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ABSTRACT

FINITE ELEMENT ANALYSIS OF KEYED CONNECTIONS UNDER
TORSION AND BENDING

YAVUZ, M. M.
M.Sc. in Mechanical Eng.
Supervisor: Assoc. Prof. Dr. Bahattin Kanber
August 2010, 149 pages

In this thesis, keyed connections are analysed using finite element method under
torsion and bending. The effects of key edge geometries, the amount of torque,
interference and friction on contact stresses between parts are investigated. ANSYS
finite element package program is used in the analysis. Mapped mesh technique is
used in all finite element models. The results are compared with available

experimental results in the literature.
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OZET

KAMALI BAGLANTILARIN EGME VE BURMA ETKIiSi ALTINDA
SONLU ELEMANLAR ANALIZi

YAVUZ, M. M.
Yiiksek Lisans Tezi, Mak Miih. Boliimii
Tez Yoneticisi: Dog. Dr. Bahattin KANBER
Agustos 2010, 149 sayfa

Bu tezde kamali baglantilar, burulma ve biikiilme yiikleri altinda sonlu elemanlar
yontemi kullanilarak incelenmistir. Kama kose geometrilerinin, farkli tork
degerlerinin, pargalar arasi siki gegmenin ve siirtlinmenin temas ylizeyindeki
gerilmeler tizerine etkileri arastirilmistir. Calismada, ANSYS sonlu elemanlar paket
programi kullanilmistir. Sonlu eleman modellerinde, 6l¢ekli ag elde etme ydntemi
uygulanmistir. Analiz  sonuclar1 literatiirde var olan deneysel sonuglarla

kisaylanmistir.

Anahtar Kelimeler: kama, kama yatagi, kamali baglantilar, gerilme, sonlu eleman

yontemi
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CHAPTER 1

INTRODUCTION

Keys are mostly used in machine elements for making connection of transmitting
parts. Keys are placed in a slot which is called keyway between shafts and other
machine parts like gears, discs, pulleys (for simplify, call all of them a general name;

hub).

Different shapes and dimensions of keys and keyways are present and most of them
have standards. End milled keyway, sled runner keyway and their keys are
commonly used, due to their simple geometries and easy manufacturing properties.
Also, different types of keys and keyways can be seen in commercial usage. Keys are
widely used in connections of machine parts. They can be found from the most
simple and small parts to complex and big parts connections. They can be used from
toy cars to war tanks in the power transmitting parts. They are made of different
materials with respect to connection parts. Plastic, brass, steel and other materials are
some examples of its materials. Keys are mostly assembled with press fit or

minimum clearance fit.

Keys and keyways are important design criteria of transmitting systems safety. If key
is wanted to be stronger, key sizes can be increased. But for placing a larger key,
keyway sizes should be increased and causes to decrease the strength of shaft and
hub. If shaft and hub are wanted to be stronger from the effect of keyway’s
decreasing the strength, keyway and key sizes can be made small. However, key is
weak at this time. Hence optimum key and keyway dimensions and geometries are

required to satisfy the optimum safety of key, shaft and hub.

When a torque is applied to shaft or hub, it is transmitted mostly on key to the other
part. From the using condition of keys, they are generally under all loading types.

But mostly torsion and bending loadings are applied at keys. In proportional to the



key size to the shaft and hub sizes, key is smaller than shaft and hub. From these

reasons, high stresses are expected to obtain at keys and keyways.

In this study, numerical method is used for investigating the keyed connections. The
development of solution methods, fast computers and accuracy are some of the
reasons for selecting the numerical analysis. Numerical technique is in spite of the
experimental method, is an approximate solution technique. Results may not be
direct solutions of real system analysis. But it has benefits like solution is fast by
using computers; no experimental apparatus or mechanism is needed. If approximate
solution results are acceptable, henceforth new solution tries are faster than

experimental techniques.

Figure 1.1. Transmitting system model of hub, shaft and key

This thesis mainly concerns the analysis of keyed connection under torsion and

bending by using finite element analysis.

