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ABSTRACT

A SEARCH ON HELIUM-LIKE ATOMS

CAPAK, Mustafa
M. Sc. in Engineering Physics
Supervisor Prof. Dr. Bulent GONUL
July 2010, 45 pages

In this thesis work, we scrutinize the relationviltn the correlation and
screening effect of the electrons in He and He-lkams. Within this context and
using the basic ingredient of two-body problem, prepose accurate algebraic
solutions in a closed form for the ground and extgtates of such quantum systems.
These simple but explicit expressions involve tlacé screening parameters for
each atom considered and provide an insight iré ghysical structure. The energy
eigenvalues have been exactly calculated for ateitts nuclear chargeZ in the
rangel< Z <12.

Keywords: He and He-like atoms; Screening in two-electramest



OZET

HELYUM BENZER 1 ATOMLAR UZER iINE BIR ARASTIRMA

CAPAK, Mustafa
Yuksek Lisans Tezi, Fizik MihendigliB6lumu
Tez Dangmani: Prof. Dr. Billent GONUL
Temmuz 2010, 45 sayfa

Bu tez cagmasinda, Helyum ve Helyum benzeri atomlarda buluikan
elektron arasinda gercekém etkilgim potansiyeli ile cekirdek ve elektronlar
arasinda etkigm aninda cekirdek yukandn yakin elektron tarafipsadelenme
olayl arasindaki i$ki dikkatlice incelenmitir. Bu cercevede ve iki-cisim etkilien
probleminin temel unsuru kullanilarak, s6z konusandarin temel ve uyarilmi
kuantum seviyeleri igin tam c¢Ozumler iceren analitifadeler tarafimizca
onerilmektedir. Onerilen bu basit fakat acik fizk&adeler, ele alinan her bir sistem
icin perdeleme parametresini tam olarak icermeldesigtemlerin fiziksel yapisina
Isik tutmaktadir. Teklif edilen teorik modekiginda, cekirdek yikil<Z <12
aralginda olan tim iki-elektronlu atomlar icin enerji d@erleri kesin olarak

hesaplannstir.

Anahtar Kelimeler: He ve Helyum benzeri atomlar, iki elektron arasipdedeleme
olayi



ACKNOWLEDGEMENTS

First of all, | thank my wife, Serpil, for listergnand supporting me during
the prepration of my thesis work presented here.

| also deeply thank my advisor, Prof. Dr. Buler®]BUL due to his valuable
help, advice and supervision during my works. Thissis would indeed not have

been possible without his support. His encouragéraad suggestions caused to
construct this thesis properly.

| dedicate this thesis to my father who died in&00



CONTENTS

AB S T R A C T .ttt et e e e e e e iii
ACKNOWLEDGEMENTS. ...ttt e e et e e e e e e e e e e ae e v
LIST OF TABLES . ..o e e e e e Vil
CHAPTER 1 INTRODUCTION. .. ...ttt it it et e e e e e emnaeeee 1
CHAPTER 2: THEORETICAL BACKGROUND....ccciiiiviiiiiiiiiieee e e 4
2.1. The Variational Method..........cooieiii i e e, 4
2.2. Some Local Properties of The Eigenfunctions.............ccccovviiieinennn. 6
2.2.1. Asymptotic Behavior of The Wave FunctionS.......................oe. 6
2.2.2. Behavior of The Wave Functions for — O................ooeiinnn, 7
2.2.3. Behavior of The Wave Functionsfgy, — O...........coie i, 7
2.3. Kato’s Cusp Conditions and Fock’s EXpansion..............ccoeoevveennnnn. 8
2.3.1.Kato’s Cusp COoNItIONS.......ciiiniite it e e e eee e e e 8

2.3.2. FOCK'S EXPanSIiON........covviiiiiieiecie e e e e e e ie e mmm e a9

2.4, Earlier StUAIES. ..o it e e 10
2.4.1. Accurate Analytic Wavefunctions for Two-dlea Atoms
(C. Le Sech, J. Phys. B.: At. Mol. Opt. Phys. @PB47-L50)).....cvueiriririrneeeenniennen. 10

2.4.2. Two-parameter Wavefunction For The GroutadeSOf Helium-like
Atoms (D N Tripathy, B Padhy and D K Rai, J. PhyscAB:Mol. Opt. Phys. 28(1995) L41-

Vi



2.4.3. Simple Wavefunctions Fdis)(ns)**S and (1s)(np)**P States of He

and isoelectronic iong S. H. Patil, 2003 Physical Review A 68, 044501)......20

CHAPTER 3:

ALTERNATIVE TREATMENTS FOR TWO-ELECTRON ATOMS.............. 28
3.1. An Attempt to Solve the Related Problem................coooiiiiiini 28
3.2. Accurate Calculations for Two-Electron AtOMS. e v ovi e, 31

3.2.1. Accurate Calculations for The Ground Stdféveo-Electron Atoms....32
3.2.2. Accurate Calculations for The Excited Stategwo-Electron Atoms..35

CHAPTER 4: CONCLUSION.......coooi a0 G40
PUBLICATIONS ... o e e e e 45

Vil



LIST OF TABLES

Table 2.1. Ground state energies dfl ~,He, Li*,Be*,B* calculated using the

wavefunction given in equation (2.4.6) and coroegpng optimized values of the

parametersl and a.......cc.veiiiiiii e e e 12

Table 2.2. Ground state energies dfi ~,He, Li*,Be*,B* calculated using the

wavefunction given in equation (2.4.7) and coroegpng optimized values of the
parametersi,a andb...........oo 13

Table 2.3. Results for the binding energigsHatrees), 5 andy for the ground

state ofH ~,HeandHEe —[IK@ I0NS.......ooeei e e e, 19

Table 2.4. The values of the paramétem the coalescence function in Eq.
(2.4.27), normalization constard in Eq. (2.4.25) , the predicted values of the

energy, the expectation valugs),(r,,) and accurate values from R&b| given in

brackets, for(ls)(2s) and(ls)(3s)statesS.....cc..vvvvvivvviiiiiiiiii i i e e e 26

Table 2.5. The values of the parameberin the coalescence function in Eq.
(2.4.33), normalization constamd in Eg. (2.4.32) , the predicted values @& th

energy, the expectation valugs), (r,,) and accurate values from Rid0] given in

brackets, for (1s)(2p )and (1S)(BP ) StaleS..ce. e e 27

Table 3.1. The ground state energies within tamé& of Eq.(3.1.12)............... 31

Table 3.2. Exact screening parameters for thergbstates of two-electron atoms in
the raNge L1<Z 2. .. e e e e e e a0 33

viii



Table 3.3. Locations of electrons with respertthe nucleus for ground states of
two-electron atoms in the range 1<Z<L2.......icccceeeiiiiiiiie e 35

Table 3.4 The exact screening parameter for diffedeit the first excited states of

two-electron atoms in the range 2<Z<10..........cc.itimmcmeecie e ieeeeea e 38



CHAPTER 1

INTRODUCTION

Since the early days of quantum mechanics, helioth leelium-like atoms
have been a subject of intensive study. Partigyldre ground state wave function
and the corresponding energy of such atoms have ¢tmesidered by many authors
during the last decades. There are in fact manyworea for these kind of
investigations. For instance, in the collision @sses the initial state of target atom
plays an important role where the state can berméted by a convenient form of
the related ground state wavefunction. Generalig, search for simpler accurate
wavefunction results in insight and a deeper undeding of such physical
processes. The well known variational method is @nthe important approachs in
the investigation of similar topics, where the mpmblem is to define, in a closed
and appropriate form, the correlated electron systesuch atoms by the choice of a
simple trial wave function.

