

UNIVERSITY OF GAZİANTEP

GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

NOVEL CLUSTERING METHODS FOR

NEUROFUZZY SYSTEMS DESIGN

PhD THESIS

IN

ELECTRICAL AND ELECTRONICS

ENGINEERING

BY

YUNİS TORUN

SEPTEMBER 2010

ii

Novel Clustering Methods for NeuroFuzzy

Systems Design

PhD Thesis

in

Electrical and Electronics Engineering

University of Gaziantep

Supervisor

Prof. Dr. Gülay TOHUMOĞLU

by

Yunis TORUN

September 2010

T. C.

UNIVERSITY OF GAZĠANTEP

GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

ELECTRICAL AND ELECTRONIC ENGINEERING

Name of the thesis : Novel Clustering Methods for NeuroFuzzy Systems Design

Name of the student : Yunis TORUN

Exam date : September 2010

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Ramazan KOÇ

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Doctor of Philosophy.

Prof. Dr. SavaĢ UÇKUN

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. Arif NACAROĞLU Prof. Dr. Gülay TOHUMOĞLU

 Co-Supervisor Supervisor

Examining Committee Members signature

Title and Name-surname

Prof. Dr. Cüneyt GÜZELĠġ

 Prof. Dr. Ferit Acar SAVACI

 Prof. Dr. Gülay TOHUMOĞLU

Prof. Dr. Rauf Mirza BABAYEV

Asst. Prof. Dr. Nurdal WATSUJI

i

ABSTRACT

NOVEL CLUSTERING METHODS FOR NEUROFUZZY SYSTEMS

DESIGN

TORUN Yunis

PhD in Electric Electronics Eng.

Supervisor: Prof. Dr. Gülay TOHUMĞLU

September 2010, 154 pages

In this thesis, novel clustering methods with optimized parameters in order to

have NeuroFuzzy inference systems design are developed. A modified version of

Simulated Annealing (SA) optimization and Subtractive Clustering (SC) techniques

are adapted to Fuzzy System to form a fuzzy classifier (SASCFC) in order to obtain

optimum fuzzy rule base, parameters and to find out most important inputs. Four

distinct classifiers namely SASCFC-Type1, Type2, Type3 and Type4 are derived in

order to form different optimization scenarios. Although there are some similarities

in each type of SASCFC, Type4 has best classification performance because a hybrid

feature selection algorithm is also developed in Type4. Two new NeuroFuzzy

Classifiers (NFC) are proposed as NFC1 and NFC2. Initial structures of both

classifiers are set up via Rival Penalized Competitive Learning (RPCL) based

clustering. A new RPCL type gradient descent training algorithm is also proposed for

the NFC2. Rule adaptation mechanism is embedded into training of the NFC2 that

both parameters and structural optimization performed twice which enables to

change the structure of classifiers by adding new rules and deleting unnecessary rules

in training phase dynamically. It is found that the proposed classifiers, which are

tested on some benchmarks problems, have good performance in comparing to their

counterparts in recent literature.

Key Words; Classification, NeuroFuzzy Systems, Simulated Annealing, Clustering,

Competitive Learning.

ii

ÖZET

BULANIK SİNİR AĞLARININ TASARIMINDA YENİ KÜMELEME

YÖNTEMLERİ

TORUN Yunis

Doktora Tezi, Elektrik Elektronik Müh Bölümü.

DanıĢman: Prof. Dr. Gülay TOHUMĞLU

Eylül 2010, 154 sayfa

Bu tezde, bulanık sinir ağlarının tasarımında eniyilenmiĢ parametreleri olan

yeni kümeleme yöntemleri geliĢtirildi. BenzetilmiĢ Tavlama eniyileme (BT)

yönteminin değiĢtirilmiĢ hali ile Çıkartımlı Kümeleme (ÇK) yöntemi bulanık sisteme

uyarlanarak, eniyilenmiĢ bulanık kural tabanı, eniyilenmiĢ parametreler ve en önemli

giriĢleri seçen bulanık sınıflandırıcı (BTÇKBS) türetildi. Farklı eniyileme

senaryolarını göstermek amaçlı BTÇKBS-Tip1, Tip2, Tip3 ve Tip4 olmak üzere dört

farklı sınıflandırıcı geliĢtirildi. Her bir BTÇKBS tip sınıflandırıcı bazı benzer

özellikler taĢımasına rağmen, Tip4 de melez bir özellik seçmede geliĢtirildiği için

sınıflandırıcı daha iyi bir sınıflandırma performansına sahiptir. Ġki yeni Bulanık Sinir

Ağı tabanlı Sınıflandırıcı (BSS), BSS1 ve BSS2 olarak ortaya konuldu. Her iki

sınıflandırıcının ağ mimarilerinin kurulmasında Kaybedeni Cezalandırıcı Rekabetçi

Öğrenme (KCRÖ) tabanlı kümeleme yöntemi kullanıldı. Yeni bir KCRÖ tabanlı hata

geri yayılma öğrenme algoritması BSS2‘nin parametrelerinin ayarlanması için

geliĢtirildi. Kural uyum mekanizması BSS2‘nin öğrenme sürecine dâhil edilerek hem

parametrelerin hem de sınıflandırıcı yapısının öğrenme sürecinde dinamik olarak

değiĢtirilmesi sağlandı. Bazı sınıflandırma problemlerinde test edilerek ortaya konan

sınıflandırıcıların, yakın zamandaki çalıĢmalardaki benzer diğer sınıflandırıcılarla

karĢılaĢtırıldığında daha iyi bir sınıflandırma baĢarısına sahip olduğu bulundu.

Anahtar Kelimeler; Sınıflandırma, Bulanık Sinir Ağı Sistemleri, BenzetilmiĢ

Tavlama, Kümeleme, Rekabetçi Öğrenme.

iii

CONTENT

 page

ABSTRACT .. I

ÖZET .. II

CONTENT ... III

LIST OF TABLES ... VI

LIST OF FIGURES .. VII

LIST OF SYMBOLS ... X

LIST OF ABREVIATIONS ... XII

ACKNOWLEDGEMENTS ... XIII

1. INTRODUCTION .. 1

2. LITERATURE SURVEY .. 3

2.1 Brief Survey on Fuzzy System and Neural Network. 3
2.2 Survey on NeuroFuzzy Systems ... 4
2.3 What Are the Gaps with NeuroFuzzy Systems .. 8

2.4 Main Contributions of This Thesis ... 9

3. NEUROFUZZY SYSTEMS .. 11

3.1 Fuzzy Inference System (FIS) .. 11
3.1.1 Mamdani Type Inference .. 12
3.1.2 Sugeno Type Inference ... 14

3.2 Artificial Neural Network ... 15
3.2.1 Neuron model and Single Layer Neural Network 15
3.2.2 Multilayer Neural Network .. 17

3.2.3 Radial Basis Function Neural Network (RBFNN) 19

3.3 NeuroFuzzy System .. 20
3.3.1 Why do We Need to Combine Neuro and Fuzzy Approaches? 20
3.3.2 Neural network and Fuzzy System hybridizations. 21

3.4 Learning Algorithms... 27

3.4.1 Training Methods for Parametric Identification ... 27
3.4.2 Structural Identification Methods ... 30

iv

4. CLUSTERING METHODS .. 32

4.1 K-Means Clustering .. 33
4.2 Fuzzy C-Means Clustering ... 34

4.3 Subtractive Clustering .. 35
4.4 Case Study .. 36

4.4.1 The Pap-Smear Problem ... 36
4.4.2 Clustering Results ... 37
4.4.3 Results of K-means Clustering ... 38

4.4.4 Results of FCM Clustering ... 39
4.4.5 Results of Subtractive Clustering ... 41

4.5 Summary of Results.. 42

5. NEUROFUZZY SYSTEMS FOR CERVICAL CANCER DETECTION

OR PAP SMEAR CLASSIFICATION TASK ... 43

5.1 Effects of Radii on TS-FIS ... 44
5.2 Effects of Radii on ANFIS ... 46
5.3 Effects of number of neurons on Feed Forward Neural Network 47

5.4 Effect of Spread of Neurons on Radial Basis Function Neural Network 48

5.5 Analyzing the Input Space .. 49
5.5.1 Correlation Based Feature Selection (CBFS) ... 52
5.5.2 Input Space Reduction with Feature Ranking .. 56

5.5.3 Input Space Reduction with Principle Component Analysis 58
5.6 Summary of Results and Discussion .. 60

6. SIMULATED ANNEALING OPTIMISATION FOR FUZZY

CLASSIFIER .. 63

6.1 Background of Simulated Annealing ... 64

6.2 Simulated Annealing Subtractive Clustering Based Fuzzy Classifier............ 66
6.2.1 SASCFC-Type1 .. 69

6.2.2 SASCFC-Type2 .. 70

6.2.3 SASCFC-Type3 .. 71
6.2.4 SASCFC-Type4 .. 71

6.3 Experimental Results and Discussions ... 74
6.4 Conclusions .. 83

7. COMPETITIVE LEARNING BASED NEUROFUZZY CLASSIFIER 84

7.1 Rival Penalized Competitive Learning Based Clustering 85
7.2 NeuroFuzzy Classifier1 (NFC1) ... 90
7.3 NeuroFuzzy Classifier2 (NFC2) ... 95
7.4 Case Studies .. 99

7.5 Summary of Results and Conclusion.. 106

8. CONCLUSION ... 107

8.1 Summary and Conclusions ... 107

8.1.1 Simulated Annealing Subtractive Clustering Based Fuzzy Classifier...... 108
8.1.2 Rival Penalized Competitive Learning Based NeuroFuzzy Classifier 109

8.2 Future Works and Recommendations... 109

v

9. REFERENCES ... 110

APPENDIX.. 120

A1. Programme Codes (Matlab m-file Programming)... 120

CURRICULUM VITAE .. 154

vi

LIST OF TABLES

 page

Table 5.1 Previous works on pap-smear data classification for cervical cancer

diagnosis ... 44

Table 5.2 Effects of number of neurons in first and second layer. 47

Table 5.3 The performance of TS-FIS classifier with selected feature by CBFS 55

Table 5.4 The performance of ANFIS classifier with selected feature by CBFS 55

Table 5.5 The performance of NN classifier with selected feature by CBFS 55

Table 5.6 The performance of classifiers with selected feature by feature ranking ... 57

Table 5.7 The performance of TSK FIS classifier with reduced with input space by

PCA .. 59

Table 5.8 The performance of ANFIS classifier with reduced with input space by

PCA .. 59

Table 5.9 The performance of NN classifier with reduced input space by PCA 60

Table 5.10 The best results obtained from four classifiers with three different feature

reduction techniques. .. 61

Table 6.1 Optimization space and corresponding construction steps for the proposed

classifiers .. 67

Table 6.2 Used data sets and their specifications. .. 75

Table 6.3 Parameters of SASCFC. ... 76

Table 6.4 Results for classification of pap-smear data set with the SASCFC-Type1

with optimized 9214.0ar which yields three cluster centers. 77

Table 6.5 Breast Cancer Classification with SASCFC-Type1 and SABPN [72]. 77

Table 6.6 Basic parameters of Optimized classifiers for Pap Smear data(smr). 78

Table 6.7 Basic parameters of Optimized classifiers for Sonar data(snr). 78

Table 6.8 Classification results of SASCFC-Type1, Type2, Type3 and Type4. 80

Table 6.9 Classification performance of some well known classifiers. 82

Table 7.1 Classifiers Performance for iris classification problems 100

Table 7.2 Classifiers performance for Wisconsin Breast Cancers classification 105

vii

LIST OF FIGURES

page

Figure 3.1 Block diagram of Fuzzy Inference System [10] 12

Figure 3.2 Mamdani type Fuzzy System using min and max for Fuzzy AND and OR

operator, respectively .. 13

Figure 3.3 Mamdani type Fuzzy System using product and max for Fuzzy AND and

OR operator, respectively ... 14

Figure 3.4 Sugeno type Inference System .. 15

Figure 3.5 Biological Neuron Model .. 15

Figure 3.6 Artificial Neuron model .. 16

Figure 3.7 A feed forward with one hidden layer ... 18

Figure 3.8 Radial Basis Function Neural Network... 19

Figure 3.9 Mamdani NeuroFuzzy system [90] ... 23

Figure 3.10 Takagi Sugeno NeuroFuzzy system [90] .. 24

Figure 3.11 Zero order ANFIS with two rules [11]. ... 26

Figure 3.12 First order ANFIS with two rules [11] ... 26

Figure 4.1 Some of the cells found in cervix [116, 117] .. 38

Figure 4.2 K-means Clustering result for pap-smear data with feature1 and feature2

 .. 39

Figure 4.3 Cost function versus iteration for K-means clustering of pap-smear data

 .. 39

Figure 4.4 FCM clustering result for pap-smear data with feature1 and feature2 40

Figure 4.5 Cost function versus iteration FCM clustering of pap-smear data 40

Figure 4.6 Subtractive clustering result for pap-smear data with feature1 and

feature2. .. 41

Figure 5.1 Network structure of TS-FIS and ANFIS for pap smear classification 45

Figure 5.2 Effect of radii on TS FIS classifier. .. 45

Figure 5.3 Effect of radii on ANFIS classifier. .. 46

Figure 5.4 Structure of Neural Network with two hidden layer for pap smear

classification ... 47

Figure 5.5 Effect of spread on radial basis function neural network performance

(radial basis overlapping neurons) .. 49

viii

Figure 5.6 Effect of spread on radial basis function neural network performance

(radial basis under lapping neurons) .. 49

Figure 5.7 Features of pap-smear data set .. 51

Figure 5.8 Features 18-24, 21-22 ... 51

Figure 5.9 Features 2-15, 1-6, 8-9, 17-19, 16-18 ... 52

Figure 5.10 Iterative correlation based feature selection algorithm 53

Figure 5.11 Feature selection with correlation based feature selection 54

Figure 5.12 Iterative feature ranking feature selection algorithm 56

Figure 5.13 Feature selection with ranking .. 56

Figure 5.14 Iterative PCA based feature reduction algorithm 58

Figure 5.15 The performance of the classifiers according to size of the input versus

computational time ... 62

Figure 6.1 Flow chart of SASCFC ... 68

Figure 6.2 Membership Functions generation using clusters..................................... 69

Figure 6.3 Mapping fuzzy output to the classes ... 70

Figure 6.4 Configuration space .. 71

Figure 6.5 Variances, standard deviations and linear correlation coefficients of the

sonar data set input features [134] ... 73

Figure 6.6 Counter graph representation of linear cross correlation coefficients of

inputs with each others for sonar data set [134] ... 74

Figure 6.7 Consumptions times of each types of SASCFC. 79

Figure 6.8 Classification performance of proposed classifiers. 81

Figure 6.9 Classification performances of some well known classifiers. 83

Figure 7.1 DB index for K-means clustering algorithm for some real world problems

 .. 86

Figure 7.2 CS index for K-means clustering algorithm for some real world problems

 .. 87

Figure 7.3 Cluster behaviors in training phase of RPCL for artificial data 89

Figure 7.4 Final Cluster centers by obtained RPCL for artificial data 90

Figure 7.5 Proposed NFC1 structure .. 91

Figure 7.6 Proposed NFC2 structure .. 94

Figure 7.7 Classifiers behaviors at the end of Step2 for Iris Classification tasks with

NFC2 .. 100

Figure 7.8 Classifiers behaviors at the end of Step4 for Iris Classification tasks with

NFC2 .. 101

Figure 7.9 Tuned membership functions for Iris Setosa at the end of step2 102

Figure 7.10 Tuned membership functions for Iris Setosa at the end of step4 102
Figure 7.11 Tuned membership functions for Iris Versicolour at the end of step2 103

file:///C:/Users/torun/Desktop/Phd%20Thesis/Tez_full_ref2.docx%23_Toc268844287
file:///C:/Users/torun/Desktop/Phd%20Thesis/Tez_full_ref2.docx%23_Toc268844287
file:///C:/Users/torun/Desktop/Phd%20Thesis/Tez_full_ref2.docx%23_Toc268844288
file:///C:/Users/torun/Desktop/Phd%20Thesis/Tez_full_ref2.docx%23_Toc268844288
file:///C:/Users/torun/Desktop/Phd%20Thesis/Tez_full_ref2.docx%23_Toc268844291
file:///C:/Users/torun/Desktop/Phd%20Thesis/Tez_full_ref2.docx%23_Toc268844292

ix

Figure 7.12 Tuned membership functions for Iris Versicolour at the end of step4 103

Figure 7.13 Tuned membership functions for Iris Virginica at the end of step2 104

Figure 7.14 Tuned membership functions for Iris Virginica at the end of step4 104

x

LIST OF SYMBOLS

U

: Membership matrix

J : Cost Function

uij : membership degree

ra : Neighborhood radius

Di : Density function for ith data

ci : ith cluster center

ε
up

 : Upper Limit for Density

ε
down

 : Lower Limit for Density

F(Sj)

: Cost Function for configuration Sj

F : Feature space

S*

: Optimized Configuration

th : Output Threshold Value

fi : ith feature

cwinner

: Winner cluster center

αwinner : Winner learning coefficient

crival : Rival cluster center

αrival : Rival learning rate

Rk : kth rule

xi : ith input

Akj : Membership function for kth rule jth input

Ec : Error function for class c

p : Current pattern

P : P input-output pairs

yc : Actual output for class c

 : Gradient vector for rule weight

 : Gradient vector for membership function centers

 : Gradient vector for membership function spreads

φw : Learning rate for rule weight

φc : Learning rate for membership function center

φ σ : Learning rate for membership function spread

errorc : Error function for class c

errorrival

: Error function for rival class c

 ij
winner

 : Gradient vector for membership function spreads for winner class

 cij
winner

 : Gradient vector for membership function centers for winner class

xi

 ij
rival

 : Gradient vector for membership function spreads for rival class

 cij
rival

 : Gradient vector for membership function centers for winner class

φc
winner

 : Learning rate for membership function centers for winner class

φc
rival

 : Learning rate for membership function centers for rival class

φ
winner

 : Learning rate for membership function spread for winner class

φ
rival

 : Learning rate for membership function spread for rival class

xii

LIST OF ABREVIATIONS

ANFIS : Adaptive NeuroFuzzy Inference System

ANN : Artificial Neural Networks

BP : Back Propagation

CL : Competitive Learning

FCM : Fuzzy C-means

FIS : Fuzzy Inference System

FSCL : Frequency Sensitive Competitive Learning

GA : Genetic Algorithm

GD : Gradient Descent

Ibk : Nearest Neighbor Classifier

k-NN : K Nearest Neighbor

LMS : Least Mean Square

LSE : Least Square Estimator

MF : Membership Function

MNN : Multi-Layer Neural Network

NB : Bayesian Network Classifier

NFC1 : NeuroFuzzy Classifiers Type1

NFC2 : NeuroFuzzy Classifiers Type2

NN : Neural Network

RBF : Radial Basis Function

RMSE : Root Mean Square Error

RPCL : Rival Penalized Competitive Learning

SA : Simulated Annealing

SABPN : Simulated Annealing Back Propagation Network

SAFC : Simulated Annealing Fuzzy Classifier

SASCFC : Simulated Annealing and Subtractive Clustering Fuzzy Classifier

SC : Subtractive Clustering

SVM : Support Vector Machine

TS : Takagi Sugeno Fuzzy Inference System

TSK : Takagi Sugeno Kang Fuzzy Inference System

xiii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Professor Gülay TOHUMOĞLU for her support

and guidance during the preparation of this thesis.

1

CHAPTER 1

1. INTRODUCTION

In the second half of the 20
th

 century the development of fast microprocessors

enabled the design and implementation of expert–machine interaction based

computation environments.. Soft computing is a practical framework for solving

complex problems through the use of human expertise and a prior knowledge about

the problem at hand. The main subtitles in the soft computing are artificial neural

networks and fuzzy inference systems [1].

Fuzzy Sets and Neurocomputation theories are playing important roles in the

area of information processing, especially medical decision making [2-7] , estimation

of rainfall [8] , chaotic time series predicting[9], modeling and control of nonlinear

system [10-15], fault diagnosis [16, 17] and so on. NeuroFuzzy systems are robust

solutions that search presentation of domain knowledge, reasoning on uncertainty,

automatic learning, and adaptation. However the design and the definition of

parameters effectiveness of these systems is a hard task. Construction ofNeuroFuzzy

system suffers from no systematic way to describes how many nodes or membership

function, which type inference system will be used, what is the optimal structure for

a given problem, what is the optimal learning strategy and how can be computational

time and learning stability improve.

In this thesis, it is proposed that designing optimum Fuzzy Classifiers by

cooperation of Simulated Annealing (SA) and Subtractive Clustering (SC). The word

of optimization for a fuzzy system means finding most proper membership functions

centers, obtaining exact number of membership functions, acquiring proper rule base,

searching correct level for output transformation and selecting most important inputs

in case of large input subspace or feature redundancy. For these purposes, we

developed four different models which we called as SASCFS-Type1, SASCFS-Type2,

SASCFS-Type3, SASCFS-Type4. The proposed classifiers are tested with 12

2

classification problems which is commonly used in recent literature and they are

compared with each others. According to the results, SASCFC-Type4 has the best

classification accuracy. The classifiers are also compared with recent works in the

literature and seen that classification accuracies of SAFCFC-Type1, Type2, Type3

and Type4 classifiers are higher than their counterparts.

In additional to the SASCFC, two new NeuroFuzzy Classifiers are developed

as NeuroFuzzy Classifier1 (NFC1) and NeuroFuzzy Classifier2 (NFC2). Initial

structures of both classifiers are set up via Rival Penalized Competitive Learning

(RPCL) based clustering method. Parameter tuning of the NFC1 is performed by

gradient descent based back propagation batch training algorithm. Rule adaptation

mechanism is embedded into training of the NFC2 that both parameters and

structural optimization performed twice. It enables to change the structure of

classifiers by adding new rules and deleting unnecessary rules, and improve the

classifier performance. After initial structure is obtained by RPCL type clustering

techniques, parameters of the NFC2 are tuned by incremental RPCL type back

propagation algorithm. In fine tuning phase of structure, according to error criteria

and rule firing counts criteria‘s structure of the NFC2 are re construct and final

structure is re tuned by back propagation algorithm.

This thesis is organized as follows. Chapter 2 describes some of the major

research accomplishments about Fuzzy and Neural Networks and especially

literature survey on NeuroFuzzy adaptation architectures, training methodologies

which include parametric and structural identification of NeuroFuzzy system.

Chapter 3 briefly describes the common Fuzzy Inference Systems, Neural Network,

and common hybridization architectures of NeuroFuzzy systems. Clustering

techniques and common NeuroFuzzy Classifiers for pap smear classification problem

are demonstrated in Chapter 4 and Chapter 5 respectively. The theory of the SA,

modified version of the SA and the proposed SASCFC are given in Chapter 6. The

proposed NFC‘s are given in Chapter 7. Finally Chapter 8 concludes the thesis.

3

CHAPTER 2

2. LITERATURE SURVEY

In this chapter, brief historical development of NeuroFuzzy systems and some

valuable studies which aim to design NeuroFuzzy systems more systematically are

reviewed. According to recent literature, basic gaps, unsolved problems and untried

techniques for constructing of NeuroFuzzy systems are stated at the end of current

chapter.

2.1 Brief Survey on Fuzzy System and Neural Network.

First Neural Network (NN) concept was proposed by McCulloch and Pitss in 1943.

Their networks act as a certain logic function and the network has no training ability.

Hebb described a learning algorithm which was based on the adjustment of the

synaptic weights of the neurons in 1949, his work has had a major impact on the later

works. Rosenblatt developed the concept of perceptron in the literature. Widrow and

Hoff trained the perceptron via LMS (Least Mean Square) learning rule. Werbos

developed back propagation algorithm for training the multilayer feed forward (FF)

perceptrons but despite of the power of the algorithm it didn‘t call attention the NN

researcher until 1986. Hopfield proposed the Recurrent NN architecture that network

can store information and is able to perform the function of data storage and

retrieval. Kohenen presented the self organizing feature map in 1982. Strategy is a

kind of the unsupervised learning which is based on competitive learning. Rumelhart

re described the back propagation algorithm in 1986, his work has a great impact of

later works which dealing with training the networks. Sivilotti showed the

realizability of the NN by VLSI realization of the NN in 1987. Broomhead proposed

Radial Basis NN which was a smooth passing from Neural Network to Fuzzy

Inference System in 1988. Fuzzy inference systems are one of the most famous

applications of fuzzy logic and fuzzy set theory which were developed by Zadeh in

1965 [18]. In the last few decades the development of fast microprocessors and

4

embedded processors have enabled the design and implementation of fuzzy inference

systems on real world problems such as achieving classification tasks [19, 20],

process control [10], decision support [2, 7], pattern recognition [20], robotics [21],

bioinformatics [4, 5] and so on.

2.2 Survey on NeuroFuzzy Systems

In the last decades hybridization of Fuzzy Inference System and Neural Network

take attention of researchers. Jang (1993) proposed to use the Adaptive NeuroFuzzy

Inference System architecture to improve the performance of the fuzzy system [22].

The performance of the fuzzy system relies on two important factors: knowledge

acquisition and the availability of human experts. For the first problem, Jang

proposed the ANFIS to solve the automatic elicitation of the knowledge in the form

of fuzzy if-then rules. For the second problem, that is how the fuzzy system is

constructed without using human experts; a learning method based on a special form

of gradient descent was used.

Jang and Sun [23] have shown that fuzzy systems are functionally equivalent

to a class of radial basis function (RBF) networks, based on the similarity between

the local receptive fields of the network and the membership functions of the fuzzy

system. Hayashi and Buckley [24] proved that any rule-based fuzzy system maybe

approximated by a neural network and also neural network (feedforward,

multilayered) may be approximated by a rule-based fuzzy system. Zhang and Kandel

[25] proposed a compensatory NeuroFuzzy system for optimization of the fuzzy

logic reasoning and for selecting optimal fuzzy operators. Chakraborty et al. used

integrated feature analyzing to optimize the NeuroFuzzy system in 2001 [26].

Azeem et al. proposed a generalized fuzzy model (GFM) by extension of

Jang‘s ANFIS which encompasses both Takagi-Sugeno (T-S) model and

composional rule of inference (CRI) model and they proposed a neural network

architecture to determine the parameter of the model [27-29]. Lee and Wang [30]

used mapping constrained agglomerative clustering techniques to identification of

ANFIS structure proposed Type I, II, III type Self Adapting NeuroFuzzy System

(SANFIS) in 2005. Javonovic and Relijin, in 2004 [31] proposed a modified ANFIS

structure which called as MANFIS with number of rules equals to the number of

5

input membership functions. Without a structural identification of NeuroFuzzy

network, Figueiredo et al. [32] proposed a competitive based learning algorithm with

offline and online learning phase. Treesatayapun and Uatrongit [33] proposed an

adaptive fuzzy rule emulated network with gradient descent algorithm to train the

network parameter in 2005. Ouyang et al. developed a NeuroFuzzy network

technique to extract TSK type fuzzy rules from given a input-output data set for

system modeling in 2005 [34]. They used fuzzy clusters which are generated

incrementally from dataset and similar cluster are merged dynamically together

input-similarity, output-similarity and output variance tests.

A serious problem facing fuzzy system applications is how to deal with this

rule explosion problem. One approach to deal with this difficulty is use hierarchical

fuzzy systems. Yu and Marco in 2005 [35], proposed back propagation like

algorithm for training the membership of the hierarchical fuzzy neural network

which can use less rules to model nonlinear systems with high accuracy. They

proposed time varying learning rate which is calculated from data sets and structure.

Obviously, the performance of a NeuroFuzzy system depends the network

parameters, network structure like numbers of input-output, type and numbers of

membership functions and number of training epoch. Zanchettin et al. [36] listed the

choices of basic parameters of NeuroFuzzy system and reached and compared their

influence to performance in 2005.

A fuzzy inference system can be built by using expert knowledge

heuristically. However, expert knowledge may not be adequate to construct a model.

In this situation, some systematic ways have been proposed in order to construct

fuzzy if-then rule base [37-40]. Some works have been made on how fuzzy system

could be extracted from numerical data with genetic algorithm [41, 42], tabu search

[43, 44], decision trees [45], evolutionary programming [46, 47] techniques.

Clustering methods are widely used in structure learning phase of both neural

network and fuzzy inference based systems as fuzzy c-means, k-means clustering,

mountain clustering, subtractive clustering, and agglomerative clustering. Detailed

review of clustering algorithms is addresses in [48]. One of the ways of extracting

fuzzy rules from numeric data is the use of Subtractive Clustering (SC) method

6

which was proposed by Chiu [49] as a modification of Mountain clustering method

[50]. The SC is an unsupervised clustering method because it is not necessary to

know how many clusters will be formed. According to review work of Guillaume,

there is no theoretical guidance on how optimum SC parameters should be chosen for

Fuzzy System [51]. In work of Han M. et al. [52], the input membership functions of

Fuzzy Neural Network are firstly obtained with fuzzy space partition, and then the

SC algorithm is utilized to get kernel rules and the importance of every rule. A

NeuroFuzzy model which has been identified by the SC algorithm has been

developed for autonomous parallel parking of a car-like mobile robot in [53]. After

constructing the rule base of NeuroFuzzy system by the SC, similar membership

functions are merged in order to remove the redundant rules in [54]. Zhao et al. [55],

used particle swarm optimization algorithm so as to find the optimal membership

functions (MFs), which are initially found by the SC, and consequent parameters of

the rule base. Initial membership functions are obtained by the SC method then are

tuned by the means of differential evolution in the work of Efektari et al. [56]. In an

another work of the same authors [57] , Genetic Algorithm (GA) is used to construct

compact fuzzy model by selecting more efficient inputs and to determine the

optimum number of rules by finding the optimum SC radius. Another optimization

work in which the Nelder-Mead optimization is used, aiming to tune the SC

parameters for NeuroFuzzy model, is demonstrated in [58]. The discussions on the

effects of parameters of the SC such as squash factor, cluster radius, accept ratio and

reject ratio on fuzzy model performance are given in [59]. They proposed that the

performance of the model is very sensitive to the cluster radius while the accept ratio

and the reject ratio do not have big influence on the performance of model.

Competitive learning (CL) clustering, which is a kind of adaptive version of

classical k-mean clustering method, has been developed for unsupervised learning in

artificial neural networks and provided us a promising tool for clustering, pattern

recognition and vector quantization[60]. However CL has a problem called as dead

unit problems [61]. Frequency Sensitive Competitive Learning algorithm (FSCL)

tackles dead unit problem by reducing the learning rate of the frequent winners [62].

Although FSCL solves dead unit problem there is another problem which selecting

appropriate cluster numbers still opens until the penalization strategy is adopted to

classical FSCL, namely Rival Penalized Competitive Learning Clustering (RPCL)

7

was proposed by Xu et al. in 1992[63]. Some studies on improving performance of

RPCL are found in [60, 64] and its application in construction of Radial Basis

Function network is given[65].

Simulated Annealing (SA) which is an iteratively search algorithm for solving

hard combinatory problems, was firstly introduced by Metropolis in 1953 [66]. After

the work of Kirkpatrick [67] who applied the SA to solve a combinatory optimization

problem successfully, it has been commonly used in the optimization problems. In

recent literature, the SA has been widely used in the optimization of artificial

intelligence tools [20, 68, 69]. In the work of [70], the SA is used for the optimal

tuning of the parameters of a fuzzy controller for a network-based control system.

Alizadeh & Ghazanfari [71] combine the SA with chaos concepts in order to

construct Fuzzy Cognitive Map (FCM) automatically. In the work of Mohamadi et

al. [20], the SA algorithm is used to find optimum fuzzy rule base by modificating,

deleting and creating new rules iteratively. Lee et al. [68] used the SA to achieve

global optima and improve the convergence speed of multilayer perceptron training

in which the gradient descent local optimization method is used. Lin et al. [72], used

the SA algorithm both in optimizing the parameters of a back propagation neural

network and selecting proper feature for classification task.

In addition to the optimization of classifiers‘ parameters, feature selection or

feature reduction algorithms are widely studied in recent literature [73, 74]. In the

case of large number of input space, feature selection does not only provide less

computational time but also helps to improve classification accuracy. In the presence

of many irrelevant features, modeling or clustering tasks tend to over fit training data

[75]. In general, in data mining tasks, feature selection methods can be divided into

two categories as filter types and wrapper types. The filter methods try to remove

irrelevant or noisy features before it is used by learning algorithms [76]. The wrapper

approach uses a heuristic search that evaluates the quality of the feature subset by

prediction accuracy of the induction algorithm [77]. Non deterministic methods such

as SA and GA based feature selection which search the subspace using stochastic

search algorithms, can be regarded as wrapper type algorithms. Sean & Thunsun [78]

discussed the filter types feature selection methods as Relief-F, mutual correlation

based feature selection and gene selection for three different fuzzy classifiers; TS-

8

FIS, ANFIS and Fuzzy Nearest Neighbor classifiers. Pizzi& Pedrycz [79] proposed

stochastic feature selection algorithm for feature reduction and fuzzy integral for

classification. Chiang & Ho introduced [80] rough based feature selection for the

classification task of micro array data with Radial Basis Function Neural Network

(RBFN). Fisher score (F-score) based feature selection for breast cancer

classification with Support Vector Machine (SVM) is performed in [81].

Karabatak&Ince [82] discussed the same issue by using association rules (AR) which

is used for dimensionality reduction for breast cancer classification with neural

network based classifier. A symmetric uncertainty based filter type feature selection

for intrusion detection problem with k-NN and fuzzy k-NN classifiers is proposed in

[83]. A Wrapper type feature selection algorithm is implemented to select features

for stock trend prediction by using back propagation Neural Network, SVM and k-

NN classifiers in [84].

2.3 What Are the Gaps with NeuroFuzzy Systems

Although above mentioned valuable studies have aimed to solve of finding

systematic ways for constructing Fuzzy and NeuroFuzzy systems, there are some

gaps, unreciprocated questions and unproven methodologies that;

i. There is no guidance study for which clustering algorithms were most

successful for Fuzzy and NeuroFuzzy based cervical cancer diagnosis.

ii. Comparisons of artificial intelligence tools as Fuzzy, ANFIS, NN and RBF

classifiers for cervical cancer diagnosis haven‘t been performed in literature.

iii. There is no methodology or algorithm to select SC parameters. Despite

Clustering indexing algorithm tries to find most proper cluster number, they

aren‘t successful in real world problems.

iv. In classification problem, designing classifier task concerns structural

optimization, parameter learning and feature selection. There is no such an

algorithm which is capable of constructing optimum fuzzy classifier by

dealing not only structure and parameter learning but also feature selection.

v. Wrapper and filter types feature selection algorithm have some benefit and

disadvantages. There is no successful study which combines these two

algorithms to get more robust feature selection.

9

vi. Although GD based learning algorithms are broadly used in literature; it is

possible to trap local optima by GD optimization. Metaheuristic

optimization such as the SA can solve the problem of trapping local optima.

vii. There is no satisfactory work that aims to improve the SA performance by

means of decreasing numbers of iteration while accessing global optima.

viii. In some studies RPCL clustering techniques are used structural

identification phase of Neural Network. However, they aren‘t used

structural identification phase of Fuzzy and NeuroFuzzy systems.

ix. While competitive learning is a widely used technique for parameter

learning of NeuroFuzzy system, there is no schema to adopt RPCL into the

conventional GD optimization.

