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ABSTRACT

APPLICATION of ASYMPTOTIC ITERATION METHOD to SOME
PT-SYMMETRIC POTENTIALS

ASLAN Vedat
M. Sc. in Engineering Physics

Supervisor: Assoc. Dr Okan ÖZER
June 2010,   27 pages

In this thesis we investigate the application of the asymptotic iteration
method, which has received a lot of attention in the literature recently, to some PT-
symmetric potentials. We obtain the energy eigenvalues and wavefunctions for the
corresponding potentials and compare our results with those in the related literature.
We have observed that the asymptotic iteration method is a good candidate for the
solution of the PT-symmetric potentials if an appropriate ansatz wavefunction is
suggested in the framework of the model.

Key Words: Asymptotic iteration method, PT-symmetric potentials, energy
eigenvalues
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ÖZET

ASİMTOTİK İTERASYON METODU’NUN BAZI PT-SİMETRİK
POTANSİYELLERE UYGULANMASI

ASLAN Vedat
Yüksek Lisans Tezi, Fizik Müh. Bölümü
Tez Yöneticisi: Doç. Dr. Okan  ÖZER

Haziran 2010, 27 sayfa

Bu tez çalışmasında son zamanlarda oldukça dikkat çeken asimtotik iterasyon
metodunun bazı PT-simetrik potansiyellere uygulanması incelendi. Göz önüne alınan
potansiyellerin enerji özdeğerleri ve dalga fonksiyonları elde edilmiş ve literatürde
karşı gelen değerlerle karşılaştırılması yapılmıştır. PT-simetrik potansiyellerin
çözümü için asimtotik iterasyon metodunun, uygun bir dalga fonksiyonu önermesi ile
iyi bir çözüm metodu olacağı görüldü.

Anahtar Kelimeler: Asimtotik iterasyon metodu, PT-simetrik potensiyeller, enerji
özdeğerleri
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CHAPTER 1

INTRODUCTION

Since a Hamiltonian H specifies the energy levels and time evolution of a quantum

system, one generally requires that H be Hermitian because Hermiticity guarantees

that the energy spectrum is real and that time evolution is unitary (probability

preserving). However, in some cases the physical situation is such that the

application of non-Hermitian Hamiltonians is justified. These conditions generally

occur for complex potentials used in a variety of phenomena in different fields of

physics and chemistry. These Hamiltonians, for example, are used in the context of

the optical potential in nuclear physics (especially, in accounting for absorption of

incident particles), to study the delocalization transitions in condensed matter

systems (such as a vortex flux line depinning in type –II superconductors), to study

the population biology, in the description of a Bose system of hard spheres, to study

the energy spectra of complex Toda lattice, quantum cosmology, quantum field

theory, super symmetric quantum mechanics, etc. [1,2]. The discrete energy

eigenvalues of these complex potentials become complex, in general. Until the paper

of Bender and Boettcher in 1998 [1], it was supposed that the Hermiticity of an

Hamiltonian was the necessary condition for having real spectrum. Their paper has

introduced the concept of PT-symmetric Hamiltonians, i.e, a complex (non-

Hermitian) Hamiltonian can give real and bounded eigenvalues if Hamiltonian is

invariant under the simultaneous action of space (P) and time (T) reversal. For one-

dimensional potentials of non-relativistic quantum mechanics this invariance requires( ( ))∗ = ( ). These potentials are a great deal of interest in the study of

scattering theory because of their applications in scattering problems, and  the

complex potentials are also being called optical or average nuclear potentials [3,4].
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Although the potentials exhibiting PT-invariance are usually complex, their bound-

state energy eigenvalues were often found to be real. In the analysis of PT-invariant

potentials various approaches have been applied such as the Fourier transformation

[5], semi classical estimates [6], numerical calculations [7,8], Sturm-Liouville-like

theory [9,10], variational techniques [11] or perturbation methods [12].

