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ABSTRACT 
 

A SEARCH ON HELIUM-LIKE ATOMS 
 
 
 
 

ÇAPAK, Mustafa 
M. Sc. in Engineering Physics 

Supervisor Prof. Dr. Bülent GÖNÜL 
July 2010, 45 pages 

 
 
 
 

In this thesis work, we scrutinize the relation between the correlation and 

screening effect of the electrons in He and He-like atoms. Within this context and 

using the basic ingredient of two-body problem, we propose accurate algebraic 

solutions in a closed form for the ground and excited states of such quantum systems. 

These simple but explicit expressions involve the exact screening parameters for 

each atom considered and provide an insight into their physical structure. The energy 

eigenvalues have been exactly calculated for atoms with nuclear charge Z  in the 

range 121 ≤≤ Z .  

 

 

Keywords: He and He-like atoms; Screening in two-electron atoms 
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ÖZET 
 

HELYUM BENZER Đ ATOMLAR ÜZER ĐNE BĐR ARAŞTIRMA 
 
 
 
 

ÇAPAK, Mustafa 
Yüksek Lisans Tezi, Fizik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Bülent GÖNÜL 
Temmuz 2010, 45 sayfa 

 
 
 
 

Bu tez çalışmasında, Helyum ve Helyum benzeri atomlarda bulunan iki 

elektron arasında gerçekleşen etkileşim potansiyeli ile çekirdek ve elektronlar 

arasında etkileşim anında çekirdek yükünün yakın elektron tarafınca perdelenme 

olayı arasındaki ilişki dikkatlice incelenmiştir. Bu çerçevede ve iki-cisim etkileşim 

probleminin temel unsuru kullanılarak, söz konusu atomların temel ve uyarılmış 

kuantum seviyeleri için tam çözümler içeren analitik ifadeler tarafımızca 

önerilmektedir. Önerilen bu basit fakat açık fiziksel ifadeler, ele alınan her bir sistem 

için perdeleme parametresini tam olarak içermekte ve sistemlerin fiziksel yapısına 

ışık tutmaktadır. Teklif edilen teorik model ışığında, çekirdek yükü 121 ≤≤ Z  

aralığında olan tüm iki-elektronlu atomlar için enerji özdeğerleri kesin olarak 

hesaplanmıştır. 

 
 

Anahtar Kelimeler: He ve Helyum benzeri atomlar, iki elektron arasında perdeleme 
olayı 
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CHAPTER 1 
 

INTRODUCTION 
 

Since the early days of quantum mechanics, helium and helium-like atoms 

have been a subject of intensive study.  Particularly, the ground state wave function 

and the corresponding energy of such atoms have been considered by many authors 

during the last decades. There are in fact many reasons for these kind of 

investigations. For instance, in the collision processes the initial state of target atom 

plays an important role where the state can be determined by a convenient form of 

the related ground state wavefunction. Generally, the search for simpler accurate 

wavefunction results in insight and a deeper understanding of such physical 

processes. The well known variational method is one of the important approachs in 

the investigation of similar topics, where the main problem is to define, in a closed 

and appropriate form, the correlated electron system in such atoms by the choice of a 

simple trial wave function.  

For the ground state of a two-electron atom one chooses in general a product 

of the identical hydrogenic orbitals, one being a function of 1r  and the other of 2r , or 

which is a linear combination of antisymmetrized products of one-electron orbitals 

[ ]2,1 . Alternatively, a Hylleraas (1929) type correlated function depending explicitly 

on the interelectronic separation can also be chosen [ ]3 . These latter type of 

functions, as clearly demonsrated by the pioneering work of Hylleraas , generally 

yield a rapidly convergent result for the variational energy. In any case, the accuracy 

in the calculation is usually improved by introducing progressively a higher and 

higher number of variational parameters into the trial function. It is worth mentioning 

here that some of such significant calculations in the literature are the one performed 

by Chandrasekhar and Herzberg [ ]4 , by Hart and Herzberg  [ ]5 , by Hylleraas and 

Midtdal[ ]7,6 , by Pekeris [ ]9,8 , by Roothan et al [ ]2 ,   by Weiss [ ]1 , by Schwartz[ ]10 , 

by Frankowski and Pekeris[ ]12,11  and by Thakkar and Smith [ ]13 .In 1984  
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Freund et al [ ]14  also dealt with the non-relativistic ground state energy of the 

helium isoelectronic sequence in their calculations within the range of ( )101 ≤≤ Z  

employing a 230 term trial function, and reported the  energies accurate to within one 

part in 1310   based on the variatioanl procedure, which has far exceeded the limits of 

accuracy in any experimental measurement. Also noteworthy are the recent 

calculations due to Kleindienst and Emrich in 1990 [ ]15  and de Saavedra and 

Buendia in 1994[ ]16 . 

Although one achieves the desired accuracy in energy eigenvalue by 

introducing a large number of variational parameters in the trial function, however 

one quickly loses the physical meaning of these parameters, and also is required to 

do a lot of cumbersome calculations in the theoretical study of the atomic properties 

using such functions. Hence, there is a need to obtain a simple, yet meaningful, 

wavefunction by choosing a smaller number of parameters. Several such attempts 

have already been reported in the literature. Some them are the calculations by Green 

et al [ ]17 , the one performed by Byron and Joachain in 1966[ ]18 , Banyard and 

Seddon in 1973 [ ]19 , Srivastava and Bhaduri in 1977 [ ]20 , by Wu in 1982[ ]21 , the 

one by Abbott and Maslen in 1986 [ ]22 , together with Siebbeles and Le Sech in 

1994[ ]23 , Le Sech in 1997[ ]24  and by Patil in 1984 [ ]25  and in 2003 [ ]26 .  

In a completely distinct framework, in 1995 Tripathy et al [ ]27  suggested an 

alternative but simple two-parameter wavefunction for the ground state by 

introducing variational parameters in the Hamiltonian rather than in the trial 

wavefunction. The binding energies obtained in this work are in a reasonable 

agrrement with very accurate multiparameter results reported by earlier workers.  

In the calculations regarding with helium-like atoms, the most important 

parameter is the one due to the screening of nucleus by the inner electron. Physically,  

the nuclear charge is screened and this effect produces a change in the wavefunctions 

corresponding to the interaction of the individual electrons with the nucleus. Because 

of this, one of the chapters of this thesis will focus on the physics behind this 

phenomenon and clarifies the interconnection between the screening and correlation 

within the frame of such atoms under consideration. 

Overall, it should also be emphasised that a true, physically meaningful, wave 

function must satisfy a set of  “cusp conditions”  [ ]28  and should agree with the Fock 
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expansion [ ]29 . Eigenfunctions of Hamiltonians for atomic and moleculer systems 

exhibit singular behavior at those points in configuration space where two or more 

charged particles come together and the resulting potential becomes infinite. At two-

particle coalescences, derivatives of the wavefunction with respect to cartesian 

coordinates have a discontinuity characterized by the famous Kato cusp condition. 

There are also singularities involving more than two particles, such as the triple-

collision singularity in the helium atom, when two electron simultaneously approach 

the nucleus. A formal expansion in powers of the hyperradius r  and its logarithm 

rln  about this singular point was proposed by Fock for helium atom S-state wave 

functions. These significant consraints will be discussed in detail by the second 

chapter of  the this thesis work which summarizes theoretical background on the 

problem of interest. 

Additinally, supersymmetric quantum mechanics (SUSY QM) [ ]30  has been 

found to give encouraging results towards understanding atomic systems in the 

literature recently. Therefore, the present work is also studied within the powerful 

framework of SUSYQM, which is presented in Chapter 3.  

Furthermore, the applications of a novel treatment to the ground and excited 

states of the two-electron atoms is discussed in Chapter 3. We have analysed 

carefully the results obtained with the consideration of those calculated by numerical 

techniques. It is seen that the results obtained is remarkable. Finally, the concluding 

remarks and an outlook are given in Chapter 4. 
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CHAPTER 2 
 

THEORETICAL BACKGROUND 

      2.1. The Variational Method 

An exact solution of the Schrödinger equation is possible only for one 

electron system. In larger systems, approximate methods have to be used. The 

variational method is one of the main approximate methods used in quantum 

mechanics for solving atomical or molecular structures. The variational method is 

used in physics both for theory construction and for calculational purposes.  

Using the method, we find an approximate wavefunction and corresponding 

energy eigenvalue for the system. The basic idea of the variational method is to guess 

a ``trial'' wavefunction for the problem, which consists of some adjustable parameters 

called “variational parameters.” These parameters are adjusted until the energy of the 

trial wavefunction is minimized. The resulting trial wavefunction and its 

corresponding energy are variational method approximations to the exact 

wavefunction and energy. 

