moreover, it is very hard to estimate the 

probability distribution of these parameters due to a lack of historical data. Instead, 

these parameters are often estimated based on experience and subjective managerial 

judgment (Wang et al., 2007). However, these nonstochastic and illformed inventory 

models can be realistically represented in the fuzzy environment (Roy and Maiti, 

1997).  

 

In the literature, various authors solved different fuzzy versions of EOQ problem. 

Lee and Yao (1999) have solved the EOQ problem without backorder in which the 

order quantity is defined as a fuzzy variable. The fuzzy order quantity is defined as a 

normal triangular fuzzy number. Because the order quantity is defined as fuzzy 

variable, the cost function will be fuzzy and the economic order quantity is generated 

by defuzzification with the centroid method.  

 

Yao and Su (2000) have studied fuzzy inventory with backorder in which demand is 

defined as fuzzy. In their article, the fuzzy demand is defined in three different forms. 

First the fuzzy demand is defined as triangular fuzzy number, in second form the 

fuzzy demand is defined with interval-valued fuzzy set based on two triangular fuzzy 

numbers, and in third form the fuzzy demand is defined with interval-valued fuzzy 

set based on two trapezoidal fuzzy numbers. Then, the economic order quantity is 

generated by defuzzification with the centroid method. 

 

Wang et al. (2007) have solved the fuzzy EOQ problem without backordering. Wang 

et al. (2007) have characterized the order cost and the stock cost as fuzzy variables 

and constructed a fuzzy expected value model and a fuzzy dependent chance 

programming model. They have designed fuzzy simulations and a PSO algorithm 

based on the fuzzy simulation. 

 

Syed and Aziz (2007) have studied an inventory model without shortages. The 

ordering cost and the holding cost are represented by fuzzy triangular numbers and 

fuzzy total cost is obtained by applying the sign distance method.  
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Roy and Maiti (1997) solved fuzzy EOQ model with limited storage capacity where 

unit price varies inversely with the demand and the setup cost varies with the 

quantity produced. In the model, the objective function and right hand of the 

constraint are introduced as fuzzy. The membership functions of the fuzzy 

parameters were assumed to be non-increasing continuous linear membership 

functions. The fuzzy nonlinear model was transformed into a crisp nonlinear model 

by using the max-min method.  

 

Roy and Maiti (1998) solved fuzzy multi-item inventory models of deteriorating 

items with stock-dependent demand. Two fuzzy models were constructed for the 

inventory problem. In the first fuzzy model, the objectives and the right hand side 

value of one of the constraints were accepted as fuzzy numbers. In the second fuzzy 

model, some of the parameters and the objective function were considered as fuzzy. 

The fuzzy parameters were defined as triangular fuzzy numbers and the membership 

functions of the goals of the objectives were defined as linear. The fuzzy models 

were solved with two different methods, fuzzy nonlinear programming method based 

on Zimmermann’s max-min method and the method of Lee and Li (1993) and fuzzy 

additive goal programming method of Tiwari et al. (1987), and the solutions are 

compared.  

 

Mondal and Maiti (2002) have solved multi-item fuzzy economic order quantity 

model with fuzzy objective function and fuzzy parameters. The membership 

functions of the fuzzy parameters were assumed to be non-increasing continuous 

linear membership functions. The fuzzy nonlinear model was transformed into a 

crisp nonlinear model by using the max-min method.  

 

Yadavalli et al. (2005) solved fuzzy multi-item EOQ models with no constraint and 

with one constraint. The only constraint was the limitation of the average number of 

stocked units in the model with one constraint. The objective function and some 

parameters were defined as fuzzy numbers. The membership functions of the 

objective function coefficients were defined as linear. The membership functions of 

the objective and the limit value of the constraint were defined as linear, parabolic 

and cubic in three cases. The fuzzy parameters were transformed into crisp using α-

cuts.  
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Baykasoğlu and Göçken (2007) have studied the fuzzy multi-item EOQ problem 

with two constraints; available warehouse space and number of orders placed during 

a time period. All parameters of the EOQ model are accepted as triangular fuzzy 

numbers. The fuzzy model is solved via transformation into crisp problem using 

different ranking methods. 

 

In this thesis, a multi-item EOQ model with two constraints (available warehouse 

space and number of orders placed during a time period) is handled. The problem is 

to decide the order levels Qi, i = 1, 2,…, m which minimize the average total cost. 

The studied fuzzy multi-item EOQ model is defined as follows; 
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where, iQ  is the economic order quantity for ith item, ic1

~  is the holding cost per unit 

quantity per unit time for ith item, ic2
~  is the set up cost per period for ith item, Di is 

the demand per unit time for ith item, ia
~  is the space required by each unit of product 

i (in sq.m), iM
~
 is the total demand of product i during some given time interval, W

~
 

is the maximum available warehouse  space (in sq.m.), n~  is the maximum number of 

orders placed during the given time period and m is the number of items.   

 

The parameters of the problem are defined as triangular fuzzy numbers. It is accepted 

that there are two items in the problem. The input data of the problem is given in 

table 5.1 and table 5.2. The input data is similar to the data that was used by Mondal 

and Maiti’s (2002) multi-item EOQ problem, except ia
~  and iM

~
 which are not 

considered fuzzy in their work. In the study of Mondal and Maiti (2002), the 

objective function, the cost coefficients and the right hand values of the constraints 

were defined as fuzzy numbers. Moreover, they did not employ triangular fuzzy 
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numbers and set aspiration value for the objective function. Therefore the present 

model is different than Mondal and Maiti’s model. 

 

Table 5.1. Input data1 
 
Item ),,(~

1111 iiii cccc =  ),,(~
2222 iiii cccc =  Di ),,(~

iiii aaaa =  ),,(
~

iiii MMMM =  

1 (200; 250; 300) (90.103;105; 110.103) 200 (0.8; 1; 1.1) (7500; 8000; 8500) 

2 (150; 200; 250) 
(225.103; 245.103; 

265.103) 
800 (0.8; 1; 1.1) (3500; 4000; 4500) 

 

Table 5.2. Input data2 
 

),,(
~

WWWW =  ),,(~ nnnn =  

(1450; 1500; 1550) (18; 20; 22) 

  

The fuzzy multi-item EOQ problem of the present study can be explicitly stated as 

follows; 

 

0,

)22;20;18(
1

)4500;4000;3500(
1

)8500;8000;7500(

)1550;1500;1450()1.1;1;8.0()1.1;1;8.0(

800
)10.265;10.245;10.225(

2
)250;200;150(

200
)10.110;10;10.90(

2
)300;250;200()(min

21

21

21

2

333

2

1

3531

≥

≤+

≤+

+++=

QQ

QQ

QQ

tosubject

Q

Q

Q

Q
QC

   (5.2)        

 
 
5.2.2. Solution of the fuzzy multi-item economic order quantity problem    

  

The fuzzy multi-item EOQ problem is solved directly with the proposed solution 

method by employing four fuzzy ranking methods, the signed distance method, Chen 

and Chen’s method, the integral value method and the expected interval method, and 

the PSO algorithm. Ranking methods for fuzzy numbers are used to rank the 

objective function values and to determine the feasibility of the constraints. 
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As the cost coefficients of the objective functions are fuzzy the objective function 

values of the generated solution vectors will be fuzzy numbers. Therefore, in the 

selection of the best solution vector, ranking of fuzzy numbers is used. Similarly, the 

feasibility of the constraints for the generated solution vectors will be determined via 

ranking of two fuzzy numbers (i.e. comparing right and left hand side fuzzy numbers 

for the constraint functions). 