2.4 Main Contributions of This Thesis

According to the gaps mentioned previous subsection, this thesis aims to contributes

to current literature with constructing Fuzzy and NeuroFuzzy systems based

classifiers as;

i. Frequently used clustering algorithms in structure identification phase of

Fuzzy and NeuroFuzzy systems are tested and compared on cervical cancer

detection problem. K-means, Fuzzy C-means, and SC give testing

classification accuracies as 82%, 58 % and 80% respectively.

ii. Fuzzy, ANFIS, NN, and RBF based classifiers are performed to detect

cervical cancer. Effects of the neighborhood radii of subtractive clustering

on initial rule structures are analyzed for Fuzzy and ANFIS based

classifiers. It is also analyzed the effects of numbers of neurons for NN and

spread of neurons for RBF based pap-smear classifier.

iii. SA optimization method is applied to find optimum radius of neighborhood

which is most significance parameter of the SC

iv. A systematic and compact algorithm which able to construct optimum fuzzy

classifier by dealing not only structure and parameter learning but also

feature selection is developed.

v. A hybrid feature selection method, which merges simple filter and wrapper

approaches, is developed.

10

vi. The SA algorithm which guarantee for finding global optima is applied into

Fuzzy system for classification tasks.

vii. A modified version of conventional SA which aims to reach global optima

with lower iteration is proposed.

viii. RPCL clustering technique is used in structural identification phase of

NeuroFuzzy based classifiers.

ix. A new GD algorithm that mimics RPCL learning strategy is developed for

NeuroFuzzy based classifier.

11

CHAPTER 3

3. NEUROFUZZY SYSTEMS

 In this chapter, background of common Fuzzy Inference System, Neural

Network, hybridization of these two tools according to recent literature and learning

strategies are briefly introduced. This brief introduction is the beginning point of our

study which aims to develop new Fuzzy and NeuroFuzzy systems.

Both Neural Network and Fuzzy Inference System are powerful soft

computing tools that there are wide applications in to real world problems. Neural

networks do not provide a strong scheme for knowledge representation, while fuzzy

logic systems not possess capabilities for automated learning. For example, fuzzy

systems are appropriate if sufficient expert knowledge about the model is available,

while neural systems are useful if sufficient process data are available or measurable.

Both approaches build nonlinear systems based on bounded continuous variables, the

difference being that neural systems are treated in a numeric quantitative manner,

whereas fuzzy systems are treated in a symbolic qualitative manner.

3.1 Fuzzy Inference System (FIS)

The Fuzzy Inference System (FIS) is a popular computing framework based on the

concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The basic

structure of a fuzzy inference system which is shown in Fig 3.1 consists of four

conceptual components: knowledge base, fuzzification interface, inference engine,

and defuzzification interface [10]. The knowledge base contains all the knowledge

and it comprises a fuzzy decision rule base and a data base. The data base is the

declarative part of the knowledge base which describes definition of objects (facts,

terms, and concepts) and definition of membership functions used in the fuzzy rules.

The fuzzy rule base is the procedural part of the knowledge base which contains

12

 information on how these objects can be used to infer new control actions. The

inference engine is a reasoning mechanism which performs inference procedure upon

the fuzzy rules and given conditions to derive reasonable control fuzzy decision. The

fuzzification interface (or fuzzifier) defines a mapping from a real-valued space to a

fuzzy space, and the defuzzification interface (or defuzzifier) defines a mapping from

a fuzzy space defined over an output universe of discourse to a real-valued space.

The fuzzifier converts a crisp value to a fuzzy number while the defuzzifier converts

the inferred fuzzy conclusion to a crisp value.

Figure 3.1 Block diagram of Fuzzy Inference System [10]

According to the literature we can classify the types of the fuzzy inference

system Mamdani type or conventional fuzzy inference system and Sugeno type fuzzy

inference system.

3.1.1 Mamdani Type Inference

These methods of conventional fuzzy system are essentially heuristic and model free.

The fuzzy ―IF-THEN‖ rules are obtained based on an expert decision making‘s

action or knowledge. Design of such systems suffers from lack of systematic and

consistent approaches. According to the given rule base in Eqn. 3.1, Fig. 3.2 and 3.3

shows how a two-rule fuzzy inference system of the Mamdani type derives which

proposed in [85] the overall output z when subject to two crisp input x and y. As

seen in the Fig. 3.3 a fuzzy min operator is used for Fuzzy AND operator and max

operator for Fuzzy OR operator. If we adopt product and max for the Fuzzy AND

13

and OR operator respectively and use max-product composition instead of the

original max- min composition then the resulting Fuzzy reasoning is shown in Fig.

3.3

R1 ; IF x is 1A AND y is 1B THEN z is 1C

R2 ; IF x is 2A AND y is 2B THEN z is 2C (3.1)

Finally, the Fuzzy output converted to the crisp value with defuzzification. The most

frequently defuzzification algorithm is the centroid of area, which is defined as;

Z

C

Z

C

COA

dzz

dzzz

z

)(

.)(

'

'

 (3.2)

where)(' zC is the aggregated output membership function.

Figure 3.2 Mamdani type Fuzzy System using min and max for Fuzzy AND and OR

operator, respectively

14

Figure 3.3 Mamdani type Fuzzy System using product and max for Fuzzy AND and

OR operator, respectively

3.1.2 Sugeno Type Inference

The Sugeno fuzzy model (also known as the Tagaki and Sugeno (TS) fuzzy model)

was proposed by Takagi, Sugeno and Kang [86, 87] in an effort to develop

systematic approach to generating fuzzy rules from a given data set. Typical fuzzy

rule in Sugeno fuzzy model has the form ;

Ri ; IF x is A AND y is B THEN z =),(yxf (3.3)

where A and B are fuzzy sets in the antecedent while z =),(yxf is a crisp

function in the consequent. When),(yxf is a first order polynomial the resulting

fuzzy model is called first-order Sugeno fuzzy model and when),(yxf is a

constant resulting fuzzy model is called zero-order Sugeno fuzzy model which is

proposed in [87]. Fig. 3.4. shows the fuzzy reasoning procedure for a first-order

Sugeno Fuzzy model. The Aggregator block and defuzzifier block are replaced by

the operation of weighting average, thus avoiding time consuming procedure of

defuzzification.

15

Figure 3.4 Sugeno type Inference System

3.2 Artificial Neural Network

3.2.1 Neuron model and Single Layer Neural Network

The human brain provides proof of the existence of massive neural networks that can

succeed at those cognitive, perceptual, and control tasks in which humans are

successful. The brain is capable of computationally demanding perceptual acts (e.g.

recognition of faces, speech) and control activities (e.g. body movements and body

functions). The advantage of the brain is its effective use of massive parallelism, the

highly parallel computing structure, and the imprecise information-processing

capability. The human brain has been estimated to contain 50–100 billion (10
11

)

neurons Each neuron is a cell (Fig. 3.5) that uses biochemical reactions to receive,

process, and transmit information [88]

Figure 3.5 Biological Neuron Model

16

Treelike networks of nerve fibers called dendrites are connected to the cell

body or soma, where the cell nucleus is located. Extending from the cell body is a

single long fiber called the axon, which eventually branches into strands and

substrands, and is connected to other neurons through synaptic terminals or synapses.

The transmission of signals from one neuron to another at synapses is a complex

chemical process in which specific transmitter substances are released from the

sending end of the junction. The effect is to raise or lower the electrical potential

inside the body of the receiving cell. If the potential reaches a threshold, a pulse is

sent down the axon and the cell is ‗fired‘.

Artificial neural networks (ANN) have been developed as generalizations of

mathematical models of biological nervous systems. A first wave of interest in neural

Networks (also known as connectionist models or parallel distributed processing)

emerged after the introduction of simplified neurons by McCulloch and Pitts (1943).

Figure 3.6 Artificial Neuron model

The basic processing elements of neural networks are called artificial

neurons, or simply neurons or nodes. In a simplified mathematical model of the

neuron, the effects of the synapses are represented by connection weights that

modulate the effect of the associated input signals, and the nonlinear characteristic

exhibited by neurons is represented by a transfer function. The neuron impulse is

then computed as the weighted sum of the input signals, transformed by the transfer

function. The learning capability of an artificial neuron is achieved by adjusting the

weights in accordance to the chosen learning algorithm.

17

According to the Fig 3.6 the neuron output signal O is given by the following

relationship:

p

j

jj xwfnetfO
1

)((3.4)

where wj is the weight vector, and the function f(net) is referred to as an activation

(transfer) function. The variable net is defined as a scalar product of the weight and

input vectors,

pp

T xwxwxwnet 11 (3.5)

where T is the transpose of at matrix, and, in the simplest case, the output value O is

computed as,

otherwise

xwif
netfO

T

0

1
 (3.6)

where θ is called the threshold level; and this type of node is called a linear threshold

unit. Since the step function is discontinuous at one point and flat et al. points, it is

not suitable for learning procedure based on gradient descent. To overcome this

difficulty sigmoid function can be used ;

xwT

e
netfO

1

1
)(for θ=0 (3.7)

which is a continuous and differentiable approximation to the step function.

3.2.2 Multilayer Neural Network

The basic architecture consists of three types of neuron layers: input, hidden, and

output layers [89]. In feed-forward networks, the signal flow is from input to output

units, strictly in a feed-forward direction. The data processing can extend over

multiple (layers of) units, but no feedback connections are present. A feed forward

multi-layer neural network (MNN) has one input layer, one output layer and a

number of hidden layers between them. For illustration purposes, consider a MNN

with one hidden layer in Fig. 3.7.

18

The input-layer neurons do not perform any computations; they merely

distribute the inputs 1x to the weights h

ijw of the hidden layer. In the neurons of the

hidden layer, first the weighted sum of the inputs is computed according to the Eqn.

3.5;

 ,xwnet
Th

jj mj ,......2,1 (3.8)

then is passed through an activation function as described in Eqn. 4.6 and 4.7. The

neurons in the output layer are linear and compute the weighted sum of their inputs;

h

j

j

o

jl netwy
1

1 (3.9)

A network with one hidden layer is sufficient for most approximation tasks.

More layers can give a better fit, but the training takes longer [11]. Choosing the

right number of neurons in the hidden layer is essential for a good result. Too few

neurons give a poor fit, while too many neurons result in over-training of the net

(poor generalization to unseen data). A compromise is usually sought by trial and

error methods [11]

Figure 3.7 A feed forward with one hidden layer

1x

2x

px

1y

ny

mnet

hw11

h

pmw

1y

ow11

o

mnw

1net

19

3.2.3 Radial Basis Function Neural Network (RBFNN)

RBFNNs are generally considered as a smooth transition between fuzzy logic and

neural networks. Jang has showed the functional equivalence between radial basis

function networks and fuzzy inference systems in 1993 [12] and according to his

work if the aggregation method, number of receptive units in the hidden layer and the

constant terms are equal to those of a Fuzzy Inference System (FIS), then there

exists a functional equivalence between RBFNN and FIS. Structurally, RBFNN is

two layer network with an architecture depicted in Fig. 3.8. Each neuron in the

hidden layer provides a degree of membership value for the input pattern with

respect to the basis vector of the receptive unit itself. The output layer is comprised

of linear combiners. Radial basis networks may require more neurons than standard

feed-forward back propagation networks, but often they can be designed with lesser

time. They perform well when many training data are available [90].

Figure 3.8 Radial Basis Function Neural Network

The output of the neuron is computed as;

 xwxfy i

m

i

i

1

 (3.10)

where m is the numbers of hidden neurons in the hidden layer and i is the basis

function and usual choice for the basis function is the Gaussian function;

2

2

2
exp

i

i

i

cx
x

 (3.11)

20

The adjustable parameters of the RBFNN are synaptic weights which are only

present in the output layer and center ic and i radii of the basis function.

3.3 NeuroFuzzy System

In most fuzzy systems, fuzzy rules were obtained from the human expert. However,

every expert does not want to share his or her knowledge especially in the medical

case and there is no standard method that exists to utilize expert knowledge. As a

result, ANNs were incorporated into fuzzy systems to be able to acquire knowledge

automatically by learning algorithms. The learning capability of the NNs was used

for automatic fuzzy if-then rules generation [91].

Both neural networks and fuzzy systems are dynamic, parallel processing

systems that estimate input–output functions. They estimate a function without any

mathematical model and learn from experience with sample data. A fuzzy system

adaptively infers and modifies its fuzzy associations from representative numerical

samples. Neural networks, on the other hand, can blindly generate and refine fuzzy

rules from training data [89]. Fuzzy sets are considered to be advantageous in the

logical field, and in handling higher order processing easily. The higher flexibility is

a characteristic feature of neural nets produced by learning and, hence, this suits

data-driven processing better [92].

3.3.1 Why do We Need to Combine Neuro and Fuzzy Approaches?

The integration of neural and fuzzy systems leads to a symbiotic relationship in

which fuzzy systems provide a powerful framework for expert knowledge

representation, while neural networks provide learning capabilities and exceptional

suitability for computationally efficient hardware implementations.

NeuroFuzzy computing is a judicious integration of the merits of neural and

fuzzy approaches, enables one to build more intelligent decision-making systems.

This incorporates the generic advantages of artificial neural networks like massive

parallelism, robustness, and learning in data-rich environments into the system. The

modeling of imprecise and qualitative knowledge as well as the transmission of

uncertainty is possible through the use of fuzzy logic. Besides these generic

21

advantages, the NeuroFuzzy approach also provides the corresponding application

specific merits.

3.3.2 Neural network and Fuzzy System hybridizations.

Buckley and Hayashi [24] have classified fuzzified neural networks as follows.

Networks can possess 1) real number inputs, fuzzy outputs, and fuzzy weights; 2)

fuzzy inputs, fuzzy outputs, and real number weights; 3) fuzzy inputs, fuzzy outputs,

and fuzzy weights. There are several works related to the integration of neural

networks and fuzzy inference system. In generally, hybridization can be formulated

into three main categories [90]; cooperative, concurrent and integrated NeuroFuzzy

models. In the simplest way, a cooperative model can be considered as a

preprocessor wherein artificial neural network (ANN) learning mechanism

determines the fuzzy inference system (FIS) membership functions or fuzzy rules

from the training data. In a concurrent model, neural network assists the fuzzy

system continuously (or vice versa). Such combinations do not optimize the fuzzy

system but only aids to improve the performance of the overall system. In an

integrated model, neural network learning algorithms are used to determine the

parameters of fuzzy inference systems. Integrated NeuroFuzzy systems share data

structures and knowledge representations. A fuzzy inference system can utilize

human expertise by storing its essential components in rule base and database, and

perform fuzzy reasoning to infer the overall output value. The derivation of if- then

rules and corresponding membership functions depends heavily on the a priori

knowledge about the system under consideration. However there is no systematic

way to transform experiences of knowledge of human experts to the knowledge base

of a fuzzy inference system. There is also a need for adaptability or some learning

algorithms to produce outputs within the required error rate. On the other hand,

neural network learning mechanism does not rely on human expertise. Due to the

homogenous structure of neural network, it is hard to extract structured knowledge

from either the weights or the configuration of the network. The weights of the

neural network represent the coefficients of the hyper-plane that partition the input

space into two regions with different output values. If we can visualize this hyper-

plane structure from the training data then the subsequent learning procedures in a

neural network can be reduced. However, in reality, the a priori knowledge is usually

22

obtained from human experts, it is most appropriate to express the knowledge as a set

of fuzzy if-then rules, and it is very difficult to encode into a neural network.

 There are several works and proposed architectures with integrated

NeuroFuzzy systems in the literature, basically depends on the type of inference

system. We can classify the integration of NeuroFuzzy systems in two subtitles with

Mamdani and Sugeno as classified for fuzzy inference system [90].

3.3.2.1 Mamdani Integrated NeuroFuzzy Systems

Mamdani NeuroFuzzy system uses architecture of Mamdani type inference system, a

supervised learning technique (back propagation learning) is applied to learn the

parameters of the membership functions. Architecture of Mamdani NeuroFuzzy

system is illustrated in Fig.3.9. The detailed function of each layer is as follows:

Layer -1(input layer): No computation is done in this layer. Each node in this layer,

which corresponds to one input variable, only transmits input values to the next layer

directly. The link weight in layer 1 is unity.

Layer-2 (fuzzification layer): Each node in this layer corresponds to one linguistic

label (excellent, good, etc.) to one of the input variables in layer 1. In other words,

the output link represents the membership value, which specifies the degree to which

an input value belongs to a fuzzy set, is calculated in layer 2. A clustering algorithm

will decide the initial number and type of membership functions to be allocated to

each of the input variable. The final shapes of the MFs will be tuned during network

learning.

Layer-3 (rule antecedent layer): A node in this layer represents the antecedent part of

a rule. Usually a T-norm operator is used in this node. The output of a layer 3 node

represents the firing strength of the corresponding fuzzy rule.

Layer-4 (rule consequent layer): This node basically has two tasks. To combine the

incoming rule antecedents and determine the degree to which they belong to the

output linguistic label (high, medium, low, etc.). The number of nodes in this layer

will be equal to the number of rules.

23

Layer-5 (combination and defuzzification layer): This node does the combination of

all the rules consequents using a T-conorm operator and finally computes the crisp

output after defuzzification.

Figure 3.9 Mamdani NeuroFuzzy system [90]

3.3.2.2 Takagi-Sugeno Integrated NeuroFuzzy system

As Sugeno type inference, the consequent part of the inference system is a

polynomial instead of a fuzzy membership function in contrast to Mamdani model.

Takagi-Sugeno NeuroFuzzy systems as shown in Fig. 3.10 uses polynomial at the

antecedent while fuzzy memberships function at the antecedent part. Learning

procedure of this type of NeuroFuzzy system combines a mixture of back

24

propagation to learn the membership functions and least mean square estimation to

determine the coefficients of the linear combinations in the rule's conclusions.

Figure 3.10 Takagi Sugeno NeuroFuzzy system [90]

As pointed out before, there are too many proposed architecture with different

name in integrated NeuroFuzzy approach in the literature. Instead of demonstration

of every architecture in here, interesting reader can refer to given reference as

following. Adaptive NeuroFuzzy inference system (ANFIS)[22], Fuzzy adaptive

learning Control (FALCON)[93], generalized approximate reasoning based

25

intelligent control (GARIC) [94], NeuroFuzzy controller (NEFCON) [95],

NeuroFuzzy classification (NEFCLASS) [96], NeuroFuzzy function approximation

(NEFPROX) [97], Fuzzy Net (FUN) [98], self constructing neural fuzzy inference

network (SONFIN) [99], fuzzy inference environment software with tuning

(FINEST) [100], evolving fuzzy neural networks (EFuNN) [101], dynamic

evolving fuzzy neural networks (dmEFuNN) [102], evolutionary and neural

learning of fuzzy Inference System (EvoNF) [103].All of the above techniques

and the other that we missed declare here, ANFIS is the most of the common

techniques in model based control, function approximation, decision making etc,

because of its simple architecture, availability in software tool as Matlab [104] .

3.3.2.3 Adaptive NeuroFuzzy Inference System (ANFIS)

ANFIS is similar with TSK type NeuroFuzzy model [22]. For simplicity, we assume

the fuzzy inference system under consideration has two inputs 1x , 2x and one

output y as depicted in Eqn. 3. 3. For first order Sugeno type output function and

with two membership functions at the antecedent part, a rule base can be drawn as;

 R1 ; IF 1x is 1A AND 2x is 1B THEN y = 1b

R2 ; IF 2x is 2A AND 2x is 2B THEN y = 2b (3.12)

Fig. 3.11 shows network representation of these two rules. The neurons on

first hidden layer perform fuzzification which computes the membership degrees of

input variables, the product node ∏ in the second layer represent the antecedent

connective of R1 and R2 in Eqn.3.12. The normalization node N and the summation

node ∑ realize the fuzzy mean operator. Typically, Gaussian function is used for

membership function of the antecedent part as similarly RBFNN with Eqn. 3. 11.

The output of the ANFIS model with conjunctive form antecedent is;

r

i

ii bxy
1

 (3.13)

where r is the total number of rules .The normalized rule firing strength for ith rule

i ,is calculated as

26

K

i

p

j ijijj

p

j ijijj

i

cx

cx

1 1

22

1

22

2/exp

2/exp

where ijc and ij are center and spread of gaussian membership function for ith rule

of jth inputs For first order ANFIS model which is shown in Fig. 3.16 Eqn. 3.14 can

be expanded as;

r

i

i

T

ii bxaxy
1

 (3.14)

Figure 3.11 Zero order ANFIS with two rules [11].

Figure 3.12 First order ANFIS with two rules [11]

27

3.4 Learning Algorithms

A neural network has to be configured such that the application of a set of inputs

produces the desired set of outputs. Various methods to set the strengths of the

connections exist. One way is to set the weights explicitly, using a priori knowledge.

Another way is to train the neural network by feeding it teaching patterns and letting

it change its weights according to some learning rule. The learning situations in

neural networks may be classified into three distinct sorts [88]. These are supervised

learning, unsupervised learning, and reinforcement learning. In supervised learning,

an input vector is presented at the inputs together with a set of desired responses, one

for each node, at the output layer. A forward pass is done, and the errors or

discrepancies between the desired and actual response for each node in the output

layer are found. These are then used to determine weight changes in the net

according to the prevailing learning rule. The term supervised originates from the

fact that the desired signals on individual output nodes are provided by an external

teacher.

In unsupervised learning (or self-organization), a (output) unit is trained to

respond to clusters of pattern within the input. In this paradigm, the system is

supposed to discover statistically salient features of the input population. Unlike the

supervised learning paradigm, there is no a priori set of categories into which the

patterns are to be classified; rather, the system must develop its own representation

of the input stimuli. Reinforcement learning is learning what to do – how to map

situations to actions – so as to maximize a numerical reward signal. The learner is

not told which actions to take, as in most forms of machine learning, but instead must

discover which actions yield the most reward by trying them. In the most interesting

and challenging cases, actions may affect not only the immediate reward, but also the

next situation and, through that, all subsequent rewards. These two characteristics,

trial-and error search and delayed reward are the two most important distinguishing

features of reinforcement learning [88].

3.4.1 Training Methods for Parametric Identification

 Training is the adaptation of weights, centers and radii of membership

functions in a NeuroFuzzy network such that the error between the desired output

28

and the network output is minimized. Two steps are distinguished in this procedure

[88]:

(1) Feedforward computation. From the network inputs xi , the outputs of the

first hidden layer are first computed. Then using these values as inputs to the second

hidden layer, the outputs of this layer are computed, etc. Finally, the output of the

network is obtained.

(2) Parameter adaptation. The output of the network is compared to the

desired output. The difference of these two values, the error, is then used to adjust

the weights, center of membership functions, radii of the membership function first

in the output layer, then in the layer before, etc., in order to decrease the error

(gradient-descent optimization). This backward computation is called error back

propagation or gradient descent method [105]

A neural network can be trained in two different modes: online and batch

modes. The online method weight updates are computed for each input data sample,

and the weights are modified after each sample. An alternative solution is to compute

the weight update for each input sample, but store these values during one pass

through the training set which is called an epoch. At the end of the epoch, all the

contributions are added, and only then the weights will be updated with the

composite value. This method adapts the weights with a cumulative weight update,

so it will follow the gradient more closely. It is called the batch-training mode [88].

Multi-layered networks are capable of performing just about any linear or

nonlinear computation, and can approximate any reasonable function arbitrarily well.

Such networks overcome the problems associated with the perceptron and linear

networks. However, while the network being trained may be theoretically capable of

performing correctly, back propagation, and its variations may not always find a

solution. Picking the learning rate for a nonlinear network is a challenge. As with

linear networks, a learning rate that is too large leads to unstable learning.

Conversely, a learning rate that is too small results in incredibly long training times.

The error surface of a nonlinear network is more complex than the error surface of a

linear network. The problem is that nonlinear transfer functions in multilayer

29

networks introduce many local minima in the error surface. As gradient descent is

performed on the error surface it is possible for the network solution to become

trapped in one of these local minima. This may happen depending on the initial

starting conditions. Settling in a local minimum may be good or bad depending on

how close the local minimum is to the global minimum and how low an error is

required. In any case, be cautioned that although a multilayer back propagation

network with enough neurons can implement just about any function, back

propagation will not always find the correct weights for the optimum solution.

Networks are also sensitive to the number of neurons in their hidden layers. Too few

neurons can lead to under fitting. Too many neurons can contribute to over fitting, in

which all training points are well fit, but the fitting curve takes wild oscillations

between these points. [89]

In practice, there are four types of optimization algorithms that are used to

optimize the parameters. The first three methods, gradient descent, conjugate

gradients, and quasi- Newton, are general optimization methods whose operation can

be understood in the context of minimization of a quadratic error function. Although

the error surface is surely not quadratic, for differentiable node functions, it will be

so in a sufficiently small neighborhood of a local minimum, and such an analysis

provides information about the behavior of the training algorithm over the span of a

few iterations and also as it approaches its goal [88].

The fourth method of Levenberg and Marquardt is specifically adapted to the

minimization of an error function that arises from a squared error criterion of the

form we are assuming. A common feature of these training algorithms is the

requirement of repeated efficient calculation of gradients. [88]. Levenberg-

Marquardt training is convenient for small and medium size networks, if there is

enough memory available [106]

For ANFIS and RBFNN training some hybrid learning method are used with

combining GD and least square estimator (LSE) to improve convergence speed. In

fact, the computational complexity of the least square LSE is usually higher than GD

methods for one-step adaptation. However, for achieving a desired performance

30

level, LSE is usually much faster. Combining LSE and GD can be done by five

different ways [23] as follows;

1-) Nonlinear parameters are fixed while linear parameters are identified by

one-time application of LSE

2-)All parameters are updated by GD iteratively

3-)LSE is employed only once at the very beginning to obtain initial values

of linear parameters and then GD takes over to update all parameters

4-)In each epoch GD used to update nonlinear parameters is followed by LSE

to identify the linear parameters.

5-)The outputs of an adaptive network are linearized with respect to the its

parameters and then the extended Kalman Filter algorithm is employed to update

parameters.

Standard LSE methods may be faced to over-parameterize problem even if

the error converge to the zero. To overcome this problem some modification on LSE

as global RLE, local LSE [11] exist in literature.

3.4.2 Structural Identification Methods

A NeuroFuzzy system should be able to learn linguistic rules and/or membership

functions, or optimize existing ones. There are three possibilities [107]: 1) the system

starts without rules, and creates new rules until the learning problem is solved.

Creation of a new rule is triggered by a training pattern which is not sufficiently

covered by the current rule base; 2) the system starts with all rules that can be created

due to the partitioning of the variables and deletes insufficient rules from the rule

base based on an evaluation of their performance; 3) the system starts with a rule

base with a fixed number of rules. During learning, rules are replaced by an

optimization process.

Taha and Ghosh [108] have considered additional issues related to rule

extraction. These include the granularity of explanation, modifiability, theory

refinement capability (to handle incompleteness, inconsistency, and/or inaccuracy of

initial domain knowledge), stability/robustness to corruption in data/knowledge, and

31

scalability for large datasets/rule bases. Unfortunately, most of the available

literature on rule generation does not provide such rigorous assessment on their pros

and cons. There is also a preponderance of specific purpose techniques that are

designed to work with a particular ANN architecture. This limits the scope of

comparing the various techniques in a single framework [109].

The number of rules and the rule structure in a NeuroFuzzy system plays an

important role both system performance and training time. With too few rules, the

network may be unable to learn the relationships amongst the data and the error will

fail to fall below an acceptable level. Thus, selection of rules is a crucial decision.

Basically for rule extraction, which is also called structure identification, there are

several methods in the literature. Some of the major of them are template based

membership function [11] which is a kind of partition methods [23], clustering

methods [28] and other methods that uses some data mining and artificial

intelligence tool as the Genetic Algorithm(GA) [43, 110, 111].

32

CHAPTER 4

4. CLUSTERING METHODS

Developing the fuzzy system in conventional approach, the membership

function and the consequent model are fixed by the designer according to the priori

information if available and system is tuned via trial and error. If the priori

information is not available but input output data set is available then, the structure of

the fuzzy system can be obtained by using a structural of identification methods

The number of rules and the rule structure in a NeuroFuzzy system plays an

important role both system performance and training time. With too few rules, the

network may be unable to learn the relationships amongst the data and the error will

fail to fall below an acceptable level. Thus, selection of rules is a crucial decision.

Basically for rule extraction, which is also called structure identification, there are

several methods in the literature. Some of the major of them are template based

membership function [11] which is a kind of partition methods [23], clustering

methods [28, 49, 112] and other methods that uses some data mining and artificial

intelligence tool as the Genetic Algorithm(GA‘s) [38, 110, 111]. Data clustering

interesting approach for finding similarities in data and putting similar data into

groups. Clustering partitions a data set into several groups such that the similarity

within a group is larger than that among groups [113].

In this chapter, three of the most common clustering techniques; K-Means,

Fuzzy C-Means and Subtractive Clustering, in structure identification of NeuroFuzzy

system are described and applied to detect cervical cancer as standalone classifiers

that it is the first work for comparison of clustering methods for cervical cancer

detection.

33

4.1 K-Means Clustering

The K-means clustering, or Hard C-means clustering [114], is an algorithm based on

of dissimilarity (or distance) measure is minimized [114]. In most cases this

dissimilarity measure is chosen as the Euclidean distance.

A set of n vectors jx , nj3,2,1 , are to be partitioned into c groups iG

ci,3,2,1 . The cost function, J, based on the Euclidean distance between a

vector kx in group j and the corresponding cluster center ic , can be defined by:

c

i Gxk ik

c

i i
ik

cxJJ
1 ,

2

1 (4.1)

nccnc

n

uu

uu

U

..

....

....

..

1

111

 (4.2)

The partitioned groups are defined by a nc binary membership matrix U in Eqn.

4.2, where the element iju is 1 if the j jth data point belongs jx to group i , and 0

otherwise. Once the cluster centers ic are fixed, the minimizing Eqn. 4.1 for iju can

be derived as follows:

otherwise

ikforcxcx
u ikij

ij

0

,1
22

 (4.3)

On the other hand, if the membership matrix is fixed, i.e. if iju is fixed, then the

optimal center ic that minimize Eqn. 4.1 is the mean of all vectors in group i :

n

j

iji uG
1

 (4.4)

ik Gxk k

i

i x
G

c
,

1
 (4.5)

34

4.2 Fuzzy C-Means Clustering

Fuzzy C-means clustering (FCM) [113], relies on the basic idea of Hard C-means

clustering (HCM) [114] , with the difference that in FCM each data point belongs to

a cluster to a degree of membership grade, while in HCM every data point either

belongs to a certain cluster or not. So FCM employs fuzzy partitioning such that a

given data point can belong to several groups with the degree of belongingness

specified by membership grades between 0 and 1. However, FCM still uses a cost

function that is to be minimized while trying to partition the data set. The

membership matrix U is allowed to have elements with values between 0 and 1.

However, the summation of degrees of belongingness of a data point to all clusters is

always equal to unity:

nc
cnc

n

uu

uu

U

..

..

..

..

1

111

 (4.6)

nju
c

i

ij3,2,11
1

 (4.7)

where iju is between 0 and1.

The cost function for FCM is a generalization of Eqn. 4. 1;

c

i

n

j

ij

m

ijc cxuccccUJ
1 1

2

321,,,, (4.8)

where; jx is jth data vector, ic is ith cluster center and m is weighting exponent in

 ,1

The condition for cost function to reach its minimum is;

n

j

m

ij

n

j

j

m

ij

i

u

xu

c

1

1
 (4.9)

35

c

k

m

jk

ji

ij

xc

xc

u

1

1

2

2

2

1
 (4.10)

The algorithm works iteratively through the preceding two conditions until

the no more improvement is noticed.

4.3 Subtractive Clustering

The subtractive clustering method assumes each data point is a potential cluster

center and calculates a measure of the likelihood that each data point would define

the cluster center, based on the density of surrounding data points [49,114]. The

density measurement at a data point ix is defined as;

n

j a

ji

i

r

xx
D

1
2

2

2

exp (4.11)

where ,0ar is neighboring radius. The density value of i th data point will be

larger one if it has many neighboring data points and the distance between the data

points and its location is small. The first cluster center is chosen as 1cx which has

largest density value, 1cD . For second cluster center, the effect of the first cluster

center is subtracted in determination of the new density values, which follows:

2

2

1

1

2

exp*

b

ci

cii

r

xx
DDD (4.12)

where ,0br is neighborhood that has measurable reduction in density

measurement. According to Eqn.4.12, the data points which are near the first cluster

center 1cx will reduce the measured density significantly. The data point 2cx which

36

corresponding to the larger density value according to the Eqn. 12 is chosen is

selected for second cluster center. The selection of next cluster centers process is

carried out iteratively, until the stopping criteria achieved. For the next cluster

centers, if the measured density function is greater than a certain threshold as given

Eqn13, then the i th data point is selected as kc cluster and algorithm try to find the

other cluster centers. If Eqn.13 is not provided and if the measured density is less

than a lower threshold as described in Eqn. 14, then the algorithm stops.

1*DD up

k (4.13)

1*DD down

k

(4.14)

4.4 Case Study

Cervical cancer is the second most common cancer type in women, with 500,000

new cases reported each year and 250,000 deaths worldwide. Eighty percent of the

deaths occur in developing countries due to the lack of widespread screening

programs [115]. Although soft computing and artificial intelligent tools are found in

a lot of real world problems, there aren‘t adequate applications for cervical cancer

detection.

4.4.1 The Pap-Smear Problem

Using a small brush, a cotton stick or wooden stick, a specimen is taken from the

uterine cervix and transferred onto a thin, rectangular glass plate (slide). The

specimen (smear) is stained using the Papanikolaou method [116, 117]. This makes it

possible to see characteristics of cells more clearly in a microscope. The purpose of

the smear screening is to diagnose pre-malignant cell changes before they progress to

cancer. Smears contain mainly two types of cells: squamous epithelial cells and

columnar epithelial cells in Figure 4.1.

Dysplastic cells are cells that have undergone pre-cancerous changes. They

generally have larger and darker nuclei and have a tendency to cling together in large

clusters. Squamous dysplasia is divided into three classes: mild, moderate and severe

as shown in Fig. 4. 1. E-G. Mild dysplastic cells have enlarged and light nuclei. For

37

moderate dysplastic cells, the nuclei are larger and darker [118, 119]. We used the

data which was collected in [116, 117] and it contains 500 cells with the following

distribution:

Normal - Columnar epithelial, 50 cells.

Normal - Parabasal squamous epithelial, 50 cells.

Normal - Intermediate squamous epithelial, 50 cells.

Normal - Superficial squamous epithelial, 50 cells.

Abnormal - Mild squamous non-keratinizing dysplasia, 100 cells.

Abnormal - Moderate squamous non-keratinizing dysplasia, 100 cells.

Abnormal - Severe squamous non-keratinizing dysplasia, 100 cells.

4.4.2 Clustering Results

We use the K-means, FCM and Subtractive clustering methods in order to classify

the pap-smear data. The data has consist of 500 cells with 24 features which means

all cell contains 24 dimension that it is impossible to show clustered data and clusters

centers. The Matlab codes are written for each clustering methods. In order to

measure the clustering accuracy results, we computed the RMSE and True

Classification ratio.

