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ABSTRACT 

 

GEOMETRICALLY NONLINEAR ANALYSIS OF PLATES AND 

SHELLS 

KOLCU, Filiz 

PhD in Civil Engineering 

Supervisor: Prof. Dr. Mustafa ÖZAKÇA 

July 2010, 125 pages 

 

This thesis deals with the geometrically nonlinear analysis of prismatic plates and 

shells using the finite strip method. The analysis is based on the use of Mindlin plate 

theory and therefore includes the effects of transverse shear deformation. The 

nonlinearity is introduced via the strain-displacement equations and correspondingly 

the analysis pertains to problems involving moderate displacements but small 

rotations. The principle of minimum potential energy is used in the development of 

the element and the complete structure stiffness equations and latter equations are 

solved using Newton-Raphson method. The postbuckling performance of optimized 

panels with sub-stiffening is investigated. The panels have been optimized for 

minimum weight or maximum performance. The linear elastic eigenvalue finite strip 

code which has a built-in optimizer provided a practical way of doing so, at least for 

the initial (skin) buckling. Optimization is also used to obtain insight into the 

importance of different design variables, and derive a method for sizing. Linear 

finite strip analysis allowed the optimization of one of the sub-stiffened panels, 

revealing a potential for further improvement of the initial buckling load. 

 

Keywords: Geometrically nonlinear, Stiffened plates, (Post) buckling analysis, 

Structural optimization, Finite strip 
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ÖZET 

 

PLAK VE KABUK YAPILARIN GEOMETRİK NONLİNEER 

ANALİZİ 

 

KOLCU, Filiz 

Doktora Tezi, ĠnĢaat Mühendisliği 

Tez yöneticisi: Prof. Dr. Mustafa ÖZAKÇA 

Temmuz 2010, 125 sayfa 

 

Bu tezde, plak ve kabuk yapıların geometrik nonlineer analizi için sonlu Ģerit 

metodu sunulmuĢtur. Analizde, Mindlin plak teorisinin kullanımı temel alınır ve bu 

sebeple kayma deformasyonu etkilerini kapsar. Nonlineerlik birim uzama-yer 

değiĢtirme denklemleri aracılığıyla ifade edilmiĢ ve benzer Ģekilde analiz küçük 

dönmelerin olduğu yer değiĢtirme problemlerini içermektedir. Elemanın 

geliĢtirilmesinde ve plak rijitlik denklemlerinin tamamlanmasında potansiyel 

enerjinin mimimize edilmesi ilkesi kullanılmakta ve bu denklemler Newton 

Raphson metodu ile çözülmektedir. Sayısal uygulamalarda farklı sınır koĢulları, 

düzgün yüklü plaklar ile verilmektedir. Optimize edilmiĢ takviyeli panellerin 

burkulma sonrası (veya ötesi) performansları araĢtırılmıĢtır. Paneller, minimum 

ağırlık veya maksimum performans için optimize edilmiĢti. Lineer elastik özdeğer 

sonlu Ģerit kodu, optimizasyon yapan kiĢiye, en azından ilk burkulma için pratik bir 

yol sağlamaktadır. Optimizasyon, farklı tasarım değiĢkenlerinin önemini kavrama ve 

boyutlandırma için bir metot geliĢtirmek için de kullanılmıĢtır. Lineer sonlu Ģerit 

analizi ile takviyeli panellerin birinin optimizasyonu potansiyelde ilk burkulma 

yükünün üzerinde iyileĢme sağlamıĢtır. 

 

Anahtar Kelime: Geometrik nonlineer, Takviyeli plakalar, Burkulma (sonrası) 

analiz, Yapısal optimizasyon, Sonlu Ģeritler  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Information 

 

Rectangular plate and stiffened plate structures are used frequently as structural 

components in a number of branches of engineering. In the civil engineering context 

nonlinear response has proved valuable in the analysis of cooling towers. In aircraft 

and ship design, plate structures are often subjected to lateral and inplane loading and 

in consequence there is considerable interest in predicting the buckling and 

postbuckling behavior of such structures. In many instances the efficient design of 

plate structures may be based on the assumption of nonlinear response to loading.  

 

Nonlinear behaviors of structures are classified as geometric nonlinearity, material 

nonlinearity and combined geometric and material nonlinearity. In material 

nonlinearity stress is not linearly proportional to the strain. In geometric nonlinearity 

strain-displacement relation is nonlinear. If accurate determination of the 

displacements is needed, geometric nonlinearity may have to be considered in some 

structures. For instance, stresses due to membrane action, usually neglected in plate 

flexure, may cause a considerable decrease of displacements as compared with the 

linear solution, even though displacements are still quite small. Conversely, it may be 

found that a load is reached where deflections increase more rapidly than predicted 

by a linear solution and indeed a state may be attained where load carrying capacity 

decreases with continuing deformation. 

 

The load at which the bifurcation occurs in the load deflection spaces is called the 

critical buckling load or simply critical load. The deflection path that exists prior to 

bifurcation is known as the primary path, and the deflection path after bifurcation is 

called the secondary or postbuckling path. A nonlinear analysis capability provides 
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the engineer with a means of determining post-buckling behavior. This is important 

because often the ultimate load occurring in the postbuckled region exceeds the 

critical load rendering the structure adequate within this range. Frequently, though, 

postbuckling deflections increase rapidly and may become irreversible, consequently 

a nonlinear analysis becomes essential if these reverse of strength are to be safely 

utilized. 

 

Many engineering structures have constant geometrical properties along a particular 

direction. Such prismatic structures are very common in plate and shell problems 

where the transverse cross-section of the structure often remains constant in the 

longitudinal direction. If the material properties of the structures are also constant in 

the same direction, the nonlinear analysis can be simplified by the combined use of 

finite elements FE and Fourier expansions to model the transverse and longitudinal 

behavior. The Finite Strip (FS) method is one of a number of procedures which can 

be used to solve nonlinear plate structure problems. 

 

In this thesis the main concern is to develop a program based on FS method for 

geometric nonlinear analysis of plates and shells by extending the earlier studies [1]. 

 

1.2 Principle Objectives 

 

The crucial motivation of the thesis is geometrically nonlinear analysis of plates and 

shells using a powerful computer code. 

The specific objectives may be expressed as follows: 

 Finding the critical buckling load of the considered plates. 

 Maximizing the critical buckling load of unstiffened and stiffened plates. 

 Investigating the performance of each structural element on the critical 

buckling loads of plates. 

 Evaluating the strains using a deformation Jacobian matrix for the geometric 

nonlinear effects in plane problems. 

 Using Newton-Raphson iteration method for the solution. 

 Giving a formulation based on the FS method for the geometric nonlinear 

analysis of plates. 
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 Considering the displacements for nonlinear performance and investigating 

the load-deflection curve. 

 Observing the change in the element shape during the nonlinear analysis to 

evaluate the efficiency of each structural element. 

 Comparing the results with the literature and FE solution. 

 Analyzing the postbuckling behavior of optimized panels. 

 Compared the postbuckling performance of initial and optimum plates. 

 

1.3 About Computer Program 

 

A free vibration analysis using FS method and shape optimization with Sequential 

Quadratic Programming programs for straight folded plates and shells were 

developed by Özakça [2]. In the present thesis buckling analysis subroutines of 

folded plates, shells and stiffened plates called EBUCK included into program. Then 

program GNPLATE is developed for geometrically nonlinear analysis of plates and 

shells. For postbuckling performance of initial and optimized plates FS method is 

used. In plane stress-plane strain program GNPLANE Finite Element (FE) method is 

used. All programs are written in FORTRAN 90 using double precision and run on 

LINUX main frame and personal computer. 

 

1.4 Layout of Thesis  

 

The contents of each chapter can be expressed as: 

 Chapter 2 contains literature survey about linear buckling analysis, geometric 

nonlinear analysis and optimization methods. 

 In Chapter 3, FS formulation for plates is presented in condensed form. 

Accuracy and efficiency of the method is illustrated using several examples. 

Results obtained are compared with previous published results. 

 Chapter 4 is composed of two parts. In the first part nonlinear formulation 

based on FE for plane stress-plane strain are given with column example. 

Then FS formulation for nonlinear analysis of plates and flowchart are 

presented. Plate examples are given for different loading and boundary 

conditions.  

 Optimization process, definition of elements and design variables, and 

structural optimization flowchart are presented in Chapter 5. Several 
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examples of prismatic and stiffened plates are presented to illustrate structural 

shape optimization. 

 In Chapter 6, conclusions based on the present thesis are underlined and 

recommendations for future work are expressed. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1 General Information 

 

The first buckling studies are carried out in the eighteenth century by Leonhard Euler 

[3]. He proved that there was a critical load for the buckling of a slender column 

which bends sideways with very large displacements before reaching the ultimate 

stress capacity of the used material. At that time principal structural materials were 

wood and stone. The relatively low strength of these materials necessitated stout 

structural members for which the question of elastic stability was not of primary 

importance. Thus, Euler‘s theoretical solution, developed for slender bars, remained 

for a long time without practical application. Only with the beginning of the 

extensive construction of steel railway bridges during the middle of the past century 

did the question of buckling of compression members gained practical importance. 

The use of steel led naturally to types of structures including slender compression 

members, thin plates, and thin shells. Experience showed that such structures may 

fail in some cases not on account of high stress, surpassing the strength of material, 

but owing to insufficient elastic stability of slender or thin-walled members [4]. 

 

In the use of thin sheet material, as in plate girders and airplane structures, we have 

to keep in mind that thin plates may prove unstable under the action of forces in their 

own planes, and fail by buckling sideways. Thin cylindrical shells, such as vacuum 

vessels, which have to withstand uniform external pressure, may exhibit instability 

and collapse at a relatively low stress if the thickness of the shell is too small in 

comparison with the diameter. A thin cylindrical shell may buckle also under axial 

compression, bending, torsion, or combinations of these. Because of the two 

dimensional action, the buckling behavior of plates and shells are different and 

complex when compared with columns [4]. 
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Thin steel plates loaded in their mid-plane may buckle under very small loads, and if 

the plate is adequately supported along its boundaries, it will be able to carry much 

higher loads than the theoretical buckling load. Such plates are referred to have 

postbuckling strength. Failure of such structures is usually due to large out-of-plane 

deflections, yielding and rupture.  

 

The stiffened plates with longitudinal stiffeners their response against axial loads 

must be designed to function under buckling and postbuckling conditions to 

complete on weight-efficiency basis. Analytical solutions for those types of 

structures may become insufficient and tedious. In this regard, numerical solutions 

are inevitable.  

 

The linear buckling problem is an eigenvalue problem, making possible to obtain 

critical load factors and buckling modes with a simple procedure. However, 

postbuckling results from an equilibrium problem solved using incremental solution 

strategy where loads and displacements change by small but finite increments. 

 

In this chapter, the history of linear buckling and geometric nonlinear (postbuckling) 

analysis of plates and shells are reviewed. Also the existing literature is grouped 

based on solution methods such as analytical methods, FE method and FS method. 

Then, literature survey of optimization is briefly given. 

 

2.2 Linear Buckling Analysis  

 

a) Analytical method: The limitations imposed by analytical techniques are well 

known. Only in special cases of loading, plate geometry and edge conditions is 

closed form solution possible [4, 5]. Classical analytical techniques are not suitable 

for plates and shells with an abrupt change of thickness, complex geometry and 

mixed boundary conditions. Approximate methods are therefore not only permissible 

but, in many cases, are the only means of solution to this problem. 

 

b) Finite element method: Because of severe economic constraints and stringent 

deadlines coupled with the enormous growth in computer speed and power, 

engineers are resorting to numerical methods for the analysis of plates and shells. 
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Among the various numerical methods, FE method becomes firmly established as an 

engineering tool for the stability analysis of shells. 

 

Ley et al. [6] developed the analysis to predict buckling loads of ring-stiffened 

anisotropic cylinders subject to axial compression, torsion and internal pressure. 

Buckling displacements are represented by a Fourier series in the circumferential 

coordinate and the FE method applied in the axial coordinate.  

 

FE analysis applications to plate buckling problem have been carried out by the 

following researchers; Allman [7], Przemieniecki [8] and Fafard et al. [9]. For 

complex boundaries, Anderson et al. [10] approximated curved boundaries with a 

large number of straight-edged triangular elements. 

 

Sheikh et al. [11] investigated the stability of a tee-shaped steel stiffened plate under 

uniaxial compression using FE. They investigated the effect of five dimensionless 

parameters (the transverse slenderness of the plate, the slenderness of the web and 

flange of the stiffener, the ratio of torsional slenderness of the stiffener to the 

transverse slenderness of the plate, and the stiffener-to-plate area ratio) on the 

stability of stiffened plates.  

 

Sridharan and Zeggane [12] studied the interaction of local and overall buckling in 

plate structures and stiffened shells by FE using a specially formulated shell element. 

Grondin et al. [13] investigated the stability of stiffened plates with tee-shaped 

stiffeners using FE. They validated the model using results of tests on full size 

stiffened plate specimens. Some of the investigated parameters are the plate aspect 

ratio, the plate to stiffener cross-sectional area ratio and the plate slenderness ratio.  

 

Some other studies are available for different mechanical properties of stiffened 

plates. For example Jiang [14] carried out an investigation of bending and buckling 

of unstiffened, sandwich and hat-stiffened orthotropic, rectangular plates using first 

order shell elements and first and second order three dimensional solid elements by 

FE.  
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Mukhopadhyay and Mukherjee [15] presented an isoparametric stiffened plate 

bending element for the buckling analysis of stiffened plates. Wang and coworkers 

[16, 17] considered the elastic buckling of rectangular Mindlin plates with internal 

line support. Rayleigh-Ritz method based on the energy functional derived from the 

incremental total potential energy approach was applied for the solution of plates 

under normal in-plane forces and uniform shear. Wang et al. [18] extended their 

earlier work [16, 17] and studied the axisymmetric buckling of radially loaded 

circular Mindlin plates with internal concentric ring support.  

 

Teng and Rotter [19] studied the problem of elastic unstiffened thin cylinders with 

axisymmetric imperfections. Rao and Ramanjaneyulu [20] presented the stability 

analysis of a natural draught cooling tower shell subjected to non axisymmetric wind 

pressure carried out using finite ring elements. The FE method was based on the 

development of a geometric stiffness matrix consistent with the elastic stiffness 

matrix of the element. The most suitable element for the plates of arbitrary 

configuration was the triangular one. The minimum number of degrees of freedom at 

each node being three, this method led to the solution of a large eigenvalue problem 

for the total structure which was time consuming and uneconomical.  

 

Sato [21] designed a set of partial differential equations to enable elastic buckling 

analysis of incomplete composite plates with regard to the thickness of a steel plate. 

The relationship of the critical buckling loads of complete composite plates, 

incomplete composite plates and individual plates was analyzed. 

 

Singh and Dey [22] studied the total potential energy during the buckling of a plate 

with variable stiffness which has been discretized by the method of finite difference. 

In this approach the type of element selected can greatly affect the efficiency and 

quality of the approximate solution obtained. 

 

c) Finite strip method: The FS method is a semi-analytical method which combines 

the use of Fourier expansions and one-dimensional FE to model the longitudinal and 

transverse structural behavior, respectively.  
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The FS method, published first in 1968 by Cheung [23], was a special form of the FE 

procedure. There are two main types of strips successfully developed: the semi 

analytical or classical FS [24-38] and the spline FS [39]. In the above mentioned 

types of FS, reducing partial differential equations to ordinary or partial differential 

equations of lower order was achieved by a separation of variables approach. The 

last development formulates a so-called precise FS method. Closely related to the FS 

for two-dimensional problems are the finite prisms and the finite layers for the three-

dimensional domain. The main subjects include static, dynamic (vibrations, 

earthquake) and stability (buckling) analyses of Kichhoff and Mindlin-Reissner 

plates with various shapes, folded plates, walls and shells for different load-bearing 

structures such as ceilings, roofs, tall buildings and box-girder bridges.  

 

Benson and Hinton [32] presented a comprehensive study including static, free 

vibration and stability analyses of thick and thin rectangular and curved plates using 

quadratic strips. Hinton and coworkers [33-36] used linear, quadratic and cubic FS 

based on Mindlin-Reissner assumptions for the free vibration and static analysis of 

curved and variable thickness, prismatic structures straight or curved planform. Later 

Hinton et al. [37] have dealt with linear buckling analysis of prismatic folded plate 

structures supported on diaphragms along two opposite edges. 

 

Kwon and Hancock [39] have described the analysis of the general buckling 

behavior of thin walled sections using the spline FS method (i.e. polynomial spline 

functions, rather than analytical functions, used in the longitudinal representation of 

displacement), but only one application to plate structures was presented.  