 

In order to solve the fuzzy multi-item EOQ problem directly, the global best PSO 

algorithm is used. In the solution of the problem, the parameters of the algorithm are 

taken as follows; number of particles n = 20, inertia weight w = 0.4, individual and 

sociality weights c1 = c2 = 1.4962, and the number of iterations is 1000. 

 

The solution of the crisp EOQ model is Q1 = 500, Q2 = 1000 and the objective 

function value C(Q) = 398500. In the crisp model, the data are the mid values of the 

fuzzy data.  

 

The solutions obtained using the signed distance method and Chen and Chen’s 

ranking method are given in table 5. 3. 

 

Table 5.3. The solutions of the fuzzy multi-item EOQ problem obtained using the 
signed distance method and Chen and Chen’s ranking method 
 

Ranking method Decision vector, Q0 
Possibility distribution of the 

objective value, 0~z  

Signed distance 

method 
827.4941 =Q  634.10432 =Q  (336605.92; 394440.32; 452274.72) 

Chen and Chen’s 

method 
181.4931 =Q 546.10582 =Q  (335251.38; 393214.93; 451178.48) 

 

The fuzzy multi-item EOQ problem is solved for different alpha values using the 

integral value method. The problem is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. 

The obtained solutions and the possibility distributions of the objective for each α 

value are given in table 5.4. 
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Table5.4. α-acceptable optimal solutions of the fuzzy multi-item EOQ problem 
obtained using the integral value method  
 

Feasibility 
degree, α Decision vector, Q0(α) 

Possibility distribution of the 

objective value, )(~0 αz  

0.5 8279.4941 =Q   634.10432 =Q  (336605.92; 394440.32; 452274.72) 

0.6 4511.4951 =Q  751.10242 =Q  (338384.40; 396039.73; 453695.05) 

0.7 1461.4961 =Q   341.10062 =Q  (340235.60; 397728.03; 455220.47) 

0.8 9146.4961 =Q   3795.9882 =Q  (342159.74; 399505.04; 456850.34) 

0.9 7585.4971 =Q   8405.9702 =Q  (344157.36; 401370.92; 458584.47) 

1.0 6800.4981 =Q   7010.9532 =Q  (346229.27; 403326.13; 460422.99) 

 

The fuzzy multi-item EOQ problem is solved for different alpha values using the 

expected interval method. The problem is solved for α = {0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. 

The obtained solutions and the possibility distributions of the objective for each α 

value are given in table 5.5. 

 

Table 5.5. α-acceptable optimal solutions of the fuzzy multi-item EOQ problem 
obtained using the expected intervals method  
 

Feasibility 
degree, α Decision vector, Q0(α) 

Possibility distribution of objective 

value, )(~0 αz  

0.5 828.4941 =Q  634.10432 =Q  (336605.92; 394440.32; 452274.72) 

0.6 735.5141 =Q  318.9942 =Q  (342045.41; 399748.68; 457451.94) 

0.7 182.5841 =Q  178.8722 =Q  (361023.77; 419201.23; 477378.69) 

0.8 855.6441 =Q   459.7242 =Q  (395194.43; 454614.19; 514033.95) 

0.9 855.6441 =Q  459.7242 =Q  (395194.43; 454614.19; 514033.95) 

1.0 855.6441 =Q  459.7242 =Q  (395194.43; 454614.19; 514033.95) 

 

Only the solutions obtained for α = 0.5 using the integral value method and the 

expected interval method, and the solution obtained using the signed distance method 

are same. The other solutions are different from each other.   

 

5.3. Solution of Fuzzy Multi-objective Aggregate Production Planning Problem  

 

5.3.1. The fuzzy multi-objective aggregate production planning problem 

 

Aggregate planning is the determination of production rate and the best strategy to 

meet the demand by considering sales forecasts, production capacity, inventory 
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levels and work force for a medium period, often from 3 to 18 months in advance 

(Sipper and Bulfin 1997). The aims of aggregate production planning (APP) are; to 

set overall production levels for each product category to meet fluctuating or 

uncertain demand in the near future and to set decisions concerning hiring, layoffs, 

overtime, backorders, subcontracting, inventory level and determining appropriate 

resources to be used (Lai and Hwang, 1992, Wang and Liang, 2004). APP is an 

important upper level planning activity in a production management system. Other 

forms of family disaggregation plans, such as master production schedule, capacity 

plan, material requirements plan all depend on APP in a hierarchical way (Tang et al., 

2000, Fung et al., 2003).  

 

All traditional models of APP problems can be classified into six categories 

according to Saad (1982); linear programming, linear decision rule, transportation 

method, management coefficient approach, search decision rule and simulation. In 

practical production planning systems, aggregate planning generally have conflicting 

objectives with respective to the use of the resources (Wang and Liang, 2004).  

 

In real world APP problems, the input data or parameters, such as demand, resources, 

cost etc. are imprecise because some information is incomplete or unobtainable 

(Wang and Liang, 2004). These imprecise parameters can be defined as random 

numbers with probability distribution, fuzzy numbers or interval numbers (Tang et 

al., 2000). A great deal of knowledge about the statistical distribution of the 

uncertain parameters is required to define the parameters as random numbers with 

probability distribution. So, using fuzzy numbers for imprecise parameters is more 

efficient in real world.  

 

In the literature, there are various works on the solution of fuzzy multi-objective APP 

problem. But, in these studies generally only the goals are defined as fuzzy values 

and the fuzzy model is solved by transforming the fuzzy model into classical crisp 

mathematical programming problems. Wang and Fang (1997) handled a fuzzy APP 

problem which tries to maximize profit and find the production quantity of products. 

In their study, the APP problem is defined as a fuzzy linear programming problem; 

the resources are defined as fuzzy numbers and for the objective function a fuzzy 

goal is defined. The fuzzy APP problem is transformed into a crisp linear 
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programming problem using Zimmermann’s max-min approach.  After the 

transforming process, instead of finding one exact solution, Wang and Fang proposed 

an inexact approach which imitates the human decision making process by 

generating a family of inexact solutions within an acceptable level as candidates for 

decision maker to consider. In order to generate a family of inexact solutions, a 

genetics based algorithm is proposed in their work.  