 Why would it make sense that the best approximate trial wavefunction is the 

one with the lowest energy? This results from the variational theorem, which states 

that the energy of any trial wavefunction E  is always an upper bound to the exact 

ground state energy0ε . This can be proven easily. Let the trial wavefunction be 

denotedΦ . Any trial function can formally be expanded as a linear combination of 

the exact eigenfunctionsiΨ . Of course, in practice, we don't know theiΨ  , since 

we're assuming that we're applying the variational method to a problem we can't 

solve analytically. Nevertheless, this doesn't prevent us from using the exact 

eigenfunctions in our proof  since they certainly exist and form a complete set, even 

if we don't happen to know them. So, the trial wavefunction can be written as 

iiCΨ=Φ ∑    ,                                             (2.1.1) 
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and the approximate energy corresponding to this wavefunction is  

[ ]
∫
∫

ΦΦ

ΦΦ
=Φ

∗

∗H
E

ˆ
  .                                          (2.1.2) 

Substituting the expansion over the exact wavefuntions, we obtain 

[ ]
∑ ∫

∑ ∫

ΨΨ

ΨΨ
=Φ

∗∗

∗∗

ij
jiji

ij
jiji

CC

HCC

E

ˆ

                                     (2.1.3) 

Since the functions 
Đ

Ψ  are the exact eigenfunctions of Ĥ , we can use jjjH Ψ=Ψ εˆ  

to obtain  

[ ]
∑ ∫

∑ ∫

ΨΨ

ΨΨ
=Φ

∗∗

∗∗

ij
jiji

ij
jiiji

CC

CC

E

ε
                                        (2.1.4) 

Now using the fact that eigenfunctions of a Hermitian operator form an orthonormal 

set (or can be made to do so),  

[ ]
∑

∑
∗

∗

=Φ

ij
ji

ij
iji

CC

CC

E

ε
                                             (2.1.5) 

We now subtract the exact ground state energy 0ε from both sides to obtain  

[ ]
∑

∑
∗

∗ −
=−Φ

ij
ji

ij
iji

CC

CC

E

)( 0

0

εε
ε                                        (2.1.6) 

Since every term on the right-hand side is greater than or equal to zero, the left-hand 

side must also be greater than or equal to zero, or  

[ ] 0ε≥ΦE                                                 (2.1.7) 

This explains the strategy of the variational method: The energy of any 

approximate wavefunction is always greater than or equal to the exact ground state 

energy 0ε . We may therefore select, perhaps by guessing, any approximate trial 

wave function that includes parameter that may be varied to minimize [ ]ΦE . We 

leave these parameter in the trial wave function and evaluate [ ]ΦE  in terms of them. 

We then minimize [ ]ΦE  with respect to the parameter: 
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[ ]
0=

∂
Φ∂

α
E

  .                                                   (2.1.8) 

Where α  is variational parameter of the trial wave function. This is variational 

principle! According to this principle, the result will always be greater than the true 

energy. We see then that we may choose a complicated function, containing as many 

parameters as we please, and, if computer time is available, we can obtain an answer 

to any degree of precision. For our purposes, however, we use parameters that 

provide physical insight and for which the variational principle can be implemented 

analytically. 

 

2.2. Some Local Properties of the Eigenfunctions 

       2.2.1. Asymptotic Behavior of the Wave Functions 
 

The energy eigenfunctions of the two-electron atom and ions satisfy the 

Schrödinger equation 

 

)ˆ,ˆ()ˆ,ˆ( 2121 rrErrH Ψ=Ψ  

 

)/1()()/(
2
1

2
1

1221
2
2

2
1 rrZrZH +−−−∇−∇−=                       (2.2.1) 

 
Z being the charge of the nucleus. The asymptotic behavior of the wave function 

when electron 1 is far away, is given [ ]33,32,31  by 

 )()(),( 201121 rrrr Φ→Ψ ηrr
    for   ∞→1r ,                          (2.2.2)                  

 
),()()( 11

1
111011

1111 φθη m
l

rauu YerbrCr −+= , 

 
                                        2/1

11 )2( Ea = ,    1/)1( 11 −−= aZu  

                                            )2/()1)(( 1111 aululb ++−=  
 
with 1E  being the ionization energy of the atom or ion, l  is the angular momentum 

quantum number of electron 1 when it is far away, and )( 20 rΦ  is the lowest-energy 

eigenfunction of the remaining electron. One has 0=l  for ))(1( nss  states, 1=l  for 

))(1( nps  states, and 

2)( 20
Zrer =Φ ,  2/2

1 ZEE −−=                                (2.2.3)                  

for ))(1( nls states, E being the total energy. 
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     2.2.2. Behavior of the Wave Functions for 0→ir  

 
 When electron 1 approaches the nucleus, the Schrödinger equation reduces 

to 
 

)()/(
2
1

1
2
1 Ψ=Ψ−Ψ∇− OrZ ,    01 →r ,                           (2.2.4)                  

 

where )(ΨO  is of finite order for 01 →r . Keeping other variables fixed, Ψ  is 

expanded in terms of spherical harmonics to get 

∑=Ψ
ml

m
lml YrG

,
111, ),()( φθ ,                                    (2.2.5)     

 

       [ ] )()(2)(
)1(

)( 1
11,1,

1
1,12

1

2
+=++− l

mlmlml rOrZGrG
r

ll
rGr

dr

d
   for   01 →r          (2.2.6)                  

 
By substituting  
 

...)()( 11011, ++= rccrrG l
ml                                     (2.2.7)                  

 
into Eq. (2.2.6), and equating the coefficients of the two leading power terms, it is 

obtained that 

)1/(01 +−= lZcc , 01 Zcc −=      for 0=l                         (2.2.8)                  

 
This relation [ ]28  may be described as the coalescence condition.  
 

     2.2.3. Behavior of the Wave Functions for  012 →r  

 
When the electrons are close to each other, one goes to the center-of-mass 

frame of the two electrons whose reduced mass is 1/2, so that 

 

)()/1( 12
2
12 Ψ=Ψ+Ψ∇− Or  ,          012 →r                                 (2.2.9)                  

 
Ψ   is expanded in terms of spherical harmonics, following similar steps [33] to 
obtain  
 

...)()( 12101212, ++= rddrrG l
ml  ,         [ ])1(2/01 += ldd          (2.2.10)                  

 
The two electrons have even l  in the singlet state and odd l  in the triplet 

state. Therefore the leading behavior for 012 →r  is  
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                                                   )2/1( 120 rd +→Ψ     (singlet) 

 
   ),()4/1( 121212120 φθm

lYrrd +→Ψ   (triplet)                (2.2.11)                  

 
 
which may be described as cusp condition. 
 

2.3. Kato’s Cusp Conditions and Fock’s Expansion 

       2.3.1.Kato’s Cusp Conditions  
 
Two-particle cusps arise because the Coulomb interaction between charged 

particles diverges as they approach each other. In other words, the eigenfunctions of 

Ĥ contain singularities at the points of configuration space where two charged 

particles collide, which results in an infinite Coulomb potential. Because of this fact, 

it is necessary that a compensating divergence in the kinetic energy occurs in such a 

way that the total energy remains finite; this divergence is manifested as a cusp in the 

electronic wave function at zero interparticle separation.  

The true wave function must satisfy a set of “cusp conditions” which 

prescribe the proper derivative discontinuity at the collision points. Kato[28] first 

rigorously derived these conditions as a general property of Coulombic systems, 

arriving at the conclusion that in the limit that two particles of masses im  and jm  

and charges iq  and jq  approach each other and all other interparticle distances 

remain larger than zero, 

)0(
ˆ

0

=Ψ=Ψ∂

=

ijjiij

rij

rqq
r

ij

µ ,                                (2.3.1) 

where )/( jijiij mmmm +=µ  is the reduced mass of the two-particle subsystem and 

Ψ̂  is the average of Ψ  over an infinitesimally small sphere centered at 0=ijr . Pack 

and Byers-Brown [ ]34   generalized Kato’s result by solving the multiparticle 

Scrödinger equation in the neighborhood of a two-particle coalescence.  

Finally, we arrive at a set of cusp conditions for a singlet S  state of a two-

electron atom, which are valid without the need for spherically averaging. One 

condition describes the collision of one electron and the nucleus, and the other, the 

collision of two (opposite-spin) electrons. 



