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ABSTRACT 

 

Design of Stiffened Plates Using Soft Computing Techniques 

 
GÖĞÜġ, Mehmet Tolga 

PhD. in Civil Eng. 

Supervisor: Prof. Dr. Mustafa ÖZAKÇA 

Co–supervisor: Assoc. Prof. Dr. Abdülkadir ÇEVĠK 

February 2010, 131 pages 

 

This thesis deals with development of reliable, accurate and efficient soft 

computing tools for the analysis and design of structures. The efficiency of soft 

computing techniques in structural design such as, particular algorithms based on 

genetic algorithm, neural network, gene expression programming and large–scale 

continuous or discrete structural design problems are studied. The algorithms are 

studied both in deterministic and reliability based structural design problems. To 

increase the computational efficiency as well as the robustness of the design 

procedure, an effort is put forth. Structural optimization process requires the efficient 

integration of computer assisted geometry modeling, automated mesh generation, 

structural analysis and soft computing applications. The use of soft computing 

techniques is motivated from the time–consuming repeated finite strip analysis 

required during the optimization process. A trained soft computing technique is used 

to perform deterministic constraints check in the case of reliability based design. The 

suitability of the soft computing techniques predictions will be investigated in a 

number of structural design problems in order to demonstrate the computational 

advantages of the proposed methodologies.  

Principally, it is desired that this thesis will provide stable bases for further 

investigation, leading to a more intensive use of structural optimization algorithms 

with soft computing techniques to solve practical problems. Because of the broad 

diversity of structures encountered in practice, it becomes clear that this thesis is 

concentrated on buckling and free vibration analyses of stiffened plates.  

All soft computing models used in this study are presented in explicit form 

neural network and gene expression programming models. The most accurate results 

are obtained by neural network model rather than gene expression programming. 

Neural networks are treated as black box in general. It should be noted that explicit 

formulation of neural network models is of significant importance as it will serve for 

important advantages in the analysis and design of structures. This thesis aims to 

open the black box and to present the neural network models in its explicit form. An 

alternative algorithm for the selection of optimum neural network architecture that 

automatically selects the best architecture is proposed. By using finite strip method 

large testing and training sets are constructed and high generalization capabilities of 

the models are obtained. 

 

Key Words: finite strip method, stiffened plates, buckling, free vibration, structural 

optimization, soft computing 
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ÖZET 

 

Esnek Hesaplama Teknikleri Kullanarak Takviyeli Plakların Tasarımı 

 
GÖĞÜġ, Mehmet Tolga 

Doktora Tezi, ĠnĢ Müh. Bölümü 

Tez Yöneticisi: Prof. Dr Mustafa ÖZAKÇA 

Yardımcı Tez Yöneticisi: Doç. Dr. Abdülkadir ÇEVĠK 

ġubat 2010, 131 sayfa 

 

Bu tez, analiz ve yapı tasarımı için, doğru, güvenilir ve verimli esnek 

hesaplama araçlarının geliĢtirilmesiyle ilgilidir. Esnek hesaplama teknikleri olarak 

özellikle genetik algoritma, yapay sinir ağları, gen ifadesi programlama yöntemleri 

ile büyük ölçekli, sürekli veya ayrık yapısal tasarım problemlerinin verimliliği 

çalıĢılmıĢtır. Bu algoritmalar, hem rastsal olmayan hem de güvenilirliğe dayalı 

yapısal tasarım problemlerine uygulanmıĢtır. Ayrıca, tasarım sürecinin hesaplama 

verimliliğinin yanında sağlamlığı da attırılmaya çalıĢılmıĢtır. Yapısal optimizasyon 

süreci, bilgisayar destekli ağ geometri modelleme, otomatik ağ üretimi, analizi ve 

esnek hesaplama uygulamalarını içermektedir. Bu çalıĢmada esnek hesaplama 

yöntemlerinin yoğunlaĢtığı kısım, optimizasyon sürecinde zaman alıcı ve sürekli 

tekrarlanan sonlu Ģeritler analizleridir. EğitilmiĢ bir esnek hesaplama tekniği rastsal 

olmayan kısıtlayıcı kontrollerinde kullanılabilir. Esnek hesaplama tekniklerinin 

kestirimlerinin uygunluğu ve önerilen algoritmaların hesaplama avantajları bazı 

yapısal tasarım problemleri üzerinde incelenecektir. 

Özellikle, ilerleyen araĢtırmalar için sağlam bir taban oluĢturmak amacıyla, 

uygulamaya yönelik yapısal optimizasyon algoritmaları ile esnek hesaplama 

yöntemlerinin birlikte kullanımının arttırılması öne çıkarılması hedeflenmiĢtir. 

Uygulamada kullanılan yapı tiplerinin geniĢ çeĢitliliğe sahiptir, fakat bu tezde sadece 

takviyeli plakların burkulma ve serbest titreĢim analizleri üzerine yoğunlaĢılmıĢtır.  

Bu çalıĢmada kullanılan yapay sinir ağları ve gen ifade programlama 

modelleri açık formda sunulmuĢtur. Yapay sinir ağları ile elde edilen modeller, gen 

ifade programlama yöntemi modellerine göre daha hassas sonuçlar vermiĢtir. Yapay 

sinir ağları genel olarak kapalı kutu olarak değerlendirilmektedir. Yapay sinir 

ağlarının açık formda verilmesi yapı analiz ve tasarımında kullanılabilmesi için önem 

arz etmektedir. Bu tez de kapalı halde verilen yapay sinir ağları modellerini açık 

biçimde sunmayı amaçlamaktadır. Optimum yapay sinir ağı mimarisinin seçimi için 

alternatif bir algoritma önerilmiĢtir. Sonlu Ģeritler yöntemiyle geniĢ test ve eğitim 

setleri elde türetilip, yüksek genelleme yeteneğine sahip modeller elde edilmiĢtir. 

 

Anahtar Kelimeler: sonlu Ģeritler metodu, takviyeli plak, burkulma, serbest titreĢim, 

yapısal optimizasyon, esnek hesaplama 
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sibimi B,B,B   transformed strain–displacement matrices 

piB  in–plane strain displacement matrix 

D matrix of rigidities 

Dm, Db, Ds matrices of membrane, bending and shear rigidities  

Dp, Ds in–plane and transverse elasticity matrix 

3I   the 33  identity matrix 

J Jacobian matrix 

K
e
 element stiffness matrice 

e

ijK  stiffness matrix associated with element e and nodes i and j 

K symmetric, banded stiffness matrix 

e

mijK  membrane stiffness matrix for element e and nodes i and j 

e

bijK  bending stiffness matrix for element e and nodes i and j 

e

sijK  shear stiffness matrix for element e and nodes i and j 

M global mass matrix 

e

ijM  mass matrix associated with element e and nodes i and j 

T  transformation matrix 

 

Greek Symbols 

 

  angle between local and global axes,  

  axial strains 

sbm εεε ,,  membrane, bending and transverse shear strains 
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Greek Symbols (continued) 

 

sbm ,,  membrane, bending and transverse shear strain vectors 

y,  strain in   direction and longitudinal strain 

zy ,  bending strain in y and z axes 

 stiffness proportional damping coefficient 

yny ,  shear strain 

xzxyxx ,,  shear strain in x, y and z axes 

 shear modification factor 

  curvature in the  –direction 

y
 longitudinal curvature 

y  twisting curvature 

zyx ,,  rotational degrees of freedom about x, y and z axes 

 Poisson‟s ratio 

n  fundamental frequency 

 isoparametric element natural (curvilinear) coordinates  

 stress component 

 total potential energy 

sbm ,  membrane, bending and shear stress resultant vectors 

 mass density 

  partial differential of   

 

 



1 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 General Introduction 

This thesis deals with the implementation of reliable, accurate and efficient Soft 

Computing (SC) tools for the analysis and design of structures. The SC techniques in 

structural design with particular algorithms based on genetic algorithm, Neural 

Network (NN), Gene Expression Programming (GEP) depends on the accuracy of 

continuous or discrete structural design model. The use of SC techniques is 

motivated by the time–consuming repeated Finite Element (FE) or Finite Strip (FS) 

analysis required during analysis, design and optimization process. 

 

Nowadays, computers are essential instruments for engineering science activities. It 

has been to suit very simplified to forecast the behavior and functioning of complex 

structures with the development of computer supported applications. In these 

applications, it is significant to understand the behavior of a system. Over the last 

decade, SC techniques came along as an effective instrument that could be an 

alternative technique for time consuming or expensive computing in such 

engineering problems. Moreover, SC techniques can effectively consider with the 

problems with nonlinear and noisy data which are often encountered in engineering 

problems. SC tools have the learning and generalization ability from examples and 

experience to discover solutions to problems. This learning can be achieved even if 

the input data is highly nonlinear or noisy which is often typical of the engineering 

design process. SC techniques have become popular tools for various engineering 

problems due to their outstanding features. 
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Because of severe economic constraints and stringent deadlines coupled with the 

enormous growth in computer speed and power, engineers are resorting to numerical 

methods for the analysis and design of structures. Among the various numerical 

methods, the FE method and its variance, such as the FS method, have become 

firmly established as engineering tools for the linear elastic analysis of plate and shell 

structures. 

 

The predominant advantage of the FE method lies in its ability to analyze complex 

structures with varying thickness, difficult boundary conditions and arbitrary loading. 

However, from the engineering point of view, the use of the FE method for structural 

analysis has drastically increased the computational time cannot be affordable.  

 

The introduction of the FS method, which in its most usual form makes use of a 

combination of the FE method and Fourier series, has provided a very useful and 

economical analysis tool for this class of prismatic structures. 

 

1.2 Thesis Objectives 

The essential objective of the thesis is to develop reliable and efficient computational 

tools for free vibration and buckling analysis and optimization of structures, 

particularly, stiffened plates. Structural optimization process of the type considered 

in this work requires the efficient integration of computer assisted geometry 

modeling, automated mesh generation, structural analysis and SC applications. The 

specific objectives of this thesis can be summarized as follows: 

 

 to present a general formulation for variable thickness, isoparametric, 

Mindlin–Reissner, finite strips/finite elements for buckling and free vibration 

analysis of plates and shells, the accuracy and relative performance of 

formulation are compared with other numerical solutions. 

 to improve and demonstrate the use of a reliable and competitive procedure 

for finding the optimum solutions with continuous design variables based on 

sequential quadratic programming, 
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 to develop SC models with NNs, GEP and genetic algorithms, and 

demonstrate their reliability and generalization capability of proposed 

models,  

 

During the course of research work, a series of studies is assure to provide evidence 

of the effectiveness of the presented models, comparing numerical predictions with 

analytical or experimental results whenever possible. 

 

Principally, it is desired that this thesis will provide stable bases for further 

investigation, leading to a more intensive use of structural optimization algorithms to 

solve practical problems. 

 

1.3 Structure Type Considered in This Thesis 

Because of the broad diversity of structures encountered in practice, it becomes clear 

that a thesis considering with analysis and structural optimization should concentrate 

on selected topics. For this reason, structures considered in this thesis are composed 

longitudinally stiffeners with plates usually called stiffened panel for convenience. 

Stiffened panels find wide applications heavily loaded thin wall and types of weight 

critical structures, because of their simplicity in fabrication and excellent strength to 

weight ratio. In such structures stiffened panels are basic strength members. These 

structures are generally subjected combined loadings, but primarily load component 

is axially compression. In this situation, determinations of critical buckling load of 

stiffened panels are required for structural design and safety assessment. 

 

1.4 Soft Computing Techniques Considered in This Thesis 

In this thesis, mathematical programming and genetic algorithm is adopted for the 

optimization process. Here, it is important to note that genetic algorithm requires no 

sensitivity analysis in the search method. The search method depends solely on the 

objective function information and mimics the „survival of the fittest‟ process found 

in nature. Most mathematical programming algorithms assume that the design 

variables are continuous, but in many practical problems, the design variables are 
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discrete. This is what makes genetic algorithms as useful as they accept both discrete 

and continuous design variables. 

 

1.5 Software Developed in This Thesis 

In this study, reliable, effective and robust computer programs and SC models are 

prepared to attend structural engineers in designing structurally efficient forms and 

allow appreciable insight into the structural behavior. Five main computer programs 

have been developed and verified for analysis and optimization: 

 

 BUCKFS deals with the buckling FS analysis and shape optimization of 

shells. This program is modified in Fortran90 using double precision and 

based on Özakça and co workers program [1]. 

 VIBFS deals with the free vibration analysis and shape optimization of shells. 

This program is modified in Fortran90 using double precision based on 

Özakça and co workers program [1]. 

 SCGEN deals with SC generation of datasets for models. It is written in 

FORTRAN90. It is an interface of BUCKFS and VIBFS programs to 

NNBEST and GeneXpro which is produced by Gepsoft. 

 NNBEST deals with determination of best NN architecture by trial and error 

approach and genetic algorithms. This program is written on MATLAB 

computing environment. 

 SCOPT deals with optimization of SC models by mathematical programming 

and genetic algorithms. This program is also written on MATLAB computing 

environment. 

 

1.6 Layout of Thesis 

This thesis consists of seven chapters. The contents of each chapter are now briefly 

described: 

 A literature survey for SC techniques and their structural applications and FS 

analysis and optimization of structures are summarized in Chapter 2  

 Chapter 3 covers presentation of basic FS analysis formulation of shells and 

also it is verified. 
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 Chapter 4 includes buckling load optimization with mathematical 

programming algorithm and its application of stiffened panels considered in 

TUBĠTAK (107M648) Project [2]. 

 Chapter 5 gives a detailed review of important aspects of the SC techniques. 

 Chapter 6 presents SC modelling of stiffened panels. 

 Chapter 7 provides the conclusions of the present work and discusses the 

scope for further work. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 

2.1 Introduction 

Computer based structural analysis and SC technologies have now passed more than 

three decades from their birthday. Over these last three decades, structural analysis 

and SC applications have been continually developed and improved so that these 

techniques have matured to become useful design tools. We now provide a brief and 

selective review of the literature on FS analysis and SC applications. 

 

2.2 Finite Strip Analysis 

The FS method, mentioned first in 1968 by Cheung [3], is an effective and specific 

form of the FE technique. The FS method possesses the capability of solving 

structural analysis problems that have prismatic form and simple boundary 

conditions. FS forms fewer equations to be solved than FE. As an effect of this 

simplification, FS method is faster and powerful then FE method for specific 

structures. Two main types of strips are successfully developed: the semi analytical 

(or classical FSs) [4–23] and the spline FSs [24–25]. 

 

2.2.1 Stiffened Panel Analysis with Finite Strip Method 

The structural design involves, for economic reasons, the selection of the minimum 

amount of material necessary to ensure the required resistance and stiffness to a 

structure assuming that an adequate safety parameter is guaranteed. For economics 

designs, in many branches of engineering, panels are used. The panels are often 
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attached with suitable stiffened structural form to enhance the specific 

strength/stiffness to weight ratio of the structure attached with suitable stiffened 

structural form to enhance the specific strength/stiffness to weight ratio of the 

structure. These structures experience in–plane forces in many situations. In the use 

of thin walled, as in panels, it must be kept in mind that thin elements may prove 

unstable under the action of forces in their own planes, and fail by buckling sideways 

[26–30]. 

