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ABSTRACT 

APPLICATION OF THE ASYMPTOTIC ITERATION METHOD TO 
CERTAIN SUPERSYMMETRIC PARTNER POTENTIALS 

 

AYDEMİR,Tuğba 
M.Sc. in Engineering Physics 

Supervisor:  Assoc. Prof. Dr. Okan ÖZER 
July 2010,   35 pages 

 

The Asymptotic Iteration Method (AIM) that has received a lot of attention in the 

literature recently is introduced. The method is applied to obtain the energy 

eigenvalues of some non-shape and shape invariant supersymmetric partner 

potentials, for which exact analytical solutions are not obtainable, with unbroken and 

broken symmetry. The numerical results obtained in this thesis are compared with 

the previous studies and it is also noted that the AIM condition preserves the 

supersymmetric energy degeneracy. 
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ÖZET 

 

ASİMTOTİK İTERASYON METODUNUN BAZI SÜPERSİMETRİK 
EŞPOTANSİYELLERE UYGULANMASI 

 

AYDEMİR,Tuğba 
Yüksek Lisans Tezi, Fizik Müh. 

Tez Yöneticisi: Doç. Dr. Okan ÖZER 
Temmuz 2010,   35 sayfa 

 

 

Bu tezde, son zamanlarda literatürde oldukça ilgi uyandıran Asimptotik İterasyon 

Metod’u (AIM) anlatılmıştır. Bu metod, bazı şekil değişmezliği olan ve olmayan 

“bozulmuş” ve “bozulmamış” simetri ile tam analitik sonuçlar elde edilemeyen 

süpersimetrik eş potansiyellerin enerji özdeğerlerini elde etmek için uygulanır. Bu 

tezde elde edilen nümerik sonuçlar önceki çalışmalar ile karşılaştırılmış ve AIM 

koşulunun süpersimetrik enerji dejenerasyonuna (bozulmasına) engel olduğu 

belirtilmiştir. 

 

 

 

 

 

 

 

 

 

 

 

 

Anahtar Kelimeler: Asimptotik iterasyon metodu, süpersimetrik kuantum mekaniği,                      
……………………...eş potansiyeller 
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CHAPTER 1 

INTRODUCTION 

There is no doubt that it is an interesting problem in fundamental quantum mechanics 

for lecturers, advanced undergraduate and graduate students in physics and applied 

mathematics to obtain the exact solutions of the Schrödinger equation for any type of 

potential. It is well known that the Schrödinger equation proposed by Erwin 

Schrödinger in 1926 is a second-order differential equation that describes how the 

quantum state of a physical system changes in time (Schrödinger, 1926). It is as 

central to quantum mechanics as Newton's laws are to classical mechanics. In non-

relativistic quantum mechanics, the Schrödinger equation in general is given as 

 

ˆ ( , ) ( , )H r t E r tψ ψ=   

or  

 

2
2 ( , )( ) ( , )

2
r tV r r t i

m t
ψψ

  ∂
− ∇ + =  ∂ 





                                                            (1.1) 

Where 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂  

V(r)  is potential of system,  ψ(r,t) is wave function and i t
∂
∂
       denotes energy.  
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If one can solve Equation (1.1) for a given potential and obtain the analytical results  

for E and ψ , then the potential is called “exactly solvable potential”. Unfortunately 

there are not many potentials which admit exact solutions. Consequently there exist 

several means to obtain approximate solutions of them, e.g. Variational method 

(Griffiths, 1995), WKB (Wentzel, Kramers, Brillouin) approximation, time-

independent Perturbation theory (Schiff, 1968), the Numerical shooting method 

(Giordano, 1997), the Finite-element method (Ram-Mohan, 2002; Ka-oey, 2004), 

etc. One of the methods mentioned above, WKB approximation, is for solving the 

Schrödinger equation via the wave function expansion in the power series of . 

Although it is widely used in quantum mechanics and in many other branches of 

theoretical physics such as the theory of graded-index optical waveguides (Srivastava 

et al., 1987), the problem of exactness of the WKB approximation has arisen and 

various refinements have been developed to improve the accuracy of the method 

(Xiang and Yip, 1994; Popov et al., 1996; Zivanovic et  al., 1997). 

 

In the frame of the Supersymmetric quantum mechanics (Cooper et al., 2001) one 

can also solve Equation (1.1) by factorizing the initial Hamiltonian Ĥ : The initial 

Hamiltonian, call Ĥ − , can be factorized by using the differential operators and can 

have a partner Hamiltonian, call Ĥ + . This partner Hamiltonian Ĥ + , again, can be 

factorized and a new partner Hamiltonian is obtained. If a hierarchy of Hamiltonians 

can be constructed, one can also obtain a relation among the energy eigenvalues and 

the eigenfunctions of these Hamiltonians. If the ground state energy of the initial 

potential is zero, then it can be easily written in factorizable form. Thus, the ground 

state energy of the partner Hamiltonian Ĥ +  will be the energy of the first excited 

state of the initial one Ĥ − . As a result, the differential operators in factorization acts 

as “raising” and “lowering” operators for the eigenfunctions of these Hamiltonians. 

