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ABSTRACT 

 

ANALYSIS of THIN TRIANGULAR CONDUCTING ELEMENTS 

 PRINTED on PLANAR DIELECTRIC SLABS 

 

 

  PEKMEZCĐ Ayşegül 

      M.Sc. in Electrical and Electronics Engineering 

Supervisor:  Prof. Dr. Tuncay EGE 

January 2010, 56 pages 

 

 

In this study, scattering characteristics of thin triangular conducting elements 

periodically printed on planar dielectric slabs are investigated theoretically for 

transverse electric (TE) and transverse magnetic (TM) incident plane waves. Such 

surfaces are known as frequency selective surfaces (FSS) and they show bandpass or 

stop band filter characteristics. 

 

Since the conducting elements are etched periodically on such a surface, all fields 

and currents must satisfy Floquet’s condition and should be written as Floquet 

modes. Using Floquet’s theorem and satisfying the required boundary conditions, an 

integral equation is obtained for the unknown induced current density on the surface 

of a triangular conducting element in a unit cell. This current is then expressed as a 

finite sum of piecewise triangular basis functions having unknown coefficients. The 

resulting integral equation is then converted to a linear matrix equation by using the 

Moment Method (MM) and inversion of the matrix equation yields the unknown 

current coefficients which are used to obtain the reflection and transmission 

coefficients.  
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Numerical results for the reflection and transmission coefficients are then plotted 

versus frequency for freestanding and dielectric backed triangular-shaped FSS 

elements. Furthermore, the variation of reflection characteristics with dielectric 

constant ( rε ), slab thickness ( t ), length and width of the triangle ( 1,2,3 , L w ), 

incidence angle (θ ) and lattice dimensions ( ,x yd ) are presented in the form of 

graphs. 
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ÖZET 
 

DÜZLEMSEL DĐELEKTRĐK LEVHA ÜZERĐNE YERLEŞTĐRĐLMĐŞ ĐNCE 
ÜÇGEN YAPILI ĐLETKEN ELEMANLARIN ANALĐZĐ 

 
 

PEKMEZCĐ Ayşegül 
Yüksek Lisans Tezi Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi:  Prof. Dr. Tuncay EGE 
Ocak 2010, 56 sayfa 

 
 

Bu çalışmada düzlemsel dielektrik levha üzerine periyodik olarak yerleştirilmiş ince 

üçgen şeklindeki iletken elemanların levhaya dik gelen TM ve TE düzlem dalgaları 

için saçılma özellikleri incelenmiştir. Bu tür yüzeyler Frekans Seçici Yüzey (FSY) 

olarak adlandırılırlar ve bant geçirici ya da durdurucu filtre özelliği gösterirler. 

 

Frekans Seçici Yüzey (FSY) üzerindeki iletken elemanlar periyodik olarak 

yerleştirildiklerinden dolayı, oluşan tüm alanlar ve akımlar Floquet şartlarını 

sağlamalıdır. Bu sebeple, dielektrik levha üzerine yerleştirilen iletken elemanların 

üzerinde indüklenen akımlar için Floquet Teoremi kullanılarak bir integral denklemi 

elde edilir. Daha sonra buradaki akımlar, sınırlı sayıdaki bilinmeyen katsayılı temel 

üçgen fonksiyonlarının toplamı olarak ifade edilirler. Elde edilen integral denklemi, 

iletim ve yansıma katsayılarının hesaplanmasında kullanılacak olan bilinmeyen akım 

katsayılarının bulunması için Moment Metodu aracılığıyla çözülür.  

 

Havada asılı ve dielektrik levha üzerine yerleştirilmiş üçgen şekilli FSY elemanları 

için bulunan iletim ve yansıma katsayılarının frekansa göre grafikleri çizilmiş olup 

yansıma katsayısının frekansa göre değişimi, gelme açısı, levha kalınlığı, iletken 

elemanın uzunluğu gibi farklı parametre değerleri için de ayrıca gösterilmiştir. 

Sonuç olarak, önceki çalışmalarda da olduğu gibi üçgen şekilli FSY’lerin de bant 

durdurucu özelliği olduğu gözlemlenmiş ve benzerlikler ifade edilmiştir. 

 
Anahtar kelimeler: Üçgen Yapılı Đletken Elemanlar, Frekans Seçici Yüzeyler, 
Moment Metot 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

Frequency selective surface (FSS) is a surface which exhibits different reflection and 

transmission properties as a function of frequency. These surfaces are usually 

constructed from periodically arranged metallic patches of arbitrary geometries or 

their complementary geometry having aperture elements similar to patches within a 

metallic screen. The shape and configurations of the geometry for FSSs depends on 

the imagination of the researcher. 

 

As the metallic patches are arranged periodically in air or a dielectric substrate, FSS 

shows total reflection properties (reflects nearly all energy) at some specific 

frequency called the resonance frequency whereas in the complimentary structures 

where the metallic screen is perforated, it transmits all energy (total transmission) at 

the resonance frequency. So, it is seen that aperture and patch screens generally yield 

give complementary frequency responses [1]. 

 

Choosing appropriate parameters also have a significant role in the design of desired 

FSS. The most important parameters in the design are the element geometry, the 

periodicity of the structure and the type of the dielectric substrate [1] which 

determine the overall frequency response of the structure such as; stability of the 

resonant frequency, bandwidth shape: narrow or broadband and rate of roll-off 

avoiding the higher order harmonics that cause grating lobes. 
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1.2 Typical Application 

 

FSSs are incorporated in a wide variety of applications such as the realization of 

reflector antennas, radome designs, constructions of polarizers, beam splitters, and 

some kind of absorbers and photonic band gap structures. 

 

 

Figure1.1 Reflector antenna system using frequency selective screen 

 

As shown in Figure1.1, a FSS is placed between two feeds radiating at different 

frequencies and the main reflector [2]. The screen is totally reflecting or totally 

transparent over the operating band of feed one and two, respectively. Hence, two 

independent feeds may share the same reflector antenna simultaneously. 

 

The other application of FSS in microwave region is in radome design [2]. Radomes 

protect an antenna from the environment by tuning the screen at the operating 

frequency of the antenna to provide a bandpass transmission characteristic. At the out 

of band frequencies the screen can be made totally reflecting, and the radome can be 

designed to blend with the skin of the vehicle such that minimal scattering occurs at 

the joint between the radome and the skin. 

 

In far-infrared region, the application of FSSs involves polarizers, beam splitters [2]. 

A polarizer can be constructed from a diffraction grating such that the fields 

polarized parallel to the grating are reflected, while those with an orthogonal 
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polarization are transmitted. An FSS comprising of meanderlines can be used as a 

polarizer to convert a linearly polarized wave into a circularly polarized one [1].  

 

In the near-infrared and visible portions of the spectrum, periodic screens have been 

also proposed as solar selective surfaces to aid in the collection of solar energy [2]. A 

screen is designed such that it is essentially transparent in the frequency band where 

the solar cells are most efficient and is reflecting at frequencies outside this band. 

 

When the photonic bandgap structures are used in applications of FSSs, the designer 

could extend the frequency selective screen by periodically adding many layers in 

the third dimension [1]. For this reason, the photonic bandgap material consists of 

three-dimensional periodic structures that exhibit spectral bands where all 

propagation is prohibited at any incident angle and for any polarization. 

 

Circuit analog absorbers are the other applications of FSS which are made of 

periodic structures of very lossy material [3]. That kind of absorbers is designed to 

produce a larger bandwidth per given thickness, particularly as more layers are 

added.  

 

1.3 Literature Summary 

 

FSSs have been the subject of investigation by many researchers because of their 

various important applications. 

 

The problem of scattering by a two-dimensional periodic array of rectangular plates 

was studied by Ott et al. [4] and the integral equation was solved for the unknown 

current on each plate by using the point matching method. Then the solution given is 

restricted to the case of narrow plates arranged in a rectangular lattice with a 

normally incident plane wave. The complementary problem of scattering by a 

conducting screen perforated periodically with apertures was analyzed by Kieburtz 

and Ishimaru [5] by the variational method. 
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In 1970, a more general formulation of the scattering problem for a two-dimensional 

periodic array of plates was presented by C.C.Chen [6]. The electromagnetic field 

distribution near the array of the conducting plates was expanded into a set of 

Floquet mode functions, and an integral equation for the unknown induced current 

was obtained. Then the coefficients of unknown current were determined by the 

method of moments. 