For the ground state of a two-electron atom onesé® in general a product
of the identical hydrogenic orbitals, one beingiaction ofr, and the other of,, or
which is a linear combination of antisymmetrizedducts of one-electron orbitals

[12]. Alternatively, a Hylleraas (1929) type correlatadction depending explicitly
on the interelectronic separation can also be cr‘nc{Q]a These latter type of

functions, as clearly demonsrated by the pioneewngk of Hylleraas , generally
yield a rapidly convergent result for the varia@benergy. In any case, the accuracy
in the calculation is usually improved by introdugiprogressively a higher and
higher number of variational parameters into tra function. It is worth mentioning
here that some of such significant calculationthanliterature are the one performed
by Chandrasekhar and Herzbd#ﬂ, by Hart and Herzberg[5], by Hylleraas and

Midtdal[6,7], by Pekeris[8,9], by Rootharet al [2] by Weiss[l], by Schwartilo],
by Frankowski and Peke{Tsl,’lZ] and by Thakkar and Smitt{lS].In 1984



Freundet al [14] also dealt with the non-relativistic ground stateergy of the
helium isoelectronic sequence in their calculatiaihin the range of1< Z <10)
employing a 230 term trial function, and reported tenergies accurate to within one
part in10"™ based on the variatioanl procedure, which hasxceeded the limits of
accuracy in any experimental measurement. Also waotby are the recent

calculations due to Kleindienst and Emrich in 19@6] and de Saavedra and
Buendia in 199/16|.

Although one achieves the desired accuracy in enesigenvalue by
introducing a large number of variational parangiaerthe trial function, however
one quickly loses the physical meaning of thesarpaters, and also is required to
do a lot of cumbersome calculations in the theocaéstudy of the atomic properties
using such functions. Hence, there is a need taiml# simple, yet meaningful,
wavefunction by choosing a smaller number of patarse Several such attempts
have already been reported in the literature. Sive@ are the calculations by Green

et al [17], the one performed by Byron and Joachain in MG Banyard and
Seddon in 197319], Srivastava and Bhaduri in 19720|, by Wu in 198421], the
one by Abbott and Maslen in 198{62], together with Siebbeles and Le Sech in
199423, Le Sech in 199[24] and by Patil in 198425 and in 200326].

In a completely distinct framework, in 1995 Tripatét al [27] suggested an

alternative but simple two-parameter wavefuncticor the ground state by
introducing variational parameters in the Hamiltonirather than in the trial
wavefunction. The binding energies obtained in twsrk are in a reasonable
agrrement with very accurate multiparameter reselisrted by earlier workers.

In the calculations regarding with helium-like ammhe most important
parameter is the one due to the screening of nsiddguhe inner electron. Physically,
the nuclear charge is screened and this effectugexda change in the wavefunctions
corresponding to the interaction of the individakdctrons with the nucleus. Because
of this, one of the chapters of this thesis wiltds on the physics behind this
phenomenon and clarifies the interconnection batwtke screening and correlation
within the frame of such atoms under consideration.

Overall, it should also be emphasised that a phegsically meaningful, wave

function must satisfy a set of “cusp condition@fS] and should agree with the Fock



expansion[29]. Eigenfunctions of Hamiltonians for atomic and ewller systems

exhibit singular behavior at those points in coafagion space where two or more
charged particles come together and the resultmgntial becomes infinite. At two-
particle coalescences, derivatives of the wavefanctvith respect to cartesian
coordinates have a discontinuity characterizedhgyfamous Kato cusp condition.
There are also singularities involving more thar tparticles, such as the triple-
collision singularity in the helium atom, when twhtectron simultaneously approach
the nucleus. A formal expansion in powers of thpdmadiusr and its logarithm
Inr about this singular point was proposed by Fockhelium atom S-state wave
functions. These significant consraints will becdissed in detail by the second
chapter of the this thesis work which summarizesotetical background on the
problem of interest.

Additinally, supersymmetric quantum mechanics (SU3IM) [30] has been

found to give encouraging results towards undedstegnatomic systems in the
literature recently. Therefore, the present worlalso studied within the powerful
framework of SUSYQM, which is presented in Chater

Furthermore, the applications of a novel treatnterthe ground and excited
states of the two-electron atoms is discussed iaph 3. We have analysed
carefully the results obtained with the consideratf those calculated by numerical
techniques. It is seen that the results obtainednmsarkableFinally, the concluding

remarks and an outlook are given in Chapter 4.



CHAPTER 2

THEORETICAL BACKGROUND

2.1. The Variational Method

An exact solution of the Schrédinger equation isstine only for one
electron system. In larger systems, approximatehodst have to be used. The
variational method is one of the main approximatethmds used in quantum
mechanics for solving atomical or molecular stroesu The variational method is
used in physics both for theory construction arrccédculational purposes.

Using the method, we find an approximate wavefamcand corresponding
energy eigenvalue for the system. The basic id¢laeobtariational method is to guess
a " trial" wavefunction for the problem, which sists of some adjustable parameters
called “variational parameters.” These parametersadjusted until the energy of the
trial wavefunction is minimized. The resulting triavavefunction and its
corresponding energy are variational method apprations to the exact
wavefunction and energy.

Why would it make sense that the best approxirr@kewavefunction is the
one with the lowest energy? This results from thgational theorem, which states
that the energy of any trial wavefunctida is always an upper bound to the exact
ground state energy. This can be proven easily. Let the trial wavefiorc be
denotedb. Any trial function can formally be expanded abnaar combination of
the exact eigenfunctiotd. Of course, in practice, we don't know e, since
we're assuming that we're applying the variationathod to a problem we can't
solve analytically. Nevertheless, this doesnt enévus from using the exact

eigenfunctions in our proof since they certainijseand form a complete set, even

if we don't happen to know them. So, the trial waretion can be written as

O=3CW | A2)



and the approximate energy corresponding to thisefuaction is

[oHe
E[®] = (1.2
oo
Substituting the expansion over the exact wavedmstiwe obtain
Y.CiC [wiHy,
E[®] = (2.1.3)
Y.cic (v,
i

Since the functions$V; are the exact eigenfunctions Bf, we can usei-AltlJj =&,W¥,

to obtain

> CCe j Wy,

=0 2.1.4
E[q)] ZCIDC] J‘LPiDLIJj ( )

Now using the fact that eigenfunctions of a Heramtoperator form an orthonormal

set (or can be made to do so),
Elo]=—— (2.1.5)

We now subtract the exact ground state eneydyom both sides to obtain
ZCiDCj (5i _50)
El®|-¢g, =-
[ ] 0 ZCiDCj
i

Since every term on the right-hand side is greit@n or equal to zero, the left-hand

(2.1.6)

side must also be greater than or equal to zero, or
E[®]>¢, 12)

This explains the strategy of the variational mdth®he energy of any
approximate wavefunction is always greater thaedural to the exact ground state
energy &,. We may therefore select, perhaps by guessing,appyoximate trial
wave function that includes parameter that may &eed to minimizeE[CD]. We
leave these parameter in the trial wave functiash GaraluateE[db] in terms of them.

We then minimizeE[qD] with respect to the parameter:



OE[®]
oa

=0 . (2.1.8)

Where a is variational parameter of the trial wave funotidrhis is variational

principle! According to this principle, the reswill always be greater than the true
energy. We see then that we may choose a comglifatetion, containing as many
parameters as we please, and, if computer timeaitalle, we can obtain an answer
to any degree of precision. For our purposes, hewewe use parameters that
provide physical insight and for which the variatb principle can be implemented

analytically.

2.2. Some Local Properties of the Eigenfunctions

2.2.1. Asymptotic Behavior of the Wave Funicins

The energy eigenfunctions of the two-electron atema ions satisfy the

Schrédinger equation

HW(,, ;) = EW(FL. 1)

H = -%Df -%Dg —(ZIt)-(Z-1)+Ur,) (2.2.1)

Z being the charge of the nucleus. The asymptattabior of the wave function

when electron 1 is far away, is giv{3311,32,33] by
W(,1,) - n(r)®,(r,)  for 1 — o, (2.2.2)

(1) = Co(r™ +br" e Y (8,9,

a=QE)"”, w=(@Z-1/a-1

b =(—u)(l +u +1)/(2a)
with E; being the ionization energy of the atom or ibris the angular momentum
quantum number of electron 1 when it is far away] &@,(r,) is the lowest-energy
eigenfunction of the remaining electron. One ha) for (Is)(ns) states,| = Ifor
(1s)(np) states, and

®,(r,) =€, E=-E-Z7/2 (2.2.3)
for (Ls)(nl) states,E being the total energy.