If the ground state energy eigenvalue of the initial Hamiltonian is zero, then it has 

“unbroken symmetry”. Applying the differential operators on the excited state 

wavefunction of the initial Hamiltonian, one obtains the ground state wavefunction 

of the partner Hamiltonian. Finally, each of the new Hamiltonians will have one 

fewer bound-state, so that this process can be continued until the number of bound-

states is exhausted. On the other hand, if the ground state energy of the initial 
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potential is not zero, then it has “broken symmetry” and the operation of differential 

operators on the wavefunctions of Hamiltonians does not change the number of 

nodes of the partner wavefunctions. On the other hand, potentials in supersymmetric 

quantum mechanics are called “shape-invariant” or “non-shape-invariant” potentials 

for which exact analytic solutions are obtainable or not, respectively. For the shape-

invariant potentials one can obtain the energy and the wavefunction expressions in 

their explicit forms. For the non-shape-invariant potentials, one of the method given 

above is applied in the framework of supersymmetric quantum mechanics: Comtet et 

al. formulated a supersymmetric version of the WKB method (SWKB) and 

demonstrated that the SWKB can give exact energy eigenvalues for several solvable 

potentials with unbroken symmetry (Comtet et al., 1985). The method proposed by 

Comtet et al. was applied in the cases of some exactly solvable potentials (Khare, 

1985) (for which the exact bound-state spectrum is reproduced) as well as some non-

exactly solvable models (Dutt et al., 1986). Later, it was observed that the SWKB 

method yields the exact bound-state spectra only for some shape-invariant potentials 

(Dutt et al., 1991) and it is also found that the method fails to reproduce the energy 

levels for some non-shape-invariant potentials (Adhikari et al., 1988; Khare, 1989; 

Varshni, 1992). On the other hand, Dutt et al. proposed an alternative quantization 

condition known as broken supersymmetric WKB (BSWKB) for quantum 

mechanical bound-state problems with broken symmetry (Dutt et al., 1993). 

Unfortunately, it also failed to give exact results in good agreement for the broken 

symmetry.  

 

In this thesis study, none of the methods given above are reviewed or applied but a 

recent technique called the Asymptotic Iteration Method (AIM) is introduced (Ciftci 

et al., 2003) to solve some  potentials which are non-shape-invariant with unbroken 

or broken symmetry. AIM is proposed to obtain eigenvalues of second order 

homogeneous differential equations. In the case of Schrödinger equation, it has been 

found that AIM exactly reproduces the energy spectrum for most exactly solvable 

potentials (Ciftci et al., 2005; Saad et al., 2006; Ozer and Roy, 2009; Ozer, 2008; 

Ozer and Aslan, 2008; Ozer, 2009) and for non-exactly solvable potentials it 

produces very good results (Soylu et al., 2007; Barakat, 2005b; Sous, 2006; Koc et 

al., 2007, 2008).  
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In the next Chapter, we present the solution of a second-order differential by the 

AIM method. We obtain the quantization condition and the general solution of the 

method. In Chapter 3, we briefly give the basic definitions of the supersymmetric 

quantum mechanics and show the hierarchy of Hamiltonians for the potential with 

unbroken or broken symmetry. In Chapter 4, we apply the AIM to some non-shape-

invariant supersymmetric potentials and obtain the energy eigenvalues of these 

potentials. We determine the best choice of the adjustment parameter in the method 

to obtain the energy eigenvalues by using the minimum iteration number. We show 

how the adjustment parameter affects the iteration number of the method. We 

compare our results with the literature and it is found that our results are in excellent 

agreement with the numerical values. It is also noted that AIM condition preserves 

the supersymmetric energy degeneracy. Chapter 5 is devoted to Conclusion. 
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CHAPTER 2 

ASYMPTOTIC ITERATION METHOD 

 
AIM is proposed to solve the second-order differential equations of the form of  

(Ciftci et al., 2003; Ciftci et al., 2005) 

)()()()()( 00 xfxsxfxxf +′=′′ λ   (2.1) 

where 0)(0 ≠xλ   and the prime denotes the derivative respect to x. The variables, 

)(0 xs  and )(0 xλ , are arbitrary functions and sufficiently differentiable. To obtain a 

general solution to this equation, we differentiate Equation (2.1) with respect to x, 

then we find 

)()()()()( 11 xfxsxfxxf +′=′′′ λ                  (2.2) 

where 

)()()()( 2
0001 xxsxx λλλ ++′=                                                 (2.3a) 

)()()()( 0001 xxsxsxs λ+′=                 (2.3b) 

Similarly, the second derivative of the Equation (2.1) gives 

)()()()()( 22
)4( xfxsxfxxf +′= λ                        (2.4) 

where   

)()()()()( 10112 xxxsxx λλλλ ++′=                (2.5a) 
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)()()()( 1012 xxsxsxs λ+′=                 (2.5b) 

Equation (2.1) can be easily iterated up to (k+1)th and (k+2)th derivatives, 

k=1,2,3,....Therefore, we have 

)()()(')()( 11
)1( xfxsxfxxf kk

k
−−

+ += λ               (2.6a) 

)()()()()()2( xfxsxfxxf kk
k +′=+ λ                (2.6b)                                         

where 

)()()()()( 1011 xxxsxx kkkk −−− ++′= λλλλ               (2.7a) 

)()()()( 101 xxsxsxs kkk −− +′= λ                 (2.7b) 

which are called the “recurrence relation". From the ratio of the (k+2)th and (k+1)th 

derivatives, we obtain                              

( ) ( )[ ]
( )

( )

















+′

















+′

===

−

−
−

+

+
+

)(
)(
)()(

)(
)(
)()(

)(
)(ln

1

1
1

1

2
1

xf
x
xsxf

xf
x
xsxf

xf
xfxf

dx
d

k

k
k

k

k
k

k

k
k

λ
λ

λ
λ

                        (2.8) 

For sufficiently large values of k, if the following condition is satisfied 

)(
)(
)(

)(
)(

1

1 x
x
xs

x
xs

k

k

k

k α
λλ

==
−

−                   (2.9) 

which is the ‘asymptotic’ aspect of the method, then Equation (2.8) is reduced to 

   ( ) ( )1

1

( )ln
( )

k k

k

xd f x
dx x

λ
λ

+

−

  =                       ............          (2.10) 

which gives directly 
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( ) ( ) [ ]( )∫∫ +=