On the other hand, a certain part of quantum-mechanical potentials are called quasi-

exactly solvable (QES) if one obtains a finite portion of the spectrum and associated

eigenfunctions exactly and in closed form [13]. They are the intermediate potentials

between exactly solvable equations, such as the harmonic oscillator equations, the

Coulomb equation, etc. whose all analytic solutions can be obtained, and the

analytically unsolvable ones requiring a numerical treatment. QES potentials are

defined in terms of a parameter J and then one can obtain exactly the first Jth energy

values and wavefunctions, for positive integer (and half-integer) values of J. There is

in fact a Lie-algebraic formalism behind most QES systems and all one-dimensional

QES systems have been particularly classified based on sl(2) algebra [14, 15].

In recent years, a simple technique called the asymptotic iteration method (AIM) has

been taken much attention to obtain energy eigenvalues and eigenfunctions of the

class of differential equations [16, 17]. By using this technique, one can reproduce

exact solutions to many differential equations which are important in applications to

many problems in physics, such as the equations of Hermite, Laguerre, Legendre and

Bessel [22]. In the case of most solvable potentials the AIM has reproduced the exact

spectrum [18, 19] while for non exactly solvable potentials it yields reasonably good

approximate values [20, 21].

The purpose of the present thesis is to apply the AIM to some PT-symmetric

potentials and to obtain their energy eigenvalues and eigenfunctions. The

organization of the thesis is as following: In Chapter 2 we introduce the AIM. In

Chapter 3, solutions of Khare-Mandal (KM) potential and its PT-symmetric partner

are presented by using AIM. The KM potential and its PT- symmetric partner



3

potential is studied in order to see which potential has real eigenvalues and

convenient eigenfunctions, for different values of potential parameters M and ζ in the

framework of AIM. We also apply the method to the complex quartic potential and

determine the energy eigenvalues for certain values of the potential parameters.

Finally, in Chapter 4 we present a general conclusion on the results obtained in this

thesis work.
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CHAPTER 2

THE ASYMPTOTIC ITERATION METHOD

AIM [16,18] proposes to solve the second-order differential equations of the form

of

′′( ) = ( ) ′( ) + ( ) ( ) (2.1.1)

where ( ) is a function of and the prime denotes the first and second derivatives

with respect to x. ( ) and s0(x) are sufficiently differentiable arbitrary functions

and ( ) ≠ 0. To obtain a general solution to this equation, AIM suggests to

differentiate Eq.(2.1.1) with respect to x, then one finds

′′′( ) = ( ) ′( ) + ( ) ( ) (2.1.2)

in which

( ) = ′ ( ) + ( ) +
and( ) = ′ ( ) + ( ) ( ) (2.1.3)

Similarly, taking the the second derivative of the Eq. (2.1.1) we have
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( )( ) = ( ) ′( ) + ( ) ( ) (2.1.4)

where

( ) = ′ ( ) + ( ) + ( ) ( )
and( ) = ′ ( ) + ( ) ( ). (2.1.5)

Eq.(2.1.1) can be easily iterated up to (k+1)th and (k+2)th derivatives, where k

=1,2,3,… Therefore, we obtain

( )( ) = ( ) ′( ) + ( ) ( )
and( )( ) = ( ) ′( ) + ( ) ( ) (2.1.6)

where we can write

( ) = ′ ( ) + ( ) + ( ) ( )
and( ) = ′ ( ) + ( ) ( ) (2.1.7)

which are called the “recurrence relation” for Eq.(2.1.1). Taking the ratio of the

(k+2)th and (k+1)th derivatives in Eq.(2.6.1), we obtain
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( )( )( )( ) = ln ( )( ) = ′( ) + ( )( ) ( )
′( ) + ( )( ) ( ) (2.1.8)

Assuming that for sufficiently large k, if

( )( ) = ( )( ) = ( ) (2.1.9)

is satisfied, which is the ‘asymptotic’ aspect of the method, then, Eq.(2.1.8) is

directly reduced to

ln ( )( ) = ( )( ) (2.1.10)

If we substitute ( ) from Eq.(2.1.7) and then using ( ) in the right hand side of

Eq.(2.1.10), one sees

( )( ) = C exp ( )( )
= C exp λ′ (x) + s (x) + λ (x)λ (x)