 

Takahasni and Nakazawa [40] studied the vibration and buckling of plate girders by 

FS using small deflection theory. They obtained natural frequencies and the buckling 

stresses of the simply supported plate girder. In this study the effect of the flange 

plate on the natural frequencies of the web plate was also investigated. 

 

Hinton [41] studied the buckling of initially stressed Mindlin plates using the thick 

FS method. He obtained some further results for initially stressed rectangular plates 

with two opposite edges simply supported and various support conditions on the 

remaining sides. Hinton et al. [42] investigated the buckling analysis of prismatic 
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folded plate structures supported on diaphragms along two opposite edges. They 

carried out the analysis using variable thickness FS based on Mindlin-Reissner 

assumptions which allow for transverse shear deformation effects.  

 

It seems that FS method is an accurate and inexpensive analysis procedure and 

presents the best prospect of dealing successfully with the full range of buckling 

problems of prismatic plates and shells with diaphragm ends. 

 

2.3 Geometric Nonlinear Analysis 

 

a) Analytical method: The solution of plate buckling problems by analytical methods 

is applicable when plate geometry, loading conditions and boundary conditions are 

simple. Otherwise, it is nearly impossible and tedious to solve this type of problems. 

The analytical solutions of various types of plates are extensively studied by 

Timoshenko [4]. Navazi et al. [43] studied the nonlinear cylindrical bending of a 

functionally graded plate. The material properties of the plate were assumed to be 

graded continuously in the direction of thickness. The variation of the material 

properties followed a simple power-law distribution in terms of the volume fractions 

of constituents. The von Karman strains are used to construct the nonlinear 

equilibrium equations of the plates subjected to in-plane and transverse loadings. The 

governing equations are reduced to a linear differential equation with nonlinear 

boundary conditions yielding a simple solution procedure. 

 

Bisagni
 
and Vescovini [44] presented an analytical formulation for the study of 

linearized local skin buckling load and nonlinear post-buckling behavior of isotropic 

and composite stiffened panels subjected to axial compression. The skin was 

modeled as a thin plate introducing Donnell-Von Karman and Kirchhoff hypothesis 

and applying classical lamination theory, while the stiffeners were considered as 

torsion bars.  

 

b) Finite element method: The first work on the extension of the FE procedure to 

geometrically nonlinear structures was reported by Turner et al. [45]. Gallagher and 

Padlog [46] introduced the geometric nonlinearity as the displacement based FE 
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method. Their formulation was restricted to a stability analysis in which the response 

prior to buckling (bifurcation) was linear. 

 

In the FE approach to solving geometrically nonlinear problems [47-49] the load was 

applied as a sequence of sufficiently small increments so that the structure can be 

assumed to respond linearly during each increment. For each increment of load, 

increments of displacements and corresponding increments of stress and strain were 

computed.  

 

The iterational approach for solving the governing nonlinear algebraic equations has 

been used by many investigators [50-52]. This approach was relatively simple to 

apply. Starting with an initial estimate to the displacement solution, the nonlinear 

effects were estimated and a set of linearized equations was solved to obtain an 

improved solution. This solution was back substituted into the equations and the 

iteration continued until the convergence of successive iterations was obtained. The 

success of the method depends to a large extent upon the accuracy of the initial 

estimate of the displacements. The load may be applied in increments and various 

extrapolation procedures may be utilized to obtain accurate estimates. Relaxation 

schemes [51, 53, and 54] may be used to accelerate convergence.  

 

While the iterational method was extremely fast from a computational standpoint, it 

has a serious disadvantage in that it will converge only for moderately nonlinear 

problems [55]. In order to obtain convergence for problems exhibiting high 

nonlinearity, many investigators have utilized the Newton-Raphson iterational 

approach. This procedure was extremely accurate and usually converges quite 

rapidly for realistic initial estimates of the solution. Its primary drawback is the 

excessive computational effort required to form the stiffness matrix and invert it at 

each iterational cycle.  

 

Most investigators [55-57] now use a modified Newton-Raphson procedure wherein 

the stiffness matrix is held constant for a number of iterations and then updated after 

the convergence rate begins to deteriorate. Moreover, various extrapolation and 

relaxation procedures can be incorporated into the iterational cycle to insure and 

accelerate convergence [55].  
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Murray and Wilson [58] determine the unbalance in nodal forces at the end of a load 

increment and then use an iterational approach to reduce the unbalance to zero. Their 

procedure was essentially a modified Newton-Raphson approach. References [55] 

and [59] formulate the incremental equations so that the out-of-balance in the 

equilibrium forces was explicitly taken into account. The resulting self-correcting 

incremental procedure had the advantage in that it was as easy to apply as the 

standard incremental procedure but was much more accurate. 

 

Wood and Zienkiewicz [60] developed a geometrically nonlinear analysis in either a 

total Lagrangian or an Eulerian coordinate system, the former in terms of the initial 

position; the latter in terms of the final deformed state. By adopting a continuum 

approach, employing a paralinear isoparametric element, the formulation was 

applicable to structures consisting of straight or curved members. Displacements and 

rotations were unrestricted in magnitude. The nonlinear equilibrium equations were 

solved using the Newton-Raphson method. 

 

Sabir and Djoudi [61, 62] used the foregoing method for the analysis of shallow 

shells and plates. A p-version FE model was developed by Woo et al. [63] based on 

degenerate shell element for the analysis of orthotropic laminated plates. In the 

nonlinear formulation of the model, the total Lagrangian formulation was adopted 

with moderately large deflections and small rotations being accounted for in the 

sense of von Karman hypothesis. Then, the hierarchical FE method, an eight-node 

hexahedral isoparametric FE, 3 nodes, 18-degree of freedom flat triangular plate FE, 

was used for the analysis of rectangular plates [52-64]. 

 

Cho et al. [65] applied a solid shell element model with six degrees of freedom per 

node for the buckling and postbuckling analysis of geometrically nonlinear shell 

structures. This model allows changes in the thickness direction and does not require 

rotational angles or parameters for the description of the kinematics of deformation. 

The FE model was constructed based on the assumed strain formulation in which an 

assumed strain field was chosen to prevent locking while maintaining kinematic 

stability. 
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Kumar et al. [66] developed a mixed beam FE for three-dimensional nonlinear 

analysis of steel frames. The kinematics of deformation of the element includes finite 

rotation and warping of the cross-section due to torsion. The material inelasticity was 

based on a two-space model that included the effect of shear stresses due to uniform 

torsion in addition to normal stresses due to axial force, biaxial bending and 

bimoment. The formulation was based on a two-field (displacement and generalized 

stress) Hellinger-Reissner (HR) variational principle. The interpolation of the 

generalized stresses along the element length was based on the geometrically-exact 

nonlinear governing differential equations of equilibrium. 

 

Levy and Spillers [67] used the FE method for the geometrically nonlinear analysis 

of structures. Using the deformed configuration implied nonlinear analysis in the 

work which would typically involve applying Newton‘s method to compute the 

effect of a load perturbation upon some given initial state.  

 

The FE method has become firmly established as an engineering tool for the linear 

and nonlinear analysis of plate and shell structures. The predominant advantage of 

the FE method lies in its applicability to analyze complex structures with varying 

thickness, difficult boundary conditions and arbitrary loading. However, from the 

engineering point of view, the use of the FE method for structural analysis has 

drastically increased the computation time which may not be affordable. 

 

c) Finite strip method: The FS method for a plate undergoing large deflection has 

been formulated on the basis of the non-linear relationship of strain and displacement 

which took into account the interaction between out of plane and in plane 

deformations [77-80]. The selection of the non-linear terms in the strain-

displacement relation can be somewhat different depending on the primary 

components of displacements chosen for a strip to simulate a plate or a web member 

in a box girder. 

 

Plank [64] reported on the analyses of the inelastic stability of stiffened panels 

carried out by the FS method. Then, the report on FS analysis of geometrically non-

linear structures was made by Delcourt [76] in her thesis.  
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Gierlinski et al. [79] discussed a particular difficulty with the FS method when 

analyzing structures whose non-linear load deflection curves contain maxima. The 

commonly used method to solve this problem was to replace load incrementation 

with displacement incrementation. However, such a strategy did not appear to work 

with classical FS, because the continuous series representation of displacements does 

not allow localized displacements to be imposed on structures. They proposed to 

overcome this difficulty by using an improved iteration strategy of selecting variable 

load increments on both the loading and the unloading curves.  

 

The large deflection elastic-plastic analysis of plate structures and cylindrical shells 

under uniform loads were carried out by Abayakoon et al. [81] and Kumar et al. [82]. 

The work has been later extended by Khalil et al. [83] to investigate the large 

deflection, elastic-plastic dynamic response of air-blast loaded stiffened plates. The 

loads have been modeled as uniformly distributed time dependent pressures.  

 

Dawe and coworkers [84-86] have applied the geometrically non-linear FS method to 

the large deflection problems of Mindlin plates and laminated plates. Then Wang and 

Dawe [87] developed a semi-analytical FS method for the analysis of the overall, 

geometrically non-linear, elastic behavior of diaphragm-supported prismatic plate 

structures which could be made of composite laminated material and could have 

initial geometric imperfections. The development was made in the contexts of both 

first-order shear deformation and classical plate theories. Further work was carried 

out by Dawe et al. [88-90]. Sekulovic and Milasinoviç [91] presented a FS analysis 

of plates and folded plates taking into account the geometrical non-linearities and the 

effects of creep. 

 

Cheung et al. [92] applied the FS to model the non-linear behavior of cable-stayed 

bridges. Then Cheung and Wenchang [93] developed a modified FS method for the 

geometrically nonlinear analysis of plates. The initial linear elastic stiffness matrix of 

the plate was kept unchanged during the iteration to make the best use of the 

orthogonal property between different eigenfunctions and enhance the efficiency of 

the analysis. However, the bending stiffness matrix of the plate had to be multiplied 

by an amplification factor to ensure the convergence of the iteration. Then, Cheung 
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and Tham [94] used spline FS method for the geometrically nonlinear analysis of 

plates and shells. 

 

Kwon et al. [95, 96] further developed the spline FS method to handle local, 

distortional and overall buckling modes in the post-buckling range, and the 

interaction between the various modes. The method also allowed for geometric 

imperfections, arbitrary loading and complicated support conditions. Advanced 

theories based on the convective curvilinear coordinate system were used to carry out 

a non-linear analysis for plates and shells by Zhu and Cheung [97, 98]. 

 

Akhras et al. [99] studied the geometrically nonlinear FS analysis of laminated 

composite plates. The higher order shear deformation theory was used for different 

plate thicknesses, fiber orientations and boundary conditions. The modified Newton-

Raphson method was employed for the solution process. 

 

2.4 Structural Optimization 

 

Since the inception of engineering it is the most significant aim of structural 

engineers to construct structures which are lightest and strongest. Hence, some 

changes in structure dimensions and shape should be made. For example very low in-

plane load carrying capacity of straight plates can be increased to very high values by 

adding stiffener elements to plate surface. Including only stiffener elements is not 

adequate to use plate volume very efficiently. In this regard, size and shape 

optimization procedures should be carried out to increase in-plane load carrying 

capacity of such structures, efficiently. 

 

In engineering science, mathematical programming methods are the early and 

powerful methods that engineers have used since the inception of computer 

applications. Structural optimization using two dimensional representations was first 

investigated by Zienkiewicz and Campbell [100]. Since then much work has been 

reported.  
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Levy and Ganz [101] analyzed plates using variational calculus to obtain the 

optimality condition stating that the thickness was proportional to the strain energy 

density. They used truncated Fourier series solution to obtain an optimal shape.  

 

Hojjat and Kok [102] developed a prototype knowledge based expert system for the 

optimum design of steel plate girders used in highway bridges. They developed a 

mathematical optimization algorithm for the minimum weight design of plate girders 

using a generalized geometric programming technique.  

 

Jarmai et al. [103] investigated optimal design of cylindrical orthogonally stiffened 

shell member of an offshore fixed platform truss, loaded by axial compression and 

external pressure using various mathematical programming the methods. In their 

optimization and design they used ring stiffeners of welded box sections and 

stringers of halved rolled I-type sections.  

 

Bedair [104] developed approaches for the minimum weight design of stiffened 

plates. He described an alternative energy based approach for the stability analysis of 

multi-stiffened plates under uniform compression and idealized the structure as being 

assembled plate and beam elements rigidly connected at their junctions. Then, he 

derived the strain energy components for the plate and the stiffener elements in terms 

of out-of and in-plane displacement functions and used sequential quadratic 

programming to find the buckling load of the structure for given plate/stiffener 

geometric proportions. 

 

Two main fundamental aims of computer applications are creating algorithms that 

have short run time and capability of finding optimal solutions. With the magnificent 

improvement of computers some other alternative algorithms are developed for 

optimization problems which are called heuristic methods and improved in the last 

three decades. The most significant characteristic of heuristic methods is the fast 

running times of their algorithms.  

 

Bisagni and Lanzi [105] investigated the post buckling optimization procedure for 

the design of composite stiffened panels subjected to compression loads using neural 

networks. To overcome too expensive analyses from a computational point of view, 
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he developed an optimization procedure. It was based on a global approximation 

strategy, where the structure response was given by a system of neural networks 

trained by means of FE analyses, and on genetic algorithms that proves particularly 

profitable due to the presence of integer variables.  

 

Kang and Kim [106] studied the minimum weight design of compressively loaded 

composite plates and composite stiffened panels under constrained post buckling 

strength. As an optimization technique, they used a modified Genetic Algorithm to 

find the optimum points. 

 

2.5 Summary of Literature Survey 

 

In this chapter, a summary of 106 previous researches on the geometric nonlinear 

analysis of plates and shells are given. In early studies, linear buckling analysis has 

been investigated which consider small deformation theory. Analytical and 

numerical methods have been used to solve this problem. Then geometric nonlinear 

analysis which considers large deformation theory has been employed. Some 

researchers studied nonlinear problems using different methods and different linear 

incremental solutions. In these methods it is found that FS is a useful method for the 

linear and geometric nonlinear analysis of prismatic and stiffened plates. 
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CHAPTER 3 

 

LINEAR BUCKLING FORMULATION OF PLATES 

 

3.1 Introduction 

 

A structure that is initially stable may lose stability as it moves to another 

equilibrium position when the control parameter(s) change. Under certain conditions, 

that transition is associated with the occurrence of a critical point (see Figure 3.1). 

 

 

Figure 3.1 Classical buckling 

 

For structures that occur in aerospace, civil and mechanical engineering, bifurcation 

points are practically more important than limit points. Consequently, attention will 

be initially directed to the phenomena of bifurcation or branching of equilibrium 

states, a set of phenomena also informally known as linear buckling. 
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For the linear buckling analysis of structures, which have constant geometrical 

properties along a particular direction, FS method is used. Such prismatic structures 

are very common in plate and shell problems where the transverse cross-section of 

the structure often remains constant in the direction of compression. If the material 

properties of the structures are also constant in the same direction, the buckling 

analysis can be simplified by the combined use of FEs and Fourier expansions to 

model the transverse and longitudinal behaviors, respectively. 

 

3.2. Structural Theories 

 

Thin shell theories neglect transverse shear and rotary inertia effects and 

consequently may yield incorrect results, especially for higher values of the ratio of 

the thickness-to-minimum span, particularly for higher modes. In addition, many 

structures may not be considered as a ‗thin plate‘. In this regard transverse shear 

strains in plates cannot be ignored. Therefore, the plate theory is more suitable in 

general, and the elements developed based on the Mindlin-Reissner plate theory are 

more practical and useful for practical engineering problems. For example, in plate 

analysis, the buckling loads are overestimated for all buckling modes in shear-weak 

situations and for the higher buckling modes in shear-stiff cases. In such 

circumstances, the effects of shear deformation and rotatory inertia should be taken 

into account. 

 

The Mindlin-Reissner shell theory allows for transverse shear deformation effects 

and thus offers a more attractive analysis than the classical Kirchhoff-Love thin shell 

theory. The main assumptions are that:  

 

 Displacements are small compared to the shell thicknes,  

 Stress component normal to the mid-surface is negligible,  

 Normals to the mid-surface before deformation remain straight but not 

necessarily normal to the mid-surface after deformation [107].  

 

It is well known that displacement-based Mindlin-Reissner FSs require only C(0) 

continuity of the displacements and independent normal rotations between adjacent 

elements. This provides an important advantage over FS based on classical 
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Kirchhoff-Love thin shell theory where C(1) continuity is strictly required. Thus, 

Mindlin-Reissner shell elements are simpler to formulate and they have the added 

advantage of being able to model shear-weak and shear-stiff shells. However, several 

difficulties can be encountered when Mindlin-Reissner shell elements are used in 

thin or shear-stiff situations. The success of the Mindlin-Reissner formulation 

presented here for both thick and thin shell analysis lays in the use of reduced 

integration techniques for the numerical computation of stiffness matrix. This simply 

implies that the shear terms contributing to the stiffness matrix are numerically 

integrated with a lower order Gaussian quadrature than that needed for their exact 

computation, whereas the rest of the stiffness matrix is exactly calculated [107]. 