= −

−

+ dxxxxCdx
x

xCxf k
k

kk )()(exp)(
)(

)(exp 011
1

1
1 λαλ

λ
λ                      (2.11) 

where C1 is the integration constant. By inserting Equation (2.11) into Equation 

(2.6a), the first-order differential equation is obtained as 

 [ ]( )∫ +=+′ dxxxCxfxxf )()(exp)()()( 01 λαα                                                   (2.12) 

This first-order differential Equation can easily be solved and the general solution of 

the Equation (2.1) can be obtained as: 

[ ]
1

1 1 1 2 0 2 2 2 1( ) exp ( ) exp ( ) 2 ( )
xx x

f x x dx C C x x dx dxα λ α∫ ∫ ∫
   

= − + +          
          (2.13) 

Since the one-dimensional time-independent Schrödinger equation (ħ2

[ ]( ) ( ) ( ) 0x V x E xψ ψ′′− + − =

 = 2m = 1) is 

                                     (2.14) 

one can transform it into Equation (2.1) by applying possible change of coordinate if 

it is necessary and then performing a change of wave function in the form 

)()()( xfxgx =ψ                                     (2.15)                                            

We note here that in most applications of AIM the function g (x) asymptotic behavior 

of the system. The function f (x) is obtained in the polynomial form by using 

Equation (2.13) that does not disturb the asymptotic behavior. In the method, the 

energy eigenvalues can be determined by the quantization condition, given by the 

termination condition in Equation (2.9). Thus one can write the quantization 

condition combined with Equation (2.7a and 2.7b) as 

,0)()()()()( 11k =−= −− xsxxsxx kkkk λλδ            ...3,2,1=k                            (2.16)         
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After transforming the Schrödinger equation into the form of Equation (2.1), the 

energy spectrum and wave functions of the quantum system can be obtained 

analytically (or numerically). Using Equation (2.1) one can determine )(0 xs   and 

)(0 xλ  and then one can determined )(xsk  and )(xkλ  parameters iteratively by the 

aid of Equation (2.7a and 2.7b). The energy eigenvalues of the potential in interest 

are obtained by the quantization condition in Equation (2.17) and the wave functions 

are determined by using the following wave function generator 











′

′
′

−= ∫
x

k

k xd
x
xs

)(
)(

expC(x)f 2n λ
.                              (2.17) 

Although the general solution of Equation (2.1) is given by Equation (2.13), the first 

part of Equation (2.13) gives the polynomial solutions that are convergent and 

physical, whereas the second part gives non-physical solutions that are divergent. 

Therefore, the corresponding eigenfunctions can be derived from the wave function 

generator given in Equation (2.17) by choosing 01 =C   in Equation (2.13). On the 

other hand, the equation given in Equation (2.9) implies that the wave functions of 

the system are truncated for sufficiently large values of k and the roots of the relation 

given in Equation (2.16), which has been obtained from Equation (2.7a and 2.7b), 

belong indirectly to the spectrum of Equation (2.14). However, for each iteration the 

expression Equation (2.16) depends on different variables, such as E, x and possible 

potential parameters. It is also noticed that the iterations should be terminated by 

imposing the quantization condition δ(x) = 0, as an approximation to Equation (2.9) 

to obtain the eigenenergies. Therefore, the calculated eigenenergies En by means of 

this condition should be independent of the choice of the coordinate. Thus, the choice 

of x0 is observed to be critical only to the speed of the convergence of the 

eigenenergies, as well as for the stability of the process. The energy eigenvalues can 

easily be obtained from the roots of Equation (2.16) if the problem is exactly 

solvable. If not, for a special n quantum number, we choose a suitable x0 point, 

determined generally as the maximum value of the asymptotic wave function or the 

minimum value of the potential (Ciftci et al., 2003; Fernandez, 2004; Barakat, 2006; 

Barakat, 2005a; Barakat, 2005b) and the approximate energy eigenvalues are 



9 

 

obtained from the roots of this equation for sufficiently large values of k with 

iteration. 
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CHAPTER 3 

SUPERSYMMETRIC PARTNER POTENTIALS AND THE 
FACTORIZATION OF HAMILTONIAN 

Since we apply the asymptotic iteration method to some certain supersymmetric 

partner potentials, we briefly give some information about the supersymmetric 

quantum mechanics (SUSYQM) in this Chapter. It is well known that the time-

independent Schrödinger equation describing a particle of mass m moving in a one-

dimensional potential V(x) is given by 

)()()()(
2 2

22

xExxV
dx

xd
m

ψψψ
=+−

 .                 (3.1) 

Now, we ask that if this equation can be factorized? According to the basic quantum 

mechanics, the Scrödinger equation can be factorized if one suggests the appropriate 

quantum mechanical "operators"  (Griffiths, 1995). Then, the Equation (3.1) can be 

factorized. Let's focus on Equation (3.1) and its ground state wave function 

)()()(
)(

2 0002
0

22

xExxV
dx

xd
m

ψψ
ψ −−− =+−

 .                (3.2) 

We use the 'superscripts' because our purpose is to obtain a "partner" of that 

equation, and these two systems should be distinguished from each other shortly. We 

start with the ground state wave function, which has a great importance in the 

procedure and the reason will be clearly seen in next steps. If we assume that −H  is 

the Hamiltonian operator for this system, then we can write 
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)(
2 2

22

xV
dx
d

m
H −− +−=

 .                                       (3.3) 

Since −H  is operator and −
0E is its eigenvalue, then it can be convenient to rewrite 

the equation as following: 

( )0 0 ( ) 0H E xψ− − −− =                   (3.4) 

where −
0E  is the ground-state energy eigenvalue and 0 ( )xψ −  is the normalizable 

ground-state eigenfunction of the operator −H . Thus, we obtain an equation in terms 

of Hamiltonian operator for the system. Therefore, one can now factorize the 

operator on the left-hand side of the wave function as: 