2.2.2. Behavior of the Wave Functions for, - 0

When electron 1 approaches the nucleus, the Scigédequation reduces
to

—%wa -(ZIn)¥w=0Ww), 1, -0, (2.2.4)

where O(W ) is of finite order forr, — 0. Keeping other variables fixedV is

expanded in terms of spherical harmonics to get

Y=>G . (n)Y"6.9), (2.2.5)

3—;[&G|,m(f1)]—l(lr—+l)G.,m(r1) +27G ,(r)=0(*™") for r, -0 (2.2.6)

1

By substituting
G () =r (G +cn+..) (2.2.7)

into Eq. (2.2.6), and equating the coefficientshd two leading power terms, it is
obtained that

c,=-2¢/(1+1), c=-Zg forl=0 (2.2.8)

This relation[28] may be described as the coalescence condition.

2.2.3. Behavior of the Wave Functions for,, - 0

When the electrons are close to each other, ong gothe center-of-mass

frame of the two electrons whose reduced masjss/that

—OLWHWUr,)W=0oW), 1,0 (2.2.9)

Y is expanded in terms of spherical harmonicsofalhg similar steps [33] to
obtain

G n(fn) =Th(de +dir, +...) . dy=d/[2(1 +1)] (2.2.10)

The two electrons have evdnin the singlet state and oddin the triplet

state. Therefore the leading behavior fgr-. 0 is



WY d,@+r,/2) (singlet)

W dyly, (L4 1, 14X (6,,98,) (triplet) (2.2.11)
which may be described as cusp condition.

2.3. Kato’s Cusp Conditions and Fock’s Expansion

2.3.1.Kato’s Cusp Conditions

Two-particle cusps arise because the Coulomb ictiera between charged
particles diverges as they approach each othathier words, the eigenfunctions of

H contain singularities at the points of configuratispace where two charged
particles collide, which results in an infinite Goinb potential. Because of this fact,
it is necessary that a compensating divergenckerkinetic energy occurs in such a
way that the total energy remains finite; this dgence is manifested as a cusp in the
electronic wave function at zero interparticle sapan.

The true wave function must satisfy a set of “cugmditions” which
prescribe the proper derivative discontinuity a ttollision points. Kato[28] first
rigorously derived these conditions as a generapgnty of Coulombic systems,

arriving at the conclusion that in the limit thatot particles of massesy and m,
and chargesg, and q; approach each other and all other interparticktadces

remain larger than zero,

— = 4;9,q,%¥(r, =0), (2.3.1)

ij 1 =0

where g, =mm, /(m +m, )is the reduced mass of the two-particle subsystech

W is the average o# over an infinitesimally small sphere centered;at . Pack

and Byers-Brown [34] generalized Kato’s result by solving the multtpde
Scrodinger equation in the neighborhood of a twdiqgla coalescence.

Finally, we arrive at a set of cusp conditions dosingletS state of a two-
electron atom, which are valid without the need $pherically averaging. One
condition describes the collision of one electrow $he nucleus, and the other, the

collision of two (opposite-spin) electrons.



oY

Fr =-Z¥(r, =0), electron and nucleus (2.3.2)
r
"l =0
oV 1
e = —?P(rij =0), electron( ) and electron() (2.3.3)
i rj =0

2.3.2. Fock’s Expansion

Fock [29] showed that a formal solution for the helium wéwection could
be obtained in terms of hyperspherical coordinatesthat this would take the form

Y2 and InR, multiplied by functions of the

of a power series irR=(r? +r;)
hyperspherical anglesy and &,,. The lowest-order terms of Fock’s expansion for

the ground state wave function are,

W :1—Z(rl+r2)+%r12—zn3—_2f1fz cosd, InR (2.3.4)
7l

The second and third terms handle two-body colisiovhile the fourth term
is related to the three-body collision. The terncosel-order inR in the Fock
expansion is also known, and Myems, al[35 have verified that this term
eliminates the discontinuity in the local energyhe origin. The article also contains
an analysis of the behavior of the wave functiortha vicinity of these singular

points.



2.4. Earlier Studies

2.4.1.Accurate Analytic Wavefunctions for Two-electron Abms

(C. Le Sech, J. Phys. B.: At. MdDpt. Phys. (1997) L47-L50)

If one wants to show an example involving the weoial method, the works
carried out by Le Sech are appropriate for thigppse. In one of his papers, Le Sech
proposed a simple analytic two variational paramseteavefunctions for the
ground state oH ~,He, Li*,Be*,B* atom (ions). These functions fulfil the cusp
conditions at the singularities of the Coulombield, and include the correct
behaviour for large interparticle separations. Tderuracy of the calculated
energies is found to be abal@™ au.

The Schrodinger equation for a two-electron atosystem with nuclear
charge,Z, is written in atomic units, within the nonrelastic approximation and

with obvious notations as:

(_Eﬁg_5_5+i}p=5xp (2.4.1)
2 n rn I,
where 02 =02+02; the indices 1,2 and 6 stand for the three coatd® of

electrons 1 and 2 and all the (six) coordinateshef Laplacian, respectively. The
wavefunction, W , will be written as a product of two functiog=®Q. The
basic idea is to include in th@ function the orbital motion of the free electrans
the field of the nucleus, and to include the irgkxetronic correlation depending
explicitly upon the inter-electronic distaneg into Q. In this respect the present
approach has some similarity with the so-calledetated quantum Monte Carlo

theory, see for example the work of Schmidt and ddestz [36], and we think that
the functional E[W] given below, which is general and very convenientld also
be useful in this field. Siebbelest al [23] have shown that for any function,

Y =®dQ, written as a product, the calculation of the ggerE, reduces to the

computation of a single multidimensional quadratuee

. i
LZMHQ_}WG (2.4.2)

r1 2

E[w]:EO+jq>2[

10



where(12 =02 + 02 is the gradient and0,Q+ 0,Q is the dot product. To derive

this expression of the energy, we assume thatuhetibn, ®(r,,r,) is the solution

of the independent particle problem:

(_E iezs _E —éjcb(l’l, I’2) = EOCD(rl’ I’2) (2.4.3)
2 o,

For S states, the quadrature Eq.(2.4.2) reduces toeg-imensional one,
easily performed on any small desk computer. Futhgutation takes less than 1s.
For the ground stat@ is taken as (with the usual notation for the dpimctions

a(),()),Z is the true nuclear charge ahll is the normalization constant):

(. r,) = Ne e * (1) 5(2) - a(2) (o) (2.4.4)

Now we determine the functioﬁ(rl,rz,rlz), which describes the correlation

of the electrons due to their Coulomb repulsiois firesently chosen as:

Q(r,.1,,1,,) = [cosHAr, )+ cosHar, )1+ 05re ) | (2.4.5)

where A and a are variational parameters. The reason for ugiegcosh function
is to fulfil the cusp conditions at the nucleus aheé right behaviour at large
electron—nucleus distances. It is easy to see thlatcan be interpreted as a

screening constant whenor r,>>1 au i.e.:

lim>>1: ¥ - e ligleeM = g @ g2
and when

linr, andr, <<1: W - 1-2Zr, - Zr, + 05r,, _,_O(rlz'rzz’ rlzz)

The last expression is in agreement with the fiesims in the Fock
expansion. Let us point out here that the commowg teatake into account the
screening by exponential functions in the usualnegieell approximation, is not
suitable for the electron—nucleus cusp conditidie exponential function depends

linearly uponr,;;r, whenr,,r,<<1, and it is not able to correctly reproduce ¢hep

condition at the nucleus

11



lim r,—0 <‘;—T> =-Z and lim — 0 <‘3_r”’> -7
1 2

This is the reason we have chosen tbsh function. Ther,, part of the
function was already suggested by Hirschfelder9631[37], and we found this
choice is quite efficient in many problems. Thisndtion ensures the right
description of the electron-electron cusps condgiKato’s theoren{)28].

In the Table 2.1 the results for the different atsysrems are presented. The

wavefunction is writen explicitly below, omittinge obvious spin factor:

W = Ne2e 2 [cosHAr, ) + cost{Ar, )|lL+ 051,69 | (2.4.6)

Table 2.1. Ground state energies df ~,He Li*,Be*",B* calculated using the

wavefunction given in equation (2.4.6) and correspiog optimized values of the
parameterslt anda

Atom A a Energy for this Accurate Two-parameters
S values values method (au) energy results(Tripathy
(au) et al 1995)27]
H- 0.52 0.00 -0.5252 -0.5277 -0.5052
He 0.7 0.17 -2.9020 -2.9037 -2.8840
Li* 0.84 0.36 -7.2781 -7.2799 -7.2599
Be? 0.9 0.45 -13.6535 -13.6555 -13.6352
B3 1.1 0.65 -22.0286 -22.0309 -22.0104

Columns two and three of Table 2.1 report optimiaeues of the
variational parametersd and a, of the systemsH ~,He Li*,Be’",B* and the
corresponding calculated energies. In all casesgneement between experimental
and accurate values is better thar10°au. In the last column of Table 2.1, the
values calculated with a two-parameter wavefunctipripathy et al in 199$27]
is reported, in order to illustrate the improvemamtthis work. In spite of the
simplicity of the present wavefunction using onlyot parameters, the accuracy is
outstanding.

