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ABSTRACT

MODELLING AND IDENTIFICATION OF AN INTERNAL
COMBUSTION ENGINE TO PROVIDE SIMULATOR FOR CONTROL
PURPOSES

TOGUN, Necla KARA
Ph.D. in Mechanical Engineering.
Supervisor: Prof. Dr. Sedat BAYSEC
August 2010, 222 pages

Field of “System Identification” has become an important discipline. Identification is
basically the process of developing a mathematical representation of a physical
system using experimental data. The identification of nonlinear dynamical systems is
a substantial part of the control science and therefore appropriate models should be
developed to control nonlinear dynamic systems. The main idea that lies under the
procedure is to obtain a regular and mathematically tractable model of the system of
interest. Automotive internal combustion engine (ICE) control is one of the most
complex control problems for control system engineers and researchers. Among all
the engine control variables, the engine torque is one of the most important
performance variables of an ICE and, for this reason, a technique based on
optimizing the engine torque control can improve substantially the performance of
the overall vehicle. There are two objective of this work. First one is to develop a
steady-state model of a gasoline engine torque and brake specific fuel consumption
by using neural network and genetic programming and second one is to develop an
accurate and robust model of a spark ignition (SI) engine torque by using the most
common nonlinear black-box parametric models namely Hammerstein model,
nonlinear auto-regressive with exogenous inputs (NARX) model and neural network
model that is including multilayer feedforward neural network (FFNN) model, radial
basis function (RBF) neural network model and Elman type recurrent neural network
model. These developed methods are implemented to an existing 1400 cc, four
cylinder Fiat SI engine. The artificial neural network (ANN) is a newly developed
technique among the other identification methods. There are various methods used
for training of ANN. Two of them are included in this study. These are, namely, the
bacpropagation method and the Levenberg-Marquardt algorithm. The different
nonlinear identification approaches are used in this thesis. The neural network based
model has captured the dynamics very well and the method has been found suitable
for modeling the SI engine torque. However all the nonlinear identification methods
identified the SI engine torque dynamics at acceptable levels of accuracy.

Key Words: SI engine, engine torque identification, nonlinear modeling, nonlinear
identification, Hammerstein model, NARX model, neural networks, genetic
programming
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OZET

ICTEN YANMALI BIR MOTORUN KONTROL AMACLI
SIMULATORUNUN SAGLANMASI iCiN MODELLENMESI VE
TANIMLANMASI

TOGUN, Necla KARA
Doktora Tezi, Makina Miih. Boliimii
Tez Yoneticisi: Prof. Dr. Sedat BAYSEC
Agustos 2010, 222 sayfa

Sistem tanimlanmasi alam1 onemli disiplin haline gelmistir. Tamimlama temelde
fiziksel bir sistemi deneysel verileri kullanarak matematiksel olarak modelinin
gelistirilmesidir. Dogrusal olmayan dinamik sistemlerin tanimlanmasi kontrol i¢in
onemli bir bolimdiir. Bu nedenle, uygun modeller dogrusal olmayan dinamik
sistemleri kontrol etmek icin gelistirilmelidir. Prosediiriin altinda yatan ana diisiince
ilgilenilen sisteme iligkin diizenli ve matematiksel olarak kolay islenebilir bir
modelin elde edilmesidir. Otomotiv i¢ten yanmali motor kontrolii, kontrol sistem
mithendisleri ve arastirmacilar icin en karmasik kontrol sorunlarindan biridir. Tiim
motor kontrol degiskenleri arasinda motor torku bir motorun en 6nemli performans
degiskenlerinden biridir. Bu nedenle, bir tork kontrol sistemi tiim aracin biiyiik
Olctide performansimi arttirabilir. Bu ¢caligmanin iki amaci vardir. Birincisi, benzinli
bir motor torkunu ve Ozgiil yakit tiikketimini yapay sinir aglari ve genetik
programlama kullanarak kararli hal modelini gelistirmektir. Ikincisi, benzinli bir
motorun torkunun en yaygin dogrusal olmayan Hammerstein and NARX parametrik
modeli kullanilarak olusturulmasi ve ileri beslemeli, radyal tabanli ve Elman tipi
vinelenen yapay sinir agi modelinin dogru ve kesin olarak gelistirilmesidir. Bu
gelistirlen metotlar 1400 hacimli 4 silindirli fiat marka benzinli bir motora
uygulanmistir.  Yapay sinir aglart (YSA) tamimlama yoOntemleri arasinda yeni
gelistirilmis bir tekniktir. Yapay sinir aglarinin egitiminde bir¢ok yOntem
kullanilmaktadir. Bu ¢aligmada iki yontem ele alinmstir: hata geriye yayma yontemi
ve Levenberg-Marquardt algoritmasidir. Bu tezde farkli dogrusal olmayan
tanimlama yaklagimlari kullanilmistir. Bunlar arasindan yapay sinir aglar1 tabanli
model sistem dinamiklerini ¢ok iyi yakalamistir ve bu model benzinli bir motor
torkunu modellemek igin uygundur. Ancak, tiim dogrusal olmayan tanimlama
metotlart dogrulugu kabul edilebilir diizeyde bir motor tork dinamigini tanimlamistir.

Anahtar Kelimeler: Benzinli motor, motor tork tamimlama, dogrusal olmayan
modelleme, dogrusal olmayan tanimlama, Hammerstein model, NARX model, sinir
aglari, genetik programlama
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CHAPTER 1

1. INTRODUCTION

1.1 Motivation of the Thesis

Automotive internal combustion engine (ICE) control is one of the most complex
control problems for control system engineers and researchers. Due to increasing
requirements of governments and customers, car manufacturers always strive to
reduce substantially, emissions and fuel consumption while maintaining the best
engine performance. To satisfy these requirements, a variety of variables need to be
controlled, such as engine speed, engine torque, spark ignition timing, fuel injection
timing, air intake, air-fuel ratio (AFR) and so on. These variables are complicatedly
related to each other. Moreover, car engines have several different operating modes
including start up, idle, running and braking. Engine dynamics is highly nonlinear

and multivariable because of these factors [1-5].

Among all the engine control variables, the engine torque has important applications
in the automotive industry: for example, automatically setting gears, optimizing
engine performance, reducing emissions and designing drivelines [6]. For these
reasons; a good torque control system can improve substantially the performance of
the overall vehicle [7, 8]. Torque models can be classified according to their inputs.
Most are directly based on engine inputs such as the air and fuel mass flow rates,
intake and exhaust pressures, ignition timing, injection timing, engine speed and
throttle angle have been widely used for torque model and control application [6, 9].
Torque modeling efforts have been based on an experimental method of system

identification that captures the nonlinear engine torque characteristics [10].

Exact mathematical models of mechanical systems are derivable by Lagrange,

Hamilton and Newton-Euler formulations or by energy methods. This requires all the



system parameters such as masses, mass moments of inertia, stiffnesses, damping
coefficients and physical dimensions explicitly. The system generally needs be
dismantled into its main components where each parameter of the system is lumped
for measurement. In applications where this is not possible, system identification
becomes very useful, generating an empirical mathematical model for the response

of the system [11].

System modeling plays a fundamental role in modern engineering, as it is typically
the first step in a design cycle. However, it is also one of the more complicated tasks
in engineering, as it is more closely connected with reality (in contrast with the tasks
of analysis and design, which are usually performed on mathematical models). In
some cases, one can build a so called “white-box” model based on first principles
(Newton’s law, Kirchhoff’s laws, laws of thermodynamics, etc.), but in many cases
such models will be overly complex and perhaps even impossible to obtain in
reasonable time due to complex nature of many systems and processes. A much more
common approach is therefore to start from measurements of the behavior of the
system and the external influences (inputs to the system) and try to determine a
mathematical relation between them without going into the details of what is actually

happening inside the system. This approach is called system identification [12].

Most systems encountered in the real word are nonlinear in nature, and since linear
models can not capture the rich dynamic behavior of limit cycles, bifurcations, etc.
associated with nonlinear systems, it is imperative to have identification techniques
which are specific for nonlinear systems [13]. System identification has become an
important area of study because of the increasing need to estimate the behavior of a
system with partially known dynamics. Especially in the areas of control, pattern
recognition and even in the realm of stock markets, the system of interest needs to be

known to some extent [14, 15].

In engineering dynamics, control engineering and many other areas, auto-regressive
with exogenous inputs (ARX) models are widely utilized for describing dynamic data
regimes for linear and nonlinear systems [16]. And also, the Hammerstein model is

probably the most widely known and applied nonlinear dynamic modeling approach.



It assumes a separation between the nonlinearity and the dynamics of the process

[17].

In classical polynomial approaches for nonlinear system identification, Nonlinear
auto-regressive with exogenous input (NARX) model, Hammerstein model, Wiener
model are suitable only restricted classes of processes [17]. However, even when
there exists some structural process/model mismatch these simplified models may be
sufficiently accurate for many applications, and thus some of them, in particular the

Hammerstein structure, are widely utilized in practice. [17].

Artificial neural network (ANN) has opened a new horizon in identification and
control of highly nonlinear and complex structured systems. These networks are
implemented using massive connections among the neurons with variable strengths.
Moreover, their parallel, distributed and fault tolerant processing properties make
them powerful tools for both identification and control of nonlinear dynamical
systems. Especially learning capabilities of these networks enable them to process

the information adaptively [18, 19].

Neural networks (NN) have been proved to be effective in modeling complex
nonlinear systems. They are natural candidates to approximate a nonlinear process
due to their inherent nonlinearity and computational simplicity. There are many
kinds of neural networks that can be used for nonlinear function approximation. For
example, multilayer feedforward neural network (FFNN), radial basis function

(RBF) neural network, recurrent neural network (RNN) is just a few examples [1].

The use of artificial neural network (ANN) in system identification has been gaining
more and more attention in recent years. Neural networks (NN) have good general
approximation capabilities for reasonable nonlinear systems [20, 21]. Nerandra and
Parthasaraty [22] have demonstrated that ANN could be used successfully for the
identification and control of nonlinear dynamic systems. A series of works
performed by Chen and Billings and their coworkers have developed the foundation

of using neural networks as a tool for nonlinear system identification [23-25].



1.2 The Purpose and Contribution of the Thesis

The objective of this work has been to develop an accurate and robust model of a
spark ignition (SI) engine torque by using the most common nonlinear black-box
parametric models, namely Hammerstein model and Nonlinear auto-regressive with
Exogenous inputs (NARX) model and neural network model that is including
multilayer feedforward neural network (FFNN) model, radial basis function (RBF)
neural network model and Elman type recurrent neural network model. These
developed methods are implemented to an existing 1400 cc, four cylinder Fiat SI

engine.

When the physical system structure and parameters are not available or dependent on
time or operating conditions, a mathematical model representing the system behavior
may be very difficult to obtain. For such a case, the system parameters should be
obtained using a system identification procedure [26, 27]. Identification of linear
systems is rather an old field of study, and many methods are available in literature
[26, 27]. However, identification of nonlinear systems is respectively a new topic of
interest [26-28]. In internal combustion engines (ICE), identification is an
occasionally employed method for examination and detection of the system
parameters. The nonlinear identification of ICE has also been of interest in recent

years.

To satisfy the intended objective, the following scope of works was carried out.

1. A comprehensive literature review has been carried out on identification and

modeling of the internal combustion engine (ICE).

2. Steady-state experiments were carried out in a spark ignition (SI) engine to model
the SI engine torque and brake specific fuel consumption (bsfc) using soft computing

techniques.

3. Dynamic experiments were carried out in a SI engine to identify and model the SI

engine.



4. Development of artificial neural network (ANN) and Gene-Expression
Programming (GEP) model of SI engine torque and brake specific fuel consumption

at steady-state conditions and comparison with ANN model and GEP model.

5. Development of Hammerstein model and NARX model for identifying and

modeling of SI engine torque for control purposes and their comparison.

6. Development of various kinds of neural network structure for modeling and
identification of SI engine torque for control purposes and comparison of the neural

network structures.

7. For the modeling and identification of SI engine, an attempt has been made to
develop a computer program using Matlab based on system identification toolbox

and artificial neural network toolbox of Matlab.

The results of this PhD thesis came up very promising. The proposed models came
up far more accurate than all the work published, when compared to real test engine

output.

1.3 Layout of the Thesis
The presentation of the work done in this thesis is organized as follows:

In Chapter 2, a comprehensive literature review on identification and modeling of the
internal combustion engine (ICE) is presented. The survey is presented under three
titles: classical nonlinear identification, neural network nonlinear identification and

genetic programming nonlinear identification.

In Chapter 3, the dynamic formulations of a piston-crank mechanism have been done
with only one independent variable using Lagrange equation. And also, more

complex sets of equations of motion are derived for multi-cylinder engines.

In Chapter 4, a general view of nonlinear system modeling and identification with a
parametric approach is given. Identification of Hammerstein model is presented in

this chapter.



In Chapter 5, background information on neural network and neural network
structures is given. Neural networks for identification of nonlinear dynamic systems

are explained in this chapter.

In Chapter 6, the mean value engine model (MVEM) which is generally accepted as

the modeling paradigm in engine control is extensively described.

In Chapter 7, a detailed description of the spark ignition (SI) engine experimental
set-up and the measuring devices on it are presented. The experimental set up details
are provided with the specifications of the measuring instruments. The experimental
procedure for steady-state condition and the experimental procedure for dynamic
condition are given in this chapter. The uncertainty analysis has been carried out to

calculate the percentage of measurement errors in this chapter.

In Chapter 8, steady-state modeling of the gasoline engine torque and brake specific
fuel consumption is investigated by means of a number of case studies. These case
studies can be categorized under two headings with respect to the used methods
namely the neural network and the genetic programming approach. Nonlinear
identification and modeling of a gasoline engine torque is investigated by means of a
number of case studies. These case studies which can be categorized under three
headings with respect to the used methods namely the Hammerstein model, NARX

model and the Neural Network models, are presented also in this chapter.

In Chapter 9, conclusions drawn from the study are pointed out and further

recommendations for study are provided.



CHAPTER 2

2. LITERATURE SURVEY

2.1 Introduction

In this chapter, a comprehensive literature survey on identification and modeling of
the internal combustion engine (ICE) is presented. The survey is presented under
three headings: classical nonlinear identification, neural network nonlinear
identification and genetic programming nonlinear identification. The survey provides

a historical view and various methodologies developed over the years.

2.2 Classical Nonlinear Identification of the Engine

In order to control nonlinear dynamic systems, appropriate models should be
developed. A discrete time nonlinear dynamic system can be described by a
nonlinear autoregressive with exogenous input (NARX) model, nonlinear
autoregressive moving average with exogenous input (NARMAX) model,

Hammerstein model and Wiener model [29].

System modeling and identification refers to a systematic method to determine and
improve the mathematical models for the proper representation of dynamic systems
[30]. Many articles were published in order to control and identify the internal

combustion engine. Majors of these are given below.

Pérez et al. [31] have proposed a new approach to control the air management
process of a Diesel engine. Identification and control schemes based on model
predictive control and Wiener and Hammerstein models have been proposed.
Proposed algorithms were implemented on a real world engine. In the end, useful

hints are given, offering an improvement in the application, were proposed.



Nicolao et al. [32-34] have presented an application of the identification procedure
for nonlinear autoregressive with exogenous input (NARX) models and control of
ICEs in idle speed conditions. The inputs of the nonlinear identification model were
the position of the idle speed air actuation system and the spark advance, while
outputs were the pressure inside the intake manifold and the crankshaft speed. The
estimated model was then used to synthesize an idle speed controller with the linear
quadratic technique. Some identification and control results obtained by applying this
method to a 1200 cm® engine [32], a 1400 cm’ engine [33] and two more commercial
engines namely a 1200 and 1600 cm’ [34] were reported to witness the effectiveness

of the proposed approach.

Hrovat and Sun [35] have surveyed different ICE models and controller design
methodologies for idle speed control applications. Linear engine models used for
control system synthesis and analysis, as well as nonlinear models for computer
simulation and control design validation are discussed. The survey includes both

classical designs and those based on advanced control theory.

Rachid et al. [36] have studied the nonlinear identification of a turbocharged Diesel
engine. A combined use of nonlinear autoregressive moving average with exogenous
input (NARMAX) models and group method data handling method was proposed in
an attempt to provide a systematic approach to identify nonlinear systems using

relatively simple models well suited to computer handling.

Glass and Frankchek [37] have presented in a detail their study of a single input
single output (SISO) nonlinear modeling and robust controller design methodology
experimentally on an ICE. The methodology begins with the identification of a
NARMAX model that captures the nonlinear dynamics relating the input to the
output of a system. This model is converted to a describing function representation
for the purpose of robust feedback controller design. For the engine idle speed
control application of this study, a SISO NARMAX model of the engine was
developed between the by-pass idle air valve and engine speed. The controller
performance is then validated through numerical simulations and experimental

verification.



Pfeiffer et al. [38] have investigated the potential of the use of inlet air temperature
as a means of control for ignition actuation. This study describes a method for system
identification of the homogenous charge compression ignition engine process, and
development of an effective linear quadratic Gaussian controller for the combustion

process, Matlab and Simulink being used in computations and simulations.

Jones et al. [39] have explored the use of adaptive control as a means of precise
control of the AFR. A control-oriented, physics based engine model, in which the
sampling rate is based on crank angle instead of time, has been utilized to construct a
feedforward/feedback control scheme to regulate AFR. A nonlinear least squares
identification technique is used to accurately determine the model parameters using
normal engine operating data. These parameter values are then employed in the

design of an estimator based controller for a single cylinder engine.

Souder and Hedrick [40] have used a simplified model of an ICE to derive a sliding
mode control law. Adaptive update laws are derived for two fueling parameters that
describe fuel flow into cylinders, and a third parameter that describes air flow. The
performance of sliding mode adaptive controllers have been found encouraging and

described as an effective method of achieving accurate AFR control.

Arsie et al. [41] have presented a procedure for the identification of emission models
for the design of an optimal controller for a SI engine. A two step scheme has been
built: in the first step the available physical models, based on a multi-zone
thermodynamic model with emission sub-models, are parameterized and an
intermediate model, based on Taylor approximation, is derived in order to describe
the nonlinear influences exerted by the physical parameters; in the second step the
physical parameters are modeled by means of nonlinear regression, taking into
account the effect of operating engine variables, and the optimal parameters obtained

via stepwise approach.

Luh and Rizzoni [42] have presented the application of advanced modeling
techniques to construct engine models for the detection and isolation of incipient
faults. A nonlinear black-box engine model is derived using the NARMAX models.

A forward-regression estimator is applied to identify the model parameters.



Experimental validation is performed using data from a production engine. They
have pointed out that the agreement between the estimated and measured values of
all the variables have been excellent except for the load torque. Further, they have

stated that this kind of a model was adequate for diagnostic purposes.

Falcone et al. [43] have proposed a combustion model of direct injection diesel
engine to calculate the in-cylinder pressure and a slider-crank mechanism model to
calculate instantaneous indicated torque. The crankshaft is modeled as a rigid body.
The parameters of both models are identified via nonlinear least square optimization
algorithm. The model is generated using pressure data collected from an engine test
bed, equipped with a BMW four cylinder diesel engine. The obtained model was
intended to be the benchmark to develop and test another model which would be able
to estimate the produced torque and to be implemented on commercial vehicles

simply.

Ingram et al. [10] have presented a robust feedback controller design procedure to
regulate the torque of a SI engine equipped with an electronic throttle mass air flow
controller. A Ford 4.6 L V8 SI engine torque production system level model was
experimentally determined. In addition, an H, controller was designed to control
engine torque. It was observed that the torque disturbances may be reduced using the
same controller design methodology outlined in this paper by taking into account

spark timing and exhaust gas recirculation.

Khiar et al. [44] have estimated the combustion torque of an ICE with the only
measurement available on a mass production car. Two estimators have been
developed based on two different unknown input observers: a high gain and a second
order sliding mode. The main advantage of these designs is the systematic aspect of
the method to deal with a large class of ICE. The method has been applied to a three
cylinder-turbocharged gasoline engine. The results showed the efficiency of the

proposed method.

Rakotomamonjy et al. [6] have compared the torque estimation problem using four
methods: linear least squares, linear and nonlinear neural networks and support

vector machines. It has been found that a nonlinear model structure is necessary for

10



accurate torque estimation. The most efficient torque model built came up to be a
nonlinear neural network that achieves about 2% test normalized mean square error

in nominal conditions.

Franco et al. [45] have presented a real time engine brake torque estimation model
whose input is the instantaneous engine speed. This model is separated into steady-
state and transient torque estimations. The steady-state portion of the model is
developed using orthogonal least squares estimation, where as the transient portion is
identified using a time domain identification method. This study had shown that the
engine speed and mean engine speed were sufficient to estimate the engine brake
torque. Validation of the engine brake torque model is provided using a

computational engine model for a 6 cylinder heavy duty diesel engine.