We used the 80 % of data for training our classification methods which are

based on K-means, FCM and Subtractive Clustering methods. After finding the

cluster centers, we used 20 % of data for testing and computing the classification

accuracy. The number of clusters into which data set is to be portioned is two; the

cell which is classified as normal and the cell which is classified as abnormal. Each

clustering algorithm is presented with the training data set, and as a result of two

cluster centers are produced. The data in the testing set is then tested against the

found cluster centers and analysis of the result is conducted for pap-smear

classification task.

38

Figure 4.1 Some of the cells found in cervix: (A) parabasal, (B) intermediate, (C)

superficial squamous epithelia, (D) columnar epithelium, (E-F) mild, moderate, and

severe non keratinizing dysplasia [116, 117]

4.4.3 Results of K-means Clustering

For pap-smear clustering and classification with K-means, after calculation of the

clustering centers, the testing vectors are assigned to their respective clusters

according to the distance between each vector and each cluster centers. Error

measurement is realized by RMSE and accuracy is measured as the percentage of

correctly classified cells. The RMSE value is calculated as 0.424 and testing

accuracy is calculated as % 82 which means 82 cells are truly classified. Number of

iterations is 8 for but it depends on the initial clustering centers, for testing the

second and third times we found same RMSE and accuracy value but iteration counts

varied between 6 and 13. Visual result of clustering of pap-smear nucleus versus

cytoplasm is plotted in Fig. 4. 2., and cost function versus iteration number in Fig.

4.3.

39

Figure 4.2 K-means Clustering result for pap-smear data with feature1 and feature2

Figure 4.3 Cost function versus iteration for K-means clustering of pap-smear data

4.4.4 Results of FCM Clustering

Basic difference between FCM and K-means is membership matrix. In FCM, the

membership matrix contains the membership degrees of data points to against cluster

center instead of 1 or 0 as K-means. FCM algorithm firstly initializes the

membership matrix then computes the clustering centers. The initial membership

matrix effects the system performance with only the total iteration number, it doesn‘t

effect on the RMSE and classification accuracy. For assigning the each data to

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nucleus Area

C
y
to

p
la

s
m

 A
re

a

data

Cluster Centers

Initial Cluster Centers

1 2 3 4 5 6 7 8 9
230

240

250

260

270

280

290

300

310

320

330

Number of iteration

C
o
s
t
fu

n
c
ti
o
n

40

against cluster center, a defuzzification procedure is applied because the membership

degrees of the membership matrix are fuzzy values and must be mapped to the crisp

values as 0 and 1. Clustering and classification of pap-smear with FCM clustering

technique are shown in Fig.4.10 are assigned to their respective clusters according to

distance between each vectors and each cluster centers. The RMSE value is

calculated as 0.648074 and testing accuracy is calculated as % 58 which means 58

cells are truly classified for FCM clustering. Number of iteration is 30 for current test

but it varied between the value 24 and 32, based on the initial membership matrix,

for testing the second and third times we found same RMSE and accuracy value.

Visual result of clustering of pap-smear nucleus versus cytoplasm is plotted in Fig. 4.

4, and cost function versus iteration number in Fig. 4. 5.

.

Figure 4.4 FCM clustering result for pap-smear data with feature1 and feature2

Figure 4.5 Cost function versus iteration FCM clustering of pap-smear data

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nucleus Area

C
yt

o
p

la
sm

 A
re

a

data1

Fuzzy Cluster Center

5 10 15 20 25
110

115

120

125

130

135

140

145

150

155

Number of iteration

C
os

t f
un

ct
io

n

41

According to the found results, RMSE and classification accuracy, the FCM

algorithm is not success as K-means. The total computational time also bigger for

FCM clustering than the K-means because of Fuzzy calculations take more time than

crisp calculation, and total iteration number also bigger than the K-means‘s iteration

number.

4.4.5 Results of Subtractive Clustering

Subtractive clustering method tries to compute the density values of each vectors and

select the cluster center against the highest density value instead of do trying to

minimize a cost function. In fact basic difference of this methods from previous

methods is that subtractive is an unsupervised method in which that the numbers of

clusters are not necessarily given, because the algorithm tries to find cluster centers

and also numbers of clusters. For given problem, that the numbers of clusters are

known, as two cluster, one of them represents normal cells the other represent

abnormal cell, we used algorithm as supervised algorithm that number of cluster is

two.

Figure 4.6 Subtractive clustering result for pap-smear data with feature1 and

feature2.

Clustering and classification of pap-smear with Subtractive clustering method are

shown in Fig. 4.6. The RMSE value is calculated as 0.447214 and testing accuracy is

calculated as % 80 which means 80 cells are correctly classified. Compared to K-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nucleus Area

C
y
to

p
la

s
m

 A
re

a

Data

Cluster Centers

42

means and FCM, this result is a little behind the accuracy achieved in K-means

techniques

4.5 Summary of Results

According to results for pap smear classification, best performance is achieved by K-

means clustering algorithm. However FCM clustering can‘t give good classification

accuracy. Performance of Subtractive Clustering is almost same with K-means.

Because of K-means and FCM are supervised clustering algorithms that it is needed

to know how many clusters would be formed, Subtractive Clustering method which

doesn‘t need to know how many clusters would be formed is chosen for initial

structure construction for Fuzzy and NeuroFuzzy Systems in next chapter of this

thesis.

43

CHAPTER 5

5. NEUROFUZZY SYSTEMS FOR CERVICAL CANCER

DETECTION OR PAP SMEAR CLASSIFICATION TASK

In this chapter, the subtractive clustering method which is explained in

previous Chapter, is used to in order to obtain initial structure of TS-FIS and ANFIS.

Effects of the neighborhood radii of subtractive clustering on initial rule structures

are analyzed with classification accuracy measurement. On the other hand, the

number of neurons and numbers of layers play important role in NN for acquiring

satisfactory classification results and acceptable consumption time. In fact for

realization such a classifier with hardware needs minimum numbers of elements,

minimum computational time, and maximum true classification. We analyzed the

effects of numbers of neurons for NN and spread of neurons for RBF based pap-

smear [117] classifier.

As a major human health concern, cancer has become a focus for worldwide

research. The provision of more accurate diagnostic techniques might allow various

cancers to be identified at an earlier stage and, hence, allow for earlier application of

treatment [120]. Cervical cancer is the second most common cancer in women, with

500,000 new cases reported each year and 250,000 deaths worldwide [115].

According to the work of Ling, et al., in 2008, the death rate from cervical cancer has

been reduced significantly through the adoption of population-wide screening

programs in developed countries [115]. Lots of generally, Table5.1 summarizes the

basic valuable research on pap-smear test. It can be generalized that Neural Networks

(NN) are commonly used in past decade and new research are done in current years

with cooperation of other artificial tools to optimize the network for more accurate

classification ratio, decreasing the computational time.

44

 According to recent literature on bioscience as biomedical decision making,

importance of feature detection has a big influence on modeling performance. For

feature selection we used three algorithms. First one that we proposed a simple

integrated feature selection to TS, ANFIS, NN and RBF classifier. Second that we

used ranking of feature based on seperability criteria and thirdly we used principle

component analyze (PCA) for reduction of feature space. The performance of

classifiers and computational times are demonstrated.

Table 5.1 Previous works on pap-smear data classification for cervical cancer

diagnosis

Works Used Classifer Specifications Accuraccy

Rickets[121]1992 Neural Network 80 inputs, 4 hidden layer 96%

Palcic[122]1992 Neural Network 57 inputs, 1 hidden layer with 40

nodes

78%

Mango[123] 1994 Neural Network Papnet 80%-98%

Zhong [124] 2001 Neural Network 10 input,1 hidden layer 99%

Ampazis[125]2004 Neural Network 20input,10 hidden layer 99%

Dounias [126] 2006 Neural Network varies 94%-96%

Marinakis [127] 2007 Knn Classifier with bootstrapping feature selection 97.2%

Torun[128] 2008 Clustering Fuzzy C,K Means, Subtractive 58-80-82%

 The data consists of 500 cells with 24 features which mean all cell contains

24 dimensions. In order to measure the clustering accuracy results, we computed the

RMSE and True Classification ratio. We used the 80 % of data for training the

classification methods which are based on TS FIS, ANFIS, NN and RBF NN. After

finding the cluster centers, we used 20 % of data for testing and computing the

classification accuracy.

5.1 Effects of Radii on TS-FIS

 As described in Chapter4, the radii of neighborhoods of density function determines

the number of clusters which is used for setup structure of TS-FIS [49]. The numbers

are rules are directly relevant with the number of clusters which found from

subtractive clustering. The obtained inference system is shown in Fig. 5.1. We seek

the optimum value of radii for current classification task. As shown in Fig. 5.2, small

radii causes in big size of rule base while acquiring almost 90% true classification

45

accuracy. The optimum radii value is 0.75 which causes 7 rules with %95 true

classification ratio.

Figure 5.1 Network structure of TS-FIS and ANFIS for pap smear classification

Figure 5.2 Effect of radii on TS FIS classifier.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
60

70

80

90

100

RADII

P
E

R
F

O
R

M
A

N
C

E
 R

A
T

IO
 (

%
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

RADII

R
M

S
E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

RADII

N
U

M
B

E
R

S
 O

F
 R

U
L
E

S

46

5.2 Effects of Radii on ANFIS

ANFIS uses TS type inference system in its kernel while uses back propagation and

least square estimator to calculate optimum membership function parameters [22]. So

basic power of ANFIS is collection of power of fuzzy inference system with training

capability of NN. According to subtractive clustering method for obtaining initial

structures of ANFIS is shown in Fig. 5.1. The learning task is performed to

minimization of a cost function of membership functions and output error. Output

error is propagated back to tune the parameters of the membership functions via

using a gradient descent method. In fact the output layer of ANFIS is linear and the

linear coefficients can be optimized more rapidly by using LSE instead of back

propagations methods [22]. The effects of radii on true classification ratio, RMSE

and numbers of rules are shown in Fig. 5.3. The maximum classification accuracy is

achieved with the radii at 0.785. The number of rules is 5 while achieving a 98 %

true classification. The training is followed up after obtaining initial structure to a

desired epoch number with a value 50.

Figure 5.3 Effect of radii on ANFIS classifier.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
80

85

90

95

100

RADII

P
E

R
F

O
R

M
A

N
C

E
 R

A
T

IO
 (

%
)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.1

0.2

0.3

0.4

0.5

RADII

R
M

S
E

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

RADII

N
U

M
B

E
R

S
 O

F
 R

U
L
E

S

47

5.3 Effects of number of neurons on Feed Forward Neural Network

We setup a network with structure with 24 input neurons, two hidden layer with 10

neurons in each and an output neuron at output layers as shown in Fig. 5.4. The

learning task of NN is a nonlinear optimization problem that optimizes the weights

between neurons and biases values of each neuron [89]. The learning algorithm is

chosen as Levenberg-Marquardt which is a second order gradient descent based

method for optimization problem. The hidden neurons are hyperbolic tangent

sigmoid transfer function which can be differentiable so it is convenient for back

propagation algorithms. The initial parameters are used as random values between 0

and 1 for weights and biases.

Figure 5.4 Structure of Neural Network with two hidden layer for pap smear

classification

Table 5.2 Effects of number of neurons in first and second layer

Second Layer

F
ir

s
t

L
a
y

e
r

Neurons

1 2 3 4 5 6 7 8 9 10

1 67 86 86 84 86 86 86 86 85 89

2 92 70 80 91 90 91 93 89 91 82

3 64 87 87 86 90 92 92 92 91 91

4 92 90 94 94 93 95 92 93 96 84

5 91 79 93 94 95 92 91 93 93 93

6 77 67 69 91 93 96 93 94 92 91

7 92 88 91 75 90 93 95 92 92 89

8 90 90 85 92 92 92 86 92 82 94

9 85 93 77 93 88 93 92 95 88 94

10 67 72 94 90 93 91 92 92 69 93

48

The performance of the classifier based on NN is evaluated according to the

numbers of neurons. Neuron size plays important role in classification and modeling

task. If the number of neurons is not adequate, then the network can‘t represent the

model. Otherwise if the number of neurons is too many that cause increasing the

computational time and error because of gradient descent may fall in any local

minima point. The performance of network is shown in Table 5.2. As shown in the

table, the maximum accuracy is acquired with 6x6 and 4x9 neurons.

5.4 Effect of Spread of Neurons on Radial Basis Function Neural Network

RBF NN uses radial basis transfer function in its hidden layer. The basic difference

of sigmoid transfer function which is commonly used in FNN design with radial

basis function is sigmoid neurons can have outputs over a large region of the input

space, while radial basis function neurons only respond to relatively small regions of

the input space [88,106].

The result is that the larger the input space (in terms of number of inputs, and

the ranges those inputs vary over) the more radial basis function neurons required.

The spread parameter which allows the sensitivity of radial basis function neuron

must be large enough that the neurons respond to overlapping regions of the input

space. But too large spread cause a network whose performance isn‘t good due to

the large overlap of the input regions of the radial basis neurons that cause all the

neurons produce an output which is close to 1, and so cannot be used to generate

different responses.

The accuracy of classification oscillates while increasing the spread can be

shown in Fig. 5.5. Small spread cause the underlapping of input regions of radial

basis function neurons produce an output which is close to 0. That causes more

neurons are needed to overlap the input regions. Although the total number of radial

basis function of neurons is 350, due to the small spread value as 0.1 which is shown

in Fig. 5.6, the classifier true classification ratio is almost 30% that can‘t be

reasonable. The maximum accuracy is acquired while spread is 0.45 as % 94 true

classification ratio.

49

Figure 5.5 Effect of spread on radial basis function neural network performance

(radial basis overlapping neurons)

Figure 5.6 Effect of spread on radial basis function neural network performance

(radial basis under lapping neurons)

5.5 Analyzing the Input Space

 It is important to know the effect of each input to the output. Modeling task deals

with ruling relations between inputs and outputs. But in many cases, the input

dimensions that describe the object which will be modeled may be very large and

include irrelevant, redundant, and noisy information. In these cases, the classifier

performance gets worst while computational time increasing. Feature selection or

feature reduction is a technique of selecting a subset of relevant features for building

1 2 3 4 5 6 7 8 9 10
75

80

85

90

SPREAD

P
E

R
F

O
R

M
A

N
C

E
 R

A
T

IO
 (

%
)

1 2 3 4 5 6 7 8 9 10

0.35

0.4

0.45

0.5

SPREAD

R
M

S
E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

40

60

80

100

SPREAD

P
E

R
F

O
R

M
A

N
C

E
 R

A
T

IO
 (

%
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

SPREAD

R
M

S
E

50

robust learning models. According to work of Abe and Kudo in 2006 [73], the main

benefits of feature selection are as follows;

 Reducing computational cost and storage requirements

 Dealing with the degradation of classification efficiency due to the

finiteness of training sample sets

 Reducing training and prediction time

 Facilitating data understanding and visualization

The performance of the classifier is the classification error or true

classification value. Up to this section, we divide the data into two categories, first

one is training data which covers the 80% of all data set and second one is test data

which covers the 20% of all data. The division was performed without any criteria.

Depending upon need, the classifier could over fit the training data with a strategy.

Therefore, we need to access its error rate on an independent data set not used for

training process to predict the performance of a classifier.

The k-fold cross validation relies on a random portioning of the data set into k

parts. Then, one part is used for testing while remainder is used for training. This

procedure is repeated k-1 times in order to use every part once for testing. Finally k

classification estimates are averaged to yield a robust overall classification value.

 The inputs features of pap-smear data set are shown in Fig. 5.7. It can be

seen that some features are very similar to each other while some of them are

irrelevant to outputs. Redundancy can be seen by plotting a feature to another

feature. In fact for high redundancy, for sample values of two features are close the

each other that means distance between samples are too small in comparing to the

other features. It can be seen in Fig. 5.7 that, features,1-6, 8-9, 17-19, 16-18, 2-10,

23-24, 2-24, 18-24 and 21-22 have high redundancy as shown in Fig. 5.8.and 5.9.

51

Figure 5.7 Features of pap-smear data set

Figure 5.8 Features 2-24, 21-22

0 500
0

0.5

1

Kerne
A

#
 F

e
a
tu

re
;1

0 500
0

0.5

1

Cyto
A

#
 F

e
a
tu

re
;2

0 500
0

0.5

1
K/C

#
 F

e
a
tu

re
;3

0 500
0

0.5

1

Kerne
Y

col

#
 F

e
a
tu

re
;4

0 500
0

0.5

1

Cyto
Y

col

#
 F

e
a
tu

re
;5

0 500
0

0.5

1
KerneShort

#
 F

e
a
tu

re
;6

0 500
0

0.5

1
KerneLong

#
 F

e
a
tu

re
;7

0 500
0

0.5

1
KerneElong

#
 F

e
a
tu

re
;8

0 500
0

0.5

1
KerneRund

#
 F

e
a
tu

re
;9

0 500
0

0.5

1
CytoShort

#
 F

e
a
tu

re
;1

0

0 500
0

0.5

1
CytoLong

#
 F

e
a
tu

re
;1

1

0 500
0

0.5

1
CytoElong

#
 F

e
a
tu

re
;1

2

0 500
0

0.5

1
CytoRund

#
 F

e
a
tu

re
;1

3

0 500
0

0.5

1
KernePeri

#
 F

e
a
tu

re
;1

4

0 500
0

0.5

1
CytoPeri

#
 F

e
a
tu

re
;1

5

0 500
0

0.5

1
KerneX

#
 F

e
a
tu

re
;1

6
0 500

0

0.5

1
KerneY

#
 F

e
a
tu

re
;1

7

0 500
0

0.5

1
CytoX

#
 F

e
a
tu

re
;1

8

0 500
0

0.5

1
CytoY

#
 F

e
a
tu

re
;1

9

0 500
0

0.5

1
KernePos

#
 F

e
a
tu

re
;2

0

0 500
0

0.5

1
KerneMax

#
 F

e
a
tu

re
;2

1

0 500
0

0.5

1
KerneMin

#
 F

e
a
tu

re
;2

2

0 500
0

0.5

1
CytoMax

#
 F

e
a
tu

re
;2

3

0 500
0

0.5

1
CytoMin

#
 F

e
a
tu

re
;2

4

52

Figure 5.9 Features 2-15, 1-6, 8-9, 17-19, 16-18

5.5.1 Correlation Based Feature Selection (CBFS)

Correlation is a method for establishing the degree of probability that a linear

relationship exists between two measured quantities. When there is no correlation

between the two quantities, then there is no tendency for the values of one quantity to

increase or decrease with the values of the second quantity. Selecting features that

correlate strongest to the classification variable is known as maximum relevance

selection [129]. In simplicity, if a feature has a big influence on the output, then the

correlation of both will result a value close to the 1.

53

 The above proposed algorithm in Fig. 5.10, aims to select the most powerful

features in classification tasks, iteratively selects the features and in each iteration a

performance criteria is compared. If the desired accuracy value is achieved then

algorithm stop and optimum feature subset is selected. According to result of the

algorithm the selecting features versus iteration counts are shown in Fig. 5.11.

According to algorithm the initial feature space is reduced to 12 inputs instead of 24

inputs. Finally at the end of iteration only 1 feature (Feature 6) is selected for input of

classifier.

After evaluating the corresponding m file for TS-FIS, ANFIS, FF NN based

classifiers, the results of classification values are observed in Table5.3, Table5.4,

Table5.5, respectively.

1
st
 step: set a threshold value for acceptances of feature

↓↓

2
nd

 step : calculate the correlation of Feature ―i‖ to the output

↓

3
rd

 step: accept the features whose correlation coefficients greater than

the threshold
↓

4
th

 step: compose new input space with selected features

↓

5
th

 step: evaluate the classifier(TS-FIS,ANFIS,NN,RBF)

↓

6
th

 step: is performance is OK ?

 No; turn the line 1
st
 step and decrease the threshold value

 Yes; Accept the feature subset for classification task

Figure 5.10 Iterative correlation based feature selection algorithm

54

Figure 5.11 Feature selection with correlation based feature selection

In TS based classifier whose results are shown in Table5.3, the maximum

accuracy value is achieved with subset 2 which contains 11 features. It can be seen

that the performance of the classifier get worst while decreasing numbers of feature.

But there is an improvement on the classification between subset one

(F:1,3,4,5,6,7,8,9,11,14,21,22) and subset two(F:1,3,4,5,6,7,9,11,14,21,22). ANFIS

based classification achieved its best performance while input space was subset1 as

shown in Table 5.4. This accuracy is equal to the previous best accuracy of TS with

one input more. At the end of table that, classifier is performed only one input (with

feature1) and achieved as a 81% true classification ratio. While it is expected that

ANFIS has a better performance, it is found that not better than TS. Another

advantage of TS is computational time because there is no training phase while setup

TS type FIS.

In NN based classifier whose results are shown in Table5.5, the maximum

accuracy value is achieved with subset 1 which contains 12 features as like in ANFIS

classifier. It can be seen that the performance of the classifier get worst while

decreasing numbers of feature. It can be seen that every classifier has some 100%

classification ratios for some subset. We can conclude that TS type FIS and ANFIS

has better performance than NN with a difference with 0.8 % which correspond one

sample is classified wrongly.

55

Table 5.3 The performance of TS-FIS classifier with selected feature by CBFS

Subset Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Means

1 98 96 90 100 94 94 92 98 94 94 95
2 100 92 98 98 96 100 92 94 88 100 95.8
3 92 98 92 96 96 100 88 96 94 92 94.4
4 96 96 94 92 96 92 92 96 92 88 93.4
5 80 86 88 80 84 94 84 98 84 96 87.4
6 82 86 94 88 76 86 88 84 96 88 86.8
7 82 78 82 84 84 84 88 84 86 88 84
8 88 88 86 90 82 76 80 82 78 88 83.8
9 88 94 74 76 80 86 88 76 80 80 82.2
10 82 84 74 76 82 84 80 76 86 80 80.4
11 90 80 84 84 72 82 72 74 66 72 77.6
12 86 68 74 74 86 78 72 74 76 78 76.6

Table 5.4 The performance of ANFIS classifier with selected feature by CBFS

Subset Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Means

1 96 94 98 90 96 98 96 96 96 98 95.8
2 96 92 98 98 92 94 98 92 94 92 94.6
3 96 92 98 98 96 94 98 94 92 96 95.4
4 94 92 96 94 96 92 96 94 86 100 94
5 92 94 92 94 90 96 94 96 96 96 94
6 96 98 88 90 88 90 96 90 92 96 92.4
7 90 86 90 88 90 82 84 92 94 88 88.4
8 80 94 86 90 84 88 88 92 94 92 88.8
9 88 92 88 92 94 90 88 88 88 84 89.2
10 94 86 88 88 90 98 84 82 84 92 88.6
11 94 80 76 90 88 90 84 88 90 84 86.4
12 84 78 80 76 78 90 82 80 82 86 81.6

Table 5.5 The performance of NN classifier with selected feature by CBFS

Subset Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Means

1 94 96 94 92 94 98 96 90 94 98 94,6

2 92 94 92 90 90 94 96 94 94 92 92,8

3 96 90 92 80 94 98 92 96 88 92 91,8

4 96 88 90 92 90 88 96 92 98 82 91,2

5 90 92 92 100 92 90 90 92 86 94 91,8

6 92 92 94 96 92 96 86 94 92 92 92,6

7 84 94 82 86 82 88 90 84 82 94 86,6

8 84 82 82 86 84 86 90 88 90 84 85,6

9 84 86 82 82 88 88 86 84 86 88 85,4

10 90 94 86 86 90 86 88 92 94 72 87,8

11
88 82 86 74 82 78 88 84 82 90 83,4

12 82 72 88 74 84 84 72 84 88 78 80,6

56

5.5.2 Input Space Reduction with Feature Ranking

Feature ranking is a function of bioinformatics tool box function of Matlab [130].

The algorithm ranks the each future using an independent evaluation criterion for

binary classification [130, 131]. The rankfeature function handles both CCweighting

and Nweighting. CCweighting uses correlation information to outweigh an output of

potential features, according to the average of the absolute values of the cross-

correlation coefficient between the candidate feature and all previously selected

features [130]. Nweighting uses regional information to outweigh the output of the

algorithm of potential features the distance between the candidate feature and

previously selected features. The algorithm shown in Fig5.12 is used the select most

significant features for classification task. Initially, algorithm select most significant

feature and perform classification. As shown in Fig. 5.13, the classification task start

with only feature 19 whose correlation and regional values is the highest. Totally 24

subset is produced by 24 iteration.

Figure 5.12 Iterative feature ranking feature selection algorithm

Figure 5.13 Feature selection with ranking

Table 5.6 shows the results of true classifications ratio means for 10-fold cross

validation using TSFIS, ANFIS, FF NN and RBF NN classifier. According to the

result for subset 1, the results are worst than the results of section 3.3.1 for one input

57

one output classifier for all four classifier. According to results, the best accuracy

achieved with 14 features with TS FIS classifier whose performance is a bit lower

than in section 5.5.1. The used feature number is 14 while the maximum accuracy

achieved with 11 features in counterpart in section 5.5.1. The best accurate result is

96% for ANFIS with feature ranking algorithm with 18 features while it was 95.8%

with correlation based feature selection with 12 features. The performance of NN is a

little worst with ranking feature than according to feature selection with correlation

based. RBF NN with 9 features and more features has a better performance than NN

with all combinations of subset.

Table 5.6 The performance of classifiers with selected feature by feature ranking

Subset TS FIS ANFIS FFNN RBFNN Used Feature

1 69.6 69.6 68 68.8 [19]

2 69.8 68.8 75.6 74.6 [19;3]

3 78.2 78 82 79.8 [19;3;11]

4 81.6 80.8 84 80.6 [19;3;11;24]

5 85 86 87 85.4 [19;3;11;24;4]

6 86 86 90.4 91.2 [19;3;11;24;4;1]

7 87.4 86.8 85.6 91 [19;3;11;24;4;1;2]

8 87.6 87.2 88.8 90.8 [19;3;11;24;4;1;2;8]

9 91.8 89.8 89.4 91.8 [19;3;11;24;4;1;2;8;14]

10 93.4 92 89 93.8 [19;3;11;24;4;1;2;8;14;6]

11 94.8 93.8 91.4 94 [19 3 11 24 4 1 2 8 14 6 22]

12 94.4 93.4 88.4 94.4 [19 3 11 24 4 1 2 8 14 6 22 5]

13 94.4 93 90.6 94.4 [19 3 11 24 4 1 2 8 14 6 22 5 12]

14 95.2 94 91.4 94 [19 3 11 24 4 1 2 8 14 6 22 5 12 18]

15 93.8 95 88 92.2 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10]

16 94.6 95.2 89.6 93.8 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10 7]

17 94 94.8 89.4 95.4 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10 7 13]

18 94.2 96 90.6 94 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10 7 13 20]

19 95.2 95 91.6 93.4 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10 7 13 20 21]

20 93.4 95.4 91 92.4 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10 7 13 20 21 16]

21 94.6 93.8 91.6 93.4 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10 7 13 20 21 16 9]

22 92.8 94.6 89.4 93.4 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10 7 13 20 21 16 9 23]

23 92.6 94.4 91.8 91.8 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10 7 13 20 21 16 9 23 15]

24 93.4 93.6 90.6 93 [19 3 11 24 4 1 2 8 14 6 22 5 12 18 10 7 13 20 21 16 9 23 15 17]

58

5.5.3 Input Space Reduction with Principle Component Analysis

One of the effective procedures for reducing size of the input vector this is

principal component analysis(PCA) which provides a roadmap for how to reduce a

complex data set to a lower dimension[132]. This technique has three effects: it

orthogonalize the components of the input vectors (so that they are uncorrelated with

each other), it orders the resulting orthogonal components (principal components) so

that those with the largest variation come first, and it eliminates those components

that contribute the least to the variation in the data set [130]. Algorithm of iterative

PCA based feature reduction is given in Fig5.14.

1
st
 step

 compose new input space with PCA

 Subtract the mean for each dimension

 Use the singular value decomposition to compute the principal

components

 Compute the variance of each principal component

 Compute total variance and fractional variance

 Find the components which contribute more than min_frac of the

total variance

 project the original data set

2
nd

 step

 evaluate the classifier(TS-FIS,ANFIS,NN,RBF)

3
th

 step
 is performance is OK ?

 No; turn the line 1 and decrease the fractional constant

 Yes; Accept the feature subset for classification task

Figure 5.14 Iterative PCA based feature reduction algorithm

The performance of TS FIS, ANFIS and FF NN classifiers are shown in

Table5.7, Table 5.8 and Table 5.9 respectively. Unfortunately, we couldn‘t perform

59

the RBF classifier with PCA with software that there was a big overlapping output

with our experimental code.

Table 5.7 The performance of TSK FIS classifier with reduced with input space by

PCA

Size fold1 fold2 fold3 fold4 fold5 fold6 fold7 fold8 fold9 fold10 Means
22 96 92 94 92 98 98 88 90 92 92 93.2

18 90 96 86 94 96 96 98 86 92 94 92.8

16 94 96 94 94 94 90 86 94 90 92 92.4

15 90 96 90 92 88 96 88 94 90 90 91.4

13 94 82 90 92 92 92 88 84 90 94 89.8

12 92 86 96 88 88 100 92 94 88 90 91.4

11 86 82 92 88 90 94 88 82 96 94 89.2

10 90 90 80 82 90 90 94 94 86 86 88.2

9 90 84 78 88 84 86 82 78 92 86 84.8

8 80 82 78 78 76 98 84 86 78 80 82

7 82 88 82 82 84 86 92 72 82 84 83.4

6 86 86 78 90 76 86 78 86 74 90 83

5 84 84 76 64 82 82 90 82 76 86 80.6

Table 5.8 The performance of ANFIS classifier with reduced with input space by

PCA

Size fold1 fold2 fold3 fold4 fold5 fold6 fold7 fold8 fold9 fold10 Means

22 88 92 88 92 94 88 84 94 96 90 90.6

18 96 90 96 90 98 98 98 92 90 96 94.4

16 90 92 98 98 96 94 94 90 90 88 93

15 90 84 94 90 96 92 90 92 94 92 91.4

13 92 94 96 96 92 86 94 92 92 90 92.4

12 90 94 94 94 90 92 90 92 90 94 92

11 94 94 86 86 94 92 98 92 96 90 92.2

10 76 90 86 86 92 94 88 84 94 88 87.8

9 86 94 86 88 88 92 86 80 82 84 86.6

8 80 84 90 88 86 86 86 82 82 84 84.8

7 90 80 86 88 80 86 82 86 84 84 84.6

6 94 86 90 86 82 80 80 80 86 84 84.8

5 86 88 86 88 82 96 86 80 84 88 86.4

There is a relation between size of input space and classification accuracy

with TS based classifier that maximum accuracy is achieved with the maximum size

60

of the input space. The result is a bit behind previous TS based classifier . The

classification performance of ANFIS with PCA based feature reduction is almost

similar with previous feature selection based classifier for it. It is noted that the

maximum accuracy is taken while projected new input size is 18. The NN classifier‘s

performance with new input space produced by PCA is not as good as other two

classifiers. The maximum performance is achieved with 13 input in the classification

with NN. It can be seen that, the size of the projected new input hasn‘t big effects on

the classification accuracy that it varies between 83% and 92%, for NN classifier.

Table 5.9 The performance of NN classifier with reduced input space by PCA

size Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Mean

22 80 90 96 88 92 76 82 88 84 78 85.4

18 86 84 90 86 88 78 94 86 80 88 86

16 90 86 88 90 86 80 96 82 84 84 86.6

15 84 80 80 90 84 96 86 92 90 92 87.4

13 90 84 92 90 84 86 92 88 92 94 89.2

12 90 86 90 84 92 88 92 86 86 84 87.8

11 90 92 84 92 86 92 82 94 90 80 88.2

10 90 92 96 96 76 86 76 90 78 80 86

9 94 82 86 78 86 88 84 76 94 94 86.2

8 96 84 80 92 88 82 76 84 84 92 85.8

7 76 90 88 90 88 94 96 92 86 84 88.4

6 94 90 94 88 90 86 84 84 84 90 88.4

5 74 86 84 84 82 76 82 88 86 90 83.2

5.6 Summary of Results and Discussion

The TSK FIS and ANFIS have similar performance with current classification task

and their accuracy is also greater than the other two classifiers for all experiments. It

can be said that the accuracy of ANFIS is a little bigger than the TS FIS and TSFIS

has reached its maximum accuracy by using more feature than ANFIS. Although, the

size of the input effects on both accuracy and computational time, the TS can

performed with small time according to same inputs for ANFIS due to the there is no

training phase for TS FIS. It can be said that RBF can handle the current problem

with more accurate according to the NN based classifier. Because of both structures

and training methods of these two classifier are different, the computational time and

classification accuracy have different values.

61

 Table 5.10 summarizes the classifier accuracy versus number of used

features. It is clear that the best results are taken with correlation based feature

selection algorithms for three classifiers. The algorithm doesn‘t only support accurate

results but also decrease the computational time by using minimum input features.

Table 5.10 The best results obtained from four classifiers with three different feature

reduction techniques

Classifier Correlation Based

 # features-Accuracy

Feature Rank Based;

features-Accuracy

PCA based ; size of input -

Accuracy

TSK 12---95.8% 14---95.2% 22---93.2%

ANFIS 11---95.8% 18---96% 18---94.4 %

NN 11---94,6% 23---91.8% 13---89.2 %

RBF * 17---95.4% *

 The computational times versus used features of accuracy of the classifiers

are shown in Fig. 5.15. It can be seen that RBF and TS has a similar performance

characteristic with a criteria of computational time. Especially the size input hasn‘t

big influence on computational time of both of the classifiers. On the other hand, for

NN and ANFIS classifier, it can be seen that the computational time is increased

rapidly while size of input increased. The computational time for 24 inputs classifiers

are measured in second as; tTSKFIS=0.995 sec, tANFIS=186.399 sec, tFF NN=212,258sec

and tRBF NN =19.658 sec.

The effects of radii, which determines the numbers of clusters and their

coordinates of the centers that it is directly changes the structure of Fuzzy system as

rule number and membership functions of each inputs, is analyzed and obtained the

optimum numbers of rules for each classifier. We didn‘t use cross validation on data

for dividing into training and test, therefore we achieved classification accuracy as

98% (2 cells are classified wrongly) for ANFIS and 95% (5 cells are classified

wrongly) for TSK.

62

Figure 5.15 The performance of the classifiers according to size of the input versus

computational time

The number of hidden layers and neurons in each layer characterize the

network dynamic. We tried to find the optimum numbers for neurons by ‗trial and

error‘ for FF NN. It is found that the network structure which is composed of 36

neurons with combinations 6x6 and 4x9 has the best classifications accuracy as %96.

We also analyzed the spread of neurons in RBF to find optimum spread value to

represent the input space completely. According to the results the spread value .45

cause the best classifier accuracy

We tried to reduce feature space by three methods; correlation based feature

selection, feature selection by ranking and feature reduction with PCA. The proposed

simple integrated correlation based for future selection yields more acquired results

in comparing to the other feature selection algorithms. Although we couldn‘t

improve the accuracy of classifier according to the without any feature selection

based classifier, the computational time is decreased. Our results for pap-smear

classification for cervical cancer diagnosis are a bit front of some works while a bit

behind of others recent results in literature with a value %1-%4 .