 

Dawe and co–workers [4–11] used FS method which, based on the use of both 

classical thin plate theory and shear deformation plate theory, to determine the 

buckling stresses, the geometrically nonlinear response and natural frequencies of 

vibration of prismatic plate. Benson and Hinton [12] presented a comprehensive 

study including static, free vibration and stability analyses of thick and thin 

rectangular and curved plates using quadratic strips. Hinton and co–workers [13–15] 

used linear, quadratic and cubic FS based on Mindlin–Reissner assumptions for the 

free vibration and static analysis of curved and variable thickness, prismatic 

structures straight or curved planform. Later Hinton et. al. [16,17] have been dealt 

with buckling analysis of prismatic folded plate structures supported on diaphragms 

at two opposite edges. Özakça et al. [18] have been deal with buckling optimization 

of variable thickness prismatic folded plates and stiffened panels. Xie
 
and Ibrahim 

[19] employed a method of FS to establish the equations of equilibrium for the rib–

stiffened plates under axial compressive load. They also study on buckling mode 

localization in rib–stiffened plates with randomly misplaced stiffeners. Bui [20] 

presented an investigation of the buckling behaviour of thin–walled sections 

subjected to general loading conditions by FS method. The existing results are only 

for sections subjected to a uniform loading, namely: uniform compression, uniform 

bending and uniform distributed loads, which are applied at the shear centre. For a 

general loading condition, he proposed the realizing linear analysis first to give 

longitudinal stresses. Bradford and Azhari [21] presented a FS method of analysis 

which enables the elastic local buckling of plates and plate structures with different 

boundary conditions along the loaded ends to be studied.  

 

Lillico et al. [22] present post–buckling analysis of isotropic stiffened panels loaded 

in compression. They repeated analysis different number of stiffener numbers with 
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new stiffener model which was following Shanley–type approach. Riks [23] applied 

FS method for determination of buckling load of stiffened panels in wing box 

structures. 

 

Kwon and Hancock [24] presented analysis of buckling behavior of thin walled 

member using spline FS method. Azhari et al. [25] presented local buckling 

coefficients of plate structures by using bubble functions with spline FS method with 

different boundary conditions. Guo and Lindner [26] presented elastic and plastic 

interaction buckling of interaction imperfect longitudinally stiffened panels under 

compression.  

 

Another crucial phenomenon at thin walled members is free vibration analysis. 

Vibration analysis is needed so as to ensure structural safety and durability under 

dynamic loading circumstances. 

 

Liew et al. [31] presented a survey on vibration of shell panels which covers a large 

literature on the subject. Xie and Chen [32] presented paper on vibration mode 

localization of rib–stiffened plates with randomly misplaced stiffeners in one 

direction. Kantorovich's method and FS method are applied to set up the transfer 

matrices of stiffened plates, respectively. Obtained results from Kantorovich's 

method and FS method are indicated excellent agreement.  

 

Yuan and Dawe [33] developed a B–spline strip method for the determination of 

natural vibration frequencies and buckling stresses of rectangular sandwich panels 

which are stiffened L, hat and blade type stiffeners. Stiffened plates may have 

various shapes, boundary conditions, loadings and also possessing various 

dispositions of stiffeners.  

 

Sheikh and Mukhopadhyay [34] extended general spline FS method has been 

extended in their paper to the analysis of stiffened plates having arbitrary shape. The 

main contribution of the formulation lied in the treatment of stiffeners. It has been 

shown that the stiffener can be placed anywhere within the plate strip which 

introduces a considerable amount of flexibility in the analysis. As available in the 

literature, have been analysed by the proposed approach. Sheikh and Mukhopadhyay 
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[35] applied spline FS method for linear and nonlinear transient vibration analysis of 

plates and stiffened plates in another study. The stiffener has been elegantly 

modelled so that it may lie anywhere within the plate strip. Generalized formulation 

is implemented so that plates are having any shape and stiffeners having any 

orientation and eccentricity can be analyzed.  

 

2.3 Structural Optimization with Mathematical Programming 

Structural shape optimization process based on the FE/FS method has been applied 

for four decades with some success in the design of structures and structural 

members such as mathematical programming, genetic algorithms and NNs etc. 

Detailed information of these optimization algorithms presented many textbooks 

[36–38]. 

 

A lot of techniques and algorithms have been improved for optimum design of 

structural systems. Most of the techniques consider with continuous design variables 

and use mathematical programming techniques. Most popular mathematical 

optimization techniques are sequential linear programming [37,39], Sequential 

Quadratic Programming (SQP) [37] and method of moving asymptotes [40]. 

 

Genetic algorithm is a fairly new optimization technique based on the Darwinian 

survival of the fittest theory. The method has been proposed first by John Holland in 

1975 [41] at the University of Michigan. Genetic algorithm is an evolutionary 

computing approach which is an alternative to traditional optimization methods. In 

most practical design problems, the design variables are discrete. Genetic algorithms 

are most appropriate for complex non–linear models where location of the global 

optimum is a difficult task.  

 

Shape optimization of structures modeled using two dimensional representations was 

first investigated by Zienkiewicz and Campbell [39]. Since then much work has been 

reported. 

 

Murphy et al. [42] presented an investigation of the potential of introducing local 

skin sub–stiffening to effectively tailor local skin buckling and panel collapse 
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performance. This study work undertaken has been enabled the development of 

simple design guidelines for sub–stiffening and potential analysis and optimization 

techniques for the combined panel configuration and local sub–stiffener design. 

Özakça et al. [43] investigated buckling performance of panels with substiffening or 

local tailoring of the skin thickness using linear variable thickness FS analysis. 

Design rules for substiffened panels were derived based on optimization of panels 

with SQP. Kim and Kim [44] proposed an accurate and realistic post buckling model 

for a stiffened composite panel and studied optimization module. In order to predict 

the realistic behavior in the post buckling region, cohesive elements were introduced 

to the analysis model to account for skin–stiffener debonding 

 

Bedair and Troitsky [45] investigated the fundamental frequency characteristics of 

eccentrically and concentrically simply supported stiffened supported plates. They 

presented influence of the plate/stiffener geometric parameters on the fundamental 

frequency of the structure with various concentric and eccentric stiffening 

configurations and optimum solutions which are obtained with sequential quadratic 

programming. 

 

2.4 Soft Computing Techniques in Structural Mechanics 

SC attracts inspiration from nature. Neural computing attempts mimic the human 

brain, evolutionary computing founded on basis of theory Darwinian evolution and 

fuzzy computing is heavily motivated by the highly inexact nature of human speech 

and uncertain situations. SC is the combination of methodologies that were studied to 

model and enable solutions to real life problems, which are not modeled, or too 

difficult to model, mathematically or  have highly expensive solution cost. 

 

2.4.1. Neural Computing 

The application of NNs in structural engineering has been gaining support in the 

recent years. The NN models adopted for structural mechanics may have different 

architectures and may possess different patterns of connectivity. NNs have been used 

as computational tools in various areas of structural mechanics, amongst them, 

optimization, analysis and design. The range of applications of back propagation 
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NNs in computational structural mechanics may include design, optimization, 

identification, mesh generation and analysis [46]. NNs have been widely used as an 

alternative tool for both civil and mechanical engineering disciplines during the last 

decade and have been applied to almost every type of problem in the field of 

engineering mechanics [46–49]. Several other researchers have applied NNs, mostly 

back–propagation algorithms, in structural engineering and mechanics and related 

engineering problems [50–54]. A detailed literature review on application of NNs in 

structural analysis and design can be found in Lu [55]. Some of stiffened panel 

literature summarized as follows; 

 

Bisagni and Lanzi [56] dealt with post–buckling optimization procedure for the 

design of composite stiffened panels subjected to compression loads. They developed 

an optimization procedure is based on a global approximation strategy, where the 

structure response is given by a system of NNs trained by means of FE analyses, and 

on genetic algorithms. Lanzi and Giavotto [57] implemented an optimization 

methodology for the design of stiffened composite shells by considering post–

buckling constraint which is based on genetic algorithms and global approximation 

techniques. Three different kind of global approximation techniques are proposed 

and compared which are NNs, radial basis functions and kriging approximation. 

Global approximations are used to contain the high computational efforts required to 

predict the post–buckling behavior of each configuration analyzed throughout the 

optimization process. 

 

2.4.2. Evolutionary Computing 

Evolutionary computation is emerging as a new engineering computational 

paradigm, which may significantly change the present structural design practice. An 

extensive review of evolutionary computation is reviewed in the field of structural 

design presented by Kicinger et al. [58]. Some of stiffened panel literature 

summarized as follows; 

 

Iuspa and Ruocco [59] investigated topological optimal design of isotropic 

/orthotropic thin structures performed via genetic algorithms. Examples involving 

structural weight minimization under compressive load or buckling load 
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maximization are presented. In particular, a semi–analytical FS formulation for the 

determination of eigenvalues and eigenvectors adopted and mesh–independent 

solver, involving a reduced number of degrees of freedom implemented and 

interfaced with a genetic optimizer in order to reduce computational efforts requested 

by the optimization task. Wang [60] et al. presented an optimal design of laminated 

composite stiffened panels of symmetric and balanced layup with different number 

of T–shape stiffeners. The stiffened panels are simply supported and subjected to 

uniform biaxial compressive load. In the optimization for the maximum buckling 

load without weight penalty, the panel skin and the stiffened laminate stacking 

sequence, thickness and the height of the stiffeners are chosen as design variables. 

The optimization is carried out by applying an ant colony algorithm is a kind of 

evolutionary computing with the ply contiguous constraint taken into account.  

 

2.4.3. Fuzzy Systems 

Fuzzy logic is first presented in 1965 by Zadeh [61]. The transition from the 

Aristotelian logic to the fuzzy logic was accepted by the researcher with hesitation. 

The power of modeling the uncertainty through fuzzy logic appealed numerous 

investigators that contributed to the basis of several fuzzy logic concepts relative to 

engineering design [62]. 

 

Noor et al. [63] presented a study is made of the variability in the nonlinear response 

of three stiffened composite panels associated with variations in their geometric and 

material parameters. The three panels have a cylindrical skin with either four or five 

T–shaped stiffeners. The major parameters taken to fuzzy parameters and a fuzzy set 

analysis are used to determine the range of variation of the response associated with 

pre–selected variations in the major parameters. Ji et al. [64] described a hybrid 

mode/Fourier transform approach for estimating the vibration response of a beam–

stiffened plate system. Provided the plate receiver is flexible enough so that its 

vibration tends to exhibit non–resonant behavior in the frequency range of interest. 

Close agreement observed with fuzzy structure theory. Ji et al. [65] another research 

study, described mode–based approach for the mid–frequency vibration analysis of a 

complex structure built–up from a long–wavelength source and a short–wavelength 

receiver. The source and the receiver respectively have low and high modal densities 
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and modal overlaps. Each substructure is described in terms of its uncoupled, free–

interface natural modes. The interface forces and displacements are decomposed in 

terms of a set of interface basis functions. They were found that these approaches 

yield the same results in the „fuzzy‟ limit. 

 

As a results of the broad literature survey, the following consequences are found. 

Buckling and vibration analysis of stiffened panels and types of stiffeners are widely 

considered with different with solution methods by so many researchers. FS method 

is most powerful and effective method analysis of stiffened panels is observed from 

literature. A diversity of SC methods is in existence and the combination of 

methodologies that were studied to model and enable solutions to stiffened panels. 

Although NNs are widely employed in structural engineering applications, the 

particular subject of NN application buckling and vibration analysis of stiffened 

panels needs further contributions. One of the major tasks in NN studies is 

apparently the finding of the optimal NN architecture which is based on trial and 

error processes. There is no well established study in the fields of structural analysis 

by NNs handling the automatic selection of the optimum NN architecture. This will 

economize much more time and simplify NN applications to a great extent. 
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CHAPTER 3 

 

STRUCTURAL ANALYSIS 

 

 

3.1 Introduction 

Although the subject of buckling and free vibration analysis and optimization had 

been discussed frequently over recent years, this chapter was included to illustrate 

the validity of analysis program, which is utilized in optimization and SC programs. 

In this chapter, buckling and free vibration FS methods are presented and before any 

optimization and SC techniques are implemented, each analysis program was 

examined against known benchmark solutions, to confirm integrity of the analyses. 

 

3.2 Structural Theories 

Many engineering structures have constant geometrical properties along a particular 

direction. Such prismatic structures are very common in plate and shell problems 

where the transverse cross–section of the structure often remain constant in the 

longitudinal direction. If the material properties of the structures are also constant in 

the same direction, the buckling analysis can be simplified by the combined use of 

FEs and Fourier expansions to model the transverse and longitudinal behavior 

respectively. 

 

Thin shell theories neglect transverse shear and rotary inertia effects and 

consequently may yield incorrect results, especially for higher values of the ratio of 

the thickness–to–minimum radius of curvature and also for higher modes. For 

example, in plate analysis, the buckling loads are overestimated for all buckling 

modes in shear–weak situations and for the higher buckling modes in shear–stiff
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cases. In such circumstances, the effects of shear deformation and rotatory inertia 

should be taken into account.  

 

Mindlin–Reissner shell theory allows for transverse shear deformation effects and 

thus offers an attractive to classical Kirchhoff–Love thin shell theory. The main 

assumptions are that:  

 

 displacements are small compared to the shell thickness,  

 stress normal to the mid–surface is negligible,  

 normals to the mid–surface before deformation remain straight but not 

necessarily normal to the mid–surface after deformation [66].  

 

It is well known that displacement–based Mindlin–Reissner FSs require only C(0) 

continuity of the displacements and independent normal rotations between adjacent 

elements. This provides an important advantage over FS based on classical 

Kirchhoff–Love thin shell theory where C(1) continuity is strictly required. Thus, 

Mindlin–Reissner shell elements are simpler to formulate and they have the added 

advantage of being able to model shear–weak and shear–stiff shells. However, 

several difficulties can be encountered when Mindlin–Reissner shell elements are 

used in thin or shear–stiff situations. The success of the Mindlin–Reissner 

formulation presented here for both thick and thin shell analysis lays in the use of 

reduced integration techniques for the numerical computation of stiffness matrix. 

This simply implies that the shear terms contributing to the stiffness matrix are 

numerically integrated with a lower order Gaussian quadrature than that needed for 

their exact computation, whereas the rest of the stiffness matrix is exactly calculated 

[66]. Care has been taken to avoid mechanism or spurious zero–energy modes. 

In this section the Mindlin–Reissner FS formulation for prismatic plates and shells in 

right planform will be derived in detail.  

 

3.3 Buckling Analysis 

The property of thinness of a shell structure has a consequence that is pointed out in 

[67,68]. The membrane stiffness is general several orders of magnitude greater than 

the bending stiffness. A thin shell can absorb a great deal of membrane strain energy 
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without deforming too much [13]. It must deform much more in order to absorb an 

equivalent amount of bending strain energy. If the shell is loaded in such a way that 

most of its strain energy is in the form of membrane compression, and if there is a 

way that this store up membrane energy can be converted into bending energy, the 

shell may fail rather dramatically in a process called buckling as it exchanges its 

membrane energy to bending energy. Very large deflections are generally required to 

convert a given amount of membrane energy into bending energy. The way in which 

buckling occurs depends on how the shell is loaded and on its geometrical and 

material properties.  

 

3.3.1 Strain Energy 

Consider the buckling of the Mindlin–Reissner shell strip shown in Figure 3.1. 

Translations in the  , y  and n directions are represented by the  displacement 

components  vu ,  and w . The displacement components u  and w  may be written 

in terms of global displacements u and w in the x and z directions as 

 

            sincos wuu  

cossin wuw                                     (3.1) 

 

where  is the angle between the x and   axes; see Figure 3.1. The radius of 

curvature R may be obtained from the expression 

 

Rd

d 1


                                                     (3.2) 

 

Note that the displacement components v   and v coincide. 