+−−− =− AAEH 0                                     (3.5) 

and it is guessed that these operators can be given in the following forms (Dutt et al., 

1988) 

),(
2

xW
dx
d

m
A +−=− 

                   (3.6a) 

),(
2

xW
dx
d

m
A ++=+ 

                (3.6b) 

where W(x) is some function, called superpotential in SUSYQM, whose exact form 

will be determined soon. As it is seen in the progress that these operations do not 

change anything in the physics. It is also clear that the wave functions of the system 

are not affected and the potential of the system is just rescaled by the constant term 
−

0E  in Equation (3.4). One can ask to examine what exactly A−  and A+  operators 

'do' on any function f(x), for example. To see the effect, we just apply these operators 

on the function as it is done in quantum mechanics: 

 



12 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (3.6c)                                           
22m

-                    

222
                    

22
                    

22

2
2

22

2
2

22

xfxWxW
mdx

d

xfxW
dx

xdf
m

xWxfxW
dx
d

mdx
xfd

m

xfxW
dx

xdf
m

xW
dx
d

m

xfxW
dx
d

m
xW

dx
d

m
xfAA









+′−=

++







−−=









+








+−=









+








+−=+−









 

 

For this result, it is required 

( ) ( ) ( ) −− −=′− 0
2

2
ExVxW

m
xW                             (3.7) 

At that point it is clearly seen that if one can find a function W(x) satisfying this 

equation, then the Hamiltonian in Equation (3.5) will have been successfully 

factorized. Now, the question is how one can determine the function W(x). We can 

suppose that it were the case A+  has annihilated the ground state wave function −
0ψ , 

that means, 0 ( ) 0A xψ+ − = . Then ( )0 ( )A A xψ− + − would automatically be zero, and 

Equation (3.4) would be satisfied. At his point, it is clearly seen as a reason why we 

have started by the ground-state wave function 0 ( )xψ − . Then we can look for a 

function W(x) which forces this condition to be satisfied. If we explicitly write the 

condition in terms of Equation (3.7), then we get 

( ) ( ) ( ) ( ) 0
2 0

0
0 =+= −

−
−+ xxW

dx
xd

m
xA ψ

ψ
ψ                  (3.8) 

and this equation leads us to find out that 

( ) ( )x
dx
d

m
xW −−= 0ln

2
ψ .                  (3.9) 
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It is obvious that one can also obtain 0 ( )xψ −  from this equation if W(x) is known: 

( ) ( )











−= ∫− dyyWmNx

x



2exp0ψ                                     (3.10) 

where N is the normalization constant. Equation (3.9) says that we can find W(x) 

explicitly if we know the ground state wave function. To do this, we are to solve the 

Schrödinger equation completely. We find that we need to know the solutions 

already. On the other hand, the Equation (3.10) says something quite different: It 

says that if one somehow can find W(x) independently of any knowledge of −
0ψ , then 

one can obtain the ground state wave function of the system by using Equation 

(3.10). In essence, we have transformed the Schrödinger equation into a completely 

different equation, but equivalent one. In more general terms, we have found a first-

order, nonlinear differential equation equivalent to our original second-order linear 

differential equation. Such first-order nonlinear equivalents are classified under the 

general name of Riccati equations.  

In order to obtain a partner potential and to factorize the Schrödinger equation, the 

only thing we do is to reverse the order of the factors ±A  and get something 

interesting. Reversing the order of factors leads to a new Hamiltonian such as (Dutt 

et al., 1988; Cooper et al., 2001) 

−+−+ −= 0EHAA                                       (3.11) 

where  ( )xV
dx
d

m
H ++−= 2

2

2
  and it is found that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),
22m

-                  

22

2
2

2

22

xfxWxW
mdx

d

xfxW
dx
d

m
xW

dx
d

m
xfAA









+′+=









+−








+=−+





 

for this result, it is required that the potential of this new Hamiltonian +H  must 

satisfy 
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( ) ( ) ( ) −+ −=′+ 0
2

2
ExVxW

m
xW  .                                    (3.12) 

From that equation, it is seen that there is a relation between partner potentials and it 

can be found as following: If we rewrite that equation with a little difference, 

  ( ) ( ) ( ) ( ) ( )2
02 2 2

V x W x W x W x W x E
m m m

+ −′ ′ ′= + + − +
  

                          (3.13) 

and using another fact, 

  ( ) ( ) ( ) ,
2 0

2 −− +′−= ExW
m

xWxV                                      (3.14) 

one obtains 

( ) ( ) ( ),
2

2 xW
m

xVxV ′+= −+                 (3.15) 

When the superpotential term is replaced in terms of wave function, we get finally, 

( ) ( )
2 2

02
dV x V x ln

m dx
ψ+ − −= −

 .               (3.16) 

We can easily find interesting connections between these two systems described by 
−H  and +H . First, consider an eigenfunction of −H  satisfying 

,−−−− = nnn EH ψψ                   (3.17) 

where −
nE  is the nth −H energy of . In terms of ±A , we get 

 ( )0 0n nA A E Eψ ψ− + − − − −+ =                 (3.18) 

Applying +A  to the left of both equations, we obtain 

,0
−+−−+−−+−+ =+ nnnn AEAEAAA ψψψ                                     (3.19) 

then we can group terms 
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( )( ) ( )−+−−+−−+ =+ nnn AEAEAA ψψ0                                     (3.20) 

which we notice Equation (3.11) to get 

( ) ( )−+−−++ = nnn AEAH ψψ                                      (3.21) 

This is a quite interesting result and it says that −+
nA ψ  is a solution to the 

Schrödinger equation for +H , with energy −
nE . It is obvious that we can go the 

other way around. Starting with an eigenfunction +
mψ of +H  with energy +

mE  leads 

us to obtain 

( ) +++−−+ =+ mmm EEAA ψψ0                 (3.22) 

Applying −A  to the left of both sides and grouping terms appropriately we get 

( )( ) ( )+−++−++− =+ mmm AEAEAA ψψ0                                     (3.23) 

or shortly 

( ) ( )+−++−− = mnm AEAH ψψ                                         (3.24) 

so +−
mA ψ  is an eigenfunction of −H , with an energy +

mE . 

