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ABSTRACT

ANALYSIS of THIN TRIANGULAR CONDUCTING ELEMENTS
PRINTED on PLANAR DIELECTRIC SLABS

PEKMEZCI Aysegiil
M.Sc. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. Tuncay EGE
January 2010, 56 pages

In this study, scattering characteristics of thin triangular conducting elements
periodically printed on planar dielectric slabs are investigated theoretically for
transverse electric (TE) and transverse magnetic (TM) incident plane waves. Such
surfaces are known as frequency selective surfaces (FSS) and they show bandpass or

stop band filter characteristics.

Since the conducting elements are etched periodically on such a surface, all fields
and currents must satisfy Floquet’s condition and should be written as Floquet
modes. Using Floquet’s theorem and satisfying the required boundary conditions, an
integral equation is obtained for the unknown induced current density on the surface
of a triangular conducting element in a unit cell. This current is then expressed as a
finite sum of piecewise triangular basis functions having unknown coefficients. The
resulting integral equation is then converted to a linear matrix equation by using the
Moment Method (MM) and inversion of the matrix equation yields the unknown
current coefficients which are used to obtain the reflection and transmission

coefficients.

il



Numerical results for the reflection and transmission coefficients are then plotted
versus frequency for freestanding and dielectric backed triangular-shaped FSS
elements. Furthermore, the variation of reflection characteristics with dielectric
constant (&), slab thickness (7), length and width of the triangle (L, ,;,w),

incidence angle (&) and lattice dimensions (d, ) are presented in the form of

graphs.

Key words: Triangular Conducting Elements, Frequency Selective Surfaces,
Moment Method
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OZET

DUZLEMSEL DIELEKTRIK LEVHA UZERINE YERLESTIRILMIS INCE
UCGEN YAPILI iLETKEN ELEMANLARIN ANALIZI

PEKMEZCI Aysegiil
Yiiksek Lisans Tezi Elektrik Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Tuncay EGE
Ocak 2010, 56 sayfa

Bu calismada diizlemsel dielektrik levha {izerine periyodik olarak yerlestirilmis ince
ticgen seklindeki iletken elemanlarin levhaya dik gelen TM ve TE diizlem dalgalar
i¢cin sacilma ozellikleri incelenmistir. Bu tiir yiizeyler Frekans Secici Yiizey (FSY)

olarak adlandirilirlar ve bant gegirici ya da durdurucu filtre 6zelligi gosterirler.

Frekans Segici Yiizey (FSY) iizerindeki iletken elemanlar periyodik olarak
yerlestirildiklerinden dolayi, olusan tiim alanlar ve akimlar Floquet sartlarini
saglamalidir. Bu sebeple, dielektrik levha iizerine yerlestirilen iletken elemanlarin
tizerinde indiiklenen akimlar i¢in Floquet Teoremi kullanilarak bir integral denklemi
elde edilir. Daha sonra buradaki akimlar, sinirli sayidaki bilinmeyen katsayili temel
ticgen fonksiyonlarinin toplami olarak ifade edilirler. Elde edilen integral denklemi,
iletim ve yansima katsayilarinin hesaplanmasinda kullanilacak olan bilinmeyen akim

katsayilarinin bulunmasi icin Moment Metodu aracilifiyla ¢oziiliir.

Havada asili ve dielektrik levha {izerine yerlestirilmis licgen sekilli FSY elemanlari
icin bulunan iletim ve yansima katsayilarinin frekansa gore grafikleri ¢izilmis olup
yansima katsayisinin frekansa gore degisimi, gelme agisi, levha kalinligi, iletken
elemanin uzunlugu gibi farkli parametre degerleri i¢in de ayrica gosterilmistir.

Sonug olarak, dnceki ¢aligsmalarda da oldugu gibi liggen sekilli FSY’lerin de bant

durdurucu 6zelligi oldugu gozlemlenmis ve benzerlikler ifade edilmistir.

Anahtar kelimeler: Ucgen Yapili iletken Elemanlar, Frekans Secici Yiizeyler,
Moment Metot
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Frequency selective surface (FSS) is a surface which exhibits different reflection and
transmission properties as a function of frequency. These surfaces are usually
constructed from periodically arranged metallic patches of arbitrary geometries or
their complementary geometry having aperture elements similar to patches within a
metallic screen. The shape and configurations of the geometry for FSSs depends on

the imagination of the researcher.

As the metallic patches are arranged periodically in air or a dielectric substrate, FSS
shows total reflection properties (reflects nearly all energy) at some specific
frequency called the resonance frequency whereas in the complimentary structures
where the metallic screen is perforated, it transmits all energy (total transmission) at
the resonance frequency. So, it is seen that aperture and patch screens generally yield

give complementary frequency responses [1].

Choosing appropriate parameters also have a significant role in the design of desired
FSS. The most important parameters in the design are the element geometry, the
periodicity of the structure and the type of the dielectric substrate [1] which
determine the overall frequency response of the structure such as; stability of the
resonant frequency, bandwidth shape: narrow or broadband and rate of roll-off

avoiding the higher order harmonics that cause grating lobes.



1.2 Typical Application

FSSs are incorporated in a wide variety of applications such as the realization of
reflector antennas, radome designs, constructions of polarizers, beam splitters, and

some kind of absorbers and photonic band gap structures.

Periodic Surface
/ i Fregquency Selectmve)

A’ + TA i 3Hz
14112 GHz Feed
Feed

Figurel.l Reflector antenna system using frequency selective screen

As shown in Figurel.l, a FSS is placed between two feeds radiating at different
frequencies and the main reflector [2]. The screen is totally reflecting or totally
transparent over the operating band of feed one and two, respectively. Hence, two

independent feeds may share the same reflector antenna simultaneously.

The other application of FSS in microwave region is in radome design [2]. Radomes
protect an antenna from the environment by tuning the screen at the operating
frequency of the antenna to provide a bandpass transmission characteristic. At the out
of band frequencies the screen can be made totally reflecting, and the radome can be
designed to blend with the skin of the vehicle such that minimal scattering occurs at

the joint between the radome and the skin.

In far-infrared region, the application of FSSs involves polarizers, beam splitters [2].
A polarizer can be constructed from a diffraction grating such that the fields

polarized parallel to the grating are reflected, while those with an orthogonal



polarization are transmitted. An FSS comprising of meanderlines can be used as a

polarizer to convert a linearly polarized wave into a circularly polarized one [1].

In the near-infrared and visible portions of the spectrum, periodic screens have been
also proposed as solar selective surfaces to aid in the collection of solar energy [2]. A
screen is designed such that it is essentially transparent in the frequency band where

the solar cells are most efficient and is reflecting at frequencies outside this band.

When the photonic bandgap structures are used in applications of FSSs, the designer
could extend the frequency selective screen by periodically adding many layers in
the third dimension [1]. For this reason, the photonic bandgap material consists of
three-dimensional periodic structures that exhibit spectral bands where all

propagation is prohibited at any incident angle and for any polarization.

Circuit analog absorbers are the other applications of FSS which are made of
periodic structures of very lossy material [3]. That kind of absorbers is designed to

produce a larger bandwidth per given thickness, particularly as more layers are
added.

1.3 Literature Summary

FSSs have been the subject of investigation by many researchers because of their

various important applications.

The problem of scattering by a two-dimensional periodic array of rectangular plates
was studied by Ott et al. [4] and the integral equation was solved for the unknown
current on each plate by using the point matching method. Then the solution given is
restricted to the case of narrow plates arranged in a rectangular lattice with a
normally incident plane wave. The complementary problem of scattering by a
conducting screen perforated periodically with apertures was analyzed by Kieburtz

and Ishimaru [5] by the variational method.