 

In 1975, J.P.Montgomery [7] solved the problem of scattering of a plane wave by an 

infinite periodic array of thin conductors for unsymmetrical structures. 

 

In 1979, a new analysis for calculating the scattering periodically arrays of 

symmetrical cross dipoles was presented by Pelton and Munk [8].  

 

In 1981, Parker and Hamdy [9] pointed out that the arrays of simple rings can form 

useful FSSs for reflector antennas. 

 

Tsao and Mittra presented a new technique, called the spectral-iteration approach, for 

analyzing the problem of scattering from periodically perforated screens in 1982 

[10]. They obtained a set of algebraic equations for the spectral coefficients of the 

aperture field or the induced current. And then these equations were solved 

simultaneously using the iterative procedure developed by these authors. They also 

presented a full-wave analysis for FSSs comprised of periodic arrays of cross dipoles 

and Jeruselam crosses [11]. 

 

Tripoles were used originally by Pelton and Munk[12] as elements for slot arrays I 

metallic radomes. Then, in 1983, Vardaxoglou and Parker [13] investigated the 

performance of tripole arrays as FSS. They showed that the current distribution along 

the arms of tripoles arranged on two equilateral lattices. 

 

There are also some other loop-type and plate-type structures such as circular, 

square, hexagonal that have been investigated as FSS up to now[3]. However, the 

FSSs comprised of L-shaped and one-turn helix shaped conductors were firstly 

studied by Delihacıoglu in his doctorial dissertation [14]. On the other hand, 



  5 
 

Blinnikova et al. [15] considered the L-shaped apertures in FSSs for the first time in 

2007. 

 

When the literature is searched, we found that no study has been done on FSSs 

comprising of triangular-shaped conductors. That is why, in this study, we 

investigated the reflection and transmission characteristics of FSS formed by a two 

dimensional array of triangular shaped conductors printed on a dielectric substrate. 

 

1.4 Method of This Work 

 

Due to the periodicity of FSSs, the analysis is carried out in terms of infinite periodic 

structures and the formulation reduces to the investigation of one periodic unit cell 

which is identical to those in an adjacent cell differing only by the incident field 

phase shift. And this analysis is performed by applying Floquet’s Theorem. So, an 

integral equation for the unknown current on each conducting element is obtained by 

enforcing the required boundary conditions on the conducting elements. 

  

In order to solve this integral equation Moment Method (MM) has been widely used. 

By using MM [16] this integral equation is converted to a linear matrix equation of 

the form ( )Z i V= . Here, ( )Z  is the impedance matrix, V  is the known excitation 

function and i  is the vector that contains the unknown coefficients of the basis 

functions. Taking the inverse transform of the matrix equation, the unknown current 

coefficients are obtained. Thus, choosing the proper basis function plays an 

important role to define the number of unknown induced currents which affect the 

size of the impedance matrix. 

 

Introduction to Floquet’s Theorem and Floquet Modes is given in Chapter 2 and a 

brief explanation of MM and the basis function adopted for our work is given in 

Chapter 3. Furthermore, in this chapter the triangular-shaped FSS backed by 

dielectric slab is formulated. The formulation is in the form of an integral equation in 

terms of the current induced on a scatterer in a unit cell. By using MM, this equation 

is solved for the induced current density on the triangular-shaped conductor and the 

reflection and transmission coefficients are then expressed in terms of the known 
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induced current distribution. In order to verify the correctness of the algorithm 

developed for the triangular-shaped conducting elements in this study, comparison 

with FSSs composed of conducting strips and L-dipoles are also given. 

 

In Chapter 4, numerical results for the reflection and transmission characteristics are 

presented. For an FSS comprising of triangular conducting elements, all numerical 

results for the reflection and transmission coefficients are plotted versus frequency 

for freestanding and dielectric backed triangular-shaped FSS elements. Furthermore, 

the variation of reflection characteristics with dielectric constant ( rε ), slab thickness 

( t ), length and width of the triangle ( 1,2,3 , L w ), incidence angle (θ ) and lattice 

dimensions ( ,x yd ) are presented in the form of graphs. 

 

Finally, in Chapter 5 a discussion on the results obtained and the performance of the 

proposed FSS is presented. 
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CHAPTER 2 

 

PERIODIC STRUCTURES AND FLOQUET’S THEOREM 

 

2.1 Floquet’s Theorem 

 

Periodic structures such as arrays of conducting elements or periodically perforated 

screens which can be either freestanding or printed on dielectric substrates have 

frequency selective properties. 

 

All the elements in the array, which is periodic and extends to the infinity in both x 

and y directions, are assumed to be identical, infinitesimally thin and perfectly 

conducting. This allows us to expand the scattered fields inside the dielectric slab 

and in the air on either side into a complete set of orthogonal modes known as 

Floquet modes [17, 18]. 

 

      (a)                  (b) 

 
Figure 2.1 Arbitrary geometry of Frequency Selective Surface (a) Top view (b) Side view 
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In the cartesian coordinate system in unbounded space, a component of the electric 

field in the region (z≥0) is a solution of the scalar homogeneous Helmholtz equation. 

 
2 2( k ) (x, y, z) 0∇ + Ψ =                                                                                             (2.1) 

where 

2 2 2 2
x yk k k= + + γ  

 
Assuming waves propagating in z direction, the variation of the field with z can be 

written as 

 

j z(x, y,z) e (x, y)− γΨ = Ψ                                                              (2.2) 

 
Then the equation (2.1) becomes 

 

2 2

2 2
2 2(k ) (x, y) 0

x y

 
 
 

∂ ∂
+ + − γ Ψ =

∂ ∂
                                                           (2.3) 

 
The partial differential equation (2.3) can be converted into two ordinary differential 

equations by applying the technique of separation of variables. That is by assuming 

(x, y) f (x)g(y)Ψ = we can write 

 
2 2

2 2
x y2 2

(k k ) f (x)g(y) 0
x y

 ∂ ∂
+ + + = ∂ ∂ 

                (2.4) 

 
Then,  

2
2

x2

d
k f (x) 0

dx

 
+ = 

 
                   (2.5) 

2
2

y2

d
k g(y) 0

dy

 
+ = 

 
                              (2.6) 

 
The solution of the equations (2.5) and (2.6) is xjk xf (x) e−= for x dependence, and 

yjk yg(y) e−=  for y dependence, respectively. 
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Since the structure is periodic both in x and y directions, the solution of the equations 

2.5 and 2.6 should also be periodic according to the Floquet theorem. Thus, the 

periodic form of f(x) and g(y), representing the waves propagating in x and y 

direction must satisfy the periodicity condition; 

 
x xjk d

xf (x d ) e f (x)−+ =                    (2.7) 
y yjk d

yg(y d ) e g(y)
−

+ =                    (2.8) 

 
where 

x

y

k k sin cos

k k sin sin

= θ φ

= θ φ
 

and dx, dy are the surface periodicities in the x and y directions respectively. 
 
 
This is possible if, 
 

xjk x
pf (x) e F (x)−=                     (2.9) 

yjk y

pg(y) e G (y)
−=                             (2.10) 

 
where Fp(x) and Gp(y) are the periodic functions of x with a period dx and y with a 

period of dy, respectively. Therefore, Fp(x) and Gp(y) can be expanded into a Fourier 

series. 

x

2
j px
d

p p
p

F (x) A e
π∞ −

=−∞

= ∑                            (2.11) 

y

qy
2

j
d

q q
q

G B(y) e
π∞ −

=−∞

= ∑                            (2.12) 

 
Substituting 2.11 and 2.12 into 2.9 and 2.10, we can obtain; 

x
x

2 p
j(k )x

d
p

p

f (x) A e
π∞ − +

=−∞

= ∑                               (2.13) 

y
y

2 q
j(k )y

d
q

q

Bg(y) e
π∞ − +

=−∞

= ∑                            (2.14) 

where 

xp x x

2 p
k k d=

π
+  , p 0, 1, 2,....= ± ±  

yq y y

2 q
k k d=

π
+ , q 0, 1, 2,....= ± ±  
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Hence, in a source free region the solution to the scalar wave equation (2.2) can be 

written for z>0 as 

yx
y pqx

2 q2 p j(k )yj(k )x d j zd
pq

p q

(x, y, z) C e e e
ππ∞ ∞ − +− + − γ

=−∞ =−∞

Ψ = ∑ ∑             (2.15) 

 
where 

2 2 2 2
pq x y

x y

2 p 2 q
k (k ) (k )

d d

π π
γ = − + − +               (2.16) 

 
The constants kx and ky are the wave numbers in the x and y directions of the 

incident wave and the indices of integers { }p,q  defines the location of the elements. 