 

In the study of Tang et al. (2000), a multi-product APP problem with fuzzy demands 

and fuzzy capacities is modeled. The demand and capacities as fuzzy numbers and 

for the solution the fuzzy model is converted into its crisp equivalent using 

defuzzification of soft equations according to satisfaction of membership functions at 

a defined degree of truth.  

 

Wang and Fang (2001) presented a novel fuzzy linear programming method for 

solving the fuzzy APP problem with multiple objectives. In the problem, some of the 

parameters in the objective functions , in the left hand and right hand side of the 

constraints are defined as trapezoidal fuzzy numbers. For the fuzzy objectives, L type 

and R type fuzzy numbers are defined as fuzzy goals and the upper and lower bounds 

of fuzzy goals are determined according to Rommelfanger (1991). The fuzzy APP 

problem is converted into its crisp equivalent according to Zimmermann’s approach. 

 

Fung et al. (2003) solved a fuzzy multi-product APP problem in their study. They 

accepted demands and capacities as triangular fuzzy numbers. The fuzzy multi-

product APP problem has only one objective (minimizing the total cost) and only the 

demands and the capacities are defined as fuzzy. Using the membership functions of 

the fuzzy parameters, the problem is converted into a crisp parametric programming 

problem. The obtained crisp problem is solved using parametric programming and 

the proposed interactive method.  

 

Wang and Liang (2004) have developed a fuzzy multiple objective linear 

programming model for solving the multi-product APP decision problem in a fuzzy 

environment. The handled problem has three objectives, minimizing total production 

costs, minimizing carrying and backordering costs and minimizing rate of change in 

labor levels, and for the objectives fuzzy aspiration levels are defined. Piecewise 
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linear membership functions are specified for the fuzzy goals. The other parameters 

of the problem are accepted as certain. The fuzzy multiple objective linear 

programming problem is converted into its crisp equivalent using Zimmermann’s 

approach. The decision maker can interactively modify the membership functions of 

the objectives until a satisfactory solution is obtained.  

 

Wang and Liang (2005) have handled a fuzzy multi-product APP problem in their 

work. The multi-product APP problem is modeled as a multiple objective linear 

programming problem and all of the objectives are defined as fuzzy with imprecise 

aspiration levels. The other parameters of the problem are accepted as crisp. The 

fuzzy multiple objective linear programming problem is transformed into its crisp 

equivalent according to Zimmermann’s max-min approach. The obtained crisp 

equivalent linear programming problem is solved with classical approaches. After 

solution process, the decision maker can interactively modify the fuzzy data and 

related model parameters until a satisfactory solution is obtained.  

 

In their study, Moghaddam et al. (2007) presented a fuzzy APP model for make-to-

stock environments. In the model, the aspiration level of the objective, one of the 

right hand parameters of the constraints (the demand) and one of the left hand 

parameters of the constraints (average usage rate) are accepted as fuzzy numbers. 

The fuzzy problem is converted into its crisp equivalent using Zimmermann’s 

approach and a defuzzification method for the left hand parameter. Then the crisp 

equivalent is solved using any classical approach. 

 

In this thesis, a fuzzy multi-objective APP problem is solved using the proposed 

direct solution method. In Baykasoglu (2001a), the crisp multiple product, multiple 

period APP model of Masud and Hwang (1980) was stated as a pre-emptive goal 

programming model. Baykasoglu (2001a) solved his model by using the multiple 

objective tabu search algorithm. In this thesis, the parameters of APP problem are 

stated as triangular fuzzy numbers. The model is a general model and the number of 

goals, constraints and variables are relatively high. Therefore, the size of the problem 

is relatively big. The mathematical model of fuzzy multi-objective APP model is 

written as follows. 
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The symbols used in the mathematical model of the fuzzy multi-objective aggregate 

production planning model are as follows.  

Decision variables 

itP   : Regular time production of product i in period t (units), 

itO  : Overtime production of product i in period t (units), 

itS  : Product i sold in period t (units), 

tH : Worker hired in period t (man-day), 

tL  : Worker laid-off in period t (man-day). 

State variables 

+
itI  : Inventory of product i at the end of period t (units), 
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−
itI  : Backorder of product i at the end of period t (units), 

Wt : Work force level in period t (units). 

Parameters and constants 

ia
~  : Labor time for product i (man-hour/unit), 

ib
~
 : Machine time for product i (machine-hour/unit), 

ic1
~  : Production cost (other than labor cost) for product i ($/unit), 

tc2
~ : Labor cost in period t ($/man-day), 

tc3 : Overtime labor cost in period t ($/man-hour), 

ic4
~ : Standard cost per unit of product i ($/unit), 

tM
~

: Regular time machining capacity in period t (machine-hour), 

min
~

tM : Lower bound on the utilization of machine capacity in period t (machine-

hour), 

ir
~  : Per unit sales revenue of product i ($/unit),  

minitS : Minimum sales (which cannot be backordered) of product i in period t (units), 

maxitS : Maximum forecasted sales of product i in period t (units), 

maxtW : Maximum work force available in period t (man-day), 

t∂  : Fraction of regular machine capacity available for use in overtime in period t, 

tβ : Fraction of regular work force available for use in overtime in period t, 

δ
~
 : Regular time per worker (man-hour/man-day), 

 T : Number of periods, 

Initial values 

+
0iI  : Inventory of product i at the start of planning horizon (units), 

−
0iI  : Outstanding backorder of product i at the start of planning horizon (units), 

0W  : Work force at the start of planning horizon (man-day). 

  

In this study, the fuzzy multi-objective APP problem is solved for two products and 

eight periods using the proposed direct solution method. The input data of the 

problem is given in Table 5.6-5.8.  
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Table 5.6. Operating and cost data 
 

 
Product 

Labor 
production 

time 

( ia
~ , h/unit) 

Machining 
time 

( ib
~
, h/unit) 

Production cost 
(other than 
labour) 

( ic1
~ ,$/unit) 

Value added 

( ic4
~ , $/unit) 

Sales revenue 

( ir
~ , $/unit) 

1 (1.8;2;2.2) (1.35;1.5;1.8) (13.5;15;16.5) (36;40;44) (63;70;77) 
2 (2.7;3;3.3) (1.8;2;2.2) (18;20;22) (54;60;66) (90;100;110) 

  

Table 5.7. Sales, work force and machine capacity data 
 

Period 
min1tS  

(unit) 
max1tS  

(unit) 
min2tS  

(unit) 
max2tS  

(unit) 
maxtW  

(man-day) 
tM

~
(machine-hour) 

1 3000 12000 2000 6000 5000 (28800; 32000; 35200) 
2 4500 19000 3000 18000 4000 (25560; 28400; 31240) 
3 3000 15000 3000 15000 4500 (26640; 29600; 32560) 
4 3000 16000 1500 5000 3000 (18000; 20000; 22000) 
5 4500 18000 4500 12000 5000 (28800; 32000; 35200) 
6 3500 16000 1000 4000 5500 (30240; 33600; 36960) 
7 2000 10000 2000 10000 4500 (26640; 29600; 32560) 
8 4500 14000 4000 12000 4000 (23760; 26400; 29040) 

 

Table 5.8. Miscellaneous data 
 

Period 1 2 3 4 5 6 

tα  0.5 0.6 0.5 0.6 0.4 0.4 

tβ  0.3 0.3 0.3 0.3 0.3 0.3 

Other data 
)4.70;64;6.57(~

2 =tc , 153 =tc , 50010 =−I , 50020 =+I , 

35000 =w , )6.17;16;4.14(
~

=δ  

 

5.3.2. Solution of the fuzzy multi-objective aggregate production planning 

problem 

  

The fuzzy multi-objective APP problem is solved directly with the proposed solution 

method by employing four fuzzy ranking methods and the tabu search algorithm. 