 

In this section the Mindlin-Reissner FS formulation for prismatic plates and shells in 

right planform is derived in detail.  

 

3.3 Strip Formulation 

 

3.3.1 Strain energy 

 

Consider the buckling of the Mindlin-Reissner shell shown in Figure 3.2. 

Translations in the  , y  and n directions are represented by the displacement 

components  vu ,  and w . 

 

Figure 3.2 Definition of Mindlin-Reissner FSs 
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The displacement components u  and w  may be written in terms of global 

displacements u and w in the x and z directions as 

 

 sincos wuu   

 cossin wuw                                            (3.1) 

 

where   is the angle between the x and   axes (see Figure 3.2). The radius of 

curvature R may be obtained from the expression 

 

Rd

d 1
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


                                                     (3.2) 

 

Note that the displacement components v   and v coincide. 

 

The strain energy for a typical curved Mindlin-Reissner strip e  of length b  shown in 

Figure 3.2 is given in terms of the global displacements wvu ,,  and the rotations   

and   of the mid-surface normal in the n  and yn  planes respectively by the 

expressions (3.1) 
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where m , b  and s  are the membrane, bending or curvatures and transverse shear 

strains respectively and given in Appendix A for plate and shell in straight and 

curved planforms.  

 

For an isotropic material of elastic modulus E , Poisson‘s ratio   and thickness t , 

membrane, flexural, and shear rigidity matrices have been given in Appendix A. 

where 2κ  is the shear modification factor and is usually taken as 65  for an isotropic 

material. 

 

3.3.2 Potential energy of the applied inplane stresses 

 

Buckling occurs when a structure converts inplane strain energy into strain energy of 

bending with no change in externally applied load. A critical condition, at which 
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buckling impends, exist when it is possible that the deformation state may change 

slightly in a way that makes the loss in inplane strain energy numerically equal to the 

gain in bending strain energy. In a thin-walled structure such as a shell, inplane 

stiffness is typically orders of magnitude greater than bending stiffness. Accordingly, 

small inplane deformations can store a large amount of strain energy, but 

comparatively large lateral deflections and cross-section rotations are needed to 

absorb this energy in bending deformations.  

 

The potential energy of the applied inplane stresses 
00 , y   and 

0

y  arises from the 

action of the applied stresses on the corresponding second order strains ,, nl

y

nl    
nl

y  

are taken from Dawe and Peshkam [19]. The potential energy of the shell of volume 

V is 
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integrating through the thickness, this becomes 
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In equation (3.5), the terms involving the first derivative of ,w  and  represent the 

out of plane destabilizing influence of the prescribed stresses. The remaining terms 

which are dependent upon first derivatives of u  and ,v  are in plane destabilizing 

influences. The prescribed inplane shear stress y are rarely applied to the present 

type of structures, and is not considered in the present study. 
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3.3.3 Finite strip idealization 

 

Using n noded, )0(C  strips, the global displacements and rotations may be 

interpolated within each strip in terms of truncated Fourier series along direction y, in 

which both the material and geometrical properties of the plate are taken to be 

constant, 
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where )cos( bypCp  and ),sin( bypS p   
pppp wvu ,,, and

p are displacement 

and rotation amplitudes for the 
thp  harmonic term. This corresponds to a single 

diaphragm support at the ends of the structure at 0y  and ,by   so that 

0 wv . As shown later, this will lead to an uncoupling of each harmonic term 

which in turn leads to an economic solution. Note that the strip displacement and 

rotation fields are generally expressed as a summation of a set of contributions from 

a lower limit 1p  to an upper limit 2p . In the present work, as there is no coupling 

between the harmonics, 1p  and 2p  coincide. For many cases taking 121  pp  

provides the lowest buckling mode; however, in some cases 1p  and 2p  may be 

associated with a higher mode. 
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The next step is to discretize the displacement and rotation amplitudes (which are 

functions of the  coordinate only) using an n noded FE representation so that 

within a strip e  the amplitudes can be written as 
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where  pppp wvu ,,, and p  are typical nodal degrees of freedom associated with 

node i  and harmonic .p   

 

Thus, the process is equivalent to dividing the structure into longitudinal elements (or 

strips) so that each strip has a certain number of nodes (one more accurately, nodal 

lines) associated with its transverse direction. The displacement field is defined 

longitudinally by the Fourier expansion of (3.7) and transversely by the FE 

discretization of (3.8). Substituting (3.8) into (3.7) it is possible to write  
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)(iN is the shape function associated with node i [2]. These elements are essentially 

isoparametric so that 
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where ix  and iy  are typical coordinates of node i  and it  is the thickness at node .i   

If qp   because of the orthogonality conditions on assembly of the contributions to 

the total potential energy VU   from all of the strips and subsequent minimization 

with respect to the nodal values the following eigenvalue expression is obtained for 

each harmonic p  
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where p  is the load factor by which the inplane stress components 0

  and 
0

y  are 

multiplied to produce instability and p
d is the associated buckling mode. These 

submatrices have the forms 
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and p

bi

p

mi BB ,  and p

siB are the membrane, bending and shear strain displacement 

matrices associated with harmonic p, node i and Jacobian J , geometric stiffness 

matrices p

uiS , p

viS , p

wiS , p

iQ , p

iR  and the inplane stress matrix H  are given in 

Appendix B. 

 

3.4 Plate Example 

 

The first set of examples is concerned with the buckling of plates with various 

combinations of boundary conditions. For the sake of convenience we adopt the 

following notations to describe the boundary conditions for the plates analyzed in 

this section: A/B/C/D which implies (boundary condition on side 0y ) / (boundary 

condition on side ax  ) / (boundary condition on side by  ) / (boundary condition 

on side 0x ). A hard simply supported edge (i.e. with the lateral displacements and 

tangential edge rotations constrained to zero) is represented by Sh, a clamped edge by 

C and a free edge F. Because of the nature of the FS Fourier series representations of 
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the displacements and rotations, hard simple supports always occur at the ends 0y  

and by   but the other two edges can be arbitrarily restrained.  

 

3.4.1 Square simply supported (Sh / Sh / Sh / Sh) isotropic plates under uniaxial 

stress 

 

A set of square simple supported isotropic plates under uniaxial stress 
0

y  is now 

considered to illustrate the convergence characteristics of various FSs. The plates 

have thickness to span ratios bt varying from 0.001 to 0.2. The results are 

represented in non-dimensional form using the buckling factor K  which has the 

following form 
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where (
0

y ) cr  is the critical value of the longitudinal axial stress and the flexural 

rigidity is written as  
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in which v  is the Poisson‘s ratio, E is the elastic modulus. Poisson‘s ratio v  is taken 

as 0.3. 

 

The results generated by the present approach are given in Table 3.1 in the form of a 

convergence study with respect to both type of strip and numbers of degrees of 

freedom. Linear, quadratic and cubic strips are used with identical sets of numbers of 

degrees of freedom. 

 

It can be seen from Table 3.1 that results obtained using 3-noded quadratic strips are 

almost identical to those obtained using 4-noded cubic strips and very close to the 

values obtained by Dawe and Roufaeil [17]. Linear, quadratic and cubic strips are 

used with identical sets of numbers of degrees of freedom. For the thicker plates the 
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thin plate solutions overestimate the buckling load. The lowest buckling load for 

each plate occurs with a single longitudinal half-wave so that 121  pp .  

 

Table 3.1 Buckling factors for a set of square (Sh / Sh / Sh / Sh) simply supported 

isotropic plates under uniaxial stress 

 

 Buckling factors, K 

Strip type dof 001.0bt  005.0bt  1.0bt  15.0bt  2.0bt  

 

Linear 

17 4.00212 3.92916 3.72754 3.43954 3.11149 

71 3.99997 3.92861 3.73106 3.44804 3.12449 

143 3.99997 3.92867 3.73132 3.44853 3.12520 

 

Quadratic 

17 3.99998 3.92860 3.73103 3.44797 3.12440 

71 3.99997 3.92870 3.73141 3.44869 3.12543 

143 3.99997 3.92870 3.73141 3.44869 3.12543 

 

Cubic 

17 3.99997 3.92869 3.73138 3.44863 3.12534 

71 3.99997 3.92870 3.73141 3.44869 3.12543 

143 3.99997 3.92870 3.73141 3.44869 3.12543 

Thin plate [17] 4.00000 4.00000 4.00000 4.00000 4.00000 

MR [17] 4.000 3.929 3.731 3.449 3.125 

 

3.4.2 Rectangular isotropic plates under uniaxial stress 

 

The second set of examples is concerned with the buckling of rectangular plates with 

various boundary conditions, aspect ratios and thickness to span ratios. The geometry 

and boundary conditions of the rectangular plates subject to uniform axial stress are 

shown in Figure 3.3. 

 

Two thickness to span ratios are considered; for a moderately thick plate, a 

thickness-to-span ratio 1.0at  is adopted whereas for a thin plate a value of 

01.0at  is used. The results are presented in terms of non-dimensional buckling 

factors K , defined in (3.15). The following boundary conditions are examined: 

 

a-) (Sh / C / Sh / C) with aspect ratios 0.1,6.0ba  and 4.1  
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b-) (Sh / Sh / Sh / F) with aspect ratios 0.1,5.0ba  and 5.1  

c-) (Sh / F / Sh / F) with aspect ratios 0.2,0.1ba  and 0.4   

 

It is generally assumed that Poisson‘s ratio .3.0v  However, in the case of the plate 

with (Sh / C / Sh / C) 25.0v . 

Figure 3.3 (a) (Sh / F / Sh / F) plate under uniaxial stress 
0

y , (b) (Sh / Sh / Sh / F) plate 

under uniaxial stress 
0

y  and (c) (Sh / C / Sh / C) plate under uniaxial stress 
0

x  

 

Table 3.2 to 3.4 list the buckling factor K  for the different boundary conditions and 

each table contains results from solutions obtained using cubic strips for both thin 

and moderately thick plates. The plates are analyzed using ten 4-noded FSs.  

 

When transverse shear deformation is taken into account in the buckling analysis of 

thick plates slightly lower values of buckling load are usually obtained compared 

with the values predicted using formulations ignoring transverse shear deformation. 

 

a

b

a 

b 

(a) (b) 

 

 

Legend 

  Simple support 

Clamped edge 

Free edge 

a 

b 

(c) 
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It can be seen from Tables 3.2 and 3.3 that the results are identical to those obtained 

by Dawe and Roufaeil [17] and are very close to the closed form plate solution. 

 

Table 3.2 Buckling factors for a set of rectangular (Sh / C / Sh / C) isotropic plates 

under uniaxial stress 

 

 Buckling factors, K 

ab /  at /  Present FS MR FS[17] Thin plate[17] 

0.6 0.01 14.778 13.361 13.38 

 0.1 11.135 11.611 13.38 

1.0 0.01 6.731 6.732 6.74 

 0.1 5.773 5.773 6.74 

1.4 0.01 5.207 5.443 5.45 

 0.1 4.511 4.516 5.45 

 

Results for (Sh / F / Sh / F) boundary condition are given in Table 3.4. It can be seen 

that convergence of buckling factor calculated using present approach is again 

satisfactory with respect to Euler value‘s for thin and thick plates. The percentage 

differences between the computed buckling and corresponding Euler formula values 

range from 0.4% to 5%. The present results and Euler formula values are getting 

closer at higher aspect ratios. In all cases, plates buckle with one longitudinal half-

wave and so that 121  pp . 

 

Table 3.3 Buckling factors for a set of rectangular (Sh / Sh / Sh / F) 

isotropic plates under uniaxial stress 

 

 Buckling factors, K 

ab /  at /  Present FS MR FS[17] Thin plate[17] 

0.5 0.01 4.394 4.398 4.4 

 0.1 3.835 3.839 4.4 

1.0 0.01 1.432 1.433 1.44 

 0.1 1.364 1.366 1.44 

2.0 0.01 0.696 0.698 0.698 

 0.1 0.675 0.677 0.698 
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Table 3.4 Buckling factors for a set of rectangular (Sh / F / Sh / F) 

isotropic plates under uniaxial stress 

 

 Buckling factors, K 

ab /  at /  Present FS Euler formula 

0.5 0.01 3.922 3.735 

 0.1 3.451 3.750 

1.0 0.01 0.967 0.934 

 0.1 0.933 0.938 

2.0 0.01 0.237 0.233 

 0.1 0.235 0,234 

 

3.5 Stiffened Plate Example 

 

To check that the present formulation is applicable to prismatic structures, the critical 

buckling load of the stiffened panel given by Murphy et al. [3] are investigated. The 

buckling performance of panels with three sub-stiffening subjected to longitudinal 

compression was analyzed and experimentally tested by Murphy et al. [3]. The 

experiments were also simulated using non-linear FE analyses. The FE model 

employed 8-node quadrilateral thick shell elements (MARC type 22). Changes in 

thickness (pad-ups, sub-stiffeners) were modelled as changes in element thickness; 

the corresponding offset of the neutral axis was simply neglected.  

 

Figure 3.4 shows the geometry and dimensions of the panel which is simply 

supported at two opposite ends with the other edges free. The plate is loaded in 

uniform compression in the stiffeners direction.  

 

The results given by Murphy et al. [108] are used to check the performance of the 

present formulation. The baseline stiffened panels (Profile B) along with the three 

‗proof of concept‘ specimens (namely Profile 1, 2 and 3) are analyzed using 84 cubic 

strips with a total of 1620 degrees of freedom. The results of the analysis, the 

corresponding experimental values and FE results [108] are shown in Table 3.5. 

Using FS method, the initial buckling modes of all profiles were successfully 

reproduced (see Figure 3.4). Given the uncertainty on the skin buckling loads (large 

differences between experiment and FE, plus the slight difference in boundary 
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conditions between FS on the one hand and FE and experiment on the other), the 

reproduction of the skin buckling loads were also considered sufficiently accurate. 

 

 

 

  

 

Figure 3.4 Isotropic baseline stiffened panels (Profile B) along with the three ‗proof 

of concept‘ specimens (namely Profile 1, 2 and 3) (all dimensions in mm). 

 

Table 3.5 Buckling loads for profiles 

 

 Buckling load kN 

Profile B Profile 1 Profile 2 Profile 3 

FE solution [108]] 57.4 57.3 57.7 58.2 

Experimental sol.[108] 69.3 62.7 82.5 77.7 

FS solution 54.8 54.8 61.5 58.5 
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The material used in Profile B stiffened plate has 71000 MPa modulus of elasticity 

and 0.33 Poisson‘s ratio. The Profile B has three stiffeners subjected to buckling load 

54.8 kN at sixth harmonic number. The FE and experimental results [108] are 57.4 

kN and 69.3 kN, respectively, which are in agreement with one another for the 

lowest buckling mode shown in Figure 3.5. 

 

In Profile 1 the resulting buckling load of 54.8 kN compares well with the values of 

57.3 kN and 62.7 kN obtained using the FE and experimentally, respectively. The 

lowest buckling load is obtained within 521  pp  in Figure 3.6. The material used 

in Profile 1 and Profile 2 stiffened plate has 75000 MPa modulus of elasticity and 

0.33 Poisson‘s ratio. 

 

The Profile 2 has three stiffeners with four pads and two half pads yielding a 

buckling load 61.5 kN. The FE and experimental results [108] as shown in Table 3.5 

are 57.7 kN and 82.5 kN, respectively. A good agreement is found among the FE, 

experimental and FS solutions. The lowest buckling mode is shown in Figure 3.7. 

 

The resulting buckling load of 58.5 kN in Profile 3 which has modulus of elasticity 

E=71000 MPa and Poisson‘s ratio ν=0.33, compares well with the values of 58.2 kN 

and 77.7 kN as shown in Table 3.5 obtained using the FE and experimental method, 

respectively. This agrees with the shape of the buckling modes obtained using the FE 

and FS solutions as seen in Figure 3.8. 
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Figure 3.5 Profile B-Buckling loads and corresponding buckling modes (mode 

shapes are plotted for mid span, i.e at x = a/2 = 300) 
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Figure 3.6 Profile 1-Buckling loads and corresponding buckling modes (mode 

shapes are plotted for mid span, i.e at x = a/2 = 300) 
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Figure 3.7 Profile 2-Buckling loads and corresponding buckling modes (mode 

shapes are plotted for mid span, i.e at x = a/2 = 300) 
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Figure 3.8 Profile 3-Buckling loads and corresponding buckling modes (mode 

shapes are plotted for mid span, i.e at x = a/2 = 300) 
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CHAPTER 4 

 

GEOMETRIC NONLINEAR ANALYSIS 

4.1 Introduction 

 

Many problems faced by designers and engineers are nonlinear in nature. The 

response of a structure cannot be simply assessed using linear assumptions. 