A further improvement can be obtained easily if t&en b(r, —r,)* with b
as a third parameter is added to cosh parteofuthction. It could be added in the

r,, factor, leading to the same accuracy. The exmessi( Qe+ 0.Q is a little bit

simpler if we choose the cosh part. Then the famctiow becomes:

12



W = NeZae 2 [cosHAr,) + cosHar, ) +b(r, -1, JJlL+ 05r,e™) | (2.4.7)

Table 2.2. Ground state energies dfi ~,He Li*,Be*",B* calculated using the

wavefunction given in equation (2.4.7) and correspiog optimized values of the
parametersi,a andb

Atom A a b Energy for  Accurate Three-

S values Vvalues values this method energy parameters

(au) (au) results(Wu
1982)[21]

H- 0.54 0.04 0.04 -0.5266 -0.5277 -0.5213
He 0.68 0.17 0.06 -2.9026 -2.9037 -2.8994
Li* 0.82 0.34 0.08 -7.2788 -7.2799 -7.2757
Be? 0.9 0.45 0.09 -13.6541 -13.655 -13.6513
B3 1.0 0.6 0.15 -22.0290 -22.0309

In Table 2.2 the optimized values of the parametdrs a and b is given.
In all cases the energy values are lower. The aggae between the calculated
energy values and accurate value is ad@Xitau. The improvement in the case of
the H™ ion is particularly significant giving a very goeacuracy for the energy of
this ion. In the last column of Table 2.2 , thestvalues calculated with a three-

parameter Wavefunctior[2]] are recalled, in order to show the improvement

achieved by the present wavefunctions.

It has been there shown that accurate values éoetiergies withir2 x107
au can be obtained using a quite simple two-pammedvefunction. If necessary, a
significant improvement can be obtained addingi@l tterm as shown above. It is
known that the description of inelastic processesolving two electrons

necessitates the accurate description of the @tiwal in the initial state of the

target.

2.4.2. Two-parameter Wavefunction For The Ground State OfHelium-like
Atoms (D N Tripathy, B Padhy and D K Rai, J. Phys. B: At. Mol.
Opt. Phys. 28(1995) L41-L46)

Tripathy et al. derived an interesting approacltampute the ground state
energies of the helium isoelectronic squence. Timgthod consists of introducing

variational parameters in the Hamiltonian ratheanthn the trial wavefunction.
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Physically, the parameters used, on the one haneers the nuclear charge and, on
the other hand, produce a change in the centrifogi@ntial term that appears in the
radial part of the one-electron Schrédinger equafldne interelectronic interaction is
repulsive. Therefore, mechanistically, one may khif this repulsion resulting in
some kind of positional displacement for the elmutr wavefunction such that the
correlated atomic state might not be associateg onth pure s orbitals. This
justifies the claim that correlation can also becoamted for by introducing
variational parameters in the Hamiltonian.

The motivation for adopting the alternative apploastems from the
consideration of the one-parameter wavefunction fioe two-electron atom

amounting to screening of the nucleus. It is obsgrthat the effective value of
5 . .
becomes Z -, where S :1_6’ irrespective of the valueZ, and has been

interpreted as the screening parameter. Alterngfivbe idea of screening the

nucleus can be reflected in the Hamiltonian of ggstem by writing it (in atomic

units) as
H=H,+H, (B
where
1 1 1 1
H =-=[0?-=02-(Z2-08) —+= 2.4.9
L NG 249
and
TR ﬁ(LiJ (2.4.10)
[ o,

The unperturbed Hamiltoniahl, is separable and hence the corresponding

Schrédinger equation is solved analytically. Tharage value oH with respect to

this unperturbed wavefunction can be obtained afuration , D(,B), of S.

Minimizing () with respect tog, it is observed tha8 comes out to be exactly

1—‘2 for the ground state irrespective of the valu&of
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With the above conclusion in mind, they assumehia mext step that an
electron, due to presence of another electron, el not only a screened nuclear
charge , but also a change in the centrifugal piteterm that appears in the radial
equation part of the Schrodinger equation for the-electron atoms. Consequently,

the Hamiltonian for a two-electron atom is reest

H=H,+H, an
where

i=1

1 1 1 1
H, r—_ﬂ[l rzj {?4—?} (2.4.13)

Here £ and y are the two variational parameteys:accounts for screening, and

HfZ{ =07 -(Z- ﬂ)r rz} (2.4.12)

and

for the change in the centrifugal potantial term.
The Schrédinger equation corresponding to the taped Hamiltonian |,

H, can be solved analytically. They obtain, as sohsj the following orthonormal

and complete set of one-electron wavefunctions :
Unlm(ri) = RnI (ri )Ylm (ﬁ) I = 12 (2414)

whereY,  (f ) are the spherical harmoni{:38] and R (r ) are the normalized radial
functions given by
R, (r) =N, p%e L2 (p) (2.4.15)

with

(n-1-1)1(2/-20,) (2.4.16)

"l 2(n=1+s)M(n-1+2s +1)

= (2\)_2Dn|)r (2]-)1

__ (z-p?
U= An-T+5)° (2.4.18)
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S =%[—1+ (2 +1)* +8y (2.4.19)
ary_F(N+a+l) _
Ln (X)—m'z( n,a+l, X) o >-1 (2420)
and
Flab) =1+ 2x+ 2D X (2.4.21)
b bb+1) 2

Here , N, are the normalization constants correspondingh® radial

nl

functionsR,1J,, are the one-electron energy eigenvalues, is the modified

value of I due to the parametey, L’ are the associated Lagueree polynomials
which are related to the confluent hypergeometmzfionsF (a;b; x ) the symboll
stands for the gamma functiom =123 ,is the principal quantum number,
I=0L2,....n=-1 is the orbital quantum number anch=-l,- +1....| is the
magnetic quantum number.

It is clearly observed thas may assume fractional values. AI§Q, has
come out to be a function of both and |, thus removing the orbital degeneracy. It

is further observed that iy - ,05 -1, then U, (r ) simply reduces to the

nim

. . . 5
solution for one-electron atomic system with a eos®l nuclear charg& _1_6

thereby again introducing the orbital degeneracy.
The unperturbed wavefunction for any state of a-@extron atom can be
constructed out of the above one-electron functiédngeraging H with respect to

this unperturbed wavefunction, an expression far #mergy, E(8,y ) can be
obtained, which is then minimized with respecthe parameterg and y. Thus the
minimum of energy and the corresponding optimunuesilof the parameteyd and
y are ascertained.

For the ground state, in particular, the unpertdrib@avefunction has been

chosen as
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l-IJO(I‘l’rZ) :U100(r1)U100(r2) (2422)

Averaging H with respect toW,(r,,r, )it is succeeded in obtaining the

following closed-form expression fd&(8,y :)

E(BN=2T (2.423
where
T1:_(Z_'8j ’ TZ:_ZIB(Z_IB)' , Ta=- 280 (Z_ﬁj
1+s, (1+s,) 1+2s5 {1+,

pletlns) 1 o) j(l_ZSoH_l{(Z—ﬁ)(ll—SSo)}

Talrsflrasf B-sla-zs) 2m [T 2-1TR)] T Res)aves)

with y related tos, through the equatioy = so(sO +1)/2. HereT, is the expression

for (H,) while T, is that for<i>. T, and T,, respectively, are the expectation
r12

values of the second and third termsHyf in Eq. (2.4.13). It is worth mentioning

here that some circuitous manipulations were needeld evaluating(l/ r12>. The

difficulty arose only because of the possibilityaths, might assume a fractional
value. Further, it is observed that in the limit— , €he right-hand side of

Eq.(2.4.23) reduces to an expression that is idanmivth the one obtained for the

energyll (S )involving only the screening parameter. This obsgon indicates that
the deduction leading to the terms in the rightehside in Eq. (2.4.23) is correct.