Ranking methods for fuzzy numbers are used to rank the objective functions’ values 

and to determine the feasibility of the constraints. 

 

In the solution of fuzzy APP problem, for the comparison of the objective functions’ 

values and evaluation of feasibility of the constraints, the selected four ranking 

methods of fuzzy numbers are used. Feasibility of the constraints for the obtained 

solution vectors is determined with ranking of fuzzy numbers. For the right hand and 
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left hand of the constraints, by the multiplication of the solution vectors with fuzzy 

parameters, again a fuzzy number will be obtained and the feasibility of the 

constraints will be determined by ranking of fuzzy numbers. For the objective 

functions, priorities are assigned. First priority is assigned to first objective, second 

priority is assigned to second objective and so on. The best solution will be the 

solution that maximizes the objective of first priority. If the values of the first prior 

objective for two feasible solutions are equal, the solution that minimizes the second 

prior objective will be selected and so on. The values of the objective functions for 

the solution vectors will be fuzzy values owing to the fuzzy parameters in the 

objective functions. So, for the selection of the best solution, ranking of fuzzy 

numbers is used. 

 

Tabu search algorithm is used for the solution of fuzzy multi-objective APP problem. 

The problem is solved for three different parameter sets. In table 5.9, the parameter 

sets which are used for the solution of the problem are given.   

 

Table 5.9. Tabu search parameter sets 
 

Tabu search 
parameter 

sets 

Step sizes for 
),,,,( ttttt LHOPS

  

Tabu list 
size, p 

Neighborhood 
size, S* 

Max number 
of 

iterations 

TSP1 50, 50, 60, 60, 60 30 7 10000 
TSP2 90, 50, 50, 90, 50 15 6 10000 
TSP3 90, 50, 50, 90, 50 25 30 10000 

 

The crisp solution of the multi-objective APP problem is given in the table 5.10. In 

the crisp model, the data are the mid values of the fuzzy data. 

 

Table 5.10. The crisp solution of fuzzy multi-objective APP problem 
 

 TSP 1 TSP2 TSP3 

Objective function 1 5407274 5414522 5632425 
Objective function 2 352940 364761 389926 
Objective function 3 15262 15329 15052 
Objective function 4 195733 190160 180428 
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For the three of the selected ranking methods – the signed distance method, Chen and 

Chen’s method and the integral value method – the same solutions are obtained. For 

the integral value method the problem is solved for alpha values between 0.5 and 1.0. 

Only for the tabu search parameter set 1 and alpha value 1.0 different solution is 

obtained. Except this, for all alpha values and tabu search parameters same solutions 

are obtained. The obtained solutions using the signed distance method, Chen and 

Chen’s method and the integral value method are given in table 5.11.   

 

Table 5.11. The solutions of fuzzy multi-objective APP problem obtained using the 
signed distance method, Chen and Chen’s method and the integral value method 
 

 TSP 1 TSP2 TSP3 

Objective 

func. 1 
(5309177; 5899085; 6488994) (5345984; 5939982; 6533980) (5769327; 6410363; 7051400) 

Objective 

func. 2 
(230456; 256063; 281669) (234540; 260600; 286660) (272723; 303025; 333328) 

Objective 

func. 3 
13512 13548 13791 

Objective 

func. 4 
(28093; 312145; 343360) (283455; 314950; 346445) (240950; 267723; 294495) 

 

Only for the integral value method and for the tabu search parameter set 1 and alpha 

value 1.0 a different solution is obtained; objective function 1 = (5301481; 5890534; 

6479588), objective function 2 = (229860; 255400; 280940), objective function 3 = 

13456, objective function 4 = (279709; 310788; 341866).  

 

The obtained solutions using ranking of fuzzy numbers through the comparison of 

their expected intervals are differs according to the used tabu search parameter sets 

and the alpha values.  
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Table 5.12. The solutions of fuzzy multi-objective APP problem obtained using 
expected interval method 

 
Alpha 

value 
TSP1 TSP2 TSP3 

0.5 (5309177; 5899085; 6488994) (5345984; 5939982; 6533980) (5769327; 6410363; 7051400) 

 (230456; 256063; 281669) (234540; 260600; 286660) (272723; 303025; 333328) 

 13512 13548 13791 

 (280931; 312145; 343360) (283455; 314950; 346445) (241855; 268728; 295600) 

0.6 (5025885; 5584316; 6142748 ) (5034364; 5593737; 6153111) (5331890; 5924322; 6516754) 

 (249634; 277371; 305108) (261090; 290100; 319110) (286422; 318246; 350071) 

 7179 7576 7797 

 (155693; 172993; 190292) (148248; 164720; 181192) (134746; 149718; 164689) 

0.7 (5131968; 5702186; 6272405) (5194597; 5771774; 6348952) (5661544; 6290604; 6919665) 

 (303471; 337190; 370909) (321544; 357271; 392998) (386578; 429531; 472484) 

 11932 12043 12397 

 (110795; 123105; 135416) (109190; 121323; 133455) (95589; 106210; 116831) 

0.8 (5015356; 5572618; 6129880) (5008212; 5564680; 6121148) (5190402; 5767113; 6343824) 

 (244058; 271175; 298293) (253676; 281863; 310049) (261135; 290150; 319165) 

 10030 10012 9881 

 (177278; 196975; 216673) (170093; 188993; 207892) (154413; 171570; 188727) 

0.9 (4970841; 5523157; 6075473) (4980462; 5533846; 6087231) (5200238; 5778042; 6355846) 

 (243360; 270400; 297440) (251359; 279288; 307216) (263408; 292675; 321943) 

 9959 9994 9920 

 (170757; 189730; 208703) (173214; 192460; 211706) (152420; 169355; 186291) 

1.0 (4977333; 5530370; 6083407) (5005813; 5562014; 6118216) (5185492; 5761658; 6337824) 

 (244755; 271950; 299145) (255566; 283963; 312359) (257276; 285863; 314449) 