Nonlinear behavior can take many forms and can be bewildering to the newcomer. 

All physical systems in the real world are inherently nonlinear in nature. One of the 

most difficult tasks facing an engineer is to decide whether a nonlinear analysis is 

really needed and if so what degree of nonlinearity should be applied. 

 

The ability to predict accurately the response of a structure to a given loading allows 

engineers to improve their knowledge of the structure and to increase their 

confidence in their understanding of the structure‘s behavior. Ultimately, more 

accurate analysis enables engineers to improve their products. 

 

Geometric nonlinear buckling analysis is more accurate than eigenvalue analysis for 

stability analysis because it employs non-linear, large deflection, static analysis to 

predict buckling loads. Its mode of operation is very simple: it gradually increases 

the applied load until a load level is found whereby the structure becomes unstable 

(i.e. suddenly a very small increase in the load will cause very large deflections). The 

true non-linear nature of this analysis thus permits the modeling of geometric 

imperfections, load perturbations, material nonlinearities and gaps. For this type of 

analysis, note that small off-axis loads are necessary to initiate the desired buckling 

mode. 

 

The linear buckling analysis assumes the existence of a bifurcation point where the 

primary and secondary loading paths intersect (point A in the Figure 4.1). At this 

point, more than one equilibrium position is possible. The primary path is not usually 
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followed after loading exceeds this point and the structure is in the post-buckling 

state. The slope of the secondary path at the bifurcation point determines the nature 

of the post-buckling. A positive slope indicates that the structure will have post 

buckling strength whilst a negative slope means that the structure will snap through 

or simply collapse. Real structures have geometric and loading imperfections, often 

causing the primary path curve and the bifurcation point to disappear. 

 

 

Figure 4.1 Buckling and bifurcation point 

 

For real structures linear buckling analysis is best used method for preliminary 

design and studying the effects of various parameters. If a more accurate estimate of 

the buckling load is required, it is recommended that a nonlinear analysis is carried 

out so that the effect of pre-buckling deformation can be included and the post 

buckling capacity predicted. 

 

For nonlinear situations, in which the stiffness depends on the degree of 

displacement in some manner, K is equal to the local gradient of the 

force/displacement relationship of the structure at any point and is termed the 

tangential stiffness. The analysis of such problems must proceed in an incremental 

manner since the solution at any stage may not only depend on the current 

displacements of the structure, but also on the previous loading history.  

 

 

Displacement 

P 

Pcr 
A 

Primary 

Path 

Secondary Path 

(postbuckling) 

Post Buckling Collapse 

Bifurcation Point 

Actual 

(imperfect) structure 

Limit Point 

L
o
ad

 



 

 

39 

4.2 General Theory and Solution Algorithms 

 

The use of FE or FS discreatization in a large class of nonlinear problems results in a 

system of simultaneous equations of the form 

 

0 fKδ                                                                (4.1) 

 

in which δ is the vector of the basic unknowns, f is the vector of applied loads and K 

is the assembled stiffness matrix. For structural applications, the terms load and 

stiffness are directly applicable, but for other situations the interpretation of these 

quantities varies according to the physical problem under consideration. If the 

coefficients of the matrix K depend on the unknowns δ or their derivatives, the 

problem clearly becomes nonlinear. In this case, direct solution of equation system 

(4.1) is generally impossible and an iterative scheme must be adopted. Many options 

remain open for the iterative sequence to be employed. Some of the most generally 

applicable methods are given as 

1. Direct iteration method 

2. Modified Newton-Raphson method. 

3. Tangential stiffness method (Generalized Newton-Raphson Method) 

4. Initial stiffness method 

5. Arc-length method  

 

4.2.1 Direct iteration method 

 

In direct iteration method [109] successive solutions are performed, in each of which 

the previous solution for the unknowns δ
 
is used to predict the current values of the 

coefficient matrix )(δK . Rewriting (4.1) as  

 

  fδKδ
1

)(


                                                        (4.2) 

 

Then the iterative process yields the 
thi )1(  approximation to be 

 

  fδKδ
11 )(
  ii                                                    (4.3) 
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If the process is convergent then in the limit as i tends to infinity i
δ  tends to the true 

solution. It is seen from (4.3) that it is necessary to recalculate the stiffness matrix K 

for each iteration. To commence the process, an initial guess for the unknown δ  is 

required in order to calculate K. Generally a value of 0
δ  based on the solution for an 

average material property throughout the region is found to be satisfactory. If the 

nonlinearity of the material properties is very marked at certain values of δ , an 

approximate prescription of the field variable at all nodes may be necessary. For 

practical purposes, the iterative process is deemed to have converged when some 

measure (usually a norm of the nodal unknowns) of the change in the unknown δ  

between successive iterations has become tolerably small. 

 

4.2.2 Modified Newton-Raphson method 

 

In the Newton-Raphson method during any step of an iterative process of solution, 

(4.1) will not be satisfied unless convergence has occurred. A system of residual 

forces can be assumed to exist, so that  

 
0 fKδψ

                                                 (4.4) 

 

These residual forces ψ can be interpreted as a measure of the departure of 

equilibrium. Since K is a function of δ  and possibly its derivatives, then at any stage 

of the process, )(δψψ  . These equations may have multiple solutions. Thus, if a 

solution is achieved it may not necessarily be the solution sought. Physical insight 

into the nature of the problem and, usually, small-step incremental approaches from 

known solutions are essential to obtain realistic answers. Such increments are indeed 

always required if the constitutive law relating stress and strain changes is path 

dependent or if the load-displacement path has bifurcations or multiple branches at 

certain load levels. The general problem should always be formulated as the solution 

of  

 

  0) 11111   iiiii
fδ(δKδψψ

                                  (4.5) 

 

which starts from a nearby solution at 
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iii
ff,ψ,δδ  0                                                 (4.6) 

 

Correction is computed as 

 
iii

ψKδ
1)(                                                           (4.7) 

 

and often arises from the changes in the forcing function f to  

 

fff  ii 1
                                                    (4.8) 

 

The determination of the change δ  such that 

 
iii

δδδ 1                                                (4.9) 

 

will be the objective and generally the increments of f  will be kept reasonably 

small so that path dependence can be followed. Further, such incremental procedures 

will be useful in avoiding excessive numbers of iterations and in following the 

physically correct path. A typical non-uniqueness which may occur if the function ψ  

decreases and subsequently increases as the parameter δ  uniformly increase is 

shown in Figure 4.2. It is clear that to follow the path i
δ

 
will have both positive 

and negative signs during a complete computation process. 

 

4.2.3 Tangential stiffness method (Generalized Newton-Raphson method) 

 

For nonlinear situations, in which the stiffness depends on the degree of 

displacement in some manner, K is equal to the local gradient of the 

force/displacement relationship of the structure at any point and is termed the 

tangential stiffness. The analysis of such problems must proceed in an incremental 

manner since the solution at any stage may not only depend on the current 

displacements of the structure, but also on the previous loading history. 

Consequently the problem can be linearized over any increment of load and therefore 

the matrix, which contains the nonlinear terms, can be discarded from (4.7) and (4.8) 

with this modification, the solution process is identical the modified Newton-

Raphson Method and for this reason, the method is sometimes termed a generalized 

Newton-Raphson Method. 
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The elastic linear solution of first 

approximation i
δ  

 

Calculate the residual forces i
ψ   

 

Establishment of matrix K
i
  

 

 

 

Computation of the correction  
iii

ψKδ
1)(   

toleranceψ i
 

 

STOP 

YES 

NO 

START 

 

Figure 4.2 Newton-Raphson flow chart 

 

4.2.4 Initial stiffness method 

 

In this method, the tangential stiffness matrix is replaced, at all steps of the 

computation, by the stiffness corresponding to the initial trial value of δ  a complete 

factorization, or reduction, of the assembled equations can be avoided. In this case a 

complete equation solution needs only be performed for the first iteration and 

subsequent approximations to the nonlinear solution performed, via the expression 
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  )ψ(δδKδ
ii 10 )(


                                                (4.10) 

 

Since the same stiffness matrix )( 0
δK  is employed at each stage, the reduced 

equations can be stored in their reduced or factored form and a second or subsequent 

solution merely necessitates the reduction of right hand side ))(( i
δψ  terms, together 

with a back substitution. This has the immediate advantage of significantly reducing 

computing cost per iteration but reduces the convergence rate. 

 

4.2.5 Arc-length method (Riks-Wempner method) 

 

Passing through critical points during the geometrically nonlinear response is 

challenging. Two critical points encountered during this type of behavior are: load 

limit points that are reached whenever the response path has a local snap through; 

and control limit points that define a local snap-back. At a control limit point the 

loading may reverse as the deflections change directions and a local maximum is 

passed. An important family of nonlinear equations solvers called the arc-length 

method as developed by Riks-Wempner [110] can overcome the difficulties of 

passing critical points. The technique resembles the Newton-Raphson method 

described in Riks-Wempner except the applied load increment becomes an additional 

unknown. The Riks-Wempner method computes load magnitudes as part of the 

solution. The length of a vector tangent to the equilibrium path is used to find a new 

point that is the intersection of the plane normal to the tangent. A user-supplied load 

will estimate magnitudes of the initial load increment for a step. The termination of 

the method is accomplished by the user specifying a maximum load proportionality 

factor or a maximum nodal displacement.  

 

4.3 Plane Formulation 

 

If a body is subjected to a set of body forces b then by the virtual work principle we 

can write 

 

      0  
ddd

TTT

Pubuζε                           (4.11) 
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where ζ  is the vector of stress, P is the vector of boundary tractions, u is the vector 

of virtual displacements, ε  is the vector of associated virtual strains,   is the 

domain of interest, Γ  is that part of the boundary on which boundary tractions are 

prescribed. 

 

If we wish to cater for geometrically nonlinear elastic behavior we can choose either 

a total or updated Lagrange coordinate system. Here we choose a total Lagrange 

coordinate system which coincides with the initial undeformed position of the body. 

 

It transpires that, with the central difference scheme, the only changes required to 

account for geometrically nonlinear effects are: 

(i) The modification of the strain-displacement matrix B  nd , 

(ii) The evaluation of the strains using a deformation Jacobian matrix JD  nd . 

 

All vectors and matrices are given explicitly for the plane stress and plane strain. The 

coordinates of a particle in an undeformed initial configuration are given as 

 

 Tyx 00 ,                                                              (4.12) 

 

Displacements are given as 

 

 Tnn vu ,                                                              (4.13) 

 

The coordinates of particle in deformed configuration are given as 

 

   Tnn

T

nn vyuxyx  00 ,                                           (4.14) 

 

The vector of Green‘s strains is given as 
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The deformation Jacobian matrix is given as 

 

   
nDn Ju DJ                                                        (4.16) 
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The linear strain 0ε  is given as 
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Nonlinear strain NLε  is given as 

nNL θAε 
2

1
                                                           (4.19) 

where 
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and displacement gradients 
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For a set of virtual displacements, the corresponding virtual Green‘s strain are given 

as 

 

nθAεε  0                                                      (4.22) 

 

Thus, the virtual work statement can be rewritten as 

 

    
a

T

n

V

n

T

n dadv Puζε                                          (4.23) 

 

Elastic Piola-Kirchoff stresses are given as 

 

nnn εDζ                                                           (4.24) 

 

  T

nxyyx  ,,                                                      (4.25) 

 

If we adopt the FE discretization scheme described earlier, then the displacement 

gradients nθ
 
are given in terms of the nodal displacements id  by the linear relation 
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i

iin

1

dGθ                                                    (4.26) 

 

where iG  contains Cartesian shape function derivatives as  
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The components of the vector of Green‘s strains n  can be written as 

 

i

m

i

NLiLin dBB












1 2

1
ε                                        (4.28) 

 

Furthermore, it can be shown that the virtual strains can be expressed as 

 

 



m

i
niin

1

dBε                                                 (4.29) 

 

where strain displacement matrix associated with node i is 
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Since the nodal virtual displacements δd  are arbitrary the element nonlinear 

equilibrium equation takes the following form: 

 

  0  PζBδψ da
A

T
                                                    (4.31) 

 

The load vector P may also contain nodal point loads. 

 

Equation (4.31) can have the dual role of representing either the element, or in an 

assembled form, the total equilibrium equation. It is a nonlinear equation in δ  since 

B and ζ  is linear and quadratic functions of δ,  respectively. The solution algorithms 

for the assembled nonlinear equilibrium equations are based on the Newton-Raphson 

method which consists of a series of linear solutions. 

 

To evaluate the residual nodal force vector  δψ  of equation (4.31) the equivalent 

nodal forces due to the stress resultants ζ  may be written for a typical node i as  
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  da
A

ii  ζBP                                                     (4.32) 

 

For all the Mindlin elements stresses are extrapolated from Gauss point values in a 

manner consistent with the integration rule used for the tangent stiffness matrix 

calculation. Newton-Raphson iteration technique is used for iteration. Convergence 

is checked using total residual norm criteria as 
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                                        (4.33) 

 

where N is the total number of nodal points in the problem and toler is the value at 

which convergence occurs if the norm of the residual forces becomes less than the 

norm of the total applied forces. 

 

4.4 Plane Example 

 

Here, the problem is to determine the shape of a column under vertical end loads 

higher than the elastic buckling load. The column is divided into eight node elements 

and to initiate sway deformation it is loaded eccentrically (see Figure 4.3).  
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Figure 4.3 Eccentrically loaded column (material and geometric properties) 
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Table 4.1 Column end horizontal deflections,  

 

P/Pcr 
Present  

U (m) 

ANSYS 

U (m) 

0.20 0.155 0.155 

0.40 0.416 416 

0.60 0.944 0.944 

0.80 2.528 2.525 

0.90 5.589 5.918 

1.00 19.859 20.469 

1.015 22.635 26.713 

1.017 29.188 27.685 

1.063 42.212 38.919 

1.152 59.301 52.182 

1.293 71.921 72.484 

1.518 79.231 78.699 

1.884 80.304 82.385 

 

Column end horizontal deflections compared with ANSYS results which shows 

negligible difference up to the critical load. After that point the deflection increases 

rapidly and there is a fair agreement between the results given in Table 4.1.  

 

4.5 Plate and Shell Formulation 

 

A typical FS given in Chapter 3 is illustrated in Figure 3.2 which is subjected to a 

lateral loading or inplane loading. At any general point in the plate the displacement 

components in the x, y, and z directions namely  vu , , w  and rotations about the x 

and y axes  ,   are given in Chapter 3.  

 

4.5.1 Strains 

 

If a structure undergoes large deformations, the second order terms of the strains 

cannot be ignored. Consequently, the membrane and bending actions are coupled. 