An expression for(aE/ 6,8) was obtained analytically, which, when equated
to zero, yieldedf as an explicit function ofy. If y - 0, this function gives
£ = 5/16, irrespective of the valu& , as expected. Replacing by the latter
function, E(S,y ) is reduced to a function of alone, and then minimized with
respect toy. The binding energy (BE) and the correspondingnaytn values ofy

and S for the ground state of the helium isoelectroregquence for the nuclear
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charge 1<Z<12 are the computed in a single calculation. Theselteesare
displayed in Table 2.3 along with the binding emesgeported by some earliers
workers for comparison.

It is further observed from Table 2.3 thptcomes out to be negative, and
both £ and y depend on the value of the nuclear chaggdancreases withz while
the absolute value ofy decreases witlZ . It appears that the values of the bgth
and y will stabilize for large values oZ . The dependence g8 on nuclear charge
Z is in quite striking contrast with the one-paraen€bnly screening) trial functions
where = 5/16irrespective ofZ. It is concluded that the calculation simple, and
yields binding energies comparable with that of theltiparameter cumbersome
calculations reported by several workers. Seconitllifas been demonsrated that
physically meaningful parameters can be inclugethé Hamiltonian rather than in
the trial function. Further, since the sanfe and the same/ values have been
chosen for both the electrons, this method canalséyeextended to doubly—excited

configurations in which both the electrons occups $ame orbital.
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Table 2.3. Results for the binding energies (itrétss), 5 and y for the ground state dl -, He and He - like ions

H- He Li* B B* C* N O F™ Ne* Na* Mg

BE? 0.52775 2.90372 7.27991 13.65556 22.03097 32.408247/8144 59.15659 75.53171 93.90680 114.2818836.65694
BEb 0.47266 2.84766 7.22266 13.59766 21.97266 32.344€67/2266 59.09766 75.47266 93.84766 114.22266 93660
BE® 0.506 2.873 7.246 13.621

BEOI 0.508 2.890 7.267 13.65 22.02 32.39 44.76

BE® 0.5226 2.895 7.269 13.643

BEf 0.5213 2.8994 7.2757 13.6513

BE? 0.50552 2.88403 7.25990 13.63527 22.01048 32.383@2/6071 59.13578 75.51083 93.88587 114.26090 3383836
:8 0.54378 0.62630 0.65349 0.66681 0.67469 0.67989 838 0.68633 0.68846 0.69015 0.69154 0.69269
—y><102 7.62875 4.41755 3.06644 2.34224 1.89324 1.58816 67248 1.20064 1.06998 0.96495 0.87867 0.80654

 Exact value reported by Freund et al in 1@344; £ these particular values have been taken from thr ofoThakkar and Smith in 197[13]
® One-parameter results introducing only screenargmeter(3 = 5/16)
¢ Two-parameter results of Srivastava and Bhadutbin7 [20]
4 Two-parameter results of Abbott and Maslen in 1&82}

¢ One-parameter results of Patil in 19{85]
" Three-parameter results of Wu in 1£{82]

9 Two-parameter results in the present calculation.
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2.4.3. Simple Wavefunctions Fofis)(ns)**S and (is)(np)-*P States of He
and isoelectronic ions ( S. H. Patil, 2003 PhysicReview A 68, 044501)

To provide an insight into physical structure of ieeat states of He and He-

like atoms, the work of Patil can be demonsratec apod example. Patil have
developed model wave functions for the excit@s)(n)*S and (Is)(np)**P

states of He and isoelectronic ions, incorporatimg asymptotic behavior when
one of the electrons is far away, coalescence prppehen it is close to the
nucleus, and cusp property when the two electroasckse to each other. They
lead to accurate values for the energies and ptioperties.

The eigenfunctions of the two-electron atom and gatssfy the Schrédinger

equation

HW(,. ) = EW(FL. 1)

H = —%Df —%Dg —@ZIE)~(Z-1,)+ ) (2.4.24)

Z being the charge of the nucleus.

Wave functions for excited (1s )(ns) states:
Model wave functions for the exciteis)(ns)**S and (1s)(np)"*P states
are

W5 = Ad(n)e ™ £ e o (n)1.(r,) (2.4.25)

D(r) = (r +6,)"""F(L-n.22a(r +¢,))e ™ g, (r)

where A is the normalization constant, and — signs are for the singlet and triplet

states, respectively, and, are the corresponding correlation functions. le th
expression ford(r ) F is the confluent hypergeometric function, aadand u,
are related to the ionization ener@y as in Eq. (2.2.2). This choice @i(r may

be regarded as a hydrogenic wave function for titercelectron with scale factor

a, and shifted byc, . For the correlation functions, it is taken that
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f,(r,) =1-|e*=/1+24,)| (singlet)
f(r,) =1-|e* = /1+41)|  (triplet) (2.4.26)

which satisfy the cusp condition for the leadihg=0 and |, =1 terms for the
singlet and triplet states, respectively, fpr— 0. For g,(r ), which is described as

the coalescence function,

Oo(r) =1+Be™ (2.4.27)

with B, and b as parameters. Since the excif@d stgtes have nodes and extend

over large distances, incorporating asymptotimgem Eq. (2.2.2). For large ,

one has

F@-n,22a,(r +c,))
=|-)™/nf2a (r + ) x A-{[nn-D)[2a,(r +c)})  for r — o (2.4.28)

Using this in Eq. (2.4.25) , carrying out an expansh powers ofl/r , and
comparing with the required asymptotic behavioEeq (2.2.2) leads to

¢, = (1/2a,u)[n(n-1) - u(u, —1)] (2.4.29)

so thatc, is determined in terms of the ionization energy. ifioorporate the

coalescence condition in Eq. (2.2.8) , it is noteat €“ — 1-Zr for r -~ 0 has
the correct coalescence behavior. For imposingliaigavior in®(r ) it is carried

out an expansion in powers of Writing

FL-n_22a(r+cy)) = nis (r+¢,)’ (2.4.30)

i=0

and expanding thé(r in Eq. (2.4.25) in powers af, the coalescence condition
in EQ. (2.2.8) leads to

B =2 %L (2.4.31)
b+a +t -Z
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l n—l_ i n-1 i
4 =C—{n—l—u1—leico Zsco}
=0 i=0

0

Thus, the only remaining free parameteidi(r is the exponenb in Eq. (2.4.27).

Wave functions for (1s )(np) state:

For the(1s)(np) states, since the penetration of the outer eledtnto the
inner region is small and its wave function is elés the hydrogenic wave function,

it is considered a wave function

W(T,5,) = Ald(r)e ™ + e d(r,)|f. (1) (2.4.32)
®(r)=rF L-n42ar)e * B(cosd)g,(r)
where A is the normalization constant, and— signs are for the singlet and triplet
states, respectively, and, are the corresponding correlation functions. le th
expression ford(r ) a is related to the ionization enerdy, as in Eq. (2.2.2) ,

which ensures that the wave function has the cbregponential part in the

asymptotic region. For the correlation functiofis it is taken the functions in Eq.
(2.4.26) which satisfy the cusp condition in Eq2(21)for the leadingl,, =0 and
l,, =1 terms for the singlet and triplet terms, respettivfor r,, - 0. For g,(r)
which it is described as the coalescence function

g,(r)=1+Be™ (2.4.33)
with B, andb as parameters. To incorporate the coalescencenydp Eq. (2.2.8)

, it is noted thaie™ - 1-Zr for r - 0 has the correct coalescence behavior in Eq.
(2.2.8) for the leading = Q@erm. The function®(r )n Eg. (2.4.32) corresponds to

a state withl = 1®(r) is expanded in powers of and impose the coalescence

condition in Eq. (2.2.8) fot = ,1which then leads to

B, =(Z-na)/(2b+na —-2) (2.4.34)

Thus, the only remaining free parametedifr is the exponenb in Eq. (2.4.33)
Correlation functionsf,(r,,) :
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An estimation is deduced for the parameterin Eq. (2.4.26) forf,(r,,) by

considering the Schrédinger equation in some sigeddmain. For the singly

excited (1s)(nl )states, consider a wave function of the form
W(r,r) =, (r,r,) f.(r) (2.4.35)
D, (1,1,) = B () P77 (1) + T (1) DL (ry)
where @; are the hydrogenic wave functions with nuclearrgeZ and principal
quantum numben. Substituting this in Eq. (2.2.1) leads to
|.(1/ r, —1 rz)(blz (r1)¢§_1(r2) t (l/ r, —1 rl)