In 1970, a more general formulation of the scattering problem for a two-dimensional
periodic array of plates was presented by C.C.Chen [6]. The electromagnetic field
distribution near the array of the conducting plates was expanded into a set of
Floquet mode functions, and an integral equation for the unknown induced current
was obtained. Then the coefficients of unknown current were determined by the

method of moments.

In 1975, J.P.Montgomery [7] solved the problem of scattering of a plane wave by an

infinite periodic array of thin conductors for unsymmetrical structures.

In 1979, a new analysis for calculating the scattering periodically arrays of

symmetrical cross dipoles was presented by Pelton and Munk [8].

In 1981, Parker and Hamdy [9] pointed out that the arrays of simple rings can form

useful FSSs for reflector antennas.

Tsao and Mittra presented a new technique, called the spectral-iteration approach, for
analyzing the problem of scattering from periodically perforated screens in 1982
[10]. They obtained a set of algebraic equations for the spectral coefficients of the
aperture field or the induced current. And then these equations were solved
simultaneously using the iterative procedure developed by these authors. They also
presented a full-wave analysis for FSSs comprised of periodic arrays of cross dipoles

and Jeruselam crosses [11].

Tripoles were used originally by Pelton and Munk[12] as elements for slot arrays I
metallic radomes. Then, in 1983, Vardaxoglou and Parker [13] investigated the
performance of tripole arrays as FSS. They showed that the current distribution along

the arms of tripoles arranged on two equilateral lattices.

There are also some other loop-type and plate-type structures such as circular,
square, hexagonal that have been investigated as FSS up to now[3]. However, the
FSSs comprised of L-shaped and one-turn helix shaped conductors were firstly

studied by Delihacioglu in his doctorial dissertation [14]. On the other hand,



Blinnikova et al. [15] considered the L-shaped apertures in FSSs for the first time in
2007.

When the literature is searched, we found that no study has been done on FSSs
comprising of triangular-shaped conductors. That is why, in this study, we
investigated the reflection and transmission characteristics of FSS formed by a two

dimensional array of triangular shaped conductors printed on a dielectric substrate.
1.4 Method of This Work

Due to the periodicity of FSSs, the analysis is carried out in terms of infinite periodic
structures and the formulation reduces to the investigation of one periodic unit cell
which is identical to those in an adjacent cell differing only by the incident field
phase shift. And this analysis is performed by applying Floquet’s Theorem. So, an
integral equation for the unknown current on each conducting element is obtained by

enforcing the required boundary conditions on the conducting elements.

In order to solve this integral equation Moment Method (MM) has been widely used.

By using MM [16] this integral equation is converted to a linear matrix equation of

the form(Z )i =V. Here,(Z ) is the impedance matrix, V' is the known excitation

function and i is the vector that contains the unknown coefficients of the basis
functions. Taking the inverse transform of the matrix equation, the unknown current
coefficients are obtained. Thus, choosing the proper basis function plays an
important role to define the number of unknown induced currents which affect the

size of the impedance matrix.

Introduction to Floquet’s Theorem and Floquet Modes is given in Chapter 2 and a
brief explanation of MM and the basis function adopted for our work is given in
Chapter 3. Furthermore, in this chapter the triangular-shaped FSS backed by
dielectric slab is formulated. The formulation is in the form of an integral equation in
terms of the current induced on a scatterer in a unit cell. By using MM, this equation
is solved for the induced current density on the triangular-shaped conductor and the

reflection and transmission coefficients are then expressed in terms of the known



induced current distribution. In order to verify the correctness of the algorithm
developed for the triangular-shaped conducting elements in this study, comparison

with FSSs composed of conducting strips and L-dipoles are also given.

In Chapter 4, numerical results for the reflection and transmission characteristics are
presented. For an FSS comprising of triangular conducting elements, all numerical
results for the reflection and transmission coefficients are plotted versus frequency
for freestanding and dielectric backed triangular-shaped FSS elements. Furthermore,
the variation of reflection characteristics with dielectric constant (&), slab thickness

(¢), length and width of the triangle (L,,;,w), incidence angle (€) and lattice

dimensions (d, ) are presented in the form of graphs.

Finally, in Chapter 5 a discussion on the results obtained and the performance of the

proposed FSS is presented.



CHAPTER 2
PERIODIC STRUCTURES AND FLOQUET’S THEOREM
2.1 Floquet’s Theorem

Periodic structures such as arrays of conducting elements or periodically perforated
screens which can be either freestanding or printed on dielectric substrates have

frequency selective properties.

All the elements in the array, which is periodic and extends to the infinity in both x
and y directions, are assumed to be identical, infinitesimally thin and perfectly
conducting. This allows us to expand the scattered fields inside the dielectric slab

and in the air on either side into a complete set of orthogonal modes known as

Floquet modes [17, 18].
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Figure 2.1 Arbitrary geometry of Frequency Selective Surface (a) Top view (b) Side view



In the cartesian coordinate system in unbounded space, a component of the electric

field in the region (z>0) is a solution of the scalar homogeneous Helmholtz equation.

(V2 +k2)‘P(X,y,z)=0 (2.1)
where

k? =k’ +k’+y’

Assuming waves propagating in z direction, the variation of the field with z can be

written as

Y(x,y,2) =e P (X,y) (2.2)
Then the equation (2.1) becomes

* P,
o +§+(k 7)) [¥(x,y)=0 (2.3)

The partial differential equation (2.3) can be converted into two ordinary differential
equations by applying the technique of separation of variables. That is by assuming

Y(x,y)="f(x)g(y)we can write

§+§+(kx +k,?) [f(x)g(y) =0 (2.4)
Then,
- B}
F+kx2 f(x)=0 (2.5)
X
- R
& [gm=0 (26)

The solution of the equations (2.5) and (2.6) is f(x)=e ™ for x dependence, and

g(y)=eY for y dependence, respectively.



Since the structure is periodic both in x and y directions, the solution of the equations
2.5 and 2.6 should also be periodic according to the Floquet theorem. Thus, the
periodic form of f(x) and g(y), representing the waves propagating in x and y

direction must satisfy the periodicity condition;

f(x+d ) =e""f(x) 2.7)
gly+d)=e""g(y) (2.8)
where

k =ksinOcos¢
k, =ksin6sin¢

and dy, dy are the surface periodicities in the x and y directions respectively.

This is possible if,
f(x)=¢F,(x) (2.9)
g(y)=¢ "G, (y) (2.10)

where Fy(x) and Gp(y) are the periodic functions of x with a period dx and y with a

period of dy, respectively. Therefore, F,(x) and Gy(y) can be expanded into a Fourier

series.
o LI
E(x)=) Ae & (2.11)
p=-o0
© —J'zlqy
d
G,(y)=> Be © (2.12)
q=—©
Substituting 2.11 and 2.12 into 2.9 and 2.10, we can obtain;
. 2np
0 _J(kx+ )X
f(x)=> Ase d (2.13)
p=—o©
. 27q
o —iky 7y
g(y)= D Bge ’ (2.14)
q=—o
where
2
k,, =kx+7;i—p, p=0,+1,%2,....
2nq
kyq :ky+T, q=0,il,i2,....