Vong et al. [46] have determined the approximated power and torque model of a
vehicle engine by training the sample data acquired from the dynamometer with least
square support vector machines. The vehicle engine is run on the dynamometer to
show the actual engine output torque and power. In this paper, the construction,
validation and accuracy of the functions are discussed. The study has shown that the
predicted results using the estimated model from least squares support vector
machines are in good agreement with the actual test results. Also, the study
conducted in Ref. [56] illustrated the significance of the least squares support vector
machines methodology, in predicting automotive engine power and torque by
comparing the results with that regressed using multilayer feed forward neural
networks. From the perspective of automotive engineering, the construction of
modern automotive gasoline engine power and torque functions using proposed
method, least squares support vector machines, is a new attempt and this

methodology can also be applied to different kinds of vehicle engines.

Ali and Blath [47] have proposed a nonlinear state space controller for the optimal
torque of a SI engine. The controller design is based on feedback linearization in
combustion with pole placement. The resulting controller basically compensates the
intake manifold filling dynamics and thus improves tracking performance of torque
demand changes generated by the driver. The tracking performance is superior to the

performance of the original controller supplied by the ECU manufacturer.
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Ali and Blath [9] have investigated the application of three modern design techniques
to the torque control problem of a SI direct injection engine. The system to be
controlled is a highly nonlinear system characterized mainly by the intake manifold
dynamics. Control laws based on feedback linearization in order to achieve a linear
and uniform system behavior over the whole range of operation, nonlinear model
predictive control in order to optimize the control law over a finite time horizon
taking the input and state constraints into account during optimization and gain
scheduled LQ optimal control in order to describe the system in state-space form are
derived for the highly nonlinear automotive engine. A comparative study of these
schemes with the help of computer simulation is presented. The schemes have shown
that all of these schemes are capable of achieving a high performance of the control
loop. Nonlinear model predictive control outperforms other two schemes in the sense

of uniformity of the loop response.

Falcone et al. [7] have presented an engine torque estimator. The results reported that
a good performance of the estimator and validate the design criteria. This feature
makes it suitable for applications in which a good estimation of engine torque is

required.

Connolly and Yagle [48] have presented a new model relating cylinder combustion
pressure to crankshaft angular velocity in an ICE. There are three aspects to this
model. First, by changing the independent variable from time to crankshaft angle,
second, parametrising the pressure by the sample modulating sequence, third, the
inverse problem of reconstructing pressure from noisy angular velocity
measurements. Simulation result show that the parameterized pressure can be
deconvolved at low noise levels, and combustion misfires detected, in all real time.
The second part of their study [49] have presented and discussed the experimental
results that confirm this model, at least at the relatively low-speed, low-to-moderate
load operating conditions analyzed. They have shown that cyclic combustion
pressure variation is fairly well modelled and may be directly estimated from angular
velocity measurements. The experimental data are taken from an actual V-6

automobile engine.
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Billings et al. [50] have described the identification of both linear and nonlinear
models of a Leyland TL11 turbocharged, direct injection diesel engine. Two sets of
data are used in the identification and in both cases the input is fuel rack position and
the output is engine speed. A hydraulic (position) actuator acts directly onto the fuel
rack of the injection pump. The fuel rack was perturbed by a pseudo-random-binary-
signal (PRBS). An input-output model is a means for representing the input-output
relationship of a system and therefore a NARMAX model is chosen. The objective of
the study was to demonstrate that parsimonious nonlinear models can be used to
predict engine response. It has been shown that the combined procedure of
orthogonal and prediction-error estimation coupled with correlation and chi-squared
model validity tests provides a powerful interactive toolkit for fitting parsimonious

models to practical systems.

Rizzoni and Zhang [51] have discussed a method for the identification of a nonlinear
model of the dynamics relating combustion pressure to crankshaft angular velocity.
Such a model can be useful in the implementation of control strategies that require an
estimate of individual cylinder indicated torque or pressure. The method
demonstrated in this paper utilizes a known model structure and employs nonlinear
programming for the identification of relevant model parameters. The technique is
applied to single cylinder research engine, and successfully validated with
experimental data. Finally, the model thus derived is used to design an input observer
for the estimation of indicated torque. The accuracy achieved is sufficient to permit
the design of indicated torque estimators, with potential application to diagnostic and
control tasks. The diagnostic application of this modeling technique included as end-
of assembly tests, misfire detection, detection of abnormal piston and ring friction,
poor compression, and the diagnosis of other malfunctions related to the combustion

process and the reciprocating and rotating dynamics of the engine.

Poléni et al. [52] have proposed a nonlinear modeling of AFR dynamics of gasoline
engines during transient operations. In advanced control methods the model plays the
most important role. The purpose of the study is to identify a suitable model for
nonlinear model based control strategy and verify its ability to deal with nonlinear
parameter varying AFR dynamics. They have discussed an open loop identification

procedure of AFR on a 2.8 liter engine. Specifically, composite local linear ARX
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models with weighted validity are identified to model AFR nonlinear dynamics. The
global AFR model is then validated against the measured data. The estimation of
local ARX model parameters is performed using the data from engine which are
measured with an exhaust gas oxygen sensor and with the air mass flow sensor as a
reference sensor. To excite the air path dynamics they have applied PRBS to the
throttle and have recorded the AFR signal. All signals were sampled with a
frequency of 10 Hz. It has been found that the studied global model has the ability to

approximate nonlinear effects and varying dynamics of AFR.

Brahma et al. [53] have investigated a system approach to modeling the response of
brake torque and NOy emissions of a high speed common rail diesel engine. A
multivariate mean value model is proposed, identified and validated. They proposed
a linear grey-box approach to modeling the torque and NOx dynamics in response to
combined fuel quantity-timing excitation. Brake torque was measured using the
dynamometer load cell and NO, was measured using a Horiba emissions bench.
Observers are presented for the physically based model and it is shown that torque
and NOx can be predicted using existing measurements of manifold pressure and air

mass flow.

Bengtsson et al. [54] have estimated dynamic models of homogenous charge
compression ignition engine (HCCI), both SISO and MIMO models. Two different
actuator approaches (dual fuel and variable valve actuation) were used and models
for both approaches were estimated. Model based control synthesis requiring
dynamic models of low complexity and HCCI combustion models were estimated by
system identification and by physical modeling. The models identified by system
identification were used to design model predictive control with several desirable
features and today applicable very fast systems. Whereas satisfactory results were
obtained for both approaches, the dynamics were different among the models.
Finally, system identification and model predictive control provide effective and

pragmatic means to control system.

Cook and Powell [55] have presented the development of a basic nonlinear
representation of an engine dynamic system. The model contains descriptions for the

induction process and engine power system as well as characterization of the fuel
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system. In addition, a linear model has been developed for a particular six cylinder

engine and a time response of the system is presented.

Jankovic [56] has shown how the disturbance decoupling results and the notation of
relative degree introduced by the geometric theory of nonlinear control can be used
to design a controller that coordinates the throttle and the variable cam timing
actuator to achieve the desired transient performance. This study also illustrated the
design aspects relevant to experimental implementation of the control law. Due to its
nonlinear, multivariable nature, engine control systems can benefit from application

of advanced nonlinear control techniques.

Fritzsche and Diinow [8] have discussed a control approach for torque control of a
gasoline engines. The torque controller can be designed on base of linear models. An
appropriate standard control concept for the superordinate torque controller is the
model predictive control principle. The control approach described in this study
demonstrated that modern control approaches have considerable potential to improve

the performance of embedded control systems.

Zito and Landau [57] have applied a nonlinear system identification procedure, based
on polynomial NARMAX representation, to a variable geometry turbocharged diesel
engine. The relation between the variable geometry turbine command and the intake
manifold air pressure is described by a nonlinear model, directly identified by raw
data. The intent of the study is to explore the advantages of such a modeling
procedure in automotive applications in terms of efficiency and complexity, in view
of the related controller design and tuning problem. Simulation results on a diesel

engine model illustrate the whole procedure.

Weeks and Moskwa [58] have presented an automotive engine model designed for
real-time control applications in the context of a Simulink engine and control system
model. Subsystems within the model were briefly described with some additional
detail related to the air and fuel dynamics portion of the intake manifold subsystem.
Example simulations were presented to show some of the potential uses of the
model. In general, they are stated that the model may be used in five different ways:

1. as a nonreal-time engine model for testing engine control algorithms, 2. as a real-
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time engine model for hardware-in-the-loop testing, 3. as an embedded model within
a control algorithm or observer, 4. as a system model for evaluating engine sensor
and actuator models, 5. as a subsystem in a powertrain or vehicle dynamics model.
Although developed and validated for a specific engine, the model is generic enough

to be used for a wide range of SI engines.

Larimore and Javaherian [59] have presented to extend and refine the nonlinear
canonical variate analysis methods for system identification and monitoring of
automotive engines. In the nonlinear case, departures from optimality are
investigated, but the procedure is shown to still work quite effectively for detecting

and identifying system faults and changes.

Ohata et al. [60] have proposed the identification approach for a nonlinear stable
system by the nonlinear ARX model. The identification of ARX coefficients is done
around the selected level of input and/or output. The dependence of the parameters
on the levels of input and output is easily represented by the nonlinear functions like
polynomials. The propose approach may be used for the practical study of the
industrial processes like automotive engine. The proposed method gives an approach
to identify and to represent a nonlinear system which may be used to design a

controller.

2.3 Artificial Neural Network Approach for Nonlinear Identification of Engine

The use of artificial neural networks (ANN) in system identification has been gaining
more and more attention in recent years. Recently, neural networks have become an
attractive tool in the construction of models of complex nonlinear processes. This is
because neural networks have an inherent ability to learn and approximate nonlinear
functions arbitrarily well, and a large number of identification and control structures

based on neural networks have been proposed [22, 23, 61-68].

The ability of neural networks to approximate large classes of nonlinear function
sufficiently accurately makes them an important candidate for use in dynamic model
representation of nonlinear systems [69, 70]. One of the most common neural

networks in the area of system identification and control is the multilayer
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feedforward neural network and recurrent neural network [63]. Feedforward neural
networks with backpropagation learning algorithm have been successfully utilized to
identify nonlinear dynamical systems [71]. In neural network system identification
algorithms, the process model is usually described as continuous-time [72, 73] model
or discrete-time model. In nonlinear system identification, the Hopfield neural

network is used a new dynamic neural network model [74].

After pioneering works mentioned above, many prominent researches contributed to
the further development of neural networks and system identification and the
dissemination of its application. Work in this area is continuing. Among the works of
the rich literature of the neural network concept, the major works related internal

combustion engine are taken below.

Arsie et al. [75] have studied the identification of recurrent neural network (RNN)
for simulating the air-fuel ratio (AFR) dynamics into the intake manifold of a spark
ignition (SI) engine. Considering the manifold as an MISO system, the basic input
variables are the manifold pressure, the engine speed and the injected fuel flow rate,
while the model output is the AFR. The main contribution of this work was the
development of a procedure that allows identifying a RNN based AFR simulator
with high generalization and limiting data set. The procedure tested by comparing
RNN simulations with AFR transients generated using a nonlinear dynamic engine
model. In this paper, a second order method based on the Levenberg-Marquardt
training algorithm was considered. A dynamic model of SI engine powertrain has
been used to generate AFR transients for training and testing the RNN. The model,
developed by the authors is run in Matlab-Simulink environment. The results showed
how training the network making use of inputs that are uncorrelated and distributed
over the entire engine operating domain allows improving model generalization and
reducing the experimental burden. The three following steps have to be
accomplished to design a neural network (NN) model: (1) choose the proper learning
procedure to find the weights of the neurons connections; (2) define the network
structure with the minimum number of layers and nodes; (3) generate training data
set extended enough to guarantee acceptable generalization of the knowledge

retained in the training examples.
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Arsie et al. [76] have focused on the experimental identification and validation of
RNN models for AFR estimation and control in SI engines. Suited training
procedures and experimental tests are proposed to improve the RNN precision and
generalization in predicting AFR transients for a wide range of operating scenarios.
The simulations performed on test-sets show that the ability of the RNN to reproduce

the target patterns with satisfactory accuracy.

Tan and Saif [1] have presented a procedure for using neural networks to identify the
nonlinear dynamic models for the manifold pressure and the mass air flow process in
an automotive engine. A dynamic neural network called external RNN, was used for
dynamic mapping and model construction. Dynamic Levenberg-Marquardt algorithm
was then applied to the weight-estimation problem. In this paper, measured
input/output data is employed to construct neural network model of the manifold
dynamics. Experimental results in this paper indicated that the NN based models
have more precise, a rather simple structure and generalized in performance than the
first principles based models. In this models can be used for control system design,

or in a model based fault detection and diagnosis strategy.

Wang et al. [2-4] have presented an application of adaptive neural network modeling
and model based predictive control for modeling the crankshaft speed, intake
manifold pressure, manifold temperature [2], air fuel ratio [3] and engine speed [4].
A radial basis function (RBF) neural network was utilized for them. This studies
shown that adaptive model based predictive control was superior over the fixed
parameter model based control. In these papers investigated the effectiveness of the
adaptive neural network model in modeling parameter uncertainties and severe
nonlinearities of SI engines, as well as the feasibility of the adaptive model based
model predictive control for air-fuel ratio control. The adaptive RBF neural network
trained by recursive least squares method with fixed centers is proved to be more
appropriate for modeling the air-fuel ratio dynamics of a SI engine. In these studies
concluded that the adaptive neural network model based model predictive control is a

potential control scheme to replace the PI control for controlling air-fuel ratio.

Zhai and Yu [77] have applied an adaptive RBF model based model predictive

control to the AFR control of automotive engines. The constructed model was

18



adapted in on-line mode to cope with system uncertainty and time varying effects.
Thus, the control performance is more accurate and robust compared with non
adaptive model based methods. The simulation results demonstrated that the

effectiveness of the developed method.

Beham and Yu [78] have compared different neural networks like multilayer
perceptron (MLP), pseudo linear radial basis function and local linear model tree
networks for modeling a variable valve timing SI engine torque, HC, NOy, CO, and
CO. Five MISO models were developed with each modeling model of the engine
outputs. Different model orders and a number of hidden layer nodes were tested in
the model training and validation to find the most appropriate model structure for the
nonlinear dynamic behavior of the process. Real data were collected when the engine
was under different operating conditions and these data were used in training and
validation of the developed neural models. The obtained models were finally tested
in a real time online model configuration on the test bench. The model outputs were
compared with process output and compared among different models. These models
performed well and can be used in the model based engine control and optimization.
Comparison between different types of network model has been done. It was
revealed that the local linear model tree networks and pseudo linear radial basis
function network models performed better than MLP. The best models for the HC
have been achieved using the pseudo linear radial basis function network, while for
NOy, CO; and CO the best models were achieved using the local linear model tree
networks. They used the different neural network methods to model the torque of a
variable valve timing SI engine in Ref. [79]. The best models for the torque have

been achieved using the pseudo linear radial basis function network models.

Wang and Yu [80] have proposed to develop adaptive RBF neural network method
to estimate two control parameters in on-line mode, so as to compensate for the
model uncertainty and engine time varying dynamics. The adaptive law of the neural
network is derived using the Lyapunov method, so that the stability of the whole
system and the convergence of the networks are guaranteed. Computer simulations
based on a mean value engine model demonstrate the effectiveness of the technique.
The simulation results indicated that a significant improvement in AFR when the

engine is subjected to a sudden change of throttle angle with 25% uncertainty.
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Nicolao et al. [5] have modeled the volumetric efficiency of internal combustion
engine (ICE). The volumetric efficiency represents a measure of the effectiveness of
an air pumping system, and is one of the most commonly used parameters in the
characterization and control of four-stroke ICE. Physical models of volumetric
efficiency require the knowledge of some quantities usually not available in normal
operating conditions. Hence, a purely black-box approach is often used to determine
the dependence of volumetric efficiency upon the main engine variables, like the
crankshaft speed and intake manifold pressure. In this work, various black-box
approaches for the estimation of volumetric efficiency are reviewed, varying from
parametric (polynomial-type) models, to non-parametric and neural network
techniques, like additive models, radial basis function neural network and multi-layer
perceptrons. The benefits and limitations of these approaches were examined and
compared. The problem considered here can be viewed as a realistic benchmark for
different estimation techniques. The performance of the different identification
methods, as measured by the sum of square of residuals on the validation data set and

the corresponding standard deviation of residuals were presented.

Zhang et al. [81] have presented recurrent neural network (RNN) model for air-fuel
ratio (AFR) estimation in SI engine. AFR estimation is difficult due to the
nonlinearity and dynamic behavior in SI engine. Additionally, delays in engine
dynamics limit the performance of engine controller. RNN is trained using data from
engine simulations in Matlab/Simulink environment. Uncorrelated signals were
generated for training and validation. It has been shown that RNN can predict engine
simulations with reasonably good accuracy. These predictions were found to be quite
accurate as estimation errors are within +0.02 for approximately 95% of the

transient. This estimation model can be used for indirect control of AFR.

Yin and Ge [82] have applied neural network identification approach to establish the
dynamic model of torque and fuel consumption of Santana 2000 EFI engine through
the learning of a great deal of test data. A multi layer feed forward neural network
was applied in this study. The result of their studies showed that the obtained model
compared with the model built by traditional identification method, the dynamic

model based on neural network has higher precision and generalizing capability.
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Efe and Kaynak [14, 15] have investigated the identification of nonlinear systems by
utilizing soft computing approaches. As the identification methods, feedforward
neural networks, radial basis function neural networks, Runge-Kutta neural
networks, and adaptive neuro-fuzzy inference systems (ANFIS) based identification
mechanisms were studied and their performances are comparatively evaluated on a
three degrees of freedom anthropomorphic robotic manipulator [14] and a two
degrees of freedom direct drive robotic manipulator [15]. The results presented in
both studies have indicated that ANFIS structure is a good candidate for

identification purposes.

Hafner et al. [83] have presented the application of fast neural network models for
engine control design purposes. Advanced engine control systems require accurate
dynamic models of the combustion process, which are substantially nonlinear. In this
work the special local linear radial basis function network is initially introduced
followed by a description of the process of building adequate dynamic engine model.
These neuro-models are then integrated into upper-level emission optimization tool,
which calculates a cost function for exhaust versus consumption/torque and
determines optimal engine settings. According to the authors, the system allows a
fast application of the optimization tool at the engine test stand. Hafner et al. [84]
presented a fast neural network of local linear model tree type models for model

based control of diesel engine exhaust.

Isermann and Muller [85] have applied a dynamic local linear neural network
approach for modeling the NOy emission characteristics of a 1.9 direct injection
diesel engine. The obtained dynamic model for the NOy emissions can be used for
off-line or on-line optimization of exhaust gas emissions, and has been implemented
on a rapid control prototyping system as explained in this paper. The structure of
rapid control prototyping system was explained, which allows fast measurement

signal evaluation, and rapid prototyping of advanced engine control algorithm.

Zweiri [86] has presented an artificial neural networks approach to estimate the
indicated torque of a single-cylinder diesel engine from crankshaft angular position
and velocity measurements. The estimator may be useful in the implementation of

the control or diagnostic strategies that require cylinder indicated torque. The
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approach is to design indicated torque estimators using feedback and an ANN model
as feedforward. Such an approach can offer the advantage of being amenable to real
time implementation. The estimated results of the engine indicated torque are

presented, which compare with experimental data indicate a good agreement.

Zweiri et al. [87] have presented three different dynamic models for a single cylinder
diesel engine. The models have been implemented in Matlab/Simulink. The models
describe the dynamic relationship between indicated pressure and engine speed. The
first model is a detailed analytical nonlinear dynamic model, including dynamometer
dynamics, instantaneous friction components, viscosity variations with temperature
and inertia variations with piston pin offset. In cycle calculations are performed at
each crank angle. The second model is a nonlinear dynamic model which includes a
mean friction model for the engine components and dynamometer dynamics, but
does not include the piston pin offset as well as the inertia variations. The third
model is obtained by an identification procedure to find a low order linear transfer
function between the engine input and output. The three models are used to predict
the behavior of a diesel engine. The models are compared using experimentally
measured engine speed, under steady state and transient operating conditions. The
paper discusses the suitability of the models for various control applications such as

engine simulation, fueling control system design and fault diagnostics.

Chamaillard et al. [88] have presented a simple method for designing a robust
controller which can be used on uncertain and nonlinear systems. The method has
been illustrated on an SI engine torque control. In terms of control, the engine torque
has a single input system: the throttle angle. A very precise model is used to simulate
the engine. A PRBS was designed for throttle angle position to obtain a
representative set of input-output data. Two controllers have been defined: a PI
controller and an LQ controller. The best results have been obtained for a PI
controller. In all cases, robust stability is guaranteed in the whole range of engine

torque control.