 

In the literature many authors treated periodic structures positioned along skewed 

coordinates [18]. In this case, the solution to the scalar wave equation (1.15) is given 

by the following equation. 

 

yx
y x pqx sin tan

2 q 2 p2 p j(k )yj(k )x d d j zd
pq

p q

(x, y,z) C e e e
−

Ω Ω
π ππ∞ ∞ − +− + − γ

=−∞ =−∞

Ψ = ∑ ∑            (2.17) 

Tpq pqρ j zjΚ
pq

p q

(x, y, z) C e e•
∞ ∞

− γ−

=−∞ =−∞

Ψ = ∑ ∑
��

              (2.18) 

 

where 

x yxa yaρ = +
� � �

 

Tpq x yx y
x y x

K
2 p 2 q 2 p

(k )a (k )a
d d sin d tan

= +
π π π

+ + −
Ω Ω

� � �
 

2 2
pq Tpq Tpqk K Kγ = −

� �
i  

 

If the array geometry is made up of square cells, then choosing the angle Ω  between 

the skew axes to be equal to 90�  in (2.17) yields (2.15). 

 

Here, the modal propagation constant pqγ  can be positive real for propagating modes 

or purely negative imaginary for evanescent modes depending on the linear phase 

variations of the incident field kx, ky and the integers p, q. 
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2.2 Analysis of FSS 

 

In this section, a more general formulation of the scattering problem of a FSS printed 

on a single layer of dielectric is presented. 

 

The traverse electric and magnetic fields inside and outside the dielectric layer is 

expanded into Floquet modes. The resultant TE and TM Floquet harmonics, 

transverse with respect to the z axis, are 

 

TpqjK

mpq mpq

1
(x, y) e u

A

− •ρΨ =
� �� �

               (2.19) 

 

where 

x yA d d=  (area of a unit cell) 

Tpq x y x yx y xpq ypq
x y

K
2 p 2 q

(k )a (k )a k a k a
d d

= + = +
π π

+ +
� � � � �  

x yxa yaρ = +
� � �  

Tpq

1pq

Tpq

K
u , m 1for TM mod e

K
=     =    

�

�
�  

2pq z 1pqu a u , m 2 for TE mod e= ×     =    
� �

 

 

and 

p q 0, 1, 2,...= = ± ±  

 

It is known that a plane wave can always be decomposed into a combination of E and 

H field that corresponds to the TM and TE Floquet modes with p=0, q=0. For this 

reason, in the absence of metallic scatterer but in the presence of the dielectric layer, 

the scattered fields contains only zero order Floquet modes. 

 

So, the incident plane waves in the region z≤0 with the zero order TM and TE 

Floquet modes can be expressed as; 
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T00 o

2
jK j z

moo mooinc
m 1

1
E A e e u

A
− •ρ − γ+

=

= ∑
� �� �

              (2.20) 

T00 oo
moo z

2
jK j z

moo mooinc
m 1

(a )
1

H Y A e e u
A

− •ρ − γ+

=

×= ∑
� � �� �

             (2.21) 

 
On the other hand, the reflected fields in the same region are given by 

T00 o

2
jK j z

r moo moo
m 1

1
E A e e u

A
− •ρ + γ−

=

= ∑
� �� �

              (2.22) 

T00 oo
moo z

2
jK j z

r moo moo
m 1

(a )
1

H Y A e e u
A

− •ρ + γ−

=

×= − ∑
� � �� �

             (2.23) 

 
where mooA+  and mooA− is the magnitude of incident field component and the reflected 

field component, respectively. Furthermore, the subscripts m=1 and m=2 are used to 

designate TM and TE Floquet modes, respectively. 

 

Then, the total transverse fields in the region left of dielectric (z≤0), in the dielectric 

(0≤z≤t) and in the region right of dielectric (t≤z) can be written as; 

 
for  z≤0; 

o o T00
o

2
jKj z j z

r moo moo mooinc
m 1

]
1

E E E [A e A e e u
A

− •ρ− γ + γ+ −

=

+ += = ∑
� �� � � �

           (2.24) 

o o T00o
moo z

2
jKj z j z

o r moo moo mooinc
m 1

[ ] (a )
1

H H H Y A e A e e u
A

− •ρ− γ + γ+ −

=

= + − ×= ∑
� � �� � � �

       (2.25) 

for  0≤z≤t; 

T001 1
1

2
jKj z j z

moo moo moo
m 1

B ]
1

E [B e e e u
A

− •ρ− γ + γ+ −

=

+= ∑
� �� �

                 (2.26) 

T001 11
moo z

2
jKj z j z

moo moo moo1
m 1

[B B ] (a )
1

H Y e e e u
A

− •ρ− γ + γ+ −

=

− ×= ∑
� � �� �

           (2.27) 

 
and finally for   t≤z; 

T00 o (
2

2
jK j z t)

moo moo
m 1

1
E C e e u

A
− •ρ − γ −+

=

= ∑
� �� �

              (2.28) 

T00 o (o
moo z

2
jK j z t)

moo moo2
m 1

C (a )
1

H Y e e u
A

− •ρ − γ −+

=

×= ∑
� � �� �

             (2.29) 
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where the subscript and superscript 0 and 1 are used to determine the region that is 

air and dielectric, respectively. The superscripts + and – indicate the waves 

propagating along the positive z and negative z directions, respectively. 

 

In order to find the unknown coefficients of the transverse fields, boundary 

conditions at z=0 and z=t should be applied to the tangential field components given 

in equations 2.24 to 2.29. 

 

Then, 

1 1

1 o
moo moo

moo mooj t j t1 o 2 1 o 2
moo moo moo moo

4Y Y
C A

(Y Y ) e (Y Y ) e
+ +

γ − γ=
+ − −

            (2.30) 

 

1 1

1 1

2 2j t j to 1 2 1 o 2
moo moo moo moo

moo mooj t j t1 o 2 1 o 2
moo moo moo moo

) ( ] [ ) ]
A

[(Y Y ) e (Y (Y ) e
A

(Y Y ) e (Y Y ) e

γ − γ
− +

γ − γ

− + −
=

+ − −
           (2.31) 

 

where mooY is the modal admittance. In general, modal admittance is defined as, 

 

(2.32) 

 

(2.33) 
 

where 
 

0 , for air
i

1, for dielectric

           
= 

 
  

1, for mode
m

2, for mode 

 ΤΜ           
= 

 ΤΕ          
 

i
i

i

Y
ε

=
µ

                             (2.34) 

i i ik = ω ε µ                              (2.35) 

 

and 
 

2 1/ 2 2
i Tpq Tpq i Tpq

i 2 1/ 2 2
Tpq Tpq i i Tpq

(k K K ) , if k > K

j(K K k ) , if k < K

 − •  
γ = 

− • −  

� � �

� � �                         (2.36) 

 

i i

ii
mpq

i i

i

Y k
, for TM modes

Y
Y

, for TE modes
k

   γ
= 

γ   

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On the other hand as the incident wave illuminates the surface, currents are induced 

on the conducting elements. These induced currents on the metallic scatters then give 

rise to scattered fields which contain higher order Floquet modes which are 

necessary for the fulfillment of the boundary conditions. So, the scattered fields in 

the regions of interest are; 

 

in the region z≤0; 
 