X CDi_l(rl)cblz (rz)] fo(r) —®P.(n, rz)sz f.(rp) - Zlilzcb: (r, I’z)] DﬁlZ f.(n2)

={E+2212+ |z -1 120w (7 (2.4.36)

Since the(ls)(nl )energies are close to the sum of the hydroger@mess

E=-2%/2-(Z -1%/(2n?) (2.4.37)

It is neglected the term on the right-hand sid&(2.4.36) For the singlet states,

since ®_(r,,r,) is symmetric under the interchangerofnd r,, it contains only
even power terms in, . Therefore,
(i —ij f, —0%,f, =0O(r,) (2.4.38)
r.12 r.l

whereO(r,,) — 0 for r,, — 0. Using an expansion fof, in Eq. (2.4.38), we get
from the first two terms

f, =1+qr, +Q,r5+... q=1/2, q, :—%(1/r1—1/2) (2.4.39)

The first relation is the cusp condition in (EcR.21) . Comparing the expansion in
Eq. (2.4.39) with the expansion d¢f(r,,) in Eq.(2.4.26), it is obtained that

A, :%(1/ r,—1/2) (2.4.40)
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It is required that this equation is satisfied fpr 4/[3(2 —1/3)]. The reason for this
choice ofr, is that the inner electron is found mainly in tegion of1/Z and2/Z

and it is takenr, to be about(4/3Z )and include some screening effect. Using this
value ofr, in Eq.(2.4.40) one obtains

A =(Z-1/2 (2.4.41)

For the triplet state, when the two electronscéoee to each other, it can be written
®_(r,r,) =, RO(R), R=T,+F, forr, -0  (2.4.42)
Substituting this in Eq.(2.4.36) leads to
-2, f_ = (2/r,)(0f /ar,) + @/, -1/r)f =0(r,) (2.4.43)
Using an expansion fof_ in Eq.(2.4.43),

fo=lt g, + Qi+ 4 =14, q= —1—10 W, -1/4) (2.4.44)

The first relation follows from the cusp conditiom Eq.(2.2.11) Comparing the

expansion in Eq.(2.4.44) with the expansion bf(r,,) in Eq.(2.4.26),

A=

gl

AU'r, - 1/4) (2.4.45)

Sincel/r, is the dominant term, this expression is larganti, in Eq.(2.4.40). by

a factor of about 6/5, and for simplicity it is takthat

A =6, /5-3Z-1)/5 (2.4.46)

where the expression fot, in Eq.(2.4.41) is used.

Now the energies of the states can be computed tissnmodel wave functions.
Excited (1s)(ns) states:
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For excited (1s)(ns) states, the wave function in Eq. (2.4.25) is used t

deduce the energy from the Hamiltonian in Eq (3:2.1

E=(WHY)/(W|W) (2.4.47)

The shift parameterc, in the wave function®(r )in Eq. (2.4.25) is
determined by the relation in Eq. (2.4.29), whicis@wes the asymptotic behavior
in Eq. (2.2.2). The parametd; in the coalescence functiog,(r i Eq. (2.4.27)
is determined by the relation in Eq. (2.4.31) amgdi from the coalescence
condition in Eqg. (2.2.8). Finally, the parametetgsin the correlation functions
f,(r,) are determined by the relations in Egs. (2.4.41) @.4.46). The remaining
free parameter is the expondmntin the coalescence function in Eq. (2.4.27), which
is determined by using the virial relation in ER.2.12). The quantitiea, andu, in
Eqg. (2.4.25) are related to the ionization enegyas in Eq. (2.2.2), which is related

to the total energy as in EqQ. (2.2.3). The eneEys therefore determined self-
consistently by iteration, such that the input eatd E in Eq. (2.2.3)s equal to the

output value in Eq.(2.4.47). It has been given that values ofb, the calculated

values of the energy, the normalization constarin Eq. (2.4.25), and ofr,),(r,,),

in Table 2.4. They are close to the known accurallees[39,40].
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Table 2.4 The values of the parametdr in the coalescence function in Eqg.
(2.4.27) , normalization constak in Eq. (2.4.25) , the predicted values of the

energy, the expectation valués),(r,,) and accurate values from Rid] given in
brackets, for (1s)(2s )and (1s)(3s) states

(1s)(29)'S (1s)(2s)°S (15)(39)'S (15)(3s)’S

He b 1.14 1.41 0.91 0.83
A 0.2957 0.3599 0.1681 0.2263

-E 2.1455 2.1751 2.0615 2.0686
(2.1460) (2.1752) (2.0613) (2.0687)

(r) 3.025 2.552 6.482 5.865
(1) 5.373 4.443 12.24 11.01

Li* b 2.00 9.5 1.35 1.31
A 1.289 1.388 0.7091 0.8238

-E 5.0381 5.1103 4.7332 4.7519
(5.0409) (5.1107) (4.7338) (4.7521)

(r) 1.673 1.496 3.479 3.235
() 2.899 2.560 6.481 5.998

Excited (1s)(np) states:

For the (1s)(np)**P states, the wave function in Eq. (2.4.32) isduse
calculate the energy as in Eq. (2.4.47). The paramB, in the coalescence
function g,(r) in Eqg. (2.4.33) is determined by the relation op E2.4.34) obtained
from the coalescence condition in Eq. (2.4@) the outer electron wave function
| =1. The correlation parametet, is determined by the relations in Egs.(2.4.41)
and (2.4.46). The remaining free parameter is ttppeentb in the coalescence
function in Eqg. (2.4.33), which is determined byingsthe virial relation in Eq.
(2.2.12), except in the case ds)(np)’P states for whichb is determined by
minimizing the energy. Even in this case, the Vir&io in Eq. (2.2.12) comes out
to be — 199, which ensures good quality of the wave functibhe parameter,

in EQ.(2.4.32) is related to the ionization ener@y in Eqg. (2.2.2)which is
determined self-consistently by iteration, suchtthlae input value oE in
Eq.(2.2.3) is equal to the output value in EQq4.&7). It has been given that the

values ofb, the calculated values of the energy, the norraatin constantA in
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Eg. (2.4.32), and ofr,),(r,,), in Table 2.5. They are close to the known aceurat

values[39,40] :

Table 2.5. The values of the parameterin the coalescence function in Eq.
(2.4.33) , normalization constak in Eq. (2.4.32) , the predicted values of the

energy, the expectation valués),(r,,) and accurate values from R¢40] given
in brackets, for (1s)(2p )and (1s)(3p ) states

(s)(2p)'P (1s)(2p)°P (1)(3p)'P (19)(3p)°P

He D 0.96 0.87 0.95 1.15
A 0.1146 0.1178 0.0664 0.0699

-E 2.1235 2.1326 2.0551 2.0577
(2.1238) (2.1332) (2.0551) (2.0577)

(r) 2.925 2.730 6.698 6.521
() 5.165 4.803 12.67 12.33

Li* b 1.57 1.21 1.53 2.03
A 1.172 1.191 0.6872 0.7222

-E 4.9928 5.0263 4.7201 4.7295
(4.9933) (5.0277) (4.7202) (4.7305)

(r) 1.520 1.428 3.405 3.329
() 2.586 2.442 6.331 6.188

We see that the predictions of these wave functionthe energies ant,), (r,,),

are in close agreement with the values obtainem fetaborate calculatior{§9,40].

This emphasizes the importance of the local pragserin the development of
accurate model wave functions which give a clearsgective of their physical

structure.
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CHAPTER 3

ALTERNATIVE TREATMENTS FOR TWO-ELECTRON ATOMS

In the first section of this chapter, we have apigad to solve Schrédinger
equation for atoms having two electrons in an a#ieve framework. However, after
some algebraic work we have realized that superstnenquantum mechanics
(SUSYQM)[BO] in its present form cannot be used properly duthéocorrelation
term. Nevertheless, this failure directs us toadtrce another prescription to solve
bound state energies and wave functions of helinchreelium-like atoms which is
discussed and presented in the second section.stihessful method leads us to
present appropriate screening parameters, to awlkdge such discussion has not

appeared in the related literature.