λ (x) dx
= C exp λ′ (x)

λ (x) dx + s (x)
λ (x) dx + λ (x)λ (x)

λ (x) dx
= C exp λ′ (x)

λ (x) dx + s (x)
λ (x) dx + λ (x)λ (x)

λ (x) dx
= C λ (x)exp [α(x) + λ (x)]dx

(2.1.11)
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where C1 is the integration constant. Inserting Eq.(2.1.11) into Eq.(2.1.6), a first-

order differential equation for ( ) is obtained as

′( ) + ( ) ( ) = C exp [ ( ) + ( )] (2.1.12)

Eq.(2.1.12) is in the form of the first-order linear differential equations [22] as

′( ) + ( ) ( ) = ( ) (2.1.13)

whose general solution is given as

( ) = ∫ ( ) ∫ ( ) ( ) + (2.1.14)

where is integral constant. Using the general result in Eq.(2.1.14), we get the

general solution of Eq.(2.1.12) as:

( ) = exp − ( ) C
+ C exp [λ ( ) + 2α( )] (2.1.15)

Since one-dimensional time-independent Schrödinger equation (ħ = 2m = 1) is

− ( ) + [ ( ) − ] = 0, (2.1.16)
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one can transform Eq. (2.1.16) into Eq.(2.1.1) by the use of an appropriate coordinate

transformation, if required, considering also a suitable form of the wavefunction

given below

( ) = ( ) ( ). (2.1.17)

We note here that in the wide applications of AIM the function g(x) is in the

asymptotic behavior for the system under consideration. The function f(x) is obtained

in the polynomial form using Eq.(2.1.15) that does not disturb the asymptotic

behavior. In the method, the energy eigenvalues can be determined by the

quantization condition, given by the termination condition in Eq.(2.1.9). Thus one

can write the quantization condition combined with Eq.(2.1.7) as

( ) = ( ) ( ) − ( ) ( ) = 0, = 1, 2, 3, … .. (2.1.18)

After transforming the Schrodinger equation into the form of Eq.(2.1.1), the energy

spectrum and wave function of the quantum system can be obtained analytically (or

numerically). Using Eq.(2.1.1) one can determine ( ) and ( ) and then ( )
and ( ) parameters in an iterative procedure. The energy eigenvalues of the

potential interested are obtained by the quantization condition Eq.(2.1.18) and the

wave functions are determined using the following wave function generator

( ) = C exp − ( ′)( ′) ′

(2.1.19)

Although the general solution of Eq. (2.1.1) is given by Eq. (2.1.15), the first part of

Eq. (2.1.15) gives the polynomial solutions that are convergent and physical, whereas

the second part gives non-physical solutions that are divergent. Therefore, the
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corresponding eigenfunctions can be derived from the wave function generator given

in Eq.(2.1.19) by choosing C = 0 in Eq.(2.1.15).

On the other hand, Eq.(2.1.9) implies that the wave functions are truncated for

sufficiently large values of and the roots of the expression given in Eq.(2.1.18),

which has been obtained from Eq.(2.1.7), belong indirectly to the spectrum of

Eq.(2.1.16). However, for each iteration of the expression Eq.(2.1.18) depends on

different variables, such as , and possible potential parameters. We also note that

the iterations should be terminated by imposing the quantization condition ( ) = 0
as an approximation to Eq.(2.1.9) to obtain the eigenenergies. Therefore, the

calculated eigenenergies by means of this condition should be independent of the

choice of the coordinate. The energy eigenvalues can easily be obtained from the

roots of Eq.(2.1.18) if the problem is exactly solvable. If not, for a specific

quantum number, one has to choose an appropriate point (which satisfies ( ) =0), determined generally as the maximum value of the asymptotic wave function or

the minimum value of the potential [16, 20, 23] and then the approximate energy

eigenvalues are obtained from the roots of this equation for sufficiently large values

of with iteration. Thus the choice of is observed to be critical only to the speed

of the convergence of the eigenenergies, as well as for the stability of the process.
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CHAPTER 3