 9 

)0(
ˆ

0

=Ψ−=
∂
Ψ∂

=

i

ri

rZ
r

i

,    electron and nucleus                 (2.3.2) 

 

)0(
2
1ˆ

0

=Ψ−=
∂
Ψ∂

=

ij

rij

r
r

ij

, electron(↑ ) and electron(↓ )    (2.3.3) 

 

        2.3.2. Fock’s Expansion 
 

Fock [ ]29  showed that a formal solution for the helium wave function could 

be obtained in terms of hyperspherical coordinates and that this would take the form 

of a power series in 2/12
2

2
1 )( rrR +=   and Rln , multiplied by functions of the 

hyperspherical angles, α  and  12θ . The lowest-order terms of Fock’s expansion for 

the ground state wave function are, 

 

RrrZrrrZ lncos
3

2

2

1
)(1 12211221 θ

π
π −−++−=Ψ              (2.3.4) 

 

The second and third terms handle two-body collisions while the fourth term 

is related to the three-body collision. The term second-order in R  in the Fock 

expansion is also known, and Myers, et al.[ ]35   have verified that this term 

eliminates the discontinuity in the local energy at the origin. The article also contains 

an analysis of the behavior of the wave function in the vicinity of these singular 

points.  
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2.4. Earlier Studies 

       2.4.1. Accurate Analytic Wavefunctions for Two-electron Atoms 

                (C. Le Sech, J.  Phys. B.: At. Mol. Opt. Phys. (1997) L47-L50) 

  
If one wants to show an example involving the variational method, the works 

carried out by Le Sech are appropriate for this purpose. In one of his papers,  Le Sech 

proposed a simple analytic two variational parameters wavefunctions for the 

ground state of +++− 32 ,,,, BBeLiHeH  atom (ions). These functions fulfil the cusp 

conditions at the singularities of the Coulombic field, and include the correct 

behaviour for large interparticle separations. The accuracy of the calculated 

energies is found to be about 310−  au.  
The Schrödinger equation for a two-electron atomic system with nuclear 

charge, Z , is written in atomic units, within the nonrelativistic approximation and 

with obvious notations as: 

 

Ψ=Ψ







+−−∇− E

rr

Z

r

Z

1221

2
6

1

2

1 r
                              (2.4.1) 

 

where 2
2

2
1

2
6 ∇+∇=∇

rrr
; the indices 1,2 and 6 stand for the three coordinates of 

electrons 1 and 2 and all the (six) coordinates of the Laplacian, respectively. The 

wavefunction, Ψ  , will be written as a product of two functions: ΦΩ=Ψ . The 

basic idea is to include in the Φ  function the orbital motion of the free electrons in 

the field of the nucleus, and to include the inter-electronic correlation depending 

explicitly upon the inter-electronic distance 12r  into Ω . In this respect the present 

approach has some similarity with the so-called correlated quantum Monte Carlo 

theory, see for example the work of Schmidt and Moscowitz [ ]36 , and we think that 

the functional [ ]ΨE  given below, which is general and very convenient, could also 

be useful in this field. Siebbeles et al [ ]23  have shown that for any function, 

ΦΩ=Ψ , written as a product, the calculation of the energy, E , reduces to the 

computation of a single multidimensional quadrature, i.e. 

 

[ ] 6
12

2
66

2

0 2
τd

r
EE 







 Ω+Ω∇•Ω∇Φ+=Ψ ∫
rr

                           (2.4.2) 
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where 2
2

2
1

2
6 ∇+∇=∇

rrr
 is the gradient and  Ω∇•Ω∇ 66

rr
 is the dot product. To derive 

this expression of the energy, we assume that the function, ),( 21 rrΦ  is the solution 

of the independent particle problem: 

 

( ) ( )21021
21

2
6 ,,

2

1
rrErr

r

Z

r

Z Φ=Φ







−−∇−

r

                       (2.4.3) 

 
 

For S states, the quadrature Eq.(2.4.2) reduces to a three-dimensional one, 

easily performed on any small desk computer. Full computation takes less than 1s. 

For the ground state Φ  is taken as (with the usual notation for the spin functions  

Zji ),(),( βα  is the true nuclear charge and N  is the normalization constant): 

 

( ) ( ) ( ) ( ) ( )[ ]1221, 21
21 βαβα −=Φ −− ZrZr eNerr                     (2.4.4) 

 
Now we determine the function ( )1221 ,, rrrΩ , which describes the correlation 

of the electrons due to their Coulomb repulsion. It is presently chosen as: 

 

( ) ( ) ( )[ ] ( )[ ]12
12211221 5.01coshcosh,, arerrrrrr −++=Ω λλ         (2.4.5) 

 
 
where λ  and a  are variational parameters. The reason for using the cosh  function 

is to fulfil the cusp conditions at the nucleus and the right behaviour at large 

electron–nucleus distances. It is easy to see that  λ  can be interpreted as a 

screening constant when 1r  or 2r >> 1 au i.e.: 

 

                                  lim 1r >>1:  
( ) 21121 ZrrZrZrZr eeeee −−−−− =→Ψ λλ

 
and when  
 

                         lim 1r  and 2r  <<1:  ( )2
12

2
2

2
11221 ,,5.01 rrrOrZrZr ++−−→Ψ  

 
The last expression is in agreement with the  first terms in the Fock 

expansion. Let us point out here that the common way to take into account the 

screening by exponential functions in the usual open-shell approximation, is not 

suitable for the electron–nucleus cusp conditions. The exponential function depends  

linearly upon 21; rr  when 21, rr <<1, and it is not able to correctly reproduce the cusp 

condition at the nucleus 
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lim 1r →0            Z
r

−=
∂
Ψ∂

1

               and                lim 2r  → 0              Z
r

−=
∂
Ψ∂

2

 

 
This is the reason we have chosen the cosh function. The 12r  part of the 

function was already suggested by Hirschfelder in 1963 [ ]37 , and we found this 

choice is quite efficient in many problems. This function ensures the right 

description of the electron-electron cusps conditions (Kato’s theorem)[ ]28 . 

In the Table 2.1 the results for the different atomic sysrems are presented. The 

wavefunction is writen explicitly below, omitting the obvious spin factor: 

 

 ( ) ( )[ ] ( )[ ]1221
1221 5.01coshcosh arZrZr errreNe −−− ++=Ψ λλ         (2.4.6) 

 
Table 2.1. Ground state energies of  +++− 32 ,,,, BBeLiHeH  calculated using the 
wavefunction given in equation (2.4.6) and corresponding optimized values of the 
parameters λ  and a  
 

 

Columns two and three of Table 2.1 report optimized values of the 

variational parameters, λ   and a , of the systems +++− 32 ,,,, BBeLiHeH and the 

corresponding calculated energies. In all cases the agreement between experimental 

and accurate values is better than 3102 −× au. In the last column of Table 2.1, the 

values calculated with a two-parameter wavefunction by Tripathy et al in 1995 [ ]27  

is reported, in order to illustrate the improvement in this work. In spite of the 

simplicity of the present wavefunction using only two parameters, the accuracy is 

outstanding. 

A further improvement can be obtained easily if the term 2
21 )( rrb −  with b  

as a third    parameter is added to cosh part of the function. It could be added in the 

12r  factor, leading to the same accuracy. The expression of Ω∇•Ω∇ 66

rr
  is a little bit 

simpler if we choose the cosh part. Then the function now becomes: 

Atom 
  S1  

λ  
values 

a  
values 

Energy for this 
method (au) 

Accurate 
energy 
(au) 

Two-parameters 
results(Tripathy 
et al 1995)[ ]27  

−H  0.52 0.00    -0.5252 -0.5277      -0.5052 
He 0.7 0.17    -2.9020 -2.9037      -2.8840 

+Li  0.84 0.36    -7.2781 -7.2799      -7.2599 
+2Be  0.9 0.45    -13.6535 -13.6555      -13.6352 

+3B  1.1 0.65    -22.0286 -22.0309      -22.0104 
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( ) ( ) ( )[ ] ( )[ ]1221

122121 5.01coshcosh arZrZr errrbrreNe −−− +−++=Ψ λλ      (2.4.7) 
 

Table 2.2. Ground state energies of  +++− 32 ,,,, BBeLiHeH  calculated using the 
wavefunction given in equation (2.4.7) and corresponding optimized values of the 
parameters λ , a  and b  
 
Atom 
  S1  

λ  
values 

a  
values 

b  
values 

Energy for 
this method 
(au) 

Accurate 
energy 
(au) 

Three-
parameters 
results(Wu 
1982)[ ]21  

−H  0.54 0.04 0.04    -0.5266 -0.5277       -0.5213 
He 0.68 0.17 0.06    -2.9026 -2.9037       -2.8994 

+Li  0.82 0.34 0.08    -7.2788 -7.2799       -7.2757 
+2Be  0.9 0.45 0.09    -13.6541 -13.655       -13.6513 

+3B  1.0 0.6 0.15    -22.0290 -22.0309       
 

In Table 2.2 the optimized values of the parameters  λ  , a  and b  is given. 