0

10

20

30

050100150200250
65

70

75

80

85

90

95

A
c
c
u

ra
c
c
y

TSK FIS

ANFIS

RBF NN

FF NN

İnput Size

Computational time

63

 CHAPTER 6

6. SIMULATED ANNEALING OPTIMISATION FOR FUZZY

CLASSIFIER

In this chapter, it is proposed a new systematic algorithm which achieves not

only the optimization of the parameters of fuzzy classifier and its architecture but

also feature selection tasks. The proposed algorithm, namely the Simulated

Annealing (SA) and Subtractive Clustering (SC) based Fuzzy Classifier (SASCFC)

is a cooperation of the SA optimization algorithm and the SC method. The

optimization of fuzzy classifier task is performed by optimizing radii parameter of

the SC, output threshold value, and input feature subset. In order to demonstrate the

effects of these optimizations, it is studied four different SASCFS models namely

SASCFC-Type1, Type2, Type3, and Type4. In the former one, the SC radius which

determines the number and the center location of clusters which are transformed to

input membership function, and rule base are optimized. In Type2, the output

threshold value, which states the mapping process of fuzzy output to output classes,

and the radii of the SC are optimized. A wrapper type feature selection approach in

order to obtain the most proper inputs in addition to the optimization of the radii of

SC and the output threshold value is developed in Type3. A hybrid feature selection

method combining a simple filter and the SA based wrapper approach is proposed in

Type4 which also handles with the optimization of the radii of the SC and the output

threshold value. Classification accuracies and execution time of the four proposed

classifiers are compared with each other on some well known classification tasks. In

these classifiers, the Type2 has the best performance that compared by four best

accuracies that achieved within seven data sets in testing phase. The results show that

our proposed classifiers have satisfactory performance in comparisons to its

counterparts.

64

6.1 Background of Simulated Annealing

Simulated annealing (SA) is an iteratively search algorithm for solving combinatorial

problems. Annealing is the process of heating a solid to a high temperature with

subsequent cooling. The cooling process continues up to the solid reaches a state of

minimum energy. This process allows obtaining good crystallization in structure of

the solid. The SA mimics the physical process of annealing. Although Metropolis

proposed the SA in 1953 [66], there wasn‘t any attention up to the work of

Kirkpatrick [67] that brought into open the similarities between some optimization

problem and physical process of annealing. The search algorithm for finding

optimum solution in SA emulates finding good crystallization in annealing process.

Perfect crystallization corresponds to the finding global optima while, poor

crystallization corresponds to local optima for a combinatory optimization problem.

A combinatorial optimization problem can be defined as the relation between a finite

configuration set S and f(S) the cost associated with each configuration of S. The

optimization process aims to find the S corresponding lowest f(S) with searching

configuration space. The SA algorithm starts its search by taking an initial

configuration, iS and computes the cost, iSf at initial temperature, initT .

Temperature is the controlling parameter of simulated annealing algorithm‘s

acceptance mechanism.

At initial temperature, the SA algorithm generates new combinations of

configuration,
jS , and calculates correspondent costs,

jSf . A candidate

configuration is accepted as new solution if the cost of it is lower than that of the

current cost as;

)()(ijji SfSfifSS (6.1)

 In case of candidate configuration yields worst cost value, simulated

annealing checks an acceptance probability (Metropolis criteria) of a candidate‘s cost

as ;

 10exp)()(rand

kT

SfSf
andSfSfifSS

ji

ijji

 (6.2)

65

The acceptance of worst configuration with higher cost enables to algorithm to

escape local minima. After searching N times for configuration in a temperature, the

temperature,T is cooled with a cooling schedule and the algorithm searches new

configuration sets at new temperature up to the temperature reaches predefined

value,
finalT

Two main features of the SA process are (1) the transition mechanism between

states and (2) the cooling schedule [67]. The cooling schedule affects the

performance of the optimizer that low cooling can guarantee to find global optima

while rapid cooling can cause to trap to local optima. Another approach to SA is the

Hide and Seek S.A which was proposed by Romeijn [133]. Hide-and-Seek SA can

handle continuous variables, enabling it to make feasible solutions within the

constrained or bounded ranges converge to the optimal solution [72]. Conventional

SA algorithm searches the solution space in neighboring region which can be

obtained adding or subtracting some quantity to the current solution. New solution

for p dimensional parameter optimization problem with continuous configuration

],,,,,,,,,,,[21 jpjjj SSSS can be obtained from k‘th iteration as;

k

j

k

j

k

j SSS 1 (6.3)

where the change of the solution, k

jS , is calculated by the multi dimensional

Cauchy probability distribution [68]. Hide and Seek SA searches the new

configuration in all feasible space instead of the current neighborhood.

 0)5.0sgn(1

j

k

jjj

k

jn

k

j uifSubuSS (6.4.a)

 0)5.0sgn(1

jj

k

jj

k

j

k

j uiflbSuSS (6.4.b)

 where
ju is a random variable uniformly distributed between zero and one,

jub is

the upper and
jlb is the lower boundary value of feasible configuration space.

66

Another major difference is annealing process that conventional S.A uses

constant annealing while hide and seek uses adaptive annealing process which

decreases the total time with converging global [72]. In this work we use hybrid

simulated annealing algorithm which uses both Hide and Seek and conventional SA

searching algorithms. In order to guarantee in finding global optima , our modified

algorithm searches the new configuration in all feasible regions with a transition

function, which is shown in Eqn. 6.5., in high temperature value in which acceptance

probability is high with taking a worst solution in order to escape global minima. In

low temperature value algorithm searches a broader range according to high

temperature with searching neighborhood of current states, as described in Eqn. 6.3,

in order to find exact solution.

 0)5.0sgn(1

j

k

jjj

k

jn

k

j uifTSubuSS

 (6.5.a)

 0)5.0sgn(1

jj

k

jj

k

j

k

j uifTlbSuSS (6.5.b)

6.2 Simulated Annealing Subtractive Clustering Based Fuzzy Classifier

Designing an optimal fuzzy classifier is a multivariable optimization problem. Under

the lights of recent literature, construction process of a fuzzy classifier can be mainly

achieved by performing following steps;

i. Selection optimum input feature subspace via removing redundant and noisy

feature from input feature space

ii. Obtaining the number of the membership functions for each input.

iii. Obtaining the parameters of the membership functions

iv. Constructing rule base

v. Adjustment of the output threshold value which describes the boundaries of

each class.

In order to construct an optimal fuzzy based classifier, the parameters

mentioned above must be chosen properly for obtaining good classification

67

performance. We have developed four different SA and SC based fuzzy classifiers

(SASCFC) to overcome construction of proper fuzzy classifier system.

As shown in Fig. 6. 1, the SASCFC aims to optimize fuzzy classifier by

optimizing ar in the SC input subspace and output thresholds. Objective function is

the classification accuracy while parameters are subtractive clustering radius, ar ,

output threshold value, th , and input feature subspace, nfff2,1 where n

is the number of attributes. Table 6. 1 shows which parameters are optimized and

which steps are achieved by the SASCFC algorithms, where *S is the optimized

parameters set for the configuration S.

Table 6.1 Optimization space and corresponding construction steps for the proposed

classifiers

Classifier Optimization Space Construction steps

SASCFC Type1)(*

arS ii-iii-iv

SASCFC Type2),(* thrS a ii-iii-iv-v

SASCFC Type3),,(* FthrS a i-ii-iii-iv-v

SASCFC Type4)',,(* FthrS a i-ii-iii-iv-v

The SASCFC algorithm searches for global maxima as maximum

classification accuracy in classification problem as;

 SfSf * (6.5)

The algorithm starts with an initial solution at initial temperature. At next

step, new parameters are generated as explained in the previous section. The

classifier is trained and tested with generated parameters. If the test accuracy for new

parameters is higher than the previous one, or acceptance probability is higher than a

random then the new parameters are chosen as current parameters, otherwise the new

parameters are refused. After acceptance for the first iteration, the algorithm searches

for new parameters up to reaching a predefined maximum iteration count. When the

68

maximum iteration number is reached, temperature is cooled with cooling

mechanism in order to decrease the effect of acceptance probability.

Figure 6.1 Flow chart of SASCFC

The probability of acceptance of a worst solution is high at high temperature

while it converges to zero when temperature goes down. The algorithm searches for

69

new parameters until the temperature reaches the predefined minimum temperature.

After the minimum temperature is reached or maximum accuracy is obtained, the

algorithm stops its search and outputs the optimized fuzzy classifier with optimized

input feature subspace.

6.2.1 SASCFC-Type1

Basic problems with constructing fuzzy system are obtaining membership functions,

finding locations of them and constructing fuzzy if –then rule base. The SASCFC-

Type1 classifier uses SA algorithm and SC method to realize the steps of ii, iii, and

iv which are stated in Section 4. In order to achieve these steps, algorithm tries to

optimize the SC neighborhood radius, ar , which provides finding optimum clusters.

The number of clusters specifies both the number of membership functions for each

input and the number of rules. Fig. 6. 2. demonstrates how cluster centers are

transformed to membership functions.

Figure 6.2 Membership Functions generation using clusters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0,20,40,60,81

in
p

u
t
4

Degree of
membership

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

input 3

D
e

g
re

e
 o

f
m

e
m

b
e

rs
h

ip

C3C1

C3C4

Input data pairs

Cluster centers

70

6.2.2 SASCFC-Type2

A multi input single output fuzzy classifier produces crisp output,
fuzzyy . In order to

test the classifier, the produced outputs must be compared with the actual output

which is generally integers that represent to output classes. For this reason, the output

of the fuzzy classifier must be mapped to the output class by using some threshold

value as illustrated in Fig6.3.

Figure 6.3 Mapping fuzzy output to the classes

We developed a novel mapping function with adjustable parameter th for c

class problem with output normalized to unit hypercube;

elseclass

th
c

c
yifclass

th
c

yifclass

th
c

yifclass

output

c

fuzzyc

fuzzy

fuzzy

class

1

....

2

1

1

2

1

 (6.6)

,where th can be chosen in the interval as ;

cc
th

2

1
,

2

1
 (6.7)

Besides the obtaining optimized membership functions and rules as in Type1,

Type 2 algorithms produces optimized output threshold value th within a bounded

interval.

71

6.2.3 SASCFC-Type3

It is important to know the effect of each input to the output. Modeling task deals

with finding relations between inputs and outputs. But in many cases, the input

dimension that describes the object which will be modeled may be very large and

include irrelevant, redundant and noisy information. In these cases, the classifier

performance gets worse and computational time increases. Feature selection or

feature reduction is a technique of selecting a subset of relevant features for building

robust learning models. According to the work of Abe and Kudo in 2006 [73], the

main benefits of feature selection are as follows;

 Reducing computational cost and storage requirements

 Dealing with the degradation of classification efficiency due to the

finiteness of training sample sets

 Reducing training and prediction time

 Facilitating data understanding and visualization

The SASCFC-Type3 algorithm has features of Type2 algorithm that searches

optimum fuzzy rule base, membership functions and output threshold value. In

addition to Type2, Type3 algorithm also searches the most proper input attributes

feasible region. The algorithm outputs the fuzzy classifier with optimum membership

functions, rule base and input features. Fig. 6. 4 shows the configuration space, S, in

which ar and th are continuous parameters while 1f , 2f ,..., nf are integers that

either 1 or 0, which defines the corresponded feature will be selected or removed.

Figure 6.4 Configuration space

6.2.4 SASCFC-Type4

Wrapper types feature selection algorithms generally achieve better performance

while consumption task is larger and filter type algorithms achieve lower

72

performance within a lower time [83]. In case of too many features for a

classification problem, iteration number of the SA at a temperature state must be big

enough in order to find optimum configuration. It is also possible that Type3

algorithm couldn‘t find the optimum feature subspace in case of too many input

features with reasonable iteration number. For example, in Sonar Data Classification

problem [134], there are 1.1529e+018 alternative feature subsets for 60 input, and

configuration space has 62 parameters. It causes to increase the consumption time

dramatically. In order to overcome this drawback, a statistical analyze is applied at

data initialization phase to remove redundant and noisy features.

Parameter optimization of SASCFC-Type4 algorithm is similar with Type3

algorithm except feature selection procedures. In order to overcome the problem of

finding relevant features within a reasonable consumption time, SASCFC-Type4

algorithm uses a hybrid feature selection algorithm which is a combination of filter

type feature selection method with wrapper type method. Filter methods use

statistical analyze on data for irrelevancy, redundancy and noisy. Relevancy is

usually characterized in terms of correlation between two variables.The correlation

coefficient YXR , between two random variables X and Y with expected values

X and Y , and standard deviations X and y as follows

yXyX

YYXXEYX
YXR

),cov(
, (6.8)

where E is the expected value operator and cov means covariance. The value of

 YXR , lies between -1 and +1. If X and Y are completely correlated, YXR ,

takes the value of 1 or -1 and YXR , is 0 when X and Y are independent. In

SASCFC, linear correlation coefficients of each input versus output are calculated

according to the Eqn. 6.8 with the Matlab function corrcoef . If the current input is

relevant with output, then the correlation coefficient will be close to 1 while it is zero

when current input is irrelevant with output. The inputs whose correlation

coefficients greater than 0.05 are chosen as elements of 1Subset . The variances or

standard deviations of inputs give information about noise. If the variance of input is

too low, the positive effect of its on classification accuracy will be low. The inputs,

whose variance is greater than half of the mean of corresponded inputs, are chosen as

73

the elements of 2Subset . If the some inputs have similarity between each other,

although they don‘t decrease the accuracy, they increase total computational time.

Variances, standard deviations and correlation coefficients of inputs of sonar data are

demonstrated in Fig. 6. 5. The features, 181716 ,, fff , 30292625 ,,, ffff 57414038 ,,,, ffff

whose correlation coefficients are less than .05 are removed to obtain 1Subset .

Figure 6.5 Variances, standard deviations and linear correlation coefficients of the

sonar data set input features [134]

Redundancy analyze is performed by calculating the cross correlation

coefficient of inputs with each others. If any two inputs are very similar, their

correlation coefficients tend to 1. If cross correlations of an input with other inputs

are higher than 0.95, one of them is leaved while others are pruned. 3Subset is

obtained by removing redundant feature from all input feature space. Fig. 6. 6 shows

the correlation counter plot of input variables for sonar data set. Highly correlated

input features with each others, 1615 ff , 1817 ff , 2120 ff are obtained and one

element in each pair is removed such as 211715 ,, fff to form 3Subset .

74

A core subset coreSubset is produced by union of the 1Subset and 2Subset at

initialization phase of the algorithm. After data initialization, SASCFC-Type4

generates a 4Subset by adding new feature to the core set, coreSubset , in new

configuration generation phase of SA. The generated 4Subset still may have

redundant feature. Intersection operator is applied to remove redundant feature

between 3Subset and 4Subset to obtain final subspace. SASCFC-Type4 uses same

configuration space as Type3, that aims to optimize, ar , th and feature subspace F

as shown in Fig. 6.4.

Figure 6.6 Counter graph representation of linear cross correlation coefficients of

inputs with each others for sonar data set [134]

6.3 Experimental Results and Discussions

Proposed algorithm‘s codes are written in Matlab software with m-file format which

is given in Appendix chapter and evaluated on a personal computer with Pentium IV

2.6 GHz CPU and 1 GB of RAM. In order to prove the robustness of proposed

classifiers, twelve classification problems [117, 134] whose specifications are shown

in Table 6.2, are chosen.

Feature Number

F
e

a
tu

re
 N

u
m

b
e

r

1 10 20 30 40 50 60
1

10

20

30

40

50

60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

75

In the initializing phase, all attributes and class outputs are normalized into

the unit interval [0 1]. Classifier validations are obtained with k-fold cross validation

procedure [135]. The k-fold cross validation relies on a random portioning of the

data set into k parts. Then, one part is used for testing while the remainder parts are

used for training. This procedure is repeated k-1 times in order to use every part.

Finally k classification estimates are averaged to yield a robust overall classification

value. Because the SASCFC uses power of SA, and k-fold partitions the data

randomly, the outputs of the SASCFC may not be same for each run despite using

same data set. For this reason, each SASCFC is executed 10 times for each data set,

and average values are taken. The classification performances are measured with

classification accuracy both in training and testing phase with standard deviations.

The developed programming codes are given in Appendix. As described in Section3,

SASCFC algorithm uses different SA parameters at low and high temperature region.

The used SA parameters are given in Table 6. 3.

Table 6.2 Used data sets and their specifications

Data Set #
In

st
an

ce

#
A

tt
ri

b
u
te

#
 C

la
ss

Dev.Cla

(%)

Maj.Cla

(%)

Min.Cla

(%)

 Pap Smear (smr,[117]) 500 24 2 28.28 70 30

Breast Cancer (brst,[134]) 683 9 2 21,22 65,01 34,99

Pima Indians(pima,[134]) 768 8 2 21,36 65,1 34,9

Sonar(snr,[134]) 208 60 2 4,76 53,37 46,63

Ionosphere

Struct(ion,[134])

351 33 2 19,94 64,1 35,9

Heart Disease(hrt,[134]) 270 13 2 7,86 55,56 44,44

Bupa Liver(bupa,[134]) 345 6 2 11,27 57,97 42,03

Australian (cra,[134]) 690 14 2 7,79 55,51 44,49

Fisher Iris(iris,[134]) 150 4 3 0 33,33 33,33

Balance[bswd,[134]] 625 4 3 22,08 46,08 7,84

Wine(wine,[134])

[ecognition(wine,[134])

178 13 3 6,46 39,89 26,97

Waveform(wave,[134]) 5000 21 3 0,52 33,92 32,94

Dev. Cla is the standard deviation of class distribution, Maj. Cla and Min.Cla

percentage of majority and minority class instances respectively.

76

In experiments, firstly pap-smear classification performed by the SASCFC-

Type1 and the performance of the classifier is given in Table 6. 4. The performance

measurements are done by calculating, Correct Classification Number (CCN),

Incorrect Classification Number (IC), Incorrect Positive Classification (IPC),

Incorrect Negative Classification (INC) and Classification Accuracy (CA) of the

classifier for each fold. According to the results, a 98.8 % accuracy rate is achieved

by the SASCFC-Type1 algorithm in testing phase. This accuracy is a reasonable

accuracy rate according to the recent works about pap-smear classification problem

in literature [127].

Table 6.3 Parameters of SASCFC

Parameters T>1e-3 T < 1e-3

Initial Temperature, initT 1 1

Cooling procedure T=0.8 xT T=0.8xT

Final Temperature,
finalT 1,00e-05 1,00e-05

Number of iteration at a temperature state, N 300 100

Number of acceptance at a temperature state 150 50

Number of rejection at a temperature state 150 50

New parameter generation mechanism Eqn.6.5 Eqn.6.3

In the work of [72], the k-fold cross validation is used with a different process

in training and test phase of the classifier. The authors used SA for optimization of

back propagation neural network based classifier (SABPN). Instead of validating an

optimization configuration for all k folds, in each fold they optimized the network

and tested within the current fold. In order to compare SABPN classifier with

SASCFC-Type1 classifier, we run the SASCFC-Type1 with the same optimization

strategy in k-fold cross validation as in [72]. According to the each fold, the new

radii ar and rules are optimized with optimized rule number (RN). As shown in

Table 6.5, the accuracy of SASCFC-Type1 classifier has better performance than

SABPN [72] for breast cancer diagnosis (brst).

77

Table 6.4 Results for classification of pap-smear data set with the SASCFC-Type1

with optimized 9214.0ar which yields three cluster centers

Folds CCN IC IPC INC CA(%)

1 49 1 1 0 98

2 50 0 0 0 100

3 50 0 0 0 100

4 48 2 1 1 96

5 48 2 1 1 96

6 50 0 0 0 100

7 50 0 0 0 100

8 49 1 0 1 98

9 50 0 0 0 100

10 50 0 0 0 100

Mean 49.4 0.6 0.3 0.30 98.8

Table 6.5 Breast Cancer Classification with SASCFC-Type1 and SABPN [72]

 SASCFC-Type1 SABPN[72]

Folds Accuracy(%)
ar RN NHN Accuracy(%)

1 98.53 0.547 1 1 98.55

2 95.65 0.382 2 2 97.10

3 100.00 0.099 17 3 98.55

4 100.00 0.099 17 3 95.65

5 95.59 0.205 5 1 98.53

6 100.00 0.284 2 1 100.00

7 100.00 0.284 2 1 100.00

8 98.55 0.543 1 1 98.53

9 100.00 0.216 3 2 97.06

10 100.00 0.216 3 2 98.59

Mean 98.83 98.26

The configuration space is different for each type SASCFC as shown in Table

6. 1. Optimized parameters and architectures of the classifiers are shown for smr and

Ion data set in Table 6.6. and Table 6.7 respectively. Output threshold values are

close to zero while ar values are very different from the suggested in [49].

Improvement is done on execution time, classification accuracy and classifier

complexity for smr data set with feature selection, while classification accuracy is a

bit behind from without feature selection for snr data set. Improvement on execution

time is eventful although classification accuracy of Type3 algorithm less with

percentage %.059 than Type2 algorithm. This also provides the classifier complexity

78

and architecture which show the input output relations in more readable form with

fewer rules.

Table 6.6 Basic parameters of Optimized classifiers for Pap Smear data(smr)

Optimized

Parameter

SASCFC

Type1

SASCFC

Type2

SASCFC

Type3

SASCFC

Type4

th 0 0.1040 0.0237 0.0849

ar 0.9214 0.9213 0.8597 0.9847

Feature 24 24 9 13

Rule 3 3 1 2

Execution Time 3.11sec 2.86sec 1.516sec 2sec

Accuracy(%) 98.8±1.69 98.8±1.4 98.8±1.69 99.00±1.05

Table 6.7 Basic parameters of Optimized classifiers for Sonar data(snr)

Optimized

Parameter

SASCFC

 Type1

SASCFC

Type2

SASCFC

Type3

SASCFC

 Type4

th 0 0.1438 0.1727 0.145

ar 0.9546 0.9022 0.9366 0.9554

Feature 60 60 26 54

Rule 144 150 12 128

Execution Time 44.062sec 43.746sec 2.922 sec 32.812 sec

Accuracy(%) 90.35 ± 3.31 91.99 ± 7.39 92.75 ± 5.39 91.86 ± 5.88

Time consumptions of each type of SASCFC are demonstrated in Fig. 6.7 with

mean execution time for all data set. Because there is no feature selection process in

Type1 and Type2, the execution time is significantly higher than other two types.

Despite of both Type3 and Type4 have feature selection characteristic , the execution

time of Type4 is higher than Type3 because hybrid feature selection methodology of

Type4 searches new feature subspace by adding new features to core feature subset

which generally causes more rules.

79

Figure 6.7 Consumptions times of each types of SASCFC

Performance comparisons of SASCFC-Type1, Type2, Type3 and Type4

algorithms in training and testing phase are given in Table 6. 8 and Fig. 6. 8.

According to Table 6.8, it can be concluded that feature selection improve both

classification accuracy and standard deviation in both training and testing phase, for

high feature size problems as snr, ion and smr classification problem. However, for

low feature size problem as bswd and iris, feature selection decreases the

classification accuracy. For medium feature size problem as brst, pima and bupa,

although performances of classifier which have feature selection algorithm are higher

than the classifiers which have no feature selection algorithm, standard deviation gets

worst. In generally, it can be seen that Type4 algorithm reaches the best average

accuracy rate as expected for all data set in testing phase while Type2 achieves the

best average value in training phase. In fact, classifier complexity, readability of

input output relations and consumption time, in addition to the classification

smr brst pima snr ion hrt bupa crda iris bswd wine wawe
0

5

10

15

20

25

30

35

40

45

Data Sets

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
o
n
d
)

SASCFC Type1(Mean Time =7.25 sec)

SASCFC Type2(Mean Time =7.60sec)

SASCFC Type3(Mean Time =2.31 sec)

SASCFC Type4(Mean Time =6.37 sec)

80

accuracy, are significant criteria in comparing the classifier. For this reason, it can be

concluded that, the best successful classifier is SASCFC-Type4.

Table 6.8 Classification results of SASCFC-Type1, Type2, Type3 and Type4

Data Set

SASCFC-

Type1

SASCFC-

Type2

SASCFC-

Type 3

SASCFC-

Type 4

Pap Smear

Test.% 98.8 ± 1.69 98.8 ± 1.4 98.8 ± 1.69 99.00 ± 1.05

(smr,[117]) Train % 99.62 ± 0.26 99.64 ± 0.11 99.58 ± 0.22 99.51 ± 0.18

Breast Cancer Test % 96.48 ± 2.42 97.67 ± 2.19 97.67 ± 1.96 97.67 ± 2.84

(brst,[134]) Train % 96.31 ± 0.49 97.61 ± 0.29 97.62 ± 0.28 97.67 ± 0.31

Pima Indians Test % 78.64 ± 2.24 78.52 ± 3.22 78.52 ± 4.23 78.78 ± 3.79

(pima,[134]) Train % 78.66 ± 0.32 78.4 ± 0.69 78.47 ± 0.73 78.5 ± 0.86

Sonar Test % 90.35 ± 3.31 91.99 ± 7.39 92.75 ± 5.39 91.86 ± 5.88

(snr,[134]) Train % 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Ionosphere Test % 89.74 ± 5.99 89.76 ± 6.97 90.91 ± 3.37 89.68 ± 4.65

(ion,[134]) Train % 97.34 ± 0.94 95.82 ± 1.13 97.18 ± 0.6 96.68 ± 0.55

Heart Disease Test % 80.37 ± 9.48 81.11 ± 8.27 80.74 ± 8.69 81.11 ± 5.91

(hrt,[134]) Train % 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Bupa Liver Test % 73.6 ± 5.13 73.9 ± 5.01 73.93 ± 9.95 74.13 ± 12.7

(bupa,[134]) Train % 73.49 ± 1.11 73.01 ± 1.24 73.2 ± 1.31 73.14 ± 1.15

Australian

Credit

Test % 85.37 ± 4.77 85.64 ± 4.31 85.53 ± 3.33 85.52 ± 2.85

(cra,[134]) Train % 91.95 ± 0.66 92.16 ± 0.8 91.95 ± 0.36 91.92 ± 0.63

Fisher Iris Test % 98.00 ± 3.22 98.00± 3.22 98.00 ± 3.22 97.33 ± 4.66

(iris,[134]) Train % 97.19 ± 0.58 97.70 ± 0.62 97.41 ± 0.52 96.07 ± 0.61

Balance&scale Test % 91.84 ± 3.59 91.51 ± 2.02 86.88 ± 4.5 91.21 ± 2.73

(bswd,[134]) Train % 94.95 ± 0.25 94.38 ± 0.75 94.13 ± 1.06 95.06 ± 0.87

Wine

Recognition

Test % 97.22 ± 4.72 99.41 ± 1.86 98.92 ± 2.28 99.44 ± 1.76

(wine,[134]) Train % 98.5 ± 1.24 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

Waveform Test % 77.70 ± 0.72. 77.90 ± 0.7 78.69 ± 5.05 79.8 ± 4.34

(wave,[134]) Train % 83.91 ± 1.42 84.41 ± 1.21 82.63 ± 1.01 81.66 ± 0.59

Mean
Test % 88.18 ± 3.96 88.63 ± 3.94 88.33 ± 4.55 88.79 ± 4.43

Train % 92.66 ± 0.49 92.7 ± 0.45 92.68 ± 0.54 92.52 ± 0.48

Another recent work with optimization of fuzzy classifier [20] which is used

simulated annealing algorithm to find optimum if-then rule base of a fuzzy classifier.

81

The proposed classifier are compared by well known classifier [136] as; decision tree

induction algorithm (C4.5), the nearest neighbor classifier technique (IBk), simple

Bayesian network based classifier (N.B), support vector machines based classifier

(SVM), Pittsburgh genetic-based machine learning system (GAs). Detailed

descriptions of each tool can be found in corresponding references. The

performances of C4.5, IBk, N.B, SVM and GAs type classifiers are taken from [136]

and SAFC from [20]. Comparisons with SASCFC-Type2 and other classifiers for

seven classification data sets are shown in Table 7. Although, classification

performance of Type2 isn‘t as good as Type4, Type2 is chosen for comparison

because there is no feature selection algorithm in [20, 136].

Figure 6.8 Classification performance of proposed classifiers

Type1 Type2 Type3 Type4
97

98

99

100

smr

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4
94

96

98

100

brst

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4

75

80

pima

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4

85

90

95

100
snr

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4

85

90

95

ion

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4
70

80

90

100

hrt

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4

70

80

bupa

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4
80

85

90

95
crda

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4

95

100

iris

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4

85

90

95

bswd

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4

95

100

wine

A
c
c
u

r
r
a

c
y

Type1 Type2 Type3 Type4

75

80

85

wawe

A
c
c
u

r
r
a

c
y

Testing Phase Training Phase

82

Table 6.9 Classification performance of some well known classifiers

 Accuraccy C4.5 IBk N.B SVM GAs SAFC

SASCFC-

Type2

Bswd
Train % 89.93±0.68 90.53±0.54 91.92±0.25 91.01±0.19 92.14±0.28 94.63±0.46 94.38±0.75

Test % 77.66±2.91 86.09±2.72 91.43±1.25 90.9±1.43 89.62±2.22 90.47±1.36 91.51±2.02

Cra
Train % 90.31±0.86 91.05±0.52 82.58±0.82 55.51±0.08 91.07±0.73 94.25±0.54 92.16±0.8

Test % 85.55±3.45 84.73±4.04 81.07±5.32 55.51±0.7 85.62±4 85.77±3.27 85.64±4.31

Ion.
Train % 98.68±0.54 90.94±0.59 93±0.42 94.19±0.64 96.9±0.74 99.66±0.34 95.82±1.13

Test % 88.97±5.91 85.66±4.66 91.5±4.7 92.14±4.62 92.71±5.01 91.89±4.65 89.76±6.97

Iris
Train % 98±0.61 96.59±0.49 96.67±0.53 97.11±0.64 98.33±0.79 99.85±0.19 97.80 ±0.62

Test % 94.22±5.37 94.89±6.37 96.22±5.36 96.22±4.77 95.2±5.87 96.66±3.09 98.00±3.22

Pima
Train % 84.43±2.41 85.67±0.65 77.07±0.61 78.27±0.53 83.11±0.82 87.55±0.59 78.40±0.69

Test % 75.44±4.79 74.52±3.91 75.3±4.45 77.32±4.7 74.46±5.19 75.71±4.41 78.52±3.22

Wine
Train % 98.86±0.54 97.27±0.53 98.67±0.45 99.33±0.32 100.0±0.00 99.98±0.04 100.0±00

Test % 94.24±6.44 96.61±4.02 97.2±3.43 98.1±3.4 96.33±4.13 97.63±3.02 99.41±1.86

Wave
Train % 97.29±0.61 0±0 81.59±0.21 0±0 78.28±0.6 85.02±0.18 84.41±0

Test % 75.93±2.1 0±0 79.89±1.4 0±0 76.01±1.97 80±1.16 77.9±0

 For bswd classification, the performance of Type2 is better than all

counterparts in testing while it is a bit lower than only SAFC in training phase.

Comparison on crda classification is not clear because all classifiers have almost

same performance except SVM. In ion data set, Type2 performance isn‘t as good as

the performance of N.B, SVM, GAs and SAFC while a bit better than performance

of C4.5 and IBk. Type2 achieves the best performance in iris data classification in

testing phase with acceptable standard deviation while it is lower than the

performances of C4.5, GAs and SAFC in training phase. A similar score is in pima in

which Type2 achieves the best accuracy rate and standard deviation in testing phase,

while in training phase, its performance isn‘t better than its counterparts. For wawe

data, that SVM and IBk performance are absent in [136], performance of Type2 is

betwixt that although it is better than performances of C4.5 and Gas, it is worse than

the performance of SAFC and N.B. The experimental results for wine data set shows

that Type2 reaches best performance accuracy and standard deviation in both training

and testing phase.

83

Figure 6.9 Classification performances of some well known classifiers

6.4 Conclusions

In this chapter, a novel optimization algorithm is given in order to obtain

proper fuzzy classifier. The optimization starts with clusters centers which are found

by SC . Then cluster centers are transformed to membership functions of input

variables and rules of fuzzy classifier. In the next step, output threshold value is

optimized which yields an improvement in classification accuracy. Finally a wrapper

type feature selection and a simple hybrid feature selection approaches are

introduced. Experimental results show that, although satisfactory improvement on

the accuracy performance is not obtained by wrapper approach, it enables to reduce

the classifier complexity which directly influences on total rule size and consumption

time of the classifier. Hybrid feature selection approach improves both performance

and complexity of classifier and experimental results show the best accuracies are

achieved by this approach. The comparisons of SASCFC-Type2 classifier with well

known classifiers lend countenance that proposed classifier is grateful approach since

four best accuracies are achieved within seven data sets in testing phase.

C4.5 IBk N.B SVM GAs SAFC Type2
70

80

90

100
bswd

A
c
c
u

rr
a

c
y

C4.5 IBk N.B SVM GAs SAFC Type2
50

60

70

80

90

100
crda

A
c
c
u

rr
a

c
y

C4.5 IBk N.B SVM GAs SAFC Type2
80

85

90

95

100
ion

A
c
c
u

rr
a

c
y

C4.5 IBk N.B SVM GAs SAFC Type2
85

90

95

100

105
iris

A
c
c
u

rr
a

c
y

C4.5 IBk N.B SVM GAs SAFC Type2
65

70

75

80

85

90
pima

A
c
c
u

rr
a

c
y

C4.5 IBk N.B SVM GAs SAFC Type2
85

90

95

100

105
wine

A
c
c
u

rr
a

c
y

Testing phase Training phase

84

CHAPTER 7

7. COMPETITIVE LEARNING BASED NEUROFUZZY

CLASSIFIER

Clustering methods are widely used in structure learning phase of both neural

network and fuzzy inference based systems as fuzzy c-means, k-means clustering,

mountain clustering, subtractive clustering, and agglomerative clustering. Detailed

reviews of clustering algorithms are addressed in Chapter 3 and in [48]. Rival

Penalized Competitive Learning Clustering (RPCL) was proposed by Xu et al. in

1992 [63]. Some studies on improving performance of RPCL are found in [60, 64]

and its application in construction of Radial Basis Function network is given [65].

RPCL has advantage that it doesn‘t need to know numbers of clusters center,

therefore it can be regarded as an unsupervised clustering algorithm. However there

is no work in literature that uses RPCL at initial structure of NeuroFuzzy Systems,

and although NeuroFuzzy architectures are convenient for RPCL type back

propagation there is also no study which aims to hybridization of RPCL and back

propagation training.