 

The strain energy for a typical curved Mindlin–Reissner strip e  of length b  shown 

in Figure 3.1 is given in terms of the global displacements wvu ,,  and the rotations  

and  of the mid–surface normal in the n  and yn planes respectively by the 

expressions (3.1) 

 



17 

 

 

 

Figure 3.1 Definition of Mindlin–Reissner FSs 
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where the inplane strains mε  are given by 

 

T
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in which the strain in the  –direction may be expressed in terms of the local 

 

 

 

 

displacements as  
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or in terms of the global displacements as 
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sincos
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The longitudinal strain is expressed as 

 

y

v
ε y                                                        (3.7)  

 

and the shear strain is written in the form  
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or 
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The bending strains or curvatures bε  are given by 

 
T

yyb ],,[ ε                                                  (3.10) 

 

where the curvature in the  –direction is 

 


κ                                                      (3.11) 

 

The longitudinal curvature is given as 

 

y
κ y                                                     (3.12) 

 

and the twisting curvature has the form 
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or 
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The transverse shear strains sε  are given by 

 
T
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in which the transverse shear strain in the n  plane is 
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or 
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The longitudinal transverse shear in the yn plane is 
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or 
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For an isotropic material of elastic modulus E , Poisson‟s ratio  and thickness t , 

the matrix of membrane rigidities has the form 
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the matrix of flexural rigidities may be expressed as 
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and the matrix of shear rigidities is given as 

 

10

01

)1(2

2 Et
sD                                             (3.22) 

 

where 2κ  is the shear modification factor and is usually taken as 65  for an 

isotropic material. 

 

3.3.2 Potential Energy of the Applied Inplane Stresses 

Buckling occurs when a structure converts inplane strain energy into strain energy of 

bending with no change in externally applied load. A critical condition, at which 

buckling impends, exist when it is possible that the deformation state may change 

slightly in a way that makes the loss in inplane strain energy numerically equal to the 

gain in bending strain energy. In a thin–walled structure such as a shell, inplane 

stiffness is typically orders of magnitude greater than bending stiffness. Accordingly, 

small inplane deformations can store a large amount of strain energy, but 

comparatively large lateral deflections and cross–section rotations are needed to 

absorb this energy in bending deformations.  

 

The potential energy of the applied inplane stresses 
00 , y  and 

0

y  arises from the 

action of the applied stresses on the corresponding second order strains ,, nl

y

nl

  
nl

y  

are taken from Dawe and Peshkam [9]. The potential energy of the shell of volume V 

is 
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integrating through the thickness, this becomes 
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In equation (3.24), the terms involving the first derivative of ,w  and represent 

the out of plane destabilizing influence of the prescribed stresses. The remaining 

terms, which are dependent upon first derivatives of u  and v , are in plane 

destabilizing influences. The prescribed inplane shear stress 
y  is rarely applied to 

structures, and is not considered in the present study. 
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3.3.3 Finite Strip Idealization 

Using n noded, )0(C  strips, the global displacements and rotations may be 

interpolated within each strip in terms of truncated Fourier series along direction y, in 

which both the material and geometrical properties of the plate are taken to be 

constant, i.e. 
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where )cos( bypCp
and ),sin( bypS p

 pppp wvu ,,, and p are displacement 

and rotation amplitudes for the thp harmonic term. This corresponds to a single 

diaphragm support at the ends of the structure at 0y  and ,by  so that

0wv . As shown later, this will lead to an uncoupling of each harmonic term 

which in turn leads to an economic solution. Note that the strip displacement and 

rotation fields are generally expressed as a summation of a set of contributions from 

a lower limit 1p  to an upper limit 2p . In the present work as there is no coupling 

between the harmonics 1p  and 2p  coincide. For many cases taking 121 pp  

provides the lowest buckling mode; however, in some cases 1p  and 2p  may be 

associated with a higher mode. 

 

The next step is to discretise the displacement and rotation amplitudes (which are 

functions of the  coordinate only) using an n noded FE representation so that 

within a strip e  the amplitudes can be written as 
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where  
pppp wvu ,,, and 

p
 are typical nodal degrees of freedom associated with 

node i  and harmonic .p   

 

Thus, the process is equivalent to dividing the structure into longitudinal elements (or 

strips) so that each strip has a certain number of nodes associated with its transverse 

direction. The displacement field is defined longitudinally by the Fourier expansion 

of (3.26) and transversely by the FE discretisation of (3.27). Substituting (3.27) into 

(3.26) it is possible to write  
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where 
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)(iN is the shape function associated with node i  [1]. These elements are 

essentially isoparametric so that 
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where ix  and iy  are typical coordinates of node i  and it  is the thickness at node .i  

Note also that the Jacobian 
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where 
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Also, it is possible to write that 
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3.3.4 Stiffness Matrix 

We can now evaluate the stiffness matrix e
K  associated with the strain energy of the 

Mindlin–Reissner strip. The membrane strains mε  may then be expressed as 
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where if we set bpp  
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The flexural strains or curvatures bε can be written as  
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where 
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The transverse shear strains sε  are approximated as  
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where 
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The strain energy may then be expressed as 
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where the typical submatrix of the stiffness e
K  of strip e linking nodes i  and j  and 

harmonics p and q  has the form 
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3.3.5 Geometric Stiffness Matrix 

We can now evaluate the geometric stiffness matrix e
K  associated with the 

potential energy eV  of  the applied inplane stresses 0

   and 
0

y  which can be 

expressed as 

 

q

j

pqe

ji

p

pp

q

qq

n

i

n

j

p

i

eV dKd ][
2

1 2

1

2

1 1 1

                               (3.40) 

 

where a typical sub–matrix e
K  of strip e linking nodes i  and ,j  harmonics p and 

q  has the form 
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Matrix 
e

K is defined by an element's geometry, displacement field, and state of 

stress. Thus, 
e

K is independent of elastic properties. However, by introducing the 

stress–strain relation, 
e

K  can alternatively be written in terms of elastic properties 

and strains or deformations. 

 

If the structure geometry is well modeled, then such a formulation yields and upper 

bound to the magnitude of the true buckling load. The „true‟ buckling load is the 

linear bifurcation load of the structure in its reference configuration; it is not 

necessarily the collapse load of the actual structure. The FS formulation given in this 

section yields the „true‟ buckling load. 

 

Note that, 
pqe

ij ][K and 0][ pqe

jiK  if  qp  because of the orthogonality conditions  
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To avoid locking behavior, reduced integration may be adopted, i.e. 1–, 2–, 3–point 

Gauss–Legendre quadrature is used for the 2–, 3– and 4–noded strips respectively. 

Note also that since the rigidities bm D,D  and sD  all depend on t  and since t  is 

interpolated within each strip e from the nodal values ,it  strips of variable thickness 

in the transverse direction may be easily accommodated in the present formulation. 



27 

 

Nothing the orthogonality relation (3.42), on assembly of the contributions to the 

total potential energy VU  from all of the strips and subsequent minimization with 

respect to the nodal values the following eigenvalue expression is obtained for each 

harmonic p  

 

0][ pppppp
dKK                                       (3.43) 

 

where p  is the load factor by which the inplane stress 0

  and 
0

y  are multiplied to 

produce instability and p
d is the associated buckling mode. In the present studies the 

eigenvalues are evaluated using the subspace iteration algorithm [70]. 

 

3.3.6 Branched Strips 

In the case of plates the strips all lie in the same plane, which coincides with the strip 

middle surface, whereas for branched structures the strips meet at different angles. 

Thus, to assemble the complete stiffness matrix for branched shell structures, 

displacements at joints must be expressed in a common and uniquely defined 

coordinate system. The translational degrees of freedom ,u  v  and w are already 

expressed in the global ,x  y  and z  directions and therefore the associated stiffness 

terms do not require any further transformation. However, rotation degrees of 

freedom i  are related to the local axis   and therefore the associated stiffness terms 

must be transformed accordingly. Thus it is possible to write that 

 
p

i

p

i dTd                                                     (3.44) 

 

where 

 
Tp

zi

p

yi

p

xi

p

i

p

i

p

i

p

i wvu ],,,,[d                                   (3.45) 

 

is the displacement vector at node i  of strip where  
p

yi

p

xi ,  and p

zi
 are the rotations 

about the ,x  y and z axes and .yii
 The matrix T  can now be defined as  
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The membrane strain displacement matrices are then modified to  
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with similar expressions for ,biB ,siB iQ  and .iR The stiffness and geometric 

stiffness matrices can be written as 
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3.4 Free Vibration Analysis of Structures 

The predictions of the dynamic characteristics of structure are of considerable 

practical importance in the design. These structures often have constant geometrical 

properties along a particular direction. Such prismatic structures are very common in 

plate and shell problems where the transverse cross–section of the structure often 

remain constant in the longitudinal direction. The analysis of such structures in static 

and dynamic situations is most efficiently carried out using semi–analytical semi–

numerical methods such as the FS method which combines the use of Fourier 

expansions and one dimensional FE to model the longitudinal and transverse 

structural behavior respectively. The geometrical and material properties are uniform 

in a longitudinal direction.  
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In previous section, structural theories about Mindlin–Reissner FSs and derivation of 

stiffness matrices for FS analysis are discussed with all details. In order to prevent 

repetition, general energy integral equation and derivation of mass matrix only is 

given below. Consider the free vibration of the Mindlin-Reissner curved shell strip 

shown in Figure 3.1. In the absence of the external loads and damping effects, the 

virtual work (or more precisely the virtual power) for a typical curved Mindlin-

Reissner strip e of length b is given in terms of the global displacements u, v, w and 

the rotations  and of the midsurface normal in the n  and yn planes respectively 

by the expression.  
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where the strains sbm and,, , the matrices of elastic rigidities sbm D ,DD and,  

and displacement components u  have the same meaning as for FSs in buckling 

analysis. 
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where  is the mass density of the material – thus rotatory inertia effects are 

included. The vector u  contains the accelerations of the displacement components u, 

v and w as well as the normal rotations  and  – a superposed dot implies 

differentiation with respect to time. 

Using n–noded, C(0) strips, the global displacements and rotations may be 

interpolated within each strip. The next step is to discretize the displacement and 

rotations amplitudes using n–noded FE representation as given in previous section. 

 

If we list the nodal displacements and accelerations in a vector d and 
..

d  respectively, 

then we discretize FS idealization into (3.1) for all the strips and assuming simple 

harmonic motion we obtain the expression 

0dMKdd                                                  (3.52) 
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where K and M are the global stiffness and mass matrices respectively and contain 

submatrices  contributed from each strip e linking nodes i and j and harmonics p and 

q. The stiffness matrix was given in buckling analysis section and can be used for 

free vibration, the mass submatrix has the form 
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where typically 
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pqe

ij ][K and 0M
pqe

ij ][  if qp  because of the ortogonality conditions. The matrix 

ppe

ij ][M  is independent of the harmonic number p and therefore, the same matrix can 

be used for all the different harmonic equations as  
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5IN ii N  in which I5 is the 5 5 identity matrix. Similar to buckling analysis, 

reduced integration is adopted to avoid locking behaviour.  

 

Since (3.52) must be true for any set of virtual displacements 
p

d , (3.52) may be 

written in uncoupled form for each harmonic p as 

 

0dMdK
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The general solution of (3.57) is written as 

 
tipp pedd                                                       (3.58) 
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where )sin()cos( tite pp

ti p  and 
p

 and p
d are pth natural frequency and 

vibration mode (eigenvector). Thus (3.52) may be rewritten in the standard 

eigenvalue form for each harmonic p as 

 

0dMK
ppp2

p

pp )(                                             (3.59) 

 

In the present studies the eigenvalues are evaluated using the subspace iteration 

algorithm [70]. 

 

3.5 Examples 

3.5.1 Buckling Analysis of Stiffened Panels 

Problem definition: Isotropic stiffened panels analyzed under longitudinal 

compression by Stroud et. al [71] and Dawe and Peshkam [9] are will be examined. 

Stroud et al. [71] used FE method and Dawe and Peshkam [9] used a Mindlin–

Reissner superstrip procedure involving a very fine mesh of cubic strips to analyze 

panels. In all cases, the boundary conditions at the ends of the structure simple 

diaphragm supports. In the analysis, reduced integration is used to evaluate the 

stiffness matrix and the shear correction factor is assumed 8333.02
. The 

geometry of the squared shape with side length mma 762  and six repeating 

elements is shown in Figure 3.2 and Figure 3.3.  

 

The following material properties are used: elastic modulus 
2/44.72 mNE  and 

Poisson‟s ratio 32.0v . The panels subjected to pre–buckling load distribution for 

each plate flat in NASA examples when m/kN.N y 131750
 is shown in Table 3.1. 
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Figure 3.2 Isotropic stiffened panels from the NASA set [71] 
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                                 (a)                                                                     (b) 

Figure 3.3 Details of repeating elements in isotropic stiffened panels in mm (a) 

Panel I and II 34.34h mm for Panel I and 04.50h mm for Panel II and (b) Panel 

III 

 

Discussion of results: The subdivisions chosen for blade stiffened panel are indicated 

in Figure 3.3. Table 3.2 shows the results for the various subdivisions and strip types 

for Panel–I. A close agreement is observed between the FE and the superstrip 

solutions. In Panel–II a mesh of 73 cubic strips is used and the resulting buckling 



33 

 

factor of 0.29499 compares well with the values of 0.2965 and 0.2944 obtained using 

the FE and superstrip solutions respectively. The lowest buckling load is obtained 

with 721 pp . This agrees with the shape of the buckling modes obtained using 

the FE and superstrip solutions. In Panel–III a mesh of 84 cubic strips is used and 

results in a buckling factor of 1.34887 compares again with the values of 1.356 and 

1.3454 obtained using the FE and superstrip solutions respectively. The panel 

buckles with seven longitudinal half sine waves. This is in agreement with FE and 

superstrip lowest buckling mode. 

 

Table 3.1 Pre–buckling load distribution for each plate flat in  

NASA panels when mkNN y /13.175  

 

Panel 

type 

Internal load distribution 0
yN (kN /m) 

Flat 1 Flat 2 Flat 3 Flat 4 

I 145.57 101.90 147.57  

II 133.31 154.64 133.31  

III 139.46 139.46 96.29 96.29 

 

Table 3.2 Buckling factors for blade–stiffened panel I 

 

Number of 

nodes 

Buckling factors 

Linear strips Quad. strips Cubic strips 

79 0.94331 0.97102 0.97083 

109 0.95550 0.97098 0.97096 

181 0.96590 0.97096 0.97096 

217 0.96707 0.97095 0.97094 

FE sol.[71] 0.9759 0.9759 0.9759 

Superstrip[9]  0.9709 0.9709 0.9709 

 

3.5.2 Free Vibration Analysis of Stiffened Panels 

Problem definition: A structure in the configuration of a panel with four stiffeners is 

examined with Cheung and Cheung thin–strips [72]. The geometry and dimensions 

of the panel are shown in Figure 3.4. The boundary conditions at the ends of the 
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structure simple diaphragm supports and the other edges are free. In the analysis, 

reduced integration is used to evaluate the stiffness matrix and the shear correction 

factor is assumed 8333.02 . Non dimensional frequency parameter λm,n is used. In 

parameter, subscript m denotes mode number and n denotes harmonic number.  

 

                                                                  (3.60) 

 

where  is the length of the panel and E is the modulus of elasticity and  is the 

material mass density.  is arranged to unity for simplification of results. 

Poisson's ratio ν is assumed to 0.33. 

 

 

Figure 3.4 Dimensions and geometry of a stiffened panel 

 

Discussion of results: FS analysis carried out by cubic elements with 143 d.o.f. 

Obtained λm,n for present formulation and reference thin–strip formulation [72] 

tabulated in Table 3.3 result are presented for first harmonic number. Close 

agreement is observed. 