Hence, in a source free region the solution to the scalar wave equation (2.2) can be

written for z>0 as

> i 2y iyt 2”q>y o
Y(x,y,z)= Z Z C,€ & g ' (2.15)
p=—%q=
where
o =K = 20 (k4 2 2.16)

}’

The constants ky and ky are the wave numbers in the x and y directions of the

incident wave and the indices of integers {p, q} defines the location of the elements.

In the literature many authors treated periodic structures positioned along skewed
coordinates [18]. In this case, the solution to the scalar wave equation (1.15) is given

by the following equation.

© 0 275P)X —i(k ot 2nq _ 27p )
lP(X y’Z)_ Z Z C e e d sinQ dy tanQ ef_]‘\{pqz (217)
p=—© q=—o
Y(x,y,2)= Y, Y, Cpqeij“’“'ﬁefjquZ (2.18)
p=—© q=—o
where
[3:X§x+yay
; 2nq 2np -
K, .=k, + a, +(k, + -
e = X) ( d,sinQ d, tanQ)
2 2 o I
Ypa =k Kqu.Kqu

If the array geometry is made up of square cells, then choosing the angle 2 between

the skew axes to be equal to 90° in (2.17) yields (2.15).

Here, the modal propagation constant y,, can be positive real for propagating modes

or purely negative imaginary for evanescent modes depending on the linear phase

variations of the incident field ki, ky and the integers p, q.

10



2.2 Analysis of FSS

In this section, a more general formulation of the scattering problem of a FSS printed

on a single layer of dielectric is presented.

The traverse electric and magnetic fields inside and outside the dielectric layer is
expanded into Floquet modes. The resultant TE and TM Floquet harmonics,

transverse with respect to the z axis, are

I, 1 —Krpq P =
W o (X, Y) :ﬁe Uyg (2.19)

where

A =d.d, (areaof a unit cell)

s 2np - 2nq. - - -
Ko, = (k, +d—p)ax +(k, +d—q)ay —k,d, +k, 8,
X y
p=xa, +ya,
K
U, = ﬂqu ,m = 1for TM mode
Ko

u,,=a,xu, . ,m=2for TEmode

and

p=q=0,+1,%2, ...

It is known that a plane wave can always be decomposed into a combination of E and
H field that corresponds to the TM and TE Floquet modes with p=0, q=0. For this
reason, in the absence of metallic scatterer but in the presence of the dielectric layer,

the scattered fields contains only zero order Floquet modes.

So, the incident plane waves in the region z<0 with the zero order TM and TE

Floquet modes can be expressed as;

11



2
—JKToo'ﬁ —oZ33
inc z moo e umoo (220)
m:

—Z VoA o€ TP @, x T ) (221)
On the other hand, the reflected fields in the same region are given by
Er A JKToo‘PeﬂYo oo (2.22)
o)
r Z moo ;OO 7JKT00.p +JY0 (a x umoo) (223)

where A’ and A__ is the magnitude of incident field component and the reflected

field component, respectively. Furthermore, the subscripts m=1 and m=2 are used to

designate TM and TE Floquet modes, respectively.

Then, the total transverse fields in the region left of dielectric (z<0), in the dielectric

(0<z<t) and in the region right of dielectric (t<z) can be written as;

for z<0; )
E =E, +E :LZ[N eIt L AL et e KRy (2.24)
o = Fine + B =72 21 Amag moo mo0
H =H_+H, = \/l_iY [AT e A~ etirle Kt «ii ) (2.25)
e+ He =772 2, Yoo [ Ao moo 2 X Upngo
for 0<z<t; |
Ti n00€ 1+ Brgoe M Je (2.26)
Z oo Brioo€ 1 = Bro €1 1e K0P @, x ) (2.27)
and finally for t<z;
2 .
_z e*jKTowﬁe—jvo(z—t)ﬁmoo (2.28)
JA &
—ZYQOOCLOO e Km0 (G X)) (2.29)

12



where the subscript and superscript 0 and 1 are used to determine the region that is
air and dielectric, respectively. The superscripts + and — indicate the waves

propagating along the positive z and negative z directions, respectively.

In order to find the unknown coefficients of the transverse fields, boundary

conditions at z=0 and z=t should be applied to the tangential field components given

in equations 2.24 to 2.29.
Then,
1 0
C+ — 4_YmooYmoo — A+ (230)
moo (Yl +Y° )Zejylt _ (Yl —-Y° )2e jyit © Tmoo
0 \2 _ 1 29,0t 1 \2 0 \21.-int
A* — [(Ymoo) (Ymoo) ]e _ + [(Ymoo) (Ym002 _ ]e + (23 1)
moo (YL +Y° Yelnt— (YL _—y° )2 in moo

where Y, is the modal admittance. In general, modal admittance is defined as,

Yi—ki, for TM modes  (2-32)
i Yi

%, for TE modes  (2.33)

i

where
.10, forair 1, for TM mode
1= =
1, for dielectric 2, for TE mode
y = |5 (2.34)
By

k, = o\/g L, (2.35)

5 —
(ki - Kqu

i=y - _
_J(Kqu K

Ky, ifk? > ‘Kqu‘ (2.36)
_kiZ)l/Z , lf ki2 < ‘K

Tpq Tpq ‘
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On the other hand as the incident wave illuminates the surface, currents are induced

on the conducting elements. These induced currents on the metallic scatters then give

rise to scattered fields which contain higher order Floquet modes which are

necessary for the fulfillment of the boundary conditions. So, the scattered fields in

the regions of interest are;

in the region z<0;

= 1 2 0 0 . R e .
Es :_AZ{ 2 2 Al ey (2.37)
m=l p=—00 q=—©
o 1 2 0 0 . a
t, :__AZ:I 2 2 VoA ™ Pei (@, XU g ) (2.38)
m=l p=—00 q=—©
in the region 0<z<t
s 1 SR S s+ vz s— +_1yz —iKppg®P =
El=7x 2 X X B + B R, 239
. 1 2 o 0 s vz . o —iRp e _
H; :ﬁz DD Y B e =By e e T @, x ) (2.40)
m=] p=—c0 q=—0
in the region t<z
Es _ 1 z - S CS+ _JKqu.i3 —JYo(z—t) = 241
z_ﬁz;z Z mpq © © Umpq 241)
m=l p=—00 q=—0
=3 1 2 0 0 s - K oy _; 7— = —
H; :ﬁzl DY Yo Cimge T P V@ X ) (2.42)
m=l p=—00 q=—©
These fields must now satisfy the following boundary conditions:
I) The tangential components of the scattered electric fields must be

continuous at z=0.
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1) At z=0, the tangential component of the scattered magnetic fields are
discontinuous by an amount equal to the induced current density on the

metallic scatterers. That is,
Ax [ - F3] =1,
III)  The tangential components of the scattered electric and magnetic fields
are continuous at z=t.

E!=E, and H =H;

Application of these boundary conditions when combined with the orthogonality
property of the Floquet modes ‘i’mpq over a unit periodic cell enable us to express the

coefficients of the scattered fields as;

S— 1 ' *
mpq = T U EQ H J(x,y) ¥, dxdy (2.43)
mpq S
2(Y' )AS
= T (»Hﬁm) - — (2.44)
(Ympq + erlpq )eﬂh + (Ympq o Y,qu )e "
where
—_— N —
Jx,y) =2 ¢, (x,y) (2.45)
n=1
Y o4Y° et — (Y —Y° e
Yoo = Yoy + Yo, ( T T"") = ( o “:"‘*) (2.46)
(Ympq +Ympq)e l +(Ympq _Ympq)e l

The asterisk designates the complex conjugate operation and c, 's are the unknown
current density coefficients. Note that the unknown current density in (2.45) is
expanded into a finite sum of terms having an assumed functional dependence but

with unknown coefficients.