APPLICATIONS

3.1 The Khare-Mandal and its PT-Symmetric QES Partner Potential

Khare et al. [24] have defined a one-dimensional quasi-exactly solvable (QES)

complex potential as

( ) = −( cosh2 − ) (3.1.1)

where ζ is real and M is positive integer value. The potential is introduced as PT-

invariant ( → − , → − ) where /2 is the origin about which one is

performing and the Hermiticity of the Hamiltonian for that potential is determined by

the even and odd integer values of the parameter M and some critical values of ζ. On

the other hand, Bagchi et al. [25] has introduced a PT-symmetric partner potential

given as( ) = −( sinh2 − ) (3.1.2)

and they have also shown that the potential in Eq.(3.1.2) is PT-invariant potential

exhibiting real energy eigenvalues both for even and odd integer values of M and any

value of ζ. To proceed we consider both potentials and write the corresponding

Hamiltonians as
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= − − ( cosh2 − ) (3.1.3)

and

= − − ( sinh2 − ) (3.1.4)

If we write trigonometric functions in terms of their exponential forms ascosh( ) = ( + )/2 and sinh( ) = ( − )/2, then we can express

both equations together as

± = − − 2 ( ± ) − (3.1.5)

If we change the variable = ln , then we obtain Hamiltonians in the form of

− ±( ) − ±( ) − ± ±( ) = 0. (3.1.6)

To apply the asymptotic iteration method, we set the ansatz wavefunctions ±( ) as

±( ) = exp 4 z ± 1z ±( ) (3.1.7)

Inserting Eq.(3.1.7) into Eq.(3.1.6), one obtains a second-order linear homogeneous

differential equation in the form of Eq.(2.1.1)
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− ± ( ) − ( ± 1) − 2( − 2)2 ±( )− 1 + − 2 − 2 ( − 1) ±4 ±( ) = 0 (3.1.8)

We can now apply the AIM for the solution of the Eq.(3.1.8). If we compare

Eq.(3.1.1) and Eq.(3.1.8), we find

( ) = − ( ± 1) − 2( − 2)2
and

( ) = −1 + − 2 − 2 ( − 1) ±4 .
(3.1.9)

By means of Eq.(2.1.11) in the previous Chapter, one can also calculate ( ) and( ) easily. Finally, one can use the quantization condition given by Eq.(2.1.18) to

find the energy eigenvalues of these potentials. Since potentials depend on the

parameter M and it is defined as = 2 + 1 (where = 0, , 1, , … ) in the true

spirit of quasi-exact solvability [13], then we observe that the quantization condition

in Eq.(2.1.18) can be applied for certain values of M. Thus, one finds only a finite

portion of the energy spectrum and associated eigenfunctions, in the closed form. To

find energy eigenvalues we apply the quantization condition as following:

If = 0, then = 1 and one finds

( ) = −2 + ( ± 1)2 ,
( ) = − − 1 ±4 (3.1.10)
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Applying Eq.(2.1.18) for = 3, we determine the energy eigenvalues for both

potentials as

± = 1 ± (3.1.11)

It is seen that the spectrum corresponding to potential Eq.(3.1.1) as well as its PT-

symmetric version one Eq.(3.1.2) are completely real if = 1 ( = 0). Using Eq.

(2.1.19) and Eq.(2.1.7) by determining ( ) and ( ), and then re-changing the

coordinate in terms of , one can easily find the accompanying wave functions for

both potentials as

( ) = exp 2 cosh2 ,
( ) = exp 2 sinh2 . (3.1.12)

Next, we consider the case = 2 where = 1/2, leading to

( ) = − ( ± 1)2 ,
( ) = − − 3 − 2 ±4 . (3.1.13)

Applying Eq.(2.1.18) for = 4, one can now determine the energy eigenvalues and

corresponding eigenfunctions as

= 3 ± 2 −( ) = exp 2 cosh2 ( ± ) (3.1.14)
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for KM potential and

= 3 ± 2 −( ) = exp 2 sinh2 ( ± ) (3.1.15)

for the PT-symmetric partner of KM potential.