Tpq o

2
jK j zs s

o mpq mpq
m 1 p q

1
A e e u

A
E

∞ ∞
− •ρ + γ−

= =−∞ =−∞

= ∑ ∑ ∑
� � ��

             (2.37) 

Tpq o

2
jK j zs o s

o mpq mpq z mpq
m 1 p q

H ( )
1

Y A e e a u
A

∞ ∞
− •ρ + γ−

= =−∞ =−∞

×= − ∑ ∑ ∑
� �� � �

           (2.38) 

 

in the region 0≤z≤t; 
 

Tpq1 1
1

2
jKj z j zs s s

mpq mpq mpq
m 1 p q

1
E [B e B e ]e u

A

∞ ∞
− •ρ− γ + γ+ −

= =−∞ =−∞

+= ∑ ∑ ∑
� �� �

                       (2.39) 

Tpq1 1s
z

2
jKj z j z1 s s

mpq mpq mpq mpq1
m 1 p q

[B B ] (a )
1

H Y e e e u
A

∞ ∞
− •ρ− γ + γ+ −

= =−∞ =−∞

− ×= ∑ ∑ ∑
� � �� �

            (2.40) 

 

in the region t≤z; 
 

Tpq o (s
2

2
jK j z t)s

mpq mpq
m 1 p q

1
E C e e u

A

∞ ∞
− •ρ − γ −+

= =−∞ =−∞

= ∑ ∑ ∑
� �� �

             (2.41) 

Tpq o (s
z

2
jK j z t)o s

mpq mpq mpq2
m 1 p q

C (a )
1

H Y e e u
A

∞ ∞
− •ρ − γ −+

= =−∞ =−∞

×= ∑ ∑ ∑
� � �� �

           (2.42) 

 

These fields must now satisfy the following boundary conditions: 

 

I) The tangential components of the scattered electric fields must be 

continuous at z=0. 

s s
o 1E E=
� �
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II) At z=0, the tangential component of the scattered magnetic fields are 

discontinuous by an amount equal to the induced current density on the 

metallic scatterers. That is, 

s s
1 o sn̂ [H H ] J× − =
� � �

 

III) The tangential components of the scattered electric and magnetic fields 

are continuous at z=t. 

s s s s
1 2 1 2E E and H H=       =
� � � �

 

 

Application of  these boundary conditions when combined with the orthogonality 

property of the Floquet modes mpqΨ
�

over a unit periodic cell enable us to express the 

coefficients of the scattered fields as; 

 

s
mpq mpqEQ

mpq S

1
A J(x, y) dxdy

Y
− ∗= − Ψ∫∫

�
i                (2.43) 

1 1

1 s
mpq mpqs

mpq j t j t1 o 1 o
mpq mpq mpq mpq

2(Y )A
C

(Y Y )e (Y Y )e

−
+

+ γ − γ
=

+ + −
             (2.44) 

 
where 
 

N

n n
n 1

J(x, y) c I (x, y)
=

= ∑
� �

                (2.45) 

1 1

1 1

j t j t1 o 1 o
mpq mpq mpq mpqEQ o 1

mpq mpq mpq j t j t1 o 1 o
mpq mpq mpq mpq

(Y Y )e (Y Y )e
Y Y Y

(Y Y )e (Y Y )e

γ − γ

γ − γ

 + − −
= +  

+ + −  
            (2.46)  

 
The asterisk designates the complex conjugate operation and cn 's are  the unknown 

current density coefficients. Note that the unknown current density in (2.45) is 

expanded into a finite sum of terms having an assumed functional dependence but 

with unknown coefficients. 

 

The total electric field in the region 0z ≤ , the reflected field and the transmitted field 

can then be written as, 

 



  16 
 

T00 o T00 o

Tpq o

s
tot inc r o

2 2
jK jKj z j z

moo moo moo moo
m 1 m 1

2
jK j zs

mpq mpq
m 1 p q

E E E E

1
A e e u A e e u

A

A e e u

− •ρ − •ρ− γ + γ+ −

= =

∞ ∞
− •ρ + γ−

= =−∞ =−∞

= + +


      = +







                 +

∑ ∑

∑ ∑ ∑

� �� �

� �

� � � �

� �

�

          (2.47) 

 

TpqT00 o o

s
ref r o

2 2
jKjK j z j zs

moo moo mpq mpq
m 1 m 1 p q

E E E

1
A e e u A e e u

A

∞ ∞
− •ρ− •ρ + γ + γ− −

= = =−∞ =−∞

= +

  
      = + 

 
∑ ∑ ∑ ∑

�� ��

� � �

� �  (2.48) 

 

TpqT00 o o

s
trans 2 2

( (
2 2

jKjK j z t) j z t)s
moo moo mpq mpq

m 1 m 1 p q

E E E

C
1

C e e u e e u
A

∞ ∞
− •ρ− •ρ − γ − − γ −+ +

= = =−∞ =−∞

= +

  
      = + 

 
∑ ∑ ∑ ∑

�� ��

� � �

� �  

         (2.49) 
 

The coefficients in equations 2.47 - 2.49 are given in equations 2.30-31 and 2.43-44. 

 

The only remaining boundary condition we have to satisfy is that the tangential 

component of the total electric field must vanish on the conducting elements: 

 

totE 0=
�

  at z=0 

That is, 

T00 T00

Tpq

tot

mpqEQ
mpq S

2 2
jK jK

moo moo moo moo
m 1 m 1

2
jK

mpq
m 1 p q

1

A

E 0

1
( J dxdy)

Y

1
A e u A e u

A

e u∗

− •ρ − •ρ+ −

= =

∞ ∞
− •ρ

= =−∞ =−∞


= = +




− Ψ 


                 + ∫∫

∑ ∑

∑ ∑ ∑

� �� �

� �

�

� �
i

� �

�
          (2.50) 

 

Substituting  (2.19) and (2.45) into (2.50) yields, 

 

mpqEQ
mpq S

2 2 2

moo moo moo moo mpq
m 1 m 1 m 1 p q

1
( J dxdy)

Y
A A ∗

∞ ∞
+ −

= = = =−∞ =−∞

 
− + = − Ψ 

 
Ψ Ψ Ψ∫∫∑ ∑ ∑ ∑ ∑

� �
i

� � �
  (2.51) 
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mpqEQ
mpq S

2 2

moo moo moo mpq
m 1 m 1 p q

1
( J dxdy)

Y
(A A ) ∗

∞ ∞
+ −

= = =−∞ =−∞

 
− + = − Ψ 

  
Ψ Ψ∫∫∑ ∑ ∑ ∑

� �
i

� �
            (2.52) 

 

Using the inner product defined by; 

* *

S

f ,g fg dxdy〈 〉 = ∫∫  

we can write 
 

N
* *
mpq n n mpq

n 1S

J dxdy c I ,
=

Ψ = 〈 Ψ 〉∑∫∫
� � � �
i                (2.53) 

 
and (2.52) then becomes 

N
*

n nEQ
n 1 mpq

2 2

moo moo moo mpq mpq
m 1 m 1 p q

1
c ( ) ,

Y
(A A ) I

=

∞ ∞
+ −

= = =−∞ =−∞

 
− + = − 〉 

  
Ψ 〈 Ψ Ψ∑∑ ∑ ∑ ∑
� � � �

           (2.54) 

 

(2.54) is an integral equation in terms of the unknown current coefficients cn. To 

solve this equation a set of  N equations are obtained by taking the inner product of 

both sides of (2.54)with Ik, k=1,2,…,N. This process is the basis of the Moment 

Method discussed in the next chapter.  This procedure yields the following set of 

equations: 

N
*

k n n kEQ
n 1 mpq

2 2

moo moo moo mpq mpq
m 1 m 1 p q

1
, c ( ) , ,

Y
(A A ) I I I

=

∞ ∞
+ −

= = =−∞ =−∞

 
− + 〉 = − 〉 〉 

  
〈 Ψ 〈 Ψ 〈 Ψ∑∑ ∑ ∑ ∑
� � � � � �

 

                                                                                             k=1. 2. . . . , N           (2.55) 

 

(2.55) can be represented as a matrix equation 

 

1 11 1N 1

2 2

N N1 NN N

z z c

c

z z c

     
    
    
    =
    
    
         

ℂ …

ℂ

⋮ ⋮ ⋱ ⋮ ⋮

⋮ ⋮

ℂ ⋯

               (2.56) 

 

where kℂ is known as source vector, zij is impedance matrix and cn is the current 

coefficients to be determined. That is, 
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k k

2

moo moo moo
m 1

,(A A ) I+ −

=

= − + 〉〈 Ψ∑ℂ
� �

 ,  k=1,2,3…..,N            (2.57) 

 

*
ij i jEQ

mpqmpq

mpq mpq
1

z , ,
Y

I I= − 〉 〉〈 Ψ 〈Ψ∑
� � � �

 ,  i, j 1, 2,....N=            (2.58) 

where the triple summation 
m p q
∑∑∑ is replaced by a single summation symbol 

mpq
∑ . 