The total electric field in the region z < 0, the reflected field and the transmitted field

can then be written as,
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+E;
.K - . 2 K - .
—I8T00®P n—JV0Z 73 - —I&T00®P atIV0Z13
e e U0 E A€ e, o (2.47)

+E,
2
T {lz: moo —~

2 0 © e
s— o KrpgoP +Jvo
DIPIPHFTRE
= p:—OO q: -00
_ s
ref Er + 0
1 |& B 2 2 & 2 (2.48)
_ - o IKre®P ativez ~iKpq*P +JYoZ"
S 3 3 W
A m=1 m=] p=—00 q=—o
T s
trans EZ + E2
1 2 = ) 2 © 0 ik 5 )
_ + TKr00%P o= J¥o (2t ~I0pg P o =Y, (2t
=) 2 Coee moo + 2, 2. 2, Cia® Tpg
m=1 m=] p=—o0 q=—©
(2.49)

The coefficients in equations 2.47 - 2.49 are given in equations 2.30-31 and 2.43-44

The only remaining boundary condition we have to satisfy is that the tangential

component of the total electric field must vanish on the conducting elements

Emt =0 at z=0
That is,
- 1 2
E, =0=— A:—nooe JKToo‘P o A € JKTOO'p T
ot A {mzl Z
(2.50)

= Koy P =
sqdxdy)e T umpq}

IR 1 o=
P ZW‘YTQL”’

Substituting (2.19) and (2.45) into (2.50) yields,

j P dxdy) P, (251)
S

R 2 _ 2 0
{ZAmoo moo +2Ar_n00\Pmoo}: Z z (
1 m=| p=—00 q=—0

ll'lpq
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o0

2 ®
_Z(Amoo moo moo = Z _Z Z (_ YEQ J‘J‘J.l{l dXdy)\P (252)

m=] p=—00 q=—00 mpq

Using the inner product defined by;
(f,g"y = _U fg"dxdy
S

we can write

N
[[ 329, pdxdy =", (T, ¥, (2.53)
S n=l
and (2.52) then becomes

2 0 © - = -
_Z(Amoo moo ZC Z Z Z (_ Y}EQ )<In’lP):npq>\{lmpq (254)

(2.54) is an integral equation in terms of the unknown current coefficients c,. To
solve this equation a set of N equations are obtained by taking the inner product of
both sides of (2.54)with Iy, k=1,2,...,N. This process is the basis of the Moment
Method discussed in the next chapter. This procedure yields the following set of

equations:

o0

. 2 o
_Z(Amoo+A;oo)<Ik’ moo Z ¢, Z :Z: Z (_ YEQ )<In \Pmpq><1k’LPmpq>

n=1 m=l p=—c0 q=— mpq

k=1.2....,N (2.55)

(2.55) can be represented as a matrix equation

C, Zy Zin | G
C, ¢,
N : (2.56)
_CN_ Zy Zyn JLCN

where C, is known as source vector, z; is impedance matrix and c, is the current

coefficients to be determined. That is,
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2 — —
Cy == (oo + Anoo XTI, Proo) k=1,2,3.....N (2.57)
m=1

1 = S oy T .
Zy =~ D LY g X ¥ e L) i,j=1,2,..N (2.58)

mpq Mpq

where the triple summation ZZZ is replaced by a single summation symbol

m p q

>

mpq

(2.56) can be solved using a matrix inversion algorithm. Once the unknown current

coefficients are computed, scattered characteristics are obtained using (2.48) and

(2.49).
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CHAPTERS3
SOLUTION BY MOMENT METHOD
3.1 Determination of Basis Function

In Chapter 2, an integral equation is obtained for the current density induced on a

conducting element in a single periodic unit cell, which is given by equation (2.52).

In order to solve equation (2.52) using Moment Method [17-19], current density
should be approximated using an appropriate basis function. So, in the formulation
piecewise triangular currents having unknown coefficients are adopted for the
induced current density flowing on the conducting elements. The geometry of a

triangular conducting element in a unit cell is shown in Figure 3.1.

L.

Figure 3.1 Geometry of triangular conducting element in a typical rectangular cell

The perimeter of the triangle is divided into segments and these segments are labeled

as shown in Figure 3.2a
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Figure 3.2a Piecewise triangular current distributions with unknown coefficients for

triangular conducting element

Note that;

N;=number of segments on 1* arm

N, =number of segments on horizontal arm

N; =number of segments on 3™ arm

So, total number of segments is N;+N,*+Nj3 and total number of currents is

Ni+N,+Ns.

L

Ryq hy,  hyy

Figure 3.2b Approximated piecewise triangular current distribution

If the current on an arm is approximated by piecewise triangular currents as shown in

Figure 3.2b, then for any current J,x flowing from hy_; to hy,; along the n-axis we can

write;
L
A—(n —h, ) h,_, <n<h,

Jox(M, 1) = I“ (3.1)
A_k(hk+1 -n) h, <n<h,

20



Note that h, =h, ;+A, and h,,, =h +A, where A is the segment size.

Subscripts n (1, 2, or 3) indicates the n™ arm of the triangle and k indicates the

segment number which supports the current Iy.

3.2 Calculation of Inner Products

General form of the inner products for the impedance matrix is given in equation
(2.53) in previous chapter. When this equation is written explicitly, the inner

products that we have to compute in this case are of the form

T =k i(x] + ﬁTM —
TP g (o) = [[ o) L‘fﬁ }-J(x, y)dxdy (3.2)

unit cell pPq

Since there are three arms, it will be easier to formula the problem considering the

current in each arm separately.

3.2.1 First slant arm

v I
: LHWNBIE 1

N
I /_}

11 J 1Lk (z.7)

B
Il,m — 1

Y
-

Figure 3.3 Piecewise current distribution on the first slant arm

Let us assume that this side is divided into N; segments where the Nlth point is a

corner point of the triangle and let the segment size of the first slant arm is A, .
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However, in the following formulation the subscript 1 will be dropped and A will be
used forA,. Furthermore, note that the current flk (x,y)actually flows in (-a,)

direction on this arm where

an =ay cosoc+ay S o

So using equation 3.2, the inner product for the current jl,k (x,y) flowing in this arm

can be written as

T Ty * — ﬁTM j(xl +
T ¥), ¥ g (X)) = -4, -L‘}i } [[ ey, (x, y)dxdy (3.3)
pq

unit cell

Since this arm runs along m-axis, (3.3) can be evaluated easily by changing the

variables from (x,y) to(m,t). This is achieved by using the transformation;

X =1Mcoso—TsSina (3.4)
y =msina+tcosa '

Then substituting (3.4) into (3.3) yields

=TM
R oy _ u . e L
<J1,k (x,y), ‘Pmpq (x,y)) = —a, .l: ﬁli% :l .U eJ(ncosoc Tsin o) kypq eJ(n51ncx+rcosa)kypq lek (m,7)dndt