In summary, +A  applied to any eigenfunction of −H  gives an eigenfunction of +H , 

with the same energy eigenvalue. −A  applied to any eigenfunction of +H  gives an 

eigenfunction of +H , again with the same eigenvalue. This guarantees that the two 

systems in fact have identical energy spectra, almost. Notice that +A  kills the ground 

state wave function −
0ψ  of −H , by construction, so +H  has no corresponding 

eigenstate at the same energy. The lowest state of +H  must then correspond to the 

first 'excited' state of −H , or −+ = 10 EE . In general, 

+−
+ = nn EE 1                   (3.25) 
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As we have shown above if the ground-state eigenvalue of a potential can be shifted 

to zero and the ground-state eigenfunction can be normalized, then the system is 

called “unbroken symmetry”. This is why we obtain Equation (3.25). Therefore, one 

can conclude that partner potentials have identically the same bound spectra, except 

the ground state of ( )V x−  which does not appear in the spectrum of ( )V x+ . This 

procedure is sometimes useful if one of the partner potentials is quite complex for to 

be solved than the other one. 

 

On the other hand, if the partner potentials have ground-state energy eigenvalues 

greater than zero, then the system is called “broken symmetry”, and the energy 

eigenvalues satisfy the condition: 

n nE E− +=                                                                                                                (3.26) 

As we have shown above one can obtain the eigenvalue and the eigenfunction 

relations between the partner potentials if the initial potential is in the exactly 

solvable form such as Simple Harmonic Oscillator, Coulomb, Morse and Pösch-

Teller potentials. One can easily obtain the partner potentials for them by following 

the procedure given above. At this point a question is asked that what the general 

relation among these potentials is and why they can be solved? In the paper by 

Gendenshtein (1983), it is shown that these potentials  have a property of “shape 

invariance” that is of importance point in the SUSYQM to obtain eigenvalues of the 

partner potentials. In the procedure we have given above if the potentials ( )V x−  and 

( )V x+  can be written in a more general case than Equation (3.16) as 

( ) ( )0 1 1; ; ( )V x a V x a R a+ −= +                (3.27) 

where 0a  is a set of parameters and 1a  is a function of 0a  and the last term 1( )R a  is 

a independent function of x , then the potentials ( )V x−  and ( )V x+  are called 

“shape invariant” potentials: They are similar in shape and differ only in the 

parameters appearing in their function forms. Following the hierarch process given 

above one can write the Hamiltonians in the form of the following structure 
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( )
2 2

2 1
; ( )

2
kk

k i
i

dH V x a R a
m dx

− ∑
=

= − + +


                                                                             (3.28) 

where 0( )k
ka f a= , the function f  applied k times. If we take the next member of 

the hierarchy and compare its spectrum with the previous one, we obtain  

( )

( )

2 2 11
12 1

2 2

2 1

; ( )
2

; ( )
2

kk
k i

i

k
k i

i

dH V x a R a
m dx

d V x a R a
m dx

++ − ∑+
=

+ ∑
=

= − + +

= − + +





                            (3.29) 

From Equations (3.28) and (3.29), we obtain that the Hamiltonians have identical 

bound-state spectre except for the lovest level of the member kH  whose energy is 

given by 

0
1

( )
kk

i
i

E R a∑
=

=                  (3.30) 

This can be written from Equation (3.28) and it is known that 0 0E− = . The complete 

energy spectrum of H −  is found as 

0
1

( ), 0
n

n i
i

E R a E− −∑
=

= =                           (3.31) 
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CHAPTER 4 

APPLICATIONS 

4.1 One-Dimensional Anharmonic Oscillator 

As we have studied in the previous Chapter, the Hamilton hierarchy in SUSYQM is 

described by: 

)(
2

)(
2

2
2

22

xW
m

xW
dx
d

m
H ′±+−=±

  

       )(
2 2

22

xV
dx
d

m ±+−=
      (4.1) 

where W(x) is called the superpotential and )(xV± are called supersymmetric partner 

potentials and defined by 

 )(
2

)(2 xW
m

xWV ′±=±
                                                                                       (4.2) 

in which  )(xW ′ is the derivative with respect to x. If the ground-state eigenvalue of a 

potential can be shifted to zero and the ground-state eigenfunction can be 

normalized, then the system has unbroken symmetry. Thus, one can conclude that 

partner potentials have identically the same bound-spectra, except the ground-state of 

−V (x) which does not appear in the spectrum of +V  (x). The energy eigenvalues of 

partner potentials satisfy the condition: 

1n nE E− +
+ =                                                                                                                (4.3) 
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In the case that the partner potentials have ground-state energy eigenvalues greater 

than zero, then the system is called the broken symmetry.Thus, the energy eigen 

values satisfy the condition: 

−+ = nn EE                                                                                                                   (4.4) 

Using Equation (4.2) for the partner potentials,we study the bound-state spectra for 

some certain potentials with unbroken or broken symmetry by the quantization 

condition given in Equation (2.16), in the framework of AIM. 