In this chapter two new NeuroFuzzy Classifiers are proposed as NFC1 and

NFC2. Initial structures of both classifiers are set up via rival penalized competitive

learning based classifier. Parameter tuning of NFC1 is performed by gradient descent

base back propagation batch training algorithm. Rule adaptation mechanism is

embedded into training of the NFC2 that both parameters and structural optimization

performed twice. It enables to change the structure of classifiers by adding new rules

and deleting unnecessary rules, and improve the classifier performance. After initial

structure obtained by rival penalized competitive learning, parameters of the NFC2

are tuned by incremental learning type back propagation algorithm. In fine

85

 tuning phase of structure, according to error criteria and rule firing counts criteria‘s

structure of the NFC2 are reconstruct and final structure is retuned by back

propagation algorithm. Mathematical derivations for proposed classifiers training

algorithms are given. the NFC1 and the NFC2 also tested on two real world problems

that performances are valuable. The developed programming codes are given in

Appendix

7.1 Rival Penalized Competitive Learning Based Clustering

Competitive Learning has been developed for unsupervised learning in artificial

neural network, clustering, and pattern recognition. In fact, it can be regarded as

adaptive version of classical K means and fuzzy C-means clustering algorithm.

Previous two algorithms need to know how many clusters will be obtained. Although

some validity indexes have been proposed in the literature to solve for finding

compact cluster numbers, it is hard task to decide in real world problem to decide the

correct cluster number according to finding index.

In the literature one of the most popular index for hard clustering is the

Davies Bouldin (DB) Index [137] which is the ratio of the sum of within-cluster

distance to between-cluster separation, and is computed as follows:

 , (7.1)

where within-cluster scatter for cluster i denoted Si and the between-cluster

separation for clusters i and j, denoted dij, are calculated by

 (7.2)

 (7.3)

Smaller values of DB represent better clustering, and hence the value that minimizes

DB is the optimal number of clusters.

86

Another Clustering index in recent literature in order to find compact cluster number

in hard clustering tasks is known as Chou-Su or CS index [138].

A distance metric between any two data points and is denoted by,

 (7.4)

The CS measure can be defined as,

 (7.5)

 Where k is the number of cluster , is the number of data in cluster i.

0 5 10 15 20 25
1

2

3

4

GERMAN
0 5 10 15 20 25

0

10

20

30

PAP SMEAR
0 5 10 15 20 25

0

5

10

WISCONSIN BREAST

0 5 10 15 20 25
2

3

4

Ionosphere
0 5 10 15 20 25

0

20

40

BUPA LIVER
0 5 10 15 20 25

0

1

2

3

Heart Disease

0 5 10 15 20 25
0

5

10

PIMA
0 5 10 15 20 25

1

2

3

4

SONAR DATA
0 5 10 15 20 25

0

10

20

30

German Credit

0 5 10 15 20 25
0

10

20

30

AUSTRALLIAN
0 5 10 15 20 25

0

5

10

Wine
0 5 10 15 20 25

0

0.1

0.2

IRIS

Figure 7.1 DB index for K-means clustering algorithm for some real world problems

87

Although the above mentioned indices give good results in artificial problem,

obtaining the optimal number of clusters is still an open problem. Clustering methods

use a fixed parameter, k, as the number of clusters. Such parameter is usually

determined by a trial-and-error procedure in order to obtain a value that yields the

best clustering results. In particular, for large data sets, there is no evidence that the

value of k obtained is optimal (unless one knows the correct number of clusters based

on the nature of the data set). As shown in Fig. 7.1 and 7.2, it is hard task to decide

numbers of the optimal clusters for real world problems.

 Rival penalized competitive learning (RPCL) based clustering algorithm

which doesn‘t need to know number of clusters is proposed by Xu [62] is used in

order to obtain initial structure of NeuroFuzzy classifier proposed here. In RPCL, the

number of clusters is adjusted automatically during learning, resulting in a flexible

partitioning of input–output space, as well as the optimal number of fuzzy rules. An

initial structure of the FNN is first constructed, after that, some nodes and links are

deleted to form the final structure of the network as the number of clusters is

0 5 10 15
2

2.5

3

3.5

GERMAN
0 5 10 15 20 25

1.5

2

2.5

3

PAP SMEAR
0 5 10 15 20 25

1.5

2

2.5

3

WISCONSIN BREAST

0 5 10 15 20 25
2

2.5

3

3.5

Ionosphere
0 5 10 15 20 25

1

1.5

2

2.5

BUPA LIVER
0 5 10 15 20 25

1

1.5

2

2.5

Heart Disease

0 5 10 15 20 25
1.5

2

2.5

3

PIMA
0 5 10 15 20 25

1

2

3

4

SONAR DATA
0 5 10 15 20 25

2

2.5

3

3.5

German Credit

0 5 10 15 20 25
1

1.5

2

2.5

AUSTRALLIAN
0 5 10 15 20 25

1.5

2

2.5

Wine
0 5 10 15 20 25

0.5

1

1.5

IRIS

Figure 7.2 CS index for K-means clustering algorithm for some real world

problems

88

adjusted. Assume that the availability of a data set composed by P input –output

pairs,

 (7.6)

Where p is the number of patterns, and m is the number of attributes. The steps of

RPCL algorithm as follows;

Step1; Take randomly some samples as initial cluster centers
 , where k is the

initial number of clusters

Step2; Randomly take an input-output pattern from data set S and for i=1,2,…k,

let

 (7.7)

with

 (7.8)

 (7.9)

where

 (7.10)

where stands for winning cluster centers, is the rival clustering

centers. is the cumulative number of winning.

Step3;Uptade winning and rival centers,

89

 (7.11)

 (7.12)

Where 1> >> >0 are the learning and de-learning rate.

Step4;if all pattern is proceeded finish algorithm, else go to Step2;

Suppose an artificial problem that contains 150 patterns with 5 distinct

classes. By using half of data as training of RPCL, initial cluster centers and their

behaviors in training phase are illustrated in Fig.7. 3. Initial number of clusters is set

to square root of number of pattern times number of attributes. So for current

problem, initial cluster size is 18. During the training phase winner cluster goes

closest to the data while rival cluster is penalized so it goes far from the current data

sample. After all sample is seeded, cluster centers which contains less data points

than a threshold is deleted. In Fig 7.4, final obtained cluster centers are shown.

Figure 7.3 Cluster behaviors in training phase of RPCL for artificial data

90

Figure 7.4 Final Cluster centers by obtained RPCL for artificial data

7.2 NeuroFuzzy Classifier1 (NFC1)

The proposed NeuroFuzzy classifier1 (NFC1) 6 layer network as shown in Fig 7.5.

Without loss of generally, we consider a multi input multi class fuzzy classifier

which consist of L rules for C class problem

 (7.13)

Where is the kth rule, is the fuzzy sets defined as Gaussian function. Each

Layer operation in NFC1 is defined as;

Layer1 : Input layer. Each node represents an input. No operation is performed in

this layer.

Layer2 : Fuzzification Layer. Each node arranged into L groups, each group

representing the if-part of a fuzzy rule.

91

 (7.14)

Where and are centers and spread of the membership functions for input .

Layer3 : Fuzzy Inference Layer. Fuzzy AND operation is performed in this layer.

AND operator generally represented by a t-norm that is usually expressed as a

product operator.

, s=1,2,………,L, (7.15)

Layer4 : Normalization Layer.

 s=1,2,………,L, (7.16)

Figure 7.5 Proposed NFC1 structure

92

Layer5:Rule Weighting Layer. Winning occurrences in Rival Penalized Competitive

Learning bases structural identification phase are used as rule weighting. Weighted

rule outputs are obtained as;

 s=1,2,………,L, (7.17)

Layer6: Rule Consequent Layer. Rule outputs for Class c are summed and computed

the output value ;

 c=1,2,……C (7.18)

Error function can be defined as;

 (7.19)

Where p is the current pattern, is the actual output for class c, is the computed

output for class c.

For minimizing the error,

 (7.20)

Change of with respect to the
 , propagation Layer6 to Layer5;

 (7.21)

Change of
 with respect to the

 , propagation Layer5 to Layer4;

 (7.22)

Change of
 with respect to the

 , propagation Layer4 to Layer3;

93

 (7.23)

Change of
 with respect to the

 , propagation Layer3 to Layer2;

 (7.24)

Change of
 with respect to the , propagation Layer2 to Layer1;

 (7.25)

Change of
 with respect to the , propagation Layer2 to Layer1;

 (7.26)

Gradient vector for rule weights

 (7.27)

Gradient vector for membership function centers

 (7.28)

 (7.29)

Gradient vector for membership function spread ;

 (7.30)

94

 (7.31)

Finally new value of rule weights, membership function centers and membership

function spreads are updated as;

 (7.32)

 (7.33)

 (7.34)

,where, , and are learning coefficients for of rule weights, membership

function centers and membership function spread respectively.

Figure 7.6 Proposed NFC2 structure

95

7.3 NeuroFuzzy Classifier2 (NFC2)

The proposed NeuroFuzzy Classifier2 (NFC2) is 5 layers network as shown in Fig.

7.6. In fact for C class problem, the NFC2 consists of C distinct classifiers. As

described in Equation 7.13, rule base of the NFC2 is similar to the NFC1. Structure

of the NFC2 is a simple version of the NFC1 in order to develop a new back

propagation algorithm in parameter tuning phase. A dynamic learning strategy is also

adopted in order to delete unnecessary nodes and add new nodes for improving

classifier performance.

The training of the NFC2 are four steps as not its counterparts that generally

training of NeuroFuzzy System consist of two steps as structural learning and

parameters learning. Construction steps of the NFC2 as follows;

Step1 ; Construct initial NeuroFuzzy Classifiers with founded cluster centers by

RPCL

Step2 ; Use back propagation algorithm in order to improve the classifier

performance

Step3 ;
Analyze the classifier by performing;

 Check the errors; if error is higher than a threshold add new neurons which

centers is current input sample.

 Check the rules; delete rules whose firing counts are below some threshold.

 Check the membership function; delete nodes whose Euclidian distances

are lower than a threshold.

Step4 ; Use back propagation to get final classifiers

Each Layer operation in the NFC2 is defined as;

Layer1: Input layer. Each node represents an input. No operation is performed in this

layer.

96

Layer2: Fuzzification Layer. Each node arranged into L groups, each group

representing the if-part of a fuzzy rule.

 (7.35)

Where and are centers and spread of the membership functions for input .

Layer3: Fuzzy Inference Layer. Fuzzy AND operation is performed in this

layer.MIN operator is used as AND in the NFC2. Rule firing strength of each rule is

computed as follows ;

 , s=1,2,………,L, (7.36)

Layer4: Rule Consequent Layer.

 c=1,2,………,C, (7.37)

Layer5: Final Output Layer.

 c=1,2,……C (7.38)

In parameter tuning phase of proposed the NFC2, rival penalization

mechanism is adopted in to the gradient descent algorithm. In order to achieve this

following cost function defined as;

 (7.39)

For incremental learning case Equation 40 can be defined as;

 (7.40)

Change of Error with respect to the classifier C,
 is computed as;

97

 (7.41)

Rival error change is defined as negative of winner error, ;

 (7.42)

Change of with respect to the
 , propagation Layer5 to Layer4;

 (7.43)

Change of
 with respect to the

 , propagation Layer4 to Layer3;

 = (7.44)

Change of
 with respect to the

 , propagation Layer3 to Layer2;

 (7.45)

Change of
 with respect to the , propagation Layer2 to Layer1;

 (7.46)

Change of
 with respect to the , propagation Layer2 to Layer1;

 (7.47)

Gradient vector for winner membership function centers

 (7.48)

98

 (7.49)

Gradient vector for winner membership function spread ;

 (7.50)

 (7.51)

Gradient vector for rival membership function centers

 (7.52)

 (7.53)

Gradient vector for winner membership function spread ;

 (7.54)

 (7.55)

Finally new value of membership function centers and membership function spread

are updated as ;

 (7.56)

 (7.57)

 (7.58)

 (7.59)

99

7.4 Case Studies

The proposed Classifiers the NFC1 and the NFC2 are performed on two real world

problems. At initializing phase, all attributes and class outputs are normalized into

the unit interval [0 1]. Classifier validations are obtained by k-fold cross validation

procedure [135]. Classifier performance is measured on both testing and training

phase as;

 (7.60)

Root mean square error measurement is performed as;

 (7.61)

where m is the current pattern, M is the number of total patterns,
 is actual output

for cth classifier with mth pattern,
 is predicted output for cth classifier with mth

pattern and
 is the second winner classifier predicted output with mth pattern

Iris Dataset [134]

The data set contains 3 classes of 50 instances each, where each class refers to a type

of iris plant. One class is linearly separable from the other 2; the latter are not

linearly separable from each other. The attributes are as follows: -sepal length in

cm, -sepal width in cm, - petal length in cm, -petal width in cm. Three

classes: Iris Setosa, Iris Versicolour and Iris Virginica.

In the experiment, firstly iris classification task is performed by the NFC1.

Figure 7.7 shows the dynamic behaviors of the NFC1 classifiers during the learning

phase. According to 2 fold cross validation test, 75 patterns are used in training while

remainder 75 for testing. As shown in Figure 7.7, RMSE gets lower while epoch

numbers increases up to 30. However after epoch 30, no more improvement can be

accomplished by gradient descent algorithm. When Classifier Error graph is

analyzed, it can be easily observed that there is a problem with the NFC1 Classifier

100

with pattern 63, 70. According to iris classification accuracy results for the NFC1 at

Table7.1, it can be concluded that the NFC1 is successful in comparing to other soft

computing tools whose performance were given in Chapter6 and Section 6.3.

Table 7.1 Classifiers Performance for iris classification problems

 Training

Accuracy

Training

std

Testing

Accuracy

Training

std

rules

NFC1 96.67 0.94 96.67 0.94 5

NFC2 100 0 97.33 0.94 9

Figure 7.7 Classifiers behaviors at the end of Step2 for Iris Classification tasks with

the NFC2

0 10 20 30 40 50 60 70 80
0

0.5

1

C
la

s
s
if
ie

r
E

rr
o
r

Input Pattern

 Classifier Accurracy= 97.3333

0 10 20 30 40 50 60 70 80
0

0.5

1

F
in

a
l
C

la
s
s
if
ie

r
O

u
tp

u
t

Input Pattern

0 10 20 30 40 50 60 70 80
0

0.5

1

 C
la

s
s
if
ie

r
O

u
tp

u
t

Input Pattern

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

 R
M

S
E

Number of iteration

101

The NFC2 has different features as mentioned before that it has rule

adaptation mechanism and uses a RPCL type GD training algorithm. As shown in

Table7.1 classification accuracy for training phase is 100%, and 97.3 % in testing

phase. These outcomes are proof of the NFC2 robustness. Fig.7.8 demonstrates the

dynamic behavior of the NFC2 while training by RPCL type GD and rule adaptation

mechanism. At the end of epoch 100, new neurons or rules are added to system

according to error criteria, therefore it provide the NFC2 capable to learn all patterns

during the learning phase.

Figure 7.8 Classifiers behaviors at the end of Step4 for Iris Classification tasks with

the NFC2

0 10 20 30 40 50 60 70 80
0

0.2

0.4

C
la

s
s
if
ie

r
E

rr
o
r

Input Pattern

 Classifier Accurracy= 100

0 10 20 30 40 50 60 70 80
0

0.5

1

F
in

a
l
C

la
s
s
if
ie

r
O

u
tp

u
t

Input Pattern

0 10 20 30 40 50 60 70 80
0

0.5

1

 C
la

s
s
if
ie

r
O

u
tp

u
t

Input Pattern

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

 R
M

S
E

Number of iteration

102

In Fig.7.9, obtained membership functions at the end of step2 for Iris Setosa

the NFC2 classifiers are demonstrated. At the end of step3, rule adaption mechanism

is performed that yields to delete one rule from the NFC2 structure. After re tuning

by RPCL type GD training, final obtained membership functions for Iris Setosa the

NFC2 are shown in Fig.7.10.

Figure 7.9 Tuned membership functions for Iris Setosa at the end of step2

Figure 7.10 Tuned membership functions for Iris Setosa at the end of step4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
eb

er
sh

ip
 D

eg
re

e

 Input= 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
eb

er
sh

ip
 D

eg
re

e

 Input= 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
eb

er
sh

ip
 D

eg
re

e

 Input= 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
eb

er
sh

ip
 D

eg
re

e

 Input= 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 4

103

Classification for Iris Versicolour results are shown in Fig.7.11, and 7.12 at

the end of step2 and step4, respectively. At the end of 100 epoch that corresponds the

end of step2, rule adaptation mechanism is performed which causes to add one extra

rule to the NFC2.

Figure 7.11 Tuned membership functions for Iris Versicolour at the end of step2

Figure 7.12 Tuned membership functions for Iris Versicolour at the end of step4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 4

104

In Iris Virginica classification with the NFC2, the obtained membership functions at

the end of step2 and step4 are shown in Fig.7.13 and 7.14, respectively. As in the

Iris Versicolour classification one rule is added by rule adaptation mechanism at the

end of step3.

Figure 7.13 Tuned membership functions for Iris Virginica at the end of step2

Figure 7.14 Tuned membership functions for Iris Virginica at the end of step4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
eb

er
sh

ip
 D

eg
re

e

 Input= 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
eb

er
sh

ip
 D

eg
re

e

 Input= 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
eb

er
sh

ip
 D

eg
re

e

 Input= 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
eb

er
sh

ip
 D

eg
re

e

 Input= 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

M
e
b
e
rs

h
ip

 D
e
g
re

e

 Input= 4

105

Wisconsin Breast Cancer Dataset [134]

The Wisconsin Breast Cancer Dataset was compiled by Medical College of

Wisconsin and has been widely used to test the functionality of many classification

and rule extraction methods. It is composed by nine numerical attributes, describing

nine different blood ingredients and two different output classes, describing the

nature of the cancer, either malign or benign. The original dataset is composed of

699 observations of which 16 were deliberately excluded due to incomplete

descriptions of all nine dimensions. From the remaining 683 patterns, 444 belong to

the benign class, 239 to the malign class while 252 belong to the intersection of the

two classes. It is consequently a fairly dimensional dataset where the two classes

coincide considerably. Nine features of Wisconsin Breast Cancer data set contains

;Clump Thickness (UC), Uniformity of Cell Size (UC), Uniformity of Cell Shape

(UC), Marginal Adhesion (MA), Single Epithelial Cell Size (SE), Bare Nuclei (BN),

Bland Chromatin (BC), Normal Nucleoli (NN), Mitoses (Mit.) ranging from 1 to 10.

Output of data set either 0 for benign or 1 for malignant. Therefore it is a two class

problems.

The NFC1 and the NFC2 performance are shown in Table 7.2. It is clear that

the NFC2 has better performance than the NFC1 in both training and testing phase.

However the NFC2 needs more rule to perform classification task because rule

adaptation mechanism produces extra rule while RMSE couldn‘t be improved by GD

training. Although, training accuracy of the NFC2 beats the each type of SASCFC

which shown in Table 6.8 in Chapter 6, testing accuracy of the NFC2 is a bit behind

its counterparts.

Table 7.2 Classifiers performance for Wisconsin Breast Cancers classification

 Training

Accuracy

Training

std

Testing

Accuracy

Training

std

rules

NFC1 96.67 0.94 94.2 2.3 5

NFC2 98.81285 2.89859 95.30239 2.49026 41

106

7.5 Summary of Results and Conclusion

Rival penalized competitive based clustering for construction initial structure of

NeuroFuzzy classifiers namely NFC1 and NFC2, are proposed in this chapter. In the

NFC1, the found cluster centers and spread are used in construction of rule base and

winning occurrence numbers are used as rule weighting coefficients. After initial

structure obtained, a gradient descent base optimization is performed in parameter

tuning phase. The NFC2 structure is obtained a similar way with the NFC1. Main

difference of the NFC2 that it consists of fewer layers than the NFC1 because the

NFC2 has a winner takes all mechanism. This mechanism is also very similar with

Rival penalized competitive learning principle. So in parameter tuning phase, rival

penalization type gradient descent is performed for the NFC2. The other difference

of the NFC2 is that it is a dynamic network that during training phase its structure

changes according to system output error and similarity measurements.

107

CHAPTER 8

8. CONCLUSION

8.1 Summary and Conclusions

The main steps for construction fuzzy or a NeuroFuzzy based classifiers, controllers,

models and decision making systems contain followings;

i. Selection optimum input feature subset via removing redundant and noisy

features from input feature space

ii. Obtaining the number of the membership functions for each input.

iii. Obtaining the parameters of the membership functions

iv. Constructing rule base

v. Adjustment of the output threshold value which describes the boundaries of

each class.

In this thesis, systematic approaches are developed to accomplish above

mentioned steps. Firstly, common clustering algorithms as SC, K-means and FCM

which are widely used in constructing initial structure of fuzzy and NeuroFuzzy

systems are introduced and performed as a standalone classifiers for cervical cancer

diagnosis. The number of rules and the rule structure in a NeuroFuzzy system plays

an important role both system performance and training time. It is reviewed most

common Artificial Intelligence tools such as TS-FIS, ANFIS, RBF-NN and FFN and

their application to pap-smear classification task for diagnosis of cervical cancer.

Effects of the variations of number of cluster on true classification ratio are

demonstrated for TS-FIS, ANFIS based classifiers. The effects of the number of

108

neurons in hidden layers on true classification ratio for FFN and effect of spreads of

radial basis neurons for RBF are figured out. Feature selection also plays important

role on system performance because of irrelevant features and redundant features

cause misclassification and also cause increasing of the total computing time. By

using correlation based feature selection, feature ranking algorithm and projecting of

input space to a new space by using principle component analysis, size of the input

space are reduced. According to new input space which derived by integration of

features selection algorithms to the classifier, the classification results of four

classifiers; TS-FIS, ANFIS, RBF-NN and FFN, are shown and compared. The

proposed simple integrated correlation based future selection yields more acquired

results in comparing to the other feature selection algorithms. Although the

classification accuracy of classifiers with feature selection is not being improved but

the computational time is decreased. The computational time versus classification

accuracies for TS-FIS, ANFIS, RBF-NN and FFN classifiers with various features

space sizes are demonstrated. Main contribution of this thesis is that we developed

mainly two systematic ways in order to obtain fuzzy and NeuroFuzzy based

classifier.

8.1.1 Simulated Annealing Subtractive Clustering Based Fuzzy Classifier

A modified version of simulated annealing optimization algorithm is developed in

order to obtain proper fuzzy classifier. The modification on classical simulated

annealing provides to find solution with lower iteration. The optimization deals with

constructing fuzzy if-then rule base, finding output threshold value and selecting

most proper inputs for classification task. A hybrid feature selection that combines

filter and wrapper types feature selection techniques is also developed.

In order to compare the effects of feature selection, rule base and output

threshold optimization four SASCFC are proposed and test with 12 benchmark

classification problems. Experimental results show that, although satisfactory

improvement on the accuracy performance is not obtained by wrapper approach, it

enables to reduce the classifier complexity which directly influences on total rule

size and consumption time of the classifier. Hybrid feature selection approach

improves both performance and complexity of classifier and experimental results

109

show the best accuracies are achieved by this approach. SASCFC-Type2 is also

compared with 6 well known classification tools for 7 classification problems that it

has best testing accuracy for 4 of 7 classification tasks.

8.1.2 Rival Penalized Competitive Learning Based NeuroFuzzy Classifier

Rival Penalized Competitive Learning strategy is derived for obtain neuro fuzzy

based classifiers namely NFC1 and NFC2. Initial structures of both the NFC1 and

the NFC2 are constructed by RPCL type clustering technique. Although gradient

descent learning is preformed in parameter learning phase for both two classifiers, a

modified version of gradient descent algorithm is derived for the NFC2 which has a

winner takes all mechanism structure. This mechanism is also very similar with Rival

penalized competitive learning principle. So in parameter tuning phase, rival

penalization type gradient descent is performed for the NFC2. The other difference

of the NFC2 is that it is a dynamic network that during training phase its structure

changes according to system output error and similarity measurements. Both

Classifiers are tested and compared with two benchmark problems with classification

accuracy, standard deviation and classifier complexity. Although the NFC2 needs

more if-then rule, it has better performance that it is more accurate in testing and

training phase.

8.2 Future Works and Recommendations

Following topics will be our future studies;

i. Although Simulated Annealing is a powerful optimization tool for combinatory

optimization tasks, it needs too much training time. Especially temperature

cooling mechanism in conventional Simulated Annealing algorithm is either a

linear or a logarithmic function. A fuzzy control system can be used for

controlling the cooling schedule that probably causes to decrease iteration

number.

ii. Other optimization methods such as Genetic Algorithm, Hill Climbing, and

Particle Swarm can be used to obtain optimum Fuzzy and NeuroFuzzy

classifier.

110

9. REFERENCES

[1] Efe, O. M., Kaynak, O., Wilamowski, B. M. (2000). Stable Training of

Computationally Intelligent System by Using Variable Structure System

Techniques, IEEE Transaction on Ind. Elec., 47 (2), 487-496.

[2] Ranjan, R. , Awasthi, A. , Aggarawal, N. , Gulati, J. (2006). Applications of

Fuzzy and Neuro-Fuzzy in Biomedical Health Sciences, International

Conference Electro information Technology, IEEE., 60-65.

[3] Shitong, W., Duan, F., Min, X., Dewen , H. (2007). Advanced fuzzy cellular

neural network: Application to CT liver images, Artificial Intelligence in

Medicine, 39, 65-77.

[4] Othman, M. F., Shan Yau, T. (2007). Neuro Fuzzy Classification and Detection

Technique for Bioinformatics Problems, IEEE Proceedings of the First Asia

International Conference on Modelling & Simulation (AMS'07), 375-380.

[5] Arasu, G. T. (2007). NeuroFuzzy Agent Programming for Processing of

EEG/ECG/EMG, IEEE International Conference on Information Technology

(ITNG'07), 937-938.

[6] Barisci, N., Hardalac, F. (2007). Application of an adaptive neuro-fuzzy

inference system for classification of Behcet disease using the fast Fourier

transform method. Expert Systems, 24, 2, 123-130.

[7] Mahfouf, M., Abbod, M.F., Linkens D.A. (2001).A survey of fuzzy logic

monitoring and control utilisation in medicine, Artificial Intelligence in

Medicine, 21, 27-42.

[8] Aqil, M., Kita, I., Yano, B., Nishiyama, A. (2007). A comparative study of

artificial neural Networks and neuro-fuzzy in continuous modeling of the daily

and hourly behaviour of runoff, Journal of Hydrology, 337, 22–34.

[9] Gholipour, A., Araabi, B., Lucas, C. (2006). Predicting Chaotic Time Series

Using Neural and Neurofuzzy Models: A Comparative Study, Neural

Processing Letters, 24 (3), 217-239.

[10] Eker, Ġ.,Torun, Y. (2006). Fuzzy logic control to be as a conventional

method, Energy Conversion and Management, 47 (4), 377-394.

[11] Babuska, R., Verbruggen, H. (2003). Neuro-Fuzzy methods for nonlinear

system identification, Annual Reviews in Control, 73-85.

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(ranjan%20%20r.%3cIN%3eau)&valnm=Ranjan%2C+R.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20awasthi%20%20a.%3cIN%3eau)&valnm=+Awasthi%2C+A.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20aggarawal%20%20n.%3cIN%3eau)&valnm=+Aggarawal%2C+N.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20gulati%20%20j.%3cIN%3eau)&valnm=+Gulati%2C+J.&reqloc%20=others&history=yes

111

[12] Jang, J. S. R. and Sun, C. T. (1993). Functional equivalence between radial

basis function networks and fuzzy inference systems, IEEE Trans.

NeuralNetworks, 4, 156–159.

[13] Wu, S., Chiang, H., Lin, H., Lee, T. (2005). Neural-network-based optimal

fuzzy controller design for nonlinear systems, Fuzzy Sets and Systems, 154,

182–207.

[14] Gao, Y., Meng, J. R. (2003). Modelling, Control, and stability analysis of

non-linear system using generalized fuzzy neural networks, International

Journal of System Science, 34 (6), 427-438.

[15] Vieira, J., Morgado, D. F., Alexandre, M. (2004). Artificial neural networks

and neuro-fuzzy systems for modeling and controlling real systems: a

comparative study, Engineering Applications of Artificial Intelligence, 17 (3),

265-273.

[16] Isermann, R. (2005). Fault Diagnosis Systems. An Introduction from Fault

Detection to Fault Tolerance. Springer, Berlin.

[17] Korbicz, J., Kowal, M. (2007). Neuro-fuzzy networks and their application to

fault detection of dynamical systems. Engineering Applications of Artificial

Intelligence, 20 (5), 609-617.

[18] Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8 , 338-353

[19] Sean, N. G., Thunshun, W. L. (2008). Medical data mining by fuzzy

modeling with selected features, Artificial Intelligence in Medicine, 43, 195-

206.

[20] Mohamadi, H., Habibi, J., Abadeh, M. S., Sadi, H. (2008). Data mining with

a simulated annealing based fuzzy classification system, Pattern Recognition,

41, 1824 – 1833.

[21] Bezine, H., Derbel, N., Alimi, A. M. (2002). Fuzzy control of robot

manipulators: some issues on design and rule base size reduction. Eng Appl

Artif. Intell., 15, 401–416.

[22] Jang, R. J. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference

System, IEEE Transactions on Man, and Cybernetics, 23 (3), 665-683.

[23] Jang, R. J., and Sun, C.T. (1995). Neuro-fuzzy modelling and control,The

Proc. of the IEEE, 378-406.

[24] Hayashi, Y. and Buckley, J. J. (1994). Approximations between fuzzy expert

systems and neural networks, Int. J. Approx. Reas., 10, 63–73.

[25] Zhang, Y., Kandel, A. (1998). Compensatory Neurofuzzy Systems, IEEE

Transactions on Neural Networks, 9 (1), 83-105.

[26] Chakraborty, D., Pal, R. N. (2001). Integrated Feature Analysis And Fuzzy

Rule-Based System Identification In A Neuro-Fuzzy Paradigm, IEEE

112

Transactıons On Systems, Man, And Cybernetıcs—Part B: Cybernetıcs, 31 (3),

391-400.

[27] Azeem, M. F., Hanmandlu, M., Ahmad, N. (2000). Generalization of

Adaptive Neuro-Fuzzy Inference Systems, IEEE Transaction on Neural

Networks, 11 (6), 1332-1346.

[28] Azeem, M. F., Hanmandlu, M., Ahmad, N. (2003). Structure identification of

Generalized Neuro-Fuzzy Inference Systems, IEEE Transaction on Fuzzy

Systems, 11 (5), 666-681.

[29] Azeem, M. F., Hanmandlu, M., Ahmad N. (2005). Parameter Determination

for a Generalized Fuzzy Model, Soft Computing, 9, 211-221.

[30] Lee George, C. S., Wang, J. S. (2005). Self Adaptive Neuro Fuzzy Systems

;Structure and Learning, Proc. Of the Int. Conf. On Intelligent Robots and

Systems, 3861-3866.

[31] Javonovic, B. B., Relijin, S. I. (2004). Modified ANFIS Architecture-

Improving Efficienty of ANFIS Technique, Proc. On Neural Network In

Electrical Eng., NEUREL, 215-220.

[32] Figueiredo, M., Ballini, R., Andrade, M., Gomide, F. (2004). Learning

Algorithms For A Class Of Neurofuzzy Network And Application, IEEE

Transactions On Systems, Man, And Cybernetics—Part C: Applications And

Reviews, 34 (3), 293 -301.

[33] Treesatayapun, C., Uatrongit, S. (2005). Adaptive controller with fuzzy rules

emulated structure and identification, Engineering Applications of Artificial

Intelligence, 18, 603-615.

[34] Ouyang, C., Lee, W., Lee, S. (2005). A TSK-Type Neurofuzzy Network

Approach to System Modeling Problems, IEEE Transactions On Systems, Man,

And Cybernetics—Part B: Cybernetics, 35 (4), 751-767.

[35] Yu, W., Marco, A. (2005). System identification using hierarchical fuzzy

neural networks with stable learning algorithms, Proceedings of the 44th IEEE

Conference on Decision and Control, and the European Control Conference

2005 Seville, Spain, 171-183.

[36] Zanchettin, C., Minku, F. L., Ludermir T. (2005). Design of Experiments in

Neuro-Fuzzy Systems, In Proceeding of 5
th

 Int. Conf. On Hybrid Intelligent

System, 218-226.

[37] Wangm, L.X., Mendel, J.M. (1992). Generating fuzzy rules by learning from

examples, IEEE Trans. Syst. Man Cybern., 22, 1414–1427.

[38] Ishibuchi, H., Nozaki, K., Tanaka, H. (1992). Distributed representation of

fuzzy rules and its application to pattern classification, Fuzzy Sets and Systems,

52, 21–32.

113

[39] Abe, S., Lan, M.S. (1992). A method for fuzzy rules extraction directly from

numerical data and its application to pattern classification, IEEE Trans. Fuzzy

Syst., 3, 18–28.

[40] Mitra, S., Pal, S.K. (1994). Self-organizing neural network as a fuzzy

classifier, IEEE Trans. Syst. Man Cybern., 24, 385–399.

[41] Huang, Y. P. and Wang, S. F. (2007). Designing a fuzzy model by adaptive

macroevolution genetic algorithms, Fuzzy Sets and Systems, 113, 367–379.

[42] Ishibuchi, H. M. and Murata, T. (1997). Linguistic rule extraction from neural

networks and genetic-algorithm-based rule selection, in Proc. IEEE Int. Conf.

Neural Networks, Houston, TX, 2390–2395.

[43] Denna, M., Mauri, G., and Zanaboni, A. M. (1999). Learning fuzzy rules

with tabu search-an application to control, IEEE Trans. Fuzzy Syst., 7 (2), 295–

318.

[44] Bagis, A. (2003). Determining fuzzy membership functions with tabu search-

an application to control, Fuzzy Sets and Systems, 139, 209-225.

[45] Markos, G. et al. (2008). A methodology for automated fuzzy model

generation, Fuzzy Sets and Systems, 159, 3201 – 3220.

[46] Chen, Y., Yang, B., Abraham, A., Peng, L. (2007). Automatic Design of

Hierarchical Takagi–Sugeno Type Fuzzy Systems Using Evolutionary

Algorithms, IEEE Trans. Fuzzy Syst., 15 (3), 385-397.

[47] Kang, S. J. et al. (2000). Evolutionary design of fuzzy rule base for nonlinear

system modeling and control, IEEE Trans. Fuzzy Syst., 8 (1), 37–45.

[48] Du, K.-L. (2009). Clustering: A neural network approach, Neural Networks,

doi:10.1016/j.neunet.2009.08.007

[49] Chiu, S.L. (1994). Fuzzy Model Identification Based on Cluster Estimation,

Journal of Intelligent and Fuzzy System, 2, 267-278.

[50] Yager, R. and Filev, D. (1994). Essentials of Fuzzy Modeling and Control.

New York: Wiley.

[51] Guillaume, S. (2001). Designing Fuzzy Inference Systems from Data: An

Interpretability-Oriented Review, IEEE Trans. Fuzzy Syst., 9 (3), 426-442.

[52] Han, M., Sun, Y., Fan, Y. (2008). An improved fuzzy neural network based

on T–S model, Expert Systems with Applications, 34, 2905–2920.

[53] Demirli, K. and Khoshnejad, M. (2009). Autonomous parallel parking of a

car-like mobile robot by a neuro-fuzzy sensor-based controller, Fuzzy Sets and

Systems, doi:10.1016/j.fss.2009.01.019

[54] Paiva , S.C and Dourado, A. (2004). Interpretability and learning in neuro-

fuzzy systems, Fuzzy Sets and Systems, 147, 17–38.