 10014 10000 9906 

 (169614; 188460; 207306) (172575; 191750; 210925) (150354; 167060; 183766) 

 

 

5.4. Conclusion  

  

In this section, two real world problems – economic order quantity problem and 

aggregate production planning problem- in fuzzy environments are solved using the 

proposed direct solution method. In the solution process, four different ranking 

methods and for the fuzzy EOQ problem the PSO algorithm and for the fuzzy APP 

problem the tabu search algorithm are used. It has been observed that fuzzy decision 

making problems can be solved effectively by using ranking methods of fuzzy 

numbers without any necessity of transformation into crisp equivalent. When crisp 
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solutions are compared with fuzzy solutions, it is seen that with fuzzy data better 

solutions can be obtained for both the EOQ problem and the APP problem.  
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CHAPTER 6 

 

SOLUTION OF FUZZY MATHEMATICAL PROGRAMMING 

PROBLEMS WITH FUZZY DECISION VARIABLES 

 

6.1. Introduction 

  

In this chapter, solution of fuzzy mathematical programming problems with fuzzy 

decision variables is presented. The proposed direct solution method is used for 

solving fuzzy mathematical programming problems with fuzzy decision variables. 

The fuzzy product mix problem with fuzzy variables is solved with proposed direct 

solution method.  

 

6.2. Fuzzy Mathematical Programming Problems with Fuzzy Decision Variables  

  

In real world applications, the nature of the parameters of the decision making 

problems are imprecise. Fuzzy set theory gives an opportunity to handle linguistic 

terms and vagueness in real life systems. After Bellman and Zadeh (1970) proposed 

the concept of decision making in fuzzy environments, various researchers studied 

on fuzzy mathematical programming problems frequently. A review of these studies 

is given in chapter 3. In another point of view, existing methods can be divided into 

two groups, depending on the fuzziness of decision variables. In the first group, it is 

assumed that the parameters of the problem are fuzzy numbers while the decision 

variables are crisp ones. This means that in an uncertain environment, a crisp 

decision is made to meet some decision criteria (Hashemi et al., 2006, Allahviranloo, 

2008).   In the first group, the fuzzy characteristic of the decision can be partly lost 

and the decision making process is constrained to crisp solutions. Finding fuzzy 

solutions instead of crisp solutions in an uncertain environment that provide ranges 

of flexibility to decision maker looks more attractive (Hashemi et al., 2006). In the 
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second group, the decision variables are assumed as fuzzy numbers. Tanaka and Asai 

(1984a) are the pioneers of the second group. In the literature, there are few 

examples on fuzzy mathematical programming problems with fuzzy decision 

variables.  

 

Tanaka and Asai (1984a) presented how fuzzy solution can be obtained for fuzzy 

linear programming problems. They handled fuzzy linear programming problems 

with fuzzy satisfaction criteria and fuzzy right hand values of constraints. The fuzzy 

linear programming problem is converted into crisp problem and solved. Tanaka and 

Asai (1984b) solved fully fuzzy linear programming problems in their paper. They 

handled fuzzy linear programming problems with fuzzy satisfaction criteria and 

fuzzy parameters. The goals and constraints are accepted as identical concepts. The 

fuzzy linear programming problem is converted into crisp problem as in Tanaka and 

Asai (1984a).  

 

Tanaka et al. (2000) studied obtaining fuzzy decision to fuzzy decision making 

problems using possibility distributions of fuzzy decision variables. In their study, 

Tanaka et al. solved fuzzy linear programming problems with fuzzy right hand 

values and fuzzy decision variables. For solving the fuzzy problem, they used 

possibility distributions of fuzzy decision variables and transformed fuzzy problems 

into crisp problem.  

 

Buckley and Feuring (2000) proposed a solution method for fully fuzzy linear 

programming problems. All of the parameters and decision variables are defined as 

triangular fuzzy numbers. The fuzzy linear programming problem is changed into a 

multi-objective fuzzy linear programming problem. For example, for a maximizing 

problem it is tried to maximize the mid point of the fuzzy objective, minimize the 

area between the mid point and the minimum point of the membership function of 

fuzzy objective and maximize the area between the mid point and the maximum 

point of the membership function of fuzzy objective. The fuzzy constraints are 

handled using fuzzy ranking methods. Fuzzy flexible programming problem is used 

to find the whole undominated set of the multi-objective fuzzy linear programming 

problem. Buckley and Feuring (2000) designed an evolutionary algorithm to solve 

the fuzzy flexible program.  
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Buckley et al. (2001) solved multi-objective fully fuzzified linear programming 

problems in their study. All the parameters and variables are defined as triangular 

fuzzy numbers. The same solution procedure proposed in Buckley and Feuring (2000) 

is used for the multi-objective fully fuzzified linear programming problems. The 

multi-objective fully fuzzified linear programming problem is changed into a single 

objective fuzzy linear programming problem and then solved using the proposed 

solution procedure. An evolutionary algorithm is used to generate undominated 

solutions.  

 

Tsakiris and Spiliotis (2004) presented a methodology for solving the problem of 

water allocation to various users under uncertainty. In one instance of the study, they 

defined decision variables as fuzzy. In the study of Tsakiris and Spiliotis, the water 

allocation problem with fuzzy decision variables is solved using the method 

proposed by Tanaka et al. (2000).  

 

Hashemi et al. (2006) proposed a solution method for fully fuzzified linear 

programming problems in which all parameters and decision variables are defined as 

symmetric fuzzy numbers. The solution procedure is constructed on a ranking 

method which is based on the comparison of mean and standard deviation of fuzzy 

numbers. In fuzzy arithmetic based on Zadeh’s extension principle, the shape of L-R 

fuzzy number is not preserved. So, Hashemi et al. used the new fuzzy arithmetic 

operations on symmetric fuzzy numbers introduced by Nasrabadi and Nasrabadi 

(2004). Hashemi et al. (2006) proposed a two phase approach for the solution of the 

fully fuzzified linear programming problems. In the first phase, the possibilistic mean 

value of fuzzy objective function is tried to be maximized and a set of feasible 

solutions are obtained. In the second phase, the standard deviation of the original 

fuzzy objective function is tried to be minimized by considering all basic feasible 

solutions obtained at the end of the first phase.  

 

Allahviranloo et al. (2008) proposed a method to solve fuzzy mathematical 

programming problems with fuzzy variables. They concentrated on fully fuzzy linear 

programming problems in their work; they defined all of the parameters of the 

problem and the decision variables as fuzzy numbers. The parameters and the 

decision variables of the fuzzy mathematical programming problems are defined as 
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triangular fuzzy numbers. The fully fuzzy linear programming problem is defuzzified 

using a linear ranking function and the crisp equivalent of the fully fuzzy linear 

programming problem is obtained. After the defuzzification process, the number of 

constraints and the number of decision variables are increasing.   