 

Figure 1: The potentials −V (x) (solid), and +V  (x) (dashed) for the anharmonic 
oscillator (Equation (4.6)) with 1,1V0 == a  

 

We first analyze the one-dimensional anharmonic oscillator that is a non-shape-

invariant potential with unbroken symmetry (Fricke et al., 1988; Adhikari et al., 

1988): Since the superpotential is defined as  

3
0

3
)( 



=
a
xV

xW                                                                                                    (4.5) 
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Then the partner potentials are found to be 

2
0

6
0

29






±



=± a

x
m

V
aa

xV
V                                                                                    (4.6) 

As seen in Figure 1, the potential −V (x) is a symmetric double well potential whereas 

the partner potential  +V  (x) is a single well one. If one writes the Schrödinger 

equation for the partner potentials ±V (x) 

0)(
29

)(
2

2
0

6
0

2

=











−






±



+′′− ± xE

a
x

m
V

aa
xV

x
m

ψψ                                            (4.7) 

Then one needs to transform it into Equation (2.1) to apply AIM: For the potential 

−V (x) in Equation (4.7), we consider a generic wave function (satisfying the 

boundary conditions) in the form of 

)(),()( xfxgx βψ =           (4.8) 

where 
2/24 12/),( xxexg ββ −−=  in which β  is the adjustment parameter. Substituting 

Equation (4.8) in the eigenvalue Equation (4.7), one obtains (we set 12m ==  after 

that step in the following calculations.) 

( ) )(
3

2)(3
3
2)( 2

2
2 xfxxExfxxxf 
















+−−+′






 +=′′ ββββ                              (4.9) 

Now comparing Equation (4.9) , and Equation (2.1) one finds 

      ( ) ,3
3
2)( 2

0 xxx βλ +=      

2
2

0 3
2)( xxExs 







 +
−−=

βββ                                                                             (4.10) 
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Table 1: First four energy eigenvalues of the anharmonic potential ±V (x) [Equation (4.6)], 
with 1,1V0 == a ,and 12m == , determined by the numerical method, the SWKB 
method and the AIM. −

+
+ = 1nn EE  relation is also satisfied by AIM 

 

n−  
Numerical 

(Adhikari et al., 1988) 
SWKB 

(Adhikari et al., 1988) 
AIM: 

( )V x−  n+  
AIM: 

( )V x+  

1 1.1175 1.3077 1.1175 0 1.1175 

2 3.6364 3.6989 3.6364 1 3.6364 

3 6.7440 6.7953 6.7440 2 6.7440 

4 10.417 10.452 10.417 3 10.417 

 

By means of Equation (2.7a and 2.7b), one can calculate )(k xλ  and  )(xsk . Finally , 

one can find the energy eigenvalues of the potential in Equation (4.6) by using the 

quantization condition given in Equation (2.16). The calculated energy eigenvalues 

nE  by means of this condition should, however, be independent of the choice of x. If 

the problem is exactly solvable, then the energy eigenvalues can directly be obtained 

from the roots of Equation (2.16) for any value x (Ozer and Aslan, 2008; Ozer, 

2009). If it is not, one has to choose a suitable 0x  point determined generally as the 

maximum value of the asymptotic wave function or the minimum value of the 

potential (Soylu et al., 2007; Barakat, 2005; Sous 2006; Koc et al., 2007, 2008), and 

then the approximate energy eigenvalues are obtained from the roots of this equation 

for sufficiently large values of k with iteration procedure. We also note that the 

choice of 0x  is observed to be critical only to the speed of the convergence of the 

eigenvalues, as well as for the stability of the process.In this example it has been 

observed that the optimal choice for 0x  is 0x =0. We present energy eigenvalues 

determined by AIM and we also compare our result with Exact and SWKB values, in 

Table 1. It is seen that the AIM gives exatly the same energy eigenvalues without 

any percentage error. This is not true for SWKB approximation. In addition to these 

calculations, we also obtain the energy eigenvalues for the partner potential +V (x) via 

the AIM quantization condition. The energy hierarchy, −
+

+ = 1nn EE ,between two 
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partner potentials in the framework of Aim can obviously be observed between the 

fourth and the fifth column in Table 1, where we show the quantum states as n and l 

for potentials −V (x) and +V (x) respectively. It is seen that Aim can be an effective 

tool to determine the eigen value problem for such problems if one properly 

determines the adjustment parameter, β . 

4.2. Polynomial Potential 

The second example which we consider is the unsolvable polynomial potential with 

unbroken symmetry: If the superpotential is given as (Varshni, 1992) 

3

0

0 42
)(
)(

)( cxbx
x
x

xW +=
′

−=
φ
φ

                (4.11) 

where b and c are real constants, then the partner potentials can be found as 

( )2 2 4 2 6( ) 4 12 16 16 2V x b c x bcx c x b± = ± + + ±                         (4.12) 

For the partner potential ( )V x− , the values of parameters b and c affect the number 

of minimum points of the potential: If 2 3b c> , then the potential has one minimum 

(Varshni, 1992). Therefore, we select the parameters 0.60b =  and 0.10c = . The 

partner potentials ( )2 2 4 2 6( ) 4 12 16 16 2V x b c x bcx c x b± = ± + + ±  are shown in Fig. 2. 