In all cases the energy values are lower. The agreement between the calculated 

energy values and accurate value is about 310− au. The improvement in the case of 

the −H  ion is particularly significant giving a very good accuracy for the energy of 

this ion. In the last column of   Table 2.2 , the best values calculated with a three-

parameter wavefunction [ ]21  are recalled, in order to show the improvement 

achieved by the present wavefunctions.  

It has been there shown that accurate values for the energies within 3102 −×  

au can be obtained using a quite simple two-parameter wavefunction. If necessary, a 

significant improvement can be obtained adding a third term as shown above. It is 

known that the description of inelastic processes involving two electrons 

necessitates the accurate description of the correlation in the initial state of the 

target. 

 2.4.2. Two-parameter  Wavefunction For The Ground State Of Helium-like    

….……  Atoms (D N Tripathy, B Padhy  and  D K Rai, J. Physc. B: At. Mol.   

…………Opt.  Phys.  28(1995) L41-L46) 

  
Tripathy et al. derived an interesting approach to compute the ground state 

energies of the helium isoelectronic squence. Their method consists of introducing 

variational parameters in the Hamiltonian rather than in the trial wavefunction. 
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Physically, the parameters used, on the one hand, screen the nuclear charge and, on 

the other hand, produce a change in the centrifugal potential term that appears in the 

radial part of the one-electron Schrödinger equation. The interelectronic interaction is 

repulsive. Therefore, mechanistically, one may think of this repulsion resulting in 

some kind of positional displacement for the electronic wavefunction such that the 

correlated atomic state might not be associated only with pure s orbitals. This 

justifies the claim that correlation can also be accounted for by introducing 

variational parameters in the Hamiltonian.   

The motivation for adopting the alternative approach stems from the 

consideration of the one-parameter wavefunction for the two-electron atom 

amounting to screening of the nucleus. It is observed that the effective value of Z  

becomes β−Z , where 
16

5=β , irrespective of the value Z , and has been 

interpreted as the screening parameter. Alternatively, the idea of screening the 

nucleus can be reflected in the Hamiltonian of the system by writing it (in atomic 

units) as 

 
 10 HHH +=                                                (2.4.8) 

 
 
where 
 









+−−∇−∇−=

21

2
2

2
10

11
)(

2

1

2

1

rr
ZH β                           (2.4.9) 

 
and 
 









+−=

2112
1

111

rrr
H β                                       (2.4.10) 

 
 

The unperturbed Hamiltonian 0H  is separable and hence the corresponding 

Schrödinger equation is solved analytically. The avarage value of H  with respect to 

this unperturbed wavefunction can be obtained as a function , ( )β∈ , of β . 

Minimizing ( )β∈  with respect to β , it is observed that β   comes out to be exactly 

16

5
 for the ground state irrespective of the value of Z . 
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With the above conclusion in mind, they assume in the next step that an 

electron, due to presence of another electron, will see not only a screened nuclear 

charge , but also a change in the centrifugal potential term that appears in the radial 

equation part of the Schrödinger equation for the one-electron atoms. Consequently, 

the Hamiltonian  for a two-electron atom is recast as 

 

10 HHH +=                                               (2.4.11) 

where 

∑
=









+−−∇−=

2

1
2

2
10

1
)(

2

1

i ii rr
ZH

γβ                            (2.4.12) 

and 









+−








+−=

2
2

2
12112

1

11111

rrrrr
H γβ                           (2.4.13) 

 
Here β  and γ  are the two variational parameters: β  accounts for screening, and γ , 

for the change in the centrifugal potantial term. 

The Schrödinger equation corresponding to the unperturbed Hamiltonian , 

0H  can be solved analytically. They obtain, as solutions, the following orthonormal 

and complete set of one-electron wavefunctions nlmU : 

 
)ˆ()()( ilminlinlm rYrRrU =          2,1=i                              (2.4.14) 

 
 
where )ˆ(rYlm  are the spherical harmonics [ ]38  and )(rRnl  are the normalized radial 

functions given by  

 

)()( 12
1

2/ ρρ ρ +
−−

−= sl
ln

sl
nlnl LeNrR                                 (2.4.15) 

 
with  
 

2/1
3

)12()(2

)22()!1(













++−Γ+−
∈−−−

=
ll

nl
nl slnsln

ln
N                              (2.4.16) 

 

rnl )22( ∈−=ρ                                              (2.4.17) 

 

2

2

)(2

)(

l

nl
sln

Z

+−
−−=∈ β

                                          (2.4.18) 
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[ ]γ8)12(1
2

1 2 +++−= lsl                                    (2.4.19) 

 
 

);1;(
)1(!

)1(
)( xnF

n

n
xLn +−

+Γ
++Γ= α

α
αα             α  > -1      (2.4.20) 

 
 
and  
 
 

....
!2)1(

)1(
1);;(

2

+
+
+++= x

bb

aa
x

b

a
xbaF                             (2.4.21) 

 
Here , nlN  are the normalization constants corresponding to the radial 

functions nlnlR ∈,  are the one-electron energy eigenvalues,     ls  is the modified 

value of l  due to the parameter γ , α
nL  are the associated Lagueree polynomials 

which are related to the confluent hypergeometric functions );;( xbaF , the symbol Γ  

stands for the gamma function, ,...3,2,1=n  is the principal quantum number, 

1,....,2,1,0 −= nı  is the orbital quantum number and lllm ,....,1, +−−=  is the 

magnetic quantum number.  

It is clearly observed that ls  may assume fractional values. Also nl∈  has 

come out to be a function of both n  and l , thus removing the orbital degeneracy. It 

is further observed that if 0→γ , lsl → , then  )(rU nlm  simply reduces to the 

solution for one-electron atomic system with a screened nuclear  charge 
16

5−Z  

thereby again introducing the orbital degeneracy. 

The unperturbed wavefunction for any state of a two-electron atom can be 

constructed out of the above one-electron functions. Averaging H with respect to 

this unperturbed wavefunction, an expression for the energy, ),( γβE , can be 

obtained, which is then minimized with respect to the parameters β  and γ . Thus the 

minimum of energy and the corresponding optimum values of the parameters β  and 

γ  are ascertained. 

For the ground state, in particular, the unperturbed wavefunction has been 

chosen as  
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)()(),( 21001100210 rUrUrr =Ψ                                  (2.4.22) 

 
 

Averaging H  with respect to ),( 210 rrΨ , it is succeeded in obtaining the 

following closed-form expression for ),( γβE : 

∑
=

=
4

1

),(
i

iTE γβ                                             (2.4.23) 

 
where 
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with γ  related to 0s  through the equation ( ) 2/100 += ssγ . Here 1T  is the expression 

for 0H  while 4T  is that for 
12

1

r
. 2T  and 3T , respectively, are the expectation 

values of the second and third terms of 1H  in Eq. (2.4.13). It is worth mentioning 

here that some circuitous manipulations were needed while evaluating 12/1 r . The 

difficulty arose only because of the possibility that 0s  might assume a fractional 

value. Further, it is observed that in the limit 0→γ , the right-hand side of 

Eq.(2.4.23) reduces to an expression that is identical with the one obtained for the 

energy )(β∈  involving only the screening parameter. This observation indicates that 

the deduction leading to the terms in the right-hand side in Eq. (2.4.23) is correct. 

An expression for ( )β∂∂ /E  was obtained analytically, which, when equated 

to zero, yielded β  as an explicit function of γ . If 0→γ , this function gives 

16/5=β , irrespective of the value Z , as expected. Replacing β  by the latter 

function, ),( γβE  is reduced to a function of γ  alone, and then minimized with 

respect to γ . The binding energy (BE) and the corresponding optimum values of γ  

and β  for the ground state of the helium isoelectronic sequence for the nuclear 
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charge 121 ≤≤ Z  are the computed in a single calculation. These results are 

displayed in Table 2.3 along with the binding energies reported by some earliers 

workers for comparison.  