Ayoubi [89] has described and compared two approaches to the experimental
identification of dynamic nonlinear processes: the dynamic multi layered perceptron

and the generalized Hammerstein model. The performance comparison was based on

22



the identification of the charging process in diesel engines. The charging process is
mainly determined by the resulting loading pressure. The experimental identification
based on the neural network needed no a priori assumptions about the process
structures, which highlights flexibility and universality of the model. The application
of the Hammerstein model, in contrast, was based on the assumption that the process
nonlinearity has to be static in nature, and involved in the process inputs as well.
Such a priori assumptions require a physical insight into the process and are
restrictive, since good results can only be obtained if the model structure matches the

process structure.

Yazdanpanah and Kalhor [90] have presented an efficient method in AFR for SI
engines using a controller based on a neural network and an estimator. This study
shown that by combining two separate methods, a useful control strategy may be
generated. Simulation results revealed the superiority of this method. Also the
robustness of this method because of using neural network is high against the error

estimation of parameters.

Hou et al. [91] have provided a method of identifying AFR of a HL495Q gasoline
engine based on elman neural network. AFR is a key index affecting power
performance and fuel economy and exhaust emissions of the gasoline engine whose
accurate model is the foundation of accuracy AFR control. They choose sigmoid
function as the activation function of elman neural network structure. This study
shown that the AFR model based on elman neural network has simple structure and
can accurately approximate AFR transient process and average relative error is less
than 1%. And also shown that AFR based on elman neural network is better than

AFR model based on back propagation NN.

Ouladsine et al. [92] have described a neural approach for modeling and control of a
turbocharged diesel engine. A neural model was built for the engine speed, intake
manifold pressure and exhaust gas opacity. The objective of the study was to build a
model to be used to control the diesel engine. Multilayer perceptron (MLP) neural
network architectures with one hidden layer of sigmoid function and linear activation
function for the output unit was used in this study. Training was performed by

minimizing the mean squared error (MSE) function, with a Levenberg-Marquardt

23



algorithm. Neural networks, which are flexible and parsimonious nonlinear black-
box models, with universal approximation capabilities, can accurately describe or
control complex nonlinear systems, with little a priori theoretical knowledge. The
results highlight the interest of using neural networks both for engine modeling and
control, despite strong dynamics and nonlinearities. Preliminary results show that
neural networks can be used as embedded models for engine control, to satisfy the
more and more restricting pollutant emission legislation. Particularly, they are able to
model nonlinear dynamics and outperform during transients the control schemes

based on static mappings.

Colin et al. [93] have performed the airpath control of SI engines using neural
network. An efficient control of the air actuators: intake throttle, turbine wastegate
and variable camshaft timing presented. Artificial neural networks have been the
focus of a great deal of attention due to their capabilities to solve nonlinear problems
by learning from data. As physical models are too complex, black-box solutions as
NNs become attractive techniques for engine modeling and control. The control
scheme proposed here a nonlinear model based control scheme which combines
separate, but coordinated, control modules for the different actuators. These modules
are based on different model based control strategies: internal model control, model
predictive control and optimal control. It was shown how neural models can be used

at different levels and included in the control modules.

Sangha et al. [94] have investigated fault detection and isolation in dynamic data
from an automotive engine air path using ANN. A generic SI mean value engine
model is used for experimentation. RBF neural networks are trained to detect and
diagnose the faults. Three dynamic cases of fault occurrence were considered with
increasing generality of engine operation. The approach shown the results are

successful in each case.

Cui [95] has presented a neural network approach to control exhaust gas recirculation
(EGR) in a liquefied petroleum gas (LPG) engine. RBF neural network and on-line
adaptation strategy are applied in this paper. EGR system is introduced to achieve a
significant reduction of NOy emissions. Neural networks are suitable for the

identification and control of nonlinear dynamic systems. Neural networks for the
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EGR control have been developed on a 1.46 liter 4 cylinder SI LGG engine. The

experimental result shown that the EGR system can achieve satisfied control effect.

Li and Yu [96] have proposed continuous time recurrent multilayer perceptrons to
identify nonlinear systems. The system outputs are manifold pressure and engine
speed, whereas control inputs are throttle angle and spark advance. Using the
function approximation theorem for multilayer perceptrons, they concluded that
recurrent multilayer perceptron can approximate any dynamic system in any degree

of accuracy.

Ayeb et al. [97] have proposed a procedure to derive global dynamic models based
on dynamic neural networks. The abilities of neural networks as universal
approximation tools of nonlinear functional relationships as well as identification
tools for nonlinear dynamic systems have been recognized and used successfully in
many application areas like modeling, control and diagnosis of systems. In this paper
RNN model with Levenberg-Marquardt training algorithm was used. The procedure
can be used to derive robust models ensuring a minimized parameters variance. The
application described shows the ability of dynamic neural networks to present
complex behavior such as the dependencies between engine torque and engine states

and control parameters.

Isermann and Muller [98] have introduced the identification of nonlinear process
with grid based look-up tables and a special local linear radial basis function
network, a comparison is made with regard to computation effort, storage
requirements and convergence speed. A PRBS signals were used because it is often
very suitable as process inputs because they excite the process at a wide range of
amplitudes and frequencies. Application examples and experimental results are
shown for multidimensional nonlinear model of NOy emissions of a diesel engine,

and for the adaptive feedforward control of the ignition angle of a SI engine.

Hafner et al. [99] have presented a new approach towards a model based
optimization of ICE control on dynamometers. The proposed methodology
comprises advanced measurement strategies for a fast dynamic measurement of

engine characteristics on dynamometers, a model based offline optimization of
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feedforward control maps, and the optimization of dynamic transitions of
turbocharged engines with exhaust gas recirculation. This study shortly reviews the
design of measurement, the identification of the engine and the optimization of the

static and dynamic engine behavior.

Czarnigowski [100] has presented an algorithm of idle speed stabilization in the SI
engine by means of spark advance control. The used algorithm is based on a well
known approach of a model based adaptive control and uses ANN. The control
algorithm is based on a NN model observer of the additional effective torque. The
algorithm was experimentally compared with PID and adaptive algorithms. The
experiments were conducted in a steady state. The effective torque model was

constructed on the basis of a MLP BP neural network.

Biao et al. [101] have built the dynamic model of the 16 cylinders locomotive diesel
engine with neural network. The diesel engine system identification with neural
network belongs to the experiments modeling, which has strong information
integrate capability and can deal with large numbers of different inputs at the same
time. The neural network also can solve the redundancy and the inconsistency of the
input information, so it is suitable to the diesel engine modeling. In this study used
NARMAX as the main structure and used Levenberg-Marquardt algorithm to train
the network. Comparison between the train results and the measured results show
that the dynamic model has the good real-time performances and little output error.
So the model can meet the need of the system character analysis and technology

application.

Alippi et al. [102] have suggested a neural network based solution to the AFR control
in fuel injection systems. An indirect control approach has been considered which
requires a preliminary modeling of the engine dynamics. The model for the engine
and the final controller are based on RNN with external feedbacks. Requirements for
feasible control actions and the static precision of control have been integrated in the
controller design to guide learning toward an effective control solution. In this study,
they considered a fuel injection system composed of a SI engine with a catalytic

converter and a linear oxygen sensor on the exhaust manifold to measure the AFR
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after the combustion process. The case study was applied to an Alfa Romeo 1.31

engine.

Alippi et al. [103] have presented an application where neural techniques can be
effectively used in the automotive field: the control of AFR to keep minimum value
the exhaust car engine emissions. They focused the attention on SI engines
characterized by a catalytic converter and a linear oxygen sensor at the output of the
exhaust manifold which measures the features of the combustion. The neural
controller has been obtained with an indirect control scheme, based on a neural
model of the process. It was designed to optimize performance and limit the
necessary control actions. Encouraging results were obtained and validated on

simulations and transients coming from a real engine.

Frith et al. [104] have investigated the application ANNs for adaptive AFR control in
gasoline engines. Multiple ANN architecture has been designed and implemented to
accommodate the variable time constant, gain and time delay aspects of the engine
process. The paper discussed the rationale behind the multiple network design, the
problems encountered in developing an ANN model of a process already under
control, and a possible technique for online adaption of that model. They pointed out
that ANNs offer the capability to model the process nonlinearities, clearing the way

for nonlinear ANN model based predictive engine control.

Saraswati and Chand [105] have used RNN for AFR identification in SI engine. AFR
identification is difficult due to nonlinear and dynamic behavior of SI engines.
Delays present in the engine dynamics limits the performance of engine controller.
Identifying AFR few steps in advance can help engine controller to take care of
these. RNN is trained using data from engine simulations in Matlab/Simulink
environment. Uncorrelated signals were generated for training and generalization and
it has been shown that RNN can predict engine simulations with reasonable good

accuracy.

Wu et al. [106] have described an ICE fault diagnosis system using the manifold
pressure of the intake system. The manifold pressure of the engine intake system

always demonstrates the engine condition and affects the volumetric efficiency, fuel
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consumption and performance of ICE. In this study, a system consisted of manifold
pressure signal feature extraction using discrete wavelet transform and fault
recognition using the neural network technique is proposed. To verify the effect of
the proposed system for identification, both the RBF and generalized regression
neural network are used and compared in this study. The experimental results
indicated that the proposed system using manifold pressure signal as data input is

effective for engine fault diagnosis in the experimental engine platform.

Thompson et al. [107] have shown the application of a neural network to model the
output torque and exhaust emissions from a modern heavy duty diesel engine
[Navistar T444E). They predicted the continuous torque and exhaust emissions from
a heavy duty diesel engine for the Federal heavy duty engine transient test procedure
cycle and two random cycles to within 5 percent of their measured values after only
100 minute of transient dynamometer training. Neural network based engine
modeling offers the potential for a multidimensional, adaptive, learning control
system that does not require knowledge of the governing equations for engine
performance or the combustion kinetics of emission formation that a conventional
map based engine model requires. Applications of such a neural network model
include emissions virtual sensing, on-board diagnostics and engine control

optimization.

Garcia-Nieto et al. [108] have proposed a new approach to control the air
management process of a diesel engine. This study can be concluded as follows: 1)
predictive control and model identification schemes for local model network models
shown. Proposed algorithms are easily implemented in a real engine, 2) a test
platform is developed, including complex nonlinear behavior and real hardware data
acquisition, 3) practical application based on local model networks modeling and
explicit model predictive control, 4) results from applying the proposed control

schemes, offering an improvement in the system behavior, are shown.

Worden et al. [109] have provided an overview of a number of nonlinear system
identification methods as applied to the analysis of nonlinear automotive dampers.
Three different approaches are presented as follows: 1) the restoring force surface

method, which is capable of forming a nonparametric visualization of the nonlinear
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characteristics of the absorber, 2) the versatile nonlinear identification by feedback of
outputs approach, which is capable of fitting parametric models where the
parameters actually encode frequency dependence, 3) the discussion returns to the
time domain for a method motivated by a neural network analogy that fits a
parametric model assuming a hyperbolic tangent form for the damping force of the
absorber. The approaches are demonstrated on both synthetic data and data obtained

from testing of real dampers.

Turin and Geering [110] have deduced convenient models of the significant dynamic
processes, i.e., intake manifold, wall-wetting and oxygen sensor dynamics. They
separated the analysis in terms of an air and a fuel path. In the case of linear
dynamics they aim to achieve a linear regression form whereas in the case of
nonlinear dynamics, they will augment the system state and apply extended Kalman
filter theory. They showed that the proposed Kalman filtering methods provide

highly effective means to solve the present classes of identification problems.

Franchek et al. [111] have presented a feedforward fueling controller identification
methodology for the transient fueling control of a SI engines. The feedforward
fueling control of SI engines can be separated into steady state and transient
phenomena and that the majority of the nonlinear behavior associated with engine
fueling can be captured with nonlinear steady state models. The proposed transient
controller identification process is built from standard nonparametric identification
techniques followed by parametric model recovery. Crank angle serves as the
independent variable for these models. Two separate system identification problems
are solved to identify the air path dynamics and fueling path dynamics. The transient
feedforward controller is then calculated as the ratio of the air path over the fueling
path dynamics thereby coordinating the engine fueling with the air path dynamics. It
is shown that a linear transient feedforward fueling controller operating in tandem
with a nonlinear steady state fueling controller can achieve AFR regulation
comparable to the production fueling controller without the extensive controller
calibration process. The engine used in this investigation is a 1999 Ford 4.6 L V8

fuel injected engine.
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Stroh et al. [112] have presented an adaptive, model based, transient and steady-state
fueling control system for SI engines. Since the fueling control system is model
based, the engine maps currently used in engine fueling control are eliminated.
Models are developed using an input-output approach with only measurable
parameters which concisely represent the static and dynamic behavior of the AFR
loop. The steady state fueling compensation utilizes a feedforward controller which
determines the necessary fuel pulsewidth after a throttle transient to achieve
stoichiometric. This feedforward controller is comprised of two nonlinear models
capturing the steady state characteristics of the fueling process. These models are
identified from an input-output testing procedure where the inputs are fuel
pulsewidth and mass air flow signal and the output is AFR. The transient fueling
compensation also utilizes a feedforward controller that captures the essential
dynamic characteristics of the transient fueling operation. This controller is measured
using a frequency domain system identification approach. This proposed fueling

control system is demonstrated on a Ford 4.6 L V-8 fuel injected engine.

Ye [113] has presented a thorough review of various dynamic control technologies
which have been successfully applied to idle speed control systems. Automotive idle
speed control is one of the most challenging aspects in engine control fields.
Essentially it is a highly nonlinear, time-varying, complicated and uncertain dynamic
control problem. In particular, practical implementations on a variety of different
engine types are provided, which cover broad areas of control, including classical
control, modern control and intelligent control. Over 90 selected papers are reviewed

and then summarized from a control point of view.

Ortner and del Re [114] have presented the model based control of the air path of
diesel engines in terms of an optimal control problem. A multilinear model identified
from data and a switched controller design is used to cope with the nonlinearity of
the engine. Experimental results on a production engine confirm that the proposed
control method strongly improves the dynamics of the air path and enormously

reduces the parameterization work if compared with the conventional approach.
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2.4 Genetic Programming Approach for Nonlinear Identification of Engine

A variety of system identification techniques are applied to the modeling of process
dynamics. Identification of nonlinear system suffers many problems including
determination of the structure and parameters of the system. Many methods of
system identification are based on parameter estimation, and mainly rely on least
squares method. Recently, soft computing based system identification approaches
have been proposed, mainly fuzzy systems, artificial neural network, and

evolutionary computation methods [115].

GP is an evolutionary method which may be applied to the identification of the
nonlinear structure of a dynamic model from experimental data [116, 117]. Several
publications describe the usage of GP for nonlinear process modeling [118-120]. The
nonlinear system identification method based on genetic expression programming
(GEP) can find the accurate mode on the condition that there is less or none

information about the system [121, 122].

Recently, the identification of nonlinear systems by genetic programming (GP)
approaches has been successfully applied in many applications. However a GP based
identification and modeling of ICE, to the best knowledge of the authors, has not yet
existed in the literature. In this section major studies of the genetic programming
identification in the literature are given with important applications of system

identification.

Coelho and Pessoa [115] have applied the nonlinear system identification procedure,
based on NARX representation and GP to empirical case study of an experimental
ball-and-tube system. The result demonstrated that the GP with orthogonal least

squares is a promising technique for NARX modeling.

Rodriguez-Vazguez and Fleming [123] have applied successfully multiobjective GP-
NARMAX approach to the identification of gas turbine engine. In order to identify a
model capable of representing the engine at all operating points, they used
multiobjective GP approach on the same data and allocated weights to various

objectives, to assess their significance in the structure selection of NARMAX models
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of the engine. A simple NARX model was identified which was able to represent
both the small and large signal dynamics of the engine. They demonstrated that a
practical application of this technique to obtain a model of the relationship between
the fuel feed and the shaft speed dynamics of a gas turbine engine. Rodriguez-
Vizguez and Fleming [124] have shown that a multiobjective evolutionary
identification method produce a similar and even better performance in nonlinear

system identification than conventional techniques.

Evans et al. [125] have improved the efficiency and cost-effectiveness of system
identification techniques. Three system identification approaches were outlined in
their study. They are based upon: multisine testing and frequency domain
identification, time varying models estimated using extended least squares with
optimal smoothing, and multiobjective genetic programming to select model
structure. They provide significant insights into alternative identification strategies.
They concentrated on the dynamic relationship between the measured input fuel flow
and the high pressure and low pressure shaft speeds. Arkov et al. [126] outlined four
system identification techniques. Only one method added to the study of [126]

namely identification using ambient noise only data.

Ruano et al. [127] have presented identification results for the shaft speed dynamics
of an aircraft gas turbine under normal operation. They considered two different
approaches: NARX models, and NN models, namely multilayer perceptrons, RBF
networks and B-spline networks. They gave a special attention to GP, in a

multiobjective fashion, to determine the structure of NARMAX and B-spline models.

Rodriguez-Vazguez et al. [128] has presented a method for identifying the structure
of nonlinear polynomial dynamic models. This approach uses a GP in a
multiobjective fashion to generate global models which describe the dynamic
behavior of the nonlinear system under investigation. The validation stage of system
identification is simultaneously evaluated using the multiobjective tool, in order to

direct the identification process to a set of global models of the system.

Kiguchi et al. [129] have proposed an effective identification method using soft

computing techniques (combination of GP and NN) in order to identify robot
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manipulators. The back-propagated error is used for finding the important subtrees in
each NN. The experimental results with two degree of freedom robot manipulator

showed that the effectiveness of the proposed identification method.

Kronberger et al. [130] have used linear regression, support vector regression, and
GP to create linear and nonlinear models describing different aspects of the blast
furnace process: the melting rate, the required specific amount of oxygen and the

carbon content in the hot metal.

Han et al. [131] have proposed a new method for chaotic system identification based
on polynomial NARMAX representation and multiobjective GP. NARMAX model
representation is used for the basis of the hierarchical tree encoding in GP. The
simulation results show that the proposed technique provides an efficient method to

get the optimum NARMAX difference equation model of chaotic systems.

Beligiannis et al. [132] have proposed an effective GP based technique for system
identification of complex biomedical data. The method combines the ability of GP to
explore automatically and effectively the whole set of candidate model structures and
the robustness of evolutionally multimodel partitioning filters. Simulation results
show that the algorithm identifies the true model and the true values of the unknown
parameters for each different model structure, thus assisting the GP technique to

converge more quickly to the near optimal structure.

Yang et al. [133] have presented a GP based method for the identification of
unknown excitation force of dynamic systems. The numerical examples show that
the GP system is able to identify the excitation force of a single-degree, a three-
degree and more complex frame dynamic systems. Comparison between the

measured and the estimated force have validated the proposed GP based method.

Hussian et al. [134] have presented a new method for modeling the dynamics of a
winding process using GP and compare it with traditional modeling approaches.
They used three methods for modeling a wire winding machine. These models
include moving average, ARMA models and GP models. They used data sets

collected from an actual industrial process throughout the experiments. It is
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concluded that GP for modeling nonlinear systems are promising, and with the

proper evaluation function and tuning of the GP system, they can get better results.

Winkler et al. [135] have described research that was done for the project
‘specification, design and implementation of a GP approach for identifying nonlinear
models of mechatronic systems’. The goal of the project is to find model for
mechatronic system. Their task was to examine whether the methods of GP are
suitable for determining the structures of physical systems by analyzing a system’s

measured behavior or not.

Willis et al. [136] have used a GP algorithm to developed empirical models chemical
process systems. Initially, steady-state model development using GP algorithm
considered, next the methodology is extended to the development of dynamic input-
output models. Two examples were used to highlight the utility of this approach: a
vacuum distillation column and a twin screw cooking extruder. The results revealed
that in each case the GP algorithm can generate an accurate model based solely on
observed data. McKay et al. [137] have demonstrated the usefulness of the GP
technique by the development of steady-state models for two typical processes, a

vacuum distillation column and a chemical reactor system.

Grosman and Lewin [138] have described an improved GP to facilitate the
generation of steady-state nonlinear empirical models for process system engineering
applications. The key feature of the method is its ability to adjust the complexity of
the required model to accurately predict the true process behavior. The improved GP
code incorporates a novel fitness calculation, the optimal creation of new
generations, and parameter allocation. The advantages of these modifications are

tested against the more commonly used approaches.

Hinchliffe and Willis [139] have used GP to evolve discrete time models of dynamic
systems. GP algorithm is its ability to automatically discover the appropriate time
history of model terms required to build an accurate model. Two case studies were
used to compare the performance of the GP algorithm with that of filter based neural

networks. A test system is with a time delay and an industrial cooking extruder. They
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show that a major benefit of the GP approach is that additional model performance

criteria can be included during the model development process.

Witczak et al. [140] have provided a new system identification framework based on a
GP technique. System identification is one of the most important research directions.
It is diverse field which can be employed in many different areas. One of them is the
model based fault diagnosis. Thus, the problems of system identification and fault
diagnosis are closely related. Unfortunately, in both cases, the research is strongly
oriented towards linear systems, while the problem of identification and fault
diagnosis of nonlinear dynamic systems still remains open. A fault diagnosis scheme
for nonlinear systems was proposed. In particular, a new fault detection observer was
presented, and the Lyapunow approach was used to show that the propose observer is
convergent under certain conditions. It is also shown how to use the GP technique to
increase the convergence rate of the observer. The final part of this study contains
numerical examples concerning identification of chosen parts of the evaporation
station at the Lublin Sugar Factory, as well as state estimation and fault diagnosis of

an induction motor.