It is realized that the energy eigenvalues for the KM potential are obtained in the

complex conjugate pairs in Eq.(3.1.14) for = 2 even integer. However, we find

those are real in Eq.(3.1.15) for the PT-symmetric potential. It is obvious that one

can easily determine the energy eigenvalues up to = 2 quantum state, in closed

form, for both potentials by using AIM just for few iterations. We have presented

some energy eigenvalues and accompanying eigenfunctions in the Table 3.1.

3.2 Conclusion

In this part, we have used AIM to obtain the energy spectrum of Khare-Mandal

potential and its PT-symmetric partner. We note that the method gives the

eigenvalues directly if one can transform the Schrodinger equation into a form of( ) = ( ) ( ) + ( ) ( ). The energy eigenvalues we have obtained are in

excellent agreement with the existing results and we have also introduced the wave

functions. We note that the energy eigenvalues for the KM potential strongly

depends on one of the potential parameter, ζ. One can observe that if ζ > ½, then it is

seen in Table 3.1 the whole spectrum ( ) of KM potential becomes completely

complex both for even and odd integer values of parameter, M. This is not true for

the PT-symmetric partner one and it exhibits a reel spectrum for any value of ζ and

both for even and odd integer values M.
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Table 3.1 Eigenvalues and eigenfunctions for the Khare-Mandal potential and its PT-
symmetric partner for M = 1, 2, 3, 4. We note that the PT-symmetric partner potential
energy values ( , where = ± = ±) are real both for even and odd integer
values of M, and any values of ζ

M ± ±( )
1

= 1 ± = 2 ℎ2= 1 ± = 2 ℎ2
2

= 3 ± 2 − = 2 ℎ2 ( ± )= 3 ± 2 + = 2 ℎ2 ( ± )

3

= 5 − = 2 ℎ2 ℎ2
= 7 − ± 2 1 − 4 = 2 ℎ2 2 ℎ2− (1 ± 1 − 4= 5 + = 2 ℎ2 ℎ2
= 7 + ± 2 1 + 4 = 2 ℎ2 2 ℎ2− (1 ± 1 + 4

4

, = 11 − − 2+ 4 1 − −
, = 2 ℎ2( − ) ℎ2 − (1+ 1 − − )

, = 11 + − 2+ 4 1 − +
, = 2 ℎ2( − ) ℎ2 − (1+ 1 − + )
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3.3 Quartic Complex Potential

When one chooses a real potential, that is the Hermitian Hamiltonian, then it is

ensured that the corresponding Schrödinger equation has real eigen-energies. Bender

and Boettcher [1] introduced complex potentials which are invariant under the

combined symmetry of PT, and showed that even in all these cases the eigenenergies

of the differential equation are real. This seems to suggest that, instead of

Hermiticity, it may be enough to have the weaker condition of PT-symmetry in order

to have real eigenenergies.

Bender and Boettcher generalized to a new kind of PT -symmetric quartic complex

potential of the form

( ) = − + 2 + ( − 2 ) + 2 ( − ) , , ∈ , = 1,2, … (3.3.1)

defined on a certain complex curve = ( ) ∈ , ∈ (−∞,∞) [26]. In order to

obtain the eigenenergies of the quartic complex potential Eq.(3.3.1), Bender and

Boettcher solved the Schrödinger equation

− ( ) + ( ) ( ) = ( ), = 0,1,2, … (3.3.2)

where the wave function ( ) satisfied the boundary condition Eq.(3.3.2)

lim| |→ ( ) = 0. (3.3.3)
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and the primes of ( ) in Eq. (3.3.2) denote derivatives with respect to x.

By introducing the exponential representation for eigenfunctions as

( ) = ( ) (3.3.4)

and  using QES for Eq.(3.3.2), they obtained polynomials QJ (E) of degree J in the

eigenenergies En (See Ref. [1] for details).