For a Mindlin plate the relevant Green‘s strain vector is given as 
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Introducing the Von Karman assumptions [111] which imply that derivatives of u 

and v with respect to x, y and z are small and nothing that w is independent of z 

allows Green‘s strain to be rewritten in terms of the midplane deformations of 

equation (4.26) as 
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where strain components sbm  ,,  are given in Appendix A and the nonlinear 

component of inplane strain is 
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4.5.2 Stresses 
 

The Piola-Kirchhoff stress vector ζ  associated with the Green‘s strain vector ε  of 

equation (4.34) is 
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 Tyzxzxyyx  ,,,,ζ                                              (4.37) 

 

4.5.3 Total Lagrangian virtual work equation 

 

The basis of the formulation is the virtual work equation for a continuous medium 

written in a total Lagrangian coordinate system under the assumption of small strains 

and conservative loading as [112] 
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ddd

TTT

Puquζε                            (4.38) 

 

where   is the undeformed volume, ζ  the Piola-Kirchhoff stress vector, ε  the 

virtual Green‘s strain vector due to the virtual displacement vector u ,  the mass 

density, q the body force vector per unit mass and P surface tractions acting over an 

undeformed area A. For the plate formulation this virtual work equation is to be 

rewritten in terms of area integrals over the mid-surface. The internal virtual work 

idW can be written as 
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or 
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Substituting the strain expression from equation (4.35) into equation (4.39)  
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Ti daddW ζε                                                (4.40) 

 

in which the stress resultant vector ζ  is, 

 



















s

b

m

ζ

ζ

ζ

ζ                                                      (4.41) 

 



 

 

52 

which contains the following components, inplane 

 

 Tymmymm   ,,ζ                                              (4.42) 

bending 

 

 Tybbybb   ,,ζ                                              (4.43) 

 

shear 

 

 Tyzzs  ,ζ                                                     (4.44) 

 

The generalized strain vector ε  corresponding to the stresses ζ  of equation (4.41) is, 
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where the linear component 0
ε  is, 
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and the nonlinear component 
NL

ε  is, 

 



















0

0

NL

m

NL

ε

ε                                                      (4.47) 

 

The second integral in equation (4.38) which represents the external virtual work due 

to body forces may be rewritten as 
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Finally, the third integral of equation (4.38) which represents the external virtual 

work due to inplane loads may be expressed as 

 


b

b
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0
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The virtual work equation (4.38) may now be written entirely in terms of mid-plane 

quantities as 
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4.5.4 Variation of strain 

 

Before proceeding with the discretization of virtual work equation (4.50), it is 

necessary to consider further the variation of strain εd  due to the virtual 

displacements ud  where u is given as  

 

 Twvu  ,,,,u                                               (4.51) 

 

Generally εd  is given as the sum of the variations of the linear and nonlinear 

generalized strains as  

 
NLddd εεε  0                                           (4.52) 

 

where 

 

sbm dddd εεεε
0                                            (4.53) 

 

in which m , b  and s  are the membrane, bending or curvature and transverse 

shear strain components, respectively, and given in Appendix A for plates and shells 

in straight and curved planforms. If the displacement gradients of the lateral 

displacement w  are given as 
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then the variation of the nonlinear component of the inplane strain is obtained from 

equation (4.28) in terms of the virtual gradients θd  as 

 

θAε dd NL
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where 
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4.5.5 Finite strip formulation of equilibrium equations 

 

Using n noded, )0(C  strips, the global displacements and rotations may be 

interpolated within each strip in terms of truncated Fourier series along direction y, in 

which both the material and geometrical properties of the plate are taken to be 

constant, i.e. 
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where )cos( bypCp 
 

and ),sin( bypS p   
pppp wvu ,,,  and 

p are 

displacement and rotation amplitudes for the 
thp harmonic term. This corresponds to 

a single diaphragm support at the ends of the structure at 0y  and ,by   so 
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that 0 wv . As shown later, this will lead to an uncoupling of each harmonic 

term which in turn leads to an economic solution. Note that the strip displacement 

and rotation fields are generally expressed as a summation of a set of contributions 

from a lower limit 1p  to an upper limit 2p . In the present work as there is no 

coupling between the harmonics 1p  and 2p  coincide. For many cases taking 

121  pp  provides the lowest buckling mode; however, in some cases 1p  and 2p  

may be associated with a higher mode. 

 

The next step is to discretize the displacement and rotation amplitudes (which are 

functions of the  coordinate only) using an n noded FE representation so that 

within a strip e  the amplitudes can be written as 
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where 
pppp wvu ,,, and 

p  are typical nodal degrees of freedom associated with 

node i  and harmonic .p   

 

Thus, the process is equivalent to dividing the structure into longitudinal elements (or 

strips) so that each strip has a certain number of nodes (more accurately, nodal lines) 

associated with its transverse direction. The displacement field is defined 

longitudinally by the Fourier expansion of (4.58) and transversely by the FE 

discretization of (4.59). Substituting (4.59) into (4.58) it is possible to write  
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where 
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and 
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)(iN is the shape function associated with node i  [2]. These elements are 

essentially isoparametric so that 
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where ix  and iy  are typical coordinates of node i  and it  is the thickness at node .i   

The virtual displacements du are written in terms of the nodal displacements δd from 

equation (4.60) 
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where 
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The displacement gradients p

iθ  of equation (4.54) may now be written in terms of the 

nodal displacements p

iδ and Cartesian derivatives of the shape functions as 
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where 
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and 
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The virtual gradients of equation (4.57) are now written in terms of virtual nodal 

displacements as 
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The generalized Green‘s strain vector ε  of equation (4.45) is given in terms of nodal 

displacements δ , displacement gradients A  and Cartesian derivatives of N as 
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where 0B  is the strain matrix giving the linear strains sbm εεε ,,  and LB , which is 

linearly dependent upon δ , gives the non-linear strains 
NL

ε . Consequently, the 

nonlinear strains are quadratically dependent upon the nodal displacements δ . The 

constant matrix 0B  is written in terms of nodal submatrices as 
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in which p

bi

p

mi BB ,  and p

siB  are the membrane, bending and shear strain displacement 

matrices associated with harmonic p and node i and are given in Appendix A. The 

strain matrix p

LiB  consists of the nodal submatrices as follows: 
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p
Li BBB ,,, 21 B                                 (4.72) 

where 
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Substituting equations (4.63) and (4.68) into (4.53) and (4.55), respectively, yields 

the strain variation in terms of the virtual nodal displacements p

idδ  as 
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The virtual work equation (4.50) is discretized, for a strip, by substituting equations 

(4.63) and (4.74) for ud  and εd , respectively, giving 
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where the equivalent nodal load vector R is due to body forces and inplane loads. 

Since the nodal virtual displacements p

idδ  are arbitrary the strip nonlinear 

equilibrium equations become 
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This is a nonlinear equation in δ  since B and ζ  is linear and quadratic functions of 

δ , respectively. 

 

4.5.6 Solution to nonlinear equilibrium equations 

 

The solution algorithms for the assembled nonlinear equilibrium equations (4.77) are 

based on the Newton-Raphson method which consists of a series of linear solutions. 

If an initial estimate iδ  for the total displacements gives residual (unbalanced) forces 

  0iδψ
 
then an improved value 1iδ  is obtained by equating to zero the linearized 

Taylor‘s series expansion of  1iδψ  in the neighborhood of iδ  
as 
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    01  iTii δKδψδψ                                       (4.78) 

 

where TK is known as the assembled tangent stiffness matrix evaluated at iδ  
and 

given by 
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Equation (4.78) is the linear incremental equilibrium equation which gives the 

linearized approximation to the relation between the residual forces and incremental 

displacements, iδ , at a point iδ  on the equilibrium path. The improved solution is 

then found as, 
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Equations (4.78) and (4.79) represent the Newton-Raphson solution to the nonlinear 

equation (4.78). The terms  iδψ
 
and iδ  give measures of the convergence of the 

solution. To improve numerical stability and to give intermediate results, the load R 

is usually applied in increments. Since the Newton-Raphson method requires 

repeated calculation and inversion of TK , a modified Newton-Raphson method is 

also employed whereby TK is calculated only once on the second iteration of each 

load increment. 

 

4.5.7 Tangent stiffness matrix 

 

The tangent stiffness matrix given in equation (4.79) may be written as 
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where m is the number of degrees of freedom per strip. 
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For convenience the eight stress resultants of equations (4.42-4.44) are written as 

 

 T821 ,,,σ                                                       (4.82) 

 

This enables the equilibrium equation (4.78) to be expanded as  
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Differentiating iψ with respect to jδ
 
yields a typical term in TK  as 

 

dyd
b

k k j

ki

k

j

k

ki

j

i

Tij e


   



























 
0

8

1

8

1 δ

B
ζ

δ

ζ
B

δ

ψ
K                      (4.84) 

 

where   0 ji δR  for conservative loading. 

 

The tangent stiffness matrix can be written as 
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Substituting for B and G, gives 
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where the constant linear elastic stiffness matrix 0K  is given in Chapter 3 as 
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][][][][ BDBBDBBDBK     (4.87) 

 

the initial displacement matrix LK , which is quadratically dependent displacement 

δ  is 
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and the initial stress matrix K  is 
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b
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The matrices sbm DDD ,,  of constitutive coefficients and p

bi

p

mi BB , , p

siB  the 

membrane, bending and shear strain displacement matrices associated with harmonic 

p, node i and Jacobian J are given in Appendix A. 

 

4.5.8 Equivalent nodal loads due to stresses 

 

To evaluate the residual nodal force vector  δψ  of equation (4.78) the equivalent 

nodal forces due to the stress resultants ζ  may be written for a typical node i as 

 

         dyd
b
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mii e
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0

ζBζBζBζBP
                      

(4.90)  

 

For all the Mindlin elements stresses are extrapolated from Gauss point values in a 

manner consistent with the integration rule used for the tangent stiffness matrix 

calculation. Newton-Raphson iteration technique is used for iteration. Convergence 

is checked using total residual norm criteria as 
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where 

 

is convergence tolerance (%). The basic algorithm for the geometrically 

nonlinear analysis is given in Figure 4.4. 
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INPUT 

Inputs data defining geometry, boundary conditions 

and material properties 
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Read loading data and evaluate the equivalent nodal 

forces for distributed loading 
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Increments the applied load according to specified 

load factors 
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Calculate the element stiffness 

ASSEMB 

Assemble the element loads and stiffness to 

give the global stiffnes matrix and load 

vector 
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Solve the resulting systems of simultaneous 

equations for the unknowns 
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Calculate the residual load factor 

CHECK 
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Figure 4.4 Plate problem flowchart 
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4.6 Examples 

 

To verify that the present formulation can be used successfully for the geometric 

nonlinear analysis of plates, several examples for which solutions are available have 

been considered. In all cases, the boundary conditions at the ends of the structure, i.e. 

at 0y  and ,by   correspond to ‗hard‘ simple diaphragm supports-in other words 

.0   

 

4.6.1 Isotropic square plates under uniform transverse loading with various 

boundary conditions  

 

The first set of examples is concerned with the geometric nonlinear analysis of plates 

with various combinations of boundary conditions. For the sake of convenience we 

adopt the following notations to describe the boundary conditions for the plates 

analyzed in this section: A/B/C/D which implies (boundary condition on side 0y ) 

/ (boundary condition on side Ax  ) / (boundary condition on side Ay  ) / 

(boundary condition on side 0x ). A hard simply supported edge (i.e. with the 

lateral displacements and tangential edge rotations constrained to zero) is represented 

by Sh, a clamped edge by C and a free edge F. Because of the nature of the FS 

Fourier series representations of the displacements and rotations, hard simple 

supports always occurs at the ends 0y  and Ay   but other two edges can be 

arbitrarily restrained. In this example central deflections and loads are given in non-

dimensional form as follows: 

 

Central deflection     tAAwW )2/,2/  

Uniformly distributed load    44 EtqAQ   

 

Where A is characteristic plate dimension, q is uniformly distributed load. All 

examples use the modified Newton-Raphson approach and convergence is checked 

using a total residual norm criterion as; 
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where 

 

is convergence tolerance (%). For the integration in equation (4.77) Gauss 

quadrature is used. 

 

Square simply supported (Sh / Sh / Sh / Sh) isotropic plates: The first set of examples 

is concerned with uniformly loaded isotropic square plate with all edges simply 

supported (see Figure 4.5). The results generated by the present approach are given 

in Table 4.2 in the form of a convergence study with respect to both type of strip. 

Linear, quadratic and cubic strips are used with increased loading.  

 

 
Figure 4.5 Square isotropic plate (Sh / Sh / Sh / Sh) under uniformly distributed load 

 

Table 4.2 Central deflection, W, for (Sh / Sh / Sh / Sh) isotropic square plates 

 

Load 

Q(Ibs) 

W (in) 

Linear Quadratic Cubic Ref[113] ANSYS 

9.16 0.353 0.3477 0.3479 0.335 0.3543 

36.6 0.83 0.8181 0.8182 0.818 0.8353 

146.5 1.4932 1.4656 1.4658 1.47 1.5003 

586 2.4382 2.3929 2.3934 2.4 2.453 

2344 3.8988 3.8127 3.8137 3.83 3.9163 

9377 6.1573 6.0524 6.0542 6.07 6.2543 

 

It can be seen from Table 4.2 that results obtained using 3-noded quadratic strips are 

almost identical to those obtained using 4-noded cubic strips and very close to the 

values obtained by Rushton [113] who used a finite difference approach and ANSYS 

program results while the 2-noded linear strips gives less accurate, but acceptable, 

values. The convergence tolerance for the results is %1 . 

a 

simply 

supported 

a 

316.0

/103.0

1

100

28











inIbE

int

ina

 simply 

supported 

simply 

supported 

simply 

supported 



 

 

65 

Square simply supported and free supported (Sh / F / Sh / F) isotropic plates: The 

second example is concerned with uniformly loaded isotropic square plate having 

two free edges. The geometry and material properties are given in Figure 4.6. The 

plates are analyzed using 2-noded linear, 3-noded and 4-noded cubic strips. 

 

 
Figure 4.6 Square isotropic plate (Sh / F / Sh / F) under uniformly distributed load 

 

In Table 4.3 results are given obtained using a 1% convergence tolerance for (Sh / F / 

Sh / F) boundary condition. The load is increased from 1.11 lbs to 38.3 lbs with 

doubling at each step. Again 3-noded quadratic strips and 4-noded cubic strips 

perform well in comparison with ANSYS program results. 

 

Table 4.3 Central deflection, W, for (Sh / F / Sh / F) isotropic square plates 

 

Load 

Q(Ibs) 

W (in) 

Linear Quadratic Cubic ANSYS 

1.11 0.1549 0.1551 0.1568 0.1578 

2.22 0.3253 0.3173 0.3199 0.3157 

4.44 0.6446 0.6387 0.6396 0.6316 

8.89 1.2736 1.2603 1.2629 1.2646 

17.79 2.5405 2.5341 2.5363 2.5303 

38.3 5.4503 5.449 5.5409 5.4476 
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Square simply supported and clamped (Sh / C / Sh / C) isotropic plates: The second 

example is concerned with uniformly loaded isotropic square plate having two 

clamped edges (see Figure 4.7). The analytical thin plate solution is given by Levy 

[114] who used Von Karman‘s equations employing double Fourier series.  

 
Figure 4.7 Square isotropic plate (Sh / C / Sh / C) under uniformly distributed load 

 

Table 4.4 Central deflection, W, for (Sh / C / Sh / C) isotropic square plates 

 

Load 

Q(Ibs) 

W (in) 

Linear Quadratic Cubic Ref[114] ANSYS 

17.79 0.2346 0.2349 0.2365 0.237 0.2402 

38.3 0.4703 0.4671 0.4677 0.471 0.4833 

63.4 0.5989 0.6886 0.6914 0.695 0.7393 

95.0 0.9192 0.9004 0.903 0.912 0.9346 

134.9 1.132 1.1043 1.1065 1.121 1.1503 

184.0 1.3353 1.2993 1.3012 1.322 1.3566 

245.0 1.5346 1.4912 1.4927 1.521 1.5676 

318.0 1.7436 1.6772 1.6784 1.714 1.761 

402.0 1.9105 1.8678 1.8541 1.902 1.795 

 

Results for (Sh / C / Sh / C) boundary conditions are given in Table 4.4. The load is 

increased from 17.79 lbs to 402 lbs doubling at each step. It can be seen that 3-noded 

quadratic strips and 4-noded cubic strips give sufficiently good results for deflections 

in comparison to those found in reference [114] and by ANSYS program. A different 

result is the accuracy of the 2-noded linear strips for displacements. These results are 

obtained using a convergence tolerance %1 . 
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4.6.2 Postbuckling of isotropic square plates under in-plane uniaxial uniform 

loading with various boundary conditions  

 

Square, isotropic plates of side length a which is subjected to linear buckling analysis 

using FS method by Özakça et al. [1], subjected to postbuckling are considered here. 

The behavior of three types of plates is examined, these being a plate with all edges 

simply supported (Sh / Sh / Sh / Sh) a plate with one pair of opposite edges simply 

supported, the other pair free (Sh / F / Sh / F) and the same plate with the other pair of 

edges clamped (Sh / C / Sh / C). In each case, the pates are loaded via the longitudinal 

displacement at the edge of the plate at the ends which are simply supported in the 

out of plane direction and are assumed to behave orthotropically in bending. In all 

examples thickness is taken as at 1.0 . 

 

Square simply supported (Sh / Sh / Sh / Sh) isotropic plates: In this example 

postbuckling analysis of plates which are subjected to linear buckling analysis by 

Kolcu [1] is considered. It is generally assumed that Poisson‘s ratio 3.0v . The 

elastic modulus E is taken as 1106.43 MPa. The geometric properties are given in 

Figure 4.8. 

 

 
Figure 4.8 (Sh / Sh / Sh / Sh) plate under uniaxial load 

 

Linear buckling load for ten 4-noded cubic strips is obtained using FS method [1] as 

3.731 N. The plate is subjected to loads varying with small increments and subjected 

to postbuckling. Load level, the longitudinal displacement at the edge of the plate, U, 

in the x direction and central deflection, W, are given in Table 4.5. 
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Table 4.5 The longitudinal displacement at the edge of the plate, U, and central 

deflection, W, for postbuckling of a square (Sh / Sh / Sh / Sh) isotropic plate 

 

Load 

(kN) 

U (mm) W (mm) 

Present ANSYS Present  ANSYS 

0.7312 0.00793 0.00832 0.00075 0.00079 

1.7312 0.01613 0.01693 0.00274 0.00287 

2.7312 0.02437 0.02559 0.00837 0.00878 

3.7312 0.03666 0.03851 0.04193 0.04403 

4.7312 0.05562 0.05888 0.09470 0.09944 

5.7312 0.07718 0.08104 0.13100 0.13755 

6.7312 0.09889 0.10432 0.15929 0.16725 

7.7312 0.12269 0.12874 0.18299 0.19214 

8.7312 0.14728 0.15465 0.2038 0.21399 

9.7312 0.16744 0.17583 0.22293 0.23407 

10.000 0.15363 0.18436 0.23933 0.22794 

 

 

 

Figure 4.9 Variation of load versus the longitudinal displacement at the edge of the 

plate, U, for the postbuckling of a square (Sh / Sh / Sh / Sh) isotropic plate  

. 
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Figure 4.10 Variation of load versus center deflection, W, for the postbuckling  

of a square (Sh / Sh / Sh / Sh) isotropic plate  

 

Load increment and x displacement varies nearly linearly to bifurcation point. After 

that point, displacement increases more rapidly compared to the load increment. The 

results generated by the present approach are given in Figure 4.9 and Figure 4.10. A 

good agreement is found between the FS results and the FE results obtained by 

ANSYS program. 