3.1. An Attempt to Solve The Related Problem

As mentioned above, one can easily sees that SRI8\treatment technique
IS not appropriate for solving such systems undmrsideration because of the
correlation term appearing due to the interactietwien the electrons. To see this
drawback, which is significant to develop an effieetmodel in the following

section, we proceed with (in atomic units)

H=H,+H, 3.1.1)

where

Hy =-£Df-ED§—(Z-ﬁ)(r&+£j (3.1.2)

and
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= Lo /{Lij _ (3.1.3)
r12 r1 r2

In the above equatiors, r, are the positions of electrons with respect tonheleus
having a charge o with infinite mass, and, is the distance between electrons.

For those electronic configurations of the systemwhich two electrons are at
unequal distances from the nucleus, the outerrelechould experience a smaller
effective charge than the inner one. In other woedsh electron is partially screened
from screening the full charge of the nucleus doethe presence of the other

electron. This would suggest introducing an appab@r parameter,5, in the

calculations.

Assuming that

ey
r.12 rl r.2

the Hamiltonian,(H,) = (W(r,,r,)|H,|¥(r,,r,)), incorporating a perturbation due to
the correlation term vanishes. In this case, Ed..23 gains a physical importance,
the solution of which reflects also the correlatiefiects indirectly. This is in
agreement with the well known fact from the literat that the inclusion of electron
correlation in the Hamiltonian accounts for theegtiing precisely.

Consequently, the Hamiltonian is formed as below,

1 1 1.1
- =-Loi-Lot-e-p{2+1)
1 2

The unperturbed HamiltoniarH,, is separable and hence the corresponding

Schrédinger equation is solved analytically. Eadhtleese independent electron
picture is the same as the Schrédinger equatiothéoHydrogen atom, leading to the

full unperturbed solutions. In SUSY QM, the eigemdtions of these electrons are

®, =re " and ®, =r,e @A (3.1.5)

for 1. electron and 2. electron, respectivelgt tan be inferenced easily fr({ﬁo].
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For the first electron, the appropriate supperpaens

1 @
W, =—— "1
T (3.1.6)

We can have the partner poteniiélg, ) , for @,

1
V2

_@-B°_Z-B) (3.1.7)
=) 2 r,

V‘(¢1) :W‘D12 - W¢1

For the second electron, the appropriate superpatais

1 o
W, =-———2
P, \/ECDZ

=Lt (_z-p+L
Wy, = ﬁ( Z-p+—) (3.1.8)

2
and for®,the partner potentiaV_(qJZ) is

—w 2_ L\
V(q,z)—W -—W,

- ®, \/E ®,

Ve, = (Z —2,5)2 _ (Zr‘zﬁ) | (3.1.9)

The total partner potentiaV,,, is

Vooy. 4y, 2P _@2-B,@-B) _(Z-B)
_(‘D) ‘(q’l) ‘(q’z) 2 rl 2 r2 ’

_Z-B_Z-pB . (3.1.10)
I r

1 2

Vo) =(Z-B)°

We know that the difference between the partneemi@l and the potential of the
system equals to the ground state energy. That's

Ve =V - E (3.1.11)
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and

E,=E,, +E, =~ (Z —2,8)2 B (Z _2,8)2 _ —(Z —,3)2 (3.1.12)

The ground state energies bif~,He, Li*, Be*,B* using Eq. (3.1.12) are fairly in

agreement with the experimental results. Howetlegse results are not reliable
from the physical point of view since a specifalue of the screening parameter
(5/16) has been used throughout the calculations. sggest a physically more

reliable model in the next section.

Table 3.1.The ground state energies within the éafEq.(3.1.12)

Atom Present Accurate
Results(au) Energy(au)

H- -0.472656 -0.5277

He -2.847656 -2.9037

Li* -7.222656 -7.2799
Be?* -13.59766 -13.6555
B3 -21.97266 -22.0309

3.2. Accurate Calculations for Two-Electron Atoms

Physically, the parametes, introduced above screens the nuclear charge and

produces a change in the wavefunctions correspgrtdithe interaction of the each
electron with the nucleus. Bearing in mind that theerelectronic interaction is
repulsive, one may think of this repulsion resgtim some kind of positional
displacement for the electronic wavefunctions. Tjbiifies the claim put forward
with Egs. (3.1.2) and (3.1.4) that correlation edso be accounted for by introducing
a correct screening parameter.

In this section of the work, for both the grountdte and excited states of He

and He-like atoms, the accurate values of screepargmeter,3, is obtained.

Additionally, the relation between the parameteld aome expected values of these
atoms is exhibited. The values computed are aggremith the literature, which
proves that the treatment is reliable.
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3.2.1. Accurate calculations for the groundtate of two-electron atoms

To proceed, in the ground state of these atoms amsider the form of the exact

energy

E=-(z)°+AE (aAp.

where = 0 and AE is the correction term to the energy value withire

consideration of electron correlation, and

E=E =-(2-Bf=—2f -p*+2z8 (3.2.2)
in case of screening, leading to a connection betvemergy expressions
AE = -7 +273 (Bp

of different physical considerations.
In order to provide an insight into the physicaluna of the screening parameter, we

obtain

B,=2% Z® -DE (3.2.4)

using Eqg. (3.2.3). Though mathematically we haveved at two roots forg, the
substitution of Eq. (3.2.3) into (3.2.4) and a @alrstudy of Eq. (3.1.12) direct us to
choose the physically reasonable lower root dubeqhysical fact thaZ > 5 The
dependence off on nuclear charg& , in Eq. (3.2.4), is in quite striking contrast
with the previous calculations used trial functionbere, in general,3 =5/16

irrespective ofZ. The Eq. (3.2.4) thus justifies the discussiofi2if]. As far as we
know, this feature has not been perceived in aticixgay until now.

The accurate values of screening parameter foerdifit atoms having two
electrons are shown in Table 3.2. In calculatingséh parameters, exact energy

values which are taken from the works in Re{ﬂ5314] are employed within the

frame of Egs. (3.2.1), (3.2.3) and (3.2.4).
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Table 3.2. Exact screening parameters fthe ground states
of two-electron atoms in the range 1<Z<12

Atom('s) | ExactEnergy(au) | AE(Eq.321) | B(Eq.324)
H- -0.52775 0.47225 0.273535
He —2.90372 1.09628 0.295969
Li* —-7.27991 1.72009 0.301869
B —-13.65556 2.34444 0.304656
B —22.03097 2.96903 0.306283
c* -3240624 3.59376 0.307352
N> —-44.78144 4.21856 0.308106
o’ -59.15659 4.84341 0.308667
F* -7553171 5.46829 0.3091018

Ne -93.90680 6.09320 0.3094479
Na® -11428188 6.71812 0.3097296
Mg'® -136.65694 7.34306 0.3099640

Clearly, S slightly increases with increasirgy. In addition, we observe that there is
a universal relation between the reduced enf@gy) and the reduced screening
parametel(3/Z) such that
2
5(2.0) _-(2-p) :(1—£j (3.2.5)
£(z,=0) -(z) Z

for S—states. The present result indicates another sitegepoint. HereZ behaves

as a critical screening parameter for which thedibigp energy of the level, Egs.
(3.1.12), (3.2.2) and subsequently (3.2.5), in jaesbecomes zero. It is of interest
however to examine whether such a relationshitss \aalid for / # 0O states.

Afterall, we wish to generalize the framework ofr @liscussion by focusing
on Eq. (3.1.4), in which there are two unknowng positions of electrons with

respect to the nucleus,,r,) and the distance between interacting electfog}. It

is therefore obvious that there is a need for arsg@quation to be able to estimate
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these two unknown observables. By the use of Heesgrs uncertainty relation, we
propose a similar idea to that of Yukawa for ther@ation between the electrons,

AE At =h:Ax=<r12>=cAt:><r12>=% (3.2.6)

Throughout the work presented here we work in atoomits, Eq. (3.2.6) is thus
formed as<r12>=]/AE. During the electron-electron interaction, we @pect a

considerable change in total ene(ﬁy: £+AE), on average, due to the correlation
(AE) visualized as in EQ.(3.2.6), keeping in mind ttie time required a photon

exchange between these charged particles is duite¢ due to the photon moving
with the speed of light.
Therefore, in the light of Egs. (3.1.4), (3.2.3114B.2.6) one gets

Ki +i> ~ 927 _/3} (3.2.7)
n o

and with the use of either Eq. (3.2.2) or Eq. 8.,2he energy expression in a closed

E:Ri +i>—z} (3.2.8)
rl r2

It is useful at this stage to remind ourselves thase results are in a very

algebraic form is given as

good agreement with a significant but ongoing disan in the literature. In brief,
Eq. (3.2.8) clarifies explicitly that for lowZ values, when one of the electrons
coalesces with the nucleus the radial distributibthe second electron extends over
several atomic units. As the charge increasesdbend electron moves nearer to the
nucleus. The equations above, also agree witBtie’'s suggestion that the radius
of hydrogen-like atoms is inversely proportionakiwthe charge of the nucleus if
electron-nucleus problem is treated independentlifhout considering the
correlation effect.