We apply AIM to determine the eigenenergies of the quartic complex potential given

in Eq.(3.3.1). To do that we write the Schrödinger equation in its general form in the

one-dimensional case for the eigenvalue equation (where we only set now ℏ = 1 for

the comparison of our work with the related literature):

− 12 ( ) + ( ) ( ) = ( ) (3.3.5)

in which V (x) is the general representation of the quartic complex potential with the

following form:

( ) = − + + + , (3.3.6)

which is defined on a certain complex curve = ( ) ∈ , ∈ (−∞,∞) and{ , , , } ∈ .
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To solve the Schrödinger Eq.(3.3.5) involving the potential in Eq.(3.3.6) we

introduce the following wave function:

( ) = ( ) (3.3.7)

where

= 13 , = 14 , = 18 − 12 (3.3.8)

Substituting the wave function ( ) into the Schrödinger equation in Eq.(3.3.5) ,

that leads to second-order differential equation in the form of

( ) = ( ) + ( ) (3.3.9)

where ( ) and ( ) is obtained by

( ) = − + + + 2 ,
and (3.3.10)
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( ) = 164 (−4 + ) + 8 (4 − + 16 )− 16 4 (−2 + ) − (−1 + )− 64 (−2 + ) + 64(−2 + )+ 32( − 4 + 4 )

We can now determine ( ) and ( ) by Eq.(2.1.18) to obtain the energy

eigenvalues of the potential Eq.(3.3.6). Using a MATHEMATICA program, the

energy eigenvalues can be found by Eq.(2.1.18). Since the quantization condition( ) will depend on different variables, such as , and potential parameters, then

we first eliminate the coordinate parameter at the end of the iteration procedure.

Because the potential is not exactly solvable, then we have to choose a suitable

point, satisfying ( ) = 0, determined generally as the maximum value of the

asymptotic wave function or the minimum value of the potential [16,20,23], and then

the approximate energy eigenvalues are obtained from the roots of this equation for

sufficiently large values of with iteration. Therefore, we set = 0 at the end of

the iterations.

Additionally, we have to find the minimum number of iterations, k, in order to get an

idea regarding the rate of convergence of the AIM. We calculate the eigenenergies

for the ground state, the first excited state and the second excited state of the general

form of the quartic complex potential for the non-exactly solvable case. Since the

potential parameters are certain, then we run the computer program to choose the

most appropriate iteration number of k. We present our results in Table 3.2. It is

observed that the ground state eigenvalues is converged just after k=30 iterations but

the first excited state is converged after for k=40 iterations. Further, the second

excited state is found to be converged for k=55 iterations. It is clear that in order to

get accurate numerical results for the energy eigenvalues of the non-exactly solvable

case of the quartic complex potential, one must enlarge the number of iterations k for

the polynomial solutions of the energy eigenvalues.
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Table 3.2 The rate of convergence of the AIM for the eigenenergies of the lowest

states E0, E1 and E2 with a quartic complex potential in Eq.(3.3.6) for the non-

exactly solvable case, with = 3, = 5, = −9, = 12 , and m=1,

computed for a number of iterations up to k =70

k E0 E1 E2

5 16.2707181 24.6671759 38.53489152

10 16.86119231 24.74668096 31.61541052

15 16.86815204 24.79143816 33.10654982

20 16.86807354 24.79069593 33.19707558

25 16.86807313 24.79068708 33.19858373

30 16.86807311 24.79068906 33.19777764

35 16.86807311 24.79068886 33.19770049

40 16.86807311 24.79068884 33.19770637

45 16.86807311 24.79068884 33.19770748

50 16.86807311 24.79068884 33.19770737

55 16.86807311 24.79068884 33.19770736

60 16.86807311 24.79068884 33.19770736

65 16.86807311 24.79068884 33.19770736

70 16.86807311 24.79068884 33.19770736

Numerical

Results [26]
16.86807311 24.79068884 33.19770736
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We also determine the energy eigenvalues for the QES-case of the quartic complex

potential for the certain values of potential parameters. We observe that the iteration

number k is just equal to the quantum number n of the state we are looking for. We

compare our results, with the corresponding quasi-exact solutions in the literature, in

Table 3.3.