It is further observed from Table 2.3 that γ  comes out to be negative, and 

both β  and γ  depend on the value of the nuclear charge; β  increases with Z  while 

the absolute value of  γ  decreases with Z . It appears that the values of the both β  

and γ  will stabilize for large values of Z . The dependence of β  on nuclear charge 

Z  is in quite striking contrast with the one-parameter (only screening) trial functions 

where 16/5=β  irrespective of Z . It is concluded that the calculation simple, and 

yields binding energies comparable with that of the multiparameter cumbersome 

calculations reported by several workers. Secondly, it has been  demonsrated that 

physically meaningful parameters  can be included in the Hamiltonian rather than in 

the trial function. Further, since the same β  and the same γ  values have been 

chosen for both the electrons, this method can be easily extended to doubly–excited 

configurations in which both the electrons occupy the same orbital.   
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Table 2.3. Results for the binding energies ( in Hatrees), β  and γ  for the ground state of −H , He and likeHe−  ions 

 
 

a Exact value reported by Freund et al in 1984 [ ]14 ; ŧ these particular values have been taken from the work of Thakkar and Smith in 1977 [ ]13  
b One-parameter results introducing only screening parameter ( )16/5=β  
c Two-parameter results of Srivastava and Bhaduri in 1977 [ ]20  
d Two-parameter results of Abbott and Maslen in 1986 [ ]22  
e One-parameter results of Patil in 1984 [ ]25  
f Three-parameter results of Wu in 1982 [ ]21  
g Two-parameter results in the present calculation. 

 −H  He 
+Li  

+2Be  +3B  
+4C  

+5N  
+6O  

+7F  
+8Ne  

+9Na  
+10Mg  

BEa 0.52775 2.90372 7.27991 13.65556 22.03097 32.40624 44.78144 59.15659 75.53171 93.90680 114.28188ŧ 136.65694ŧ 

BEb 0.47266 2.84766 7.22266 13.59766 21.97266 32.34766 44.72266 59.09766 75.47266 93.84766 114.22266 136.59766 

BEc 0.506 2.873 7.246 13.621         

BEd 0.508 2.890 7.267 13.65 22.02 32.39 44.76      

BEe 0.5226 2.895 7.269 13.643         

BEf 0.5213 2.8994 7.2757 13.6513         

BEg 0.50552 2.88403 7.25990 13.63527 22.01048 32.38562 44.76071 59.13578 75.51083 93.88587 114.26090 136.63593 

β  0.54378 0.62630 0.65349 0.66681 0.67469 0.67989 0.68358 0.68633 0.68846 0.69015 0.69154 0.69269 

210×−γ
 

7.62875 4.41755 3.06644 2.34224 1.89324 1.58816 1.36754 1.20064 1.06998 0.96495 0.87867 0.80654 



 20 

     2.4.3. Simple Wavefunctions For ( )( ) Snss 3,11    and  ( )( ) Pnps 3,11  States of He    
………...and isoelectronic ions  ( S. H. Patil, 2003 Physical Review A 68, 044501) 
 

To provide an insight into physical structure of excited states of He and He-

like atoms, the work of Patil can be demonsrated as a good example. Patil have 

developed model wave functions for the excited Snss 3,1))(1(    and  Pnps 3,1))(1(  

states of He and  isoelectronic ions, incorporating the asymptotic behavior when 

one of the electrons is far away, coalescence property when it is close to the 

nucleus, and cusp property when the two electrons are close to each other. They 

lead to accurate values for the energies and other properties. 

The eigenfunctions of the two-electron atom and ions satisfy the Schrödinger 

equation 

 
)ˆ,ˆ()ˆ,ˆ( 2121 rrErrH Ψ=Ψ  

 

)/1()()/(
2
1

2
1

1221
2
2

2
1 rrZrZH +−−−∇−∇−=                          (2.4.24) 

 
 
Z being the charge of the nucleus.  
 
 
Wave functions for excited (1s )(ns) states: 

Model wave functions for the excited Snss 3,1))(1(  and  Pnps 3,1))(1(  states  

are  

[ ] )()()(),( 122121
12 rfreerArr ZrZr

±
−− Φ±Φ=Ψ rr

                                (2.4.25) 
 

)())(2,2,1()()( 11
01

1
0 rgecranFcrr o

ranu −−+ +−+=Φ  

 
 
where A  is the normalization constant, +  and  signs are for the singlet and triplet 

states, respectively, and ±f  are the corresponding correlation functions. In the 

expression for )(rΦ , F  is the confluent hypergeometric function, and 1a  and 1u  

are related to the ionization energy 1E  as in Eq. (2.2.2). This choice of )(rΦ  may 

be regarded as a hydrogenic wave function for the outer electron with scale factor 

1a  and shifted by 0c  . For the correlation functions ±f  it is taken that 
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                                        [ ])21/(1)( 12
12 +

−
+ +−= + λλ rerf      (singlet) 

 
[ ])41/(1)( 12

12 −
−

− +−= − λλ rerf       (triplet)                    (2.4.26) 
 
which satisfy the cusp condition for the leading 012 =l  and 112 =l  terms for the 

singlet and triplet states, respectively, for 012 →r . For )(0 rg , which is described as 

the coalescence function, 

 
breBrg −+= 00 1)(                                                     (2.4.27) 

 
with 0B  and b  as parameters. Since the excited )(ns  states have nodes and extend 

over large distances,  incorporating asymptotic terms in Eq. (2.2.2). For  large r  , 

one has 

 
 

))(2,2,1( 01 cranF +−  

 
       [ ][ ] [ ] [ ]{ }))(2/)1(1()(2!/)1( 01

1
01

1 cranncran nn +−−×+−= −−       for  ∞→r     (2.4.28) 

 
Using this in Eq. (2.4.25) , carrying out an expansion in powers of r/1 , and 

comparing with the required asymptotic behavior in Eq. (2.2.2) leads to  

 

[ ])1()1()2/1( 11110 −−−= uunnuac                              (2.4.29) 

 
so that 0c  is determined in terms of the ionization energy. To incorporate the 

coalescence condition in Eq. (2.2.8) , it is noted that Zre Zr −→− 1  for 0→r  has 

the correct coalescence behavior. For imposing this behavior in )(rΦ , it is carried 

out an expansion in powers of r . Writing 

 

∑
−

=

+=+−
1

0
001 )())(2,2,1(

n

i

i
i crscranF                           (2.4.30) 

 
and expanding the )(rΦ  in Eq. (2.4.25) in powers of r , the coalescence condition 
in Eq. (2.2.8) leads to 
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Thus, the only remaining free parameter in )(rΦ is the exponent b  in Eq. (2.4.27). 
 
 
Wave functions for (1s )(np) state:  
 

For the (1s)(np) states, since the penetration of the outer electron into the 

inner region is small and its wave function is close to the hydrogenic wave function, 

it is considered a wave function 

 

[ ] )()()(),( 122121
12 rfreerArr ZrZr

±
−− Φ±Φ=Ψ rr

                            (2.4.32) 
 

)()(cos)2,4,1()( 111
1 rgPeranrFr ra θ−−=Φ  

 
where A  is the normalization constant, +  and  signs are for the singlet and triplet 

states, respectively, and ±f  are the corresponding correlation functions. In the 

expression for )(rΦ , 1a  is related to the ionization energy 1E  as in Eq. (2.2.2) , 

which ensures that the wave function has the correct exponential part in the 

asymptotic region. For the correlation functions ±f , it is taken the functions in Eq. 

(2.4.26) which satisfy the cusp condition in Eq. (2.2.11) for the leading 012 =l  and 

112 =l  terms for the singlet and triplet terms, respectively, for 012 →r . For )(1 rg  

which it is described as the coalescence function 

breBrg −+= 11 1)(                                                   (2.4.33) 
 

with 1B  and b  as parameters. To incorporate the coalescence property in Eq. (2.2.8) 

, it is noted that Zre Zr −→− 1  for 0→r  has the correct coalescence behavior in Eq. 

(2.2.8) for the leading 0=l  term. The function )(rΦ  in Eq. (2.4.32) corresponds to 

a state with 1=l . )(rΦ  is  expanded  in powers of r  and impose the coalescence 

condition in Eq. (2.2.8) for 1=l ,  which then leads to 

 
)2/()( 111 ZnabnaZB −+−=                              (2.4.34) 

 
Thus, the only remaining free parameter in )(rΦ is the exponent b  in Eq. (2.4.33) 

Correlation functions )( 12rf± : 
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An estimation is deduced for the parameter ±λ  in Eq. (2.4.26) for )( 12rf±  by 

considering the Schrödinger equation in some specific domain. For the singly 

excited ))(1( nls states, consider a wave function of the form 

 
)(),(),( 122121 rfrrrr ±±Φ=Ψ rr
                                 (2.4.35) 

 
)()()()(),( 211

1
2

1
1121 rrrrrr ZZ

n
Z
n

Z ΦΦ±ΦΦ=Φ −−
±  

 
where z

nΦ  are the hydrogenic wave functions with nuclear chargeZ  and principal 

quantum number n . Substituting this in Eq. (2.2.1) leads to 

 

( )[ ( )1122
1

11212 /1/1)()(/1/1 rrrrrr Z
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] [ ] )(),(2)(),()()()( 1212211212
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                                                [ ]{ } ),(2/)1(2/ 21