P9 | unit cell
(3.5)
Now let Spq = Kypq COSOL+ Kk sina
t, = K sina+k  cosa
Using these parameters in (3.5) gives
ﬁTM
= = % = pq JMSpg Tt
(T W) ==l e | [[ €™me™ ), (n1)dnde (3:6)
P9 | unit cell
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Substitution of (3.1) into (3.6) yields a typical inner product for the current on the

first slant arm of the form

_I l_I}* _ ﬁTM w/2 thpqd hy s _h d lhk+l sy, h ~ d
< 1,](’ mpq> an l—iTE Y T A € (n k—l) n+A c ( k+1 T]) n

pq |-w/2 h_, hy
(3.7
On the other hand, inner products for the corner points are given by
I) for the last point (k=last=N;+N,+Nj3)
ﬁTM w/2 L,
- Tt jns
<Il last > mpq> = _an I:—-TE :l J- eJ Mdrs— j e [T] - (Ll - A)] dT] (38)
upq -w/2 A L-A
and
II)  for the N,"™ point (k=N))
B I = ﬁTM Ve jtt 1 T jns
<Il,Nl ’lepq> = _aT] ﬁTE _[ € pqd XJ‘e " A T]) dTl (39)
Pq [-w/2 0

Evaluation of integrals in (3.7), (3.8) and (3.9) yield

~TM .
= = _ |u wsin(t ) 1 - < "
— . Pq Pq PR ISpghe J8pghii
(L Wopg? =84 {ﬁTE}{ i) }LzA( e +2e e ) [»8, 20

Pq Pq
(3.10a)
= = M wsin(%t )
<Il,k"Pmpq>=—an{ﬁ%H{Tm)” (A), 5,=0 (3.10b)

3 . |ua wsin(¥t ) i . i(L—A
5 =-—a.,. ° _’pq Pd CJ % 1—3s_ A)— CJ( 1A% 58S, F O
< 1,last mpq> n {u;}]ﬁ }{ (%tpq) :l{ 2 A( ( .] Pq ) ) Pq

SPq

(3.11a)

u (Vaty)

Pq

<nast,*qu>=—5n{limstm(/tpq)}@/) 5,,=0 (3.11b)
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- — . N t js,
<11BN1 lI]mpq>:_3-1’].|:1—l-}3fc}5:H:vvsnl(/ pq):H:S A|:(1+JS A)_CJ qu:| 5 Spq #0
pq

Upg (Vaty)
(3.12a)
¥ ~o|a! wsin("st )
A%, P, y=—a e j’q — ALY s =0 (3.12b)
LN, > pq n ugclli vytpq) / Pq
3.2.2 Horizontal arm
Y oa
J?_klix,?)
N R S Yy ;;
[z,m
2 HMI+H2

Figure 3.4 Piecewise current distribution on the horizontal arm

Let us assume that the horizontal arm is divided into N, segments. The horizontal
arm starts at point N; and ends at point N;+N, which are the corner points for the
horizontal arm. On the other hand, the segment size A, of the horizontal arm may
not necessarily be equal to the segment size A, of the first arm. In the formulation of
inner products, the subscript of the segment size is dropped and A is also used

instead of A, for simplicity. Furthermore, the current jz’k (x,y) flows in (+a,)

direction on this arm. For this reason, along the horizontal arm the inner products

take the form

=T™
<‘-[2,k (XJ Y), \P:npq (X, y)> = ﬁx [ﬁTE } J.J. J(kapq+ykypq)J2 ) (X y)dXdy (3 13)

Pq unit cell
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When the current jz,k (x,y) is expanded in terms of piecewise triangular functions

then a typical inner product for this arm is of the form

~ _ ﬁTM w/2 K 1 hy ) l hyy )
(Lo Prpa) =8 5 | [ e™mdyd— [ ™ (x=h, )dx+— [ & (h,,, —x)dx
upq —w/2 A hy A h,
(3.14)
On the other hand, inner products for the corner points are given by
I) for the N, point (k=Nj)
_ -, ijM w/2 . 1 A .
(D Prp) =8xe) o | [ emdy| —[e™ (a-x)dx (3.15)
upq -w/2 A 0

and

II)  for the (N;+N,)™ point (k=N;+N,)

- — ﬁTM w/2 k 1 L, -
(Do Vi) =Be| e | | e™mdy|— [ ™ (x-L,—Andx | (3.16)

Pq |-w/2 L,-A

When we evaluate the integrals in the equations, inner products for the horizontal

arm and the corners at points N;"™ and (N;+N,)™ have the following forms.

—-TM .
= o ~ lu w sin(% k 1 ' - .
<12,k , \Pmpq> = aX o{ _.1?1%3 }{ (A ypq):l{ (_ekapqhkfl + 2e_lkquhk _ e_]kquth ):| 5 kqu # O

upq (%kypq) kiqu
(3.17a)
- - §™ in(“4k
(Lys W inpg) =85 1—l—quE w (A) k=0 (3.17b)
Upg V23

—-TM .
- _ |u sin(%, k ) ]
<I£N1’qjmpq> = ax{ #I’T‘% :l{w (72 ypq)}l: ! [(1+kaqu)—eJk“’“‘A] ,kqu #0

upq (%kypq) kiqu
(3.18a)
N M| wsin("k, )
AP V=d o P || —22mt A k=0 3.18b
< 2,N; mpq> X I:l—i;‘(lf (%kypq) / Xpq ( )
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—-TM .
+ 7 ~ |u wsin(%s k, ) 1 kL, (L
<IZB,N,+N2 , \I’mpq> =a, .l: _»IfrqE :H: 2 ypq :H: |:ejkquL (1- kaqu) _elfm(® A):I , kqu #0

upq (%kypq) kquA
(3.19a)
—»TM .
~ — 4 . |u wsin("s k)
(I o Y=ad ¢ P || —— 2l AL k=0 (3.19b)
2,N+N, pq X ugc]f (%kypq) / pq
3.2.3 Third arm
'{/’n
B
J"_:|:3,1~11+1\T2+1~T3
L .
el P P
()
{1 Bk -
> X
L: ’*\
IP:.
3, H14172

Figure 3.5 Piecewise current distribution on the third arm

From the Figure 3.5 it is seen that the third side makes an angle o, with respect to

the x-axis and the current jS’k (x,y) flows in (&, ) direction on this arm where

a,=a,coso+aysino (subscript 3 is dropped)

The transformation in this case requires, in addition to the rotation of the axis, a

translation. That is, transformation from (X, y) to (n,t) needs the following change

of variables.

x=L,+ncosa—1sina
. (3.20)
y=msina+1tcosa

Making use of 3.2, the inner product of the Floquet modes with the current 33,1( (x,y)

flowing in the third arm can be written as
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unit cell

—>TM
Foc ), P (x,y) =8, { } [ &y, (x,y)dxdy (3.21)
Using the transformation (3.20) in (3.21) yields

=T™M
s Tk — u —jKypg L IN(kypq cosotkyngsina) jt(—kyyqsina+ky,, cosa)
<Ja,k<x,y>,wmpq<x,y>>=an{a%qﬁ} [ et e iy, (1,

pq unit cell
(3.22)
s.=k_ cosa+k  sina
Now if we let i M -
t, =K, sina+k  cosa
(3.22) becomes
l_,iTM
J 15 * — S Tt
(B30 Wipe) =8, {ﬁTE }e wwal ” e!Mmgl™a] 5 (M, D)dndre (3.23)
pq unit cell

When the current J;, (n,7) is expressed in terms of piecewise triangular functions, a

typical inner product in this case will be of the form,;

L g™ Lo P | B
* —a Pq JKxpql2 )T IMSpq Mspq
(T Popg) =) B (" [ dei [e™ m=hy)dn+— [ ™ (b, ~mdn

Pq —-w/2 hy hy
(3.24)
and the inner products for the corner points are given by
I for the (N;+N)" point (k=N;+N5)
=4 — - ﬁTM w/2 it Jk qLa A .
Bons Prpgd =ne) | [ € mdey=——[&™ (A-n)dn (3.25)
upq -w/2 A 0

IT) for the last point (k=last=N;+N,+Nj3)

IB = % N ﬁTM s jtt Jk b2 I ins
<13,1ast’\Pmpq>:a‘r] l—iTE J- € pqdr A J- e [n_(L3_A)]dn (326)

PqQ [-w/2 L;-A
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When the above integrals are evaluated we obtain the following expressions.