114

[55] Zhao, L., et al.. (2008). Eliciting compact T–S fuzzy models using

subtractive clustering and co evolutionary particle swarm optimization,

Neurocomputing, doi:10.1016/j.neucom.2008.11.001

[56] Eftekhari, M., et al.. (2008). Eliciting transparent fuzzy model using

differential evolution, Applied Soft Computing, 8, 466–476.

[57] Eftekhari, M. and Katebi, S. D. (2008). Extracting compact fuzzy rules for

nonlinear system modelling using subtractive clustering, GA and unscented

filter, Applied Mathematical Modeling, 32, 2634-2651.

[58] Rantala, J., Koivisto, H. (2002). Optimized Subtractive Clustering for Neuro-

Fuzzy Models, International Conference on Fuzzy Sets & Fuzzy Systems,

FSFS’02, Switzerland.

[59] Demirli, K., Cheng, S. X., Muthukumaran, P. (2003). Subtractive clustering

based modeling of job sequencing with parametric search, Fuzzy Sets and

Systems, 137, 235–270.

[60] Ma, J., Wang, T. (2006). A cost function Approach to Rival Penalized

Competitive Learning, IEEE Trans. On System Man and Cybernetics, Part B,

36 (4), 722-736.

[61] Nielsen, R. H. (1987). Counterpropagation Networks, Applied Opt., 26, 4979-

4984.

[62] Ahalı, S. C. et al. (1990). Competitive Learning Algorithm for Vector

Quantization, Neural Networks, 3 (3), 277-291.

[63] Xu, L., et al. (1992). Unsupervised and Supervised Classification by Rival

Penalized Competitive Learning, 11 Int. Conf. Pattern Recognition, The

Netherlands, Aug.30, Sep 3, 1, 672-675.

[64] Cheung, Y. M. (2005). On Rival Penalization Controlled Competitive

Learning for Clustering with Automatic Cluster Number Selection, IEEE

Transaction On Knowledge and Data Engineering, 17 (11), 1583-1588.

[65] Zhao, Z-S. et al. (2009). An evolutionary RBF Networks Based on Rival

Penalized Competitive Learning and Its Application in Fault Diagnosis, Proc.

of 8
th

 Inter. Conference on Machine Learning and Cybernetics, Boading, 12-15

Jully, 1005-1009.

[66] Metropolis, N. et al. (1953). Equation of state calculation by fast computing

machines, J. Chem. Phys., 21, 1087–1092.

[67] Kirkpatrick, S., Gelatt, C.D., Vecchi, M. P. (1983). Optimization by

simulated annealing, Science, 220, 671–680.

[68] Lee, Y., Lee, J. S., Lee, S. Y., Park, C. H. (2007) Improving Generalizationg

capability of Neural Networks based on Simulated Annealing, IEEE Congress

on Evolutionary Computation (CEC2007), 3447-3453.

115

[69] Wang, X.Y., Garibaldi, J. (2005). Simulated annealing fuzzy clustering in

cancer diagnosis, Eur. J. Inf., 61–70.

[70] Haber, R. E. et al. (2009). An optimal fuzzy control system in a network

environment based on simulated annealing. An application to a drilling process,

Appl. Soft Computing, 9 (3), 889-895.

[71] Alizadeh, S., Ghazanfari, M. (2008). Learning FCM by chaotic simulated

annealing, Chaos, Solutions & Fractals (2008),

doi:10.1016/j.chaos.2008.04.058.

[72] Lin, S., Tseng, T., Chou, S. and Chen, S. (2008). A simulated annealing

based approach for simultaneous parameter optimization and feature selection

of backpropagation networks, Expert System with Application, 34, 1491-1499.

[73] Abe, N., Kudo, M. (2006). Non Parametric Classifier –Independent Feature

Selection, Pattern Recognition, 39, 737-746.

[74] Chow, T. W. S., Wang, P. and Ma, E. W. (2008). A New Feature Selection

Scheme Using a Data Distribution Factor for Unsupervised Nominal Data,

IEEE Transactions On Systems, Man, And Cybernetıcs—Part B: Cybernetıcs,

38 (2), 499-502.

[75] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature

selection, J. Mach. Learn. Res, 3, 1157–1182.

[76] Liu, H., Motoda, H. (1998). Feature Selection for Knowledge Discovery and

Data Mining, Kluwer Academic Publishers.

[77] Kohavi, R., John, G. H. (1998). Wrappers for Feature Subset Selection,

Artificial Intelligence, 97 (2), 273-324.

[78] Sean, N. G., Thunshun, W. L. (2008). Medical data mining by fuzzy

modeling with selected features, Artificial Intelligence in Medicine, 43, 195-

206.

[79] Pizzi, N. J., Pedrycz, W. (2008). Effective Classification using feature

selection and fuzzy integration, Fuzzy Sets and Systems, 159, 2859-2872.

[80] Chiang, J. H., Ho, S. H. (2008). A Combination of Rough based Feature

Selection and RBF Neural Network for classification using Gene Expression,

IEEE Transaction on Nanobioscience, 7 (1), 91-100.

[81] Atay, M. F. (2008). Support Vector Machines Combined with Feature

Selection for Breast Cancer Diagnosis, Expert System with Applications,

doi.10.1016 /j.eswa.2008.1.09.

[82] Karabatak, M., Ince, C. M. (2009). An expert system for detection of breast

cancer based on association rules and neural network, Expert Systems with

Applications, 36, 3465–3469.

116

[83] Chou, C., et al. (2008). Network Intrusion Detection Design Using Feature

Selection of Soft Computing Pradigms, Int . Journal Com. Intelligence, 4 (3),

196-208.

[84] Huang C. J., et al. (2008). Applications of wrapper Approach and Composite

Classifier to the Stock Trend Prediction, Expert System with applications, 34,

2870-2878.

[85] Mamdani, E. H., Assilian, S. (1975). An Experiment in Linguistic Synthesis

with Fuzzy Logic Controller, International Journal of Man-Machine Studies, 7

(1), 1-13.

[86] Takagi, T., Sugeno, M. (1985). Fuzzy identification of a system and its

application to modeling and control, IEEE Trans. On Systems, Man and

Cybernetics, 15, 135-156.

[87] Sugeno, M, Kang, G. T. (1988). Structure Identification of Fuzzy Models,

Fuzzy Sets and Systems, 28, 18-35.

[88] Abraham, A. (2005). Handbook of Measuring System Design, edited by Peter

H. Sydenham and Richard Thorn. John Wiley & Sons, Ltd. ISBN: 0-470-

02143-8

[89] Kosko, B. (1991). Neural Networks and Fuzzy Systems. Englewood Cliffs,

NJ: Prentice-Hall.

[90] Abraham A. (2005).Adaptation of Fuzzy Inference System Using Neural

Learning, Studies in Fuzziness and Soft Computing, Springer Berlin ,

Heidelberg, 181, 53-80.

[91] Czogala, E., Leski, J. (2000). Fuzzy and Neuro-Fuzzy Intelligent Systems,

Physica- Verlag Heidelberg, New York.

[92] Takagi, H. (1990). Fusion technology of fuzzy theory and neural network—

Survey and future directions, in Proc. Int. Conf. Fuzzy Logic and Neural

Networks, Iizuka, Japan, 13–26.

[93] Lin, C. T. and Lee, C. S. G. (1991). Neural Network based Fuzzy Logic

Control and Decision System, IEEE Transactions on Comput. , 40 (12), 1320-

1336.

[94] Berenji, H. R. and Khedkar, P. (1992). Learning and Tuning Fuzzy Logic

Controllers through Reinforcements, IEEE Transactions on Neural Networks,

3, 724-740.

[95] Nauck, D. and Kruse, R. (1994). NEFCON-I: An X-Window Based

Simulator for Neural Fuzzy Controllers. In Proceedings of the IEEE

International Conference on Neural Networks, Orlando, 1638-1643.

[96] Nauck, D. and Kruse, R. (1995). NEFCLASS: A Neuro-Fuzzy Approach for

the Classiffication of Data, In Proceedings of ACM Symposium on Applied

Computing, George K et al (Eds.), Nashville, ACM Press, 461-465.

117

[97] Nauck, D. and Kruse, R. (1999). Neuro-Fuzzy Systems for Function

Approximation, Fuzzy Sets and Systems, 101, 261-271.

[98] Sulzberger, S. M., Tschicholg-Gurman, N. N., Vestli, S. J. (1993). FUN:

Optimization of Fuzzy Rule Based Systems Using Neural Networks, In

Proceedings of IEEE Conference on Neural Networks, San Francisco, 312-316.

[99] Feng, J. C. and Teng, L.C. (1998). An Online Self Constructing Neural Fuzzy

Inference Network and its Applications, IEEE Transactions on Fuzzy Systems,

6 (1), 12-32.

[100] Tano, S., Oyama, S. and Arnould, S. (1996). Deep combination of Fuzzy

Inference and Neural Network in Fuzzy Inference, Fuzzy Sets and Systems, 82

(2), 151-160.

[101] Kasabov, N. and Qun, S. (1999). Dynamic Evolving Fuzzy Neural Networks

with m-out- of-n Activation Nodes for On-line Adaptive Systems, Technical

Report TR99/04, Department of information science, University of Otago, New

Zealand, 1999.

[102] Kasabov, N. (1998). Evolving Fuzzy Neural Networks - Algorithms,

Applications and Biological Motivation, In Yamakawa T and Matsumoto G

(Eds), Methodologies for the Conception, Design and Application of Soft

Computing, World Scientific, 271-274.

[103] Cordon, O. et al. (2001). Genetic Fuzzy Systems: Evolutionary Tuning and

Learning of Fuzzy Knowledge Bases, World Scientific Publishing Company,

Singapore.

[104] Mathworks (2001) Fuzzy logic toolbox for use with Matlab. User’s guide,

version 2. Natick, MA: The Mathworks, Inc.

[105] Rumelhart, D. E., et al. (1986). Learning internal representations by error

propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed

processing. Cambridge, MA: MIT Pres.

[106] Demuth, H. et al. (2010). Neural Network toolbox user’s guide. The

Mathworks Inc.

[107] Nauck, N., Klawonn, F. and Kruse, F. (1997). Foundations of Neuro–Fuzzy

Systems. Chichester, U.K. Wiley.

[108] Taha, I. A. and Ghosh, I. A. (1999). Symbolic interpretation of artificial

neural networks, IEEE Trans. Knowl. Data Eng., 11, 448–463.

[109] Mitra, S., Hayachi, Y. (2000) Neurofuzzy Rule Generation: Survey in Soft

Computing Framework, IEEE Tran. On Neural Networks, 11 (3), 748-768.

[110] Yupu, Y., Xiaoming, X. and Wengyuan, Z. (1988). Real-time stable self-

learning FNN controller using genetic algorithm, Fuzzy Sets Syst., 100, 173–

178.

118

[111] Farag, W. A., Quintana, V. H. and Lambert-Torres, G. (1988). A genetic-

based neuro–fuzzy approach for modeling and control of dynamical systems,

IEEE Trans. Neural Networks, 9, 756–767.

[112] Chopra S. et al. (2006). A Neuro Fuzzy Learning and Its Applications to

Control System , International Journal of Comp. Intelligent, 3 (1), 72-78.

[113] Jang, J.-S. R., Sun, C.-T., Mizutani, E. (1997). Neuro- Fuzzy and Soft

Computing - A Computational Approach to Learning and Machine Intelligence,

Prentice Hall.

[114] Hartigan, J. A. and Wong, M. A. (1979). A k-means clustering algorithm,

Applied Statistics, 28, 100-108.

[115] Ling, J., Wiederkehr, U., Cabiness, S. (2008). Application of flow cytometry

for biomarker-based cervical cancer cells detection, Wiley InterScience,

Diagnostic Cytopathology, 36 (2), 76-84.

[116] Byriel, J. (1999). Neuro-Fuzzy Classification of Cells in Cervical Smears,

MSc Thesis, Technical University of Denmark, Dept. of Automation.

[117] http://fuzzy.iau.dtu.dk/smear/

[118] Matthews, B.W., (1975). Comparison of the predicted and observed

secondary structure of T4 phage lysozyme, in Biochemica et Biophysica Acta,

405, 442-551.

[119] Koss, L. (2000). The Application of PAPNET to Diagnostic Cytology", in

P.Lisboa, E.Ifeachor,P.Szczepaniak (Eds.), Artificial Neural Networks in

Biomedicine, 51-68.

[120] Pedrycz, W., Oliveira, J. V. (2007). Advances in Fuzzy Clustering and its

Applications, John Wiley & Sons Inc., ISBN 978-0-470-02760-8.

[121] Ricketts, I. W. (1992). Cervical cell image inspection- a task for artificial

neural networks, Network, 3, 15 – 18.

[122] Palcic, B., et al. (1992). Comparison of three different methods for

automated classification of cervical cells, Analytical Cellular Pathology, 4,

429- 441.

[123] Mango, L. J. (1994). Computer-assisted cervical cancer screening using

neural networks, Cancer Letters, 77, 155 - 162.

[124] Zhong, L., Najarian, K. (2001). Automated classification of Pap smear tests

using neural networks Neural Networks, Proceedings. IJCNN '01. (0-7803

7044-9).

[125] Ampazis, N., et al.(2004). Pap-smear classification using efficient second

order neural network training algorithms. Lecture Notes in Artificial

Intelligence Subseries of Lecture Notes in Computer Science, 3025, 230-245.

119

[126] Dounias, G., et al. (2006). Automated identification of canceroussmears

using various competitive intelligent techniques, Oncology Reports, 15, 1001–

1006.

[127] Marinakis, Y. et al. (2007). Particle swarm optimization for pap-smear

diagnosis, Expert Systems with Applications (2007), doi:10.1016/j.eswa.

[128] Torun, Y., Tohumoğlu, G. (2008). Veri Kümeleme Yöntemlerininin Rahim

Ağzı Kanserinde Kullanımı., Akıllı Sistemlerde Yeni Uygulamalar Semp.,

ASYU, INISTA.

[129] Hall, M. A. (1998). Correlation-based feature selection for machine

learning. PhD thesis, Department of Computer Science, University of

Waikato, Hamilton, New Zealand.

[130] Mathworks (2010) Bioinformatic Tool Box, User’s guide, The Mathworks,

Inc.

[131] Xiuju, F. and Wang, L. (2003). Data Dimensionality Reduction With

Application to Simplifying RBF Network Structure and Improving

Classification Performance IEEE Trans. On Systems, Man and Cybernetics,

Part B, Cybernetics, 33 (3), 399-410.

[132] Yijuan, L., et al. (2007). Feature Selection Using Principal Feature Analysis,

ACM Multimedia, Augsburg, Germany, September, 23-29.

[133] Romeijn, H. E., et al. (1999). New reflection generator for simulated

annealing in mixed-integer/continuous global optimization, Journal of

Optimization Theory and Applications, 101, 403–427.

[134] Hettich, S., Blake, C. L., and Merz, C. J. (1998). UCI repository of

machinelearning databases. Irvine, CA: Department of Information

andComputer Sciences, University of California. Available from

:http://www.ics.uci.edu/~mlearn/MLRepository.html.

[135] Weiss, S. M., Kulikowski, C. A. (1991). Computer Systems that Learn,

Morgan Kaufmann Publishers, San Mateo.

[136] Bacardit, J. (2004), Pittsburgh Genetics-Based Machine Learning in the

Data Mining era: Representation, Generalization, and Run-time, Ramon Llull

University, Barcelona, Catalonia, Spain.

[137] Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1 (4), 224-

227.

[138] Chou, C. H., Su, M. C., and Lai, E. (2004). A new cluster validity measure

and its application to image compression Sergios theodoridis, Pattern Anal.

Applic., 7. 205-220.

120

APPENDIX

A1. Programme Codes (Matlab m-file Programming)

%%%

anneal_for_multiminima.m

%modified simulated annealing for searching global optima
function [minimum,fval,hata,energy,T_,itry,parent,x] =

anneal_for_multiminima(loss, parent, options)
clf

load rastring_data;

def = struct(...

 'CoolSched',@(T) (.8*T),...

 'Generator', @(x) (x+(randperm(length(x))==length(x))*randn),...

 'InitTemp',1,...

 'MaxConsRej',1000,...

 'MaxSuccess',1,...

 'MaxTries',20,...

 'StopTemp',1e-6,...

 'StopVal',-Inf,...

 'Verbosity',1);

options=def;

% main settings

newsol = options.Generator; % neighborhood space function

Tinit = options.InitTemp; % initial temp

minT = options.StopTemp; % stopping temp

cool = options.CoolSched; % annealing schedule

minF = options.StopVal;

max_consec_rejections = options.MaxConsRej;

max_try = options.MaxTries;

max_success = options.MaxSuccess;

report = options.Verbosity;

k=1 % boltzmann constant expp=0;itry = 0;success = 0;finished = 0;consec =

0;T = Tinit;prop=0;

total = 0;ul=5;ll=-5;limits=[-5 -5 ; 5 5];tt=1;ttt=1;pt=1;t=1;b=0;

parent=[-5 -5];

loss=@(p)rastriginsfcn(p);

initenergy = loss(parent);

oldenergy = initenergy;

while ~finished;

 itry = itry+1;

 current = parent;

 if T<1e-3

 funct=1;

 threshold=1e-6;

 max_try=50;

 max_success=40;

 max_consec_rejections=40;

 newsol=@(x)(x+(randperm(length(x))==length(x))*randn*T*5);

 else

 funct=2;

 max_try=50;

 max_success=40;

 threshold=1e-6

121

 max_consec_rejections=40;

 newsol=@(x)(x+(randperm(length(x))==length(x))*randn);

 end

 % % Stop / decrement T criteria

 if itry >= max_try || success >= max_success ||consec >=

max_consec_rejections;

 if T < minT ;

 finished = 1;

 total = total + itry;

 break;

 else

 x(tt,:)=[parent];

 b=b+1;

 figure(3);

line(parent(1),parent(2),'Color','r','LineStyle','.','LineWidth',2,'Marker',

'+');

 text(parent(1),parent(2),['T =

',num2str(b)],'Color','b','FontSize',8)

 T = cool(T); % decrease T according to cooling schedule

 T_(tt)=oldenergy;

 fprintf(1,' T = %5.10f, loss = %5.10f,x1 = %5.5f,x2 = %5.5f

\n',T...

 ,oldenergy,parent(1),parent(2));

 energy(t)=oldenergy;

 t=t+1;

 total = total + itry;

 itry = 1;

 success = 1;

 tt=tt+1;

 end

 end

 if funct==0

 newparam=[(ul-ll)*rand+ll (ul-ll)*rand+ll];

 else

 newparam = newsol(current);

 end

 while ~all(newparam<=limits(2,:)) | ~all(newparam>=limits(1,:))

 newparam = newsol(current);

 end

 newenergy = loss(newparam

 fprintf(1,' newenergy = %7.5f,\',newenergy);

 if (newenergy < minF

 parent = newparam

oldenergy = newenergy

 fprintf(1,' newenergy < minF = %7.5f,\n',newenergy)

 break

 end

 if (oldenergy-newenergy > 1e-6)

parent = newparam;

oldenergy = newenergy;

 success = success+1;

consec = 0; fprintf(1,'

ACCEPTED\n');

 fprintf(1,' oldenergy-newenergy>1e-6 newparam = %7.5f,\n',newparam);

 else

if (rand < exp((oldenergy-newenergy)/(k*T)));

 parent = newparam;

 oldenergy = newenergy;

 success = success+1;

 prop=prop+1;

 fprintf(1,' ACCEPTED PROP\n');

 ttt=ttt+1 ;

 pt =pt+1;

 else

 consec = consec+1;

 fprintf(1,' REJECTED\n');

 end

122

 end

 p(tt)=pt;

 pt=0;

end

minimum = parent;

fval = oldenergy;

hata=minn-fval;

if report;

 fprintf(1, ' \nInitial temperature: \t%g\n', Tinit);

 fprintf(1, ' Final temperature: \t%g\n', T);

 fprintf(1, ' Consecutive rejections: \t%i\n', consec);

 fprintf(1, ' Number of function calls:\t%i\n', total);

 fprintf(1, ' Total final loss: \t%g\n', fval);

 fprintf(1, ' Probablity of Acceptance: \t%g\n', prop);

end

xx=10:.1:20;

n =length(xx);

figure(1);meshc(x1,x2,A);

figure(2);plot(T_);

figure(3);line(x(:,1),x(:,2),'Color','r','LineWidth',2,'Marker','+');

hold on

figure(3);contour(x1,x2,A);

123

%%%

anneal_tsk.m

%SIMULATED ANNEALING SUBTRACTIVE CLUSTERING BASED FUZZY

CLASSIFIER
%%

function [minimum,fval] = annealtsk(func,parent,options)

diary annealtskSI2009

c = fix(clock);

diary on

 initdata;

 clear all;

 load initdata

 [m n]=size(in_all)

 %%

 def = struct(...

 'CoolSched',@(T) (.8*T),...

 'Generator',@(x) (x+(randperm(length(x))==length(x))*randn/100),...

 'InitTemp',1,...

 'MaxConsRej',1000,...

 'MaxSuccess',5,...

 'MaxTries',20,...

 'StopTemp',5e-5,...

 'StopVal',-inf,...

 'Verbosity',1);

 options=def;

 %% MAIN SETTING

 newsol = options.Generator; % neighborhood space function

 Tinit = options.InitTemp; % initial temp

 minT = options.StopTemp; % stopping temp

 cool = options.CoolSched; % annealing schedule

 minF = options.StopVal;

 max_consec_rejections = options.MaxConsRej;

 max_try = options.MaxTries;

 max_success = options.MaxSuccess;

 report = options.Verbosity;

 k = 1; % boltzmann constant

 %% CONSTANT

 itry = 0;success = 0;finished = 0;consec = 0;

 T = Tinit; parent=.7; defuzz=.5;it=1; ul=1;uld=.7; lld=.2; ll=.5;

 k=1; md=1;tt=1; ttt=1;tttt=1;

 %% INITILIASE

 [initenergy,performance] = tsk(parent,index,in_all,out_all,defuzz);

 oldenergy = initenergy;

 total = 0;

 prop=0;

 fprintf(1,'\n T = %7.5f, loss = %10.5f,performance = %10.5f

\n',T,oldenergy,performance);

 energy(1)=0;

 energy(2)=oldenergy;

 %% SA ALGORITHM

 while ~finished;

 itry = itry+1; % just an iteration counter

 current = parent;

 newindex=index;

 currentdefuzz=defuzz;

 if T<1e-4 % ıf temprature is low ;new options

 funct=1;

 threshold=1e-6;

 max_try=150;

 max_success=75;

 max_consec_rejections=50;

 else %if temprature is hıgh ;new options

 funct=0;

 max_try=200;

 max_success=100;

 threshold=1e-6;

124

 max_consec_rejections=75;

 end

 % % Stop / decrement T criteria

 if itry >= max_try || success >= max_success ||consec >=

max_consec_rejections;

 if T < minT % % || oldenergy==0;

 finished = 1;

 total = total + itry;

 break;

 else

 T = cool(T); % decrease T according to cooling schedule

 fprintf(1,' T = %7.5f, loss = %10.5f , parent= %10.5f,

defuzz=%10.5f, Testperf = %10.5f,Trainperf = %10.5f\',T,

oldenergy,parent,defuzz,perform,newperformancetrain);

 fprintf(1,' %3.3g\',index);

 fprintf(1,' # of Features = %5.0f\',length(newindex))

 fprintf(1,' \n');

 itry = 1;

 success = 1;

 consec=0;

 tt=tt+1;

 ttt=ttt+1;

 energy(tt)=oldenergy;

 end

 end

 if funct==0 % if temprature is high then use random vector for

obtaining new sol'n

 newparam=(ul-ll)*rand+ll;

 newdefuzz=(uld-lld)*rand+lld;

 else % if temprature is low then use neighborhood search for new

sol'n

 newparam = newsol(current);

 newdefuzz=newsol(currentdefuzz);

 end

 % produce new defuzz sol'n

 if newdefuzz<ll ||newdefuzz>ul % if new sol'n out of limit

 newdefuzz=(uld-lld)*rand+lld;

 %fprintf(1,' Limit asimi var= %10.0f\n',newparam);

 end

 if newparam<ll ||newparam>ul % if new sol'n out of limit

 newparam=(ul-ll)*rand+ll;

 %fprintf(1,' Limit asimi var= %10.0f\n',newparam);

 end

 newindex=randint(n,1,[0,1])';

 newindex=find(newindex>0);

 newindex=union(subindex,newindex);

 newindex=intersect(index3,newindex);

[newenergy,performance,hatax,ctr,pztf,ngtf,tpztf,tngtf,performancetrain,test

std,trainstd] = tsk(newparam,index,in_all,out_all,newdefuzz) ; % calculate

the output for current values

 perftr(it)=performancetrain;

 perfts(it)=performance;

 if mean(energy)<1e-2

 fnished=1;

 fprintf(1,'No more optimisation will be done\n');

 end

 rmsee(itry)=newenergy;

 if (newenergy < minF) % if minimisation has done

 parent = newparam;

 defuzz=newdefuzz;

 index=newindex;

 fprintf(1,' ACC newenergy < minF parent= %10.0f\n',parent);

 oldenergy = newenergy;

 newhata=hatax;

 newctr=ctr;

 newteststd=teststd;

125

 newtrainstd=trainstd;

 break

 end

 if (oldenergy-newenergy > threshold) % if new parameter cause

improvement

 parent = newparam; % take current radii as radii

 defuzz=newdefuzz; %% take current defuzz as defuzz

 index=newindex; %% take current Features as Features

 oldenergy = newenergy; % take current energy as energy

 perform=performance;

 newhata=hatax;

 newctr=ctr;

 newperformancetrain=performancetrain;

 newteststd=teststd;

 newtrainstd=trainstd;

 newngtf=ngtf;

 newpztf=pztf;

 newtngtf=tngtf;

 newtpztf=tpztf;

 success = success+1; %

 consec = 0;

 fprintf(1,' SOLN ACC LOWER \n');

 else

 if (rand < exp((oldenergy-newenergy)/(k*T)));% if the new sol

is not better but it is a candicate for next iteration

 parent = newparam; % take current radii as radii

 defuzz=newdefuzz; %take current defuzz as defuzz

 index=newindex; %take current Features as Features

 oldenergy = newenergy;% take current energy as energy;

 newhata=hatax;

 newctr=ctr;

 perform=performance;

 newperformancetrain=performancetrain;

 newteststd=teststd;

 newtrainstd=trainstd;

 newngtf=ngtf;

 newpztf=pztf;

 newtngtf=tngtf;

 newtpztf=tpztf;

 success = success+1;

 prop=prop+1;

 p(ttt,tttt)=prop;

 tttt=tttt+1;

 fprintf(1,'SOLN ACC PROP \n');

 else % if current sol is not better then reject it

 consec = consec+1;

 fprintf(1,'SOLN REJECTED \n');

 end

 fprintf(1, ' Number of succeess : \t%i\n', success);

 end

 end

 %%

 %% ALGORTIHM OUTPUTS

 newindex=index;

 fval = oldenergy;

save('annealtsk','rmsee','newindex','parent','fval','energy','defuzz','newha

ta','newctr','newperformancetrain','newngtf','newpztf','newtngtf','newtpztf'

,'newteststd','newtrainstd','perftr','perfts');

 if report;

 fprintf(1, '\n Initial temperature: \t%g\n', Tinit);

 fprintf(1, ' Final temperature: \t%g\n', T);

 fprintf(1, ' Consecutive rejections: \t%i\n', consec);

 fprintf(1, ' Accaptence probablity : \t%i\n', prop);

 fprintf(1, ' Number of function calls:\t%i\n', total);

 fprintf(1, ' Number of iteration : \t%i\n', itry);

 fprintf(1, ' final tsk_y2sa value : \t%g\n', fval);

 fprintf(1, ' Final Substractive Cl Radii: \t%g\n', parent);

126

 fprintf(1, ' : \t%g\', newindex);

 end

 d = fix(clock)

 ni=length(nfis.input)

 for i=1:ni

 [x,mf] = plotmf(nfis,'input',ni);

 xx(ni)={x};

 mff(ni)={mf};

 subplot(6,1,ni), plot(xx(ni),mff(ni));

 end

 u=[newctr ;newngtf];

 u=[newctr;newngtf;newpztf];

 u=[newctr;newngtf;newpztf];

 a=newctr + newhata;

 u=[a;newctr;newngtf;newpztf;newtngtf;newtpztf]

 sensivity=mean(100*newtpztf./(newtpztf+newngtf));

 specificity=mean(100*newtngtf./(newtngtf+newpztf));

 Positive_predictive_value=mean(100*newtpztf./(newtpztf +newtngtf));

 Negative_predictive_value=mean(100*newtngtf./(newtpztf +newtngtf));

 performanceoftesting=mean(100*newctr./(newctr+newhata));

 fprintf(1, ' sensivity :\t%g\n',sensivity);

 fprintf(1, ' specificity :\t%g\n',specificity);

 fprintf(1, ' Positive_predictive_value

:\t%g\n',Positive_predictive_value);

 fprintf(1, ' Negative_predictive_value

:\t%g\n',Negative_predictive_value);

 fprintf(1, ' Performance of Testing

:\t%g\n',performanceoftesting);

 fprintf(1, ' Standard Deviation of Testing :\t%g\n',newteststd);

 fprintf(1, ' Performance of Training

:\t%g\n',newperformancetrain);

 fprintf(1, ' Standard Deviation of Training:\t%g\n',newtrainstd);

% end

diary off

127

%%%

tsk.m

%Takagi Sugeno type fuzzy classifier with SC for 2 class

problems

function

[hata,performance,hatax,ctr,pztf,ngtf,tpztf,tngtf,performancetrain,teststd,t

rainstd,nfis] = tsk(parent,newindex,in_all,out_all,defuzz)

clear hata;

clear ctr;

in_allx=in_all;

t=1;

tt=1;

N=10;

indices = crossvalind('Kfold',out_all,N);

for k=1:N

 testx = (indices == k); trainx = ~testx;

 Ev_i=in_allx(testx,:);

 Ev_o=out_all(testx,:);

 Tr_i=in_allx(trainx,:);

 Tr_o=out_all(trainx,:);

 nfis=genfis2(Tr_i,Tr_o,parent);

 [mm nn]=size(Tr_i);

 for t=1 :size(nn)

 mmin=min(Tr_i(:,t));

 mmax=max(Tr_i(:,t));

 nfis.input(t).range=[0 1];

 end

 warning off all

 [mt nt]=size(Tr_i);

 ctrtrain(k)=0;

 trainaccu=evalfis(Tr_i,nfis);

 for i=1:mt

 if trainaccu(i)< defuzz

 trainaccu(i)=0;

 else

 trainaccu(i)=1;

 end

 end

 for i = 1:mt

 if trainaccu(i)==Tr_o(i)

 ctrtrain(k) = ctrtrain(k) + 1;

 end

 end

 [mm nn]=size(Ev_i);

 y=evalfis(Ev_i,nfis);

 yout=y;

 n=length(y);

 for i=1:mm

 if y(i)<= defuzz

 y(i)=0;

 else

 y(i)=1;

 end

 end

 ctr(k) = 0;

 pztf(k)=0;

 ngtf(k)=0;

 tpztf(k)=0;

 tngtf(k)=0;

 for i = 1:mm

 if y(i)==Ev_o(i)

 ctr(k) = ctr(k) + 1;

 if y(i)==1

128

 tpztf(k)= tpztf(k)+1;

 else

 tngtf(k)=tngtf(k)+1;

 end

 else

 if y(i)==0;

 pztf(k)=pztf(k)+1;

 else

 ngtf(k)=ngtf(k)+1;

 end

 ab(tt,:)={Ev_i(i,:)} ;

 a(tt)=Ev_o(i);

 tt=tt+1;

 end

 end

 hatax(k)=mm-ctr(k);

 hatatrain(k)=mt-ctrtrain(k);

 rmse(k)= norm(y-Ev_o)/sqrt(length(y));

end

performance=100*ctr./(ctr+hatax);

teststd=std(performance);

performancetrain=100*ctrtrain./(ctrtrain+hatatrain);

trainstd=std(performancetrain);

performance=mean(performance);

hata=100-performance;

performancetrain=mean(performancetrain);

rmse=mean(rmse);

fprintf(1,'parent=%5.5f,defuzz=%5.5f \',parent,defuzz);

fprintf(1,',RMSE=%5.5f,hata=%5.5f,Accuraccy=%5.5f\',rmse,hata,performance)

fprintf(1,'%2.0f \',newindex);

fprintf(1,'# of Features = %5.0f\',length(newindex))

save ('tsk_y2saBC','nfis','ab');

fprintf(1,' \n');

129

%%%

İnitdata.m

%initiliaze the data for classification task

% fprintf(1,'Select one of the problem and type its corresponding

number\n');

% fprintf(1,' 1-) PAP SMEAR PROPLEM\n');

% fprintf(1,' 2-) WISCONSIN BREAST DATA\n');

% fprintf(1,' 3-) IONOSHPERE STRUCTURE \n');

% fprintf(1,' 4-) PIMA INDIANS DIABETS \n');

% fprintf(1,' 5-) IONOSHPERE STRUCTURE \n');

% fprintf(1,' 6-) HOUSING \n');

% fprintf(1,' 7-) BUPA LIVER \n');

% fprintf(1,' 8-) AUSTRALIAN CREDIT APROVAL \n');

% fprintf(1,' 9-) GERMAN CREDIT APROVAL \n');

% fprintf(1,'10-) HEART DISEASE \n');

% fprintf(1,'11-) SONAR \n');

% fprintf(1,'12-) VEHICLEI \n');

% fprintf(1,'13-) VOWEL \n');

% fprintf(1,'14-) GLASS CLASSIFICATION \n');

% fprintf(1,'15-) WINE RECOGNATION \n');

% fprintf(1,'15-) IRIS PLANT \n');

% fprintf(1,'16-) BALANCE SCALE WEIGHT \n');

% fprintf(1,'17-) CREDIT APPROVAL \n');

% fprintf(1,'18-) LABOR NEGOTIATIONS \n');

% fprintf(1,'19-) WAWEFORM \n');

uiopen('LOAD');

all=data;

[m n] =size(all);

l=1;

t=1;

[m n] =size(all);

if max(all(:,end)) >5

for i = 1:m % the output (last column) values (0,1,2,3) are mapped to (0,1)

 if all(i,end)>=5

 all(i,end)=1;

 else

 all(i,end)=0;

 end

end

end

for i = 1:n

 range(1,i) = min(all(:,i));

 range(2,i) = max(all(:,i));

end

for i=1:n

 for j=1:m

 all(j,i)=(all(j,i)-range(1,i))/(range(2,i)-range(1,i));

 end

end

[m n] =size(all);

l=1;

t=1;