 

(2.56) can be solved using a matrix inversion algorithm. Once the unknown current 

coefficients are computed, scattered characteristics are obtained using (2.48) and 

(2.49). 
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CHAPTER 3 

 

SOLUTION BY MOMENT METHOD 

 

3.1 Determination of Basis Function 

 

In Chapter 2, an integral equation is obtained for the current density induced on a 

conducting element in a single periodic unit cell, which is given by equation (2.52). 

 

In order to solve equation (2.52) using Moment Method [17-19], current density 

should be approximated using an appropriate basis function. So, in the formulation 

piecewise triangular currents having unknown coefficients are adopted for the 

induced current density flowing on the conducting elements. The geometry of a 

triangular conducting element in a unit cell is shown in Figure 3.1. 

 

Figure 3.1 Geometry of triangular conducting element in a typical rectangular cell 

 

The perimeter of the triangle is divided into segments and these segments are labeled 

as shown in Figure 3.2a 
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Figure 3.2a Piecewise triangular current distributions with unknown coefficients for 

triangular conducting element 

 

Note that; 

N1=number of segments on 1st arm 

N2 =number of segments on horizontal arm 

N3 =number of segments on 3rd arm 

So, total number of segments is N1+N2+N3 and total number of currents is 

N1+N2+N3. 

 

Figure 3.2b Approximated piecewise triangular current distribution 

 

If the current on an arm is approximated by piecewise triangular currents as shown in 

Figure 3.2b, then for any current Jn,k flowing from hk-1 to hk+1 along the η-axis we can 

write; 

 

n

n

k
k 1 k 1 k

n,k
k

k 1 k k 1

I
h h h

J ( , )
I

h h h

− −

+ +








(η − )        ≤ η ≤
∆

η τ =
( − η)        ≤ η ≤

∆

               (3.1) 
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Note that nk k 1h h −= + ∆  and nk 1 kh h+ = + ∆  where n∆  is the segment size. 

Subscripts n (1, 2, or 3) indicates the nth arm of the triangle and k indicates the 

segment number which supports the current Ik. 

 

 

3.2 Calculation of Inner Products 

 

General form of the inner products for the impedance matrix is given in equation 

(2.53) in previous chapter. When this equation is written explicitly, the inner 

products that we have to compute in this case are of the form 

 

xpq ypq

TM
j(xk yk ) pq*

mpq TE
pqunit cell

u
J(x, y), (x, y) e J(x, y)dxdy

u
+

 

 
〈 Ψ 〉 =  

  
∫∫

�
� � �

i�               (3.2) 

 

Since there are three arms, it will be easier to formula the problem considering the 

current in each arm separately. 

 

3.2.1 First slant arm 

        

Figure 3.3 Piecewise current distribution on the first slant arm 

 

Let us assume that this side is divided into N1 segments where the N1
th point is a 

corner point of the triangle and let the segment size of the first slant arm is 1∆ .  
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However, in the following formulation the subscript 1 will be dropped and ∆  will be 

used for 1∆ . Furthermore, note that the current 1kJ (x, y)
�

actually flows in (- aη
�

) 

direction on this arm where 

 

x ya a cos a sinη = α + α
� � �

 

 

So using equation 3.2, the inner product for the current 1,kJ (x, y)
�

flowing in this arm 

can be written as 

xpq ypq

TM
j(xk yk )pq*

1,k mpq 1,kTE
pq unit cell

u
J (x, y), (x, y) a e J (x, y)dxdy

u
+

 
η

 
〈 Ψ 〉 = −  

  
∫∫

�
� � �

i �              (3.3) 

 

Since this arm runs along η-axis, (3.3) can be evaluated easily by changing the 

variables from (x, y)  to ( , )η τ . This is achieved by using the transformation; 

 
x cos sin

y sin cos

= η α − τ α

= η α + τ α
                   (3.4) 

 

Then substituting (3.4) into (3.3) yields 
 

xpq ypq

TM
j( cos sin )k j( sin cos )kpq*

mpq1,k 1,kTE
pq unit cell

u
J (x, y), (x, y) a e e J ( , )d d

u
η α−τ α η α+τ α

 
η

 
 
  

〈 Ψ 〉 = − η τ η τ∫∫
�

� � �
i �

                                      (3.5) 

Now let 
pq xpq ypq

pq xpq ypq

k cos k sin

t k sin k cos

s = α + α

= − α + α
 

 
Using these parameters in (3.5) gives 
 

pq pq

TM
j s j tpq*

mpq1,k 1,kTE
pq unit cell

u
J , a e e J ( , )d d

u
η τ

 
η

 
 
  

〈 Ψ 〉 = − η τ η τ∫∫
�

� � �
i �                          (3.6) 
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Substitution of (3.1) into (3.6) yields a typical inner product for the current on the 

first slant arm of the form  

 
k k 1

pq pq

k 1 k

pq

h hw / 2
j s j s

k 1 k 1

w / 2 h h

TM
j tpq*

mpq1,k TE
pq

1 1
e ( h ) e (h )

u
I , a e d d d

u

+

−

η η
− +

−

τ
η

    
η − − η   

∆ ∆      
〈 Ψ 〉 = − τ η+ η∫ ∫ ∫

�
� � �

i �

                     (3.7) 
On the other hand, inner products for the corner points are given by 

  

I) for the last point (k=last=N1+N2+N3) 
 

[ ]
1

pq

1

pq

Lw / 2
j sA

1

w / 2 L

TM
j tpq*

mpq1,last TE
pq

1
e (L )

u
I , a e d d

u
η

− −∆

τ
η

    
η − − ∆   

∆      
〈 Ψ 〉 = − τ η∫ ∫

�
� � �

i �             (3.8) 

and 

II) for the N1
th

 point (k=N1) 
 

[ ]pq

1

pq

w / 2
j sB

w / 2 0

TM
j tpq*

mpq1,N TE
pq

1
e )

u
I , a e d d

u

∆
η

−

τ
η

   
∆ − η   

∆    
〈 Ψ 〉 = − τ η∫ ∫

�
� � �

i �              (3.9) 

 

Evaluation of integrals in (3.7), (3.8) and (3.9) yield 

pq k 1 pq k pq k 1

w
2 js h js h js hpq

1,k 2w
2 pq pq

TM
pq*

mpq TE
pq

w sin( t ) 1
, ( e 2e e )

( t ) s

u
I a

u
− +

η
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3.2.2 Horizontal arm 

 
 

   Figure 3.4 Piecewise current distribution on the horizontal arm 

 

Let us assume that the horizontal arm is divided into N2 segments. The horizontal 

arm starts at point N1 and ends at point N1+N2 which are the corner points for the 

horizontal arm. On the other hand, the segment size 2∆  of the horizontal arm may 

not necessarily be equal to the segment size 1∆  of the first arm. In the formulation of 

inner products, the subscript of the segment size is dropped and ∆  is also used 

instead of 2∆  for simplicity. Furthermore, the current 2,kJ (x, y)
�

 flows in (+ xa
�

) 

direction on this arm. For this reason, along the horizontal arm the inner products 

take the form 

 

xpq ypq

TM
j(xk yk )pq*

2,k mpq 2,kTE
pq unit cell

x

u
J (x, y), (x, y) a e J (x, y)dxdy

u
+

 

 
〈 Ψ 〉 =  

  
∫∫

�
� � �

i �            (3.13) 

 
 



  25 
 

When the current 2,kJ (x, y)
�

 is expanded in terms of piecewise triangular functions 

then a typical inner product for this arm is of the form 
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On the other hand, inner products for the corner points are given by 
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th point (k=N1) 
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and 

II) for the (N1+N2)
th point (k=N1+N2) 
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When we evaluate the integrals in the equations, inner products for the horizontal 

arm and the corners at points N1
th

 and (N1+N2)
th have the following forms. 
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3.2.3 Third arm 

 

                              Figure 3.5 Piecewise current distribution on the third arm 

 

From the Figure 3.5 it is seen that the third side makes an angle 3α  with respect to 

the x-axis and the current 3,kJ (x, y)
�

flows in ( aη
�

) direction on this arm where 

 

x ya a cos a sinη = α + α
� � �

 (subscript 3 is dropped) 

 

The transformation in this case requires, in addition to the rotation of the axis, a 

translation. That is, transformation from (x, y) to ( , )η τ  needs the following change 

of variables. 