Lew et al. [141] have extended the class of possible models considerably by carrying
out a general symbolic regression using a GP approach. The approach is
demonstrated on both univariate and multivariate problems with both computational
and experimental data. The results also showed that GP could identify the most

influential design variables with respect to output.

Yuan et al. [142] have defined two levels of crossover operation. A linear time-
invariant system, a nonlinear time invariant and a time varying system were
identified by the improved GP algorithm, good models of object systems were
achieved with accurate and simultaneous identification of both structures and
parameters. This study shown that GP is good at handling different kinds of dynamic
system identification problems and is better than other artificial intelligence
algorithms like neural network or fuzzy logic which only model systems as complete

black boxes.
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Grosman and Lewin [143] have described the use of GP to generate empirical
dynamic model of a process, and its use in a nonlinear, model predictive control
strategy. GP derives both a model structure and its parameter values in such a way
that the process trajectory is predicted accurately. Consequently, the performance of
the nonlinear model predictive control strategy are described, and demonstrated by
simulation on two simulated processes: (a) a mixing vessel fed by streams of salt and
fresh water, in which the control objectives are to be maintain a desired fluid level
and a salt concentration in the tank, and (b) a Karr liquid-liquid extraction column,
which has been verified against experimental data. They demonstrated that the GP
based nonlinear model predictive control strategy leads to good closed-loop

performance in both cases.

2.5 Conclusions

The extended overview has provided in this chapter indicates that there are a large
number studies on nonlinear identification and modeling of ICE in literature. A good
fraction of these studies have considered NARX and NARMAX models when
identifying and modeling the nonlinear systems. This thesis differs from the

previously conducted studies as follows:

a) The presented study is on the nonlinear identification and modeling of gasoline
engine. The thesis is original in this scope and content and there is no such study in
the open literature, to the best of the author’s knowledge and it is the main

motivation behind this study.

b) In literature, a small number of studies consider gasoline engine torque modeling
and identification. The analysis in the literature studies are mostly related to

nonlinear identification and modeling of AFR of ICE.

c) Identification of linear systems is a rather old field of study, and many methods
are available in literature. However, identification of nonlinear systems is a
respectively new topic of interest. The nonlinear identification of internal combustion

engines have also been of interest in recent years.
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d) However, ICE modeling is still an open field of research due to the antithetical
needs of describing a very complex, nonlinear system and driving simple model

structures suitable for the control synthesis or diagnosis phase.
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CHAPTER 3

3. DYNAMIC MODELING OF RECIPROCATING ENGINE

3.1 Introduction

Exact mathematical models of mechanical systems are derivable by Lagrange,
Hamilton and Newton-Euler formulations or by energy methods. This requires all the
system parameters such as masses, mass moments of inertia, stiffnesses, damping
coefficients and physical dimensions explicitly. The system generally needs be
dismantled into its main components where each parameter of the system is lumped
for measurement. In applications where this is not possible, system identification
becomes very useful, generating empirical mathematical model for the response of

the system [11].

3.2 Equation of Motion for a Slider-Crank Mechanism

A slider-crank mechanism is widely used in gasoline and diesel engines, and has
been studied extensively in the past three decades [144]. Slider-crank mechanism
converts the translational motion of piston to rotary motion of crank. Driving effect
of slider-crank mechanism is obtained by a gas pressure arising from combustion of
mixture consisting of fuel and air. The force corresponds to this pressure causes the
piston to translate along the vertical axis and this action is transmitted to crank

through connecting rod [145].

The dynamic formulation is expressed by only one independent variable of rotation
angle. A slider-crank mechanism is a single-looped mechanism with a very simple
construction shown in Figure 3.1. Lagrange equation and geometric constraints are
employed to formulate the differential equation of motion for a slider-crank

mechanism. Euler-Lagrange equation is used to derive the dynamic modeling
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of mechanism and the dynamic equation obtained in terms of only one independent

variable @. The main parameters of a slider-crank mechanism of a four cylinder 1.6

injection Ford Escort motor are given in Table 3.1.

Table 3.1 Fiat Tofas 131 motor parameters

Crankshaft weight (m,)

Connecting rod weight (m,,)
Piston weight (m,,)

Crankshaft radius (7))

Connecting rod length (/)

Crankshaft inertia (/)

Connecting rod inertia (/)

2.61 kg
0.560 kg

0.278 kg

35.75 mm

107.25 mm

0.00781 kgm?
0.00236 kgm?

(for a single slider-crank mechanisms only)

(including bearings at both ends and assembly bolts
and washers)

(standard 76 mm diameter piston, including piston
pin and 3 piston rings)

(location of the mass center of the crank is 1.917
mm offset from the crankshaft axis, on the
symmetry line, towards the counterbalance weights)

(location of the mass center of the connecting rod

from crank bearing center, on the symmetry axis is
35.75 mm towards the piston end)

(for a single slider-crank mechanisms only)

(including bearings at both ends and assembly bolts
and washers)

Figure 3.1 Slider-crank mechanism

Due to the complexity of the system examined, its equations of motion will be

derived by applying Lagrange’s equations. For this reason, the kinetic energy of the

engine model is considered first. In particular, this quantity is split in the form

T=T,+T, +T,

39

(3.1)



where the three terms on the right-hand side represent the kinetic energy of the crank,
the connecting rod and piston, respectively. Since the crankshaft performs plane

motion, its kinetic energy is expressed in the form

T = %1692 +%mc(fcf +y2) (3.2)

c

where [. is the centroidal mass moment of inertia and m. is the mass of the
crankshaft. Moreover, the couple (x., y.) identifies the position of the crank center of
mass. From elementary kinematics it can be immediately be seen from Figure 3.1

that
x,=rcosf and y =rsiné (3.3)

which after differentiation yield the velocity components of the crank center of mass

in the form
X, =-r,0sin@ and  y =r6cosb (3.4)

then, substitution in Equation 3.2 and performance of some algebraic manipulations

yields eventually the kinetic energy of the crank in the form

T = %1092 +%mc(;’1292 sin® @+ 1,67 cos” 6)
(3.5)
T, 211692 +lmcr1219'2
2 2

Likewise, taking into account that the connecting rod undergoes a plane motion also,

its kinetic energy is expressed in the form

T, =L B e om G 5, (3.6)
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the geometric positions of gravity centers of the connecting rod are as follows:

x, =1, cos@+r,cosf and y,=(,—r)sinf 3.7)

The mechanism has a constrained condition as follows:

I, sin@=1,sin 3 (3.8)

2
sin = f—lsinﬁ and cosf= fl—;l—zsinzﬁ (3.9)
2 2

After differentiation a constrained equation with respect to time yield the angular

velocity of connecting rod in the form

1,6cos@ =1, cos B
(3.10)
1,6cos 6

p=—bbeosd
VL =17 sin’6

which after differentiation yield the velocity components of the connecting rod center

of mass in the form
%, =—10sin@—r,BsinB and y, =(l,—r,)Bcosf (3.11)
Then, substitution in Equations 3.9 and 3.10 into Equation 3.11

hocosé L i (3.12)

JiL2 =17 sin? 0 L

x, =-1,0sinf-r,

c=4l," =1’ sin’ @ (3.13)

So, rearranging Equation 3.12
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llzrzécos fsin @

X, =—1,0sinf— (3.14)
lc
5=, —r)—h09 [ gL
L’ =17 sin? @ L
(3.15)

_(l,—1,),@cos8

cr
L,

Then, substitution in Equation 3.6 and performance of some algebraic manipulations

yields eventually the kinetic energy of the connecting rod in the form of

1. 1°6%cos®0 1 1,°6r,” cos® @sin” 6

T, =51” _ +5m”{11249'2 sin” @ + —
€ _ le (3.16)
. 21,°r,0” sin* Gcos O - 7,)%1,26* cos? e}
l,e 122
Finally, kinetic energy of the piston can be written as,
T =Lm ey 3.17
p_Emp(xp +yp ) ( . )
while the piton is translating along the axis x only, with displacement
x, =1cos@+1,cos 3 and y,=0 (3.18)

After differentiation of Equation 3.18 with respect to time yield the velocity

components of the piston in the form of,

x, =—1,0sin@—1,Bsin B

hocosb L ;g (3.19)

X, =—4fsinf -1, == i
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P ésine_llzécosﬁsinﬁ
4 1 c
Then, substitution into Equation 3.17 and performance of some algebraic

manipulations yields eventually the kinetic energy of the piston in the form of,

492 2 s 02 392 2.2
. 2
T =%mp{11202sin29+ll 0 coszﬁsm t9+ [0 sin t9c0st9} (3.20)
c c

Finally total kinetic energy of the slider-crank mechanism is

T :11692+1mrr1292+—1”‘
2 2°¢

toplam 2

129'2 29 )
Ly hocos @ 16 sin2 0
c 2
1,°6°r,” cos® @sin* @ 21,°r,0%sin> Bcos@  (
+ 2.2 + + 2
l,’c lye L,
1,°6? cos® @sin* 6 N 21,°6” sin* @ cos 9}

C2 C

12 —rz)zllzéz COSZH} (321)

L {1,°6" sin* 6 +
277

The gravitational potential energy of the crank, connected rod and piston is written

respectively

V=V 4V, +V,

V.=m,_gr,sin@

l
Vcr = mcrg(IZ - r2 ) l_l Sin 9 (3'22)
2
vV, =0
. L .
Vtoplam = mcgrl sin 9 + mcrg(l2 - r2 ) l_ sin 9 (323)

2

The Lagrange function L is obtained as follows:

L=T-V
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: : 1’6" cos’ @ :

L=t164im gty 1080 L 6 sine

2 2 2 c 2

N 1,'6r,” cos® @sin” @ N 21,’r,0% sin” O cos @ NG r,)*1,20% cos® 0}
Lc? Lc 1

6” cos @sin’ @ N 21,°6” sin’ 6’005(9}

C2 Cc

(3.24)

. !
+%mp{11292 sin” 6 + -1

[
—m,gr,sinf@-m_g(l, —rz)l—lsinﬁ
2

The virtual works dW* done by the external disturbance force Fg and friction force
Fp with the virtual displacement dx of the slider, and the applied torque t with the

virtual angle d@ are summed as

IW* =00+ (F, + F,)ox
=100+ (F, + F;)(—1,sin@8 —1, sin o))

=100+ (F, + F,)(-, sinﬂaﬂ—lzf—lsinﬁl—‘cosﬂae) (3.25)
) c

oW =[r—(F, + FB)(H—ll1 cos0)l, sin 8106
c
The Euler-Lagrange equation will be applied in the following form:;
d(dL oL 4
= == 3.26
dz(aej (aej ¢ (3:26)

oL . . 1. 17cos?@ . . 1.7, cos? @sin’ @ .
1 6+m 2+ T g 1 sin? g9+ e 2 S0 ZHR P
00 ' c 1,°c?

2

N 2m,1,’r, sin® @ cos @ o4 Mer (4, - rz)zzll2 cos’ 6 0+ m,,112 sin® 00

lyc [

mpll4 cos’ @sin’ @ . 2mpll3 sin® @cos @ .
+ 0

6‘2 c
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I.1°cos’@ .. 21 17 cosfsind . .
L e 6> +m,l,’ sin® 69
c ¢

d (E)L

— jzl(,é+m{_r12é+
dt

20
4 2 . 4 2 .
m_1,'r,” cos’ @sin* @ .. 2m 1, r,” cos@sin’ O .

9_ cr

+2m_1,* sinfcos6f” + . o’
g 2 2.2
l,c l,c

N 2m,1,*r,’ cos’ @sin@ P 2m,1,’r, sin® @cos@ é+4m(,r113r2 sinfcos’ @ &
L Lc Lc

2m,l’r,sin’ 6 g Merla s )’ cos’ @ PR Gl )?1,* cosBsin@ e

lZC 122 122

4 . 4 .
s g , . ., ml" cos’@sin® @ .. 2m, " cos@sin’ 6
+m,l," sin” 60+2m ;" sinfcos6o” + 5 0- 5

c c

2m 1, cos’ Osind , 2m, 1’ sin® fcos 4m 1’ sin@cos’ 0 5 2m,l’sin’ 6
+ + + -

6'2 c C C

aiL Z_Méﬂ +m 12 sin6cos 00 — mcrll4r22 cos @sin” 6 62
ae C2 er’l l22C2

4 2 3 . 3 . 2 3 -3
+ m, 1l r,” cos 6?s1n6?6-’2 N 2m_[,"r, sin @ cos 69-2 _m,lr, sin 092

l226‘2 lzc l2C

272 . 4 . 3
m. (I, —r,)" 1. " cos@sin @ . . . m I, cos@sin” 6 .
_my(ly 1) > 6 +m,1” sin 6 cos 09> — —— :
L c

2

m,l,* cos’ @sin@ ., 2m I’ sin@cos’ O ., m I’ sin’@ .,
+ 5 0" + 0" - 0" —m_gr, cos @
c c c

/
-m,g(l, - rz)l—lcosé?
2

Finally Euler-Lagrange equation is obtained as follows:

I l,—r)’
(I +m.r’+17 cos .9(%’+M)+lf sin” O(m,, ++m )
c

2
1} Ir,’ 2 ml )
+-1-sin? Hcosﬁ(%cos6+M+’—lcos6+2mp)}¢9
¢ l,7c [, c
+{m,,1,” sin @ cos O(— Iy Jrl—(lli)2 sin” @ 397
m,c’ l,c (3.27)

l 21 L —-r)?
+(‘—rz)zcoszt9+ 12 cosnﬁ’—(2 2”2) ) —
lyc lyc L lc

3 3
m,l,r,sin”

1 1 21
+m,1,” sin@cos O(1———sin” & + -~ cos* 6+ — cos §) —
c c c c

3 .3
m,l,"sin" 6.
—1}0

l
+ gcos@(m,r, +m, (I, —r2)l—l)=—(FE + FB)(1+ll1 cos )l sin 6
) c
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Figure 3.2 A four-cylinder in-line engine

Finally, more complex sets of equations of motion are derived for multi-cylinder
engines, like the one shown in Figure 3.2, by application of similar methodologies. In
particular, when the engine parts are considered to be rigid, the form of equations of
motion remains the same as that of the single-cylinder engine. However, the equation
of motion is determined by taking into account the engine set-up, including the
relative position of the cylinders and their firing sequence [146]. For instance, the
equation of motion for the system shown in Figure 3.2, with a four cylinder in-line

engine, takes the form

mcr (l2 B r2 )2
— )
12

I
I +m.’ +1," cos*(0—y,)(~= +
C

3

4 l .
Z +1,%sin*(@-y,)(m,, ++mp)+—sm (@—y,)cos(8 -y, (——2 mliry” cos(8—7,) 0
n=1 2
l
§ 2l (N ooy )4 2m)
L c
l
m, 1% sin(@ —y,)cos(6 — 7)(— +1—(lli)zsin2(9—yn)
cr 2
21 (L=r)*. m,l’r,sin*(@-y,)
( ) cos’(@—7,)+—2cos(6-7,) - )~
12 lz l2 ZZC 6'2

M»

3
o

n=

n=1

2

+m l1 sin(@ -y, )cos(6 -7, )(l—l—

mpl1 sin’ (6 -7,)

+ 2—llcos(ﬁ’ -¥.))—
c

" Z(g cos(8 — 7, )(m_1, +m,, (I, - e)fl)J

46

2

sin* (6 — 7)+l—cos @-7,)

[— (Fp + Fp)(+ 1l1 cos(@ — B,))I, sin(6 - B, )]
c




Ynis the phase difference between the angular position of the first and nth cylinder, so
that y;= y4=0 and y,= y3=n. Likewise, the angles B, indicate the phase difference
between the firing angle of engine cylinders, so that ;=0, f,=3=n, f;=r and B;=2=n

[146].

3.3 Kinematic Analysis

In the kinematic analysis, taking the first and second derivatives of the displacement

of slider with respect to time, the speed and acceleration of slider are as follows:

xyz =1,cos@+1,cos 8 (3.29)
%, =—1,0sin@—1,Bsin B (3.30)
%, =—1,0sin@—1,0% cos@—1,Bsin B—1,3* cos (3.31)

Similarly, angular velocity ,B and acceleration ﬁ are obtained from Equation 3.8 as

follows
l,6cos@=1,Bcos (3.32)

n 1,0cos @
l,cos

(3.33)

3 1,6 cos@cos B +1,6BcosBsin 1,0 sin O cos
I, cos* 8

B (3.34)

3.4 Dynamic Model Results

Equation 3.27 is calculated by the Runge-Kutta method with time step Ar=0.001s
from O to 2 s to obtain numerical solutions, which are used to dynamic equation

results of a slider-crank mechanism, and shown in Figures 3.3 (a), (b) and (c) for the

angle 6, the angular velocity € and the angular acceleration & of the crank,
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respectively. The displacement, velocity and acceleration of a slider are shown in
Figures 3.4 (a), (b) and (c), respectively.
(@)
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Figure 3.3 Numerical results of a slider crank mechanism for a) angle 6 b) angular
velocity € c) the angular acceleration & of the crank
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Figure 3.4 Numerical results of a slider crank mechanism for a) displacement b)
speed and c) acceleration of a slider
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It is seen that the responses 6, 9, é, Xy, Xz and X,numerical results are calculated
by using Euler-Lagrange equation. Therefore, the simulation responses of a slider-
crank mechanism are well predicted by the numerical results. But internal
combustion engine mostly have nonlinear characteristics, so that to obtain dynamic
equation very difficult and impossible. System identification becomes very useful,
generating empirical mathematical model for the response of the system where the

dynamic equations are not obtained.

The total kinetic energy and potential energy of a slider-crank mechanism can be

obtained and their figures shown in Figure 3.5.
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Figure 3.5 Kinetic, potential and total energy of a slider-crank mechanism
3.5 Conclusions

The dynamic formulations of a slider- crank mechanism have been successfully
formulated with only one independent variable. Dynamic responses of the numerical
simulations were obtained for the dynamic modeling. The dynamic formulation can
give a good interpretation of a slider-crank mechanism by using numerical

simulations.
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CHAPTER 4

4. SYSTEM IDENTIFICATION
4.1 Introduction

System identification is the process of developing a mathematical model of a
dynamic system based on the input and output data from the actual process [26]. This
means it is possible to sample the input and output signals of a system and using this
data generate a mathematical model. An important stage in control system design is
the development of a mathematical model of the system to be controlled. In order to
develop a controller, it must be possible to analyse the system to be controlled and
this is done using a mathematical model. Another advantage of system identification
is evident if the process is changed or modified. System identification allows the real
system to be altered without having to calculate the dynamical equations and the

model parameters again.

System identification is concerned with developing models [147]. A dynamic system
can be conceptually described as in Figure 4.1. The system is driven by input

variables u(t)and disturbancev(r). The user can control u(¢t) but not v(¢). The

output signals are variables which provide useful information about the system [27].

Disturbance
v(t)
Input Output
3 System |
u(t) y(t)

Figure 4.1 A dynamic system with inputu(z), output y(¢) and disturbance v(¢), where
t denotes time [27]
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Basically system identification is achieved by the adjusting the parameters of the

model until the model output is similar to the output of the real system. Steps in

Design of A priori knowledge
> experiment N planned use of the
model

A 4

Perform experiment
collect data

A 4

\ 4

Determine model
structure

A 4

A 4

Choose method
estimate parameters

A 4

v
Model validation

A 4
A A

A 4
»| Model accepted New data set

Yes

End

Figure 4.2 Schematic flowchart of system identification [27]

system identification are shown in Figure 4.2. The procedures for carrying out

system identification can be divided into the following steps [148]:

a. Specify and parameterize a class of mathematical models that represents the

system to be identified.
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b. Apply an appropriately chosen test signal to the system and record the input-
output data. If the system is in continuous operation data and a test signal is
not permitted, then we a must use the normal operating data for identification.

c. Perform the parameter identification to select the model in the specified class
that best fits the statistical data.

d. Perform a validation test to see if the model chosen adequately represents the
system with respect to final identification objectives.

e. If the validation test is passed, the procedure ends. Otherwise, another class
of models must be selected and steps (b) through (d) performed until a

validation model is obtained.

In this chapter, system identification methods for nonlinear dynamic systems are

presented. The methods are applicable to spark ignited engine.

4.2 Nonlinear System Identification

4.2.1 Nonlinear System Representation

A linear model is simple but is not always good enough to adequately approximate
an inherent nonlinear process over its entire operating region [1]. Linearity has
frequently been assumed in modeling input output characteristics of real systems and
in developing the control rules. Hovewer, the input output characteristics of real
systems contain nonlinearity and development of the nonlinear modeling approach
seems to be very important in order to achieve highly precise prediction and control
of nonlinear systems [149]. In addition, most systems encountered in the real world
are nonlinear in nature, and since linear models can not capture the rich dynamic
behaviour associated with nonlinear systems [13]. As a result, nonlinear system

modeling and identification is necessary in control system science.