%%

% FIND VARIATION

for i=1:n-1

 vary(i)=var(all(:,i));

 if vary(i)<0.1

 indicesminus(l)=i;

 l=l+1;

 index1(i)=0;

 else

 indiceplus(t)=i;

 t=t+1;

 index1(i)=i;

 end

end

130

%%

%FIND CORRELATION BETWEEN INPUT AND OUTPUT

x=all(:,end);

for i=1:n-1

 y=all(:,i);

 r=corrcoef(y,x);

 rr(i)=abs(r(2,1));

 er(i)=var(y)*(1-rr(i).^2);

 er(i)=var(y)-er(i);

 if rr(i)>.1;

 index2(i)=i;

 else

 index2(i)=0;

 end

end

% SEARCH FOR REDUNDANCY BETWEEN FEATURES

[m n]=size(all);

for i=1:n-1

 for j=1:n-1

 if i ~= j

 r =corrcoef(all(:,i),all(:,j));

 rtrcros=abs(r(2,1));

 crosscorrelation(i,j)=rtrcros;

 end

 end

end

for i=1:n-1

 for j=1:n-1

 if crosscorrelation(i,j)>.9% |i == j

 a(i,j)=1;

 else

 a(i,j)=0;

 end

 end

end

index4=[];

index5=[1:n-1];

for i=1:n-1

 b(i)={find(a(i,:)>0)};

 m(i)=length(b{i});

end

c=b;

setfull=[1:n-1];

setunc=find(m==0);

setcorone=find(m==1);

setcor=find(m>1);

setcorone=c(setcorone);

%c(setunc)=[]

for i=1:n-1

 if m(i)>0

 for j=1 :m(i)

 if isempty(c{i})==0

 aa=c{i}(j);

 c{aa}=[];

 end

 end

 end

end

for i=1:n-1

 if length(c{i})==0

 c{i}=0;

 else

 c{i}=i;

 end

end

%%

setunc1 = cell2mat(c);

131

setfull(setunc)=0;

index3=union(setunc1,setunc);

index=find(index3==0);

index3(index)=[];

%%

in=find(index1>0);

index1=index1(in);

in=find(index2>0);

index2=index2(in);

index=union(index1,index2);

index=union(index,index3);

subindex=union(index1,index2);

index=[1:n-1];

%%

in_all=all(:,index);

out_all=all(:,end);

savefile='initdata';

save(savefile,'in_all','out_all','index1','index2','index3','subindex','inde

x');

clear all;

clear all;

load initdata;

132

%%%

NFC1.m

NeuroFuzzy Classifier1

function [Classifier Ac1]=NFC1(problem)
%Batch Training RPCL clustering based NeuroFuzzy Classifier

%February 2009;

clc

close all

vis=1;

screen=0;

teta=.05;%

error_bound=.5;

fring_bound=1;

train_opt = [1e-5 1e-3 5e-8 5e-9 100];

N=2;%N fold validation

warning off

model=1;

load result_rival50

if nargin<1

 problem=6;

end

data=result_rival{model,problem}.data;

display(result_rival{model,problem}.name)

tolerance = train_opt(1); % Stop learning once RMSE is below tolerance

eta1 = train_opt(2); % Learning rate

eta2=train_opt(3);

eta3=train_opt(4);

max_epoch = train_opt(5); % Max. training epoch

indices = crossvalind('Kfold',data(:,end),N);

for optStep=1:N

 max_epoch = train_opt(5);

 display('**')

 fprintf('>>>>>>>>>-------- FOLD %5.0f ------<<<<<<<\n',optStep)

 display(' ');

 testx = (indices == optStep);

 trainx = ~testx ;

 %trainx = (indices == optStep);

 data_train=data(trainx,:);

 data_test=data(testx,:);

 epoch=1;

 %% obtaining Classifer parameters

 clear Classifier

 if problem==7 || problem==8||problem==9||problem==10

 Classifier.class=3;

 else

 Classifier.class=2;

 end

 Classifier.tr_input=data_train(:,1:end-1);

 Classifier.tr_output=data_train(:,end);

 Classifier.ts_input=data_test(:,1:end-1);

 Classifier.ts_output=data_test(:,end);

 Classifier.numData=result_rival{model,problem,1}.numData_in_cl;

 Classifier.in_cluster=abs(result_rival{model,problem}.cluster{1}(:,1:end-

1));

 Classifier.out_cluster=abs(result_rival{model,problem}.cluster{1}(:,end));

 Classifier.numRule=size(Classifier.out_cluster,1);

 [Classifier.tr_numPattern Classifier.numInp]=size(Classifier.tr_input);

 [Classifier.ts_numPattern Classifier.numInp]=size(Classifier.ts_input);

 Classifier.sigmas=2*result_rival{model,problem}.sigmas(:,1:end-1);

 Classifier.sigmas=.1*ones(Classifier.numRule,Classifier.numInp);

 Classifier=evalnetwork_nfc(Classifier);

 numRule1=Classifier.numRule;

 RMSE(1)=Classifier.RMSE;

 if visfigure_number=1; display_result(Classifier,figure_number,RMSE); end;

 fnished=0;

 fnished2=0;

133

 epoch=2;

 while fnished==0;

 RMSE(epoch)=Classifier.RMSE;

 Classifier =bckprop(Classifier)

 if RMSE(epoch) < tolerance

 fnished = 1;

 end

 if epoch == max_epoch

 Ac1.training(optStep)=Classifier.Accurracy;

 break

 if fnished2

 display(' LEARNING FNISHED ')

 fprintf('Final Number of Rules is

=%5.0f\n',Classifier.numRule);

 fprintf('Final RMSE =%5.7f\n',RMSE(epoch));

 fprintf('Final Classification Accurracy: Training =%g,

Testing =%g\n',Classifier.Accurracy,Classifier.Accurracy_ts);

 %display_result(Classifier,figure_number,RMSE

 Ac1.training(optStep)=Classifier.Accurracy;

 Ac1.testing(optStep)=Classifier.Accurracy_ts;

 Classifier=pruning(Classifier,fring_bound);

 Classifier=evalnetwork_nfc(Classifier);

 fprintf('Final Classification Accurracy: Training =%g,

Testing =%g\n',Classifier.Accurracy,Classifier.Accurracy_ts);

 fnished=1;

 epoch=2;

 break;

 end

 % pause(1);

 figure_number=2;

 if vis display_result(Classifier,figure_number,RMSE); end;

 display('Second Phase for Structure Re Organingggg.......... ');

 %Classifier=pruning(Classifier,fring_bound);

 Classifier=remove_redund(Classifier,teta,RMSE,error_bound,vis);

 Classifier=pruning(Classifier,fring_bound);

 fprintf('Final Acc before BP. Training =%5.5f: Testing =%5.5f:

Final RMSE = %.10f:F.Rule=%2.0f:\n',...

Classifier.Accurracy,Classifier.Accurracy_ts,Classifier.RMSE,Classifier.numR

ule);

 display('Re Learning with backpropagation..................');

 fnished2=1;

 max_epoch=train_opt(4)*2;

 end

 if screen

 fprintf('epoch %.0f: RMSE = %.10f:Train Acc=%5.2f,Test

Acc=%5.2f, eta1=%.10f : eta2=%.10f\n',...

 epoch,

RMSE(epoch),Classifier.Accurracy,Classifier.Accurracy_ts,eta1,eta2);

 end

 leng=length(RMSE);

 if leng==4

 if(RMSE(2)-RMSE(3))<1e-4

 eta1=10*eta1;

 eta2=10*eta2;

 end

 if(RMSE(3)-RMSE(4))<1e-4

 eta1=10*eta1;

 eta2=10*eta2;

 end

 end

 if leng>6

 if(RMSE(epoch)-RMSE(epoch-1))>1e-5

 eta1=eta1*.95;

 eta2=eta2*.95;

 end

 if mean(diff(RMSE(leng-5:leng)))<-0.001

 eta1=eta1*1.1;

134

 eta2=eta2*1.1;

 elseif abs(mean(diff(RMSE(leng-5:leng))))<1e-10

 eta1=eta1*.95;

 eta2=eta2*.95;

 else

 end

 end

 for n=1:Classifier.class

 w_old=Classifier.Clc{n}.w;

 w_new=w_old-.01*Classifier.Clc{n}.dEdW;

 Classifier.Clc{n}.w=w_new;

 s_old=Classifier.Clc{n}.sigmas;

 s_new=s_old - 1e-12*Classifier.Clc{n}.delta_s;

 Classifier.Clc{n}.sigmas=s_new;

 c_old=Classifier.Clc{n}.in_cluster;

 c_new=c_old-1e-14*Classifier.Clc{n}.delta_c;

 Classifier.Clc{n}.in_cluster=c_new;

 end

if vis ;figure_number=2;

 display_result(Classifier,figure_number,RMSE) ; end

 Classifier=evalnetwork_nfc(Classifier);

 epoch=epoch+1;

 end

end

fprintf('Final Training Accurraccy:%5.5f std=:%5.5f

\n',mean(Ac1.training),std(Ac1.training));

fprintf('Final Testing Accurraccy:%5.5f

std=:%5.5f\n',mean(Ac1.testing),std(Ac1.testing));

function display_result(Classifier,figure_number,RMSE)

figure(figure_number);

if Classifier.class==3

subplot(4,1,1),plot(1:Classifier.tr_numPattern,Classifier.Clc{1}.error,...

 1:Classifier.tr_numPattern,Classifier.Clc{2}.error,...

 1:Classifier.tr_numPattern,Classifier.Clc{3}.error)

 Ylabel('Classifier Error') ;

 Xlabel('Input Pattern') ;

 theStr=sprintf(' Classifier Accurracy= %g',Classifier.Accurracy);

 Title(theStr,'Color','b','FontSize',12)

 subplot(4,1,2),plot(1:Classifier.tr_numPattern,Classifier.Clc{1}.output,...

 1:Classifier.tr_numPattern,Classifier.Clc{2 }.output,...

 1:Classifier.tr_numPattern,Classifier.Clc{3}.output);

 Ylabel('Final Classifier Output ') ;

 Xlabel('Input Pattern') ;

 if Classifier.class==3

 subplot(4,1,3),plot([Classifier.Clc{1}.rule_firing

Classifier.Clc{2}.rule_firing...

 Classifier.Clc{3}.rule_firing])

 Ylabel(' Classifier Output ') ;

 Xlabel('Input Pattern') ;

 else

 subplot(4,1,3),plot([Classifier.Clc{1}.rule_firing

Classifier.Clc{2}.rule_firing]);

 Ylabel(' Classifier Output ') ;

 Xlabel('Input Pattern') ;

 end

 subplot(4,1,4),plot(RMSE);

 Ylabel(' RMSE ') ;

 Xlabel('Number of iteration') ;

 pause(.05)

else if Classifier.class==2

subplot(4,1,1),plot(1:Classifier.tr_numPattern,Classifier.Clc{1}.error,...

 1:Classifier.tr_numPattern,Classifier.Clc{2 }.error);

135

 Ylabel('Classifier Error') ;

 Xlabel('Input Pattern') ;

 theStr=sprintf(' Classifier Accurracy= %g',Classifier.Accurracy);

 Title(theStr,'Color','b','FontSize',12);

subplot(4,1,2),plot(1:Classifier.tr_numPattern,Classifier.Clc{1}.output,...

 1:Classifier.tr_numPattern,Classifier.Clc{2 }.output);

 Ylabel('Final Classifier Output ') ;

 Xlabel('Input Pattern') ;

 subplot(4,1,3),plot([Classifier.Clc{1}.rule_firing

Classifier.Clc{2}.rule_firing]);

 Ylabel(' Classifier Output ') ;

 Xlabel('Input Pattern') ;

 subplot(4,1,4),plot(RMSE);

 Xlabel(num2str(Classifier.Accurracy));

 Ylabel(' RMSE ') ;

 Xlabel('Number of iteration') ;

 pause(.05)

 end

end

%%

function Classifier=remove_redund(Classifier,teta,RMSE,error_bound,vis)

if nargin<2

 teta=.1;

end

c_inc=0;

m_init=0;

for t=1:Classifier.class

 clear empty_index empty_index1 a empty_index2

 empty_index=find(Classifier.Clc{t}.error>=error_bound);

 Classifier.tr_input(empty_index,:);

 m=size(Classifier.tr_input(empty_index,:),1);

 if m>0

 dist=zeros(m,m);

 inc=1;

 for i=1:m

 for j=1:m

 dist(i,j)=sum((Classifier.tr_input(i,:)-

Classifier.tr_input(j,:)).^2);

 end

 a{i}=find(dist(i,:)<teta);

 if size(a{i},2)==1

 empty_index1(i)=empty_index(i);

 cmean(i,:) =Classifier.tr_input(empty_index(i),:);

 else

 empty_index1(i)=empty_index(a{i}(1));

 cmean(i,:)=mean(Classifier.tr_input(a{i},:));

 % dist(i,a{i})=10;

 end

 end

 %empty_index3=empty_index1;

 empty_index2=[];

 inc=1;

 for i=1:size(empty_index1,2)

 indx=find(empty_index1(i)==empty_index1);

 empty_index2(inc)=empty_index1(indx(1));

 empty_index1(indx)=0;

 inc=inc+1;

 end

 empty_index3=find(empty_index2==0)';

 empty_index3=sort(empty_index3,'descend');

 cmean(empty_index3,:)=[];

 empty_index2=empty_index2';

 empty_index2=sort(empty_index2,'descend');

 empty_index2(empty_index2==0)=[];

 c_add=size(empty_index2,1);

 c_size=size(Classifier.Clc{t}.in_cluster,1);

 if not(isempty(c_size+1:c_size+c_add))

136

 Classifier.Clc{t}.in_cluster(c_size+1:c_size+c_add,:)=...

 Classifier.tr_input(empty_index2,:);

 Classifier.Clc{t}.sigmas(c_size+1:c_size+c_add,:)=...

 0.05*ones(c_add,Classifier.numInp);

 end

 c_inc=c_add+c_inc;

 m_init=m_init+m;

 end

end

Classifier.numRule=Classifier.numRule+c_inc;

Classifier=evalnetwork_nfc(Classifier);

figure_number=3;

if vis display_result(Classifier,figure_number,RMSE); end;

display(' RESULT OF STRUCTURE REORGANAZING ')

fprintf('%5.0f: Rules are added because of the Error\n',m_init);

fprintf('%5.0f: Rules are removed because of the Similarity\n',m_init-

c_inc);

%%

function Cl=pruning(Cl,fring_bound)

deleted=[];

Rulenum=0;

for i=1:Cl.class

 numRule=size(Cl.Clc{i}.in_cluster,1);

 m=1;

 for j=1:numRule

 if size(find(j==(Cl.Clc{i}.ind3)),2)<fring_bound

 deleted(m)=j;

 m=m+1;

 end

 end

 %size(deleted,2)

 if not(isempty(deleted))

 Cl.Clc{i}.in_cluster(sort(deleted,'descend'),:)=[];

 Cl.Clc{i}.sigmas(sort(deleted,'descend'),:)=[];

 end

 Rulenum=Rulenum+ size(Cl.Clc{i}.in_cluster,1);

 deleted=[];

end

Cl.numRule=Rulenum;

Cl=evalnetwork_nfc(Cl);

%display(' RESULT OF RULE PRUNING ')

fprintf('Final Number of Rules is :%5.0f\n',Rulenum);

%theStr=sprintf('Final Classification Accurracy :%g',Cl.Accurracy);

%display(theStr);

%% bckprop

% back propagation algorithm for Mamdani Neuro Fuzzy Inference System.

%Calculates Delta values

function Cl=bckprop(Cl)

%{

 rule_ind: [2x1 double]5

 in_cluster: [2x4 double]

 out_cluster: [2x1 double]

 sigmas: [2x4 double]

 numData: [2x1 double]

 mf: {[135x4 double] [135x4 double]}

 rule_output: [135x2 double] % her bir kuralın ürettiği output

 ind2: [135x2 double] % her bir kural tarafından ateşlenen

üyelik fonksiyonlarının numarası

 ind3: % sonuçta ateşlenen kuralın numarası

 rule_firing: [1x135 double] % sonuçta ateşlenen kural

 tr_output: [135x1 double] % gerçek output

 output: [135x1 double] %sistemin ürettiği output

 error: [135x1 double] %hesaplanan error

%}

%Op(4)=Cl.Clc{n}.rule_firing

%Os(3)=Cl.Clc{n}.rule_output

%Oij(2)=Cl.Clc{n}.mf{kural}(i,j)

for i=1:Cl.class

137

 indx=zeros(1, length(Cl.Clc{i}.ind3));

 indxx=find(i==Cl.ind_winner | i==Cl.ind_rival);

 indx(indxx)=1;

 % Last Layer

 %dE/dY=-target/Yc

 if isfield(Cl.Clc{i},'numData')

 Cl.Clc{i}.numData(Cl.Clc{i}.numData==0)=1e-5;

 end

 (Cl.Clc{i}.tr_output-Cl.Clc{i}.rule_firing+Cl.rule_not_firing'

).*Cl.Clc{i}.indx';

 Cl.Clc{i}.dEdY=-2*...

 (Cl.Clc{i}.tr_output-Cl.Clc{i}.rule_firing);

 Cl.Clc{i}.dEdY_rival=-1*Cl.Clc{i}.dEdY;

 Cl.Clc{i}.dYdW=Cl.Clc{i}.rule_output_n;

 %Cl.Clc{i}.dEdW=sum(Cl.Clc{i}.dEdY)*sum(Cl.Clc{i}.dYdW);

 Cl.Clc{i}.dEdW=Cl.Clc{i}.dEdY'*Cl.Clc{i}.dYdW/Cl.tr_numPattern;

 Cl.Clc{i}.dEdW_rival=-1*Cl.Clc{i}.dEdW;

 Cl.Clc{i}.dYdO3=(repmat(Cl.Clc{i}.w,Cl.tr_numPattern,1)-

repmat(Cl.Clc{i}.rule_firing,1,Cl.Clc{i}.numRule))...

 ./repmat(Cl.sum_rule,1,Cl.Clc{i}.numRule);

 for j=1:size(Cl.Clc{i}.in_cluster,1)

 Cl.Clc{i}.deriv_gauss_A{j}=...

deriv_gauss(Cl.tr_input,repmat(Cl.Clc{i}.sigmas(j,:),Cl.tr_numPattern,1),...

 repmat(Cl.Clc{i}.in_cluster(j,:),Cl.tr_numPattern,1),1); % Eqn15

 Cl.Clc{i}.deriv_gauss_S{j}=...

deriv_gauss(Cl.tr_input,repmat(Cl.Clc{i}.sigmas(j,:),Cl.tr_numPattern,1),...

 repmat(Cl.Clc{i}.in_cluster(j,:),Cl.tr_numPattern,1),2); % Eqn17

 Cl.Clc{i}.dO3dAij{j}=Cl.Clc{i}.mf{i}.*Cl.Clc{i}.deriv_gauss_A{j};

 Cl.Clc{i}.dO3dSij{j}=Cl.Clc{i}.mf{i}.*Cl.Clc{i}.deriv_gauss_S{j};

 Cl.Clc{i}.delta_s(j,:)=Cl.Clc{i}.dEdY'*...

 (

repmat(Cl.Clc{i}.dYdO3(:,j),1,Cl.numInp).*Cl.Clc{i}.dO3dSij{j})/Cl.tr_numPat

tern;

 Cl.Clc{i}.delta_c(j,:)=Cl.Clc{i}.dEdY'*...

 (

repmat(Cl.Clc{i}.dYdO3(:,j),1,Cl.numInp).*Cl.Clc{i}.dO3dAij{j})/Cl.tr_numPat

tern;

 Cl.Clc{i}.cl_c=repmat(Cl.Clc{i}.dEdY,1,Cl.numInp).*...

 (

repmat(Cl.Clc{i}.dYdO3(:,j),1,Cl.numInp).*Cl.Clc{i}.dO3dAij{j})/Cl.tr_numPat

tern;

 Cl.Clc{i}.cl_s=repmat(Cl.Clc{i}.dEdY,1,Cl.numInp).*...

 (

repmat(Cl.Clc{i}.dYdO3(:,j),1,Cl.numInp).*Cl.Clc{i}.dO3dSij{j})/Cl.tr_numPat

tern;

 end

 end

function memDeg=deriv_gauss(x,sigma,c,option)

%% [o ind_x a_3]=evalnetwork(in_all,numRule,numPts,c,s,c_out,s_out,numInp)

%computes the final Output and neccessary inner Layer outputs for Mamdani

%Neuro Fuzzy Inference System

%o ;system output

%ind_x ;indices of Layer 2 that minimum operator chose it for Layer3

%a_3;output of Layer3;

if option==1

 memDeg = ((x-c)./(sigma.^2)).*exp(-(x - c).^2./(2*sigma.^2));

elseif option==2

 memDeg = (((x-c).^2)./(sigma.^3)).*exp(-(x - c).^2./(2*sigma.^2));

end

function [Classifier]=evalnetwork_nfc(Classifier)

%firstLayer,

%second Layer,Fuzzification and obtaining membership Value;

% j grup(NumRule) membership value that each j grup contains (numInp X

% numPts) elements

138

% for example a_2{4}=[]numPts X NumInp ; contains the membership values

for rule 4

Classifier.classes=linspace(0,1,Classifier.class);

if not(isfield(Classifier,'Clc'))

 Classifier=obtain_classifier(Classifier);

end

Classifier=computemembership(Classifier);%% Compute Membership Value

Classifier=compute_rule_out(Classifier);%% Compute Membership Value

function Cl=obtain_classifier(Cl)

display('initializin Classifiers structures.....')

maxx=max(Cl.numData);

minx=min(Cl.numData);

%Cl.numData=(Cl.numData-repmat(minx',Cl.numRule,1))./...

% (repmat(maxx',Cl.numRule,1) - repmat(minx',Cl.numRule,1));

n=1;

for i= Cl.classes

 Cl.Clc{n}.rule_ind=find(i==Cl.out_cluster);

 Cl.Clc{n}.in_cluster=Cl.in_cluster(Cl.Clc{n}.rule_ind,:);

 Cl.Clc{n}.out_cluster=Cl.out_cluster(Cl.Clc{n}.rule_ind,:);

 Cl.Clc{n}.sigmas=Cl.sigmas(Cl.Clc{n}.rule_ind,:);

 Cl.Clc{n}.numData=Cl.numData(Cl.Clc{n}.rule_ind);

 Cl.Clc{n}.w=Cl.Clc{n}.numData'./sum(Cl.Clc{n}.numData);

 n=n+1;

end

%% Compute Membership Value

function [Cl]=computemembership(Cl)

for n=1:Cl.class

 Cl.Clc{n}.mf=[];

 for m=1:size(Cl.Clc{n}.in_cluster,1)

Cl.Clc{n}.mf{m}=gaussneuron(Cl.tr_input,repmat(Cl.Clc{n}.sigmas(m,:),Cl.tr_n

umPattern,1),...

 repmat(Cl.Clc{n}.in_cluster(m,:),Cl.tr_numPattern,1));

 end

end

for n=1:Cl.class

 for m=1:size(Cl.Clc{n}.in_cluster,1)

Cl.Clc{n}.mf_t{m}=gaussneuron(Cl.ts_input,repmat(Cl.Clc{n}.sigmas(m,:),Cl.ts

_numPattern,1),...

 repmat(Cl.Clc{n}.in_cluster(m,:),Cl.ts_numPattern,1));

 end

end

%% Gaussian Membership Function

function memDeg=gaussneuron(x,sigma,c)

memDeg = exp(-(x - c).^2./(2*sigma.^2));

%% Rule firing

function [Cl]=compute_rule_out(Cl)

Cl.tr_rule_output=zeros(Cl.tr_numPattern,Cl.numRule);

tr_ind=zeros(Cl.tr_numPattern,1);

rule_outs=zeros(Cl.class,Cl.tr_numPattern);

Cl.ts_rule_output_ts=zeros(Cl.ts_numPattern,Cl.numRule);

ts_ind=zeros(Cl.ts_numPattern,1);

rule_outs_ts=zeros(Cl.class,Cl.ts_numPattern);

for n= 1:Cl.class

 Cl.Clc{n}.rule_output=[];

 Cl.Clc{n}.ind2=[];

 Cl.Clc{n}.ind3=[];

 Cl.Clc{n}.rule_firing=[];

 Cl.Clc{n}.rule_output_ts=[];

 Cl.Clc{n}.ind2_ts=[];

 Cl.Clc{n}.ind3_ts=[];

 Cl.Clc{n}.rule_firing_ts=[];

 Cl.Clc{n}.numRule=size(Cl.Clc{n}.mf,2);

 % LAYER3

139

 for m=1:Cl.Clc{n}.numRule

 %Os(3)=Cl.Clc{n}.rule_output

 [a b]=min(Cl.Clc{n}.mf{m}'); %%%%% Burası productda

olabilirrrrrrrrrrrrrrrrrrrrrr

 Cl.Clc{n}.rule_output(:,m)=a';%Her bir class daki her bir kuralın

firing strengini bul

 Cl.Clc{n}.ind2(:,m)=b';%:hangi membership tetikledi onu bul

 end

end

%Find total firing streng

%LAYER4

sum_rule_output=zeros(Cl.tr_numPattern,1);

for n= 1:Cl.class

sum_rule_output=sum_rule_output+sum(Cl.Clc{n}.rule_output')';

end

sum_rule_output(sum_rule_output==0)=1e-2;

Cl.sum_rule=sum_rule_output;

% normalize the frinsgs and compute weighted output

rule_outs=zeros(Cl.tr_numPattern,Cl.class);

for n= 1:Cl.class

Cl.Clc{n}.rule_output_n=Cl.Clc{n}.rule_output./repmat(sum_rule_output,1,Cl.C

lc{n}.numRule);

%LAYER 5

Cl.Clc{n}.rule_firing=sum((Cl.Clc{n}.rule_output_n.*repmat(Cl.Clc{n}.w,Cl.tr

_numPattern,1))')';

rule_outs(:,n)=Cl.Clc{n}.rule_firing;

end

rule_outs2=rule_outs;

[maxx Cl.ind_winner] =max(rule_outs');

for t=1:Cl.tr_numPattern

 rule_outs2(t,Cl.ind_winner(t))=0;

end

[Cl.rule_not_firing Cl.ind_rival]=max(rule_outs2');

Cl.output=zeros(Cl.tr_numPattern,Cl.class);

Cl.output_ts=zeros(Cl.ts_numPattern,Cl.class);

Cl.RMSE=0;

for i=1:Cl.class

 Cl.Clc{i}.tr_output=zeros(Cl.tr_numPattern,1);

 Cl.output(i==Cl.ind_winner,i)=1;

 Cl.Clc{i}.output=Cl.output(:,i);

 Cl.Clc{i}.tr_output(Cl.tr_output==Cl.classes(i))=1;

 Cl.tr_target(:,i)=Cl.Clc{i}.tr_output;

 indx=zeros(1, length(Cl.tr_output));

 indxx= i==Cl.ind_winner | i==Cl.ind_rival;

 indx(indxx)=1;

 Cl.Clc{i}.indx=indx;

 Cl.Clc{i}.error=.5*...

 ((Cl.Clc{i}.tr_output-

Cl.Clc{i}.rule_firing+Cl.rule_not_firing').^2).*Cl.Clc{i}.indx';

 Cl.RMSE= sqrt(sum(sum(Cl.Clc{i}.error.^2)))+Cl.RMSE;

end

Cl.RMSE=Cl.RMSE/Cl.tr_numPattern;

a=Cl.tr_target&Cl.output;

b=Cl.ts_target&Cl.output_ts;

a=size(find(a==1),1);

b=size(find(b==1),1);

Cl.Accurracy=100*a/Cl.tr_numPattern;

Cl.Accurracy_ts=100*b/Cl.ts_numPattern;

140

%%%

NFC2.m

NeuroFuzzy Classifier2

function [Classifier Ac1]=NFC2(problem)
%Neurofuzzy Classifier based on Rival Penalized Competitive learning

%and incremental type GD RPCL

%%NFC2(problem)

%Yunus TORUN,Gaziantep Univeristy M.Y.O
%torun@gantep.edu.tr
%May 2009,Gaziantep

%June 2009,Similarity Measurement is added

clc

close all

vis=1;

screen=1;

teta=.01;

error_bound=.5;

fring_bound=1;

train_opt = [1e-5 1e-5 1e-5 50];

N=10;% N fold validation

warning off

model=1;

load result_rival50

if nargin<1

 problem=7;

end

data=result_rival{model,problem}.data;

display(result_rival{model,problem}.name)

tolerance = train_opt(1); % Stop learning once RMSE is below tolerance

eta1 = train_opt(2); % Learning rate

eta2=train_opt(3);

max_epoch = train_opt(4); % Max. training epochs

indices = crossvalind('Kfold',data(:,end),N);

for optStep=1:N

 max_epoch = train_opt(4);

 display(' ');

 display(' ');

 display('**')

 fprintf('>>>>>>>>-------- FOLD %5.0f ------<<<<<<<<\n',optStep)

 display(' ');

 testx = (indices == optStep);

 trainx = ~testx ;

 %trainx = (indices == optStep);

 data_train=data(trainx,:);

 data_test=data(testx,:);

 epoch=1;

 %% obtaining Classifer parameters

 clear Classifier

 if problem==7 || problem==8||problem==9||problem==10

 Classifier.class=3;

 else

 Classifier.class=2;

 end

 Classifier.tr_input=data_train(:,1:end-1);

 Classifier.tr_output=data_train(:,end);

 Classifier.ts_input=data_test(:,1:end-1);

 Classifier.ts_output=data_test(:,end);

 Classifier.numData=result_rival{model,problem,1}.numData_in_cl;

Classifier.in_cluster=abs(result_rival{model,problem}.cluster{1}(:,1:end-

1));

Classifier.out_cluster=abs(result_rival{model,problem}.cluster{1}(:,end));

 Classifier.numRule=size(Classifier.out_cluster,1);

 [Classifier.tr_numPattern Classifier.numInp]=size(Classifier.tr_input);

141

 [Classifier.ts_numPattern Classifier.numInp]=size(Classifier.ts_input);

 Classifier.sigmas=result_rival{model,problem}.sigmas(:,1:end-1);

 Classifier=evalnetwork_nfc(Classifier);

 numRule1=Classifier.numRule;

 RMSE(1)=Classifier.RMSE;

 %Classifier=remove_redund(Classifier,teta,RMSE,error_bound,vis);

 if vis figure_number=1; display_result(Classifier,figure_number,RMSE);

end;

 %%

 fnished=0;

 fnished2=0;

 epoch=2;

 %pause

 while fnished==0;

 %Classifier=evalnetwork_nfc(Classifier);

 %display(size(Classifier.Clc{2}.in_cluster,1))

 RMSE(epoch)=Classifier.RMSE;

 Classifier =bckprop(Classifier);

 if RMSE(epoch) < tolerance

 fnished = 1;

 end

 if epoch == max_epoch

 if fnished2

 display(' LEARNING FNISHED ')

 fprintf('Final Number of Rules is

=%5.0f\n',Classifier.numRule);

 fprintf('Final RMSE =%5.7f\n',RMSE(epoch));

 fprintf('Final Classification Accurracy: Training =%g,

Testing =%g\n',Classifier.Accurracy,Classifier.Accurracy_ts);

 %display_result(Classifier,figure_number,RMSE)

 Ac1.training(optStep)=Classifier.Accurracy;

 Ac1.testing(optStep)=Classifier.Accurracy_ts;

 Classifier=pruning(Classifier,fring_bound);

 Classifier=evalnetwork_nfc(Classifier);

 fprintf('Final Classification Accurracy: Training =%g,

Testing =%g\n',Classifier.Accurracy,Classifier.Accurracy_ts);

 fnished=1;

 epoch=2;

 break;

 end

 figure_number=2;

 if vis display_result(Classifier,figure_number,RMSE); end;

 display('Second Phase for Structure Re Organazingggg...... ');

 %Classifier=pruning(Classifier,fring_bound);

 Classifier=remove_redund(Classifier,teta,RMSE,error_bound,vis);

 Classifier=pruning(Classifier,fring_bound);

 fprintf('Final Accuraccy before second Back Propagation.

Training =%5.5f: Testing =%5.5f: Final RMSE = %.10f:F.Rule=%2.0f:\n',...

Classifier.Accurracy,Classifier.Accurracy_ts,Classifier.RMSE,Classifier.numR

ule);

 display('Re Learning with backpropagation..................');

 fnished2=1;

 %eta1=eta1/2;

 %eta2=eta2/2;

 max_epoch=train_opt(4)*2;

 end

 if screen

 fprintf('Ep

%.0f:RMSE=%.5f:TrainA=%5.2f,TestA=%5.2f,eta1=%2.2e:eta2=%2.2e\n',...

 epoch,

RMSE(epoch),Classifier.Accurracy,Classifier.Accurracy_ts,eta1,eta2);

 end

 leng=length(RMSE);

 if leng==4

142

 if(RMSE(2)-RMSE(3))<1e-4

 eta1=10*eta1;

 eta2=10*eta2;

 end

 if(RMSE(3)-RMSE(4))<1e-4

 eta1=10*eta1;

 eta2=10*eta2;

 end

 end

 if leng>6

 if(RMSE(epoch)-RMSE(epoch-1))>1e-5

 eta1=eta1*.95;

 eta2=eta2*.95;

 end

 if mean(diff(RMSE(leng-5:leng)))<-0.001

 eta1=eta1*1.1;

 eta2=eta2*1.1;

 elseif abs(mean(diff(RMSE(leng-5:leng))))<1e-10

 eta1=eta1*.95;

 eta2=eta2*.95;

 else

 end

 end

 for n=1:Classifier.tr_numPattern

 % if n==71 ;display('Problemli Data');end

 ind2=Classifier.Clc{Classifier.ind_winner(n)}.ind2(n,:);

 ind3=Classifier.Clc{Classifier.ind_winner(n)}.ind3(n);

 s_old_winner=

Classifier.Clc{Classifier.ind_winner(n)}.sigmas(ind3,ind2(ind3));

 c_old_winner=

Classifier.Clc{Classifier.ind_winner(n)}.in_cluster(ind3,ind2(ind3));

 ind2r=Classifier.Clc{Classifier.ind_rival(n)}.ind2(n,:);

 ind3r=Classifier.Clc{Classifier.ind_rival(n)}.ind3(n);

 s_old_rival=

Classifier.Clc{Classifier.ind_rival(n)}.sigmas(ind3r,ind2r(ind3r));

 c_old_rival=

Classifier.Clc{Classifier.ind_rival(n)}.in_cluster(ind3r,ind2r(ind3r));

 s_new=s_old_winner -(1-

n/(Classifier.tr_numPattern*3))*eta1*Classifier.Clc{Classifier.ind_winner(n)

}.delta_s(n);

 c_new=c_old_winner- (1-

n/(Classifier.tr_numPattern*3))*eta2*Classifier.Clc{Classifier.ind_winner(n)

}.delta_c(n);

 s_new_rival=s_old_rival -(1-

n/(Classifier.tr_numPattern*3))*(eta1/2)*Classifier.Clc{Classifier.ind_winne

r(n)}.delta_s_rival(n);

 c_new_rival=c_old_rival-(1-

n/(Classifier.tr_numPattern*3))*(eta2/2)*Classifier.Clc{Classifier.ind_winne

r(n)}.delta_c_rival(n);

 % winner phase

Classifier.Clc{Classifier.ind_winner(n)}.sigmas(ind3,ind2(ind3))=s_new;

Classifier.Clc{Classifier.ind_winner(n)}.in_cluster(ind3,ind2(ind3))=c_new;

 % rival phase

Classifier.Clc{Classifier.ind_rival(n)}.sigmas(ind3r,ind2r(ind3r))=s_new_riv

al;

Classifier.Clc{Classifier.ind_rival(n)}.in_cluster(ind3r,ind2r(ind3r))=c_new

_rival;

 end

 if vis ;figure_number=2;

display_result(Classifier,figure_number,RMSE) ;

figure_number=3;Classifier=plot_mf(Classifier,figure_number,RMSE,optStep);

 Classifier=evalnetwork_nfc(Classifier);

 end

143

 epoch=epoch+1;

 end

end

Classifier=similarity(Classifier);

Classifier=evalnetwork_nfc(Classifier);

fprintf('Training Accurraccy:%5.5f \n',Classifier.Accurracy);

fprintf('Testing Accurraccy:%5.5f std=:%5.5f\n',Classifier.Accurracy_ts);

save Classifier Classifier

display('**')

display('All fold is completed.........................')

fprintf('Final Training Accurraccy:%5.5f std=:%5.5f

\n',mean(Ac1.training),std(Ac1.training));

fprintf('Final Testing Accurraccy:%5.5f

std=:%5.5f\n',mean(Ac1.testing),std(Ac1.testing));

%%

function display_result(Classifier,figure_number,RMSE)

figure(figure_number);

if Classifier.class==3

 subplot(4,1,1),plot(1:Classifier.tr_numPattern,Classifier.Clc{1}.error,...