There are some studies on the literature about this subject. Some of them directly

investigated keys and keyways by using experimental techniques. Other studies do



not directly investigate keys and keyways, but they show that key and keyway are

important design criteria to prevent the failure of the system.

FEM models are compared with suitable experimental results. The contact
algorithms of FEM are compared for different torques in section 5.3. FEM results of
the effect of friction and key edge geometries are compared in section 5.4 with
respect to the experimental study of Fessler and Appavoo [7] in 2D. FEM results of
key edge geometries, frictions and torques are compared with Fessler and Appavoo’s
[7] study in section 5.5. Also the results of FEM on the effect of interferences and
friction are compared with experimental study of Fessler and Eissa [4] in section 5.5.
The effect of keyway fillet radius and applied torque is compared in section 5.6 with
respect to experimental study of Okubo and colleagues [2]. In section 5.7, the FEM
results of a shaft with keyway under torsion are compared with Fessler and
colleagues [1] study. The FEM results of a shaft with keyway under bending are
compared with experimental results of Fessler and colleagues [3] study. In section

5.9, FEM results are given for hub, shaft and key interaction under bending.



CHAPTER 2

LITERATURE SURVEY

2.1. Introduction

Because of theoretical complexity of shaft, key and hub interaction problem, the
keyway stresses are generally studied experimentally. They are investigated under

torsion, bending and axial loadings using different experimental techniques.

Fessler and co-workers [1] investigated the keyway end stresses of shouldered shafts
using photoelastic techniques without considering key and hub interaction. They
presented the principle stress indices in keyway fillets under direct and torsional

loading.

Okubo and colleagues [2] studied stress concentration on keyways by using the
electroplating method under torsional loading only. They fitted a shaft of carbon
steel, plated with copper into a boss with a key. It was concluded that the keyway
stress 1s concentrated at the corners of the keyway and it increases when the ratio of

keyway corner fillet radius to shaft diameter decreases.

Fessler and colleagues [3] investigated the stresses at end milled keyways using the
frozen-stress photoelastic technique for direct loading, bending and torsion. They
observed that the peak stress in direct loading and bending is always in the fillet at
the end of the keyway. They also reported that the peak stresses of combined loading

of bending and torsion are less than pure torsion.

Fessler and Eissa [4] studied on the effect of fits and friction on the keyway stresses
using frozen stress photoelastic technique. They used various metric and inched
standard keyed shafts and hubs by applying different torques. They reported that high
stresses occur mostly at the curvature of keyway and key surfaces. They also

reported that the fit and friction between shaft and hub affect the torque transmission,

4



but do not affect the stress distribution around the key. Same authors [5] also
investigated the effect of key and keyway shape with usual fits and friction. They
reported that high stresses occur at the keyway contact surfaces and rounding the key
chamfers decreases the keyway side stresses but increases at the edge stresses
because of sliding. They showed that key slide is depended on the applied torque,
key geometry and fit of the key in the shaft. The same photoelastic technique was
used to obtain 3D stress distributions on keyways by the same authors [6]. The
results showed that stresses are decreased on the key edge touched sides on keyway

when decreasing the key width.

Fessler and Appavoo [7] extended the previous works by considering different
shapes of key-edge. Study showed that increasing the chamfer dimensions causes
decreasing the stresses. Increasing the torque also increases the peak stress. However
it decreases the stress concentration factors because the nominal stresses are also
increased. They reported that if key edges are rounded, the greatest stresses are

obtained at the centre of the fillet radius.

Shaffer [8] studied theoretically on stresses between a circumferential key and its
keyway. He applied the slip-line field theory of the plasticity in his study. He
investigated the bearing stresses of the key and keyway shoulder and transverse shear
of the key. He reported that the ability of key to withstand the bearing force
calculated in his works is greater than that predicted by conventional engineering

analysis.

Fessler and Warrior [9] reported the advantages of using cylindrical keys in torque
transmission using photoelastic technique. They pointed out that the peak stresses in
cylindrical keys are independent of the usual fits of the key and lubrication and
decrease with increasing the key diameter. They also proved that the peak stress

values on cylindrical keys lower than rectangular keys.