Additionally, Egs. (3.2.7) and (3.2.8) also revediat one needs either a
reasonable parameter reletad to the screeningt affethe accurate positions of

electrons to obtain exact binding energies for dhges of interest. To end up this
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discussion, we provide%]/rlﬂ/rz) values in Table 3.3 for the atoms appeared in
Table 3.2 considering the corresponding exActvalues. The comparison of the
present results(]/rl+]/r2>, with those of Ref£§.41,42,43] confirms the physics

behind the idea proposed in Eq. (3.2.6)

Table 3.3. Locations of electrons with respedh®nucleus
for ground states of tweetron atoms in the range 1<Z<12

Atom('s) | (Yr, +1r,)(Eq.327)
H- 1.726465
He 3.704031
Li* 5.698131
B& 7.695344
B 9.693717
c* 11.692648
N 13.691894
o> 15.691333
F7 17.690898
NE' 19.690552

Na® 21.690270
Mg™™ 23.690036

3.2.2. Accurate Calculations for The Excitedt8tes of Two-Electron Atoms

Here, in order to generalize, we extend the preseanario to the excited
states. For simplicity and clear understanding, fasically assumed that an electron
is in the ground state while the second one (oelstron) sits in the first excited
state. As expected, only the outer electron isesmé from seeing the original
nuclear charge by the inner one. The Hamiltoniathefsystem is then formed as
below

H=H,+H, 1)
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Ho=-£Df-ED§-(£+(Z_ﬂ)j (3.2.10)
271 2

H,=1 - (321
r12

RN

The exact energy value in this case for the syst@msidered can be expressed as

E=E,+E, +AE

2 2
E=-£ - % AE (3.2.12)
2 2(n, +1+1)
Z? z?
E,=-— forthe inner electront, =-——  for the outer electron
2 2(n, +1+1)

where n, is radial quantum numbet, is orbital quantum number anfE is the

correction term to the energy value within the ecdesation of electron correlation.

As discussed in the previous section, the corredipgrtotal energy values can easily
be expressed by the SUSYQM

e- 2 _(Z-BF
2 2(n +1+1)

_ 27 z° - B2 +228
E=-2 - +
2 2(n +1+1° 2(n +1+1)

(3.2.13)

as result of that, using the same analogy in thieeeaalculations where EQs.(3.21)-
(3.2.3), one can easily get

2
pE=_P 228

2 151 (3.2.14)

Remembering Eqg. (32.4) and using the exact enerpesdor differentl, we can

compute the screening parameferin Eq.(3.2.11) such as

B=2Z+:2%-2(n, +1 +1)°AE (3.2.15)
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It is obvious that the lowefs value is physically acceptable as discussed iaildat
the ground state calculations. For clarity, theuagte values of screening parameter
for different | in the first excited states of different atomghe range 2<Z<10 are
shown in Table 3.4. However, it is stressed that care readily apply the present
technique, if it is required, the other excitedesgavithout causing any problem.

In calculating these parameters, the exact eneafjyes are taken from the

works in Refs.[39] and used within the frame of Egs. (3.2.12), (3.Rabt (3.2.15).

37



Table 3.4: The exact screening parameter for @iffelr in the first excited states of two-electron atamthe range 2<Z<10. All values

are in a.u.
(1S29)*'s (1S2S)°S (1S2P)'P (1S2P)*P
Atom Exact AE Jé; Exact AE Y& Exact AE Jé; Exact AE B
Energy | EaG212)| gq3.2.15| Energy | Ea-G212)| gq@3.215)| Energy | EaB212) | gq@3215| Energy | Ea-B212) | gq(3.2.15)

He -2.1460 0.354 0.9193 -2.1752 0.3248 0.8161 -2.12380.3762 1.0048 -2.1332 0.3668 0.967y
Li* -5.0409 0.5841 0.9198 -5.1107% 0.51438 0.7897 -4.99330.6317 1.0134 -5.0277 0.5973 0.9453
Be* -9.1849 0.8151 0.9212 -9.2972 0.7028 0.7786 -9.11/080.8892 1.0190 -9.1750 0.825( 0.9340
B3 -14.5785| 1.0465| 0.9223] -14.733P 0.8911 0.77p6  7MB4| 1.1477 1.0228 -14.5731 1.0519 0.9276
c*+ -21.2220 1.2780 0.9230 -21.4208 1.0792 0.7687 9RBO| 1.4067 1.0254 -21.2217 1.2788 0.9232
N°* -29.1154 1.5096 0.9236 -29.357[7 1.2673 0.7661 524.9| 1.6659 1.0273 -29.1205 1.5045 0.9202
o° -38.2588 | 1.7412| 0.9240 -38.544p 1.4550 0.7642 790 1.9253 1.0288 -38.2694 1.7306 0.9180
E7 -48.6521 | 1.9729| 0.9243]  -48.981p 1.6434 0.76p7  4@4| 2.1848 1.03 -48.6684 1.9566 0.9162

Ne¥* -60.2953 2.2047 0.9246 -60.668p 1.8314 0.76[16 5580 2.4444 1.0309 -60.3175 2.182% 0.9148
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In addition, recalling the previous subsection gkdtions regarding the Heisenberg’s
uncertainty relation to predict the distance betwedgeracting electrons for the

present case, we obtain

<r12>:E=M (3.2.16)
AE - p2+27Z8

where#n =c = 1 Bearing Eq. (3.2.11) in mind, we have

1\_AE_ -p+2Z
<r2> B2 +1+1) (3.2.17)

where r, is the distance between the outer electron andteusicUsing the exact

values of § for different quantum states (as in Table 3.4), cae easily calculate
- 1 .

the predictions for<—>, which reproduces reasonable results when compared

r

those of other calculatioflm].
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CHAPTER 4

CONCLUSION

The helium atom and isoelectronic ions are univeesehmples which
illustrate the properties of few-electron atoms aods, and the complications
introduced by many-particle systems. By the conmatiten of this essential point, we
have been principally concerned in this work wiihding correct secreening
parameters for the systems considered. We haveveloséhat for helium and its

isoelectronic series the size ®fscales with the nuclear charge. It has been also

demonstrated that physically reasonable parametars be included in the
Hamiltonian rather than in the trial functions.

The screening factor is a refinement taking the estrgy of the nuclear
charges by the electrons into account. Since a&surg factor complicates in general
the calculation of off-diagonal matrix elements,nyaheoretical techniques do not
include this parameter in the wavefunction duehi structure of their framework.
Therefore, one can expect that the results will déss laccurate in cases where
screening becomes important; i.e. at smaller indear distances of two-electron

molecules, or for dissociation limits involving raye atomic ions, see Re[f23].

However, the present approach would be helpfukemaving such deficiencies. In
addition, the relatively simple and compact formttué present wavefunction would
be of interest for the calculation of electroni@ansition moments needed in
dynamical studies, where intermediate and largamniclear distances are involved.
Clearly, considerable additional work is still neddto extend the present
scenario to more complex cases of helium andsdsléctronic ions with the more
physical consideration involving other physical graeters. Further, since the same

£ value has been chosen for both electrons, ouradethn be easily extended to

doubly-excited configurations in which both theottens occupy the same orbital.
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With this considerations, we hope to stimulate Hert examples of
applications of the present procedure in imporfaoblems in physics. Along this
line the works are in progress.

As a final remark, with the wide application of tlsereened Coulomb
potential families in different areas of physicse Wwelieve that our discussion
presented would also provide new insights to tleeasch communities of atomic

physics.
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