These class of potentials are of importance in physics and have been investigated by 

a variety of methods (Khare and Varshni, 1989; Sinha et al., 1996; Chakrabarti, 

2008). To apply the quantization condition Equation (2.16) to the potentials in 

Equation (4.12) we need to transform the eigenvalue Equation (4.7) to Equation (2.1) 

for these partner potentials. Therefore one can write the ansatz wave function, by 

following the same procedure in the previous example, as 

( ) )(exp)( 42 xfxcxx −−= βψ                 (4.13) 

Inserting Equation (4.13) into (4.7) for the potentials ( )V x± , we obtain 

( )
2

2 2 2 4 2

( ) 4 ( 2 ) ( )

2 2 4( ) 16 ( ) 24 ( )

f x cx x f x

b E b x c b x q cx f x

β

β β β

′′ ′= + +

± − + − + − +
(4.14) 
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where q=0 or q=1 for ( )V x−  or ( )V x+ potentials, respectively. If we compare 

Equation (4.14) with Equation (2.1), then we set  

2
0 ( ) 4( 2 )x cx xλ β= +    and  

2 2 2 4 2
0 ( ) 2 2 4( ) 16 ( ) 24s x b E b x c b x q cxβ β β= ± − + − + − +                              (4.15) 

 

 

Figure 2: The potentials −V (x) (solid), and +V  (x) (dashed) associated with the 
superpotential W(x) [in Equation (4.11)] 0.60b =  and 0.10c = . 

 

Now ( )k xλ  and ( )ks x  can be determined by using Equation (2.7a and 2.7b) and then 

one can calculate the energy eigenvalues of the potential, for example, ( )V x−  in 

Equation (4.12). Since we have already set 0.60b =  and 0.10c = , then we have to 

determine the most convenient value of the adjustment parameter β in the iteration. 

In our calculations, if one follows the same procedure progressed in previous 

problem, we find that β = 2.6 for the most convenient value. At the end of the 

iterations, we have again set x = 0 which is the maximum value of the asymptotic 

wave function. It has been experienced that the minimum iteration number occurs 

when k = 72 for the potential ( )V x− . The results by AIM for the potentials ( )V x+ , 
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together with the exact ones from solving the Schrödinger equation numerically and 

those of SWKB are all shown in Table 2. We obtain that our results are in excellent 

agreement with the exact ones for all the energy levels. We notice that the number of 

iterations required for the partner potential V+(r) should be k = 68. It is also seen in 

Table 2 that AIM preserves the supersymmetric energy degeneracy. 

 

Table 2: Energy eigenvalues of the polynomial potential for the superpotential  
W(x)= 342 cxbx +  with 0.60b =  and 0.10c = , as obtained by the 
Numerical method, the SWKB method and the AIM 

 

 
n−  

Numerical 
(Varshni, 

1992) 

SWKB 
(Varshni, 

1992) 
AIM: ( )V x−  n+  AIM: ( )V x+  

1 3.06619 3.12274 3.06619 0 3.06619 

2 7.19498 7.24206 7.19498 1 7.19498 

3 12.04113 12.08354 12.04113 2 12.04113 

4 17.48396 17.52287 17.48396 3 17.48396 

5 23.4480 23.4841 23.4480 4 23.4480 

6 29.8807 29.9146 29.8807 5 29.8807 

7 36.7429 36.7750 36.7429 6 36.7429 

8 44.0040 44.0344 44.0040 7 44.0040 
 

4.3. Spherically Symmetric Potential 

As a last application, a non-shape-invariant potential with broken symmetry is 

studied. In (Dutt et al., 1993), Dutt et al. has investigated the energy eigenvalues of 

partner potentials obtained by the spherically symmetric superpotential 

22( )W x r
r

= − −                                       (4.16) 

Using (4.16), one can obtain the two partners as 

4 4
2 2

2 6( ) 6 an d ( ) 2V r r r V r r r
r r− += + + = + +                                                    (4.17) 
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Figure 3: The potentials −V (x) (solid), and +V  (x) (dashed) associated with the 
superpotential W(x) [in Equation (4.18)]. 

To find the eigenvalues of these potentials by using AIM, one can suggest the ansatz 

wave function for the solution of partner potential, ( )V x−  

2 31 1
2 2 3( ) ( )

r r
r r e f r

α β
ψ

− −
=                           (4.18) 

where α  and β are adjustment parameters (to be determined by AIM). Substituting 

Equation (4.18) in the eigenvalue Equation (4.7) for the partner potential ( )V x− , we 

obtain  

( )
2

3 3 3 2 2

( ) (2 2 4 / ) ( )

(6 (6 )) (5 2 ) ( )

f r r r r f r

r r r r r E f r

β α

β β α β α

′′ ′= + − +

+ + − + − − −
             (4.19) 

Comparing Equation (4.19) and Equation (2.1), one can set 

2
0 ( ) 2 2 4 /x r r rλ β α= + −  

and 

3 3 3 2 2
0 ( ) (6 (6 )) (5 2 )s x r r r r r Eβ β α β α= + + − + − − −  

                                 

(4.20) 
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Using Equation (4.20), we can compute ( )k xλ  and ( )ks x  and then we can determine 

the energy eigenvalues of the potential ( )V x−  in Equation (4.17) by using the 

quantization condition given in Equation (2.16). In our calculations we have 

observed that the best choice for the adjustment parameters are 4α =   and 1/ 8β = , 

and the optimal choice for 0r  must be 0 0.6695r = ; the maximum value of the 

asymptotic wave function. 
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Table 3: Comparison of energy eigenvalues, for the partner potentials ( )V x± , 

obtained by the Numerical method, the SWKB method and the AIM 
 
 

 
n±  

Numerical 
[Dutt1845] 

SWKB 
[Dutt1845] 

AIM: ( )V x±  
Present Results 

1 13.34 13.46 13.34 

2 23.39 23.46 23.39 

3 34.58 34.64 34.58 

4 46.74 46.78 46.74 

5 59.73 59.76 59.73 

6 73.45 73.48 73.45 

7 87.84 87.86 87.84 

8 102.83 102.86 102.83 
 

We present our results for both partner potentials, together with the numerical ones 

from solving the Schrödinger equation numerically and those of SWKB in Table 3. 