It is beneficial to first develop a model of the system to accurately control a system.
The fundamental objective for the modeling and identification task is to obtain a

good and reliable tool for analysis and control system development [150].

Almost all the systems in nature are inherently nonlinear over their operating range.

Linearization of the models of these systems is in many cases possible only around a
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specific operating point. Hovewer, in many cases we need to use nonlinear systems
over the entire operating range and that is the main reason to think about nonlinear
system modeling [64]. The theory and application of nonlinear system identification

is as vast and varied as nonlinear systems themselves [151].

When the system is to be represented nonlinearly, the problem is far from being a
simple order determination and parameter estimation problem. Unlike linear systems,
there exists no straightforward way of expressing a general nonlinear system. This
fact raises the need to decide in what form to represent the nonlinear system as a first
step. In the last century, the studies on nonlinear system theory have evolved
considerably, and many methods for representing nonlinear systems have been
proposed [152]. As far as nonlinear system identification and control system design
are concerned, the methods of premium concern are the Volterra series
representation, the Hammerstein representation, the Wiener representation and the
Wiener-Hammerstein or the nonlinear autoregressive moving average with

exogenous input (NARMAX) representation [148].

Various system identification techniques that can be broadly classified as parametric
and nonparametric techniques have been successfully applied in system
identification. There are different kinds of identification methods for nonlinear

dynamic systems, as can be seen in Figure 4.3.

Nonlinear models

Parametric Nonparametric
models models
|
[ |
Nonlinear Look-up Polynomials | | Neural Fuzzy GP
dlffer.entlal tables models networks models models
equation
I [ [ |
NARX Volterra Hammerstein Wiener
model series model model

Figure 4.3 Overview of system identification methods [78]
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4.2.1.1 Volterra Series Model

Most of the nonlinear systems can be represented by a Volterra series [148]. The
single input single output (SISO) nonlinear system with additive noise shown in

Figure 4.4.

v(t)
u(t) w(t) y(t)

Nonlinear
System

Figure 4.4 Nonlinear system with additive noise

The Volterra series explicitly expresses the input-output relationship of a nonlinear
system as follows:

w(t) = j_m g, (Du(t —7)d7 + L, L, 8, (7, T u(t —7)u(t —7,)dr,dT, +...

et [ ] g @t [ Jutt -7 )dr, +... @.1)
i=1

The nth order Volterra kernel g, (7,,...,7, ) represents the weighting function of nth

degree.

4.2.1.2 Wiener Model

The nonlinear Wiener models consist of a linear dynamic element followed in series

by a static nonlinear element is schematically shown in Figure 4.5.

u(t) Dynamic x(1) Static y(1)
—’ _>

A 4

Linear Nonlinear

Figure 4.5 General Wiener model structure

An autoregressive exogenous (ARX) model is typically choosen to represent the

linear dynamics of the model. This model is described by the following equation:
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x(t)=bu(t —1)+byu(t —2)+...+b,,u(t —nb)

(4.2)

—-ax(t-1)—...—a, x(t—na)

which is represented in operator form by
-1
A(r)=2 (q_l)u(t) (4.3)
Alg

where the operators Alg™') and Blg™") are
A(q_l):l%—alq_l +ta,q” +...+a,,q " 4.4)
B(q_l)zb0 +b,q” +b,q” +...+b,q" 4.5)

Although any form of nonlinear function may be used as the static nonlinearity of the
Wiener model, a polynomial model is usually employed. This is the most general
form and has an inverse by means of its roots [153]. The complete Wiener model is

represented by

x(t)= b, (u(t 1) +b, (u(t —2) +...+b,, (u(t —nb)
—-a,(x(t-1)—...—a, (x(t —na)

na

(4.6)

y(t)= 7x@) + 7, (O +...+ ¥, x" (1) (4.7

4.2.1.3 Hammerstein Model

As is well known, many real systems of very different physical nature can be
modeled as a cascade interconnection of a static nonlinearity and a linear model; this

interconnection is referred to as Hammerstien model of the real system [154].

Hammerstein model consists of a static nonlinear function followed by a linear
dynamic function. This model is widely used to approximate many real world

processes [148]. The Figure 4.6 represents this Hammerstein model:
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u(t) Static x(1) Dynamic y(©)

Nonlinear

Y

Linear

Figure 4.6 Hammerstein model structure

Let the static nonlinearity be represented by a nonlinear operator F'(.) . Then,

x(t) = F(u()) (4.8)

The dynamical linear part in the Hammerstein model can be represented by an

autoregressive with exogenous input (ARX) model. Then,

) =2 (q_lgx(r) -5 ("_I;F(um) 4.9)

where ¢'is the backward time shift operator. The static nonlinear model F(.)is

approximated by a power polynomial of order p,
x(t)= Flu®) = pu@)+ yu* @) +...+ y,u’ (1) (4.10)
where y,(j =1,...,n)are the nonlinearity parameters, ; € R.

Hammerstein models are popular in control engineering. It is easy to compensate the

nonlinear process behavior by a controller that implements the inverse static
nonlinearity ¢~'() at its output. Another advantage of the distinction into nonlinear

and linear blocks is that stability is determined solely by the linear part of the model,
which can be easily checked. Thus, the Hammerstein model has many appealing

features [17].

57



4.2.1.4 NARMAX Model

The Hammerstein and Wiener models for nonlinear systems are special cases of the

general NARMAX representation of nonlinear systems [152]. Leontaritis and

Billings [155] introduced the nonlinear autoregressive moving average with

exogenous input (NARMAX) approach as a means of describing the input-output

relationship of a nonlinear system. The model represents the extension of the well-

known ARMAX model to the nonlinear case.

The NARMAX model structure with input nonlinearity F,(.) and output nonlinearity

F,(.) is shown in Figure 4.7, where &(k)is the white noise disturbance [152].

A 4

u(k) x(k)

ARMAX model

Figure 4.7 General NARMAX system structure [152]

y(k)

y, (k)

The equation (4.12) which is commonly known as the ARMAX model is represented

in operator form with input x(k) and output y(k) in the linear subsystem by

b))
y(k)_A(q_l) (k)+ A(q_l)é:(k)

The input nonlinearity has the following static characteristics:

x{k) = F, (k) = 7, (k) + Y> () + ..+ 7, u” (k)

The output nonlinearity is given by

58

@.11)

4.12)



y(k)=F,(y,(0)= 7,9, K)+ 7,3, (k) +...+7,, y,” (k) (4.13)

The relationship between the overall system output y_ (¢)and input x(z)is as follows:

yuoc):F;I(g(é;;a(u(k>>+%§§ak>j @)

If the response of the system is dominated by nonlinear characteristics, it is often
necessary to use a nonlinear model. The NARMAX representation gives a concise
description for a large class of discrete time nonlinear systems [24]. NARMAX
representation gives a more general nonlinear system model in comparison with the
Hammerstein and the Wiener model [152]. Identification of systems represented by a

NARMAX model can be found in Appendix 1.

4.3 Identification of Hammerstein Model

The Hammerstein model is probably the most widely known and applied nonlinear
modeling approach. It assumes a separation between the linear dynamics and the
nonlinear static part of the system [17]. The method to be used in Hammerstein
system identification depends on the availability of a priori information. If sufficient
amount of information is available, the system can be linearly parametrized and

simple least square based identification algorithms can be built and applied [152].

The dynamical linear part in the Hammerstein model can be represented by an ARX
model as for the linear system model [28]. The relationship between the linear part

input x(¢) and output y(¢) can be given as:

Alg ) y(®) = B(g™)x(t) +e(r) (4.15)

where x() is the output of the nonlinearity, the polynomials in Equation 4.15 are

given in Equations 4.4 and 4.5.

The static nonlinearity in the Hammerstein model is classically approximated by a

polynomial of known order. The order of the polynomial is selected in accordance
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with the hardness of the nonlinearity in the system. Consider the system in Figure
4.6. The static nonlinearity in the Hammerstein model can be approximated by a

polynomial in input u(¢f) of predetermined order p, as in Equation 4.10. The
accuracy of this approximation depends on the suitable selection of the coefficients

7, and the order p.

The additive noise e(¢) in Equation 4.15 is a random variable of zero mean. The
problem of identification of the Hammerstein model reduces to estimating a,, b,,
and y, using the data sequences u(t) and y(t), for predetermined values of p and

n.

The combination of the linear and the nonlinear subsystems gives:

Alg™ ()= Bla™ Nyt + 7> @O + .o+ 7,u” (1)) + e0) (4.16)

e 0

In Equation 4.16, the coefficients of B(q'l) do not appear explicitly. Without loss of
generality, the nonlinear part can be normalized with respect to ¥, , and the Equation

4.16 can be rewritten with the assumption that y, =1as follows:

Alg™ vy =8lg” ){u<z>+ﬁ7iu"(r)}+e<z>

or

Alg™ v =Blg™ ) + Zp:ib 77U @) +e(r) (4.17)

i=2 j=0
Define a polynomial S,(g™")

S, (g "H= }/l.B(q_l) =5, + sl.lq_l +ets,q" (4.18)
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where Sy = %bj, i=1,...,p, j=1,...,n. Then, Equation 4.17 is improved to be

Alg™ )y(e) = Blg™ Jut) + IZ S (g ki (0 +er) 4.19)

Equation 4.19 can be put into linear regression forms as follows:

y(t)=¢" ()8 +e(r) (4.20)

where

—y(t =)=yt =2),....~y(t —n )u(@®),u(t —1),...,ut —n,),)
¢<r>=( D2y ) MO >J W)
u (t),....,u (t—ny),....,u"(@),....,u" (t—n,)

0=a,,ay000, bybyse By Sygaes Sy e Sy S ) (4.22)

> Y nn,

The linear regression representation for the system given in Equation 4.20 permits
direct application of the recursive least square (RLS) method. However, the vector of

unknown parameters does not include the coefficients of the polynomial
B(q ") explicitly. These coefficients are implicitly expressed in the form of products
with the nonlinear subsystem parametersy,(j=1...,n). Consequently, the

identification of the system parameters can not be performed at a single stage. The
RLS method is, therefore, implemented in two steps. The first step of the algorithm

gives the estimates of the parameters a; ands;, and the second step estimates the
parameters b, and 7 using the results of the first step, wherei =1,....,n,, j=1,...n,

k =1,...,n, . The nonlinear identification algorithm steps are summarized as follows:

1 Choose initial values for the covariance matrix P and forgetting

factor 4.

61



(ii)

(iii)

(iv)

)

Acquire the input and output of the system and form the data vector

@das given in Equation 4.21 for time instant t using the present and

past values of the input u , output y and powers of u .

Solve for the parameter estimates 4, ,l;k .8 ;, using RLS estimates rule:
£(0)=y() - ¢" 8 -1)

#(1)¢” ()P(t—1) }
A+ 9" ()P —-1)g(1)

0(t) = 6(1 — 1) + P(1)p(1)&(1)

P(t) = %P(r - 1){11, -

(iv)  Solve for the estimates 7; j=1,...,n using the estimated values
l;k .8 by the formula :

n,

-1
7, = [be} Db, j=ln
k=1 k=1

Update the time instant, ¢ = ¢ +1. Return to step (ii)

4.4 Conclusions

In this chapter, a general view of nonlinear system modeling and identification with a

parametric approach is given. Hammerstein, Volterra series, Wiener and NARMAX

models are examined in detail. Identification of Hammerstein model is presented in

this chapter. The model and identification method are applicable to all the nonlinear

systems including gasoline engine.
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CHAPTER 5

S. ARTIFICIAL NEURAL NETWORK

5.1 Introduction

Artificial Intelligence (Al) systems are widely accepted as a technology offering an
alternative way to tackle complex and ill-defined problems. They can learn from
examples, are fault tolerant in the sense that they are able to handle noisy and
incomplete data, are able to deal with nonlinear problems, and once trained can
perform prediction and generalization at high speed. They have been used in diverse
applications in control, robotics, pattern recognition, forecasting, medicine, power
systems, manufacturing, optimization, signal processing, and social/psychological
sciences. They are particularly useful in system modeling such as in implementing
complex mappings and system identification. Al systems comprise areas like, expert
systems, artificial neural networks (ANN), genetic algorithm, fuzzy logic and various

hybrid systems, which combine two or more techniques. [156].

ANNs mimic somewhat the learning process of a human brain. Instead of complex
rules and mathematical routines, ANNSs are able to learn the key information patterns
within a multidimensional information domain. In addition, the inherently noisy data

does not seem to present a problem, since they are neglected [157].

According to Haykin [158], a neural network is a massively parallel distributed
processor that has a natural propensity for storing experiential knowledge and
making it available for use. It resembles the human brain in two respects; the
knowledge is acquired by the network through a learning process, and inter-neuron

connection strengths known as synaptic weights are used to store the knowledge.
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Neural network (NN) operates like a “black box” model, and does not require
detailed information about the system. Instead, it learns the relationship between the
input parameters and the controlled and uncontrolled variables by studying
previously recorded data, in similar way that a nonlinear regression might be
performed. Another advantage of using ANNSs is their ability to handle large and
complex systems with many interrelated parameters. They simple ignore excess input
data that are of minimal significance and concentrate instead on the more important

inputs [156].

ANN has emerged as a powerful learning technique to perform complex tasks in
highly nonlinear dynamic environment. Some of the prime advantages of using ANN
models are their ability to learn based on optimization of an appropriate error
function and their excellent performance for approximation of nonlinear function
[158]. Neural networks have good general approximation capabilities for reasonable
nonlinear systems [20]. Nerandra and Parthasaraty [22] demonstrated that artificial
neural networks could be used successfully for the identification and control of
nonlinear dynamic systems. Chen and Billings [23] have reported nonlinear system

modeling and identification using ANN structures.

5.2 History of Neural Networks

The modern era of NNs began with the pioneering work of Warren McCulloch, a
neurophysiologist, and a young mathematician, Walter Pitts, wrote a paper on how
neurons might work in 1943. They modeled a simple neural network with electrical
circuit. The next major development in NNs came in 1949 with the publication of
Hebb’s book The Organization of Behavior, in which an explicit statement of a
physiological learning rule for synaptic modification was presented for the first time.
After the publication of McCulloch and Pitt’s classic paper, a new approach to the
pattern recognition problem was introduced by Rosenblatt (1958) in his work on the
perceptron, a novel method of supervised learning. In 1959, Widrow and Hoff
introduced the least mean square (LMS) algorithm and used it to formulate Adaline
and Madaline which was the first NN to be applied to a real world problem. Minsky
and Papert published the book in 1969 which used mathematics to demonstrate that

there are fundamental limits on what single layer perceptrons can compute [158].
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A more mathematical approach to NN started in the 1970s, but only gained success
in the early 1980s. In 1982, Hopfield invented the Hopfield network whose dynamics
were guaranteed to converge. After this invention, NN studies have raised again. In
1986, the development of the backpropagation algorithm was reported by Rumelhart,
Hinton and Williams which has emerged as the most popular learning algorithm for

the training of multilayer perceptrons [159].

5.3 Biological and Artificial Neurons

ANN is a system loosely modeled on the human brain. A biological neuron is shown
in Figure 5.1. In brain, there is a flow of coded information from the synapses
towards the axon. The axon of each neuron transmits information to a number of
other neurons. The neuron receives information at the synapses from a large number

of other neurons [156].

Axon of neuron that

/ sends information

/

Dendrite Soma Dendrite of neuron that

receives information

Axon Dendrite

Synapse ——»

Figure 5.1 A simplified model of a biological neuron [156]

Figure 5.2 shows a highly simplified model of an artificial neuron, which may be

used to stimulate some important aspects of the real biological neuron.

A neural network is composed of large numbers of highly interconnected processing
elements known as neurons. The basic elements of an artificial neuron are shown in
Figure 5.3. Artificial neuron consists of weight, bias and activation function mainly.

Each neuron receives inputs x,, x,,....., X, attached with a weight @, which shows the

connection strength for a particular input for each connection. Every input is then
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/ s

Figure 5.2 A simplified model of an artificial neuron [156]

multiplied by the corresponding weight of the neuron connection. A bias b, can be

defined as a type of connection weight with a constant nonzero value added to the

summation of inputs and corresponding weights u, given in Equation 5.1.

u, =) w,x.+b,. (5.1)

The summation u; is transferred using a scalar-to-scalar function called an
“activation or transfer function”, f(u,), to yield a value called the unit’s “activation”,

given in Equation 5.2.

yi=fw). (5.2)

X Wil \ bias Activation
~ Q:lction

X2

Bl
Y

y; = fu;) — Output

X3 = Jj=1

X

Figure 5.3 Basic elements of an artificial neuron
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5.4 Types of Activation Function

Activation functions serve to introduce nonlinearity into neural networks which
makes it more powerful than linear transformation. There are many forms of
activation functions, which are selected to the specific problem. All the NN
architectures employ the activation function [158]. Table 5.1 summarizes the basic
types of activation functions. The most practical activation functions are the sigmoid

and the hyperbolic tangent functions. This is because they are differentiable [160].

Table 5.1 Types of activation function

FUNCTION MATHEMATICAL FIGURE
TYPE REPRESENTATION
L.v>0 '
Threshold y=f) = {
0,...v<0 o v
L,...v>+—

. . 2 ¥
Piecewise- | | %
linear =fW)=<v,...+—>v>—— i

y=f 2 2 |
0,..v< —l B B
2
Siomoi |
igmoid y=f)=———— y
1+ exp(—v) e v

Hyperbolic y=f(v)= 1 —exp(2v)
tangent 1+exp(2v) .
Radial basis y=f)=exp( 5 )
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5.5 Neural Network Architectures

Artificial neural network can be viewed as weighted directed graphs in which
artificial neurons are nodes and directed edges (with weights) are connections
between neuron outputs and neuron inputs [161]. Based on the connection pattern

(architecture), ANNs can be grouped into two categories:

o feedforward networks (multilayer perceptron and radial basis function
networks)

e recurrent or feedback networks (Elman and Hopfield networks)

In the most common family of feedforward networks, called multilayer perceptron,
neurons are organized into layers that have unidirectional connections between them.

Recurrent, or feedback, networks, on the other hand, are dynamic systems [63, 161].

5.5.1 Multilayer Perceptron Feedforward Neural Network

In the multilayer NN or multilayer perceptron, the input signal propagates through
the network in a forward direction, on a layer-by-layer basis. This network has been
successfully to solve some difficult and diverse problems by training in a supervised
manner with a highly popular algorithm known as the error back-propagation

algorithm [158].

Multilayer perceptron feedforward (MLPFF) computational structure is a nonlinear
model able to perform a mapping between the input vector xand the output vector

y.In Figure 4.4 a multi input multi output (MIMO) MLPFF is shown; the input data

(i.e. the independent variables) are propagated from the input layer to the output one,
through the hidden layers, to generate the corresponding output signal (i.e. the
dependent variables). Each layer of the MLPFF is composed of several elementary
processing units (neurons) that work in parallel and are connected each other to
create a flow of information from input layer to output one. These elements can be
considered as single output black-box computing units with multiple inputs, where
outputs is obtained by processing the weighted sum of the inputs with a transfer

function named activation function, which is usually a nonlinear function [75].
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In Figure 5.4 x;(n) represents the input to the network, f;and f, represent the

output of the two hidden layers and y,(n) represents the output layer of the NN. The

connecting weights between the input to the first hidden layer, first to second hidden

layer and second hidden layer to the output layers are represented by respectively.

Wu
—0 -
X; (n) Vi (n)
—>
Input First Second Output
layer Hidden Hidden layer
(Layer-1) (Layer-2) (Layer-3) (Layer-4)

Figure 5.4 Multilayer perceptron neural network structure

If P is the number of neurons in the first hidden layer, each element of the output

vector of first hidden layer may be calculated as,
N
fi= goj[ZwUxi(n)erj} i=12,..,N, j=12,...,P, (5.3)
i=1

Where bj is the bias to the neurons of the first hidden layer, N is the number of
inputs and @ is the nonlinear activation function in the first hidden layer chosen from
the Table 5.1. Let P, be the number of neurons in the first hidden layer. The output of

this layer is represented as, f, and may be written as,
Ll
fk=¢k[Zijfj+bk} k=12,...,P, (5.4)
j=1
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where, b, is the bias to the neurons of the second hidden layer. The output of the

final output layer can be calculated as
P,
y,(n):(z),[Zwk,fk +b,} [=12,...,P, (5.5)
k=1

where, b, is the bias to the neuron of the final layer and P,is the number of neurons

in the output layer. The output of the MLP may be expressed as

yl(n):%[iwk{go{iwj{q){ S w,»,»x,-(n)+bjD+ka+b,} (5.6)

5.5.2 Radial Basis Function Neural Network

Another popular layered feedforward network is the radial-basis function (RBF)
network which has important universal approximation properties, and whose
structure is shown in Figure 5.5 [158]. The alternative neural network architecture

besides multilayer perceptron (MLP) is radial basis function [162].