222 rrnZZE
rrΨ−++=                (2.4.36) 

 
 
Since the ))(1( nls  energies are close to the sum of the hydrogenic energies 
 

)2/()1(2/ 222 nZZE −−−=                                  (2.4.37) 
 

It is neglected the term on the right-hand side in Eq.(2.4.36) For the singlet states, 

since ),( 21 rr±Φ  is symmetric under the interchange of1r
r

 and 2r
r

, it contains only 

even power terms in 12r  . Therefore,  

)(
11

12
2
12

112

rOff
rr

=∇−







− ++                                              (2.4.38) 

where 0)( 12 →rO  for 012 →r . Using an expansion for +f  in Eq. (2.4.38), we get 
from the first two terms  
 

...1 2
122121 +++=+ rqrqf              2/11 =q , )2/1/1(

6
1

12 −−= rq                        (2.4.39) 

 
 
The  first relation is the cusp condition in (Eq. 2.2.11) . Comparing the expansion in 

Eq. (2.4.39) with the expansion of )( 12rf+  in Eq.(2.4.26), it is obtained that 

 

)2/1/1(
3
2

1 −=+ rλ                                               (2.4.40) 



 24 

 

It is required that this equation is satisfied for [ ])3/1(3/41 −= Zr . The reason for this 

choice of 1r  is that the inner electron is found mainly in the region of Z/1 and Z/2  

and it is taken 1r  to be about )3/4( Z  and include some screening effect. Using this 

value of 1r  in Eq.(2.4.40) one obtains  

2/)1( −=+ Zλ                                        (2.4.41) 
 
 For the triplet state, when the two electrons are close to each other, it can be written  
 
 

)(),( 1221 RRrrr Φ⋅=Φ−

rr
,           21 rrR

rrr
+=             for 012 →r        (2.4.42) 

 
 
Substituting this in Eq.(2.4.36) leads to 
 
 

)()/1/1()/)(/2( 121121212
2
12 rOfrrrfrf =−+∂∂−∇− −−           (2.4.43) 

 
 
Using an expansion for −f  in Eq.(2.4.43), 
 

...1 2
122121 +++=− rqrqf  ,                  4/11 =q ,  )4/1/1(

10
1

12 −−= rq     (2.4.44) 

 
 
The first relation follows from the cusp condition in Eq.(2.2.11). Comparing the 

expansion in Eq.(2.4.44) with the expansion of  )( 12rf−  in Eq.(2.4.26),  

 

)4/1/1(
5
4

1 −=− rλ                                       (2.4.45) 

 
Since 1/1 r  is the dominant term, this expression is larger than +λ  in Eq.(2.4.40). by 

a factor of about 6/5, and for simplicity it is taken that 

 
 

5/)1(35/6 −−= +− Zλλ                                  (2.4.46) 
 
 
where the expression for +λ  in Eq.(2.4.41) is used. 
 
Now the energies of the states can be computed using the model wave functions. 
Excited ))(1( nss  states: 



 25 

 
For excited ))(1( nss  states, the wave function in Eq. (2.4.25) is used to 

deduce the energy from the Hamiltonian in Eq (2.2.1): 

 
ΨΨΨΨ= /HE                                            (2.4.47) 

 
 

The shift parameter 0c  in the wave function )(rΦ  in Eq. (2.4.25) is 

determined by the relation in Eq. (2.4.29), which ensures the asymptotic behavior 

in Eq. (2.2.2). The parameter 0B  in the coalescence function )(0 rg  in Eq. (2.4.27) 

is determined by the relation in Eq. (2.4.31) obtained from the coalescence 

condition in Eq. (2.2.8). Finally, the parameters ±λ in the correlation functions 

)( 12rf±  are determined by the relations in Eqs. (2.4.41) and (2.4.46). The remaining 

free parameter is the exponent b  in the coalescence function in Eq. (2.4.27), which 

is determined by using the virial relation in Eq. (2.2.12). The quantities 1a  and 1u  in 

Eq. (2.4.25) are related to the ionization energy 1E  as in Eq. (2.2.2), which is related 

to the total energy as in Eq. (2.2.3). The energy E  is therefore determined self-

consistently by iteration, such that the input value of E  in Eq. (2.2.3) is equal to the 

output value in Eq.(2.4.47). It has been given that the values of b , the calculated 

values of the energy, the normalization constant A  in Eq. (2.4.25), and of 1r , 12r , 

in Table 2.4. They are close to the known accurate values [ ]40,39 . 
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Table 2.4. The values of the parameter b  in the coalescence function in Eq. 
(2.4.27) , normalization constant A  in Eq. (2.4.25) , the predicted values of the 
energy, the expectation values 1r , 12r  and accurate values from Ref.[ ]40  given in 

brackets, for  )2)(1( ss  and )3)(1( ss  states 
 
  Sss 1)2)(1(  Sss 3)2)(1(  Sss 1)3)(1(  Sss 3)3)(1(  

He b  1.14 1.41 0.91 0.83 
 A  0.2957 0.3599 0.1681 0.2263 
 E−  2.1455 2.1751 2.0615 2.0686 
  (2.1460) (2.1752) (2.0613) (2.0687) 

 1r  3.025 2.552 6.482 5.865 
 

12r  5.373 4.443 12.24 11.01 

Li + b  2.00 9.5 1.35 1.31 
 A  1.289 1.388 0.7091 0.8238 
 E−  5.0381 5.1103 4.7332 4.7519 
  (5.0409) (5.1107) (4.7338) (4.7521) 
 

1r  1.673 1.496 3.479 3.235 

 
12r  2.899 2.560 6.481 5.998 

 

 

 
Excited ))(1( nps  states: 
 

For the Pnps 3,1))(1(  states, the wave function in Eq. (2.4.32) is used to 

calculate the energy as in Eq. (2.4.47). The parameter 1B  in the coalescence 

function )(1 rg  in Eq. (2.4.33) is determined by the relation in Eq. (2.4.34) obtained 

from the coalescence condition in Eq. (2.2.8) for  the outer electron wave function 

1=l . The correlation parameter ±λ  is determined by the relations in Eqs.(2.4.41) 

and (2.4.46). The remaining free parameter is the exponent b  in the coalescence 

function in Eq. (2.4.33), which is determined by using the virial relation in Eq. 

(2.2.12), except in the case of Pnps 3))(1(  states for which b  is determined by 

minimizing the energy. Even in this case, the virial ratio in Eq. (2.2.12) comes out 

to be 99.1−  , which ensures good quality of the wave function. The parameter 1a  

in Eq.(2.4.32) is related to the ionization energy as in Eq. (2.2.2), which is 

determined self-consistently by iteration, such that the input value ofE  in 

Eq.(2.2.3) is equal to the output value in  Eq. (2.4.47). It has been given that the 

values of b , the calculated values of the energy, the normalization constant A  in 
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Eq. (2.4.32), and of 1r , 12r , in Table 2.5. They are close to the known accurate 

values [ ]40,39 . 

 
 
Table 2.5. The values of the parameter b  in the coalescence function in Eq. 
(2.4.33) , normalization constant A  in Eq. (2.4.32) , the predicted values of the 
energy, the expectation values 1r , 12r  and accurate values from Ref. [ ]40  given 

in brackets, for  )2)(1( ps  and )3)(1( ps  states 
 

  Pps 1)2)(1(  Pps 3)2)(1(  Pps 1)3)(1(  Pps 3)3)(1(  

He b  0.96 0.87 0.95 1.15 
 A  0.1146 0.1178 0.0664 0.0699 
 E−  2.1235 2.1326 2.0551 2.0577 
  (2.1238) (2.1332) (2.0551) (2.0577) 

 1r  2.925 2.730 6.698 6.521 
 

12r  5.165 4.803 12.67 12.33 

Li + b  1.57 1.21 1.53 2.03 
 A  1.172 1.191 0.6872 0.7222 
 E−  4.9928 5.0263 4.7201 4.7295 
  (4.9933) (5.0277) (4.7202) (4.7305) 
 

1r  1.520 1.428 3.405 3.329 

 
12r  2.586 2.442 6.331 6.188 

 

We see that the predictions of these wave functions for the energies and 1r , 12r , 

are in close agreement with the values obtained from elaborate calculations [ ]40,39 . 

This emphasizes the importance of the local properties in the development of 

accurate model wave functions which give a clear perspective of their physical 

structure. 
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CHAPTER 3 
 

ALTERNATIVE TREATMENTS FOR TWO-ELECTRON ATOMS  
 

In the first section of this chapter, we have attempted to solve Schrödinger 

equation for atoms having two electrons in an alternative framework. However, after 

some algebraic work we have realized that supersymmetric quantum mechanics 

(SUSYQM)[ ]30  in its present form cannot be used properly due to the correlation 

term. Nevertheless, this failure directs us to introduce another prescription  to solve 

bound state energies and wave functions of helium and helium-like atoms  which is 

discussed and presented in the second section. This successful method leads us to 

present appropriate screening parameters, to our knowledge  such discussion has not 

appeared in the related literature. 