 

2x L cos sin

y sin cos

= + η α − τ α

= η α + τ α
                (3.20) 

 

Making use of 3.2, the inner product of the Floquet modes with the current 3,kJ (x, y)
�

 

flowing in the third arm can be written as 
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Using the transformation (3.20) in (3.21) yields 
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When the current 3,kJ ( , )η τ is expressed in terms of piecewise triangular functions, a 

typical inner product in this case will be of the form;  
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and the inner products for the corner points are given by 
 

I) for the (N1+N2)
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 point (k=N1+N2) 
 

xpq 2

pq

1 2

pq

jk Lw / 2
j sA

w / 2 0

TM
j tpq*

mpq3,N N TE
pq

e
e ( )d

u
I , a e d

u

∆
η

+
−

τ
η

    
∆ − η   

∆     
〈 Ψ 〉 = τ η∫ ∫

�
� � �

i �            (3.25) 

 
II) for the last point (k=last=N1+N2+N3) 
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When the above integrals are evaluated we obtain the following expressions. 
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Choosing proper p, q values and using the above inner products, equation (2.55) can 

be written in the matrix form as follows 
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where kℂ is known as source vector, zij is impedance matrix and cn is the current 

coefficients to be found. Then, 
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where the triple summation 
m p q
∑∑∑ is replaced by a single summation symbol 

mpq
∑ . 

 

Once the impedance matrix and the source vector i.e. k 'sℂ are calculated then the 

unknown current coefficients 1 2 3 Nc ,c ,c ,...., c  can be determined by taking the inverse 

of the matrix given in 3.30. Then, the reflected and transmitted fields can be 

calculated using these current coefficients. 

 

 

3.3 Comparison with Previous Works 

Since there is no study related to FSSs comprising of triangular conducting elements 

in literature, our results are compared with the experimental and the theoretical 

results given in the literature for FSSs formed using conducting strips and L-shaped 

conductors. Due to the flexibility of the algorithm we developed for the FSSs having 

triangular conducting elements, FSSs comprising of conducting strips and L dipoles 

can be analyzed simply by removing the appropriate arms of the triangles. 

3.3.1 FSSs with conducting strips 

As can be seen from Figure 3.1, when the arms L2 and L3 of the triangle are taken as 

zero (L2=L3=0) and the angle α is set equal to 90°, an FSS with vertical strips is 

obtained.  

To compare our results with the results for a FSS comprising of free standing strips 

quoted in  [4] our program is used to compute the power reflection coefficient by 
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choosing L2=L3=0 and α =90 and using the parameter set given in Figure 3.6. In the 

analysis 10 piecewise triangular basis functions are used. 

 

 

dx=dy=1.78cm 

L1=1.27cm 

w=0.127cm 

εr =1, t=0 

 

 
 
Figure 3.6 Geometry of the unit cell of the frequency selective surfaces composed of strips 
 

As seen in Figure 3.7, our results are almost exact with the values measured by Ott, 

Kouyoumjian and Peters [4]. The graph shows a total reflection at 11.1GHz for a 

freestanding  FSS structure comprising of conducting strips when the structure is 

illuminated by a normally incident plane wave.. 
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Figure 3.7 TE Power reflection coefficient versus frequency for the freestanding strip FSS 
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At the resonant frequency magnitude of the current is equal to its real part. For this 

reason, distribution of induced currents on a conducting element is also plotted at the 

resonant frequency. Figure 3.8 shows the normalized current versus length of the 

narrow strip at 11.1GHz.  
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Figure 3.8 Normalized current versus length for the freestanding strip FSS at resonance 

frequency of TE incidence 

 

3.3.2 FSSs with L-dipoles 

Our algorithm for the case of triangular shaped conducting elements can also be used 

to obtain scattering characteristics of FSSs comprising of  L-shaped dipoles simply 

by choosing the length of the third arm of the triangle equal to zero (L3=0) and the 

angle α to 90°. The geometry of a unit cell with an L-shaped conductor is shown in 

Figure 3.9 we can also obtain scattering characteristics of FSSs comprising of V-

shaped elements using our software.  
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          Figure 3.9 Frequency Selective Surface with L-shape conductor 
 

Extensive work has been done on FSSs comprising of L-shaped dipoles by 

Delihacıoğlu [14]. However, when our program is used to compare our results for L-

shaped dipoles with his results major discrepancies are found. For example, for L1= 

L2=0.9cm, w=0.09cm, dx=dy=0.93cm, t=0.1cm, εr =1.6, N=19, and p=q=9 

Delihacıoğlu shows the existence of a total reflection at 13.4 GHz for a normally 

incident plane wave as can be seen in Figure 3.10a  whereas our results presented in 

Figure 3.10b show that such a resonance does not occur.  

 

 

        (a) 
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     (b) 

Figure 3.10 Reflection and transmission coefficients for dielectric backed L-dipole FSS at 

normally incident plane waves (a) taken from [14], page 20, Figure 1.7) (b) our analysis. 

 

Since we employ piecewise triangular basis functions in our formulation and since 

piecewise sinusoidal basis functions were used in [14] one therefore expected almost 

identical results in both cases. The discrepancy between the current distributions is 

also obvious as can be seen in Figures 3.11a and 3.11b.   
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Figure 3.11 Current distributions versus length for dielectric backed L-dipole FSS 

 (a) taken from [14], page 21, Figure 1.8)  (b) our analysis 
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To find out the cause of this discrepancy we went through a detailed investigation of 

our formulation and found out that in [14] a sign error has been made in calculating 

the inner products. In [14] current is assumed to be flowing from the center point 

(corner) towards the end points whereas it should be flowing from one end of the L 

towards the other end, passing through the corner point as employed in our analysis. 

If this sign error is corrected then both formulations yield identical results for the 

current flowing in the L-shaped conductor, as given in Figure 3.11b.   

  

3.3.3 FSSs with L-shaped apertures 

Due to the major differences between our results and the results given in [14] at the 

early stages of our research, we searched the literature to see if we can compare our 

results with any other independent study. In [15], experimental results for an FSS 

formed from an infinite metal screen which has been periodically perforated by L-

shaped apertures as shown in Figure 3.12.  