=T™M : ik oo L
- = _ |u wsin(%;t glwal2 .
<13,k’\Pjnpq> :an.{ "quE:H: (v pq):l l: (—e JSpalit +2er e _erpqhk+1):| ;S #0

Pq (%tpq) Slz)qA
(3.27a)
—-TM .
- - . |u wsin("st ) | & .
L,V y=a, M || ——2= "™ (A) ,s =0 (3.27b)
SR (] e :
[=TM [ : M ikl
., _|u wsin("st_ ) || e’ . 5o
(x> Ve =a,e M P (I1+js, A)—e™ ||, s _#0
3N +N, pq n _ugclli__ (%tpq) 2 [ pq } pq
(3.28a)
=T™M [ . 7
— . |u wsin(,t,.) | 1,
(B Yipg) =8l i W e (%) Spq =0 (3.28b)
| Upa L (Vaty,)

—~TM . kL
- ' ~ |u wsin(wt ) || e L _
B — Pq Pq spels J(L3=A)s
(st ¥ mpq> = an.l:ﬁTE “: P [ (1-js,A)—e } Spg # 0

Pq (% tpq) Squ
(3.292)
Y _ |u wsin(%t,) | et
(Lagts Yinpg) = an-[ﬁg M o } B2), 5, =0 (3.29b)

Choosing proper p, q values and using the above inner products, equation (2.55) can

be written in the matrix form as follows

C, Zy Zixn | G
C, ¢,
] : (3.30)
_CN_ Zy Zyn JLCN

where C, is known as source vector, z; is impedance matrix and c, is the current

coefficients to be found. Then,
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2 — —
Cy == (Anoo + Anoo XTI, ¥rnoo) k=1,2,3.....N (3.31)
m=1

1 = S g T .
Zy =~ D LY o X ¥ e L) i,j=1,2,..N (3.32)

mpq Mpq

where the triple summation ZZZ is replaced by a single summation symbol

m p q

>

mpq

Once the impedance matrix and the source vector i.e. C, 'sare calculated then the
unknown current coefficientsc,,c,,c;,....,c, can be determined by taking the inverse

of the matrix given in 3.30. Then, the reflected and transmitted fields can be

calculated using these current coefficients.

3.3 Comparison with Previous Works

Since there is no study related to FSSs comprising of triangular conducting elements
in literature, our results are compared with the experimental and the theoretical
results given in the literature for FSSs formed using conducting strips and L-shaped
conductors. Due to the flexibility of the algorithm we developed for the FSSs having
triangular conducting elements, FSSs comprising of conducting strips and L dipoles

can be analyzed simply by removing the appropriate arms of the triangles.
3.3.1 FSSs with conducting strips

As can be seen from Figure 3.1, when the arms L, and L of the triangle are taken as
zero (L,=L;=0) and the angle o is set equal to 90°, an FSS with vertical strips is

obtained.

To compare our results with the results for a FSS comprising of free standing strips

quoted in [4] our program is used to compute the power reflection coefficient by
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choosing L,=L3;=0 and o =90 and using the parameter set given in Figure 3.6. In the

analysis 10 piecewise triangular basis functions are used.

F ¥
‘ d,=d,=1.78cm
x

dy L, L;=1.27cm

w=0.127cm
v | Er :1, t=0
o
L J w
-+ d, »

Figure 3.6 Geometry of the unit cell of the frequency selective surfaces composed of strips

As seen in Figure 3.7, our results are almost exact with the values measured by Ott,
Kouyoumjian and Peters [4]. The graph shows a total reflection at 11.1GHz for a
freestanding FSS structure comprising of conducting strips when the structure is

illuminated by a normally incident plane wave..

FOR THIS WORK
® MEASUREDBY OTT,et al

Power Reflection Coefficient

0 1 1 1
8 10 12 14 16

Frequency [GHz]

Figure 3.7 TE Power reflection coefficient versus frequency for the freestanding strip FSS
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At the resonant frequency magnitude of the current is equal to its real part. For this
reason, distribution of induced currents on a conducting element is also plotted at the
resonant frequency. Figure 3.8 shows the normalized current versus length of the

narrow strip at 11.1GHz.

o8}
— fr=11.1GHz, t=0, gr=1
=
S 06}
=}
o
e}
(&)
N
©
£ 04}
o
Z
0.2}
0 [
0 0.635 1.27

Length [cm]

Figure 3.8 Normalized current versus length for the freestanding strip FSS at resonance

frequency of TE incidence

3.3.2 FSSs with L-dipoles

Our algorithm for the case of triangular shaped conducting elements can also be used
to obtain scattering characteristics of FSSs comprising of L-shaped dipoles simply

by choosing the length of the third arm of the triangle equal to zero (L;=0) and the
angle o to 90°. The geometry of a unit cell with an L-shaped conductor is shown in

Figure 3.9 we can also obtain scattering characteristics of FSSs comprising of V-

shaped elements using our software.
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Figure 3.9 Frequency Selective Surface with L-shape conductor

Extensive work has been done on FSSs comprising of L-shaped dipoles by
Delihacioglu [14]. However, when our program is used to compare our results for L-

shaped dipoles with his results major discrepancies are found. For example, for L=
L,=0.9cm, w=0.09cm, d,=dy=0.93cm, t=0.lcm, €&, =1.6, N=19, and p=q=9
Delihacioglu shows the existence of a total reflection at 13.4 GHz for a normally

incident plane wave as can be seen in Figure 3.10a whereas our results presented in

Figure 3.10b show that such a resonance does not occur.
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Reflection and Transmission Coefficients [dB]

8 10 12 14 16 18 20
Frequency [GHz]

(b)
Figure 3.10 Reflection and transmission coefficients for dielectric backed L-dipole FSS at

normally incident plane waves (a) taken from [14], page 20, Figure 1.7) (b) our analysis.

Since we employ piecewise triangular basis functions in our formulation and since
piecewise sinusoidal basis functions were used in [14] one therefore expected almost
identical results in both cases. The discrepancy between the current distributions is

also obvious as can be seen in Figures 3.11a and 3.11b.
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To find out the cause of this discrepancy we went through a detailed investigation of
our formulation and found out that in [14] a sign error has been made in calculating
the inner products. In [14] current is assumed to be flowing from the center point
(corner) towards the end points whereas it should be flowing from one end of the L
towards the other end, passing through the corner point as employed in our analysis.
If this sign error is corrected then both formulations yield identical results for the

current flowing in the L-shaped conductor, as given in Figure 3.11b.