 

Square simply supported and free supported (Sh / F / Sh / F) isotropic plates: The 

second example is concerned with uniformly loaded isotropic square plate having 

two free edges and two simply supported edges which is subjected to linear buckling 

analysis by Kolcu [1]. The geometric properties are given in Figure 4.11. The elastic 

modulus E is taken as 1139.86 MPa and Poisson‘s ratio as .25.0v  

 

Numerical results are given in Table 4.6 for the longitudinal displacement at the edge 

of the plate, U, and central deflection, W. The load is increased from 0.03321 kN to 1 

kN with 0.1 kN increments. The lowest buckling load for ten 4-noded cubic strips is 

obtained using FS method [1] in the previous study as 0.933 kN. 
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Figure 4.11 (Sh / F / Sh / F) plate under uniaxial load 

 

Table 4.6 The longitudinal displacement at the edge of the plate, U, and central 

deflection, W, for postbuckling of a square (Sh / F / Sh / F) isotropic plate  

 

Load 

(kN) 

U (mm) W (mm) 

Present ANSYS Present ANSYS 

0.03321 0.00026 0.00029 0.00009 0.0001 

0.13321 0.00105 0.00115 0.00043 0.00047 

0.23321 0.00184 0.00202 0.00085 0.00093 

0.33321 0.00266 0.00293 0.0014 0.00154 

0.43321 0.00343 0.00377 0.00215 0.00236 

0.53321 0.00426 0.00468 0.00324 0.00356 

0.63321 0.00507 0.00557 0.00495 0.00544 

0.73321 0.00602 0.00662 0.00795 0.00874 

0.83321 0.00739 0.00812 0.01519 0.01671 

0.93321 0.01386 0.01525 0.04534 0.04987 

1.00000 0.05578 0.06136 0.12684 0.13952 

 

It can be seen from Figure 4.12 and 4.13 that the present result and FE method values 

are getting closer at the lower loads. After linear buckling load, displacements 

increase rapidly. U is obtained as 0.03879 mm and W is 0.102746 mm for buckling 

load. The, plates buckle with one longitudinal half-wave and so the analysis of the 

single-term type 121  pp . The postbuckling curve for FS method values is very 

close to the FE method values of ANSYS program. 
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Figure 4.12 Variation of load versus the longitudinal displacement at the edge of the 

plate, U, for the postbuckling of a square (Sh / F / Sh / F) isotropic plate 

 

 

 

Figure 4.13 Variation of load versus the deflection at the center of the plate, W, for 

the postbuckling of a square (Sh / F / Sh / F) isotropic plate  
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Square simply supported and clamped (Sh / C / Sh / C) isotropic plate: The third 

example is concerned with uniformly loaded isotropic square plate which has two 

edges clamped. It is generally assumed that Poisson‘s ratio is .3.0v  The elastic 

modulus E is taken as 1106.43 MPa. The geometric properties are given in Figure 

4.14 

 
Figure 4.14 (Sh / C / Sh / C) plate under uniaxial load 

 

Table 4.7 list the longitudinal displacement at the edge of the plate in the x direction, 

U, and central deflection, W, obtained using cubic strips. The FS result for linear 

buckling load for ten 4-noded cubic strips is obtained in the previous study [1] as 

5.773 kN. The load is increased from 0.7732 kN to 10 kN. 

 

Table 4.7 The longitudinal displacement at the edge of the plate, U, and central 

deflection, W, for postbuckling of a square (Sh / C / Sh / C) isotropic plate  

 

Load 

(kN) 

U (mm) W (mm) 

Present  ANSYS Present ANSYS 

0.7732 0.00601 0.00632 0.0005 0.00052 

1.7732 0.01371 0.01439 0.00142 0.0015 

2.7732 0.0213 0.02236 0.00295 0.0031 

3.7732 0.02882 0.03026 0.0059 0.00619 

4.7732 0.03643 0.03826 0.01351 0.01419 

5.7732 0.04557 0.04785 0.03728 0.03914 

6.7732 0.05768 0.06056 0.06795 0.07135 

7.7732 0.07097 0.07451 0.09235 0.09697 

8.7732 0.08488 0.08912 0.11245 0.11807 

9.7732 0.09932 0.10429 0.1298 0.13629 

10.000 0.09376 0.10783 0.13347 0.14014 
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In Figure 4.15 and 4.16 the postbuckling behavior of isotropic square plates is given. 

The edge displacement in the x direction, U, is obtained as 0.04335 mm and the 

center deflection W is obtained as 0.03996 mm. The percentage differences between 

the computed postbuckling results and FE method results obtained by ANSYS 

program values, range from 0.43% to 5.0% which is quite reasonable. 

 

 

 

Figure 4.15 Variation of load versus the longitudinal displacement at the edge of the 

plate, U, for the postbuckling of a square (Sh / C / Sh / C) isotropic plate  

 

 

 

Figure 4.16 Variation of load versus the deflection at the center of the plate, W, for 

the postbuckling of a square (Sh / C / Sh / C) isotropic plate 
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4.6.2 Postbuckling of straight stiffened plate  

 

Stiffened panels due to high strength to weight ratio have wide use in ships, airplanes 

and some land-based structures as the building block of the primary load-carrying 

structure. The design of large parts of ship and airplane structures is primarily driven 

by compressive strength where for civil transport aircraft the structural response of 

the upper wing and the lower fuselage shell. The structural stability of these thin-

walled structures subjected to compressive loads is dependent on the buckling 

strength of the structure as a whole and of each structural member.  

 

Ekmekyapar [115] investigated different types of stiffened panels which are 

illustrated in Figure 4.17. He studied the linear buckling and optimization of 

buckling loads for these types of plates by experimental studies using FS method. 

 

In this example postbuckling analysis of straight stiffened plates with 3, 4, and 5 

stiffeners which are subjected to linear buckling analysis by Ekmekyapar [115] is 

considered. The material used in stiffened plates is aluminum-alloy that has 

73000E MPa modulus of elasticity and 33.0  Poisson‘s ratio. The height of the 

stiffeners is equal to 28.0 mm. The geometric properties for 3 stiffeners are given in 

Figure 4.17. Loading and boundary conditions are given in Figure 4.18. 

 

 

Figure 4.17 Dimensions of typical stiffened panel 
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Simple supported

Simple supported

Free Free

 

Figure 4.18 Loading and boundary conditions of stiffened plate 

 

Linear buckling load for cubic strips is obtained using FS method [115] as 59731.7 

kN for 3 stiffeners, 97565.0 kN for 4 stiffeners and 136548.5 kN for 5 stiffeners. The 

plate is subjected to load steps with small load increment and followed into the 

postbuckling region. Load steps versus longitudinal shortening of the stiffened plate 

in the x direction are given in Table 4.8. 

 

Table 4.8 Longitudinal shortening of the straight stiffened plate  

 

Load 

(kN) 

Longitudinal shortening (mm) 

3 stiffeners 4 stiffeners 5 stiffeners 

Present ANSYS Present ANSYS Present ANSYS 

30 0.00019 0.0002 0.00019 0.0002 0.00019 0.0002 

13554 0.0865 0.09169 0.08777 0.09177 0.08728 0.09184 

28554 0.1822 0.19313 0.18487 0.19331 0.18384 0.19345 

43554 0.27787 0.29454 0.28194 0.2948 0.28036 0.29503 

58554 0.37497 0.39747 0.37897 0.39626 0.37685 0.39657 

73554 0.50778 0.53824 0.47598 0.4977 0.47331 0.49807 

88554 0.65195 0.69107 0.573 0.59914 0.56974 0.59954 

103554 0.80244 0.85059 0.6816 0.7127 0.66613 0.70098 

118554 0.95841 1.01591 0.81167 0.84871 0.76252 0.80241 

133554 1.12093 1.18819 0.9521 0.99554 0.8595 0.90447 

144108 1.2524 1.32754 1.06031 1.10868 0.94027 0.98946 
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Load steps and longitudinal shortening varies nearly linearly up to the bifurcation 

point. After that point shortening increases rapidly compared to load value. The 

results generated by the present approach are given in Figures 4.19-21. A good 

agreement is observed between FS method results and FE method results obtained by 

ANSYS program. The comparison of the postbuckling performance of 3, 4 and 5 

stiffener plates shows that increasing the stiffener number improves the strength 

against initial imperfection (Figure 4.22). 

 

 
 

Figure 4.19 Variation of load versus the longitudinal shortening of the plate with 3 

stiffeners 
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Figure 4.20 Variation of load versus the longitudinal shortening of the plate with 4 

stiffeners 

 

 

 

Figure 4.21 Variation of load versus the longitudinal shortening of the plate with 5 

stiffeners 
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Figure 4.22 Comparison of postbuckling performance of straight stiffened plates 

 

4.6.2 Comparison of postbuckling performance of optimized stiffened plate  

 

Stiffened panels are easily designed through the use of a structural shape 

optimization procedure. The buckling load carrying capacities of stiffened panels are 

improved by decreasing weight of the structures. However, in many cases the 

stiffness of the panel as a whole is significantly reduced after buckling, where the 

ultimate strength of the panel has normally not yet been reached since the panel 

enters into a post-buckling regime causing panel failure or collapse. Thus, the 

optimum design of stiffened panels under compressive loads needs also post-

buckling behavior analysis to carry the loads safely and economically. 

 

There are five different stiffened plate types with straight stiffeners illustrated in 

Figure 4.18. The effect of the number of main stiffeners on critical buckling load 

from three to five is investigated. Note that Figure 4.23 shows only plate types with 

five stiffeners. During the baseline design before optimization, the initial values of 

plate base thickness and stiffener thickness are considered to have same values and 

sub-stiffener thickness is taken ´ of them (BL). Accordingly, the initial values of 

design variables are listed in Table 4.9 [115]. Then, beginning with initial values 

optimization process is performed and critical buckling loads are maximized. 
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Improvements on linear buckling load are considerable serious. Structural elements 

which are used as design variables are thicknesses and heights of stiffeners and sub-

stiffeners (C1) and widths of pads (C2). 
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e) Straight stiffened plate and pads under stiffeners and between stiffeners 

 

Figure 4.23 Examined stiffened plate types 

 

After obtaining linear buckling results of optimized plates nonlinear analysis is 

carried out by the program developed. First, geometric nonlinearity is included in the 

analyses and collapse loads of stiffened plates are found. Newton-Raphson method is 

used in the solution of nonlinear problems. 

 

 

Table 4.9 Stiffened plate types and their baseline design rules 



 

 

80 

 

Type Optimized stiffened plate types Baseline values 

a Straight stiffened plate (base profile) skint = stifft  

b Straight stiffened plate with sub-stiffeners 
skint = stifft

 

subt = stifft750 .  

c Straight stiffened plate and pads under stiffeners 
skint = stifft  

1padt = stifft2  

d 
Straight stiffened plate with sub-stiffeners and pads 

under stiffeners 

skint = stifft  

1padt = stifft2
 

subt = stifft750 .  

e 
Straight stiffened plate and pads under stiffeners 

and between stiffeners 

skint = stifft = 2padt  

1padt = stifft2  

 

As discussed above, to initiate a nonlinear buckling eigenmode initial imperfection is 

preferred. The eigenmode imperfection reflects the real structure behavior. The 

structure exhibits most of the nonlinear behavior after linear buckling. So, it should 

be taken into account to enforce the structure to go into real buckling mode in 

nonlinear analysis. Tables 4.10-11 illustrate the collapse loads of stiffened plate types 

when geometric nonlinearity is considered. 

 

Observing Tables 4.10-14 and Figures 4.24-28 depicts the significance of the number 

of main stiffeners and optimization on the postbuckling behavior of stiffened panels. 

The increment of the number of stiffeners is the crucial parameter of improving the 

buckling and collapse loads. The postbuckling performance in Table 4.10 is 4.6%, in 

Table 4.11 is 53.7 %, in Table 4.12 is 16.97%, and in Table 4.13 is 38.93%. As seen 

from Figures 4.24-28, optimization process increased linear buckling loads but 

generally decreased the collapse loads and postbuckling performance for all types of 

stiffeners.  

 

Table 4.10 Initial, optimum design variables, critical buckling loads and 

postbuckling collapse loads of ‗type a‘ 
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 3 stiffeners 4 stiffeners 5 stiffeners 

 BL C 1 C 2 BL C 1 C 2 BL C 1 C 2 

tskin 2.237 2.434 2.443 2.123 2.324 2.311 2.020 2.200 2.161 

tstiff 2.237 1.200 1.229 2.123 1.342 1.954 2.020 1.456 2.209 

hstiff   26.405   20.00   20.00 

Pcr 59.73 62.78 64.25 96.56 105.54 109.94 135.54 148.77 154.61 

Pcollapse 142.50 135.60 135.90 190.80 189.00 147.00 279.00 198.60 183.00 

 

Table 4.11 Initial, optimum design variables, critical buckling loads and 

postbuckling collapse loads of ‗type b‘ 

 

 3 stiffeners 4 stiffeners 5 stiffeners 

 BL C 1 C 2 BL C 1 C 2 BL C 1 C 2 

tskin 2.150 2.347 2.365 2.008 2.217 2.241 1.884 2.083 2.093 

tstiff 2.150 1.326 1.200 2.008 1.322 1.957 1.884 1.348 1.169 

tsub 1.6133 1.000 1.926 1.506 1.154 1.175 1.413 1.196 1.070 

hstiff   28.121   20.00   20.000 

hsub   8.000   8.033   8.000 

Pcr 63.70 70.34 72.62 98.63 110.72 113.92 134.62 151.21 159.53 

Pcollapse 237.60 154.40 110.00 303.00 191.200 92.00 310.40 218.40 104.00 

 

Table 4.12 Initial, optimum design variables, critical buckling loads and 

postbuckling collapse loads of ‗type c‘ 

 

 3 stiffeners 4 stiffeners 5 stiffeners 

 BL C 1 C 2 BL C 1 C 2 BL C 1 C 2 

tskin 1.962 1.918 1.908 1.874 1.885 1.816 1794 1.831 1.812 

tstiff 1.962 1.214 1.294 1.874 1.414 1.998 1.794 1.521 2.071 

tpad1 3.924 5.000 5.000 3.748 4.396 4.725 3.588 3.922 4.084 

hstiff   27.233   20.000   20.081 

Pcr 69.4 76.5 78.1 112.7 122.0 125.1 158.8 166.4 173.1 

Pcollapse 212.10 175.80 176.10 302.40 238.20 148.80 312.60 271.80 185.40 

Table 4.13 Initial, optimum design variables, critical buckling loads and 

postbuckling collapse loads of ‗type d‘ 
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 3 stiffeners 4 stiffeners 5 stiffeners 

 BL C 1 C 2 BL C 1 C 2 BL C 1 C 2 

tskin 1.895 1.996 1.999 1.784 1.938 1.936 1.685 1.776 1.865 

tstiff 1.895 1.234 1.257 1.784 1.358 1.882 1.685 1.441 2.010 

tsub 1.421 1.000 1.000 1.338 1.037 1.000 1.264 1.029 1.109 

tpad1 3.791 4.208 4.246 3.569 3.624 3.921 3.371 3.566 3.187 

hstiff   27.163   20.000   21.246 

hsub   13.372   8.000   9.186 

Pcr 71.78 79.55 80.99 110.61 124.38 128.07 154.52 165.45 173.19 

Pcollapse 258.90 159.00 158.10 152.40 200.40 149.40 303.60 141.00 228.00 

 

Table 4.14 Initial, optimum design variables, critical buckling loads and 

postbuckling collapse loads of ‗type e‘ 

 

 3 stiffeners 4 stiffeners 5 stiffeners 

 BL C 1 C 2 BL C 1 C 2 BL C 1 C 2 

tskin 1.962 2.013 2.000 1.874 1.877 1.916 1.794 1.767 1.842 

tstiff 1.962 1.275 1.200 1.874 1.465 1.947 1.794 1.581 1.993 

tpad1 3.924 5.000 5.000 3.748 4.708 4.678 3.588 4.581 4.232 

tpad2 1.962 1.200 1.256 1.874 1.253 1.200 1.794 1.205 1.200 

hstiff   29.333   20.000   22.642 

Pcr 69.41 80.09 82.56 112.76 127.78 131.54 158.85 173.19 179.63 

Pcollapse 219.60 221.40 124.20 307.20 277.20 165.00 300.60 338.40 201.60 

 

Longitudinal shortenings of stiffened plates with load increase introduce the 

performance of structure during the nonlinear analyses. Figures 4.24-29 illustrate 

longitudinal shortenings of stiffened plates until collapse loads.  
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Figure 4.24 Comparison of postbuckling loads according to the number of stiffeners 

‗type a‘



 

 

84 

 

 

 

 

Figure 4.25 Comparison of postbuckling loads according to the number of stiffeners 

‗type b‘
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Figure 4.26 Comparison of postbuckling loads according to the number of stiffeners 

‗type c‘ 
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Figure 4.27 Comparison of postbuckling loads according to the number of stiffeners 

‗type d‘



 

 

87 

 

 

 

 

Figure 4.28 Comparison of postbuckling loads according to the number of stiffeners 

‗type 
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CHAPTER 5 

 

OPTIMIZATION OF BUCKLING PERFORMANCE 

 

5.1 Introduction 

 

The general principle by Maupertuis proclaims “If there occur some changes in 

nature, the amount of action necessary for this change must be as small as possible”. 