 

    3.1. An Attempt to Solve The Related Problem 

 As mentioned above, one can easily sees that SUSY QM treatment technique 

is not appropriate for solving such systems under consideration because of the 

correlation term appearing due to the interaction between the electrons. To see this 

drawback, which is significant to develop an effective model in the following 

section, we proceed with (in atomic units) 

  

10 HHH +=                                                   (3.1.1) 

where 
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 and          
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







+−=

2112
1

111

rrr
H β    .                                        (3.1.3) 

 
In the above equations 1r , 2r  are the positions of electrons with respect to the nucleus 

having a charge of Z with infinite mass, and 12r  is the distance between electrons. 

For those electronic configurations of the system in which two electrons are at 

unequal distances from the nucleus, the outer electron should experience a smaller 

effective charge than the inner one. In other words, each electron is partially screened 

from screening the full charge of the nucleus due to the presence of the other 

electron. This would suggest introducing an appropriate parameter, β , in the 

calculations. 

 
Assuming that  
 

2112

111

rrr
+= β                                               (3.1.4)                                                   

 
the Hamiltonian, ( ) ( )211211 ,, rrHrrH ΨΨ= , incorporating a perturbation due to 

the correlation term vanishes. In this case, Eq. (3.1.2) gains a physical importance, 

the solution of which reflects also the correlation effects indirectly. This is in 

agreement with the well known fact from the literature that the inclusion of electron 

correlation in the Hamiltonian accounts for the screening precisely. 

Consequently, the Hamiltonian is formed as below, 
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The unperturbed Hamiltonian, 0H , is separable and hence the corresponding 

Schrödinger equation is solved analytically. Each of these independent electron 

picture is the same as the Schrödinger equation for the Hydrogen atom, leading to the 

full unperturbed solutions.  In SUSY QM, the eigenfunctions of these electrons are  

 
 

                                                         and                                                          (3.1.5)      
                                                         
for 1. electron  and  2. electron, respectively, that can be inferenced easily from [ ]30 . 
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For the first electron, the appropriate supperpotential  is  
 
 
                                                                                 .                                           (3.1.6) 

 

We can have the partner potential, )( 1Φ−V , for 1Φ  

 
 
 
 
 

                                                                                                                            (3.1.7) 
 
                                                                                                                                             
For the second electron, the appropriate superpotantial  is  
 
 
 
 
 
 

                                                                                                                            (3.1.8) 
 
 

and  for 2Φ the partner potential )( 2Φ−V  is 

 
 
                                                                                        , 
 
 
                                                                                      .                                      (3.1.9) 

                                                                                                                                                                                                                                                                                                                                                                  
  
 
The total partner potential , )(Φ−V ,  is  

 
 
                                                                                                                                  , 
 
 
                              

                                                                                                        .                 (3.1.10) 
                                                                                                         
 
We know that the difference between the partner potential and the potential of the 
system equals to the ground state energy. That’s 
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and 
 

( ) ( ) ( )2
22

02010 22
βββ −−=−−−−=+= Z

ZZ
EEE                                   (3.1.12)                                                                                                                                                                              

 

The ground state energies of +++− 32 ,,,, BBeLiHeH using Eq. (3.1.12)  are fairly in 

agreement  with the experimental results. However, these results are not reliable 

from the physical point of  view since a specific value of the screening parameter 

(5/16) has been used throughout the calculations. We suggest a physically more 

reliable model in the next section. 

 

Table 3.1.The ground state energies within the frame of Eq.(3.1.12)  
 
 

 

 

 

 

 

 

 

  3.2. Accurate Calculations for Two-Electron Atoms 

Physically, the parameter,β , introduced above screens the nuclear charge and 

produces a change in the wavefunctions corresponding to the interaction of the each 

electron with the nucleus. Bearing in mind that the interelectronic interaction is 

repulsive, one may think of this repulsion resulting in some kind of positional 

displacement for the electronic wavefunctions. This justifies the claim put forward 

with Eqs. (3.1.2) and (3.1.4) that correlation can also be accounted for by introducing 

a correct screening parameter. 

 In this section of the work, for both the ground state and excited states of He 

and He-like atoms, the accurate values of screening parameter, β ,  is obtained. 

Additionally, the relation between the parameter and some expected values of these 

atoms is exhibited. The values computed are aggrement with the literature, which 

proves that the treatment is reliable. 

Atom Present 
Results(au) 

Accurate 
Energy(au) 

−H  -0.472656 -0.5277 

He -2.847656 -2.9037 

+Li  -7.222656 -7.2799 

+2Be  -13.59766 -13.6555 

+3B  -21.97266 -22.0309 
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       3.2.1. Accurate calculations for the ground state of two-electron atoms 

To proceed, in the ground state of these atoms we consider the form of the exact 

energy 

( ) EZE ∆+−= 2                                               (3.2.1) 

 

where 0=β  and E∆  is the correction term to the energy value within the 

consideration of electron correlation, and 

 

( ) ( ) βββ ZZZEE 2222
0 +−−=−−==                              (3.2.2)    

 

in case of screening, leading to a connection between energy expressions 

 

ββ ZE 22 +−=∆                                                (3.2.3) 

 

of different physical considerations. 

In order to provide an insight into the physical nature of the screening parameter, we 

obtain 

 

EZZ ∆−±= 2
2,1β                                             (3.2.4) 

 

using Eq. (3.2.3). Though mathematically we have arrived at two roots for β , the 

substitution of Eq. (3.2.3) into (3.2.4) and a careful study of Eq. (3.1.12) direct us to 

choose the physically reasonable lower root due to the physical fact that .β>Z  The 

dependence of β  on nuclear charge Z , in  Eq. (3.2.4), is in quite striking contrast 

with the previous calculations used trial functions where, in general, 165=β  

irrespective of Z . The Eq. (3.2.4) thus justifies the discussion in [27]. As far as we 

know, this feature has not been perceived in an explicit way until now. 

The accurate values of screening parameter for different atoms having two 

electrons are shown in Table 3.2. In calculating these parameters, exact energy 

values which are taken from the works in Refs. [ ]14,13  are employed within the 

frame of Eqs. (3.2.1), (3.2.3) and (3.2.4). 
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                 Table 3.2. Exact    screening     parameters    for    the    ground    states  

 ……….... of  two-electron atoms in the range  1<Z<12 

 
Atom( )S1  ( )auEnergyExact  ( )1.2.3.EqE∆  ( )4.2.3.Eqβ  

−H  52775.0−  0.47225 0.273535 

He 90372.2−  1.09628 0.295969 

+Li  27991.7−  1.72009 0.301869 

+2Be  65556.13−  2.34444 0.304656 

+3B  03097.22−  2.96903 0.306283 

+4C  40624.32−  3.59376 0.307352 

+5N  78144.44−  4.21856 0.308106 

+6O  15659.59−  4.84341 0.308667 

+7F  53171.75−  5.46829 0.3091018 

+8Ne  90680.93−  6.09320 0.3094479 

+9Na  28188.114−  6.71812 0.3097296 

+10Mg  65694.136−  7.34306 0.3099640 

 

 

Clearly, β  slightly increases with increasing Z . In addition, we observe that there is 

a universal relation between the reduced energy( )ε0E  and the reduced screening 

parameter ( )Zβ  such that 

( )
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βε
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                             (3.2.5)                                            

for −S states. The present result indicates another interesting point. Here, Z  behaves 

as a critical screening parameter for which the binding energy of the level, Eqs. 

(3.1.12), (3.2.2) and subsequently (3.2.5), in question becomes zero. It is of interest 

however to examine whether such a relationship is also valid for 0≠l  states. 

Afterall, we wish to generalize the framework of our discussion by focusing 

on Eq. (3.1.4), in which there are two unknowns: the positions of electrons with 

respect to the nucleus ( )21 ,rr  and the distance between interacting electrons ( )12r . It 

is therefore obvious that there is a need for a second equation to be able to estimate 
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these two unknown observables. By the use of Heisenberg’s uncertainty relation, we 

propose a similar idea to that of Yukawa for the correlation between the electrons, 

E

c
rtcrxtE

∆
≈⇒∆==∆⇒≈∆∆ h

h 1212                       (3.2.6)     

Throughout the work presented here we work in atomic units, Eq. (3.2.6) is thus 

formed as Er ∆≈ 112 . During the electron-electron interaction, we can expect a 

considerable change in total energy( )EE ∆+= ε , on average, due to the correlation 

( )E∆  visualized as in Eq.(3.2.6), keeping in mind that the time required a photon 

exchange between these charged particles is quite short due to the photon moving 

with the speed of light.   