3.3.3 FSSs with L-shaped apertures

Due to the major differences between our results and the results given in [14] at the
early stages of our research, we searched the literature to see if we can compare our
results with any other independent study. In [15], experimental results for an FSS
formed from an infinite metal screen which has been periodically perforated by L-

shaped apertures as shown in Figure 3.12.
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F Y |
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[+N
£

¥

Figure 3.12 Frequency Selective Surface with L-shape aperture

For an FSS comprising of apertures, the concept of duality holds and hence, based on
the basis of Babinet’s principle [19] one can replace E with H and €, with L, in the

solutions. For this reason, aperture and patch structures give complementary
frequency responses. This means that, if a screen comprising of metal patches is
totally reflective at some resonant frequency then the complementary structure which
is formed by perforating a metallic screen with apertures (same shapes as patches) is
totally transparent at the same frequency. Hence, in order to compare our work with

the results given for the structure suggested in [15], we should compare our
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reflection characteristics with their transmission characteristics. The theoretical
reflection  coefficient  computed wusing our formulation and the
theoretical/experimental results quoted in [15] are illustrated in Figure 3.13 for a
structure where Li=L, =lcm, w=0.1cm, d,=dy= 1.92cm, t=0 cm, and & =1. The
results are in good agreement as one takes into account that in our case the unknown
current density is approximated by 19 piecewise triangular currents whereas in [15]
the unknown aperture field of the L-shaped aperture is approximated using 6
waveguide modes. As it is seen in Figure 3.13, when the azimuth angle is -45° for a
TM plane wave, resonance (transmission) occurs at 8.3GHz in [15] and 7.9GHz

(reflection) in our study.

0.5} -

0.4} -

Transmission Coefficients [mag]

: FOR THIS WORK -
: ---------- MEASURED BY BLINNIKOVA et al
0 L Il L L * L L L L L

0 2 4 6 8 10 12 14 16 18 20
Frequency [GHz]

0.1F

Figure 3.13 TM reflection coefficient for this work and TM transmission coefficient for

Blinnikova, et al [15] versus frequency for freestanding L-shape structure FSS

On the other hand, Figure 3.14 displays the frequency response of FSS with L-shape
dipole at different oblique incidences. As it is seen from the figure, there exists two
resonance frequencies for a normally incident plane wave at 7.9GHz and 14GHz,

respectively, but there is only one resonance occurs at 7.9GHz for an incident plane

wave with an angle of ¢ = —45°.
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Figure 3.14 TM transmission coefficients versus frequency for a freestanding FSS with

L-shape dipole at different oblique incidence angles

Li=Lx=1em,w=0.lcm,t =0cm,d = dy =1.92cm
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, numerical results for the reflection and transmission characteristics of
a triangular-shaped FSS are presented. Based on the analysis of Chapter 3, a
computer program is generated to compute the reflection and transmission
coefficients of triangular-shaped FSS as a function of frequency. The current
distribution on the conducting elements can also be determined using the same

program.

The geometry of a triangular element placed inside a square lattice having
periodicities dy and dy in the x and y directions respectively is shown in Figure 4.1.
As it is seen in the figure, length of the triangular conducting element is denoted by
L and its width by w. The triangular shaped conducting elements are printed on a

dielectric substrate with a thickness # and relative permittivity €r. In all our numerical

computations, total number of induced currents on the conductor is taken to be 30

A |+

and 161 Floquet modes are used.

r
[= 9
Ed
v

Figure 4.1 The geometry of triangular conducting element in a unit cell.
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4.1 Numerical Results

In this section, first the current distribution on the triangular conducting element is
provided. Then, reflection and transmission coefficients of TM and TE plane waves
are given. Finally the influence of the parameters such as lattice dimensions, length
and width of the conducting element, slab thickness, dielectric constant and the angle
of incidence on the reflection and transmission characteristics are investigated over
the frequency range of 4-16GHz. Between these frequencies only the first order

modes propagate (i.e TM(y and TEyy Floquet modes) and no grating lobes exist.

In the computations for a FSS comprising of triangular shaped conductors, each arm
length (L;, L,, L3) and the width (w) of the conducting element are chosen as 0.94cm

and 0.047cm, respectively. The inter-element spacing is d,=dy=lcm and slab
thickness t is 0.5cm with €; =2.3. Furthermore, in all numerical computations 161

Floquet modes are used and each arm is divided into 10 segments. That is, a total of

30 piecewise triangular functions are used to approximate the current.

In Figure 4.2, for both freestanding and dielectric backed triangular-shaped FSS, TM
and TE induced currents are plotted versus the length of the conductor. As seen in
the figures, there is no difference between freestanding and dielectric backed
structures in terms of the normalized current distribution. However, as it is seen in
the figures, the resonance frequencies are quite different which is 13GHz for
freestanding triangular-shaped FSS and 10.1 GHz for the dielectric backed
triangular-shaped FSS.

In Figures 4.3a and 4.3b, magnitude of reflection and transmission coefficients is
plotted versus frequency. Figure 4.3a displays that the TM waves at normal
incidence are fully reflected at 13GHz for freestanding triangular-shaped FSS and
10.1GHz for dielectric backed triangular-shaped FSS. When the wave is TE
polarized, the resonance frequencies shift to 13.6GHz and 10.5GHz for freestanding
and dielectric backed triangular-shaped FSS, respectively.

39



1 T T v T T T
* £ *
0.9k * k4 * o
Tt 4 ¥ L
* ¥ * #
0.8 * 14 1
B 2 L 4 :
i H 14
07 - * ?' ." *: "
g 0.6F ’ 4 + 9‘ 7
O 3 + TMe=1,t=0, f =13.0GHz)
B 0.5} ? r r ! .
I . T | e TM(gr=2.3, t=0.5¢cm, fr=10.1GHz) H
© 3 : : i
£ 04} A 4 S ? ]
] B H % H
< + H : +
0.3F + + 1
FO '
0.2F ‘ ‘ -
0.1} Y ¢ -
g +
0 1 ‘l 1 1 1 l’l 1 1
0 0.47 0.94 1.41 1.88 2.35 2.82

Length [cm]
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The effects of changes in the parameters on the reflection coefficients are observed

for both TM and TE incidence waves in the following figures. Figure 4.4 displays the
effects of dielectric constant on reflection characteristics. So, when Er is increased,
the resonant frequency decreases. At the same time a decrease in the bandwidth of

the reflected wave is observed obviously while &r is increased.

For Figure 4.5, the reflection coefficient is plotted versus frequency for different slab
thickness while the other parameters are unchanged. It is observed that the resonance
frequency does not change when the slab thickness is increased or decreased for both
TM and TE waves at normal incidence. Figure 4.6 illustrates the influence of lattice
dimension on frequency response of the structure. If the dimensions of square lattice
are increased while the size of triangular conductor is fixed, the resonance frequency
for TM reflected wave increases. However, there is no change in resonance
frequency for TE reflected wave. Moreover, for both types of polarization, the
bandwidth of reflected wave decreases as the dimensions of square lattice increases.
For this reason in order to decrease the resonance frequency, conducting elements

should be printed tightly.