RBF networks can be used to approximate any continuous nonlinear function. The
weight can be linearly regulated. The learning speed and convergence is fast enough.
The characteristics of RBF networks are suitable for many industrial fields such as

system identification, control engineering and signal processing [95].

As shown in Figure 5.5, the RBF neural network has three layers: the input layer, the
hidden layer and the output layer. The hidden layer consists of an array of computing

units called hidden nodes. Each hidden node contains a centre c¢,which is a
parameter vector, and calculates the Euclidean distance between the centre and the

network input vector x defined by “x(t)—c i (t)” where x(t)is the RBF neural

network inputs, ¢, (¢)is the jth centre.
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Figure 5.5 Radial basis function neural network structure

The results are then passed through a nonlinear activation function ¢,(7) to produce

the output from the hidden nodes. A popular choice of activation function is the

Gaussian basis function:

=L2,...,n, (5.7

2
¢, (t) =exp ——“X(t);ij(t)u ,

where o is a positive scalar called a width and n, is the number of centers. Since the

output layer is essentially a linear combiner, then the ith output of the neural

network model at time t is a weighted sum of the hidden node outputs:

ny

Y=Y 0,0w;, i=12...4q (5.8)
j=1

Where w are the output layer weights and ¢ is the number of outputs.
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RBF networks are best suited for approximating continuous or piecewise continuous
real valued mapping f:R" — R",where nis sufficiently small. These
approximation problems include interpolation problems as a special case. From
Equations 5.7 and 5.8, the RBF network can be viewed as approximating a desired
function f(x) by superposition of non-orthogonal, bell-shaped basis functions. The
degree of accuracy of these RBF networks can be controlled by three parameters: the

number of basis functions used, their location and their width [163].

5.5.3 Recurrent Neural Network

The recurrent neural network (RNN) that is a special type of the dynamic neural
networks is derived from the MLPFF networks given in Figure 5.4 by considering
feedback connections among the neurons. Thus, a dynamic effect is introduced into
the computational system by a local memory process [75]. Moreover, by retaining
the nonlinear mapping features of the MLPFF, the RNN are suitable for black-box

nonlinear dynamic modeling [158].

Recurrent networks are the state of the art in nonlinear time series prediction, system
identification, and temporal pattern classification. RNN are classified into local or
global kind. The application of global feedback can take a variety of forms. The form
of global feedback has feedback from the output neurons of the multilayer perceptron
to the input layer given in Figure 5.6. Another possible form of global feedback is

from the hidden neurons of the network to the input layer [158].
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y(0)
_>

Figure 5.6 Recurrent neural network structure

The RNN with multi-input and single output shown in Figure 5.6 is of the form

¥(0) = sz{i W,»,»I,»(t)} (5.9)

i=1

where y(7)is the output of the neural model; w, and w; are the synaptic weights
which connect the hidden nodes with the output, and connect the inputs to the hidden
nodes, respectively; HN is the number of hidden node; n is the number of total
inputs; 1(¢) :[y(t—1),...,y(t—m);xl(t—1),...,xl(t—ml);xq(t—l),...,xq(t—nq)]Tis
the input vector where {y(t—1),...,y(t—m)} are the recurrent terms which are the
neural model output delayed in time. s(.) is the activation function listed in Table

5.1[1].

Elman, Hopfield, self-organizing map can be given as an example of recurrent
network. Elman network is the simplest structure and easiest to use. Some popular
recurrent network architectures are the Elman recurrent network in which the hidden

unit activation values are feedback to an extra set of input [164].
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5.5.3.1 ElIman Recurrent Neural Network

Elman neural network is a dynamic recurrent neural network with feedback layer
which owns the dynamic characteristics and recurrent function [91]. The feedback
connections in Elman recurrent neural network are from the outputs of neurons in the
hidden layer to the context layer units that are called as context nodes. This part of
input layer, namely, the context layer, plays a role in storing internal states in Elman
neural networks [165]. Mathematical description of Elman type RNN can be given as

follows:

The structure of an Elman RNN is illustrated in Figure 5.7. Here, X, Y, C, Z and

z~' and are input layer vector, hidden layer vector, context layer vector, output layer

vector and unit delay element respectively [165].

Figure 5.7 Elman recurrent neural network structure

Weight matrices are as follows: W1 is the weight matrix between input layer and
hidden layer, W3 the weight matrix between context layer and hidden layer and W2

is the weight matrix between hidden layer and output layer [165].
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At sth iteration, all vector components are as follows:

Ve X, i=1,...,n,
yWevy, j=1...,m,
ez, k=1,..,1,
¥ =C, i'=J.

J

Here, index i, j, k and i'indicate the number of input nodes, hidden nodes, output

nodes and context layer nodes, respectively. And also, to compute the hidden node

outputs, considering the activation function f(.) for jth hidden node output at sth

iteration can be defined as

v = flal), (5.10)

(s)

where a; is linear output of hidden node j at sth iteration. Context layer input at sth

iteration can also be given by

el =y b (5.11)

j
For initial cases of Elman neural network, assuming

¥ =0, (j=12,....,m). (5.12)
The context layer input at s =1 leads to ¢” =0. In terms of weight matrix of the
neural structure, each weight coefficient can be defined as an element of these

matrices as wlij e W1, w3ij e W3, w2jk e W2.

Hence, using the weight matrices, the outputs of the neurons in the hidden layer and

output layer for sth iteration can be computed as
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¥ = (Z wl, x/” +Zw3y yor J (5.13)

and

o [ZW% y§s>J (5.14)

And also, updated weight coefficients can be given to minimize the approximation
error E in the output layer by

new

W' = w +nAw, (5.15)

where # is the learning rate. E is defined for all pattern vectors and output nodes

with the following relationship:

E(w) = ZZ[Z(‘) 2] (5.16)

s=1 k=1
where Z" is the target value at sth iteration.

Here, p is the length of the training sequence and weight coefficient matrices of W1
and W3, can be adjusted using the standard Back-Propagation algorithm, because
this part of the network that takes place between the input and output layers, in the

feedforward character [165].

5.6 Learning Algorithm

There are various types of algorithms for training the network. Basically, the purpose
of every algorithm is to estimate the local error at each neuron and systematically
update the network weights. In this thesis, the feedforward neural network was
trained with the back propagation algorithm and Levenberg-Marquardt algorithm to
estimate/assess their search efficiency and accuracy in this thesis. The details of the

above algorithms are given in the following section.
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5.6.1 Backpropagation Algorithm

A back propagation (BP) algorithm, which is the most widely used training algorithm
for the multi layer perception, is a gradient descent technique to minimize the error
for a particular training pattern and was popularized by Rumelhart and coworkwers
[159]. Accordingly, for a given input pattern, a flow of activation is forwarded from
the input layer to the output layer via hidden layer(s). Then the errors in the output
are initiated. BP algorithm is used to adjust the weights, a small amount at a time, in
a way that reduces the error. The training of the network is accomplished by
adjusting the weights and is carried out through a large number of training sets and
training cycles (epochs). The goal of the learning procedure is to find the optimal set
of weights, which in the ideal case would produce the right output for any input. The
output of the network is compared with a desired response to produce an error. Once
the ANN is adequately trained, it can generalize to similar cases, which it has never

seen. The BP algorithm for a neural network works as follows.

Define the instantaneous overall network error at time ¢ as

E@ =3 21T, 0-2,(0)F (5.17)

j=l

where T, (¢) is the target value of neuron j at time #; and z,(7)is the network output

of neuron j at time .

The energy function is obtained by summing E(¢) over all time 7.
T

Eu =2 EQ) (5.18)
i=1

The weight change for any particular weight W, which connects neuron j in this

layer with neuron i in the previous layer, can thus be written as
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AW, =2 (5.19)

where 1 is the learning rate parameter.

Using the chain rule for partial derivatives, the weight change can be generalized as
Aw'; = 77"5}’1?‘1 (5.20)

where z;"l represents the output value of neuron j in the (n—1)th layer,

! :(thlé‘:“ng“ )g(v’?) for the hidden layers, and g(.)represents the first

J

derivative of nonlinear activation function.
Further details on the BP algorithm can be found in Ref. [159].

5.6.2 Levenberg-Marquardt Algorithm

Levenberg-Marquardt method is an approximation to Newton’s method [166]. The
algorithm uses the second-order derivatives of the cost function so that a better
convergence behavior is observed. In the ordinary gradient descent search, only the
first-order derivatives are evaluated and the parameter change information contains
solely the direction along which the cost is minimized, whereas the Levenberg-
Marquardt technique extracts a better parameter change vector [166]. Newton’s
original approach assumes that a function E(w) is minimized if the successive

changes defined by Equation (5.21) are given to the parameter vector w.
Aw =—(V?E(w))'VE(w) (5.21)

We assume the performance function is defined as follows;

Y
ﬂm:%Z@—%V%—%) (5.22)
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In Equation (5.22) q indexes the training pairs, and Q is the number of training pairs,
t denotes the target output and o denotes the actual output of the network. If Equation
(5.22) is rewritten with respect to the output error which depends on the weight

vector, we obtain Equation (5.23).
1 [
E(w) =§Ze§(w) e,(w) (5.23)
gq=1

The objective is to minimize each individual multiplication in Equation (5.23). 1f

Taylor series expansion is applied to e, (w) around wo;
eq(w)zéq(w)zeq(wo)+JT(w—w0) (5.24)

In Equation (5.24) J is the Jacobian matrix and evaluated at wy. The entries of this
matrix represent the derivative of the error evaluated at the i™ output with respect to
the j™ parameter of the parameter vector. And, this statement obviously implies that
the number of rows of the Jacobian matrix is equal to the multiplication of the
number of network outputs and the number of the training pairs. Similarly, the

parameter vector will have an entry for all weights and biases of the network [18].

) (5.25)

v ow,

We define an approximate error component as described in Equation (5.26).
Differentiating this equation with respect to parameter vector w and equating zero

gives the usual “normal equation” of the linear least squares problem.
— T 5
p(w)=¢,(w) e, (w) (5.26)

JTT(w=wy)+J" e,(w)=0 (5.27)
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From Equation (5.27), the change in parameter vector turns out to be Equation

(5.28).

AWZ—(JTJ)'IJTeq (w) (5.28)

The terms appear in Equation (5.28) are explained as follows;

VEw) =J"e, (w (5.29)

VEw) =J"J (5.30)

Equation (5.29) represents the first derivative of the performance function, Equation
(5.30) represents the second derivative of the performance function and is called
Hessian matrix. Levenberg and Marquardt Equation (5.28) by adding extra term to

the Hessian matrix [18]. The resulting parameter update rule is then introduced to be;

Aw=-"T+uD) ' I7e, (w) (5.31)

In fact, the reason for this modification is that this additional term compensates the
approximation errors. Actually, the method seems to minimize @ but this may not
always imply that E(w) is minimized. Therefore, a scaling is introduced to Hessian
matrix evaluation part of the method. If a step reduces E(w) then p is decreased,
otherwise p is increased by some factor greater than one. Note that, if p is large, the
method becomes steepest descent because the modification dominates the term J'J
term only the first order derivative information remains, on the other extreme, if p is
too small then the method becomes pure Gauss-Newton method. Therefore the

method is considered as a trust region modification to Gauss-Newton [18].

5.7 Neural Networks for Identification of Nonlinear Dynamic Systems

In analogy to linear system identification, a nonlinear dynamic model can be used in

two configurations: series-parallel and parallel models [17].
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Series-parallel model: the previous process inputs u(k—i) and process
outputs y(k—i)are used as inputs to the model. This model can be
considered as a feedforward. The model is said to have external dynamics.

Parallel model: the previous process inputs u(k —i) and the model outputs
y(k —i)are used as inputs to the model. This model can be considered as a

recurrent model. The model is said to have internal dynamics.

Figure 5.8 compares the model configuration for both models. In both cases the

model is trained by minimizing a loss function dependent on the error e(k).

a)

n(k) b) n(k)
u(k) u(k) y(k)
process —> process

y(k)
e(k) e(k)
model gE — model A
y(k) y(k)
! -1 VO > ! 1 VO >
q q
q_l ] q_l :
' L ' L

Figure 5.8 a) Series-parallel model b) parallel model

For dynamic systems and for controllers, the model must have some way to

implement time lags. In other words: some memory function must be present in the

model. In NN modeling this can be done twofold: either delayed inputs and outputs

are used as extra external inputs, or some memory is included in the individual

neurons [167].
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5.7.1 External Dynamics

The external dynamics strategy is by far the most frequently applied nonlinear
dynamic system modeling and identification approach. It is based on the nonlinear

input/output model of a m th order in Equation 5.32 [17]
k) = fulk=D),...,utk —m), y(k =1),..., y(k —m)) (5.32)

All nonlinear dynamic input/output models can be written in the form

y(k) = f(p(k)) (5.33)

where the regression vector ¢(k)can contain previous and possibly current process

inputs, previous process or model outputs, and previous prediction errors [17].

The three most common linear model structures are autoregressive with exogenous
input (ARX), autoregressive moving average with exogenous input (ARMAX) and
output error (OE) models. Their nonlinear counterparts posses the following

regression vectors with (e(k) = y(k) — y(k)) :

Time delay neural network (TDNN) or NARX

(k) = fruy @k =1),...,utk —n,), y(k=1),...,y(k —n)) (5.34)

NARMAX

5k = foy k= 1),.ou(k —n,), y(k =1,...,y(k =n,),e(k =1),....e(k —n,)) (5.35)

NOE

Y(k) = fry @k =1),...,utk —n,),y(k=1),...., 3k —n)) (5.36)
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where n,,n,,n, denoted the dynamic order of the model output, input and error

respectively.

Thus, the NARX model is trained in series-parallel configuration (Figure 5.8a) and
the NOE model is trained in parallel configuration. The NARMAX model requires
both, process outputs y(k —i)and model outputs y(k —i)contained in e(k —i)[17].

Since for nonlinear problems the complexity usually increases strongly with the input
space dimensionality, the application of lower dimensional NARX or NOE models is
widespread. One drawback of models with output feedback is that the choice of the
dynamic order is crucial for the performance and no really efficient methods for its
determination are available. Often the user is left with a trial-and-error approach.
Another disadvantage of output with feedback is that in general stability can not be

proven for this kind of models [17].

In opposition to these drawbacks, models with output feedback compared with those
without output feedback have the strong advantage of being a very compact

description of the process [17].

5.7.2 Internal Dynamics

Models with internal dynamics are based on the extension of static models with
internal memory. In contrast to models with external dynamics, the use of past inputs
and past outputs at the model input is not necessary. Therefore, the application of
internal dynamic models leads to a desirable reduction of the input space
dimensionality. Since internal dynamic models posses no external feedback, only the
parallel model approach in figure 5.8b can be applied. Consequently, these models

are not well suited one-step prediction tasks.

5.7.3 Training Feedforward and Recurrent Structures

From the internal dynamic approach recurrent structures always arise. From the
external dynamic approach NARX model are feedforward during training but NOE

models are recurrent since they apply the parallel model configuration [17].
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Training of feedforward structures is equivalent to the training of static models.
However, training of recurrent structures is more complicated because the feedback
has to be taken into account. In particular, training recurrent models is always a
nonlinear optimization problem independent of whether the utilized static model
architecture is linear or nonlinear in the parameters. This severe drawback is a further
reason for the popularity of feedforward structures such as the NARX model.
Therefore, in nonlinear system identification, the choice of the dynamic
representation is highly interconnected with the choice of the model architecture

[17].

5.7.4 Choosing a Model

Models with external dynamics can be seen as one-step predictors. Models with
internal dynamics are best used for simulation purposes, as the model doesn’t need

the true plant outputs.

The criteria that determine the choice of the model are the following:
¢ Which information is available? It seems obvious that all possible
information must be used for the model, i.e. the true outputs, the noise
contributions, and the past inputs. The result is an increasing number of
model parameters that need to be optimized. If only the exogenous input u is
known, then the only models possible are NOE. If the plant outputs can be
measured, a NARX model can be taken into consideration. In general it is not

possible to know the process noise #, but it could be estimated for use with a

NARMAX model.

e Can significant time lags be estimated? The determination of the values of
n,,n,,n,is still an open question. It seems obvious that large values allow for
better prediction of the future state of the NN. However, large time lags also
result in large parameters vector that need to be optimized.

¢ How many measurements are available for the optimization of the parameter
vector? Models with a large number of parameters, don’t match with a small

measurement set.
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e Is the model used for control of simulation purposes? For simulation
purposes, only NOE or NFIR models fit the job, because they don’t need the
current plant outputs.

e Are transients an issue? Model with large time lags or with internal dynamics,

can suffer from large transients when the system is brought into a new state.

Since it is the goal to have at least number of parameters, it makes sense to choose
the simplest model available, and switch over to more complex models if this yields

a significant improvement in performance [167].

5.8 Conclusions

In this chapter, the information about the neural network and neural network
structures are provided. And also neural networks for identification of nonlinear
dynamic systems explained. Neural network structures will be used in gasoline

engine torque identification.
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CHAPTER 6

6. MEAN VALUE MODEL OF A SPARK IGNITION ENGINE

6.1 Introduction

The engine model is referred to as the mean value engine model (MVEM) developed
by Hendricks and coworkers [168-170] which is widely used benchmark for engine
modeling and control. A mean value model (MVM) is a mathematical engine model
which is intermediate between large cyclic simulation models and simplistic transfer
function models. It predicts the mean values of major external engine variables like

crankshaft speed and manifold pressure dynamically in time [171].

The main engine sub-models include the air system that defines how much air is
inducted into the cylinder; the fuel system that defines how much fuel is inducted in
to the cylinder; the torque generation system that defines how much torque is
produced by the air and fuel in the cylinder as defined by the first two parts; the
engine inertial system that defines the engine speed; the engine thermal system that
defines the thermal behavior of the engine; the pollution formation system that

models the engine out emission [172].

All these models are control oriented models (COM), i.e. they model the input-output
behavior of the systems with reasonable precision but low computational complexity,

and include explicitly, all relevant dynamic effects [172].
The SI engine has several input (command) signals, one main disturbance signal (the

load torque) and several output signals as shown in Figure 6.1. The inputs are

signals, i.e. quantities that can be arbitrarily chosen in order to allow full control of
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engine, usually these will be electric signals. The outputs also are signals that can be

used by controller without the system behavior being effected [172].

load torque  T;

throttle 3, —— ) L » y, speed
injection Uy ——— —— Y1  air/fuel ratio
ignition : —» SI engine ——» Yo air mass flow

EGR-valve y, —»p) L » Yp manifold pressure

etc. ... — —— . etc.

Figure 6.1 Main system’s input/output signals in a COM of an SI engine

Uy
Intake manifold l ur

I injectors
mﬁ - - »

—X1— k)i, 1----»
Throttle vdlve Vi P T l

Jir,,

- cylinders
wall film Vi

Ug
Yp

Figure 6.2 Mean-value SI engine structure [172]

Spark ignition (SI) engine system has the structure shown in Figure 6.2. In a mean
value approach, the reciprocating behavior of the cylinders is replaced by a
continuously working volumetric pump that produces exhaust gases and torque. The

resulting main engine components are shown in Figure 6.2.
Figure 6.3 shows the resulting simplified cause and effect diagram of an SI engine.

Both air and fuel paths affect the combustion through some delaying blocks while the

ignition affects the combustion almost directly. The main output variables of the
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combustion process are the engine torque 7,, the exhaust gas temperature Tex, and

the air/fuel ratio A..

A 4

injection

my,

A 4

wall-wetting

U

Ug

l A 4
throttle body
m

intake manifold

@—Pyg

Pm

A 4

A 4

l A 4 l_

gas exchange

g

!

combustion and torque generation

T.

T
1 l v

e

y

engine inertia

gas transport

Figure 6.3 Cause and effect diagram of an SI engine system [172]
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All gasoline fuelled SI MVEMs have basically three main subsytems: 1) the

manifold air dynamics, 2) the fueling dynamics and 3) the crankshaft dynamics.

Because of the nature of an SI engine, these subsystems are described by very

different physical models which are more or less empirical [173].
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6.2 Intake Manifold Filling Dynamics

The intake manifold of the engine is the volume between the throttle plate and the
intake valves of the cylinder. The throttle controls the air flow into the intake

manifold [171].

The intake manifold filling dynamics are analyzed from the viewpoint of the air mass

conservation inside the intake manifold [170, 172].

i (6.1)

where r,, and m,, represents air mass flow rate past throttle plate and air mass flow

rate into the intake port, respectively.

The pressure in the intake manifold p,, can be related to the mass of air in the

manifold m,, using ideal gas equation [170-172]:

2V, =m,RT (6.2)

m m m

where R is the ideal gas constant, T}, is the intake manifold temperature and V,, is the

intake manifold volume.