 

Figure 3.12 Frequency Selective Surface with L-shape aperture 

 

For an FSS comprising of apertures, the concept of duality holds and hence, based on 

the basis of Babinet’s principle [19] one can replace E with H and εo with µo in the 

solutions. For this reason, aperture and patch structures give complementary 

frequency responses. This means that, if a screen comprising of metal patches is 

totally reflective at some resonant frequency then the complementary structure which 

is formed by perforating a metallic screen with apertures (same shapes as patches) is 

totally transparent at the same frequency. Hence, in order to compare our work with 

the results given for the structure suggested in [15], we should compare our 
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reflection characteristics with their transmission characteristics.  The theoretical 

reflection coefficient computed using our formulation and the 

theoretical/experimental results quoted in [15] are illustrated in Figure 3.13 for a 

structure where L1=L2 =1cm, w=0.1cm, dx=dy= 1.92cm, t=0 cm, and εr =1. The 

results are in good agreement as one takes into account that in our case the unknown 

current density is approximated by 19 piecewise triangular currents whereas in [15] 

the unknown aperture field of the L-shaped aperture is approximated using 6 

waveguide modes. As it is seen in Figure 3.13, when the azimuth angle is -45° for a 

TM plane wave, resonance (transmission) occurs at 8.3GHz in [15] and 7.9GHz 

(reflection) in our study.  
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Figure 3.13 TM reflection coefficient for this work and TM transmission coefficient for 

Blinnikova, et al [15] versus frequency for freestanding L-shape structure FSS 

 

On the other hand, Figure 3.14 displays the frequency response of FSS with L-shape 

dipole at different oblique incidences. As it is seen from the figure, there exists two 

resonance frequencies for a normally incident plane wave at 7.9GHz and 14GHz, 

respectively, but there is only one resonance occurs at 7.9GHz for an incident plane 

wave with an angle of 45= − �φ .  
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Figure 3.14 TM transmission coefficients versus frequency for a freestanding FSS with       

L-shape dipole at different oblique incidence angles 

1 2 1 , 0.1 , 0 , 1.92= = = = = =x yL L cm w cm t cm d d cm  
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CHAPTER 4 
 

 

NUMERICAL RESULTS 

 

In this chapter, numerical results for the reflection and transmission characteristics of 

a triangular-shaped FSS are presented. Based on the analysis of Chapter 3, a 

computer program is generated to compute the reflection and transmission 

coefficients of triangular-shaped FSS as a function of frequency. The current 

distribution on the conducting elements can also be determined using the same 

program. 

 

The geometry of a triangular element placed inside a square lattice having 

periodicities dx and dy in the x and y directions respectively is shown in Figure 4.1. 

As it is seen in the figure, length of the triangular conducting element is denoted by 

L and its width by w. The triangular shaped conducting elements are printed on a 

dielectric substrate with a thickness t and relative permittivity εr. In all our numerical 

computations, total number of induced currents on the conductor is taken to be 30 

and 161 Floquet modes are used. 

 

 

 

 

 

 

 

 

 

Figure 4.1 The geometry of triangular conducting element in a unit cell. 
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4.1 Numerical Results  

 

In this section, first the current distribution on the triangular conducting element is 

provided. Then, reflection and transmission coefficients of TM and TE plane waves 

are given. Finally  the influence of the parameters such as lattice dimensions, length 

and width of the conducting element, slab thickness, dielectric constant and the angle 

of incidence on the  reflection and transmission characteristics are investigated over 

the  frequency range of 4-16GHz. Between these frequencies only the first order 

modes propagate (i.e TM00 and TE00 Floquet modes) and no grating lobes exist.  

 

In the computations for a FSS comprising of triangular shaped conductors, each arm 

length (L1, L2, L3) and the width (w) of the conducting element are chosen as 0.94cm 

and 0.047cm, respectively. The inter-element spacing is dx=dy=1cm and slab 

thickness t is 0.5cm with εr =2.3. Furthermore, in all numerical computations 161 

Floquet modes are used and each arm is divided into 10 segments. That is, a total of 

30 piecewise triangular functions are used to approximate the current. 

 

In Figure 4.2, for both freestanding and dielectric backed triangular-shaped FSS, TM 

and TE induced currents are plotted versus the length of the conductor. As seen in 

the figures, there is no difference between freestanding and dielectric backed 

structures in terms of the normalized current distribution. However, as it is seen in 

the figures, the resonance frequencies are quite different which is 13GHz for 

freestanding triangular-shaped FSS and 10.1 GHz for the dielectric backed 

triangular-shaped FSS.  

In Figures 4.3a and 4.3b, magnitude of reflection and transmission coefficients is 

plotted versus frequency. Figure 4.3a displays that the TM waves at normal 

incidence are fully reflected at 13GHz for freestanding triangular-shaped FSS and 

10.1GHz for dielectric backed triangular-shaped FSS. When the wave is TE 

polarized, the resonance frequencies shift to 13.6GHz and 10.5GHz for freestanding 

and dielectric backed triangular-shaped FSS, respectively. 
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Figure 4.2a Normalized current versus length for the freestanding and dielectric backed 

triangular-shaped FSS at resonance frequency of TM incidence 
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Figure 4.2b Normalized current versus length for the freestanding and dielectric backed 

triangular-shaped FSS at resonance frequency of TE incidence 
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Figure 4.3a TM Reflection and Transmission Coefficients for the freestanding and dielectric 

backed triangular-shaped FSS for 0θ φ= = � , dx=dy=1cm, L1=L2=L3=0.94cm, w=0.047cm 

4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [GHz]

T
E
 R
e
fl
e
c
ti
o
n
 &
 T
ra
n
s
m
is
s
io
n
 C
o
e
ff
ic
ie
n
ts
 [
m
a
g
]

 

 

R(ε
r
=1, t=0)

T((ε
r
=1, t=0)

R(ε
r
=2.3, t=0.5cm)

T(ε
r
=2.3, t=0.5cm)

 

Figure 4.3b TE Reflection and Transmission Coefficients for the freestanding and dielectric 

backed triangular-shaped FSS for 0θ φ= = � , dx=dy=1cm, L1=L2=L3=0.94cm, w=0.047cm  
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The effects of changes in the parameters on the reflection coefficients are observed 

for both TM and TE incidence waves in the following figures. Figure 4.4 displays the 

effects of dielectric constant on reflection characteristics. So, when εr is increased, 

the resonant frequency decreases. At the same time a decrease in the bandwidth of 

the reflected wave is observed obviously while εr is increased.  

For Figure 4.5, the reflection coefficient is plotted versus frequency for different slab 

thickness while the other parameters are unchanged. It is observed that the resonance 

frequency does not change when the slab thickness is increased or decreased for both 

TM and TE waves at normal incidence. Figure 4.6 illustrates the influence of lattice 

dimension on frequency response of the structure. If the dimensions of square lattice 

are increased while the size of triangular conductor is fixed, the resonance frequency 

for TM reflected wave increases. However, there is no change in resonance 

frequency for TE reflected wave. Moreover, for both types of polarization, the 

bandwidth of reflected wave decreases as the dimensions of square lattice increases. 

For this reason in order to decrease the resonance frequency, conducting elements 

should be printed tightly.  

In Figure 4.7, reflection coefficients of TM and TE incidence waves are plotted with 

respect to the frequency for different lengths of triangular conducting element. If the 

length of one arm is decreased by 0.1cm and then by 0.2cm, the resonance frequency 

shifts to 11.7GHz and 13.5GHz, respectively. So we can say that the change in the 

length of conductor has same effect with the change in lattice dimensions while all 

other parameters are kept fixed. On the other hand, the bandwidth of reflected wave 

is wider for a larger triangular conductor. The other parameter that influences the 

frequency response is the width of triangular conducting element. Figure 4.8 displays 

the reflection coefficients against frequency for both TM and TE incidence waves for 

different widths of triangular conducting element. As it is seen, when the width of 

triangular conductor is increased from 0.01cm to 0.094cm, the resonance frequency 

shifts from 9.9GHz to 10.8GHz. In the last figure, Figure 4.9, effects of different 

incidence angles are observed. Although the angle of the incident wave is increased 

from 0 to 60°, the change in the resonant frequency is small. It shifts to the right by 

an amount of 0.3GHz for TM waves and shifts to the left with the same value for TE 

waves. 
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Figure 4.4a TM Reflection Coefficients versus frequency for triangular-shaped FSS at 

different values of rε ; 

1 2 30 , 0.94 , 0.047 , 1 , 0.5= = = = = = = = =�

x yL L L cm w cm d d cm t cmθ φ
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Figure 4.4b TE Reflection Coefficients versus frequency for triangular-shaped FSS at 

different values of rε ;  

1 2 30 , 0.94 , 0.047 , 1 , 0.5= = = = = = = = =�

x yL L L cm w cm d d cm t cmθ φ  
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Figure 4.5a TM Reflection Coefficients versus frequency for triangular-shaped FSS at 

different slab-thicknesses; 