In this view, the main purpose of optimization is obtaining the best outcome of a 

given problem while assuring some restrictions. The objective varies depending on 

problem types and desired functions of problem. 

 

The importance of minimum weight design of structures was first recognized by the 

aerospace industry where aircraft structural designs are often controlled more by 

weight than by cost considerations. In other industries dealing with civil, mechanical 

and automotive engineering systems, cost may be the primary consideration although 

the weight of the system does affect its cost and performance. A growing realization 

of the scarcity of raw materials and a rapid depletion of our conventional energy 

sources is being translated into a demand for lightweight, efficient and low cost 

structures [116]. 

 

Critical buckling load capacity of plates and stiffened plates can be increased to very 

high values by using properly dimensioned stiffened plate elements. In this point it is 

necessary to mention about the essentiality of structural optimization procedure. This 

procedure involves iterative solutions and requires reanalyzing of the problem 

several times before obtaining the optimum solution. In this study objective function 

is maximization of the critical buckling load capacity of stiffened plates while 

satisfying constant volume constraint. 
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5.2 Structural Optimization Algorithm 

 

The basic algorithm for structural shape optimization is given in Figure 5.1. Özakça 

et al [117] summarized the basic algorithm of structural optimization, using FS as an 

analysis method and sequential quadratic programming as an optimization method, in 

following steps. 

 

Start
 Problem 

definition

  Shape

definition

Create finite 

strip model

  Evaluate

sensitivities

Optimum

Stop

 Generate

new shape
No

Yes

Finite strip

  analysis

  Optimize 
parameters

 

Figure 5.1 Structural optimization flowchart 

 

1. Problem definition: Consider the case of the structural optimization of a panel 

structure in which we wish to maximize the critical buckling load subject to the 

constraints that the total volume of the panel should remain constant and first ten 

buckling loads should be greater than critical buckling load. Other types of 

constraints such as bounds on the design variables must also be introduced. 
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2. Shape definition: The shape of the panel cross section is defined in some 

convenient form that allows us to examine the sensitivities of the design to small 

changes in shape. Here, we describe the geometry of the plate cross section using 

parametric cubic spline segments with the coordinates specified at certain key points. 

 

3. Create finite strip model: The next step is to generate a mesh of suitable FSs. Here, 

an unstructured mesh generator with mesh density specified at some key points and 

then interpolated through the segments appropriately is used. In order to ensure the 

accuracy of the FS model, it is necessary to make sure de-refinement does not occur 

during the analysis in each optimization iteration. This means that, the strip size 

distribution (mesh density) remains unchanged during redesign. As the structural 

shape changes during the optimization process, the re-meshing is based on 

predetermined mesh density at every iteration. As with normal FS analysis also the 

boundary conditions and material properties must be defined. 

 

4. Finite strip analysis: Next we carry out a FS analysis and in the present work the 

structure is modeled using linear, variable thickness, Mindlin-Reissner, C(0) FS. 

 

5. Sensitivity analysis: The sensitivities of the buckling loads and the volume of the 

current design to small changes in the design variables are then evaluated. These 

design sensitivities are generally nonlinear implicit functions of the design variables 

and are therefore difficult and expensive to calculate. The numerical accuracy of 

sensitivity analysis affects the search directions that are used in optimization 

algorithms. 

 

6. Optimize parameters: Using the objective and constraint functions and their 

derivatives, the sequential quadratic programming optimization algorithm is 

employed to optimize the parameters or design variables. The new set of values will 

result in a modified design. Furthermore, the constraints must be satisfied if the new 

design is to be deemed acceptable. If a convergence criterion for optimization 

algorithm is satisfied, then the optimum solution has been found and the solution 

process is terminated. 
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7. Update optimization model: After the optimization, it is necessary to update the 

geometric model, i.e. the coordinates and/or thicknesses of the primary design 

variables in structural optimization. This is the only part of the original input data 

which has to be updated for each optimization iteration. If no convergence has been 

achieved, the new geometry is sent to the mesh generator which automatically 

generates a new analysis model and the whole process is repeated from step 2. 

 

5.2.1 Mathematical definition of optimization problem 

 

Problems of structural optimization are characterized by various objectives and 

constraints, which are generally nonlinear functions of the design variables. These 

functions can be discontinuous and nonconvex. Each objective and constraint choice 

defines a different optimization problem, and the solution can be found using several 

mathematical programming methods. 

 

In general the constraint functions are grouped into three classes: equality constraints 

jh , inequality constraints ig , and the geometric (regional) constraints defined by the 

upper and the lower bounds of the design variables. 

 

However, all optimization problems can be expressed in standard mathematical terms 

as:  

minimize (or maximize)  

F(s)                                                             (5.1) 

subject to: 

 

misg i ,,10)(   

ljsh j ,,10)(                                            (5.2) 

dv

u

kk

l

k nksss ,,1
 

 

The notion of improving or optimizing a structure implicitly presupposes some 

freedom to change the structure. The potential for change is typically expressed in 

terms of ranges of permissible changes of a group of parameters. Such parameters 

are usually called design variables in structural optimization terminology. Design 

variables can be cross-sectional dimensions or member sizes; they can be parameters 
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controlling the geometry of the structure and its material properties, etc., in which, s 

is the design variables vector. 

 

The notion of optimization also implies that there is a merit function F(s) or some 

merit functions  ](s), (s), (s),[F(s) 321 FFF  that can be improved and can be used 

as a measure of effectiveness of the design. The common terminology for such 

functions is objective functions. For structural optimization problems, weight, 

displacements, stresses, vibration frequencies, buckling loads, and cost or any 

combination of these can be used as objective functions. 

 

In optimization process of structures, there are limits about design variables. 

Sometimes design constraints may be dimensions of structural elements, weight of 

structure, vibration frequency, and displacement of a point, )s(gi  and )s(h j  are the 

constraint functions. Finally, l

ks  and u

ks  represent the lower and the upper bounds of 

the design variables, m is the number of design variables used. 

 

In this study, the objective function is maximization of critical buckling load of 

stiffened plates. When maximizing critical buckling load of stiffened plates first 

constraint is an equality for the constant material volume constraint. Optimized plate 

widths and lengths are constant. Also there are upper and lower limits inequality 

constraints of design variables. Buckling load constraint )(sg  can be expressed as 

 

max)(

)(
1)(

cr

icrsg



                                           (5.3) 

 

where max)( cr defines the upper limit on buckling load and i)( cr describing the 

buckling load of the current design. Similarly 

 

1)(
max


V

V
sg i                                              (5.4) 

 

defines the volume constraint. Vi  and Vmax are the current value and upper limit of 

the volume respectively. 
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5.2.2 Shape definition 

 

Structural shape definition: The designation of geometric model and control the 

parameters of optimization procedure for an appropriate flow algorithm is complex 

and requires attention. The cross section of a typical stiffened plate structure is 

shown in Figure 5.2. 

 

To form the cross section geometry of stiffened plates to introduce a computer code, 

the segments must be generated one by one. Generating a straight segment can be 

done by entering the geometrical coordinates of key points of it as input data.  

 

1 2 3 4

5 6 7

1

2 3 4

5

6 7 8

key points

segments

 

Figure 5.2 Geometric representation of a stiffened plate 

 

Defining the number of key points to form the cross sectional shapes of stiffened 

plates are important for computational algorithm. More key points mean more design 

variables for the computer code. Hence, increasing the defined number of key points 

cause increasing computational time. 

 

For the applicability to real life, increasing the efficiency of computational effort and 

symmetrical behavior of structural elements it is a necessary situation to link the 

design variables at two or more key points. By linking of design variables, the length 

of a considered segment can be assigned as a design variable and symmetry of shape 

in an axis can be easily achieved. In this regard, the number of design variables for 

optimization is considerably reduced. 

 

Structural thickness definition: The thicknesses of the stiffened plate elements are 

specified at some or all of the key points for the desired initial element shape of the 

structure and then interpolated by the program. 
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5.2.3 Mesh generation for finite strip analysis 

 

After defining the geometry, the next step is to generate a proper FE mesh for the 

cross section of stiffened plate. This meshing procedure can be carried out with an 

automatic mesh generator for desired mesh density. Automatic mesh generator has 

the capability of meshing the arbitrary complex geometry given no input other than 

the geometric representation of the domain to be meshed and an associated mesh 

density distribution. Mesh generation should be robust, versatile, and efficient to 

obtain more accurate results. Here, we use a mesh generator which allows refinement 

of FE meshes. It also allows for a significant variation in mesh spacing throughout 

the region of interest. The mesh generator can generate meshes of two, three and four 

noded elements and strips.  

 

To mesh the cross section properly, it is a very significant factor for obtaining more 

accurate results. In this regard, mesh operation should be carried out considering the 

critical points in the cross section. Also meshes in segments should be compatible 

with each other. Figure 5.3 shows a mesh example of stiffened plates. 

 

 

Figure 5.3 Mesh representation of plates 

 

The mesh density is a piecewise linear function of the values of mesh size  at some 

points along the mid-surface of the structure. 

 

5.2.4 Structural finite strip analysis  

 

It is the important factor for optimization methods to reach the optimum solution in 

minimum computational time. Hence, the efficiency of the optimization methods is 

based on the computational time required in the process. Most of the numerical 

optimization methods have iterative procedures. So the number of structural analyses 

required to reach at the optimum solution is large. In this regard, to reduce the cost of 

a problem, an efficient and inexpensive structural analysis method should be used.  
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In such a case, FS method is the best approach to the problem. As discussed in 

Chapter 3 the FS method has proven to be an inexpensive and useful tool in the 

analysis of structures having regular prismatic type geometries which simply 

supported diaphragms at two opposite edges with the remaining edges arbitrarily 

restrained. The theory and implementation of FS method for buckling analyses are 

given in Chapter 3. 

 

5.2.5 Sensitivity analysis 

 

Sensitivity analysis is a crucial part of an optimization procedure. After completing 

the FS analysis the sensitivities of the current design should be evaluated with small 

changes in the design variables. We calculate the sensitivities of items such as 

buckling load based on finite differences. 

 

Sensitivity analysis is based on the systematic calculation of the derivatives of the 

response for the FS model with respect to parameters forming the model geometry 

i.e. the design variables which may be length, thickness or shape. The first partial 

derivatives of the structural response quantities with respect to the shape (or other) 

variables provide the essential information required to couple mathematical 

programming methods and structural analysis procedures. The sensitivities of 

responses provide the mathematical programming algorithm with search directions 

for optimum solutions [1]. 

 

In the present study, PLATEV_1 code uses the finite difference to calculate 

sensitivities. For the numerical approximation of derivatives, the finite difference 

method uses a difference formula. The finite difference scheme is accurate and 

computationally efficient. 

 

5.2.6 Derivative of buckling load 

 

The governing equation in the FS solution for buckling case may be defined as [1] 

 

0][  pppppp
dKK                                                (5.5) 
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where K
pp

 is the stiffness matrix for the pth harmonic, pp

K  is the load matrix, p  is 

the buckling factor and pd  is the buckling mode shape which is normalized so that 

 

1p

ppT

p dd K                                                   (5.6) 

 

When the eigenvalues are distinct, the expression for the buckling derivative with 

respect to design variable si can be derived from (5.5) and (5.6) so that 

 

p
i

pp
p

i

T
p

i

p

d
sss

)(












 
 KK

d
pp

                                 (5.7) 

 

The derivatives are computed by re-calculating K
pp

 and pp

K for a small perturbation 

is  of the design variable (coordinates or thicknesses). The derivatives of the 

stiffness matrices with respect to the design variable si may then be written as 

 

i

i

pp

ii

pp

i

pp

s

sss

s 






 )()( KKK
                                     (5.8) 
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sss
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

 )()(  KKK
                                     (5.9) 

 

5.2.4 Derivative of volume 

 

A forward finite difference approximation is used to evaluate the volume derivative 

[1]. 

i

iii

i s

sVssV

s

V








 )()(
                                     (5.10) 

 

Where the volume V of the whole structure (or cross-sectional area of the structure 

may also be used) can be calculated by adding the volumes of numerically integrated 

FS. 

 

5.3 Mathematical Programming  

 

The sequential quadratic programming is used as a mathematical programming to 

generate shapes with improved objective function values using the information 

derived from the analysis and design sensitivities. No effort has been made to study 
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the mathematical programming methods used for structural optimization procedures 

and the sequential quadratic programming algorithm is used here essentially as a 

‗black box‘. 

 

5.4 Examples 

 

The main interest of this study is maximizing the buckling load carrying capacity of 

stiffened plates by optimizing the plate section dimensions under constant volume 

constraint.  

 

5.4.1 Maximization of critical buckling load of square isotropic plates 

 

In this example square simply supported plate which is analyzed in Chapter 3 is 

optimized. Plate is modeled using one segment and two, three, four, five key points. 

The location of the design variables for symmetric and nonsymmetrical are shown in 

Figure 5.4. Thickness design variables are the thicknesses of the key points of the 

plate. The initial dimensions of the plate are given in Table 3.1. The following 

material properties are assumed: Poisson's ratio 3.0v , elasticity modulus 

43.1106E  and thickness 1.0t . 

 

 

Figure 5.4 Position of design variables of plate 
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i-) Plates under uniaxial force: The objective is to minimize the volume of the plate 

subject to buckling loads 731.3, 101    constraints. Initial value of total volume 

is 0.1. The optimum values of design variables and percent reduction of objective 

function are given in Table 5.1 for two, three, four and five design variable cases. 

The highest improvement is obtained with four design variables with 11.03 % 

decrease in volume. 

 

Table 5.1 Square plate with (Sh / Sh / Sh / Sh) boundary condition under uniaxial 

force: values of the optimal design variables and volume  

 

No of 

design 

variables 

optimal values of design variables % 

decrease 

in volume t1 t2 t3 t4 t5 

2 0.03339 0.15228 - - - 7.17 

3 0.03771 0.09029 0.15646 - - 7.16 

4 0.05798 0.025 0.14888 0.13113 - 11.03 

5 0.06808 0.02938 0.09111 0.14875 0.1244 9.05 

Constraints: tmin = 0.025,  tmax = 0.3  and 731.3,, 1021                                                                                      

Initial values: Vi = 0.1 and ti = 0.1 

 

The initial critical buckling load of the plate is equal to 3.731. The optimization is 

carried out for maximization of the critical buckling load subject to volume and 

buckling load constraints. The optimal thickness variations obtained for the different 

thickness representations considered are presented in Table 5.2. The optimal critical 

buckling loads are equal to 4.074, 4.157, 4.174 and 4.181 for two, three, four and 

five design variables, respectively. The improvements in buckling loads are 

presented in buckling ratio ( uopt KKR  ) form and compared with values in Table 

3.1 given in Chapter 3. Kopt and Ku are the optimum plate and uniform thickness plate 

critical buckling loads, respectively. We obtain the highest buckling ratio with five 

design variables as 1.1206 than the solution given in Table 3.1 as 1.1127.  
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Table 5.2 Square plate with (Sh / Sh / Sh / Sh) boundary condition under uniaxial 

force: values of the optimal design variables and buckling ratio  

 

No of 

design 

variables 

optimal values of design variables  

 

buckling 

ratio 
t1 t2 t3 t4 t5 

2 0.05541 0.14459 - - - 1.0919 

3 0.03738 0.11332 0.11813 - - 1.1142 

4 0.03076 0.09913 0.11485 0.13086  1.1187 

5 0.02714 0.08886 0.10755 0.12127 0.12511 1.1206 

Constraints: tmin = 0.025,  tmax = 0.3  and                                                                                   

Initial values: 731.3,, 1021    and ti = 0.1 

 

ii-) Plates under uniaxial stress: Table 5.3 represents volume minimization with 

constant stress. Initial value of volume is 0.1. Best solution is obtained with four 

design variables as 18.64 % reduction in volume. 