 

Table 3.3 Natural frequency of stiffened panel 

Mode number Present Thin–strip[72] 

1 0.0287 0.0287 

2 0.0292 0.0292 

3 0.0368 0.0365 

4 0.0369 0.0366 

5 0.0396 0.0396 

6 0.0634 0.0639 
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CHAPTER 4 

 

OPTIMIZATION OF STIFFENED PLATES 

 

 

4.1 Introduction 

In structural engineering it is one of the first priorities to save weight, without loss of 

any strength in used structural elements against subjected loads. Stiffeners provide 

improvement to load carrying capacity of structures. The benefit of stiffening of a 

structure lies in achieving lightweight and robust design of the structure. For this 

purpose they have wide use in structural engineering domain. Specially stiffened 

plates are used in critical and sensitive structures such as in aircrafts, ship hulls and 

box girders in which safety and a perfect design is crucial. Buckling is the one of the 

most complex phenomenon that is inevitable for axially heavily loaded stiffened 

plate structures. For this purpose it is necessary to carry a deep interest and 

investigation about their responses under expected loads to design such structures 

safely. 

 

The approach that uses the stiffeners to improve structural response is simple, but the 

practical stiffened plate design is a complex task.  Therefore, a robust optimization 

algorithm is necessary to obtain maximum efficiency from stiffened plates. Various 

researches have been carried out to optimize the response of plates [73–76].  

 

In this chapter, buckling optimization of the stiffened plates which have prismatic, 

rectangular main and sub stiffeners, pads and also L shaped stiffeners. In the first 

step, the baseline panel designs are done from which the initial values of parameters 

are developed. A complete description of the baseline design is outlined later in this 
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chapter. The buckling load carrying capacities of stiffened plates are maximized by 

optimizing the plate section dimensions under constant volume constraint. Buckling 

analysis is carried by using Fortran code which was developed by Özakça [1]. The 

buckling loads will be determined using cubic, C(0) continuity Mindlin–Reissner 

FSs. The code uses SQP to carry out structural optimization process. 

 

4.2 Optimization Process  

4.2.1 Parameter Definition  

Figure 4.1 below describes the cross section and geometric (design variables) 

parameters associated with the prismatic blade sub–stiffened panel. 

 

tstiff

tskin

tsub

hstiff

hsub

wflange

tpad2
wpad1

tmidtpad1

wpad2

CL

tflange

dstiff

 

Figure 4.1 Plate variable parameters (design variables)  

 

 skint
   Skin thickness 

 stiffh
   Primary stiffener height 

 stifft
   Primary stiffener thickness 

 
1padw    Width of pad under stiffeners 

 
1padt    Thickness of pad under stiffeners 

 subh
   Sub–stiffener height 

 subt
   Sub–stiffener thickness 

 
flangew    Flange width 

 
flanget    Flange thickness 

 
2padw    Width of pad between stiffeners 



37 

 

 
2padt    Thickness of pad between stiffeners 

 midt
   Midspan thickness 

 stiffd
   Distance between stiffeners 

 stiffn
   Number of stiffeners 

 

4.2.2 Design Constraints  

There are a number of design constraints based on either the general design strategy 

or the manufacturing process as outlined below. All types of examined plates have 

the common fixed constraints as shown in Table 4.1. The common constraints are 

shown on a three dimensional aspect of five straight stiffened plate in Figure 4.2.  

440

590

Number of Stiffener = N

 

 

Figure 4.2 A sample three dimensional aspect of stiffened plate (Straight stiffener 

with five stiffeners) 

 

Also design variables have constrains (minimum and maximum limits) that are 

expressed in relevant sections. 

 

Table 4.1 Common constraints 

 

Plate width 440 mm 

Plate length 590 mm 

Total plate volume 691480 mm³ 
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4.2.3 Material Properties, Loading and Boundary Conditions 

In this study eigenvalue buckling analysis is considered. This analysis only requires 

elastic material properties. The panels are made of aluminum and the following 

material properties are used;  

 Modulus of elasticity (E): 91073 N/m² 

 Poisson‟s ratio (ν): 33.0  

 

The loading direction and boundary conditions are shown in Figure 4.3 

Simple supported

Simple supported

Free Free

 

 

Figure 4.3 Loading and boundary conditions 

 

The loaded sides of plate are simply supported and the other two sides are free. The 

plate is loaded in uniform compression in stiffeners direction. 

 

4.3 Optimum Design of Stiffened Plates 

It is desired that two consecutive linear eigenvalue optimizations are run. The first 

design is carried out for obtaining thickness of initial values of baseline plate by 

providing constant cross sectional area. Then second run will apply the design 

constraints associated with the manufacturing process and other issues. Full details of 

the DVs and constraints are outlined in the previous sections. 
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The baseline panel is the foundation for the sub–stiffened design. The panel cross 

section is constant along its length. The baseline panel cross section has a total area 

of 1172 mm² of skin material available for manipulation. The design has a number of 

sub–stiffeners running parallel to the primary stiffeners at 90 degrees to the loading 

plane.  

 

In each plate type optimization processes are repeated for size, shape (type one and 

type two) optimizations;  

 

i) Size optimization: Optimization is carried out using only thickness design 

variables. These are thickness of plate skin , thickness of stiffeners 

)t( stiff , thickness of substiffeners )t( sub , thickness of pad )t( 1pad
 and thickness 

of flange )( ft . During this stage height of stiffeners )h( stiff  and height of 

substiffeners )h( sub  have constant values of 28.0mm and 14.0mm. 

ii) Shape optimization (type one): Height of stiffeners )h( stiff  and height of 

substiffeners )h( sub  are included as design variable in this stage  

iii) Shape optimization (type two): Finally width of pads )w( 1pad
 and width of 

flanges )( fw  are included as design variable in this stage. 

 

Design constraints of all optimizations are specified in Table 4.2.  

 

 

Optimization is carried out for the following types of stiffened plates that are 

expressed below and plate types are shown on five stiffened plate template and given 

in each section. 

a) Straight stiffened plate 

b) Straight stiffened plate with sub–stiffeners  

c) Straight stiffened plate with substiffeners and pads under stiffeners 

d) L shaped stiffened plate 

 

Optimization processes definition, results of optimizations and discussions are 

presented in each section. 

)t( skin
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Table 4.2 Design constraints of all stiffened plates  

 

  Min (mm) Max (mm) 

Thickness of plate 
skint  1.4 3.0 

Thickness of stiffener 
stifft  1.3 4.0 

Height of stiffener 
stiffh  8.0 40.0 

Thickness of substiffeners 
subt  1.0 3.0 

Height of substiffeners 
subh  5.0 20.0 

Thickness of pad 
1padt  2.0 5.0 

Width of pad 
1padw  dstiff/10 dstiff/2 

Thickness of flange 
ft  1.0 3.0 

Width of flange 
fw  7.0 14.0 

 

Effect of number of stiffeners is also observed. Number of stiffeners from two to 

eight is optimized. Optimizations are carried out for maximization of critical 

buckling load subject to constant volume constraint. 

 

 

4.3.1 Straight Stiffened Plate 

In this type, stiffened plates by using only main stiffeners are optimized. Figure 4.4 

shows straight stiffened plate with five stiffeners.  

 

dstiff

tskin

hstiff

tstiff

dstiff/2

 

 

Figure 4.4 Straight stiffened plate 
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Two types of optimization are performed. These are size optimization with two 

design variables ( skint – stifft ) and shape optimization (type one) with three design 

variables ( skint – stifft – stiffh ).  

 

i) Size optimization: Thicknesses of plate and stiffeners are kept equal at the initial 

design. The height of stiffeners is constant and equal to 28.0 mm. The optimum 

values of design variables and critical buckling load are given in Table 4.3. The 

highest improvement is obtained for four stiffeners case and approximately equal to 

10.3 %. The stiffened panel analyzed using cubic strips. In order to obtain more 

accurate results the large number of degrees of freedom is taken in all analysis. The 

highest critical buckling load is obtained in eight stiffeners case and equal to 219833 

N. The improvement of critical buckling load for eight stiffeners is 664.0 % 

compared to two stiffeners case. Moreover, it is important to note that in optimum 

results skin thickness is thicker than stiffener thickness except eight stiffeners case 

and by the increasing of number of stiffeners skin thickness is going to be thinner 

and stiffener thickness is going to be thicker. 

 

Initial and optimum shapes of stiffened panels with three, four and five stiffener are 

given in Figure 4.5. When the results are examined, plate thicknesses are higher than 

the stiffeners thicknesses. The thicknesses of plates are decreasing and the 

thicknesses of stiffeners are increasing while the number of stiffeners are increasing. 

Table 4.3 Size optimization of straight stiffened plate 

 

nstiff 

Optimum DVs 

values Buckling loads Imp 

(%) tskin tstiff Pi Pmax 

2 2.49 1.30 27392.7 28749.313 4.90 

3 2.41 1.30 59731.7 64479.292 7.95 

4 2.32 1.34 97565.0 107542.933 10.30 

5 2.19 1.47 136548.5 148318.650 8.60 

6 2.08 1.52 173160.7 183581.163 6.00 

7 1.96 1.57 202204.3 206859.051 2.30 

8 1.75 1.79 219819.9 219833.336 0.01 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.5 Initial and optimum shapes of straight stiffened panels size optimization 

(a), (b) and (c) three, four and five stiffeners respectively 

 

ii) Shape optimization (type one): In addition of thickness of plate and stiffeners, the 

height of stiffeners is also considered as design variable (Note: During the 

optimization process, the height of stiffeners is equal to each other). The optimum 

values of design variables and critical buckling loads are presented in Table 4.4. The 

highest improvement, which is 41.4 %, obtained from eight stiffeners. When the 

number of stiffeners is increased critical buckling load is also increased similar to 

size optimization. The largest critical buckling load is again obtained from eight 

stiffeners case. The improvement is 926 % compared with two stiffeners case. Plate 

skin is thinner than stiffeners in optimum results and stiffener thicknesses reach 

upper limits.  

 

Plate thicknesses have decreased according to stiffeners thicknesses and stiffeners 

thicknesses have reached to upper limits. In Figure 4.6, initial and optimum shapes of 

three, four and five stiffened panels are shown and compared with each other. 
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Table 4.4 Shape optimization (type one) of Straight stiffened plate 

 

nstiff 

Optimum DVs 

values Buckling loads Imp 

(%) tskin tstiff hstiff Pi Pmax 

2 2.52 3.99 8.00 27392.7 30266.2 10.50 

3 2.19 4.00 17.29 59731.7 66979.9 12.10 

4 2.15 4.00 14.01 97565.0 114501.6 17.40 

5 2.13 4.00 11.78 136548.5 171359.7 25.50 

6 2.06 4.00 11.05 173160.7 237776.0 37.30 

7 2.15 4.00 8.00 202204.2 283451.4 40.20 

8 2.07 4.00 8.11 219819.9 310826.7 41.40 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4.6 Initial and optimum shapes of straight stiffened panels after shape 

(type one) optimization (a), (b) and (c) three, four and five stiffeners respectively 

 

Shape optimizations (type one) slightly gave better results compared to size 

optimizations as shown in Figure 4.7. For small number of stiffeners both 

optimizations give similar results. However when the number of stiffeners increase 

shape optimizations give better results. In shape optimization, stiffener thicknesses 

are going to be thicker than initial design values. The higher buckling loads in shape 

optimization type caused by the height of stiffeners. Shape optimization increases 

plate and stiffener thickness. 
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Figure 4.7 Comparison of size and shape optimizations (type one) 

 

4.3.2 Straight Stiffened Plate with Substiffeners 

Figure 4.8 shows straight stiffened plate with substiffeners. Substiffeners are 

attached between stiffeners, which divide the distance between stiffeners two equal 

parts.  
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Figure 4.8 Straight stiffened plate with substiffeners 

 

The effect of substiffeners between stiffeners to critical buckling load capacity is 

examined. Two types of optimization are performed. These are size optimization 
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with three design variables ( skint – stifft – subt ) and shape optimization (type one) with 

five design variables ( skint – stifft – subt – stiffh – subh ). 

 

i) Size optimization: Thickness of plate, stiffeners and substiffeners are kept equal in 

initial design. The height of stiffeners and height of substiffeners have constant 

values of 28.0 mm and 14.0 mm. The optimum values of design variables and critical 

buckling loads are given in Table 4.5. The highest improvement is obtained from five 

stiffeners case and it is approximately equal to 19.5 %. The highest critical buckling 

load is obtained from eight stiffeners case and equal to 218521 N. The improvement 

of critical buckling load is 537.0 % compared to two stiffeners case. Plate skin is 

thicker than stiffeners in optimum solutions and substiffeners thicknesses decreases 

to lower limit except two stiffeners case. 

 

Table 4.5 Size optimization of stiffened plate with stiffener 

 

nstiff 

Optimum DVs 

values Buckling loads Imp 

(%) tskin tstiff tsub Pi Pmax 

2 2.42 1.39 2.07 32807.4 33704.4 2.70 

3 2.35 1.30 1.02 62291.5 71102.4 14.10 

4 2.23 1.33 1.00 95546.9 113592.6 18.90 

5 2.09 1.40 1.00 129335.9 154533.5 19.50 

6 1.97 1.40 1.00 160361.9 188273.5 17.40 

7 1.78 1.55 1.00 184862.8 205626.2 11.20 

8 1.59 1.66 1.00 195678.6 218521.1 9.80 

 

Initial and optimum shapes of stiffened panels with three, four and five stiffener are 

given in Figure 4.9. When the results are examined, plate thicknesses are larger than 

the stiffeners thicknesses, and the thickness of substiffeners are reached to lower 

limits. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.9 Initial and optimum Shapes of straight stiffened plate with sub–stiffeners 

after size optimization (a), (b) and (c) three, four and five stiffeners respectively 

 

ii) Shape optimization (type one): In addition thicknesses of plate, stiffeners and 

substiffeners height of stiffeners and substiffeners are included in optimization 

process as design variables. The optimum values of design variables and critical 

buckling loads are presented in Table 4.6. The highest improvement is obtained from 

eight stiffeners case and it is approximately 67.7 %. Also the largest critical buckling 

load is obtained from eight stiffeners case. The improvement of critical buckling load 

is about 836.0 % compared to two stiffeners case and it has value of 328229 N.  

 

By the increasing of number of stiffeners, stiffener‟s thicknesses reach upper limit. 

Height of stiffeners begins with a higher value and decrease near to lower limit by 

the increasing of number of stiffeners. Substiffeners‟ height decrease to lower limit 

in all plates. 

 

When the initial and optimum shapes given in Figure 4.10 are examined, plate 

thicknesses are reached the upper limits while the number of stiffeners are 

increasing. Initially heights of stiffeners are at the top limit but while the numbers are 

increasing this heights are reaching bottom limits. And the all heights of substiffeners 

have reached to lower limits. 
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Table 4.6 Shape optimization (type one) of stiffened plate with stiffener 

 

nstiff 
Optimum DVs values Buckling loads Imp 

(%) tskin tstiff tsub hstiff hsub Pi Pmax 

2 2.41 1.30 3.62 35.29 5.00 32807.4 35054.8 6.9 

3 2.36 1.30 2.44 27.29 5.00 62291.5 72179.9 15.9 

4 2.15 4.00 1.11 13.02 5.00 95546.9 115041.3 20.4 

5 2.09 4.00 1.00 11.57 5.00 129335.9 169417.3 30.9 

6 2.03 4.00 1.00 10.46 5.00 160361.9 230964.4 44.0 

7 1.98 4.00 1.28 9.35 5.00 184862.8 286947.0 55.2 

8 1.87 4.00 2.14 8.61 5.00 195678.6 328229.2 67.7 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4.10 Initial and optimum shapes of straight stiffened plate with sub–stiffeners 

after shape optimization (type one) (a), (b) and (c) three, four and five stiffeners 

respectively 

 

Shape optimizations (type one) obviously gave better results when compared size 

optimizations as shown Figure 4.11. Also for small number of stiffeners, both 

optimizations give similar results. However when the number of stiffeners increase 

shape optimizations give better results. 
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Figure 4.11 Comparison of size and shape optimizations (type one) 

 

4.3.3 Straight Stiffened Plate with Substiffeners and Pads under Stiffeners  

Substiffeners are added between stiffeners pad elements are also attached under 

stiffeners. Figure 4.12 shows straight stiffened plate with substiffeners and pads 

under stiffeners.  
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Figure 4.12 Straight stiffened plate with substiffeners and pads under stiffeners 

 

The effect of substiffeners and pads are examined together in this type of plates. 