Celik [10] studied on the deflection and stress analysis of a spur gear using the
boundary element method. He pointed out that when the whole body model including
the keyway is used in the analysis, the stress is concentrated around tooth contact

point and keyway. Kanber [11] analysed spur gears with four different keyway
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position using coupling of finite and boundary element methods. He concluded that
stresses along the tooth fillet reach their maximum distributions when the nearest

tooth to the keyway is loaded.

There are many studies in the literature reporting that the shaft failures generally start
at the keyway areas. Vogwell [12] studied on a vehicle wheel shaft failure under
fatigue loading. He concluded that the failure occurs at keyway slot and a fatigue
crack is initiated at this point. Berndt and Bennekom [13] presented a collection of
pump shaft failures. Study shows that one of the failures is caused by the stresses at
the root of the key. Bhuamik and colleagues [14] researched the failure of a hollow
power transmission shaft and they concluded that crack is initiated by fatigue at the
keyway edges. They suggested that rounding the keyway sharp edges decreases the
stress concentrations on keyway. Parida and colleagues [15] investigated the failure
of a coal pulverizer mill shaft in fatigue loading. They proved that fatigue cracks
originate from the keyway area, unusually from the top edge. Sekercioglu [16]
investigated a polymer injection pump for polymer production under torsion. His
study reports that fracture starts firstly gear keyway because sharp key corner is
causing stress concentrations on gear keyway and small keyway fillet radius causes a
notch effect. Goksenli and Eryiirek [17] researched the failure of an elevator of 320
kg loading carry capacity’s shaft under torsional and bending loading. His study
concluded that failure occurs at the keyway and stresses are affected by radius of

curvature of the keyway.

Vidner and Leidich [18] used the Ruiz criterion for the evaluation of crack initiation
in contact subjected to fretting fatigue. In their study, the fatigue fretting damage
parameters are discussed for key, hub and shaft connections using both experimental
and numerical methods. They reported that fatigue failure of crack initiates at
directly in key groove radius and one of the maximum stresses occurs in the key

groove radius between shaft and key.

Yang and Tong [19] studied analytically splines and keys profiles performances on
power transmission. They gave three different design conditions for optimization of

performance: Uniform hub deformation, maximum transmission load capacity and



optimum capacity. Study concluded that spline and key profiles are an important

factor for power transmission.

2.2. Conclusion of literature survey

The literature review shows that keyed connections are very important. They are
widely used in connected parts. Almost all studies pointed out that high stresses

occur at keyways. Therefore, most of the failures are started at the keyways.

Most of the studies in the literature investigate the keyway stresses using photo-
elastic experimental techniques. Because of complexity of the problem, numerical
studies such as finite and boundary element methods are not used. Therefore, this

study offers an alternative method to investigate keyway stresses.

Bending analysis of hub, shaft and key interaction is not presented in literature.
Commonly a single shaft with keyway is investigated under bending. In this study, it

is investigated in details considering shaft, hub and key interaction.



CHAPTER 3
EXPERIMENTAL STUDIES

BY FESSLER-COLLEAGUES AND OKUBO-COLLEAGUES

3.1. Introduction

The FEM is a method to approximate the solution of governing differential equation
of elasticity with appropriate boundary conditions. The amount of approach of results
to the accurate results requires an error analysis or comparing the results of some
other methods. If the analytical solutions of the problem are available, the FEM
solutions can be compared with them. However, it is not always possible. The
analytical solution of key, shaft and hub interaction problem studied in this work, for
example, is very difficult without any simplification. It is already not exist in the
literature. Therefore, the FEM solutions are compared with the results of
experimental studies in the literature. In this chapter, some information is given

about experimental studies of Fessler-colleagues and Okubo-colleagues.

3.2. Experimental study of Fessler and Appavoo [7]

Fessler and Appavoo investigate the effect of key edge shape on keyway stress
distribution in shafts under torsional loading. They use photoelastic experimental
technique in this investigation. In their study, they investigate how various key edge

geometries and various torques affect the keyway edge stresses.

In their experimental study, hub and shaft geometries are kept constant and not
changed in all experiments as shown in Figure 3.1. Only key edge dimensions 