In Figure 4.7, reflection coefficients of TM and TE incidence waves are plotted with
respect to the frequency for different lengths of triangular conducting element. If the
length of one arm is decreased by 0.1cm and then by 0.2cm, the resonance frequency
shifts to 11.7GHz and 13.5GHz, respectively. So we can say that the change in the
length of conductor has same effect with the change in lattice dimensions while all
other parameters are kept fixed. On the other hand, the bandwidth of reflected wave
is wider for a larger triangular conductor. The other parameter that influences the
frequency response is the width of triangular conducting element. Figure 4.8 displays
the reflection coefficients against frequency for both TM and TE incidence waves for
different widths of triangular conducting element. As it is seen, when the width of
triangular conductor is increased from 0.01cm to 0.094cm, the resonance frequency
shifts from 9.9GHz to 10.8GHz. In the last figure, Figure 4.9, effects of different
incidence angles are observed. Although the angle of the incident wave is increased
from 0 to 60°, the change in the resonant frequency is small. It shifts to the right by
an amount of 0.3GHz for TM waves and shifts to the left with the same value for TE

waves.
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Figure 4.4b TE Reflection Coefficients versus frequency for triangular-shaped FSS at

different values of & ;

0=¢=0",L=L>=L3=094cm,w=0.047cm,d_ = dy =lem,t = 0.5cm
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Figure 4.5a TM Reflection Coefficients versus frequency for triangular-shaped FSS at
different slab-thicknesses;

0=¢=0",6=23,Li=L>=L3=094cm,w=0.047cm,d_ = dy =lem

©
©

o
©

o
)}

TE Reflection Coefficients [mag]
o
~

o
3

0.4 - : .
4 10 12 14 16

Frequency [GHz]

(o2}
o

Figure 4.5b TE Reflection Coefficients versus frequency for triangular- shaped FSS at
different slab-thicknesses;

O0=¢=0",6=23,Li=L>=L3=094cm,w=0.047cm,d_ = dy =lem
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Figure 4.6b TE Reflection Coefficients versus frequency for triangular-shaped FSS at

different lattice sizes; @ =@ =0",&-=2.3,Li=L>=L3=0.94cm,w=0.047cm,t = 0.5cm

45



L=0.94cm

0.9F

————— L=0.74cm

0.8

0.7

TM Reflection Coefficients [mag]

0.6
0.5 K .4.—“"
.“‘.' ;"“‘

"“o’ ’.’.’

0.4f - ]
‘,‘
"
4 6 8 10 12 14 16

Frequency [GHz]

Figure 4.7a TM Reflection Coefficients versus frequency for triangular-shaped FSS at

different lengths of conductor; @ = ¢ =0",&r = 2.3,w=0.047cm,d = dy =1lcm,t = 0.5¢cm

1 r r e —
o . K4 N,
4 \,
L=0.94cm K4 ‘.\
09 I L=0.84cm ." ‘\‘ i
———— L=0.74cm

0.8

0.7

TE Reflection Coefficients [mag]

0.6
0.5
0.4f" " §
0"
4
4 6 8 10 12 14 16

Frequency [GHz]

Figure 4.7b TE Reflection Coefficients versus frequency for triangular-shaped FSS at
different lengths of conductor; @ = ¢ = 0",&r = 2.3,w=0.047cm,d = dy =1lem,t =0.5¢cm
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Figure 4.8b TE Reflection Coefficients versus frequency for triangular-shaped FSS at

different widths of conductor;

0=¢=0",6=23,Li=L=L3=09%cm,d_ = dy =lem,t =0.5cm
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Figure 4.9a TM Reflection Coefficients versus frequency for triangular-shaped FSS at
different oblique angle incidence;
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Figure 4.9b TE Reflection Coefficients versus frequency for triangular-shaped FSS at
different oblique angle incidence;

0=0,e=23,Li=L=Ls=09%cm,w=0.04Tcm,d_ = dy =lem,t =0.5cm
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4.2 Comparison of Concentric Ring FSSs with Triangular-Shaped FSSs

In order to analyze the frequency response of the concentric circular ring, a computer
program is used which is developed for this type FSS structures. Then, for the
comparison of concentric circular ring FSS with triangular shaped FSS, concentric
circular ring is placed into a square lattice with the same lattice dimensions of
triangular conducting element, dy=d,=lcm. Also, the inner radius and the outer
radius of the concentric circular ring are chosen as 0.423cm and 0.47cm,

respectively. On the other hand, each arm of the triangular conducting element is

taken to be rin\/g where r1j, is the inner radius of the ring. Furthermore, for both
structures width of the conducting elements are assumed to be 0.047cm and the slab
thickness is taken as 0.5cm with a dielectric constant 2.3. Although the number of
Floquet’s modes is 161 for both structures, the number of basis functions is different
from each other. For the concentric ring, basis functions are in sinusoidal form and
for triangular conducting elements the basis functions are in piecewise triangular

form with N equal to 30.
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Figure 4.10 TM&TE Reflection and Transmission Coefficients versus frequency for the

concentric circular ring FSS
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Figure 4.11b TE Reflection and Transmission Coefficients for dielectric backed triangular-

shaped FSS;0=¢ =0, Li=L>=Ls=0.732cm,w=0.047cm, & =2.3,t =0.5cm,d_ = dy =lcm
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In Figures 4.10 and 4.11, the reflection and transmission coefficients of circular
concentric ring and triangle-shaped FSS are plotted versus frequency, respectively.
As it is seen, frequency responses of distinct geometries are different from each
other. The reflection and transmission bandwidth of concentric circular ring FSS is
also larger than the triangular conducting FSS. A concentric circular ring FSS has a
resonance frequency at 8.6GHz both for TM and TE plane waves at normally
incident. Due to the symmetry features of the circular ring, reflection and
transmission coefficients are equal for all TM and TE plane waves at any incidence
angles. However, full reflection and transmission occur at 13.6GHz for TM incident
wave and 13.9GHz for TE incident wave for triangular conducting FSSs propagating
at (0,0).
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CHAPTER 5

CONCLUSION

In this thesis, FSS comprising of triangular conducting elements were analyzed to

obtain the scattering properties of this structure.

In the analysis, the current induced on the conducting element is approximated by
piecewise triangular currents with unknown coefficients. Then, using the method of
moments the unknown current coefficients were determined and then used to

determine the reflection and transmission coefficients.

In order to check the correctness of the algorithm developed for triangular
conducting elements, numerical results obtained using this software for the structures
comprising of strips and L-dipoles were compared with the experimental and
theoretical results found in the literature. Once being sure of the validity of our

software, results are obtained for FSSs comprising of triangular shaped conductors.

The variation of the reflection and the transmission characteristics with the conductor
length, the width, the element spacing, the dielectric thickness, the dielectric constant

and the angle of incidence are also examined.

For a triangular shaped FSS we can summarize our results as follows:

e When we increase Er, the frequency of total reflection decreases and shifts

downward to the value of fo/./(&-+1)/2 where f, is the freestanding

resonance frequency.

e  When the width of conductor is increased, the resonance frequency and the
bandwidth also increase. Moreover, the width of conductor should have a
value about L/10 in maximum. If it is greater than that value, some grating

lobes will occur and it causes unwanted resonance frequencies.
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e Slab thickness does not cause appreciable change in the resonance frequency

and the reflection bandwidth.

e The effects of the length of conducting element are inversely proportional to

the resonance frequency, but directly proportional to the bandwidth.

e However, lattice dimensions and the oblique angle have an opposite effect
with respect to the length of the conductor. Because, when the lattice
dimension is increased there is an increase in resonance frequency and a

decrease in the bandwidth of reflection.

Hence, we can say that for a good FSS design, the conducting element should be
small in terms of wavelength. Because the circumference of the metallic conductor
defines the resonant frequency. Furthermore, if the inter-element spacing is kept as
small as possible, the reflection bandwidth around the resonance can be increased
and the structure is more stable to the increases in the incidence angle. Otherwise, for
a large inter-element spacing early onset of grating modes occur. So, packing

conducting elements tighter in the periodic cell delays the onset of grating modes.

Eventually, according to the numerical results and the reflection characteristics at
resonance frequency, we can say that the FSSs with triangular conducting elements
exhibit band-stop filter characteristics and fully reflect the energy in a specific

frequency region.

This work can also be extended to look at the effects of chirality on a FSS

comprising of triangular shaped elements.

Furthermore, this initial study may later be extended to analyze a metamaterial
formed by cascading a triangular FSS to another FSS comprising of infinitely long

thin conductors, as suggested in [20].
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