Three types of optimizations are performed. First one is size optimization with four 

design variables ( skint – stifft – subt –
1padt ), second is shape optimization (type one) with 
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six design variables ( skint – stifft – subt –
1padt – stiffh – subh ) and the third one is shape 

optimization (type two) with seven design variables ( skint – stifft – subt –
1padt – stiffh –

subh –
1padw ). The effect of number of stiffeners also examined. 

 

i) Size optimization: Thickness of plate and stiffeners are kept equal in initial design. 

Thickness of pads and thickness of substiffeners are kept 1.5 times and 0.75 times of 

thickness of plate. The height of stiffeners, height of substiffeners and width of pads 

are kept constant during this stage and they have values of 28.0mm, 14.0mm and 

dstiff/4. The optimum values of design variables and critical buckling loads are given 

in Table 4.7. The highest improvement is obtained from four stiffeners case and the 

improvement is approximately 13.2 %. The highest critical buckling load is obtained 

from eight stiffeners case and equal to 237913 N. The improvement of this case is 

500.0 % compared with two stiffeners case. 

 

In optimum solutions, plate skin is thicker than stiffeners. Thickness of substiffeners 

reached to lower limits. Skin thickness is going to be thinner and stiffener 

thicknesses are going to be thicker by the increasing of number of stiffeners. 

 

Table 4.7 Size optimization of straight stiffened plate with substiffeners and pads 

under stiffeners 

 

nstiff 
Optimum DVs values Buckling loads Imp 

(%) tskin tstiff tsub tpad1 Pi Pmax 

2 1.98 1.30 1.00 3.93 36316.4 39654.6 9.2 

3 1.98 1.30 1.00 3.48 72736.7 81613.4 12.2 

4 1.81 1.38 1.06 3.42 112890.9 127733.3 13.2 

5 1.69 1.47 1.00 3.19 155308.9 172728.9 11.2 

6 1.51 1.4 1.10 3.19 194556.6 208078.9 6.9 

7 1.40 1.56 1.00 2.91 220346.4 233851.5 6.1 

8 1.40 1.64 1.00 2.23 222514.5 237913.1 6.9 
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Initial and optimum shapes of stiffened panels with three, four and five stiffener are 

given in Figure 4.13. When the initial and optimum shapes given in Figure 4.13 are 

examined, in general plate thicknesses are larger than the stiffeners thicknesses, and 

the thickness of substiffeners are reached to lower limits. But while the numbers of 

stiffeners are increasing, the thicknesses of plates are decreasing and the thicknesses 

of stiffeners are increasing. 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure4.13 Initial and optimum shapes of straight stiffened plate with substiffeners 

and pads under stiffeners after size optimization. (a), (b) and (c) three, four and five 

stiffeners respectively 

 

ii) Shape optimization (type one): in addition to thicknesses of plate, stiffeners, 

substiffeners and pads height of stiffeners, width of substiffeners are included in 

optimization process as design variables. Still width of pads has constant values of 

dstiff/4. The optimum values of design variables and critical buckling loads are 

presented in Table 4.8. The highest improvement is obtained from eight stiffeners 

case and it is approximately 97.5 %. Also the largest critical buckling load is 

obtained from eight stiffeners case. The improvement of critical buckling load is 

more than 1000.0 % compared to two stiffeners case and it has value of 439376 N.  

 

When the initial and optimum shapes given in Figure 4.14 are examined, almost in 

all panels while the thicknesses of plates and stiffeners are decreasing stiffener 

heights are reached the lower limits and all heights of substiffeners have reached to 

lower limits. 
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Table 4.8 Shape optimization (type one) of straight stiffened plate with substiffeners 

and pads under stiffeners with six design variables 

 

nstiff 
Optimum DVs values Buckling loads Imp 

(%) tskin tstiff tsub tpad1 hstiff hsub Pi Pmax 

2 1.99 1.30 1.96 4.00 25.05 5.00 36316.4 39978.0 10.1 

3 1.91 3.15 1.00 4.16 8.00 5.00 72736.7 82354.9 13.2 

4 1.86 2.86 1.00 4.10 8.00 5.00 112890.9 136486.8 20.9 

5 1.77 2.69 1.00 4.18 8.00 5.00 155308.9 201624.5 29.8 

6 1.74 3.11 1.00 3.85 8.00 5.00 194556.6 274141.2 40.9 

7 1.69 3.17 1.00 3.69 8.00 5.00 220346.4 352666.9 60.1 

8 1.60 3.29 1.00 3.61 8.00 5.00 222514.5 439376.4 97.5 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure4.14 Initial and optimum shapes of straight stiffened plate with substiffeners 

and pads under stiffeners after shape optimization (type one) (a), (b) and (c) three, 

four and five stiffeners respectively 

 

iii) Shape optimization (type two): In addition previous design variables width of pad 

included as a design variable. The optimum values of design variables and critical 

buckling loads are presented in Table 4.9. The highest improvement is obtained from 

eight stiffeners case and it is approximately 106.2 %. Largest critical buckling load 

also is obtained from eight stiffeners case and the plate has a critical buckling load of 

458888 N. The improvement is 913.0 % compared with two stiffeners case.  
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In optimum solutions, skin is thinner than stiffeners. Skin thickness and pad 

thicknesses are going to be thinner and thicknesses of stiffeners are going to be 

thinner by the increasing of number of stiffeners. Height of stiffeners and 

substiffeners reach lower limits in all cases and width of pads reach upper limits 

except seven and eight stiffeners cases. 

 

Table 4.9 Shape optimization (type two) of straight stiffened plate with substiffeners 

and pads under stiffeners with seven design variables 

 

nstiff 
Optimum DVs values Buckling loads Imp 

(%) tskin tstiff tsub tpad1 hstiff hsub wpad1 Pi Pmax 

2 1.52 2.99 1.00 3.57 8.00 5.00 110.00 36316.4 45291.6 24.7 

3 1.42 2.73 1.00 3.56 8.00 5.00 73.33 72736.7 95633.7 31.5 

4 1.40 2.76 1.00 3.45 8.00 5.00 55.00 112890.9 160575.7 42.2 

5 1.40 3.25 1.00 3.24 8.09 5.00 44.00 155308.9 233837.0 50.6 

6 1.40 3.56 1.00 3.03 8.00 5.00 36.67 194556.6 311333.6 60.0 

7 1.40 4.00 1.00 2.86 8.00 5.00 29.63 220346.4 389130.8 76.6 

8 1.40 3.98 1.27 3.05 8.00 5.00 19.36 222514.5 458888.3 106.2 

 

When the initial and optimum shapes given in Figure 4.15 are examined, plate 

thicknesses are larger than the stiffeners thicknesses. while the number of stiffeners 

are increasing, stiffener and pad thickness are decreasing . Initially heights of 

stiffeners are at the top limit but while the numbers are increasing this heights are 

reaching lower limits. And in all solutions, heights of main and sub stiffeners have 

reached to lower limits. But accept seven and eight stiffened plates, pad widths have 

reached to top limit. 

 

Size optimizations and shape optimizations (type one) with six design variables gave 

similar results in small number of stiffeners as shown in Figure 4.16. But the shape 

optimization more stiffeners gave higher critical buckling loads. Shape optimization 

(type two)s with seven design variables gave higher results starting with small 

number of stiffeners. 
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(a) 

 

(b) 

 

(c) 

 

Figure4.15 Initial and optimum shapes of straight stiffened plate with substiffeners 

and pads under stiffeners after shape optimization (type two) (a), (b) and (c) three, 

four and five stiffeners respectively.  

 

 

 

Figure 4.16 Comparison of size, shape one (type one) and shape optimizations (type 

two) 
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4.3.4 L Shaped Stiffened Plates 

In this type, L shaped stiffeners are added to plate as shown in Figure 4.17 and 

optimized. 

 

 wf 

hstiff 

tf 

tskin 

tstiff 

 

Figure 4.17 L shaped plate geometry 

 

The effect of L shaped stiffeners is examined in this type of plates. Three types of 

optimizations are performed. First one is size optimization with three design 

variables ( skint – stifft –
ft ), second one is shape optimization (type one) with four 

design variables ( skint – stifft –
ft – stiffh ) and the third one is shape optimization (type 

two) with five design variables ( skint – stifft –
sft – stiffh –

fw ). 

 

i) Size optimization: Thickness of plate and stiffeners are kept equal in initial design. 

The heights of stiffeners are kept constant during this stage and 28.0mm. The 

optimum values of design variables and critical buckling loads are given in Table 

4.10. The highest improvement is obtained from eight stiffeners case and the 

improvement is approximately 18.5 % and critical buckling load is equal to 295086 

N. The improvement of this case is 794.0 % compared with two stiffeners case. 

 

When the initial and optimum shapes given in Figure 4.18 are examined, thicknesses 

of plates and flanges have reached to lower limits in all plates except than 2 stiffener 

plates.  
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Table 4.10 Size optimization of L shaped stiffened plates 

 

nstiff 
Optimum DVs values Buckling loads Imp 

(%) tskin tstiff tf Pi Pmax 

2 2.213 2.600 2.624 32100.981 32989.083 2.70 

3 2.267 1.649 1.193 65638.740 67347.600 2.60 

4 2.242 1.300 1.000 102714.971 110758.043 7.80 

5 2.136 1.300 1.000 139652.630 157493.197 12.80 

6 2.030 1.300 1.000 176997.204 205665.317 16.20 

7 1.925 1.300 1.000 213703.296 252880.275 18.30 

8 1.820 1.300 1.000 248934.079 295086.247 18.50 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure4.18 Initial and optimum shapes of L shaped stiffened plates after size 

optimization (a), (b) and (c) three, four and five stiffeners respectively.  

 

ii) Shape optimization (type one): In addition to thicknesses of plate and stiffeners, 

heights of stiffeners are included to optimization process as design variables. The 

optimum values of design variables and critical buckling loads are presented in Table 

4.11. The highest improvement is obtained from eight stiffeners case and it is 

approximately 48.8 %. Also the largest critical buckling load is obtained from eight 

stiffeners case with 370472 N. The improvement of critical buckling load is about 

1012.0 % compared to two stiffeners case.  
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Table 4.11 Shape optimization (type one) of L shaped stiffened plates  

 

nstiff 
Optimum DVs values Buckling loads 

Imp (%) tskin tstiff tf hstiff Pi Pmak 

2 2.207 2.823 2.942 25.144 32100.981 33293.108 3.70 

3 2.231 2.530 2.274 16.097 65638.740 70785.486 7.80 

4 2.222 2.727 2.089 10.156 102714.971 118418.901 15.30 

5 2.165 2.382 1.626 11.585 139652.630 174021.341 24.60 

6 2.114 3.792 1.000 8.000 176997.204 242355.804 36.90 

7 1.989 2.989 1.760 8.307 213703.296 305449.188 42.90 

8 1.860 3.428 1.675 8.004 248934.079 370472.023 48.80 

 

When the initial and optimum shapes given in Figure 4.19 are examined, height of 

stiffeners are decreased in all cases. 

 

(a) 

 

(b) 

 

(c) 

 

Figure4.19 Initial and optimum shapes of L shaped stiffened plates after shape 

optimization (type one) (a), (b) and (c) three, four and five stiffeners respectively 

 

Shape optimization (type two): In addition previous design variables width of flanges 

are included as design variable. The optimum values of design variables and critical 

buckling loads are presented in Table 4.12. The highest improvement is obtained 

from eight stiffeners case and it is approximately 57.1 %. Largest critical buckling 

load also is obtained from eight stiffeners case and the plate has a critical buckling 
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load of 391109 N. The improvement is 1076.0 % when compared with two stiffeners 

case.  

Table 4.12 Shape optimization (type two) of L shaped stiffened plates with five 

design variables 

 

nstiff 
Optimum DVs values Buckling loads Imp 

(%) tskin tstiff tf hstiff wf Pi Pmak 

2 2.201 2.857 2.812 24.794 11.017 32100.981 33241.989 3.60 

3 2.242 2.392 2.422 17.017 8.735 65638.740 70961.209 8.10 

4 2.257 2.175 2.137 13.129 7.623 102714.971 119935.143 16.80 

5 2.165 2.382 1.626 11.585 10.000 139652.630 174058.342 24.60 

6 2.172 2.215 2.140 9.500 7.000 176997.204 246731.653 39.40 

7 2.107 2.622 2.007 8.000 7.000 213703.296 319350.678 49.40 

8 1.974 2.749 2.278 8.000 7.000 248934.079 391109.097 57.10 

 

As shown in Figure 4.20 in optimum solutions, thicknesses of plates are larger than 

stiffeners thicknesses. Height of stiffeners have reached to lower limits in all cases  

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4.20 Initial and optimum shapes of L shaped stiffened plates after shape 

optimization (type two) (a), (b) and (c) three, four and five stiffeners respectively 

 

Size and shape optimization (type one)s give similar results in small number of 

stiffeners as shown in Figure 4.21. But the shape optimization with higher number 

stiffeners gives higher critical buckling loads. Shape optimizations (type two) with 

seven design variables gave higher results even with less number of stiffeners. 



58 

 

 

 

 

 

Figure 4.21 Comparison of size, shape (type one) and shape optimizations (type 

two) 

 

4.4 Discussions of All Stiffened Plates 

If the results are glanced, it is obviously seen that in all plate types the maximum 

buckling load is obtained from shape optimization (type two) of eight stiffeners case. 

Due to this result, it can be mentioned that lengths of elements are important for 

buckling fails as much as element thicknesses. Figure 4.22 shows obtained maximum 

buckling loads of investigated 4 stiffened plate types. 

 

As seen from Figure 4.22, in optimized plates maximum critical buckling load is 

obtained from straight stiffened plate with substiffeners and pads under stiffeners.  

 

The most crucial result that obtained from optimizations is the effect of the pad 

elements. From Figure 4.22 it is obviously seen that, plates with pads and without 

pads have remarkable difference of buckling loads. From this consequence, it is 

unquestionable that pad elements are the most effective ones against buckling.  

Definitely, stiffeners are strengthening flat plate behavior in bending direction. 

Nevertheless, the joining points of stiffener elements and plate skin become weaker 
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because of stress concentration of corner points. By the increasing of applied inplane 

load, in that points stress concentration causes that points to rotate and buckling of 

stiffener elements take place. Pad elements prevent stress concentrations and shorten 

the buckling length of stiffener elements. Thus critical buckling of plate increases 

very sharply. 

 

The obtained maximum load difference between straight and L shaped stiffened 

plates is also originated from the difference of effect of flanges and pads. In L shaped 

stiffened plates, flanges use somewhat volume from pads and plate skin. Therefore, 

the effective elements, against buckling failure become thinner. So the L shaped 

stiffened plates‟ maximum buckling load cannot reach the straights‟. 

 

 

 

Figure 4.22 Comparison of maximum loads of plate types 

 

Nevertheless, in plate types without pads, L shaped stiffened plates have larger 

critical buckling load values. This result emphasizes the effect of the flange 

elements. Flanges are lateral elements that are positioned top of the stiffeners. 