 

6.3. Solution of Fuzzy Mathematical Programming Problems with Fuzzy 

Decision Variables 

  

In this thesis, fuzzy mathematical programming problems in which all of the 

parameters and the decision variables are defined as fuzzy numbers are handled. 

When all parameters of the problem are fuzzy, it can be more appropriate that the 

decision variables are fuzzy too. In a fuzzy mathematical programming problem, 

when the parameters and the decision variables are fuzzy numbers, the arithmetic of 

two fuzzy numbers will be occurred. When two fuzzy numbers added or subtracted, 

the type of the obtained fuzzy number will not change. But, when two fuzzy numbers 

multiplied or divided by each other, the type of the obtained fuzzy number will not 

be same with the formers. For example, when two triangular fuzzy numbers are 

multiplied, the resultant will be a triangular shaped fuzzy number, but not a 

triangular fuzzy number. The left and right reference functions will not be linear 

functions. So, for these fuzzy numbers, general forms of fuzzy ranking methods can 

be used, not the special forms of fuzzy ranking methods which are generated for 

special types of fuzzy numbers.  

 

The proposed direct solution method can be used for solving fuzzy mathematical 

programming problems with fuzzy decision variables. A ranking method for fuzzy 

numbers is used to rank the objective function values and to determine the feasibility 

of the constraints. In the previous sections, the fuzzy parameters are defined as 

triangular fuzzy numbers and the decision variables are accepted as crisp. So, after 

the arithmetic of triangular fuzzy parameters with crisp decision variables 

(multiplication, division etc.), the obtained objective function values and the obtained 

right and left hand values of the constraints are triangular fuzzy numbers too. Hence, 

for the solution of fuzzy problems in previous sections, special forms of ranking 

methods for triangular fuzzy numbers are used in the proposed direct solution 
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method. When decision variables are defined as fuzzy, general forms of the ranking 

methods should be used in the proposed direct solution method.  

 

In this thesis, the product mix problem is solved as an example for the solution of 

fuzzy mathematical programming problems with fuzzy decision variables. The fully 

fuzzy product mix problem can be written in mathematical form as follows.  
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 All parameters of the product mix problem are defined as triangular fuzzy numbers. 

The decision variables are accepted as symmetric triangular fuzzy numbers and the 

left and right difference are defined as determined percentage of the mid point of the 

fuzzy decision variable. The fuzzy decision variables can be presented as in figure 

6.1.  
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Figure 6.1. The shape of the fuzzy decision variables 
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The fully fuzzy product mix problem can be written in an open form as follows.  
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where a is the percentage value.    
 

The fully fuzzy product mix problem is solved using the proposed direct solution 

method. The ranking method based on left and right dominance (Chen and Lu, 2001) 

is used to rank the objective function values and to determine the feasibility of the 

constraints. The ranking method based on left and right dominance is explained in 

chapter 2. The ranking method based on left and right dominance is a general ranking 

method which can be used for all types of fuzzy numbers. This ranking approach 

follows the concept of area measurement and useful when the membership functions 

of the fuzzy numbers cannot be acquired. The ranking method based on left and right 

dominance is selected according to the ease of computation among the others. In the 

solution of the fully fuzzy product mix problem, the PSO algorithm is used to carry 

out the ranking process. The parameters of the algorithm are taken as follows; inertia 

weight w = 0.4, individual and sociality weights c1 = c2 = 1.4962, the number of 

particles n = 20 and the number of iterations is 1000. For the solution of the problem 

a computer program is written in C language. 

 

The left and right difference of the fuzzy decision variables are defined as 

determined percentage of the mid point of the fuzzy decision variables. The problem 

is solved for different percentage values. In the ranking method based on left and 

right dominance, the index of optimism β is determined by the decision maker. The 

problem is solved for three values of β (0, 0.5, 1). The ranking method uses a few left 

and right spreads at some α-levels of fuzzy numbers to determine the dominance of 

one fuzzy number over the other. In the ranking method, (n+1) is the number of α-

cuts used to calculate the dominance. In the solution of the fully fuzzy product mix 

problem n is accepted as 5 (α0 = 0, α1 = 0.2, α2 = 0.4, α3 = 0.6, α5 = 0.8, α6 = 1.0) 

and 10 (α0 = 0, α1 = 0.1, α2 = 0.2, α3 = 0.3, α5 = 0.4, α6 = 0.5, α7 = 0.6, α8 = 0.7,    
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α9 = 0.8, α10 = 0.9, α11 = 1.0). The solutions obtained for different percentage values, 

β values and number of α-cuts are shown in the tables 6.1-6.6.  

 

Table 6.1. The solution of the fully fuzzy product mix problem for percentage    
value = 10% and n = 5  
 

β X1 X2 X3 
The possibility distribution 

of the objective function 

0.0 (0; 0; 0) (24.769; 27.521; 30.273) (16.984; 18.871; 20.758) (280.876; 333.393; 390.172) 

0.5 (0; 0; 0) (24.179; 26.866; 29.553) (14.475; 16.084; 17.692) (262.406; 311.429; 364.425) 

1.0 

(0.00009; 

0.0001; 

0.00011) 

(2.045; 2.272; 2.499) (41.152; 45.724; 50.296) (245.788; 292.524; 343.145) 

 

Table 6.2. The solution of the fully fuzzy product mix problem for percentage    
value = 20% and n = 5  
 

β X1 X2 X3 
The possibility distribution 

of the objective function 

0.0 (0; 0; 0) (16.828; 21.036; 25.243) (24.451; 30.564; 36.677) (263.141; 351.669; 449.295) 

0.5 (0; 0; 0) (20.922; 26.152; 31.383) (13.552; 16.940; 20.328) (232.806; 310.860; 396.855) 

1.0 (0; 0; 0) (9.894; 12.3676; 14.841) (24.020; 30.025; 36.030) (208.717; 279.090; 356.741) 

 

Table 6.3. The solution of the fully fuzzy product mix problem for percentage    
value = 30% and n = 5 
 
β X1 X2 X3 The possibility distribution 

of the objective function 

0.0 (0; 0; 0) (22.555; 32.222; 41.889) (13.333; 19.048; 24.762) (243.834; 372.065; 514.534) 

0.5 (0; 0; 0) (14.189; 20.269; 26.351) (17.282; 24.689; 32.096) (203.198; 310.293; 429.395) 

1.0 (0; 0; 0) (3.209; 4.584; 5.959) (26.852; 38.360; 49.868) (174.440; 266.836; 369.814) 

 

Table 6.4. The solution of the fully fuzzy product mix problem for percentage    
value = 10% and n = 10 
 

β X1 X2 X3 
The possibility distribution 

of the objective function 

0.0 (0; 0; 0) (26.284; 29.204; 32.125) (15.601; 17.3339; 19.067) (284.491; 337.637; 395.090) 

0.5 (0; 0; 0) (24.179; 26.866; 29.552) (14.474; 16.083; 17.691) (262.398; 311.420; 364.414) 