We obtain that our results are in excellent agreement with the exact ones for all the 

energy levels, without any percentage error. It is also noted that our results which 

agree with numerical ones are obtained by means of k = 80 iterations for the potential 

( )V x−  by using the parameters presented above. On the other hand, the number of 

iterations required for the partner potential ( )V x+ is found to be k = 78. 
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CHAPTER 5 

CONCLUSION 

In this thesis we applied asymptotic iteration method to some non-shape-invariant 

supersymmetric partner potentials with unbroken and broken symmetry.  We solved 

the second order differantial equations iteratively and then we transformed 

Schrödinger  equation into those of  differantial equations. After that transforming 

the energy spectrum and wave function of the quantum system obtained by using 

AIM analytically (or numerically).   

 
We applied the AIM to the three different potentials to calculate the energy 

eigenvalues of the potentials. One of  is One-Dimesional Anharmonic Oscillator, the 

other is Polynomial Potential and lastly Spherically Symmetric Potential. The 

obtained results are given in table 1, 2 and 3, respectively.  The results clearly 

showed that the AIM preserves the supersymmetric energy degeneracy. 

 
Although supersymmetric partner potentials have no analitical solutions in literature, 

there exist some approximate solutions to calculate them, for instance Variational 

method  WKB (Wentzel, Kramers, Brillouin) approximation, time-independent 

Perturbation theory, the Numerical shooting method, the Finite-element method. The 

performance of the proposed method was compared with the SWKB Method in 

terms of closest  to the  exact results. The obtained results, which are given in tables 

1, 2 and 3, proved that the proposed method provided much better results than the 

SWKB Method.        
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A disadvantage of the proposed method is might be its computational time. While 

determining the best parameter values it might be require long computaional time 

due to the number of iterations. Hovewer, it is worth the mention that this 

disadvantage can be minimized and the computational time  might be reduced by 

using a computer which has multi-core CPUs. 

 

Based on these results, we believe that the proposed method has great potential in 

calculating the non-shape-invariant supersymmetric partner potentials, for which 

exact analytical solutions are not obtainable, with unbroken and broken symmetry. 
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APPENDIX 

SOLUTION OF THE ANHARMONIC OSCILLATOR POTENTIAL BY AIM 

USING A MATHEMATICA PROGRAM 

(* 
This is the program written in Mathematica™ for the solution of  
the quantum mechanical Anharmonic Osciallator Potential by using  
the Asymptotic Iteration Method 
*) 
(* 
contact: Tugba AYDEMIR 

E-mail: tsarioglu@windowslive.com 
*) 

(******************************************************************) 

Clear["Global`*"]  

(*Define the potential parameters*) 

setparapot={V0→1,a→1,m→1/2,h→1} 
 

6 2

6 2

0 * 0( ) *( )   //.setparapot;
9 2*
0 * 0min ( ) *( )   //.setparapot;
9 2*

v x h v xvplus
a ama

v x h v xv
a ama

= +

= −

(*Define the potentials*) 

 

(*Set V here by using Vplus or Vmin*) 
V=Vplus 
(*Draw potentials*) 
graphV=Plot[{Vmin,Vplus},{x,-3,3},PlotStyle→{Black,Dashed}, 
PlotRange→{-2,8},Axes→True,AxesLabel→{x,Potentials}, 
Epilog→{Text["V+(x)",{1.5,4},{1,1}],Text["V-(x)",{2.5,4},{1,1}]}] 
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Export["D:\FigureAnharmonic1.eps",graphV] 
(*Find min and max points of the potential*) 
Solve[D[V,x]=0,x]//N 

2

''[ ] ( 1) [ ];
2
hHam T x V E T x
m

= − + −

(*Write Schrödinger, place V into it*) 

 

H=Ham//.setparapot 

4
2 / 2   //.setparapot

12
xpsi Exp xβ

 
= − − 

 

(*Write the ansatz wavefunction*) 

 

(*Take the derivatives of the ansatz wavefunction  
and insert them into the Schrödinger equation above*) 
st1=FullSimplify[{T’’[x]→D[(psi*f[x]),x,x],T[x]→ (psi*f[x])}] 
Ht1=H//.st1/.f[x]→T[x]/.f'[x]→T'[x]/.f''[x]→T''[x]; 
HAM=FullSimplify[FullSimplify[Ht1]]/.x→

→

y 
HR3AIM=Collect[Simplify[Solve[HAM=0,T''[y]]],T[y]] 
 
(*The final term T''[y] is in the form of the main equation of AIM.*) 
(*Set lambda_0 and s_ 0 bu using T''[y]*) 
(*Give an arbitrary positive real number for the beta value*) 
setpara={β 7/2}; 
s[x][0]=FullSimplify[Coefficient[HR3AIM[[1,1,2]],T[y]]//.setpara]/.y→x 
Lb[x][0]=FullSimplify[Coefficient[HR3AIM[[1,1,2]],T'[y]]//.setpara]/.y→x 

(*Now, iteration can be done. One can solve the k∂ equation for the E values*) 
(*If the resultant equation includes "x",  
then set "x=0" of set it for the min/max points of the potential interest.*) 
(*If E values are not found,  
try the max value of the ansatz wavefunction above for the "x" value*) 
 
Clear[i,k]; 
limit=56; 
Do[k=i;Print[i]; 
  Do[s[x][n]=Simplify[D[s[x][n-1],x]+Lb[x][n-1]s[x][0]]; 
   Lb[x][n]=Simplify[D[Lb[x][n-1],x]+s[x][n-1]+Lb[x][0]Lb[x][n-1]],{n,1,k}]; 
  enr=Numerator[Factor[s[x][k]*Lb[x][k-1]-Lb[x][k]*s[x][k-1]]]/.x0//N; 
  sonuc=Chop[Solve[enr0,E1]]//N//TableForm; 
  Print[NumberForm[sonuc,6]] 
   If[k≥limit,Break[ ]],{i,46,limit,2}]; 

(***********************************************) 
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