Therefore, flanges increase the moment of inertia of plate cross section in bending 

direction thus, critical buckling load of plate increases.  
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As discussed before the maximum loads are obtained from eight stiffeners case of 

each plate set. By the increasing of number of stiffeners, the distance between 

stiffeners (dstiff) and the distance between stiffeners and plate sides (dstiff/2), decrease 

at the same time. According to this process buckling length of plate skin regions, in 

other words unsupported length of plate skin decreases. Therefore, the stability of 

plate cross section increases remarkably and larger critical buckling loads could be 

gained. 

 

It is necessary to mention about effect of substiffener elements finally. Plates with 

substiffners have a little difference of buckling load when compared only straight 

stiffener case. Thus, it is understood that flange elements are more effective than 

substiffener elements so that substiffeners use volume from flanges and skin then 

critical buckling load decreases. In straight stiffened plate because of absence of 

flanges, substiffeners become effective and strengthen stability of plates slightly.  
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CHAPTER 5 

 

SOFT COMPUTING TECHNIQUES AND OPTIMIZATION 

 

 

5.1 Introduction 

SC is entitled as generic term as techniques alike evolutionary algorithms, NNs, 

fuzzy logic, Genetic Programming (GP) and further bio–inspired methods. Zadeh 

[61], inventor of fuzzy logic and founding father of SC, specified SC as follows: 

“Soft computing differs from conventional or hard computing in that, unlike hard 

computing, it is tolerant of imprecision, uncertainty, partial truth and approximation. 

In effect, the role model for soft computing is the human mind. The guiding principle 

of soft computing is: exploit the tolerance for imprecision, uncertainty, partial truth 

and approximation to achieve tractability, low solution cost”. 

 

At present a diversity of SC methods is in existence. SC is defined as a series of 

techniques covering a lot of areas that fall under several classes in computational 

intelligence. SC has three main branches. These are fuzzy systems, evolutionary 

computation, artificial neural computing, with the latter containing machine learning 

and probabilistic reasoning, rule based and wisdom based expert system, etc. as 

shown in Figure 5.1. All these techniques are kept under one umbrella stated as SC. 

SC is a partnership in which each of the partners contributes a distinct methodology 

for addressing problems in its domain. In this point of view, the main constituent 

methodologies in SC techniques are complementary rather than competitive. 

Furthermore, SC may be viewed as a foundation component for the emerging field of 

conceptual intelligence [77]. 
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Figure 5.1 SC techniques. 

 

The successful applications of SC and the rapid growth of the same suggest that the 

impact of SC will be felt increasingly. Currently, along with fuzzy logic, artificial 

NN and evolutionary algorithms are receiving intensive attention, in both academics 

and industry. Enormous research had already been done on SC techniques to identify 

a model and control of its different systems [77]. SC methodologies have been 

beneficial in numerous coverings. In contrast to analytical methods, SC 

methodologies are imitative awareness and knowledge in numerous significant 

values: they can determine from experience; they can generalize into fields where 

direct experience is absent; and, by parallel computer architectures, that simulate 

biological procedures. They may perform mapping from inputs to the outputs quicker 

than inherently series of analytical representations. The trade off, is a decrease in 

accuracy. If a tendency toward imprecision could embody tolerated, then it should be 

possible to extend the scope of the applications even to those problems where the 

analytical and mathematical representations are readily available. The motivation for 

such an extension is the expected decrease in computational load and consequent 

increase of computation speeds that permit more robust system [78]. 
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5.2 Soft Computing Techniques 

5.2.1 Neural Computing 

Neural computing is one of the quickly growing fields of SC, attracting researcher 

from wide diversity of disciplines. The basic idea of neural computing is to capture 

the leading principles that underlay the brain's solution to engineering problems and 

utilize to the computers [79]. The main neural computing directions of development 

are to develop methods and algorithms for solving problems without following the 

way human being do so, but providing similar results, and to develop methods and 

systems for solving problems by modeling the human way of thinking or the way the 

brain works physically, for example, artificial NNs [80]. In computing statement, 

artificial NNs possess a particular set of features. They are not programmed; rather 

they are trained by being repeatedly shown large numbers of cases for the problem 

under consideration. As an effect of this, they can supply practical solutions in 

comparatively short timescales but only for certain cases of problem types, and then 

only when a good deal of handle is taken over the collection of the data, the pre–

processing of this data and the design of the network [81]. Detailed treatment of 

artificial NNs summarized in the following section. 

 

5.2.2 Neural Networks 

NNs can be expressed as computer models that mimic the biological nervous system 

in general. There are many definitions of NNs in literature which can be summarized 

as follows: 

 

A NN is a „machine‟ that is designed to model the way in which the brain performs a 

particular task or function of interest, the network is usually implemented using 

electronic components or simulated in software on a digital computer [82]. 

 

Haykin [83] defines a NN as a massively parallel distributed processor that has a 

natural propensity for storing experiential knowledge and making it available for use. 

It resembles the brain in two respects, such as „knowledge is acquired by the network 

through a learning process‟ and „interneuron connection strengths known as synaptic 

weights are used to store the knowledge‟.  
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However, according to Nigrin [84], a NN is a circuit composed of a very large 

number of simple processing elements that are neural based. Each element operates 

only on local information. Furthermore each element operates asynchronously; thus 

there is no overall system clock.  

 

Another widely accepted definition of NNs is given by to Zurada [85] as follows: 

Artificial neural systems, or NNs, are physical cellular systems which can acquire, 

store, and utilize experiential knowledge. 

 

5.2.3 Components of Neural Networks 

Basic component of NNs is artificial neurons shown in Figure 5.2. Figure 5.2a is a 

biological neuron and Figure 5.2b is a mathematical representation of artificial 

neuron. A biological neuron is consisting of four main elements: dendrites, synapses, 

axon and the cell body. The dendrites receive signals from other neurons. The axon 

of a single neuron serves to form synaptic connections with other neurons. The cell 

body of a neuron sums the incoming signals from dendrites. If input signals are 

sufficient to stimulate the neuron to its threshold level, the neuron sends an impulse 

to its axon. On the other hand, if the inputs do not reach the required level, no 

impulse will occur [86]. 

 

  

(a) (b) 

 

Figure 5.2 Basic component of NNs [87] (a)Biological neuron (b)Artificial neuron 

 

The artificial neuron consists of three main components follows as weights, bias, and 

an activation function shown in Figure 5.3 [86]. Each neuron takes inputs
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nxxx ,...,, 21
, attached with a weight wi which shows the connection strength for that 

input for each connection. Each input is then multiplied by the corresponding weight 

of the neuron connection. A bias ib  can be defined as a type of connection weight 

with a constant nonzero value added to the summation of inputs and corresponding 

weights ui as follows,  

 

H

j

ijiji bxwu
1

     (5.1) 

 

U  

 

Figure 5.3 Basic elements of an artificial neuron. 

 

The summation iu  is transformed using a scalar–to–scalar function called an 

"activation or transfer function", )( iuF  yielding a value called the unit's "activation" 

as follows  

 

)( ii ufY      (5.2) 

 

The activation function is also referred to as a squashing function. Activation 

functions handle powerful relational operators of nonlinear of NNs. There are a 

numerous types of activation function and some common examples are shown in 

Figure 5.4 [88]. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.4 Common types of activation functions; (a) Threshold activation function 

(b) Piecewise–linear function (c) Sigmoid function (d) Hyperbolic tangent function. 

[87] 

 

NNs, can be implemented three major tasks in SC applications [89], 

 

Pattern association –– the NN serves as an associative memory by retrieving an 

associated output pattern given some input pattern. The association can be auto–

associative or hetero–associative, depending on whether or not the input and output 

patterns belong to the same set of patterns.  

 

Classification –– the network seeks to divide the set of training patterns into a pre–

specified number of categories. Binary–valued output values are generally used for 

classification, although continuous–valued outputs (coupled with a labeling 

procedure) can do classification just as well.  

 

Function approximation –– the network is supposed to compute some mathematical 

function. The network's output represents the approximated value of the function 
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given the input pattern as parameters. In certain areas, regression may be the more 

natural term.  

 

NNs not only classified as implementation task but also classified as a lot of different 

point of view shown in Figure 5.5. 

 

 

 

Figure 5.5 Classification of NNs. 

 

5.2.4 Backpropagation Algorithm   

Back propagation algorithm is among the most widely applied supervised training 

methods for training multilayer NNs due to its easiness and applicability. It is 

supported the generalized delta rule and was highlighted by Rumelhart and his 

colleagues [90]. As it is a supervised learning algorithm, there is a couple of inputs 

and matching output. The algorithm is simply supported a weight correction process 

shown schematically in Fig. 5.6. It lies of two passes: a forward pass and a backward 

pass. In the forward pass, first, the weights of the network are arbitrarily initialized 

and an output set is found for a given input set where weights are kept as fixed. The 

error between the output of the network and the target value is propagated backward 

during the backward pass and used to update the weights of the previous layers as 

shown in Figure 5.7 [91]. 
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Figure 5.6 Weight correction representation of back propagation NNs. 

 

 

 

 

Figure 5.7 Back–propagation algorithm. 

 

The main goal of back–propagation NN is mapping of input vector xi into output 

vector yi.: This can be written in short: 
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i

BPNN

i yx     (5.3) 

 

For the output layer the error 
last

j  can be given as the difference between the target 

value iy  and the network output 
last

jout : 
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The weight correction is given as 
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Combining (5.4) and (5.5) the weight correction in a hidden layer can be generalized 

as follows: 
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where  is the learning rate and  is the momentum constant. (5.5) can be also be 

expressed in condensed form as: 

 

   
1l

i

l

j

l

ji outw  +   
)( previousl

jiw           (5.7) 

 

5.3 Fuzzy Logic 

Fuzzy logic presented by Zadeh [61] in 1965 by has been utilized to a broad range of 

research areas of engineering, process control, image processing, pattern recognition 

and classification, management, economics and decision making [92].  

 

Fuzzy systems can be specified as rule–based systems that are constructed from a 

collection of linguistic rules which can represent any system with accuracy, i.e., they 



70 

 

work as universal approximators. The rule–based system of fuzzy logic theory uses 

linguistic variables as its antecedents and consequents where antecedents express an 

inference or the inequality, which should be satisfied and consequents are those, 

which we can infer, and is the result if the antecedent inequality is satisfied. The 

fuzzy rule–based system is actually an IF–THEN rule–based system, given by, IF 

antecedent, THEN consequent [93]. 

 

Fuzzy logic operations are based on fuzzy sets where the input data may be defined 

as fuzzy sets or a single element with a membership value of unity. The membership 

values ( 1 and 2) are found from the intersections of the data sets with the fuzzy sets 

as shown in Figure 5.8 which illustrates the graphical method of finding membership 

values in the case of a single input [94].  

 

 

Figure 5.8 Input data membership values [94]. 

 

A fuzzy set contains elements which have varying degrees of membership in the set, 

unlike the classical or crisp sets where a member either belongs to that set or does 

not (0 or 1). However a fuzzy set allows a member to have a varying degree of 

membership and this partial degree membership can be mapped into a function or a 

universe of membership values [95].  

 

The implementation of fuzzy logic to real applications considers the following steps 

[95]: 

1. Fuzzification which requires conversion of classical data or crisp data into 

fuzzy data or membership functions 

2. Fuzzy inference process which connects membership functions with the fuzzy 

rules to derive the fuzzy output 

3. Defuzzification which computes each associated output.  
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5.3.1 Neuro–Fuzzy Systems 

Fuzzy systems can also be connected with NNs to form neuro–fuzzy systems which 

exhibit advantages of both approaches. Neuro–fuzzy systems combine the natural 

language description of fuzzy systems and the learning properties of NNs. Various 

neuro–fuzzy systems have been developed that are known in literature Adaptive 

Network–based Fuzzy Inference System (ANFIS) developed by Jang et al. [78], 

ANFIS is one of these Neuro–fuzzy systems which allow the fuzzy systems to learn 

the parameters using adaptive backpropagation learning algorithm [92]. Mainly three 

types of fuzzy inference systems have been widely employed in various applications: 

Mamdani, Sugeno and Tsukamoto fuzzy models. The differences between these 

three fuzzy inference systems are due to the consequents of their fuzzy rules, and 

thus their aggregation and defuzzification procedures differ accordingly [78]. Each 

rule is defined as a linear combination of input variables. In Sugeno FIS: the 

corresponding final output of the fuzzy model is simply the weighted average of each 

rule‟s output. A Sugeno FIS consisting of two input variables x and y, for example, a 

one output variable f will lead to two fuzzy rules: 

Rule 1: If x is A1, y is B1 then f1 = p1x + q1y + r1 

Rule 2: If x is A2, y is B2 then f2 = p2x + q2y + r2 

where pi, qi, and ri are the consequent parameters of i
th

 rule. Ai, Bi and Ci are the 

linguistic labels which are represented by fuzzy sets shown in Figure 5.9. 

 

 

Figure 5.9 The Sugeno fuzzy model [78] 

 

5.3.2 Solving a Simple Problem with ANFIS  

To illustrate how ANFIS works for function approximation, let‟s suppose one is 

given a sampling of the numerical values from the simple function below: 
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yi =a
3
+b

2
                                                               (5.8) 

 

where a and b are  independent variables chosen over  randomly points in the real 

interval [1, 9] and. In this case, a sample of data in the form of 17 set (a,b,yi) is given 

where xi is the value of the independent variable in the given interval [1, 9] and yi is 

the output of the function given in (1). The aim is to construct the ANFIS model 

fitting those values within minimum error for (1) by using the simplest ANFIS model 

that is available where the numbers of rules are 2 for each variable and the type of 

output membership function is constant. Initial and final membership values of rules 

for each input are given in Figures 5.10, and 5.11 respectively. Suppose one will find 

the output for input values of 1 and 9. The inference diagram of the proposed ANFIS 

model is given in Figure 5.12 for input values of 1 and 9 with corresponding values 

of output membership which is chosen as constant. For the first input which is 1 the 

value of the membership function is observed to be 1 shown on left side of Figure 

5.10. For the second input which is 9 the value of the membership function is 

observed to be 1 again shown on left side of Figure 5.11. Thus the final output will 

be: 82x1=82.  

 

The exact result for a=1 and b=9 from (1) will be y=1
3 

+ 9
2 

= 82. 

 

 

Figure 5.10 Initial membership functions 
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Figure 5.11 Final membership functions. 

 

 

Figure 5.12 Fuzzy inference diagrams 

 

5.4. Evolutionary Computing 

Evolutionary computing is a popular research area of various engineering sciences. It 

is founded on inspiration of process of survival of the fittest in nature. Several 

different methods have been proposed over the years. From literature, there are 

generally basic types of evolutionary computing are genetic algorithms, evolutionary 

programming, evolution strategies, GP and learning classifier systems [96]. In this 

thesis, applications of genetic algorithms in structural optimization and an extension 

of GP which is GEP algorithm in function approximation is implemented. Basically, 

they founded on main idea which behind all these techniques is given population of 

individuals; the environmental circumstances pressurize natural selection or survival 

of fittest. As a result of this natural selection, an advance takes place in population. 
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These operations involved as follows. Given fitness function is to be optimized. 

Randomly generated set of solution as candidates, are assessed by the fitness 

function that indicates an abstract of fitness measure. Based on fitness values, fitter 

candidate solutions have a better chance to be selected to seed next generation 

through the application crossover and mutation. Offsprings are produced crossover of 

two or more candidate parent solutions. Mutation operator is applied to one offspring 

candidate for produce new candidate solution in next generation. The process of 

selection, crossover and mutation are repeated from one generation to another until 

termination criteria is accomplished. A general scheme of evolutionary computing is 

shown in Figure 5.13. 

 

 

Figure 5.13 General scheme of evolutionary computing. 