 

Table 5.3 Square plate with (Sh / Sh / Sh / Sh) boundary condition under uniaxial 

stress: values of the optimal design variables and volume  

 

No of 

design 

variables 

optimal values of design variables % 

decrease 

in volume t1 t2 t3 t4 t5 

2 0.15875 0.025 - - - 8.12 

3 0.1705 0.08167 0,02500 - - 12.3 

4 0.025 0.15826 0,03755 0.04679 - 18.64 

5 0.14916 0.12114 0.08055 0.03015 0.05412 18.11 

Constraints: tmin = 0.025,  tmax = 0.3  and 731.3,, 1021                                                                                     

Initial values: Vi = 0.1 and ti = 0.1 

 

Table 5.4 presents the maximization of the critical buckling load with constant stress. 

Initial value of total buckling load is 1.2998. Best solution 1.3876 is compared with 

initial buckling load. 

 

 

uopt KKR 
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Table 5.4 Square plate with (Sh / Sh / Sh / Sh) boundary condition under uniaxial 

stress: values of the optimal design variables and buckling ratio  

 

No of 

design 

variables 

optimal values of design variables  

 

buckling 

ratio 
t1 t2 t3 t4 t5 

2 0.17507 0.025 - - - 1.19 

3 0.19286 0.09464 0.025 - - 1.2782 

4 0.10762 0.16404 0.05544 0.03896  1.3876 

5 0.1872 0.14732 0.06072 0.0602 0.08381 1.2436 

Constraints: tmin = 0.025,  tmax = 0.3  and                                                                                   

Initial values: 731.3,, 1021    and ti = 0.1 

 

5.4.2 Maximization of critical buckling load of straight stiffened plates 

 

It is desired that two separate linear eigenvalue optimizations are run. The design is 

carried out for obtaining thickness of initial values by providing constant cross 

sectional area. In this example we consider only straight stiffened plates. Straight 

stiffened plate with substiffeners and pads are given in references [115]. 

 

The baseline panel is the foundation for the stiffened plate design. The plate cross 

section is constant along its length. The baseline plate cross section has a total area of 

1172 mm² of skin material available for manipulation.  

 

There are a number of design constraints based on either the general design strategy 

or the manufacturing process as outlined below. The plates have the common fixed 

constraints as shown in Table 5.5. The common constraints are shown on a three 

dimensional aspect of five straight stiffened plate in Figure 5.5. 

 

Table 5.5 Common constraints 

Plate width 440 mm 

Plate length 590 mm 

Total plate volume 691480 mm³ 

 

 

uopt KKR 
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The used material properties are:  

 Modulus of elasticity E= 91073 N/m² 

 Poisson‘s ratio ν= 33.0  

The loading direction and boundary conditions are shown in Figure 5.6. 

 

440

590

Number of Stiffener = N

 
Figure 5.5 A sample three-dimensional aspect of stiffened plate (with five straight 

stiffeners) 

 

 

Simple supported

Simple supported

Free Free

 

Figure 5.6 Loading and boundary conditions 

 

The loaded sides of plate are simply supported and the other two sides are free. The 

plate is loaded in uniform compression in stiffeners direction. Figure 5.7 shows 

straight stiffened plate with five stiffeners. 

 

x 

y 

simply supported 
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dstiff

tskin

hstiff

tstiff

dstiff/2

 

Figure 5.7 Straight stiffened plate  

 

i) Size optimization: Optimization is performed using thickness of plate skin )t( skin
 

and thickness of stiffeners )t( stiff . During this stage height of stiffeners 

)h( stiff have constant value of 28.0 mm (see Figure 5.7). 

ii) Shape optimization: Height of stiffeners )h( stiff  included as design variable in 

this stage (see Figure 5.7). 

 

Design constraints of two stages are specified in Table 5.6. Optimization process is 

repeated from two to eight stiffeners. 

 

Table 5.6 Design constraints of straight stiffened plate 

 

Design variables Min (mm) Max (mm) 

Thickness of plate  skint  1.4 3 

Thickness of stiffener  stifft  1.3 4 

Height of stiffener  stiffh  8 40 

 

Two types of optimization are performed. These are size optimization with two 

design variables ( skint - stifft ) and shape optimization with three design variables 

( skint - stifft - stiffh ). Effect of number of stiffeners is also observed. Number of 

stiffeners from two to eight is optimized. Optimizations are carried out for 

maximization of critical buckling load subject to constant volume constraint. 

 

i) Size optimization: Thicknesses of plate and stiffeners are kept equal at the initial 

design. The height of stiffeners is constant and equal to 28.0 mm. The optimum 

values of design variables and critical buckling load are given in Table 5.7. The 

highest improvement is obtained for four stiffeners case and approximately equal to 

10.25 %. The stiffened panel is analyzed using cubic strips. In order to obtain more 

accurate results the large number of degrees of freedom is taken in all analysis. The 
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highest critical buckling load is obtained in eight stiffeners case and equal to 219833 

N. The improvement of critical buckling load for eight stiffeners is 664 % compared 

to two stiffeners case. Moreover, it is important to note that in optimum results skin 

thickness is thicker than stiffener thickness except eight stiffeners case and by the 

increasing the number of stiffeners skin thickness is going to be thinner and stiffener 

thickness is going to be thicker. 

 

Table 5.7 Size optimization of straight stiffened plate 

 

nstiff 
Optimum DVs values Buckling loads 

(%) Imp 
tskin tstiff Pi Pmax 

2 2.49 1.3 27392.7 28749.313 4.952 

3 2.41 1.3 59731.7 64479.292 7.948 

4 2.32 1.34 97565.0 107542.933 10.227 

5 2.19 1.47 136548.5 148318.65 8.620 

6 2.08 1.52 173160.7 183581.163 6.018 

7 1.96 1.57 202204.3 206859.051 2.302 

8 1.75 1.79 219819.9 219833.336 0.006 

 

ii) Shape optimization: In addition to thickness of the plate and stiffeners, the height 

of the stiffeners is also considered as a design variable. (Note: During the 

optimization process, the height of stiffeners is all equal). The optimum values of 

design variables and critical buckling loads are presented in Table 5.8. 

 

Table 5.8 Shape optimization of straight stiffened plate 

 

nstiff 
Optimum DVs values Buckling loads 

(%) Imp  
tskin tstiff hstiff Pi Pmax 

2 2.52 3.99 8.00 27392.7 30266.2 10.490 

3 2.19 4.00 17.29 59731.7 66979.9 12.135 

4 2.15 4.00 14.01 97565.0 114501.6 17.359 

5 2.13 4.00 11.78 136548.5 171359.7 25.494 

6 2.06 4.00 11.05 173160.7 237776 37.315 

7 2.15 4.00 8.00 202204.2 283451.4 40.181 

8 2.07 4.00 8.11 219819.9 310826.7 41.401 

 



 

 

104 

The highest improvement, which is 41.40 %, is obtained from eight stiffeners. When 

the number of stiffeners is increased critical buckling load is also increased similar to 

size optimization. The largest critical buckling load is again obtained from eight 

stiffeners case. The improvement is 926 % compared with two stiffeners case. Plate 

skin is thinner than stiffeners in optimum results and stiffener thicknesses reach 

upper limits.  

 

5.4.3 Maximization of critical buckling load of sub-stiffened plates 

 

In this example panels with three sub-stiffening subjected to longitudinal 

compression which is analyzed in Chapter 3 is optimized for minimum weight and 

maximum performance. Using FS analysis, the initial buckling mode of profile 3 was 

successfully reproduced (Figure 5.8). Given the uncertainty on the skin buckling 

loads (large differences between experiment and FE analysis, plus the slight 

difference in boundary conditions between FS analysis on the one hand and FE 

analysis and experiment on the other), the reproduction of the skin buckling load was 

also considered sufficiently accurate.  

 

a=600 mm, b = 140 mm

bss x tss

25 x 5 mm

bpu x tpu

bsp x tsp

a=600 mm, b = 140 mm

bss x tss

25 x 5 mm

bpu x tpu

bsp x tsp

 

Figure 5.8 Design variables of sub-stiffened plate 

 

For the sub-stiffened panels, the optimum as computed by FS analysis had both a 

high-inertia substiffener and pad-ups under stiffeners (Figure 5.9, Table 5.9), the 

former increasing the out-of-plane stiffness of the skin and the latter providing 

rotational restraint at the edges.  

 

Results of FS optimisations with various numbers of free design variables (DV) 

(derived values in italics). The buckling mode was maximised subject to the 

constraint of constant cross-sectional area. Sub-scripts: sp = skin-pocket, pu = pad-

up, ss= sub-stiffener.  
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Table 5.9 The optimised critical buckling load for sub-stiffened plates 

 

 

 
3 DV – case I 

 
4 DV – case II 

 
3 DV – case III 

 
4 DV – case IV 

 
4 DV – case V 

 
5 DV – case VI 

 

Figure 5.9 Buckling modes corresponding to each of the optimum designs of Table 

5.9: from 3 DV – case I on top left to 5 DV – case VI on bottom right 

 

5.4.4 Maximization of critical buckling load of sculpted skin panels 

 

From these analyses, it was concluded that in order to increase not only skin buckling 

but also collapse performance, at least part of the sub-stiffening material should be 

used as pad-ups underneath stiffeners. This is in-line with generally accepted post-

buckling design principles. Several numerical (FE analysis) experiments were carried 

out, showing that significant padding is indeed effective in post-buckling, but too 

 

design variables (DV) optimum 

min. initial max. 
3 DV 

4 DV 
3 DV 

4 DV 
4 DV 

5 DV 
(tpu=tss) (tpu=tss) (tpu=tss) 

    I II III IV V VI 

tsp (mm) 0.6 1.2 2.4 0.942 0.931 --- --- 1.31 1.16 

bsp(mm) 20 40.5 60 20.0 20.0 31.8 37.8 36.0 41.0 

tpu (mm) 1.1 2.2 3.3 2.00 2.07 2.02 1.79 2.02 2.13 

bpu(mm) 20 41 50 61.5 61.5 40.4 45.5 32.1 48.9 

tss (mm) 1.1 2.2 3.3 1.996 1.86 2.02 3.29 2.02 3.30 

bss (mm) 9 18 36 38.5 38.5 36.0 18.8 36.0 9.00 

critical buckling load (kN) 63.090 63.920 61.058 62.130 61.294 65.030 

% improvement 7.7% 9.2% 4.3% 6.1% 4.7% 11.1% 
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great a change in thickness between pad-up and skin can lead to buckling of skin 

between pad-ups. A new concept was therefore devised, ―sculpted skin‖, which 

consists in gradually changing the thickness (Figure 5.10 and 5.11). 

 

Figure 5.10 Sculpted skin panels 

 

To gain insight in the design sensitivity of sculpted skins, the linear variable 

thickness FS optimisation was applied. Since no experiments had been run on this 

concept, it was decided to start by concentrating on a simply supported plate. Results 

are given in Table 5.10 and Figure 5.12. 

 

wp x tp
wm x tmti

a = 800 mm, b = 160 mm, teq = 6.8 mm

wp x tp
wm x tmti

a = 800 mm, b = 160 mm, teq = 6.8 mm  
 

Figure 5.11 Design variables of sculpted skin panels 

 

Table 5.10 The optimised critical buckling load for sculpted skin panels 

 

 initial case 1 case 2 case 3 case 4 case 5 

wp (mm) 32.5 --- --- --- --- --- 

tp (mm) 9.00 --- --- 10.5 10.4 10.4 

ti (mm) 6.25 --- 7.80 4.68 5.01 --- 

wm (mm) 33.0 53.0 --- --- 29.8 54.1 

tm (mm) 3.50 4.24 
2.00 

(limit) 
2.36 

2.00 

(limit) 
2.67 

Critical load (kN) 542.81 550.32 559.88 719.70 728.48 720.51 

% improvement  1.4% 3.1% 33% 34% 33% 

 

Results of FS optimisations of one bay of simply supported, sculpted skin. The 

buckling mode was maximised subject to the constraint of constant cross-sectional 

area. Subscripts denote: p=pad-up, i=intermediate, m=middle. Note that shell offsets 
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were not accounted for; in real-life aircraft applications, one of the sides of the plate 

would probably have to remain flush. ―----‖ = unchanged from initial value. 

 

 
initial design  

case 1 

 
case 2 

 
case 3 

 
case 4 

 
case 5 

 

Figure 5.12 Buckling modes for the sculpted skin design, from the initial design on 

top left to optimised case 5 (Table 5.10) on bottom right 
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CHAPTER 6 

 

CONCLUSION 

 

6.1 Introduction 

 

The FS method is used to obtain geometrically nonlinear analysis of plates and shells 

to get load increment curve under distributed loading and inplane loading for plates 

and biaxial load for plane stress-plane strain. For this purpose, Newton Raphson 

iteration methods are carried out for considered plate types. The results are obtained 

and detailed discussions are mentioned in Chapter 4. This chapter deals with a 

general look about results. 

 

6.2 Conclusion 

 

The geometrically nonlinear analysis of plane stress problem is successfully studied 

using the FE program. Excellent agreement has been found between the column 

results and the published literature. The Newton-Raphson technique is used for the 

nonlinear solution process and relaxation technique is employed to prevent possible 

divergence of iteration. The aim of programming is to reduce the residual force 

(unbalanced forces). For each load step residual force is decreased with iteration and 

displacements found.  

 

FS Mindlin formulation has been given for geometrically nonlinear analysis of 

prismatic plates and shells. The performance of linear, quadratic and cubic strips 

under distributed loading has been given by comparing results with analytical and 

some other plate solutions. Then, the postbuckling performance of plates with 

different boundary conditions is successfully studied. After that, postbuckling 

performance of optimized panels with sub-stiffening was investigated.  
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The panels had been optimized for minimum weight or maximum performance. The 

linear elastic eigenvalue FS code which has a built-in optimizer provided a practical 

way of doing so, at least for the initial (skin) buckling. Optimization was also used to 

obtain insight into the importance of different design variables, and derive a method 

for sizing. Linear FS analysis allowed optimization of one of the sub-stiffened 

panels, revealing a potential for further improvement of the initial buckling load. 

Non-linear FS of an application of this concept to realistic, optimized aircraft panels 

loaded in slight bi-compression confirmed initial buckling gains of up to 10%. The 

potential improvement in buckling performance over unstiffened plates of equal 

weight was as high as 500%. More relevantly, the effect of variable stiffness sub-

stiffening was estimated over two times higher than that of orthogonal sub-stiffening. 

 

A result has been presented for the geometrically nonlinear analysis of compressively 

loaded initial and optimized sub-stiffened panels. The permitted structural loading is 

uniaxial compression, or biaxial compression. Geometric shape imperfections are 

permitted, and the longitudinal ends of the structure are assumed to be simply 

supported. Structures are modeled as assemblages of flat plate strips which are 

rigidly joined along mutual longitudinal edges. The optimization has been 

implemented on a digital computer in a FORTRAN computer program. Nonlinear 

analysis result was developed by FS code close to the ANSYS results.  

 

6.3 Recommendation of future work 

 

In present study linear buckling analysis, geometric nonlinear analysis and 

optimization of plates and stiffened plates is performed.  However, structures may 

undergo nonlinear elasticity, plasticity. For this situation geometric and material 

nonlinearity can be investigated which requires more complex equations and more 

computational time. 

 

Postbuckling analysis can be applied to straight, T shaped, L shaped, U shaped tube, 

Y shaped composite stiffened plates. It is necessary to examine these types of 

stiffened plates to possess general behaviors of buckling and design structures that 

include axially compressive loaded stiffened plates.  
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Another case that causes buckling of structures is torsional effects. In present study, 

only cross section axially compressive loading was considered. In practice, structures 

may be subjected to torsional forces and the buckling case in this situation is called 

as torsional buckling. Torsional effects can be investigated according to sustained 

structural loading types. 

 

In FS method, two opposite edges are simply supported and other two sides can be 

defined in any boundary condition. Some modifications can be made to apply any 

boundary conditions. 
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APPENDIX A: Strain components, strain-displacement matrices, elemental 

volumes, membrane rigidity matrix, flexural rigidity matrix, and shear rigidity matrix 
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APPENDIX B. Geometric stiffness matrices and inplane matrices 
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