1.0 (0; 0; 0) (5.730; 6.367; 7.003) (36.242; 40.269; 44.296) (245.930; 292.547; 343.021) 
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Table 6.5. The solution of the fully fuzzy product mix problem for percentage    
value = 20% and n = 10  
 

β X1 X2 X3 
The possibility distribution 

of the objective function 

0.0 (0; 0; 0) (23.121; 28.901; 34.681) (17.180; 21.475; 25.770) (269.613; 360.057; 459.717) 

0.5 (0; 0; 0) (20.854; 26.068; 31.282) (13.639; 17.049; 20.459) (232.790; 310.841; 396.834) 

1.0 

(0.00008; 

0.0001; 

0.00012) 

(7.118; 8.898; 10.677) (27.726; 34.658; 41.589) (208.655; 279.131; 356.932) 

 

Table 6.6. The solution of the fully fuzzy product mix problem for percentage    
value = 30% and n = 10 
 

β X1 X2 X3 
The possibility distribution 

of the objective function 

0.0 (0; 0; 0) (22.750; 32.500; 42.250) (14.661; 20.944; 27.228) (252.727; 385.667; 533.383) 

0.5 (0; 0; 0) (14.150; 20.214; 26.279) (17.331; 24.758; 32.186) (203.178; 310.265; 429.359) 

1.0 (0; 0; 0) (3.383; 4.833; 6.283) (26.626; 38.038; 49.449) (174.483; 266.893; 369.882) 

 

When the obtained results are analyzed, it is seen that the fuzzy mathematical 

programming problems with fuzzy decision variables can be solved effectively by 

using the proposed direct solution method and significant results are obtained.  

 

It is seen from the tables, as expected the objective values for β = 0 is bigger than the 

others and the objective values are decreasing while β values are increasing. When 

the percentage value increases, for β = 0 the objective value increases, but for β = 0.5 

and 1.0 the objective value decreases. When the number of α-cuts used in the ranking 

method increases, for β = 0 and 1.0 the objective value increases, β = 0.5 the 

objective value decreases. The differences for β = 0.5 and 1.0 are very small. Chen 

and Lu (2001) showed that the ranking orders are consistent regardless of the number 

of α-cuts. It is stated that, if the membership functions of fuzzy numbers are simple, 

only a small number of α-cuts is necessary. The use of a greater number of α-cuts 

can obviously produce more accurate ordering.    
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6.4. Conclusion 

 

In this chapter, the solution of fuzzy mathematical programming problems with 

fuzzy decision variables is shown. A fully fuzzy mathematical programming problem 

is solved using the proposed direct solution method. In the literature, there are a few 

studies on the solution of fully fuzzy mathematical programming problems. Because, 

after the multiplication or division of two fuzzy numbers, the type of the obtained 

fuzzy number will be change and the membership function will not be a linear 

function. So, the solution of fully fuzzy mathematical programming problems is not 

easy. But in this chapter, it is shown that fully fuzzy mathematical programming 

problems can be solved easily using the proposed direct solution method. In this 

chapter, a fully fuzzy product mix problem is solved as an example. In the solution, 

the ranking method based on left and right dominance and the PSO algorithm are 

used and significant solutions are obtained. It has been observed from this study that 

fully fuzzy decision making problems can be solved effectively by using the 

proposed direct solution method. In this study, the fuzzy decision variables are 

accepted as symmetric triangular fuzzy numbers and the left and right difference are 

defined as determined percentage of the mid point of the fuzzy decision variable. The 

fuzzy decision variables can be defined in different types of fuzzy numbers and 

solved using the proposed direct solution method.  
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CHAPTER 7 

 

DISCUSSION and CONCLUSION 

 

7.1. Introduction 

 

In this chapter, section 7.2 gives a discussion of the study. Section 7.3 summarizes 

the conclusions obtained from the study. In section 7.4 some recommendations for 

future research are given.  

 

7.2. Discussion 

  

Most of the real life problems and models contain linguistic and/or imprecise 

variables and constraints. This can be due to different causes; usually, decision 

makers can state parameters on a system in terms of linguistic variables more easily 

and properly. Generally, collecting precise data is very hard, because the 

environment of the system is unstable or collecting precise data requires high 

information costs. In addition, decision maker might not be able to express his/her 

goals or constraints precisely but rather in a fuzzy sense.  

 

The mentioned impreciseness in a system does not exist because of randomness but 

rather because of fuzziness. Fuzziness is the major source of imprecision in many 

decision processes. Fuzzy set theory gives an opportunity to handle linguistic terms 

and vagueness in real life systems. For modeling systems which are imprecise by 

nature or which can not be defined precisely, fuzzy mathematical programming that 

is based on fuzzy set theory is generally used. 
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Fuzzy mathematical programming is suggested to solve problems which could be 

formulated as mathematical programming models, the parameter of which are fuzzy 

rather than crisp numbers (Zimmermann, 1983). 

 

Fuzzy mathematical programming is used frequently for modeling the systems after 

Zimmermann (1976) first used the max-min operator of Bellman and Zadeh to solve 

fuzzy linear programming problems. Several researchers proposed various solution 

methods for solving fuzzy mathematical programming models. The cause of this 

interest is that; fuzzy mathematical programming provides modeling of a system in 

accordance to current state of information and fuzzy models can reflect the real life 

systems more properly. Therefore, the notion of fuzzy set theory is widely spread to 

various fields, the history of fuzzy decision making and fuzzy mathematical 

programming are very rich.  

 

7.2.1. The need for the present work   

  

In the literature, various authors classified fuzzy mathematical programs with respect 

to different criteria. But, there is not a detailed classification according to the fuzzy 

components included in a fuzzy mathematical programming model. In this study, a 

new classification of fuzzy mathematical programming models is given according to 

the fuzzy components. The proposed solution approaches for fuzzy mathematical 

programming models are reviewed.  

 

In the literature, there are various studies on solving fuzzy mathematical 

programming models. In a fuzzy mathematical programming model all or some of 

the parameters can be defined as fuzzy numbers. For fuzzy mathematical 

programming models with various fuzzy parameters, different optimization 

algorithms are proposed. But, most of the solution approaches are based on the fuzzy 

decision concept proposed by Zimmermann (1976). Other common approach is using 

fuzzy ranking procedures as a part of the solution mechanism for solving fuzzy 

mathematical programs. In all these solution approaches, fuzzy mathematical 

programming models were first transformed into a crisp equivalent then solved by a 

classical solution approach. In the literature, there is not any study on solving fuzzy 

mathematical programming problems directly. In this thesis, a direct solution method 
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is proposed for solving fuzzy mathematical programming problems. In the proposed 

direct solution method ranking methods for fuzzy numbers and metaheuristic 

algorithms are used. Essentially, it can be very hard to transform many problems into 

crisp equivalent and sometimes the obtained crisp equivalent can be nonlinear. When 

the obtained crisp equivalent is nonlinear, a meta-heuristics algorithm should be used 

again for the solution. Therefore transformation might not be always advantageous. 