 

5.4.1. Genetic Programming 

Genetic algorithm (GA) is an optimization and search process founded on the 

principles of genetics and survival of the fittest. A GA provides a population 

composed of a lot of individuals to evolve under defined selection rules to a state that 

maximizes the “fitness” (i.e., minimizes the cost function). The method was 

proposed by Holland [41] and generalized by among his students, Goldberg [97] who 

solved a difficult problem involving the control of gas–pipeline transmission for his 

dissertation. The fitness of each individual in a genetic algorithm is the measure the 

individual has been adapted to the problem that is solved employing this individual. 
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It means that fitness is the measure of optimality of the solution offered, as 

represented by an individual from the genetic algorithm. The basis of genetic 

algorithms is the selection of individuals in accordance with their fitness; thus, 

fitness is obviously a critical criterion for optimization [98]. 

 

GP is an propagation to Genetic Algorithms suggested by Koza [99]. The former 

pioneer specifies GP as a domain–independent problem–solving approach in which 

computer programs are developed to solve, or close to solve, problems grounded on 

the Darwinian principle of reproduction and natural selection and analogues of 

naturally occurring genetical operations such as crossover (sexual recombination) 

and mutation. GP reproduces computer programs to solve problems by executing the 

adopting steps which requires: 

1. Generate an initial population of random compositions of the functions and 

terminals of the problem (computer programs).  

2. Execute each program in the population and assign it a fitness value 

according to how well it solves the problem.  

i) Create a new population of computer programs. 

ii) Copy the best existing programs (Reproduction). 

iii) Create new computer programs by mutation. 

iv) Create new computer programs by crossover (sexual reproduction).  

v) Select an architecture–altering operation from the programs stored so far.  

3. The best computer program that appeared in any generation, the best–so–far 

solution, is designated as the result of GP [98–100] (see Figure 5.14). 

 

5.4.2. Gene Expression Programming 

GEP algorithm which is used in this study is an extension to GP that evolves 

computer programs of different sizes and shapes encoded in linear chromosomes of 

fixed length. The chromosomes are composed of multiple genes, each gene encoding 

a smaller sub–program. Furthermore, the structural and functional organization of the 

linear chromosomes allows the unconstrained operation of important genetic 

operators such as mutation, transposition, and recombination. One strength of the 

GEP approach is that the creation of genetic diversity is extremely simplified as 

genetic operators work at the chromosome level. Another strength of GEP consists of 
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its unique, multigenic nature which allows the evolution of more complex programs 

composed of several sub–programs. As a result GEP surpasses the old GP system in 

100–10,000 times [101–103]. A GEP software GeneXpro which invented by Ferreira 

is used in this study [100].  

 

The fundamental difference between GA, GP and GEP is due to the nature of the 

individuals: in GAs the individuals are linear strings of fixed length (chromosomes); 

in GP the individuals are nonlinear entities of different sizes and shapes (parse trees); 

and in GEP the individuals are encoded as linear strings of fixed length (the genome 

or chromosomes) which are afterwards expressed as nonlinear entities of different 

sizes and shapes (i.e., simple diagram representations or expression trees). Thus the 

two main parameters GEP are the chromosomes and expression trees (ETs). The 

process of information decoding (from the chromosomes to the ETs) is called 

translation which is based on a set of rules. The genetic code is very simple where 

there exist one–to–one relationships between the symbols of the chromosome and the 

functions or terminals they represent. The rules which are also very simple determine 

the spatial organization of the functions and terminals in the ETs and the type of 

interaction between sub–ETs. [101–103] 

 

That‟s why two languages are utilized in GEP: the language of the genes and the 

language of ETs. A significant advantage of GEP is that it enables to infer exactly 

the phenotype given the sequence of a gene, and vice versa which is termed as Karva 

language. Consider, for example, the algebraic expression  

 

y = (a2
 
+a)                                                    (5.9) 

 

 can be represented by a diagram shown in Figure 5.15 which is the expression tree: 

 

For each problem, the type of linking function, as well as the number of genes and 

the length of each gene, are a priori chosen for each problem. While attempting to 

solve a problem, one can always start by using a single–gene chromosome and then 

proceed by increasing the length of the head. If it becomes very large, one can 

increase the number of genes and obviously choose a function to link the sub–ETs. 

One can start with addition for algebraic expressions or OR for Boolean expressions, 
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but in some cases another linking function might be more appropriate (like 

multiplication or IF, for instance). The idea, of course, is to find a good solution, and 

GEP provides the means of finding one very efficiently [102]. 

 

 

 

Figure 5.14 GP flowchart [98]. 
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Figure 5.15 Expression tree representation [98]. 

 

5.4.3 Implementation of GEP 

As an illustrative example consider the following case where the objective is to show 

how GEP can be used to model complex realities with high accuracy. So, suppose 

one is given a sampling of the numerical values from the curve (remember, however, 

that in real–world problems the function is obviously unknown): 

 

y = 3a
2
+2a+1                                                      (5.10) 

 

over 10 randomly chosen points in the real interval [–10, +10] and the aim is to find 

a function fitting those values within a certain error. In this case, a sample of data in 

the form of 10 pairs (ai, yi) is given   where ai is the value of the independent variable 

in the given interval and yi is the respective value of the dependent variable (ai 

values: –4.2605, –2.0437, –9.8317, –8.6491, 0.7328, –3.6101, 2.7429, –1.8999, –

4.8852, 7.3998; the corresponding yi values can be easily evaluated). These 10 pairs 

are the fitness cases (the input) that will be used as the adaptation environment. The 

fitness of a particular program will depend on how well it performs in this 

environment [102]. 

 

There are five major steps in preparing to use GEP. The first is to choose the fitness 

function. For this problem one could measure the fitness fi of an individual program i 

by the following expression: 

 

tC

j

jjii TCMf
1

),(
                                       (5.11) 
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where M is the range of selection, C(i,j) the value returned by the individual 

chromosome i for fitness case j (out of Ct fitness cases) and Tj is the target value for 

fitness case j. If, for all j, jji TC ),(  (the precision) less than or equal to 0.01, then 

the precision is equal to zero, and fi MCff ti *max . For this problem, use an M 

= 100 and, therefore, fmax = 1000. The advantage of this kind of fitness function is 

that the system can find the optimal solution for itself. However there are other 

fitness functions available which can be appropriate for different problem types 

[102]. 

 

The second step is choosing the set of terminals T and the set of functions F to create 

the chromosomes. In this problem, the terminal set consists obviously of the 

independent variable, i.e., T = {a}. The choice of the appropriate function set is not 

so obvious, but a good guess can always be done in order to include all the necessary 

functions. In this case, to make things simple, use the four basic arithmetic operators. 

Thus, F={+,–,*,/}. It should be noted that there many other functions that can be 

used. 

 

The third step is to choose the chromosomal architecture, i.e., the length of the head 

and the number of genes.   

 

The fourth major step in preparing to use GEP is to choose the linking function. In 

this case we will link the sub–ETs by addition. Other linking functions are also 

available such as subtraction, multiplication and division. 

 

And finally, the fifth step is to choose the set of genetic operators that cause variation 

and their rates. In this case one can use a combination of all genetic operators 

(mutation at pm = 0.051; IS and RIS transposition at rates of 0.1 and three 

transposons of length 1, 2, and 3; one–point and two–point recombination at rates of 

0.3; gene transposition and gene recombination both at rates of 0.1). 

 

To solve this problem, lets choose an evolutionary time of 50 generations and a small 

population of 20 individuals in order to simplify the analysis of the evolutionary 

process and not fill this text with pages of encoded individuals. However, one of the 
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advantages of GEP is that it is capable of solving relatively complex problems using 

small population sizes and, thanks to the compact Karva notation; it is possible to 

fully analyze the evolutionary history of a run. 

 

A perfect solution can be found in generation 3 which has the maximum value 1000 

of fitness. The sub–ETs codified by each gene are given in Figure 5.16. Note that it 

corresponds exactly to the same test function given above and its expression tree is 

shown in Figure 5.16 [98]. 

 

y = (a
2
+a)+(a+1)+(2a

2
) = 3a

2
+2a+1                                       (4.12) 

 

 

Figure 5.16 Expression tree representation for perfect solution [98]. 
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CHAPTER 6 

 

BUCKLING AND FREE VIBRATION SENSITIVITY  

ANALYSIS AND SOFT COMPUTING APPLICATIONS 

 

 

6.1 Introduction 

The main purpose of this chapter is to do the sensitivity analysis and SC models of 

stiffened panels. The elastic buckling and free vibration analyses of stiffened panels 

are dealt separately. The sensitivity analysis and SC models are done for buckling 

and free vibration of panel. The database used for model training has been generated 

by the program developed by Özakça and coworkers [1]. The database is divided into 

train and test sets where patterns in test set are randomly selected with a ratio 15 % 

and 85 % respectively. 

 

6.2 Problem Definition of Stiffened Panels 

A non–dimensional parametric database has been formed where variables have been 

given as a ratio of b which is the width of the geometry shown in Figure 6.1. The 

ranges of variables for the database are given in Table 6.1. Note that L is the length 

of panel which is taken 1.0 to 2.0 with increment 0.1 and the structures have simply 

supported end conditions at  and , other ends are free. A stiffened panel 

is typically fabricated from a flat plate with longitudinal stiffeners that span between 

girders. nblade is number of stiffeners which are taken 2, 3, 4 and 5 respectively. The 

following material properties are used: 
6100.75E  and Poisson‟s ratio υ=0.33. 

Note that all units are consistent. 
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Figure 6.1 Typical section of stiffened panel 

 

Table 6.1 The range of variables used in the database 

 

Variables Values 

s1/b 0.100 0.150 0.200 0.250 

s2/b 0.400 0.350 0.300 0.250 

s3/b 0.020 0.040 0.060 0.080 

t1/b 0.004 0.006 0.008 0.010 

t2/b 0.004 0.006 0.008 0.010 

 

The isotropic stiffened panels subjected to longitudinal compression analyzed by FS 

method is shown in Figure 6.2. Analyses are carried out by using 4–noded strips with 

reduced integration for avoiding locking phenomena. End of the analysis 14080 data 

pair is collected for SC models. 

 

0
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xN  

 

 

Figure 6.2 Isotropic panels loading for buckling 
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6.3 Sensitivity Analysis of FS Buckling Results (Main effect plots) 

Main effect plots for FS analyses are composed by using 14080 data pairs. 

Interaction of buckling stresses against all design variables are shown in Figure 6.3. 

All sampling points shown in figures are mean of the buckling stresses. Effect of the 

nblade is shown in Figure 6.4–6.6. 

 

 

 

Figure 6.3 Main effect plots of FS for buckling 
 

 

 

Figure 6.4 Main effect plots of FS for case nblade=2 for buckling 
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Figure 6.5 Main effect plots of FS for case nblade=3 for buckling 

 

 

Figure 6.6 Main effect plots of FS for case nblade=4 for buckling 
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Figure 6.7 Main effect plots of FS for case nblade=5 for buckling 

 

6.4 Numerical Applications of Soft Computing Techniques for Buckling  

     Analysis 

Performance and reliability of GEP Model and NN Model are done separately for 

buckling analysis of stiffened panel. 

 

6.4.1 Performance and Reliability of GEP Model 

The main aim is to obtain the explicit formulation of buckling stress of stiffened 

panels as a function of geometric properties given as follows: 

 

                  (6.1) 

 

GEP model training parameters are given in Table 6.2. According to this parameters, 

obtained expression tree (ET) shown in Figure 6.8. Mathematical representation of 

ET as follows 

 

 

            (6.2) 

 

where the constants are in (6.2) G1C1=587.5832, G3C9=–135.6095 and 

G4C18=74.7249. The actual parameters are d(1)=nblade, d(2)=l/b, d(3)=s1/b, 
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d(4)=s2/b, d(5)=t1/b and d(6)=t2/b. After putting in the corresponding values and 

rearrange the (6.2), final equation as follows, 

 

      (6.3) 

 

Table 6.2 Parameters of GEP model 

 

P1 Function set +, –, *, / 

P2 Chromosomes 30 

P3 Head Size 2 

P4 Number of genes 4 

P5 Linking function Multiplication 

P6 Fitness function, error type  Custom, MAE(Mean Abs. Error) 

P7 Mutation rate 0.044 

P8 Inversion rate 0.1 

P9 One–point combination rate 0.3 

P10 Two–point combination rate 0.3 

P11 Gene recombination rate 0.1 

P12 Gene transposition rate 0.1 

 

 

It should be noted that the proposed GEP formulation is valid for the ranges of the 

training set given in Table 6.1. Comparison of test, train and total sets of GEP model 

are given in Table 6.3. The GEP model results versus FS results for test, train and 

total sets are shown in Figures 6.9–6.11. 
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Figure 6.8 Expression tree for proposed GEP model for buckling analyses 

 

 

 

Table 6.3 Comparison of test, training and total sets GEP 

 

 Test Set Training Set Total set 

Mean (GEP/FS) 1.2823 1.2829 1.2822 

Standard deviation (GEP/FS) 0.6819 0.6513 0.6781 

RMSE 16051.00 15911.10 16033.17 

Covariance 0.5318 0.5077 0.5289 

Correlation coefficient (R
2
) 0.8212 0.8297 0.8219 

 

 

 



88 

 

 

 

Figure 6.9 GEP Model solutions versus FS solutions and correlations for test set. 

 

 

 

 

Figure 6.10 GEP Model solutions versus FS solutions and correlations for train set 
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Figure 6.11 GEP Model solutions versus FS solutions and correlations for total set 

 

6.4.2 Performance and Reliability of Neural Network Model 

The optimal NN architecture was found to be 6–10–1 NN architecture with tan–

sigmoid transfer function (tansig) and log–sigmoid transfer function given in Figure 

6.12 with NNBEST program by trial and error approach. The training algorithm was 

Levenberg–Marquardt back propagation (trainlm). Statistical parameters of test and 

training sets are presented in Table 6.4. The performance of the proposed NN model 

versus FS results is shown in Figures 6.13–6.15. As it can be seen from Table 6.4, 

the performances of the proposed NN model is quite high which indicates the 

accuracy of the NN model to map the relationship between input and output 

variables. It should be noted that the proposed NN model is valid for ranges of 

variables given in Table 6.1.  
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Figure 6.12 Proposed NN architecture for buckling analysis 

 

Table 6.4 Comparison of test, training and total sets for NN for buckling analyses 

 

 Test Set Training Set Total set 

Mean (NN/FS) 
1.0242 1.0251 1.0121 

Standard deviation (NN/FS) 
0.2092 0.2156 0.2106 

RMSE 
4049.32 3679.85 3979.18 

Covariance 
0.2042 0.2103 0.2079 

Correlation coefficient (R
2
) 

0.9880 0.9900 0.9880 
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Figure 6.13 NN Model solutions versus FS solutions and correlations for test set. 

 

 

 

 

 

 

 

Figure 6.14 NN Model solutions versus FS solutions and correlations for train set 
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Figure 6.15 NN Model solutions versus FS solutions and correlations for total set 

 

The proposed NN model in this study can also be given in explicit for as a 

mathematical equation using parameters of the NN model. The NN model can be 

simply given in a matrix form as follows where the first matrix of (6.4) is the weight 

matrix for the input layer and the second one added corresponds to the biases for the 

first hidden layer.  

 

   (6.4) 

 

The calculation for the second hidden layer can be shown as: 
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                          (6.5) 

Finally the output  can be computed as follows, 

 

                                            (6.6) 

 

6.5 Free Vibration Sensitivity Analysis of FS Results (Main effect plots) 

Main effect plots for FS analyses are composed by using 14080 data pairs. 

Interaction of eigenvalues against all design variables are shown in Figure 6.16. All 

sampling points shown in figures are mean of the eigenvalues. Effect of the nb is 

shown in Figures 6.17–6.20. 

 

 

 

Figure 6.16 Main effect plots of FS. 