Taking derivatives of equation 6.2 and substituting from equation 6.1, the intake

manifold pressure equation is obtained as

P = =i, —rin,,) 6.3)

6.2.1 Throttle Body Flow

Normally an engine has two mass flows: through the throttle valve and through the
by-pass throttle valve. It is assumed that the by-pass is open only in the idle speed
mode. However, nearly all available measurements are for other modes than the idle

speed mode, so the by-pass air flow in the identification process is neglected. In fact,
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the by-pass identification is included in the identification of the flow through the

throttle valve [174].

Figure 6.4 Throttle body flow

The throttle body consists of a cylindrical bore with a throttle plate to control the air
flow to the engine shown in Figure 6.4. The throttle body model is based on the
theory for one-dimensional, steady, isentropic, compressible flow of an ideal gas
across an orifice [174]. The mass flow rate through the throttle body into the intake
manifold can be calculated from the orifice equation for compressible fluid flow
[168, 170]. The equation for the air mass flow entering the intake manifold through

the throttle 7, then becomes:

i, =c,Ac) \/% ‘P[ 5 « j (6.4)

where ¢, is the discharge coefficient and A is the opened area of throttle, depending

on the angle (a) of the throttle plate [174].

Al@) :EDZ(I—MJ (6.5)
4 cos(&,)

For many working fluids (e.g., intake air, exhaust gas at lower temperatures, etc.)

with k = 1.4 the flow function ¥(.)is defined by [172]

1/42 for p, <%pa
\p[&j =\ | (6.6)
pm pm {1 _ &} for pm 2 _ pa
P P 2
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6.2.2 Cylinder Flow

The air mass flow s, from the intake manifold into the cylinders follows from the

so-called speed density formula [170]

pm
RT

m

. ,
m, = o1 Evd (67)

where 7,,; 1 the volumetric efficiency which is a complex function of many engine

parameters and the variables p,, and w,, V4 is the displacement volume of the engine

cylinders and Pu_is the density of air in the intake manifold.

m

So, intake manifold pressure dynamic (Equation 6.3) can be written into the form

. RT p p , )4
=" e AP Lo |y ey Do 6.8
pm ‘/m [d ( )\/R_T'a ( mj 77»01 47[ d RTmJ ( )

6.3 Fueling Dynamics

The fuel path which is the subsystem that provides the necessary fuel for the
combustion process to the cylinder has its own dynamics. One of the most important
dynamic effects in the fuel path is caused by the wall-wetting phenomena. The liquid
fuel injected into the intake port only partially enters the cylinder in the next intake
stroke. Some of its stored in fuel puddles of the mass my at the intake port walls and
at the back face of the intake valve. Of course, fuel also evaporates from these

puddles such that a mass balance can be expressed as follows [172]:

m
m,=(1-x(@,,p,.T,,. )i, + ! (6.9)
4 ! Y ww,.p,.T;...)

and
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m
imf = k(@,,p,.T; ... )0, — ! (6.10)
dt (@, p,sT;se.)

where 1, is the fuel mass injected, 7, the fuel mass aspirated into the cylinder, and

my the mass of fuel stored in the fuel film. The coefficients x(.) and z(.) depend on
the engine speed and load, and many other variables (mean fuel temperature 7}, etc.)

[172].

The model applied in [175] is a simplified version of the model used in [172]. The
fuel mass flow rate r,is typically determined by a fuel injection control system
which attempts to maintain stoichiometric air to fuel ratio in the cylinders. If it is
assumed that a stoichiometric air fuel ratio is successfully maintained in the

cylinders, then the fuel mass flow rate 7,is related to the outflow from the intake
manifold into the cylinders of the engine as follows [175, 176]:
7]

no=— 6.11
o AL, ©.11)

where map is the air mass flow rate out of the intake manifold an into the cylinder, Ly,

is the stoichiometric air/fuel mass ratio for gasoline (fuel) and A is the air/fuel

equivalence ratio. Here, A=1 and L,;=14.67 [175].

According to Hendricks’s identification experiments with SI engine, the fuel flow

dynamics could be described as following equations [177]:

. .

i, :T—(—mﬁ,+xfmﬁ) 6.12)
f

i, =(- X, i, (6.13)

i, =1, + i (6.14)
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where the model is based on keeping track of the fuel mass flow. The parameters in
the model are the time constant for fuel evaporation, 75 and the proportion X¢ of the

fuel which is deposited on the intake manifold, #1,, or close to the intake valves,

ﬁ 9
m, . These parameters are operating point dependent and thus the model is non-

linear in spite of its linear form.

6.4 Crankshaft Speed Dynamics

The primary objective of an engine is to produce mechanical power. The torque
generation phase, which consists of the cylinders that convert the chemical energy in
air fuel mixture inflow into mechanical engine torque, is governed by a nonlinear
dynamic equation of dependent variables including air/fuel ratio, fuel mass in
cylinders, engine speed, ignition and injection timing, and several others. The mean-
value engine torque is therefore expressed as a nonlinear function of these variables

and time [172].

The crankshaft rotational dynamics can be represented by [171]

L, =T, ~T,, +T, (6.15)

e e 17

where [, is the moment of inertia of the engine flywheel, crankshaft, connecting rod,
piston and valve train assembly. Ty, is the external load torque. Under road
conditions, this torque is mainly due to rolling resistance, aerodynamic drag of the
vehicle and the friction in the driveline, etc. Also torques to drive engine accessories
(power-steering, fan and air conditioner) can contribute to 7}, Under testing
conditions, Tj,q¢ equals the brake torque applied by the dynamometer (measured). Ty
is the torque due to friction and pumping losses in the engine. Tj,; represents the

indicated combustion torque [174].

6.4.1 Indicated Combustion Torque

The indicated torque, T;,4, is generated by combustion and can be represented by

[170]:
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T, =——"* (6.16)

where H, is the fuel heating value of gasoline (HM:45.106 J/kg), n; is the thermal

efficiency multiplier and accounts for the cooling and exhaust system losses, and 7,

represents the fuel mass flow rate into the cylinders given in Equation 6.11.

In reality, the indicated and friction torques vary as the engine rotates through the
thermodynamic cycle. In a mean value engine model however, the dynamics of

rotation are averaged over time [171].

6.4.2 Friction and Pumping Losses

The term 7y in the rotational engine dynamic equation 6.15 represents the
hydrodynamic and pumping friction losses represented in terms of a loss torque

[171].

The fundamental component of mechanical friction losses in an engine is
hydrodynamic or fluid-film friction. A reasonable choice of polynomial expression

for these friction losses in terms of engine speed w, rad/s is [178]:

F,

loss = a()a)ez + alwe + a2 (6'17)
In this expression, the constant term a, represents boundary friction, the linear term
a;w, accounts for hydrodynamic or viscous friction and aoa)e2 accounts for turbulent
dissipation. Turbulent dissipation is found to be proportional to w,” and constant of

proportionality depends on the geometry of the flow-path [178].

The pumping losses are found to be proportional to the pumping mean effective
pressure and the operational speed [170]. The pumping mean effective pressure is
defined to be the difference between exhaust pressure and manifold pressure,

P.s — P,,- Therefore the pumping losses can be modeled as [170, 171]:

94



Bass = b()we pm + bl pm (6' 1 8)

since the exhaust pressure is nearly constant and is equal to the atmospheric pressure.

Total friction and pumping losses in an engine can thus be expressed as polynomials

in the engine speed and manifold pressure as follows [170, 175]:

T

= aoa)j +a,0,+a,+b,®,p, +bp, (6.19)

where ay, a;, a,, by, b are parameters dependent on the specific engine.

Finally, the crankshaft speed is derived based on the conservation of the rotational

energy on the crankshaft.

e

, 1
w, = _1_ (Eass (a)e ) + P]ass (pm ’ a)e ) + 7“]aad (a)€ ))
a (6.20)

+1iH“77i(pm,a)e,/1)n'1¢(t—Afd).
n

where [ is the scaled moment of inertia of the engine and its load and mean injection

torque time delay has been taken into account with variable Az, [94].

6.5 Conclusions

Mean value engine models (MVEM) are generally accepted as the modeling
paradigm for engine control, and are extensively described in the literature. It allows
modeling the mean value behavior of some engine parameters. This kind of model
represents the global dynamic of the engine and can be easily identified using the

common measurements available on production vehicles.
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CHAPTER 7

7. EXPERIMENTAL SET-UP AND MEASUREMENT DEVICES

7.1 Introduction

Internal combustion engines have been major power source throughout the history of
ground vehicles. The purpose of internal combustion engines is the production of

mechanical power from the chemical energy contained in the fuel [178].

In this chapter, we present a detailed description of spark ignition (SI) engine
experimental set-up and measuring devices on it. The experimental set up details is
provided in section 7.2 along with the specifications of measuring instruments. The
experimental procedure for steady-state condition is given in section 7.3. Finally, the
experimental procedure for dynamic condition is given in section 7.4. The accuracy
of the measuring instruments will affect the calculated results. Hence the uncertainty
analysis has to be carried out to calculate the percentage of errors in measurements is

given in section 7.5.

7.2 The Experimental Set-up

The engine used in the study has specifications of four-stroke and four cylinders,
water cooled cooling system, fueled with carburetor and naturally aspirated. Each
cylinder has a bore of 76 mm and a stroke of 71.5 mm. Figure 7.1 shows the
schematic representation of the experimental set-up and also measuring devices on it,

Figure 7.2 shows the photograph of the SI engine.
The maximum power output of the engine was 52.2 kW at 5500 rpm. The engine is

produced by the Fiat Company. Besides the engine itself, flywheel, starting motor,

alternator, fuel pump, fuel tank, dashboard and exhaust assemblies are mounted
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to the proper places. Specifications of the engine are shown in Table 7.1 in detail.

The parts of the system were given in the following sections.

Figure 7.1 Schematics of test engine and setup
1) carburetor, 2) exhaust manifold, 3) servo motor, 4) transducer, 5) dynamometer,
6) data logger, 7) computer, 8) control panel, 9) weighing device, 10) fuel container

Figure 7.2 Photograph of the SI test engine
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Table 7.1 Test engine specifications

Type Fiat Tofas 131

Engine type Four-stroke

Fuel type Gasoline

Swept volume (cm3) 1297

Cylinder bore (mm) 76

Cylinder stroke (mm) 71.5

Compression ratio 7.8:1

Number of cylinders 4

Cooling type Water cooled in closed circuit
Fuel supply system Naturally aspirated carburetor
Maximum torque 12.5 kgm at 3000 rpm
Maximum power 52.2/70 kW/HP at 5500 rpm
Engine position Vertical

7.2.1 Torque Measurement

Dynamometers are used to measure torque and power over the engine operating
ranges of speed and load. They do this by using various methods to absorb the
energy output of the engine, all of which eventually ends up as in the form of heat.
Some dynamometers absorb energy in a mechanical friction brake (prony brake).
These are the simplest dynamometers but are not as flexible and accurate as others at
high energy levels. Fluid or hydraulic dynamometers absorb engine energy in water
or oil which are pumped through orifices or dissipated with viscous losses in a rotor-
stator combination. Large amounts of energy can be absorbed in this manner, making
this an attractive type of dynamometer for the largest engines. Eddy current
dynamometers use a disk, driven by engine being tested, rotating in a magnetic field
of controlled strength. One of the best types of dynamometer is the electric
dynamometer, which absorb energy with electrical output from a connected

generator [179].

The water brake dynamometer converts the rotating torque of the engine to stationary

torque that can be exactly measured and calculated. Simply stated, as the amount of
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water within the dynamometer is increased, the load or resistance on the engine is
also increased. The resistance made up by dynamometer increases with the speed of
the engine. The power made up by the engine is absorbed by the dynamometer,
converted into heat energy and transferred into the water flowing out of the

absorption unit. The water might enter about at 15 °C and leave at 50 °C.

When the force is applied to the hydraulic load cell piston the pressure induced in the
load cell is transferred to pressure transducer. Schematic diagram and picture of
water brake engine dynamometer are shown in Figures 7.3 and 7.4, respectively.
Equipments used in the experimental study such as water brake dynamometer and
hydraulic system, transducer for torque measurement, electrical power supply and
voltmeter were schematically shown in Figure 7.3. Torque has obtained in
dynamometer when load was applied to engine by dynamometer and thus this causes
pressure increase in hydraulic cylinder (4 in Figure 7.3). Then the pressure is
measured by transducer volts. The specifications of the dynamometer used in this

study were given in Appendix 2.

Dynamometer is calibrated by controlling air in hydraulic system before the
experiment started. Engine is run under unloaded conditions as idle after taking air
out from hydraulic system. During this process jam nuts (2 in Figure 7.3) are
loosened for controlling pressure in hydraulic cylinders (2 in Figure 7.3). Therefore
system is set-up for 0.5 volt value of voltage in digital voltmeter. After setup
procedure, nuts (2 in Figure 6.6) are fastened. Transducer gives 0.5-5.5 volt in 0-250
psi pressure value linear for pressure measurement. The properties of pressure

transducer which is used to measure torque were given in Appendix 3.
Electrical voltage in voltmeter translated to torque by equation 7.1.

T= V.% (ft.1b) (7.1
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Figure 7.3 Schematic representations of water brake dynamometer and measurement
devices. 1) Dynamometer body, 2) jam nut, 3) end push rod, 4) hydraulic load cell,
5) digital voltmeter, 6) electrical power supply, 7) transducer

Figure 7.4 Go Power System DA 516 model water brake dynamometer
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7.2.2 Mass Fuel Flow Rate Measurement

The electronic scales with 0.1 g resolution were used for the measurement of fuel
mass flow rate. The measurements were displayed and stored by computer. For fuel

measuring a weight measuring electronic signal output system was used.

In order to calculate the indicated specific fuel consumption, it is necessary to
determine accurately the mass of fuel that is consumed by the engine per unit time
under given operating conditions. To accomplish this, the engine fuel was supplied
with fuel from a small tank. The tank rests on a digital scale that was calibrated in
grams. This allows the mass of fuel used by the engine over a given length of time to
be measured, so the mass fuel consumption per unit time can be calculated. One of
the most important features of the fuel monitoring system is the fuel line support
stand. This stand is tripod structure that straddles the scale supporting the fuel line so
that it does not rest on the beaker, which would cause an error in the fuel mass
measurements. This digital scale was mounted the computer by using RS-232 port.
Home-made software was used for reading and saving the outputs of the digital

scale.

7.2.3 Servo Motor

Throttle valve is a valve used in vehicles to control the air flow into the engine
combustion system. Throttle valve assembly having a servo motor and servo drive to
control the opening and closing of the throttle valve in the range of from 0° to about
80°. In automotive engine throttle valve opening is control by the driver actuating the
gas pedal. Schematic diagram and picture of servo motor and control unit are shown

in Figures 7.5 and 7.6, respectively.

Servo motor is connected on the throttle valve and converts the electrical signal into
a throttle valve angle. Throttle valve position is controlled by servo motor which has
a 0.75 kW and 3000 rpm. The experimental apparatus consists of a personal
computer connected to a servo motor to send an input signal for input-output data
measurement. The specifications of the servo motor used in this study were given in

Appendix 4.
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Figure 7.5 Schematic representations of throttle valve position control and control
unit on it. 1) throttle valve, 2) servo motor, 3) control panel, 4) data logger 5)
computer.

Figure 7.6 Photograph of the throttle valve position control

7.2.4 Data Acquisition

To read and record the data by computer, an interface is necessary between computer
and transducers. In our SI engine Data Translation DT 304 DAQ (Data Acquisition
Card) is used for that purposes. DT 304 is a family of low cost multi function data
acquisition board and is connected at PCI bus of computer. DT 304 board contains 2
analog output channels, 16 single-ended or 8 differential analog input channels and
23 digital input-output channels. Analog channels of the board can acquire or send
signal at 12 bit resolution and 400 kS/s (i.e. kHz) sampling rate. Analog output
channels are able to generate voltage between -10 DCV to +10 DCV for controlling

the position of throttle valve and analog input channels are able to measure between -
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10 DCV to +10 DCV for measuring SI engine output torque via pressure transducer.
Figure 7.7 shows the general appearance of DT 304 Data acquisition card.

Specifications of the DT 304 Data Acquisition Card are given in Appendix 5.

The entire data acquisition cards need a screw terminal panel and connection cable to
acquire or to send signals between card and equipments. In our application, Data
Translation EP305 68-pin, 2 meter, shielded cable and Data Translation STP300
screw terminal panel are used and general appearance of the cable and screw

terminal panel can be seen in Figure 7.8.

SAA
S S AT T T A AR
b3 0y e

ATAY AR R

Figure 7.8 Data Translation STP 300 Screw Terminal Panel and EP305 Cable [180]
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7.2.5 Matlab Toolbox

Matlab is a mathematic analysis package produced by Mathworks. This program
enables immediate access to high numerical computing and extended with interactive
graphical capability. The entire identification and modeling task was performed
using Matlab Version R2007a. This software provides Data Acquisition Toolbox for
making measurements with a data acquisition system, System Identification Toolbox
for fitting nonlinear mathematical models to input and output data from dynamic
systems and Neural Network Toolbox for ANN model development with different
types of network structure such as feedforward, recurrent, Elman, Radial Basis as

well as others.

7.3 Experimental Procedure for Steady-State Condition

Calibration checks of the devices were made two times, one before and one after
each successive test. To transfer data into a computer, data logger systems were used.
All measurements were conducted under steady-state condition. The measurement
was not started until engine runs faultless. Since there were many measurement
points, three different PC data logger combinations were used to reduce error
resulting from the measurements. The functions of computers, measuring equipments
and method of measurement are briefly explained as follows to obtain mass flow rate

of air, fuel entering the combustion chamber and engine speed.

The experimental work in this investigation was performed at various spark advance,
throttle position and engine speed conditions. Before starting the engine, the spark
advance has been adjusted to 10° crank angle (CA), which is a predefined design
value of the engine. To start with, our computer-controlled gasoline engine, which is
connected to a hydraulic dynamometer, has been loaded, with the 50% throttle
position. The engine has been tested in the ranges of 3500- 1500 rpm at intervals of
250 rpm. Torque, fuel flow rate, air flow rate and specific fuel consumption have
been recorded. Similarly, these measurements have been repeated for the throttle

positions of 75% and 100%.
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After the measurements, the engine has been left to cool. Then the ignition time has
been adjusted to successively 5 and 0° CA respectively and the above procedure has

been repeated.

7.4 Experimental Procedure for Dynamic Condition

Throttle valve position is controlled by servo motor which has a 0.75 kW and 3000
rpm. The torque output was measured by a dynamometer. The experimental
apparatus consists of a personal computer connected to a servo motor and torque
output, to some input-output measurement. The measured input-output data are
transferred with the computer (Pentium III 733 Mhz in speed with 256 MB of RAM)
by a data acquisition card (Data Translation DT300 series, 400 kHz in speed, 12 bit
high speed A/D converter with a conversion time of 2.5 ps). The data acquisition

card permits user defined programs interfaced with Matlab.

System identification is done using the input-output test data. The test data must
incorporate all the properties of the system. So the way system identification
experiment is performed is very crucial. In this experiment, considering the engine as
an SISO system, the basic input variable is throttle valve position, while the model
output engine torque. In engine data collection, the input-output data must be
representative of engine behavior in order to identify the engine. This means that
input and output signals should adequately cover the region in which the system is
going to be modeled. A set of Pseudo Random Binary Signal (PRBS) signals are
often very suitable as process inputs because they excite the process at a wide range
of amplitudes and frequencies [61, 83, 98]. To create the disturbances needed to
perform identification of the process, PRBS were used [38, 52]. A PRBS was
designed for throttle angle position to obtain a representative set of input-output data.
A set of data samples, including throttle valve position and the torque was collected

for the system identification. Each set contains 2000 data samples.

7.5 Uncertainty Analysis

Any experimental result involves some level of uncertainty that may originate from

causes such as the lack of accuracy in measurement equipment and approximations
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in data reduction relations. These individual inaccuracies eventually translate into

uncertainty in the final results.

The uncertainty in calculated results is related to the primary uncertainty for each
independent variable. This is based on the method of Kline and McClintock (1953)

which state:

R=f(x,x,,....,x,) (7.2)

Equation 7.2 is the general form of a calculated result R, a function of n variables

X;,X,,...,X,. We want to estimate the uncertainty in this calculated result based on

the uncertainties of the individual variables.

wy, = estimate of the uncertainty in the calculated result R.

w_ = estimate of the uncertainty in the variable x;.