 1:Classifier.tr_numPattern,Classifier.Clc{2}.error,...

 1:Classifier.tr_numPattern,Classifier.Clc{3}.error)

 Ylabel('Classifier Error') ;

 Xlabel('Input Pattern') ;

 theStr=sprintf(' Classifier Accurracy= %g',Classifier.Accurracy);

 Title(theStr,'Color','b','FontSize',12)

subplot(4,1,2),plot(1:Classifier.tr_numPattern,Classifier.Clc{1}.output,...

 1:Classifier.tr_numPattern,Classifier.Clc{2 }.output,...

 1:Classifier.tr_numPattern,Classifier.Clc{3}.output);

 Ylabel('Final Classifier Output ') ;

 Xlabel('Input Pattern') ;

 subplot(4,1,3),plot([Classifier.Clc{1}.rule_firing'

Classifier.Clc{2}.rule_firing'...

 Classifier.Clc{3}.rule_firing'])

 Ylabel(' Classifier Output ') ;

 Xlabel('Input Pattern') ;

 subplot(4,1,4),plot(RMSE);

 Ylabel(' RMSE ') ;

 Xlabel('Number of iteration') ;

 set(0,'Units','pixels')

 scnsize = get(0,'ScreenSize');

 figure(figure_number);

 position=[5 5 scnsize(3)/3 scnsize(4)/1.1];

 set(figure(figure_number),'Position',position)

 pause(.01)

else if Classifier.class==2

subplot(4,1,1),plot(1:Classifier.tr_numPattern,Classifier.Clc{1}.error,...

 1:Classifier.tr_numPattern,Classifier.Clc{2 }.error);

 Ylabel('Classifier Error') ;

 Xlabel('Input Pattern') ;

 theStr=sprintf(' Classifier Accurracy= %g',Classifier.Accurracy);

 Title(theStr,'Color','b','FontSize',12);

 subplot(4,1,2),plot(1:Classifier.tr_numPattern,Classifier.Clc{1}.output,...

 1:Classifier.tr_numPattern,Classifier.Clc{2 }.output);

 Ylabel('Final Classifier Output ') ;

 Xlabel('Input Pattern') ;

 subplot(4,1,3),plot([Classifier.Clc{1}.rule_firing'

Classifier.Clc{2}.rule_firing']);

 Ylabel(' Classifier Output ') ;

 Xlabel('Input Pattern') ;

 subplot(4,1,4),plot(RMSE);

 Xlabel(num2str(Classifier.Accurracy));

 Ylabel(' RMSE ') ;

 Xlabel('Number of iteration') ;

 pause(.01)

 end

144

end

%%

%Graphical representation of dynamics of network

function Classifier=plot_mf(Classifier,figure_number,RMSE,optStep)

set(0,'Units','pixels')

scnsize = get(0,'ScreenSize');

for j=1:Classifier.class

 set(0,'Units','pixels')

 scnsize = get(0,'ScreenSize');

 figure(figure_number);

 position=get(figure(figure_number),'Position');

 position=[scnsize(3)/1.5 (j-1)*scnsize(4)/3 scnsize(3)/3

scnsize(4)/4];

 set(figure(figure_number),'Position',position)

 x=linspace(0,1,100);

 n=size(Classifier.Clc{j}.in_cluster,1);

 for i=1:4

 memDeg{j}{i} = exp(-((repmat(x,n,1) -

repmat(Classifier.Clc{j}.in_cluster(:,i),1,100)).^2)./(2*repmat(Classifier.C

lc{j}.sigmas(:,i),1,100).^2));

 subplot(2,2,i),plot(x,memDeg{j}{i})

 theStr=sprintf(' Input= %g',i);

 Ylabel('Mebership Degree ') ;

 Xlabel(theStr) ;

 end

 figure_number=figure_number+1;

end

Classifier.memDeg=memDeg;

pause(.01);

%%

%Membership Function Ploting

function Classifier=remove_redund(Classifier,teta,RMSE,error_bound,vis)

if nargin<2

 teta=.1;

end

c_inc=0;

m_init=0;

for t=1:Classifier.class

 clear empty_index empty_index1 a empty_index2

 empty_index=find(Classifier.Clc{t}.error>=error_bound);

 Classifier.tr_input(empty_index,:);

 m=size(Classifier.tr_input(empty_index,:),1);

 if m>0

 dist=zeros(m,m);

 inc=1;

 for i=1:m

 for j=1:m

 dist(i,j)=sum((Classifier.tr_input(i,:)-

Classifier.tr_input(j,:)).^2);

 end

 a{i}=find(dist(i,:)<teta);

 if size(a{i},2)==1

 empty_index1(i)=empty_index(i);

 cmean(i,:) =Classifier.tr_input(empty_index(i),:);

 else

 empty_index1(i)=empty_index(a{i}(1));

 cmean(i,:)=mean(Classifier.tr_input(a{i},:));

 % dist(i,a{i})=10;

 end

 end

 %empty_index3=empty_index1;

 empty_index2=[];

 inc=1;

 for i=1:size(empty_index1,2)

 indx=find(empty_index1(i)==empty_index1);

 empty_index2(inc)=empty_index1(indx(1));

145

 empty_index1(indx)=0;

 inc=inc+1;

 end

 empty_index3=find(empty_index2==0)';

 empty_index3=sort(empty_index3,'descend');

 cmean(empty_index3,:)=[];

 empty_index2=empty_index2';

 empty_index2=sort(empty_index2,'descend');

 empty_index2(empty_index2==0)=[];

 c_add=size(empty_index2,1);

 c_size=size(Classifier.Clc{t}.in_cluster,1);

 if not(isempty(c_size+1:c_size+c_add))

 Classifier.Clc{t}.in_cluster(c_size+1:c_size+c_add,:)=...

 Classifier.tr_input(empty_index2,:);

 % Classifier.Clc{t}.in_cluster(c_size+1:c_size+c_add,:)=...

 % cmean;

 Classifier.Clc{t}.sigmas(c_size+1:c_size+c_add,:)=...

 0.05*ones(c_add,Classifier.numInp);

 end

 c_inc=c_add+c_inc;

 m_init=m_init+m;

 end

end

Classifier.numRule=Classifier.numRule+c_inc;

Classifier=evalnetwork_nfc(Classifier);

figure_number=3;

if vis display_result(Classifier,figure_number,RMSE); end

display(' RESULT OF STRUCTURE REORGANAZING ')

fprintf('%5.0f: Rules are added because of the Error\n',m_init);

fprintf('%5.0f: Rules are removed because of the Similarity\n',m_init-

c_inc);

%%

%Remove Reduntand cluster and rules

function Cl=pruning(Cl,fring_bound)

deleted=[];

Rulenum=0;

for i=1:Cl.class

 numRule=size(Cl.Clc{i}.in_cluster,1);

 m=1;

 for j=1:numRule

 if size(find(j==(Cl.Clc{i}.ind3)),2)<fring_bound

 deleted(m)=j;

 m=m+1;

 end

 end

 %size(deleted,2)

 if not(isempty(deleted))

 Cl.Clc{i}.in_cluster(sort(deleted,'descend'),:)=[];

 Cl.Clc{i}.sigmas(sort(deleted,'descend'),:)=[];

 end

 Rulenum=Rulenum+ size(Cl.Clc{i}.in_cluster,1);

 deleted=[];

end

Cl.numRule=Rulenum;

Cl=evalnetwork_nfc(Cl);

%display(' RESULT OF RULE PRUNING ')

fprintf('Final Number of Rules is :%5.0f\n',Rulenum);

%theStr=sprintf('Final Classification Accurracy :%g',Cl.Accurracy);

%display(theStr);

%%

% Rule Pruning strategy

function Cl=bckprop(Cl)

% back propagation algorithm for Mamdani Neuro Fuzzy Inference System.

%Calculates Delta values

%{

 rule_ind: [2x1 double]5

146

 in_cluster: [2x4 double]

 out_cluster: [2x1 double]

 sigmas: [2x4 double]

 numData: [2x1 double]

 mf: {[135x4 double] [135x4 double]}

 rule_output: [135x2 double] % her bir kuralın ürettiği output

 ind2: [135x2 double] % her bir kural tarafından ateşlenen

üyelik fonksiyonlarının numarası

 ind3: % sonuçta ateşlenen kuralın numarası

 rule_firing: [1x135 double] % sonuçta ateşlenen kural

 tr_output: [135x1 double] % gerçek output

 output: [135x1 double] %sistemin ürettiği output

 error: [135x1 double] %hesaplanan error

%}

%Op(4)=Cl.Clc{n}.rule_firing

%Os(3)=Cl.Clc{n}.rule_output

%Oij(2)=Cl.Clc{n}.mf{kural}(i,j)

for i=1:Cl.class

 indx=zeros(1, length(Cl.Clc{i}.ind3));

 indxx=find(i==Cl.ind_winner | i==Cl.ind_rival);

 indx(indxx)=1;

 % Last Layer

 %dE/dY=-target/Yc

 if isfield(Cl.Clc{i},'numData')

 Cl.Clc{i}.numData(Cl.Clc{i}.numData==0)=1e-5;

 %Cl.Clc{i}.dEdY=-Cl.Clc{i}.tr_output'.*(1./Cl.Clc{i}.rule_firing-

Cl.Clc{i}.rule_firing);

 end

 %Cl.Clc{i}.dEdY=-1*Cl.Clc{i}.tr_output'.*...

 %(Cl.Clc{i}.tr_output'-

Cl.Clc{i}.rule_firing+Cl.rule_not_firing)*Cl.Accurracy/100;

 Cl.Clc{i}.dEdY=-5*...

 (Cl.Clc{i}.tr_output'-

Cl.Clc{i}.rule_firing+Cl.rule_not_firing).*indx;

 Cl.Clc{i}.dEdY_rival=-1*Cl.Clc{i}.dEdY;

 %else

 % Cl.Clc{i}.dEdY=0;

 %end

 for j=1:size(Cl.Clc{i}.in_cluster,1)

 ind=Cl.Clc{i}.ind3==j;

%Cl.Clc{i}.dEdW(j)=sum(Cl.Clc{i}.dEdY(ind)*Cl.Clc{i}.numData(j))/Cl.tr_numPa

ttern;

 Cl.Clc{i}.deriv_gauss_A{j}=...

deriv_gauss(Cl.tr_input,repmat(Cl.Clc{i}.sigmas(j,:),Cl.tr_numPattern,1),...

 repmat(Cl.Clc{i}.in_cluster(j,:),Cl.tr_numPattern,1),1); % Eqn15

 Cl.Clc{i}.deriv_gauss_S{j}=...

deriv_gauss(Cl.tr_input,repmat(Cl.Clc{i}.sigmas(j,:),Cl.tr_numPattern,1),...

 repmat(Cl.Clc{i}.in_cluster(j,:),Cl.tr_numPattern,1),2); % Eqn17

 end

 %Cl.Clc{i}.delta_s=Cl.Clc{i}.dEdY*Cl.Clc{i}.delta_s';

 %Cl.Clc{i}.delta_c=Cl.Clc{i}.dEdY*Cl.Clc{i}.delta_c';

end

for i=1:Cl.class

 for n=1:Cl.tr_numPattern

 Cl.Clc{i}.delta_s(n)=Cl.Clc{i}.dEdY(n)*...

 Cl.Clc{i}.deriv_gauss_S{Cl.Clc{i}.ind3(n)}(n,Cl.Clc{i}.ind2(n));

 Cl.Clc{i}.delta_c(n)=Cl.Clc{i}.dEdY(n)*...

 Cl.Clc{i}.deriv_gauss_A{Cl.Clc{i}.ind3(n)}(n,Cl.Clc{i}.ind2(n));

 Cl.Clc{i}.delta_s_rival(n)=Cl.Clc{i}.dEdY_rival(n)*...

147

Cl.Clc{Cl.ind_rival(n)}.deriv_gauss_S{Cl.Clc{Cl.ind_rival(n)}.ind3(n)}(n,Cl.

Clc{Cl.ind_rival(n)}.ind2(n));

 Cl.Clc{i}.delta_c_rival(n)=Cl.Clc{i}.dEdY_rival(n)*...

Cl.Clc{Cl.ind_rival(n)}.deriv_gauss_A{Cl.Clc{Cl.ind_rival(n)}.ind3(n)}(n,Cl.

Clc{Cl.ind_rival(n)}.ind2(n));

 end

end

%%

%back propagation algorithm for Mamdani Neuro Fuzzy Inference System.

%Calculates Delta values

function memDeg=deriv_gauss(x,sigma,c,option)

%% [o ind_x a_3]=evalnetwork(in_all,numRule,numPts,c,s,c_out,s_out,numInp)

%computes the final Output and neccessary inner Layer outputs for Mamdani

%Neuro Fuzzy Inference System

%o ;system output

%ind_x ;indices of Layer 2 that minimum operator chose it for Layer3

%a_3;output of Layer3;

if option==1

 memDeg = ((x-c)./(sigma.^2)).*exp(-(x - c).^2./(2*sigma.^2));

elseif option==2

 memDeg = (((x-c).^2)./(sigma.^3)).*exp(-(x - c).^2./(2*sigma.^2));

end

%%

%Derivative of gaussian function

function [Classifier]=evalnetwork_nfc(Classifier)

%firstLayer,

%second Layer,Fuzzification and obtaining membership Value;

% j grup(NumRule) membership value that each j grup contains (numInp X

% numPts) elements

% for example a_2{4}=[]numPts X NumInp ; contains the membership values

for rule 4

Classifier.classes=linspace(0,1,Classifier.class);

if not(isfield(Classifier,'Clc'))

 Classifier=obtain_classifier(Classifier);

end

Classifier=computemembership(Classifier);%% Compute Membership Value

Classifier=compute_rule_out(Classifier);%% Compute Membership Value

%%

%Evulate network

function Cl=obtain_classifier(Cl)

display('initializin Classifiers structures.....')

maxx=max(Cl.numData);

minx=min(Cl.numData);

%Cl.numData=(Cl.numData-repmat(minx',Cl.numRule,1))./...

% (repmat(maxx',Cl.numRule,1) - repmat(minx',Cl.numRule,1));

n=1;

Cl.input_select=ones(Cl.class,Cl.numInp);

Cl.input_select=[1 1 1 1;1 1 1 1; 1 1 1 1];

for i= Cl.classes

 Cl.Clc{n}.rule_ind=find(i==Cl.out_cluster);

 Cl.Clc{n}.in_cluster=Cl.in_cluster(Cl.Clc{n}.rule_ind,:);

 Cl.Clc{n}.out_cluster=Cl.out_cluster(Cl.Clc{n}.rule_ind,:);

 Cl.Clc{n}.sigmas=Cl.sigmas(Cl.Clc{n}.rule_ind,:);

 % Cl.Clc{n}.numData=Cl.numData(Cl.Clc{n}.rule_ind);

 n=n+1;

end

%%

% Obtain Structure

function [Cl]=computemembership(Cl)

if isfield(Cl.Clc{1},'two_c')

 for n=1:Cl.class

 Cl.Clc{n}.mf=[];

 for m=1:size(Cl.Clc{n}.two_c,1)

148

Cl.Clc{n}.mf{m}=gauss2neuron(Cl.tr_input(:,Cl.input_select(1,:)==1),...

repmat(Cl.Clc{n}.two_s(m,repmat(Cl.input_select(1,:),1,2)==1),Cl.tr_numPatte

rn,1),...

repmat(Cl.Clc{n}.two_c(m,repmat(Cl.input_select(1,:),1,2)==1),Cl.tr_numPatte

rn,1),2*Cl.numInp);

 end

 end

 for n=1:Cl.class

 for m=1:size(Cl.Clc{n}.in_cluster,1)

Cl.Clc{n}.mf_t{m}=gauss2neuron(Cl.ts_input(:,Cl.input_select(1,:)==1),...

repmat(Cl.Clc{n}.two_s(m,repmat(Cl.input_select(1,:),1,2)==1),Cl.ts_numPatte

rn,1),...

repmat(Cl.Clc{n}.two_c(m,repmat(Cl.input_select(1,:),1,2)==1),Cl.ts_numPatte

rn,1),2*Cl.numInp);

 end

 end

else

 for n=1:Cl.class

 Cl.Clc{n}.mf=[];

 for m=1:size(Cl.Clc{n}.in_cluster,1)

Cl.Clc{n}.mf{m}=gaussneuron(Cl.tr_input(:,Cl.input_select(1,:)==1),...

repmat(Cl.Clc{n}.sigmas(m,Cl.input_select(1,:)==1),Cl.tr_numPattern,1),...

repmat(Cl.Clc{n}.in_cluster(m,Cl.input_select(1,:)==1),Cl.tr_numPattern,1));

 end

 end

 for n=1:Cl.class

 for m=1:size(Cl.Clc{n}.in_cluster,1)

Cl.Clc{n}.mf_t{m}=gaussneuron(Cl.ts_input(:,Cl.input_select(1,:)==1),...

repmat(Cl.Clc{n}.sigmas(m,Cl.input_select(1,:)==1),Cl.ts_numPattern,1),...

repmat(Cl.Clc{n}.in_cluster(m,Cl.input_select(1,:)==1),Cl.ts_numPattern,1));

 end

 end

end

%}

%%

%Compute Membership Value

function memDeg=gaussneuron(x,sigma,c)

memDeg = exp(-(x - c).^2./(2*sigma.^2));

%%

%Gaussian Membership Function

function memDeg=gauss2neuron(x,sig,c2,nInp)

clow=c2(:,1:nInp/2);

cup=c2(:,nInp/2+1:nInp);

slow=sig(:,1:nInp/2);

sup=sig(:,nInp/2+1:nInp);

c1Index=(x<=clow);

c2Index=(x>=cup);

y1 = exp(-(x-clow).^2./(2*slow.^2)).*c1Index + (1-c1Index);

y2 = exp(-(x-cup).^2./(2*sup.^2)).*c2Index + (1-c2Index);

memDeg = y1.*y2;

% Two sided Gaussian Membership Function

function [Cl]=compute_rule_out(Cl)

%% training phase

Cl.tr_rule_output=zeros(Cl.tr_numPattern,Cl.numRule);

tr_ind=zeros(Cl.tr_numPattern,1);

rule_outs=zeros(Cl.class,Cl.tr_numPattern);

Cl.ts_rule_output_ts=zeros(Cl.ts_numPattern,Cl.numRule);

ts_ind=zeros(Cl.ts_numPattern,1);

149

rule_outs_ts=zeros(Cl.class,Cl.ts_numPattern);

for n= 1:Cl.class

 Cl.Clc{n}.rule_output=[];

 Cl.Clc{n}.ind2=[];

 Cl.Clc{n}.ind3=[];

 Cl.Clc{n}.rule_firing=[];

 Cl.Clc{n}.rule_output_ts=[];

 Cl.Clc{n}.ind2_ts=[];

 Cl.Clc{n}.ind3_ts=[];

 Cl.Clc{n}.rule_firing_ts=[];

 for m=1:size(Cl.Clc{n}.mf,2)

 %Os(3)=Cl.Clc{n}.rule_output

 [a b]=min(Cl.Clc{n}.mf{m}');

 Cl.Clc{n}.rule_output(:,m)=a';%Her bir class daki her bir kuralın

firing strengini bul

 Cl.Clc{n}.ind2(:,m)=b';%:hangi membership tetikledi onu bul

 end

 % hangi kural ateşlendi onu bul

 %Op(4)=Cl.Clc{n}.rule_firing

 if size(Cl.Clc{n}.rule_output,2)>1

 [Cl.Clc{n}.rule_firing Cl.Clc{n}.ind3]=max(Cl.Clc{n}.rule_output');

 %Cl.Clc{n}.rule_firing=Cl.Clc{n}.rule_firing.*

Cl.Clc{n}.numData(Cl.Clc{n}.ind3)';

 else

 %

Cl.Clc{n}.rule_firing=Cl.Clc{n}.rule_output'.*repmat(Cl.Clc{n}.numData,1,Cl.

tr_numPattern);

 Cl.Clc{n}.ind3=ones(1,Cl.tr_numPattern);

 Cl.Clc{n}.rule_firing=Cl.Clc{n}.rule_output';

 end

 for m=1:size(Cl.Clc{n}.mf_t,2)

 %Os(3)=Cl.Clc{n}.rule_output

 [a b]=min(Cl.Clc{n}.mf_t{m}');

 Cl.Clc{n}.rule_output_ts(:,m)=a';%Her bir class daki her bir kuralın

firing strengini bul

 Cl.Clc{n}.ind2_ts(:,m)=b';%:hangi membership tetikledi onu bul

 end

 if size(Cl.Clc{n}.rule_output_ts,2)>1

 [Cl.Clc{n}.rule_firing_ts

Cl.Clc{n}.ind3_ts]=max(Cl.Clc{n}.rule_output_ts');

 else

 Cl.Clc{n}.ind3_ts=ones(1,Cl.tr_numPattern);

 Cl.Clc{n}.rule_firing_ts=Cl.Clc{n}.rule_output_ts';

 end

 rule_outs_ts(n,:)=Cl.Clc{n}.rule_firing_ts;

 rule_outs(n,:)=Cl.Clc{n}.rule_firing;

end

rule_outs2=rule_outs;

[maxx Cl.ind_winner] =max(rule_outs);

rule_outs2_ts=rule_outs_ts;

[maxx Cl.ind_winner_ts] =max(rule_outs_ts);

for t=1:Cl.tr_numPattern

 rule_outs2(Cl.ind_winner(t),t)=0;

end

[Cl.rule_not_firing Cl.ind_rival]=max(rule_outs2);

for t=1:Cl.ts_numPattern

 rule_outs2_ts(Cl.ind_winner_ts(t),t)=0;

end

[Cl.rule_not_firing_ts Cl.ind_rival_ts]=max(rule_outs2_ts);

Cl.output=zeros(Cl.tr_numPattern,Cl.class);

150

Cl.output_ts=zeros(Cl.ts_numPattern,Cl.class);

Cl.RMSE=0;

for i=1:Cl.class

 Cl.Clc{i}.tr_output=zeros(Cl.tr_numPattern,1);

 Cl.output(i==Cl.ind_winner,i)=1;

 Cl.Clc{i}.output=Cl.output(:,i);

 Cl.Clc{i}.tr_output(Cl.tr_output==Cl.classes(i))=1;

 Cl.tr_target(:,i)=Cl.Clc{i}.tr_output;

 Cl.Clc{i}.rule_firing(Cl.Clc{i}.rule_firing==0)=1e-10;

 Cl.Clc{i}.ts_output=zeros(Cl.ts_numPattern,1);

 Cl.output_ts(i==Cl.ind_winner_ts,i)=1;

 Cl.Clc{i}.output_ts=Cl.output_ts(:,i);

 Cl.Clc{i}.ts_output(Cl.ts_output==Cl.classes(i))=1;

 Cl.ts_target(:,i)=Cl.Clc{i}.ts_output;

 Cl.Clc{i}.rule_firing_ts(Cl.Clc{i}.rule_firing_ts==0)=1e-10;

 indx=zeros(1, length(Cl.Clc{i}.ind3));

 indxx= i==Cl.ind_winner | i==Cl.ind_rival;

 indx(indxx)=1;

 Cl.Clc{i}.error=.5*...

 ((Cl.Clc{i}.tr_output-

Cl.Clc{i}.rule_firing'+Cl.rule_not_firing').^2).*indx';

 Cl.RMSE= sqrt(sum(sum(Cl.Clc{i}.error)))+Cl.RMSE;

end

Cl.RMSE=Cl.RMSE/Cl.tr_numPattern;

a=Cl.tr_target&Cl.output;

b=Cl.ts_target&Cl.output_ts;

a=size(find(a==1),1);

b=size(find(b==1),1);

Cl.Accurracy=100*a/Cl.tr_numPattern;

Cl.Accurracy_ts=100*b/Cl.ts_numPattern;

%%

%%Calculate Rule firing & network output

function Cl=similarity(Cl)

UpThr=1;

LowThr=.87;

k=1;

n_class=Cl.class;

k=1;

figure_number=1;

for j=1:Cl.class

 set(0,'Units','pixels')

 scnsize = get(0,'ScreenSize');

 figure(figure_number);

 position=get(figure(figure_number),'Position');

 position=[scnsize(3)/1.5 (j-1)*scnsize(4)/3 scnsize(3)/3

scnsize(4)/4];

 set(figure(figure_number),'Position',position)

 x=linspace(0,1,1000);

 n=size(Cl.Clc{j}.in_cluster,1);

 for i=1:4

 memDeg{j}{i} = exp(-((repmat(x,n,1) -

repmat(Cl.Clc{j}.in_cluster(:,i),1,1000)).^2)./(2*repmat(Cl.Clc{j}.sigmas(:,

i),1,1000).^2));

 subplot(2,2,i),plot(x,memDeg{j}{i})

 theStr=sprintf(' Input= %g',i);

 Ylabel('Mebership Degree ') ;

 Xlabel(theStr) ;

 end

 figure_number=figure_number+1;

end

Cl.memDeg=memDeg;

for i=1:n_class

 n_r=size(Cl.Clc{i}.sigmas,1);

151

 sx(k:n_r+k-1,:)=Cl.Clc{i}.sigmas;

 cx(k:n_r+k-1,:)=Cl.Clc{i}.in_cluster;

 k=k+n_r;

end

%% search for Feature Redundancy;

k=1;

input_select=zeros(Cl.class,Cl.numInp);

for c=1:Cl.class

 for c2=1:Cl.class

 for i=1:Cl.numInp

 if size(Cl.memDeg{c}{i},1)>1

 a=max(Cl.memDeg{c}{i});

 else

 a=Cl.memDeg{c}{i};

 end

 if size(Cl.memDeg{c2}{i},1)>1

 b=max(Cl.memDeg{c2}{i});

 else

 b=Cl.memDeg{c2}{i};

 end

 ab=[a ;b];

 min_a=min(ab);

 max_a=max(ab);%sum(a)-min_a;

 dist{c}(c2,i)=sum(min_a./max_a);

 %inter{c}(c2,i)=sum(min_a./Cl.memDeg{k}{1,l}(i,:));

 end

 end

 dist_logical{c}=(dist{c}>18);

 a=find(sum(dist_logical{c})==1);

 if isempty(a)

 input_select(c,:)= 1;

 else

 input_select(c,a)= 1;

 end

end

Cl.input_select=input_select;

k=1;

%% Search for Membership Similarity;

for c=1:Cl.class

 for i=1:Cl.numInp

 [numRule sizeofMf]=size(Cl.memDeg{c}{1});

 for j=1:numRule

 for k=1:numRule

 c1=Cl.Clc{c}.in_cluster(j,i);%c inci klasifierin i.inputunun

j inci clusteri

 c2=Cl.Clc{c}.in_cluster(k,i);%c inci klasifierin i.inputunun

j inci clusteri

 s1=Cl.Clc{c}.sigmas(j,i);

 s2=Cl.Clc{c}.sigmas(k,i);

 % c2>x>c1

 intersect(1)=(c1*s2+c2*s1)/(s1+s2);

 % x>c(2)>c(1)

 intersect(2)=(c1*s2-c2*s1)/(s2-s1);

 memdeg(1)=exp(-((intersect(1)-c1)^2)/(2*s1^2));

 memdeg(2)=exp(-((intersect(2)-c1)^2)/(2*s1^2));

 index=find(UpThr>memdeg &memdeg>LowThr, 1);

 if not(isempty(index));

 found{c}{i}(j,k)= find(UpThr>memdeg &memdeg>LowThr, 1,

'last');

 if found{c}{i}(j,k)==2

 if s1>s2

 s2=(s1+s2)/2;

 else

152

 s1=(s1+s2)/2;

 end

 end

 if c1>c2

 Cl.Clc{c}.two_c(i,j)=c2;

 Cl.Clc{c}.two_s(i,j)=s2;

 Cl.Clc{c}.two_c(i,j+ Cl.numInp)=c1;

 Cl.Clc{c}.two_s(i,j+ Cl.numInp)=s1;

 cup=c1;

 sup=s1;

 clow=c2;

 slow=s2;

 else

 Cl.Clc{c}.two_c(i, j)=c1;

 Cl.Clc{c}.two_s(i,j)=s1;

 Cl.Clc{c}.two_c(i,j+ Cl.numInp)=c2;

 Cl.Clc{c}.two_s(i, j+ Cl.numInp)=s2;

 cup=c2;

 sup=s2;

 clow=c1;

 slow=s1;

 end

 else

 found{c}{i}(j,k)=0;

 Cl.Clc{c}.two_c(i,[j j+ Cl.numInp])=c1;

 Cl.Clc{c}.two_s(i,[j j+ Cl.numInp])=s

 cup=c1;

 sup=s1;

 clow=c1;

 slow=s1;

 end

 c1Index=(x<=clow);

 c2Index=(x>=cup);

 y1 = exp(-(x-clow).^2/(2*slow^2)).*c1Index + (1-c1Index);

 y2 = exp(-(x-cup).^2/(2*sup^2)).*c2Index + (1-c2Index);

 y = y1.*y2;

 min_a=min(a);

 min_a(min_a==0)=0;

 max_a=max(a);%sum(a)-min_a;

 max_a(max_a==0)=1e-2;

 sim_mf{c}{i}(j,k)=sum(min_a./max_a);

 % sim_mf{c}{i}(j,k)=sum(min_a./max_a)

 end

 end

 end

end

clear l;

Cl.Clc{1}.two_c=[];

Cl.Clc{2}.two_c=[];

Cl.Clc{3}.two_c=[];

for c=1:Cl.class

 for i=1:Cl.numInp

 [numRule sizeofMf]=size(Cl.memDeg{c}{1});

 for j=1:numRule

 k=find(found{c}{i}(j,:));

 m=k;

 for t=1:size(k,2)

 l{t}=find(found{c}{i}(k(t),:));

 m=union(l{t},m);

 end

 found2{c}{i}{j}=m;

153

 if isempty(m)

 clow=Cl.Clc{c}.in_cluster(j,i);

 slow=Cl.Clc{c}.sigmas(j,i);

 sup=slow;

 cup=clow;

 m=j;

 else

 cl=Cl.Clc{c}.in_cluster(m,i);

 s=Cl.Clc{c}.sigmas(m,i);

 cls=[cl s];

 cup=max(sortrows (cl));

 clow=min(sortrows (cl));

 sup=s(cl==cup(1));

 slow=s(cl==clow(1));

 end

 Cl.Clc{c}.two_c(m,i)=clow;

 Cl.Clc{c}.two_c(m,i+Cl.numInp)=cup;

 Cl.Clc{c}.two_s(m,i)=slow;

 Cl.Clc{c}.two_s(m,i+Cl.numInp)=sup;

 end

 end

end

figure_number=4;

for j=1:Cl.class

 set(0,'Units','pixels')

 scnsize = get(0,'ScreenSize');

 figure(figure_number);

 position=get(figure(figure_number),'Position');

 position=[scnsize(3)/3 (j-1)*scnsize(4)/3 scnsize(3)/3

scnsize(4)/4];

 set(figure(figure_number),'Position',position)

 x=linspace(0,1,1000);

 n=size(Cl.Clc{j}.in_cluster,1);

 for i=1:Cl.numInp

 % memDeg{j}{i} = exp(-((repmat(x,n,1) -

 %

repmat(Cl.Clc{j}.in_cluster(:,i),1,1000)).^2)./(2*repmat(Cl.Clc{j}.sigmas(:,

i),1,1000).^2))

 clow=Cl.Clc{j}.two_c(:,i);

 cup=Cl.Clc{j}.two_c(:,i+Cl.numInp);

 slow=Cl.Clc{j}.two_s(:,i);

 sup=Cl.Clc{j}.two_s(:,i+Cl.numInp);

 for k=1:size(Cl.Clc{j}.in_cluster,1);

 c1Index=(x<=clow(k));

 c2Index=(x>=cup(k));

 y1 = exp(-(x-clow(k)).^2/(2*slow(k)^2)).*c1Index + (1-c1Index);

 y2 = exp(-(x-cup(k)).^2/(2*sup(k)^2)).*c2Index + (1-c2Index);

 y(k,:) = y1.*y2;

 end

 memDeg{j}{i}=y;

 subplot(2,2,i),plot(x,memDeg{j}{i})

 theStr=sprintf(' Input= %g',i);

 Ylabel('Mebership Degree ') ;

 Xlabel(theStr) ;

 end

 figure_number=figure_number+1;

end

Cl.memDeg=memDeg;

154

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: TORUN,Yunis

Nationality: Turkish (TC)

Date and Place of Birth: 25 Sept. 1978 , Sivas

email: torun@gantep.edu.tr

EDUCATION

Degree Institution Year of Graduation

MS Electrical& Electronic Eng.

University of Gaziantep

2004

BS Electrical& Electronic Eng.

University of Gaziantep

2001

WORK EXPERIENCE

Year Place Enrollment

2001- Present GAZÜ- Gaziantep

Vocational high school

Lecturer

PUBLICATIONS

1. Torun,Y., Eker,Ġ., ―Experimental Application Of Fuzzy Logic Control To An

Electrical Drive System‖ International Conference On Intelligent Knowledge

Systems , Vol.1, No.1, August 2004

2. Eker, Ġ. ,Torun, Y. ,‖Fuzzy logic control to be as a conventional method‖,

Energy Conversion and Management, Volume 47, Issue 4, March 2006, Pages

377-394

3. Torun, Y., Tohumoğlu, G., Veri Kümeleme Yöntemlerininin Rahim Ağzı

Kanserinde Kullanımı, ASYU, INISTA 2008.

4. Torun, Y., Tohumoğlu, G., BenzetilmiĢ Tavlama ve Çıkarımlı Kümeleme

Tabanlı Bulanık Sınıflandırcıların Biyomedikal Sınıflandırma Problemlerine

Uygulanması, IEEE SIU 2009.

5. Torun, Y., Tohumoğlu G., Designing Simulated Annealing Subtractive

Clustering based Fuzzy Classifier, Applied Soft Computing, Accepted

Manuscript, doi:10.1016/j.asoc. 2010.07.020

mailto:torun@gantep.edu.tr