Therefore, in the light of Eqs. (3.1.4), (3.2.3) and (3.2.6) one gets 
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                                          (3.2.7)           

 

and with the use of either Eq. (3.2.2) or Eq. (3.2.5), the energy expression in a closed 

algebraic form is given as 

 

2

21

11

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


−+≈ Z

rr
E                                             (3.2.8)              

It is useful at this stage to remind ourselves that these results are in a very 

good agreement with a significant but ongoing discussion in the literature. In brief, 

Eq. (3.2.8) clarifies explicitly that for low Z values, when one of the electrons 

coalesces with the nucleus the radial distribution of the second electron extends over 

several atomic units. As the charge increases, the second electron moves nearer to the 

nucleus. The equations above,  also agree with the Bohr’s suggestion that the radius 

of hydrogen-like atoms is inversely proportional with the charge of the nucleus if 

electron-nucleus problem is treated independently without considering the 

correlation effect. 

Additionally, Eqs. (3.2.7) and (3.2.8) also reveals that one needs either a 

reasonable parameter reletad to the screening effect or the accurate positions of 

electrons to obtain exact binding energies for the cases of interest. To end up this 
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discussion, we provide 21 11 rr +  values in Table 3.3 for the atoms appeared in 

Table 3.2 considering the corresponding exact −β values. The comparison of the 

present results, 21 11 rr + , with those of Refs.[ ]43,42,41  confirms the physics 

behind the idea proposed in Eq. (3.2.6) 

 

                        Table 3.3.  Locations of electrons with respect to the nucleus 

                        for ground states of  two-electron atoms in the range 1<Z<12 

 

 

 

 

 

 

 

 

 

 

 

     3.2.2. Accurate Calculations for The Excited States of  Two-Electron Atoms 

 
Here, in order to generalize, we extend the present scenario to the excited 

states. For simplicity and clear understanding, it is basically assumed that an electron 

is in the ground state while the second one (outer electron)  sits in the first excited 

state. As expected, only the outer electron is screened from seeing the original 

nuclear charge by the inner one. The Hamiltonian of the system is then formed as 

below  

10 HHH +=                                                 (3.2.9) 

Atom( )S1  ( )7.2.3.11 21 Eqrr +  

−H  1.726465 

He 3.704031 

+Li  5.698131 

+2Be  7.695344 

+3B  9.693717 

+4C  11.692648 

+5N  13.691894 

+6O  15.691333 

+7F  17.690898 

+8Ne  19.690552 

+9Na  21.690270 

+10Mg  23.690036 
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The exact energy value in this case for the system considered can be expressed as   
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where rn  is radial quantum number, l  is orbital quantum number and E∆  is the 

correction term to the energy value within the consideration of electron correlation. 

As discussed in the previous section, the corresponding total energy values can easily 

be expressed by the SUSYQM  
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as result of that, using the same analogy in the earlier calculations where Eqs.(3.21)-

(3.2.3), one can easily get 
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Remembering Eq. (32.4) and using the exact energy values for different l , we can 

compute the screening parameter β   in Eq.(3.2.11) such as 

 

( ) ElnZZ r ∆++−±= 22 12β                            (3.2.15) 
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It is obvious that the lower β  value is physically acceptable as discussed in detail in 

the ground state calculations. For clarity, the accurate values of screening parameter 

for different  l  in the first excited states of different atoms in the range 2<Z<10 are 

shown in Table 3.4. However, it is stressed that one can readily apply the present 

technique, if it is required, the other excited states without causing any problem.  

In calculating these parameters, the exact energy values are taken from the 

works in Refs. [ ]39  and used within the frame of Eqs. (3.2.12), (3.2.14) and (3.2.15).  
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Table 3.4: The exact screening parameter for different l  in the first excited states of  two-electron atoms in the range 2<Z<10. All values 

are in a.u. 

 

 

 

 

 

 SSS 1)21(  SSS 3)21(  PPS 1)21(  PPS 3)21(  
Atom Exact 

Energy 
 

E∆  
Eq(3.2.12) 

 

β  
Eq.(3.2.15) 

Exact 
Energy 

 

E∆  
Eq.(3.2.12) 

 

β  
Eq.(3.2.15) 

Exact 
Energy 

 

E∆  
Eq.(3.2.12) 

 

β  
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β  
Eq.(3.2.15) 

He -2.1460 0.354 0.9193 -2.1752 0.3248 0.8161 -2.1238 0.3762 1.0048 -2.1332 0.3668 0.9677 
+Li  -5.0409 0.5841 0.9198 -5.1107 0.5143 0.7897 -4.9933 0.6317 1.0134 -5.0277 0.5973 0.9453 

+2Be  -9.1849 0.8151 0.9212 -9.2972 0.7028 0.7786 -9.1108 0.8892 1.0190 -9.1750 0.8250 0.9340 

+3B  -14.5785 1.0465 0.9223 -14.7339 0.8911 0.7726 -14.4773 1.1477 1.0228 -14.5731 1.0519 0.9276 

+4C  -21.2220 1.2780 0.9230 -21.4208 1.0792 0.7687 -21.0933 1.4067 1.0254 -21.2217 1.2783 0.9232 

+5N  -29.1154 1.5096 0.9236 -29.3577 1.2673 0.7661 -28.9591 1.6659 1.0273 -29.1205 1.5045 0.9202 

+6O  -38.2588 1.7412 0.9240 -38.5446 1.4554 0.7642 -38.0747 1.9253 1.0288 -38.2694 1.7306 0.9180 

+7F  -48.6521 1.9729 0.9243 -48.9816 1.6434 0.7627 -48.4402 2.1848 1.03 -48.6684 1.9566 0.9162 

+8Ne  -60.2953 2.2047 0.9246 -60.6686 1.8314 0.7616 -60.0556 2.4444 1.0309 -60.3175 2.1825 0.9148 
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In addition, recalling the previous subsection calculations regarding the Heisenberg’s 

uncertainty relation to predict the distance between interacting electrons for  the 

present case, we obtain 

( )
ββ Z

ln

E

c
r r

2

12
2

2

12 +−
++

=
∆

≈ h
                                 (3.2.16) 

 

where 1== ch . Bearing Eq. (3.2.11) in mind, we have   

 

( )2
2 12

21

++
+−=∆=
ln

ZE

r
r

β
β

                                  (3.2.17) 

 

where 2r  is the distance between the outer electron and nucleus. Using the exact 

values of β  for different quantum states (as in Table 3.4), one can easily calculate 

the predictions for 
2

1

r
, which reproduces reasonable results when compared to 

those of other calculations[ ]40 . 
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CHAPTER 4 

 

CONCLUSION 

 
The helium atom and isoelectronic ions are universal examples which 

illustrate the properties of few-electron atoms and ions, and the complications 

introduced by many-particle systems. By the consideration of this essential point, we 

have been principally concerned in this work with finding correct secreening 

parameters for the systems considered. We have observed that for helium and its 

isoelectronic series the size ofβ  scales with the nuclear charge. It has been also 

demonstrated that physically reasonable parameters can be included in the 

Hamiltonian rather than in the trial functions.  

The screening factor is a refinement taking the screening of the nuclear 

charges by the electrons into account. Since a screening factor complicates in general 

the calculation of off-diagonal matrix elements, many theoretical techniques do not 

include this parameter in the wavefunction due to the structure of their framework. 

Therefore, one can expect that the results will be less accurate in cases where 

screening becomes important; i.e. at smaller internuclear distances of two-electron 

molecules, or for dissociation limits involving negative atomic ions, see Ref. [ ]23 . 

However, the present approach would be helpful in removing such deficiencies. In 

addition, the relatively simple and compact form of the present wavefunction would 

be of interest for the calculation of electronic transition moments needed in 

dynamical studies, where intermediate and large internuclear distances are involved.  

Clearly, considerable additional work is still needed to extend the present 

scenario to  more complex cases of helium and its isoelectronic ions with the more 

physical consideration involving other physical parameters. Further, since the same 

β  value has been chosen for both electrons, our method can be easily extended to 

doubly-excited configurations in which both the electrons occupy the same orbital. 
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With this considerations, we hope to stimulate further examples of 

applications of the present procedure in important problems in physics. Along this 

line the works are in progress.  

As a final remark, with the wide application of the screened Coulomb 

potential families in different areas of physics, we believe that our discussion 

presented would also provide new insights to the research communities of atomic 

physics. 
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