 



94 

 

 

 

Figure 6.17 Main effect plots of FS for case nblade=2 

 

 

 

 

Figure 6.18 Main effect plots of FS for case nblade=3 
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Figure 6.19 Main effect plots of FS for case nblade=4 

 

 

 

 

Figure 6.20 Main effect plots of FS for case nblade=5 

 

6.6 Free Vibration Numerical Applications of Soft Computing Techniques 

Performance and reliability of GEP Model and NN Model are done separately for 

free vibration analysis of stiffened panel. 
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6.6.1 Performance and Reliability of GEP Model 

The main aim in this method is to obtain the explicit formulation of dynamic analysis 

of stiffened panels as a function of geometric properties given as follows: 

 

                      (6.7) 

 

GEP model training parameters are given in Table 6.5. According to this parameters 

obtained ET shown in Figure 6.21. Mathematical representation of ET as follows, 

 

 

 

         (6.8) 

 

where the constants are in formulation G3C0=5.9023, G3C1=–8.1304 and 

G4C1=3.5483. The actual parameters are d(1)=nb d(2)=l/b, d(3)=s1/b, d(4)=s2/b, 

d(5)=t1/b and d(6)=t2/b. After putting in the corresponding values and rearranges the 

(6.8), final equation becomes, 

 

 

                     (6.9) 

 

It should be noted that the proposed GEP formulation is valid for the ranges of the 

training set given in Table 6.1. Comparison of test, train and total sets of GEP model 

are presented in Table 6.6. The GEP model results versus FS results for test, train 

and total sets are shown in Figures 6.22–6.24. 
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Table 6.5 Parameters of GEP model 

 

P1 Function set +, –, *, / 

P2 Chromosomes 30 

P3 Head Size 4 

P4 Number of genes 4 

P5 Linking function Multiplication 

P6 Fitness function, error type  Custom, MAE(Mean Abs. Error) 

P7 Mutation rate 0.044 

P8 Inversion rate 0.1 

P9 One–point combination rate 0.3 

P10 Two–point combination rate 0.3 

P11 Gene recombination rate 0.1 

P12 Gene transposition rate 0.1 

 

 

Table 6.6 Comparison of test, training and total sets GEP 

 

 Test Set Training Set Total set 

Mean (GEP/FS) 1.5000 1.0086 1.1126 

Standard deviation (GEP/FS) 0.6168 0.4836 0.6931 

RMSE 63.4930 49.6701 50.4947 

Covariance 0.4111 0.4795 0.6229 

Correlation coefficient (R
2
) 0.8413 0.8422 0.8414 
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Figure 6.21 Expression tree for proposed GEP model 

 

 

 

 

 

Figure 6.22 GEP Model solutions versus FS solutions and correlations for test set. 
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Figure 6.23 GEP Model solutions versus FS solutions and correlations for train set 

 

 

 

Figure 6.24 GEP Model solutions versus FS solutions and correlations for total set 
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The optimal NN architecture was found to be 6–6–1 NN architecture with tan–

sigmoid transfer function (tansig) and log–sigmoid transfer function given in Figure 

6.25 with NNBEST program by trial and error approach. The training algorithm was 

Levenberg–Marquardt back propagation (trainlm). Statistical parameters of test and 
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versus FS results is shown in Figures 6.26–6.28. As it can be seen from Tables 6.7, 

the performances of the proposed NN model is quite high which indicates the 

accuracy of the NN model to map the relationship between input and output 

variables. It should be noted that the proposed NN model is valid for ranges of 

variables given in Table 6.1.  

 

 

 

Figure 6.25 Proposed NN architecture for free vibration analysis 

 

Table 6.7 Statistical parameters of test, training and total sets for NN for free 

vibration analysis 

 

 Test Set Training Set Total set 

Mean (NN/FS) 1.0043 1.0042 1.0042 

Standard deviation (NN/FS) 0.1761 0.1735 0.1741 

RMSE 30.5187 30.2620 30.3133 

Covariance 0.1754 0.1728 0.1733 

Correlation coefficient (R
2
) 0.9868 0.9870 0.9868 
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Figure 6.26 NN Model solutions versus FS solutions and correlations for test set 

 

 

 

Figure 6.27 NN Model solutions versus FS solutions and correlations for train set 
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Figure 6.28 NN Model solutions versus FS solutions and correlations for total set 

 

 

The proposed NN model in this study can also be given in explicit for as a 

mathematical equation using parameters of the NN model. The NN model can be 

simply given in a matrix form as follows where the first matrix of (6.10) is the 

weight matrix for the input layer and the second one added corresponds to the biases 

for the first hidden layer.  

 (6.10) 

 

The calculation for the second hidden layer can be shown as: 

                          (6.11) 

Finally the output  can be computed as follows, 

 

                                            (6.12) 
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CHAPTER 7 

 

CONCLUSION 

 

 

7.1 Summary of Achievements 

In this work, computational tools have been developed for reliable, accurate and 

efficient SC tools for the analysis and design of structures. Five main computer 

programs have been developed and verified for analysis and optimization. BUCKFS 

deals with the buckling FS analysis and shape optimization of shells. VIBFS deals 

with the free vibration analysis and shape optimization of shells. These programs are 

modified in Fortran90 using double precision based on Özakça and co workers 

program [1]. SCGEN deals with SC generation of data sets for models. It was also 

written in FORTRAN90. It is an interface of BUCKFS and VIBFS programs to 

NNBEST and GeneXpro which is produced by Gepsoft. NNBEST deals with 

determination of best NN architecture by trial and error approach and genetic 

algorithms. SCOPT deals with optimization of SC models by mathematical 

programming and genetic algorithms. NNBEST and SCOPT were written on 

MATLAB computing environment. 

 

7.2 General Conclusions 

Throughout this thesis, detailed conclusions were given after each example; therefore 

the main conclusions are drawn from various aspects and summarized in the 

following sections. 

 



104 

 

7.2.1 Structural analysis 

An existing FS code for the linear elastic analysis of stiffened panel structures was 

upgraded to FORTRAN 90 and automatic geometry modelling was implemented by 

adding new subroutines for buckling and free vibration analysis. Most of the results 

obtained using FSs was compared well with the results of other researchers based on 

different formulations. The results illustrate that the FS method presented here can be 

used with confidence for buckling or the free vibration analysis of prismatic 

structures. 

 

7.2.2 Structural shape optimization 

A general methodology for SSO of stiffened panel structures has been presented by 

integrating the tools developed for shape definition, automatic mesh generation and 

FS analysis with SQP (mathematical programming technique).  

 

Various optimization examples were presented, maximizing critical buckling load, 

maximizing fundamental frequency and minimizing the weight of the structures. 

Thickness, widths and shape design variables were used. The influence of the 

number of design variable employed was also investigated. Some of the optimal 

shapes obtained are not practical and are included to illustrate the optimization 

method. However, introducing certain constraints can lead to practical solutions. 

 

If the optimization of all stiffened plates results is glanced, it is obviously seen that in 

all plate types the maximum buckling load is obtained from shape optimization (type 

two) of eight stiffeners case. Due to this result, it can be mentioned that lengths of 

elements are important for buckling fails as much as element thicknesses.  

 

In optimized plates maximum critical buckling load is obtained from straight 

stiffened plate with substiffeners and pads under stiffeners. The most crucial result 

that obtained from optimizations is the effect of the pad elements. Plates with pads 

and without pads have remarkable difference of buckling loads. From this 

consequence, it is unquestionable that pad elements are the most effective ones 

against buckling.  
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The obtained maximum load difference between straight and L shaped stiffened 

plates is also originated from the difference of effect of flanges and pads. In L shaped 

stiffened plates, flanges use somewhat volume from pads and plate skin. Therefore, 

the effective elements, against buckling failure become thinner. So the L shaped 

stiffened plates‟ maximum buckling load cannot reach the straights‟. 

 

Nevertheless, in plate types without pads, L shaped stiffened plates have larger 

critical buckling load values. This result emphasizes the effect of the flange 

elements. 

 

It is necessary to mention about effect of substiffener elements finally. Plates with 

substiffners have a little difference of buckling load when compared only straight 

stiffener case. Thus, it is understood that flange elements are more effective than 

substiffener elements so that substiffeners use volume from flanges and skin then 

critical buckling load decreases. In straight stiffened plate because of absence of 

flanges, substiffeners become effective and strengthen stability of plates slightly.  

 

7.2.3 Soft computing 

The efficiency of SC techniques in structural design, particular algorithms based on 

NN, GEP, solving large–scale, continuous or discrete structural design problems was 

studied.  

 

The algorithms were studied both in deterministic and reliability based structural 

design problems. An effort to increase the computational efficiency is as well as the 

robustness of the design procedure. The use of SC techniques is motivated by the 

time–consuming repeated FS analysis required during the optimization process. 

Trained SC techniques were used to perform either the deterministic constraints 

check or, in the case of reliability based design, both the deterministic and the 

probabilistic constraints checks. The suitability of the SC techniques predictions was 

investigated in a number of structural design problems in order to demonstrate the 

computational advantages of the proposed methodologies.  
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In this work, some conclusions related with SC can be summarized: 

 

 SC methods such as NNs, GP were effectively used for computation of 

buckling strength and dynamic characteristics of stiffened panels. 

 The testing set is taken as 85% and the training set as 15% of the total set. In 

general the procedure accepted in SC modeling is the reverse case where the 

test set is about 20–30% and the testing set is about 70–80% of the total set. 

By choosing a large testing set, for showing the high generalization capability 

of the models. 

 All SC models used in this study are presented in explicit form NN and GEP 

models. The most accurate results are obtained by NN model rather than 

GEP. 

 SC methods such as NNs, GP can be effectively used for dynamic analyses of 

stiffened panels. 

 NN model in this study is quite complex models that cannot be used for daily 

pre–modeling calculations. Most suitable model for pre–modeling 

calculations is GEP model but it is quite accuracy loss between other models. 

 NNs are treated as black box in general. This thesis does not only verify NNs 

as alternative robust tools for stiffened panel analyses but gives the solution 

in an explicit form of the proposed NN models as well. It aims to open the 

black box and to present the NN models in its implicit form. It should be 

noted that explicit formulation of NN models is of significant importance as it 

will serve for important advantages in the analysis and design of structures. 

This will also enable to open a new era in optimization analysis of structures.   

 One of the major tasks in NN studies which are quite difficult is the selection 

of optimum NN architecture which is based on trial and error approaches or 

GA. However, this thesis proposes an alternative algorithm for the selection 

of optimum NN architecture that automatically selects the best architecture. 

 The optimum learning algorithm for modeling of stiffened panels was found 

to trainlm (Marquardt–Levenberg). Another learning algorithm trainlm also 

gave satisfactory results where as trainlm algorithm should be used with a 

definite reserve. The optimum error learning algorithm was found to be SSE. 

It is impossible to define an optimum NN architecture but it can be concluded 
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that single hidden layer architecture with less than 20 nodes is enough in 

general for the optimum NN architecture. 

 

Suggestion for Further Work 

Some suggestions for further work are listed as follows: 

 

 By integrating a standard CAD system to the programs developed, a wider 

range of optimization problems could be solved. 

 In FS method two opposite edges are simply supported and other two sides 

can be defined in any boundary condition. Some modifications can be made 

to apply any boundary conditions. 

 In this thesis straight and L shaped stiffened plates are investigated. 

Nevertheless, some other types of stiffeners exist in practice. Some of them 

are T shaped, U shaped tube, Y shaped stiffeners and etc..  

 Although currently computer processing power is growing exponentially, the 

option of parallel progressing during GA optimization should be used when 

considering large three dimensional problems. 

 The use of multi–objective functions should be investigated. 

 The use of different discrete optimization methods such as the evolution 

method would be useful to check the optimum results obtained with the GAs. 

 It is obvious that artificial intelligence techniques or specifically SC 

approaches such as fuzzy logic, Neuro Fuzzy, and step wise regression 

Programming will have much more profound application areas in the future 

for structural mechanics and structural analysis problems. 

 The proposed models in this work can also be used in inverse engineering 

analysis as well. 

 For elastoplastic analysis of structures to an extent, no general study has been 

carried out covering a wide range of elastoplastic behavior of structures by 

SC techniques. 

 A new approach so called neuro-optimization can offer many advantages and 

open a new era in optimization studies. 

 The SC techniques could be applied to the optimization of composite 

structures. 
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APPENDIX A 

 

INTERACTION PLOT FOR BUCKLING  

ANALYSIS OF STIFFENED PANELS 

 

 

A.1 Introduction 

Interaction plot for FS analysis results are scored by using 14080 data pairs. 

Interactions of parameters of buckling analysis against two design variables are 

shown in Figure A.1-15. Importance of interaction plots for design engineers is all 

parameters effects on buckling behavior panel can be investigated. All sampling 

points shown in figures are mean of the eigenvalues. 

 

 
Figure A.1. Interaction plot for FS for t1/b versus t2/b 



 

 

 

 
Figure A.2. Interaction plot for FS for t2/b versus s2/b 

 

 
Figure A.3. Interaction plot for FS for t1/b versus s2/b 
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Figure A.4. Interaction plot for FS for t2/b versus s1/b 

 

 
Figure A.5 Interaction plot for FS for t1/b versus s1/b 
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Figure A.6. Interaction plot for FS for s2/b versus s1/b 

 

 
 

Figure A.7. Interaction plot for FS for t2/b versus l/b 
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Figure A.8. Interaction plot for FS for t1/b versus l/b 

  

 
 

Figure A.9. Interaction plot for FS for l/b versus s2/b 
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Figure A.10. Interaction plot for FS for l/b versus s1/b 

 

 
 

Figure A.11. Interaction plot for FS for t2/b versus nblade 
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Figure A.12 Interaction plot for FS for t1/b versus nblade 

 

 

 
 

Figure A.13. Interaction plot for FS for nblade versus s2/b 
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Figure A.14. Interaction plot for FS for s1/b versus nblade 

 
 

Figure A.15. Interaction plot for FS for l/b versus nblade 

 

 



 

 

APPENDIX B 

 

CONTOUR PLOT FOR FREE VIBRATION  

ANALYSIS OF STIFFENED PANELS 

 

 

B.1 Introduction 

Interaction plot for FS analysis results are scored by using 14080 data pairs. 

Interactions of parameters of free vibration analysis against two design variables are 

shown in Figure B.1-15. Importance of interaction plots for design engineers is all 

parameters effects on dynamic characteristics of panel can be investigated. All 

sampling points shown in figures are mean of the eigenvalues. 

 

 
 

 

Figure B.1. Contour plot for FS for t1/b versus t2/b 

 



 

 

 

 

 
 

Figure B.2. Contour plot for FS for t2/b versus s2/b 

 

 

 

 

 
 

Figure B.3. Contour plot for FS for t1/b versus s2/b 
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Figure B.4. Contour plot for FS for t2/b versus s1/b 

 

 

 

 

 
Figure B.5. Contour plot for FS for t1/b versus s1/b 
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Figure B.6. Contour plot for FS for s2/b versus s1/b 

 

 

 

 

 
Figure B.7. Contour plot for FS for t2/b versus l/b 
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Figure B.8. Contour plot for FS for t1/b versus l/b 

 

 

 

 

 
Figure B.9. Contour plot for FS for l/b versus s2/b 
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Figure B.10. Contour plot for FS for l/b versus s1/b 

 

 

 

 

 
Figure B.11. Contour plot for FS for t2/b versus nblade 
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Figure B.12. Contour plot for FS for t1/b versus nblade 

 

 

 

 

 
Figure B.13. Contour plot for FS for nblade versus s2/b 
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Figure B.14. Contour plot for FS for s1/b versus nblade 

 

 

 

 

 
 

Figure B.15. Contour plot for FS for l/b versus nblade 
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