Table 3.3 Comparison between the quasi-exact eigenenergies En and the

eigenenergies computed by means of the AIM for the quartic complex potential

[26] in Eq.(3.3.6) for the QES case, with = 1, = 14, = 41, = 40 ,

2m=1 and k=7, for the first eight energy states

State EQES [26] EAIM

0 16.22516783 16.22516783

1 31.77572464 31.77572464

2 47.52714458 47.52714458

3 63.47231750 63.47231750

4 79.60475184 79.60475184

5 95.91849206 95.91849206

6 112.4080506 112.4080506

7 129.0683510 129.0683510
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3.4 Conclusion

The numerically solvable case of the quartic complex potential needs more iteration

to determine the energy eigenvalues. It is observed that the number of iterations must

be enlarged to obtain the accurate numerical results. After a certain value of the

iteration number, the energy eigenvalues are converged and then it is not necessary

much more iteration of the quantization condition equation. On the other hand, this is

not true for the QES case of the potential in hand: For this case, iteration number of

the method AIM is just equal to the quantum number n of the energy eigenvalue in

question we have shown in Table 3.3. Generally, the iteration number is always

greater than the quantum number n for the nontrivial potentials which are not exactly

or quasi-exactly solvable ones, and the approximate energy eigenvalues are obtained

from the roots of the Eq.(2.1.18) for sufficiently large values of k with iteration

procedure. Since the general solution of the method is based on the condition

solution of Eq.(2.1.8), then one has to satisfy the condition in Eq.(2.1.9). If the

problem is exactly solvable potential, then the condition in Eq.(2.1.9) is satisfied. If

not, one requires numerical treatment to obtain the energy eigenvalues by increasing

the iteration number to enforce Eq.(2.1.9) to be satisfied.
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CHAPTER 4

CONCLUSION

In this thesis work, we have applied a recent technique called the Asymptotic

Iteration Method to some PT-symmetric potentials and obtained their energy

spectrum and eigenfunctions. We have studied on two different potential types: The

former one is called the QES Khare-Mandal potential (and we have also taken its

partner into account) and the latter is called the quartic complex potentials. Both

potentials are complex and they obey the PT-symmetry. We have first applied the

method to the QES Khare-Mandal and its PT-symmetric partner potential and

obtained that their energy eigenvalues and eigenfunctions. AIM is observed as a

good candidate to solve the PT-symmetric QES potentials if one can suggest an

appropriate ansatz wavefunction for the transformation of the Schrödinger equation

into the second-order differential equation in present form of the AIM method. We

have observed that the energy eigenvlaues of the Khare-Mandal potential is strongly

affected by one of the potential parameter that can turn the whole spectrum into

complex if it is greater than a certain value. We have also applied the method to its

PT-symmetric partner and obtained the corresponding energy spectra. For the partner

potential, it is obviously seen that the energy eigenvalues are reel for any value of the

potential parameters and both for even and odd integer values of M.

As a second example, we have used the method to solve the quartic complex

potential considering two different cases: QES quartic complex potential and the

non-exactly solvable quartic complex potential. In both cases, AIM gave quite
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accurate results for the energy eigenvalues of the both potentials in the question.

Here it is noted that when the method is applied to QES potentials, the iteration

number is just equal to the quantum number, as seen in Table 3.3. Therefore, it is

enough if one should run the computer program for few values of the iteration

number for the first few eigenvalues of the QES potential interested. On the other

hand, if the numerically solvable potential case is taken into account then one must

enlarge the iteration number for the convergence of energy eigenvalues. In the

method, the quantization condition equation determines the energy eigenvalues of the

potential in question. Therefore, the calculated eigenenergies by means of this

condition should be independent of the choice of the coordinate parameter such as r,

x, y, etc. To eliminate the coordinate parameter in the equation, one should choose an

appropriate value of x: The choice of x is observed to be critical only to the speed of

convergence of the eigenenergies, as well as for the stability of the process. In our

examples we have observed that the optimal choice for x is x = 0.

The results we have obtained in this thesis are in excellent agreement with the

corresponding published results in the literature. The method used here is simple and

flexible, which can be readily employed to solve other complex potentials in physics.
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