1 2 30 , 2.3, 0.94 , 0.047 , 1= = ε = = = = = = =�
r x yL L L cm w cm d d cmθ φ
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Figure 4.5b TE Reflection Coefficients versus frequency for triangular- shaped FSS at 

different slab-thicknesses; 

1 2 30 , 2.3, 0.94 , 0.047 , 1= = ε = = = = = = =�
r x yL L L cm w cm d d cmθ φ  
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Figure 4.6a TM Reflection Coefficients versus frequency for triangular-shaped FSS at 

different lattice sizes; 1 2 30 , 2.3, 0.94 , 0.047 , 0.5r L L L cm w cm t cmθ φ= = ε = = = = = =�  
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Figure 4.6b TE Reflection Coefficients versus frequency for triangular-shaped FSS at 

different lattice sizes; 1 2 30 , 2.3, 0.94 , 0.047 , 0.5r L L L cm w cm t cmθ φ= = ε = = = = = =�  



  46 
 

4 6 8 10 12 14 16

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [GHz]

T
M
 R
e
fl
e
c
ti
o
n
 C
o
e
ff
ic
ie
n
ts
 [
m
a
g
]

 

 

L=0.94cm

L=0.84cm

L=0.74cm

 

Figure 4.7a TM Reflection Coefficients versus frequency for triangular-shaped FSS at 

different lengths of conductor; 0 , 2.3, 0.047 , 1 , 0.5= = ε = = = = =�
r x yw cm d d cm t cmθ φ  
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Figure 4.7b TE Reflection Coefficients versus frequency for triangular-shaped FSS at 

different lengths of conductor; 0 , 2.3, 0.047 , 1 , 0.5= = ε = = = = =�
r x yw cm d d cm t cmθ φ  
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Figure 4.8a TM Reflection Coefficients versus frequency for triangular-shaped FSS at 

different widths of conductor; 

1 2 30 , 2.3, 0.94 , 1 , 0.5= = ε = = = = = = =�
r x yL L L cm d d cm t cmθ φ
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Figure 4.8b TE Reflection Coefficients versus frequency for triangular-shaped FSS at 

different widths of conductor; 

1 2 30 , 2.3, 0.94 , 1 , 0.5= = ε = = = = = = =�
r x yL L L cm d d cm t cmθ φ  
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Figure 4.9a TM Reflection Coefficients versus frequency for triangular-shaped FSS at 

different oblique angle incidence; 

1 2 30 , 2.3, 0.94 , 0.047 , 1 , 0.5= ε = = = = = = = =�
r x yL L L cm w cm d d cm t cmθ
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Figure 4.9b TE Reflection Coefficients versus frequency for triangular-shaped FSS at 

different oblique angle incidence;  

1 2 30 , 2.3, 0.94 , 0.047 , 1 , 0.5= ε = = = = = = = =�
r x yL L L cm w cm d d cm t cmθ  



  49 
 

4.2 Comparison of Concentric Ring FSSs with Triangular-Shaped FSSs 

 

In order to analyze the frequency response of the concentric circular ring, a computer 

program is used which is developed for this type FSS structures. Then, for the 

comparison of concentric circular ring FSS with triangular shaped FSS, concentric 

circular ring is placed into a square lattice with the same lattice dimensions of 

triangular conducting element, dx=dy=1cm. Also, the inner radius and the outer 

radius of the concentric circular ring are chosen as 0.423cm and 0.47cm, 

respectively. On the other hand, each arm of the triangular conducting element is 

taken to be 3inr where rin is the inner radius of the ring. Furthermore, for both 

structures width of the conducting elements are assumed to be 0.047cm and the slab 

thickness is taken as 0.5cm with a dielectric constant 2.3. Although the number of 

Floquet’s modes is 161 for both structures, the number of basis functions is different 

from each other. For the concentric ring, basis functions are in sinusoidal form and 

for triangular conducting elements the basis functions are in piecewise triangular 

form with N equal to 30. 
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Figure 4.10 TM&TE Reflection and Transmission Coefficients versus frequency for the 

concentric circular ring FSS  
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Figure 4.11a TM Reflection and Transmission Coefficients for dielectric backed triangular- 

shaped FSS; 1 2 30 , 0.732 , 0.047 , 2.3, 0.5 , 1= = = = = = ε = = = =�
r x yL L L cm w cm t cm d d cmθ φ  
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Figure 4.11b TE Reflection and Transmission Coefficients for dielectric backed triangular-

shaped FSS; 1 2 30 , 0.732 , 0.047 , 2.3, 0.5 , 1= = = = = = ε = = = =�
r x yL L L cm w cm t cm d d cmθ φ  
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In Figures 4.10 and 4.11, the reflection and transmission coefficients of circular 

concentric ring and triangle-shaped FSS are plotted versus frequency, respectively. 

As it is seen, frequency responses of distinct geometries are different from each 

other. The reflection and transmission bandwidth of concentric circular ring FSS is 

also larger than the triangular conducting FSS. A concentric circular ring FSS has a 

resonance frequency at 8.6GHz both for TM and TE plane waves at normally 

incident. Due to the symmetry features of the circular ring, reflection and 

transmission coefficients are equal for all TM and TE plane waves at any incidence 

angles. However, full reflection and transmission occur at 13.6GHz for TM incident 

wave and 13.9GHz for TE incident wave for triangular conducting FSSs propagating 

at (0,0).  
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CHAPTER 5 

 

CONCLUSION 

 

In this thesis, FSS comprising of triangular conducting elements were analyzed to 

obtain the scattering properties of this structure. 

In the analysis, the current induced on the conducting element is approximated by 

piecewise triangular currents with unknown coefficients. Then, using the method of 

moments the unknown current coefficients were determined and then used to 

determine the reflection and transmission coefficients.  

In order to check the correctness of the algorithm developed for triangular 

conducting elements, numerical results obtained using this software for the structures 

comprising of strips and L-dipoles were compared with the experimental and 

theoretical results found in the literature. Once being sure of the validity of our 

software, results are obtained for FSSs comprising of triangular shaped conductors.  

The variation of the reflection and the transmission characteristics with the conductor 

length, the width, the element spacing, the dielectric thickness, the dielectric constant 

and the angle of incidence are also examined.  

For a triangular shaped FSS we can summarize our results as follows: 

• When we increase εr, the frequency of total reflection decreases and shifts 

downward to the value of / ( 1) / 2+o rf ε  where fo is the freestanding 

resonance frequency. 

• When the width of conductor is increased, the resonance frequency and the 

bandwidth also increase. Moreover, the width of conductor should have a 

value about L/10 in maximum. If it is greater than that value, some grating 

lobes will occur and it causes unwanted resonance frequencies. 
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• Slab thickness does not cause appreciable change in the resonance frequency 

and the reflection bandwidth. 

• The effects of the length of conducting element are inversely proportional to 

the resonance frequency, but directly proportional to the bandwidth. 

• However, lattice dimensions and the oblique angle have an opposite effect 

with respect to the length of the conductor. Because, when the lattice 

dimension is increased there is an increase in resonance frequency and a 

decrease in the bandwidth of reflection. 

Hence, we can say that for a good FSS design, the conducting element should be 

small in terms of wavelength. Because the circumference of the metallic conductor 

defines the resonant frequency. Furthermore, if the inter-element spacing is kept as 

small as possible, the reflection bandwidth around the resonance can be increased 

and the structure is more stable to the increases in the incidence angle. Otherwise, for 

a large inter-element spacing early onset of grating modes occur. So, packing 

conducting elements tighter in the periodic cell delays the onset of grating modes. 

Eventually, according to the numerical results and the reflection characteristics at 

resonance frequency, we can say that the FSSs with triangular conducting elements 

exhibit band-stop filter characteristics and fully reflect the energy in a specific 

frequency region.  

This work can also be extended to look at the effects of chirality on a FSS 

comprising of triangular shaped elements. 

Furthermore, this initial study may later be extended to analyze a metamaterial 

formed by cascading a triangular FSS to another FSS comprising of infinitely long 

thin conductors, as suggested in [20].  
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