The use of transformation into crisp equivalent can limit the application of fuzzy 

mathematical programming. To make the transformation process easier, generally the 

membership functions of fuzzy parameters are defined as linear. So, generally, the 

fuzzy parameters are defined as triangular or trapezoidal fuzzy numbers. Besides, in 

the transformation process some information can be missed. Consequently, using a 

direct solution method can be very advantageous.  

 

Existing methods for fuzzy mathematical programming can be divided into two 

groups, depending on the fuzziness of decision variables. In the first group, it is 

assumed that the parameters of the problem are fuzzy numbers while the decision 

variables are crisp ones. This means that in an uncertain environment, a crisp 

decision is made to meet some decision criteria (Hashemi et al., 2006, Allahviranloo, 

2008).   In the first group, the fuzzy characteristic of the decision can be partly lost 

and the decision making process is constrained to crisp solutions. In the second 

group, the decision variables are assumed as fuzzy numbers. In the literature, there 

are few examples on fuzzy mathematical programming problems with fuzzy decision 

variables. The solution of fully fuzzy mathematical programming problems is not 

easy. In the literature, as in other fuzzy mathematical programming problems, the 

fully fuzzy mathematical programming problems are converted into their crisp 

equivalents and then solved. In this thesis, it is shown that fully fuzzy mathematical 

programming problems can be solved easily using the proposed direct solution 

method. 

 

7.2.2. The structure of the proposed direct solution method 

  

In this thesis, a direct solution method is proposed for solving fuzzy mathematical 

programming problems. In the proposed direct solution method ranking methods for 

fuzzy numbers and metaheuristic algorithms are used. Ranking methods for fuzzy 
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numbers are used to rank the objective function values and to determine the 

feasibility of the constraints. In a fuzzy mathematical programming problem, any of 

the parameters can be defined as fuzzy numbers. If the cost coefficients of the 

objective function are defined as fuzzy numbers, the objective function values of the 

generated solution vectors will be fuzzy numbers. Therefore, in the selection of the 

best solution vector, ranking of fuzzy numbers is used. If the parameters of the 

constraints are defined as fuzzy numbers, the right hand values and left hand values 

of the constraints will be fuzzy numbers. So, the feasibility of the constraints for the 

generated solution vectors will be determined via ranking of two fuzzy numbers. If 

only some of the parameters of the constraints are defined as fuzzy numbers, still, 

ranking methods for fuzzy numbers can be used. Because, ranking methods for fuzzy 

numbers can rank a fuzzy number with a crisp number. To carry out the ranking 

process a metaheuristic algorithm is used. For presenting the effectiveness of the 

proposed direct solution method, a fuzzy peak load pricing problem, a fuzzy product 

mix problem, a fuzzy multi-item economic order quantity problem and a fuzzy multi-

objective aggregate production planning problem are solved. For the solution of the 

problems, two metaheuristic algorithms are used; the particle swarm optimization 

algorithm and the tabu search algorithm. The problems are solved by employing four 

different fuzzy ranking methods; the signed distance method, the integral value 

method, Chen and Chen’s method and the ranking of fuzzy numbers through the 

comparison of their expected intervals. In the thesis, different instances of the 

problems are solved. For the solution of the problems, computer programs are 

written in C language. 

 

In the thesis, the proposed direct solution method is used for solving fully fuzzy 

mathematical programming problems. In a fuzzy mathematical programming 

problem, when the parameters and the decision variables are fuzzy numbers, the 

arithmetic of two fuzzy numbers will be occurred. When two fuzzy numbers 

multiplied or divided by each other, the type of the obtained fuzzy number will not 

be same with the formers. For example, when two triangular fuzzy numbers are 

multiplied, the resultant will be a triangular shaped fuzzy number, but not a 

triangular fuzzy number. The left and right reference functions will not be linear 

functions. So, for these fuzzy numbers, general forms of fuzzy ranking methods can 

be used, not the special forms of fuzzy ranking methods which are generated for 
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special types of fuzzy numbers. The product mix problem is solved as an example for 

the solution of fuzzy mathematical programming problems with fuzzy decision 

variables. The ranking method based on left and right dominance is used to rank the 

objective function values and to determine the feasibility of the constraints. The PSO 

algorithm is used to carry out the ranking process. For the solution of the problem a 

computer program is written in C language. 

 

7.3. Conclusion 

 

In this study, fuzzy mathematical programming models are reviewed and classified 

into fifteen types according to the fuzzy components they include. A literature review 

is carried out in order to see which types of problems are more frequently studied and 

what type of solution approaches are implemented. After the literature review, it is 

observed that the mostly frequently studied fuzzy mathematical programming models 

are;  

-the fuzzy mathematical programming models with fuzzy objective(s), 

-the fuzzy mathematical programming models with fuzzy right hand values of 

constraints, 

-the fuzzy mathematical programming models with fuzzy cost coefficients,  

-the fuzzy mathematical programming models with fuzzy objective(s) and fuzzy 

right hand values of constraints, 

-the fuzzy mathematical programming models with fuzzy cost coefficients, fuzzy 

right hand values of constraints and fuzzy coefficients of constraints.  

 

From the literature review it is observed that, the most common idea of the existing 

solution approaches is to transform the fuzzy model into a crisp model. After the 

transformation process, the obtained model is solved by using a conventional method 

according to the form of the resultant model (linear or nonlinear). 

 

In this study, a direct solution method is proposed to solve fuzzy mathematical 

programming problems and fully fuzzy mathematical programming problems. In the 

proposed direct solution method, to rank the objective function values and to 

determine the feasibility of the constraints a ranking method for fuzzy numbers is 

used. A metaheuristic algorithm is used to carry out the ranking process. For 
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demonstration, different fuzzy mathematical programming problems are solved using 

different ranking methods and metaheuristic algorithms. From the solutions, it has 

been observed that fuzzy mathematical programming problems with different fuzzy 

parameters and fully fuzzy mathematical programming problems can be solved 

effectively by using ranking methods of fuzzy numbers without any necessity of 

transformation into crisp equivalent.   

 

7.4. Recommendations for Future Research  

 

In this study, a direct solution method is proposed to solve fuzzy mathematical 

programming problems and fully fuzzy mathematical programming problems. 

Different problems are solved with the proposed direct solution method and it has 

been observed that fuzzy mathematical programming problems with different fuzzy 

parameters and fully fuzzy mathematical programming problems can be solved 

effectively. In future works, different problems can be solved using the proposed 

direct solution method. The implementation of other ranking methods for fuzzy 

numbers and other metaheuristic algorithms can be considered. Different types of 

fuzzy numbers can be used as parameters in fuzzy mathematical programming 

problems and solved using appropriate ranking method in the proposed direct 

solution method.  
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