Xl

a—R = sensivity coefficient for the variable x;.
X
2 oR
We =) W — (7.3)
K ,Z:I: o,

Equation 7.3 is a logical but inappropriate estimate of total uncertainty. It seems like
you could just multiply the uncertainty in each term by its sensitivity coefficient, and
add them all together to get the total uncertainty. Because of the partials might be

negative, and this would cancel some of the error, equation 7.3 shouldn’t be used.

oR

w, —
" ox,

we=3

i=1

(7.4)

Equation 7.4 corrects the potential problems with negative errors, but tends to

overestimate the actual uncertainty. Therefore Equation 7.4 can not be used.
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n a 2
Wy = (Zl[wx[ f} J (7.5)

Equation 7.5 is the one we want. It is referred to as the root of the sum of the squares
form, and it not only corrects the sign problem, it has another useful characteristic.

Equation 7.5 inherits the same level of confidence as the individual terms. For

example, if you established a 95% confidence level for each of the w, values, then

w, will also have a 95% confidence level. Equation 7.5 can be used. Note that the

partial derivatives will contain values of the variables themselves. The mean value

for that variable should be used.

The open form of Equation 7.5 can be written as following

2 2 2
oR oR oR
WR:[(a—XIWIJ +(a—xzwzj +...+[g”wnJ :l (76)

Cole Parmer C-68075-50 type pressure transducer was used to torque measurement
in this study. The specifications of used transducer have been given in Table A.2 in
Appendix 3. According to Table B.1 the accuracy of transducer is + 0.25% full-scale.

For this reason w; in Equation 7.5 was selected as 0.0025.

Electrical voltage is given by transducer translated to torque by using following

equation.
T= V.?.l.356 (7.7)
: . oR 0T :
Equation 7.7 only depends on voltage (V) variable, thus . = —— can be written.
X
or =50%1.356
o)
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o aT . . . .
Substituting  w, and Wln Equation 7.5 gives the uncertainty for torque

measurement
2
W, :Ka—T er } = [(50%1.356%0.0025)*]"* = £0.17  (Nm)

The brake power delivered by the engine and absorbed by the dynamometer is the

product of torque and engine speed, which is given in the Equation 7.8 by

n-T

-t (7.8)
9554.1401

b

To calculate uncertainty of power:

ap Y (op V”
pr :|:(B—;WTJ +(a_ranj :| (7.9)

The uncertainty w, of the tachometer which was used to measure the revolution of

engine is 0.5.

5 T P 1/2
n
W — - +| — 710
" {(9554.1401”) (9554.1401%” (710

If Equation 7.10 is divided by Equation 7.8, the following relation can be obtained.

> 2 1/2
W,,b{(%j +(W—H =017 +(0.57]* 2053 kW was obtained as

n

uncertainty of power.
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Brake specific fuel consumption was given in Equation 7.11. The weighing machine

with sensitivity of £0.1 g was used to determine fuel consumption of engine.

mf 3
Bsfc=7.10 (7.11)

b

The uncertainty of brake specific fuel consumption can be written as

aBSpC ’ aBSpC ’
Waepe = —w, | + w, (7.12)
drin, op, 7
(100 Y ( 10% c Y .
WBSpc = (Thme + _TWP” (7.13)
b

If Equation 7.13 is divided by Equation 7.11, the uncertainty of brake fuel

consumption is

1/2

2 2
Wi = (WJ +[— VIVT"J 0.1 + (c0.53 ] = 20.54 (kW)

b

The uncertainties in calculated characteristics with respect to measured parameters

are shown in Table 7.2.

Table 7.2 Uncertainty values for measurements

Uncertainty (&)

Torque (Nm) 0.17
Bsfc (g/kWh) 0.54
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CHAPTER 8

8. CASE STUDIES
8.1 Introduction

In this chapter, steady-state modeling of gasoline engine torque and brake specific
fuel consumption is investigated by means of a number of case studies. These case
studies can be categorized under 2 headings with respect to the used methods namely
neural network and genetic programming approach. And nonlinear identification and
modeling of a gasoline engine torque is investigated by means of a number of case
studies. These case studies can be categorized under 3 headings with respect to the
used methods namely Hammerstein model, NARX model and neural network

models.

a) Steady-state modeling of gasoline engine torque and brake specific fuel

consumption

b) Nonlinear modeling and identification of gasoline engine torque

The experimental based case studies consist of different types of modeling and

identification techniques.

a) Steady-state modeling of gasoline engine torque and brake specific fuel
consumption
¢ Prediction of torque and specific fuel consumption of a gasoline engine by
using artificial neural networks
¢ Genetic programming approach to predict torque and brake specific fuel

consumption of a gasoline engine
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b) Nonlinear modeling and identification of gasoline engine torque

¢ Nonlinear modeling and identification of a spark ignition engine torque using
Hammerstein model.

¢ Nonlinear modeling and identification of a spark ignition engine torque using
NARX model.

e A comparative study of neural network structures in identification of gasoline

engine torque.

8.2 Case Studies

8.2.1 Prediction of torque and specific fuel consumption of a gasoline engine by

using artificial neural networks

8.2.1.1 Introduction

An engineering phenomenon may embed complicated physical, chemical or
electrical theory and may require very complicated arithmetic to describe them, yet,
arithmetic emerged may not be solvable in closed form. Artificial neural network
(ANN) is an alternative technique for providing a relationship between the variable
quantities of interest. ANN requires only a set of experimental results, numerical in
nature and describes the relation by analyzing them. In other words, it only needs
solution examples concerning the problem. ANN techniques require a lot of
arithmetic basically of trial-end-error nature, involving numerical differentiation and
integration, noise rejection etc, and are never feasible without fast computation
facilities. Advent of digital computers providing high speed arithmetic and vast
amounts of data storage has given rise to the application of ANN techniques to many
engineering problems. In recent years, this method has been applied to various
disciplines including automotive engineering, in the forecasting of engine

characteristics for different working conditions.

The relationship between the temperature of the exhaust gases and fuel consumption
of an internal consumption engine has been studied in [181]. ANN approach has
been used in another study, to analyze the effect of cetane number on exhaust

emissions from the engine [182], and also in [183], to model diesel particulate
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emission. [184] and [185] are remarkable studies where ANN is used to forecast
gasoline consumption and the effect of intake valve timing on engine performance
and fuel economy respectively. Similarly in [1], the effect of throttling is studied,

taking the intake manifold geometry into consideration.

Numerous studies have been undertaken to predict the performance and exhaust
emission characteristics of internal combustion engines by using ANNs [122, 186-
189]. Studies done by neural networks and genetic algorithms have been used to

predict and reduce diesel engine emissions [190].

Neural networks have been found to be the domain for numerous successful
applications of prediction tasks, in modeling and prediction of energy-engineering
systems [191], prediction of the energy consumption of passive solar buildings [157],
and modeling a burner heated catalytic converter during cold start in a four stroke,
spark ignition engine [192]. And also artificial neural network techniques have been
applied to control the air fuel ratio of the engine [3, 90] and exhaust gas recirculation

control [95].

In this study, a neural network approach was developed to model the torque and
brake specific fuel consumption of a gasoline engine at steady-state conditions in
terms of the spark advance, the throttle position and the engine speed. Experimental
studies were completed to obtain training and testing data. The experimental data
from totally 81 test runs was used to train and test the ANN model for predicting
torque and brake specific fuel consumption. Inputs for the network were the spark
advance, the throttle position and the engine speed, while the outputs were the torque
and the brake specific fuel consumption. The experimental study to determine the
torque and the fuel consumption characteristics in a gasoline engine is complex, time
consuming and costly. It also requires specific instrumentation. To overcome these
difficulties, an ANN can be used for the prediction of performance in a gasoline

engine. The proposed ANN approach is quite accurate, fast and practical.
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8.2.1.2 Artificial Neural Network Model and Parameters

The main focus of this study is modeling of torque (T) and brake specific fuel
consumption (BSFC) of a gasoline engine at steady-state conditions using ANN
based on experimental results described in Chapter 7.3. The spark advance, the
throttle position and the engine speed have been used as input-layer components,
while the T and BSFC were used separately as output-layer components of the
ANNS. In the ANN model, the experimental data set includes 81 values, of which 63
values were used for training the network and 18 values were selected randomly to

test the performance of the trained network.

In this study, a computer program has been developed and performed under Matlab.
The back-propagation learning algorithm has been used in feedforward with one
hidden-layer. The input layer neurons receive information from the outside
environment and transmit them to the neurons of the hidden layer without
performing any calculation. The hidden layer neurons then process the incoming
information and extract useful features to reconstruct the mapping from the input
space. The neighboring layers are fully interconnected by weights. Finally, the output

layer neurons produce the network prediction to the outside world.

One of the most important tasks in ANN studies is to determine the optimal network
architecture which is related to the number of hidden layers and neurons in it.
Generally, the trial and error approach is used. In this study, the best architecture of
the network was obtained by trying different number of hidden layers and neurons.
The trial started on hidden layer with seven neurons, and the performance of each
network was checked by correlation coefficient (R). The goal is to maximize
correlation coefficient to obtain a network with the best generalization. Many
different network models were tried and their R values were calculated. The highest
correlation coefficient for both T and BSFC was obtained at a network. Based on this
analysis, the optimal architecture of the ANN was constructed as 3-13-1 NN
architecture for T and 3-15-1 NN architecture for BSFC representing the number of
inputs, neurons in hidden layers, and outputs, respectively. The proposed ANN

model is given in Figure 8.1. The learning algorithm used in the study is Levenberg-
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Marquardt (LM), activation function is logistic sigmoid (logsig) transfer functions

and number of epochs is 10000.

Tork

Output layer BSEC

Hidden layer

Figure 8.1 Architecture of proposed NN model

8.2.1.3 Analysis Results

The ANN approach developed in this study is used to model the T and BSFC based
on the spark advance, throttle position and engine speed. A total of 63 samples were
used for training the network and other 18 (choosen randomly) were used as a test
set. Data set was normalized using a simple normalization method. The range of the
samples and normalization values are given in Table 8.1. The performance of the
proposed ANN model was plotted in Figures 8.2 and 8.3 for both T and BSFC,
respectively. It was observed that a high prediction capability was achieved for both
training and testing data sets of T and BSFC. Therefore, the ANN appears to have a
high generalization capability. The statistical values for both T and BSFC in training
and test sets are given in Table 8.2. As seen in Table 8.2, a high correlation

coefficient (R) and a low mean absolute percentage error (MAPE) were obtained for

114

v



Table 8.1 Range of input-output parameters in training-testing phase and
normalization values

Range of values

Parameters Normalization value
Min Max
SA 0 10 10
TP (%) 50 100 100
N (rpm) 1500 3500 3500
T (Nm) 40.7 92.8 30
BSFC (g/kWhr) 248.41 458.49 500

Table 8.2 Statistical parameters of train and test sets

MSE MAPE Corr. Coff. R
Torque (T) Test set 0.002 1.74 0.99505
Train set 0.0001 0.2912 0.9997
Brake specific fuel Test set 0.0005 2.7588 0.98331
consumption (BSFC) Train set 0.0001 1.0186 0.9971
100 500
R=0.9997 R=0.9971

% 450 |
80 |
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70 /
350 ¢
) / f
5 / 300
40 ‘ ‘ ‘ ‘ ‘ 250
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Figure 8.2 Prediction of NN and actual values for training sets (a) T (b) BSFC
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Figure 8.3 Prediction of NN and actual values for testing sets (a) T (b) BSFC

the training and testing data sets for both T and BSFC. The proposed ANN model for
T and BSFC prediction had correlation coefficients of 0.9997 and 0.9971
respectively, for training data sets, 0.99505 and 0.98331, respectively, for testing
data sets. Moreover, MAPE of the T prediction was about 0.2912 and 1.74 for the
training and testing set, respectively. Similarly, MAPE of the BSFC prediction was
about 1.0186 and 2.7588 for the training and testing set, respectively. As it is seen
these MAPE are fairly reasonable. Figures 8.2 and 8.3 also demonstrated that the
ANN was quite successful in learning the relationship between the different input

parameters and the outputs (T and BSFC). The result of testing phase in Figures 8.2

1.5

0.5

% Error
o

0.5

(a) (b)
Figure 8.4 Percentage error of training set (a) T (b) BSFC
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Figure 8.5 Percentage error of testing set (a) T (b) BSFC

and 8.3 has shown that the ANN was capable of generalizing between input variables
and output reasonably well. Figures 8.4 and 8.5 demonstrate the percentage errors of

training and testing sets for the predicted T and BSFC.

ANN applications are treated as black-box applications in literature. However this
study opens this black box and introduces the ANN application in a closed form
solution. This study aims to present the closed form solution of T and BSFC based
on the trained ANN parameters (weights and biases) as a function spark advance
(SA), throttle position (TP) and engine speed (N). Using weights and biases of

trained ANN model, engine torque can be given as follows:

T = f(SA,TP,N)

1
T=30%*
(1+e'wj

Where
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1 1 1
W =(0.7479) * +(0.6726) * +(3.0776) *
( ) (H—e_Ulj ( ) (l+e_U2j ( ) ( U3j

1+e”
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1 1 1
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1
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1 1
+(1.9807) * +(—3.1996) * +(—-0.1289) *
( ) (l_l_e—Uloj ( ) (1+6_U”j ( ) (1+€_U12
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+(0.1742)*( j+(—0.3153)
1+

U, =-1.2725*%SA+0.1925*TP —0.0034* N +11.8911
U, =-1741*%SA-0.1166*TP —0.00064 * N +27.5182
U, =0.0061*SA—-0.0932*TP +0.0023* N +3.597

U, =1.64*SA-0.0867*TP +0.001* N —4.9378

U, =-0.343*SA+0.2451*TP +0.002* N —15.8767
U, =0.0533*%SA—-0.1257*TP +0.002* N —0.4814

U, =-0.8738*SA+0.4051*TP —0.0049* N —5.5608
U, =2.4591*SA—0.1951*TP +0.0032 * N +5.0804
U, =—-0.6457*SA+0.2505*TP +0.0032* N —28.016
U,, =—0.0365*SA—-0.2125*TP —0.0033 * N +30.006
U, =0.013*SA-0.1984*TP +0.0015* N +12.8857
U,, =0.7099 * SA - 0.1447 *TP —0.0069 * N + 24.1371
U,; =0.1032*SA+0.0824*TP —0.0052* N +9.4364

Similarly, BSFC can be found as follows:

BSFC:SOO*( ! Wj
1+e”

where
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U, =0.1653*%SA+0.1768 *TP — 0.005* N —9.222

, =—0.3659*SA +0.1835*TP +0.0057* N —18.5103
—0.7941* SA +0.2073*TP + 0.0018 * N —13.0825
=-0.2102*SA+0.0125*TP +0.0063* N —11.3466
—1.4948* SA+0.0218*TP +0.005* N —2.7369
—0.857 % SA+0.0686* TP +0.0049 * N —12.0769

, =1.1732*%SA—-0.1451*TP +0.003* N —5.6508
U, =0.6916* SA+0.0152*TP +0.0053* N —19.3996
U, =0.9153*%SA+0.144*TP + 0.0042* N —24.4002
U,, =1.3535*SA+0.1177*TP +0.0027 * N —13.664
U, =-0.2564*SA+0.1639 *TP —0.0054 * N +7.3443
U,, =0.534*SA+0.071*TP —0.0053* N +10.0671
U,; =0.7501*SA+0.0331*7TP +0.0041* N —13.0804
U,, =1.1861*SA-0.1221*TP —0.0012* N +12.5888
U, =-0.8518*SA+0.0531*TP +0.0041* N —15.8735

w

W
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It should be noted that the proposed explicit formulation of the NN model presented

above is valid for the ranges of training set.

8.2.1.4 Conclusions

This study presents a new and efficient approach for the modeling of torque and

brake specific fuel consumption of a gasoline engine at steady-state conditions using

ANNSs. The database used for NN training is based on experimental results. It used

63 results as data sets to train the network, while 18 results were used as test data
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from the total of 81 experimental results. To train the network, the spark advance, the
engine speed, and the throttle positions are used as the input layer, while outputs are
the engine torque and the brake specific fuel consumption. Back-propagation NNs
are used for the training process. The proposed NN model shows perfect agreement

with experimental results.

The proposed ANN model for torque and brake specific fuel consumption had
correlation coefficients of 0.9997, 0.9971 respectively, for training data sets, 0.99505
and 0.98331, respectively, for testing data sets. Moreover, MAPE of the T prediction
was about 0.2912 and 1.74 for the training and testing set, respectively. Similarly,
MAPE of the BSFC prediction was about 1.0186 and 2.7588 for the training and
testing set, respectively which may easily consider within the acceptable range. The
explicit formulation of torque and brake specific fuel consumption based on the
proposed NN model is also obtained and presented. As a result the proposed NN
model has strong potential as feasible tools for prediction of torque and brake
specific fuel consumption. And also the engine torque and brake specific fuel

consumption can be determined using models with ANN methodology.

8.2.2 Genetic programming approach to predict torque and brake specific fuel

consumption of a gasoline engine

8.2.2.1 Introduction

Experimental investigations to measure the performance of a gasoline engine are
complex, time consuming, and costly. To predict the performance parameters from
the engines, one approach is to use mathematical models. However, their accuracies
may not be sufficiently high [193]. The alternative to a mathematical model is the

experiment- based approach.

Genetic Algorithm (GA), which is based on solutions of fixed-length chromosomes,
usually consisting of binary genes, organized into sequences, often termed schema is
the most commonly used evolutionary-computation algorithm [194]. Mimicking
nature, the algorithm starts its search from an initial population of solutions, in which

the performance of each individual is evaluated using a fitness function, with the
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most efficient chromosomes having a higher probability to reproduce. In synthetic
evolution, biological reproduction is mimicked by operators like crossover (pairing)
and mutation, thus creating a generation of offspring solutions. Crossover generates
new features in the solution space by combining genetic information, while mutation
does this by adding random perturbations. Fitness-proportional selection, combined
with these genetic operators produce generation after generation of offspring
solutions. Since the more appropriate solutions are given higher probabilities to
reproduce, one would expect a growing improvement of the solutions over

generations.

GA as an optimization technique is widely used for optimization of engineering
problems. Many engineering design problems are very complex and therefore
difficult to solve with conventional optimization techniques [195]. Numerous studies
have been undertaken by using GA for optimization of engine characteristics, neural
networks and genetic algorithms have been used to predict and reduce diesel engine
emissions [190], genetic algorithm and artificial neural network for engine
optimization of efficiency and NOx emission [196], a group method of data handling
type neural network and evolutionary algorithms for modeling the effects of intake
valve timing and engine speed of a spark ignition engine on both engine torque and
fuel consumption [197], genetic algorithms for hydrogen-fueled engine optimization
of power, economy, emission performance and operating parameters [198], multi-
objective optimization of diesel engine emissions and fuel economy using genetic
algorithms [199], performance prediction and optimization of liquid rocket engine
nozzle using genetic algorithm [200], genetic algorithm and its application to diesel
engine optimization [201], optimization of system parameters for the gas-generator

engines using multi-objective methods [202].

GA is employed by [203] to optimize the capacity and operation strategy of CCHP
system on the basis of energy flow. Fuel consumption of a gasoline engine can be
minimized through dynamic optimization [204]. Neuro-fuzzy interface system
(ANFIS) to study the effect of boost pressure on the engine performance parameters

of a single cylinder diesel engine has been studied in [205].
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However, they are unsuitable for generating empirical model structures, since they
manipulate populations of solutions of fixed-length chromosomes, while the optimal
complexity of empirical models is unknown in advance. Because of this perceived
need for more intelligent construction of empirical models, a new family of
evolutionary computation methods has emerged, based on established GA ideas.
These new algorithms, referred to as genetic programming (GP), rely on tree-like
building blocks, and therefore support populations of model structures of varying
length and complexity. Activity in genetic programming was introduced by Koza
[206], who demonstrated their applications in fields such as robotics, games, control,

and symbolic regression.

Numerous studies have been undertaken by using GP, a member of the evolutionary
computation field, to a nonlinear identification of aircraft gas turbine engine [125-
127], nonlinear model structure identification [116], identification of a dynamic
system [128, 142], gas turbine engine identification [123], mechanical system
identification [115], dynamic system modeling [139] and steady-state process
modeling [138]. [207] used an intelligent approach by using GP to construct

mathematical model for diagnosing the engine valve faults correctly and quickly.

Kalogirou [156] reviewed Artificial intelligence for the modeling and control of
combustion processes. A number of Al techniques have been described in this paper.
An explicit neural network formulation that predicts the torque and brake specific
fuel consumption of a gasoline engine as a function of experimental parameters;
spark advance, throttle position and engine speed, has recently been performed by
Togun and Baysec [208]. However a GP based explicit formulation for gasoline
engine performance parameters, to the best knowledge of the authors, has not yet
existed in the literature. Therefore, the purpose of this study is to develop a GP based
mathematical model for the prediction of gasoline engine torque and brake specific
fuel consumption in terms of spark advance, throttle position and engine speed. The
performance of the proposed models was compared to neural networks model
developed by Togun and Baysec [208]. The data taken from experimental study were
utilized in training and testing the developed models. An important advantage of the

proposed GP approach is the simplicity of the modeling and its wide range of
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applicability to empirical modeling of various engineering problems where sufficient

experimental results exist.

8.2.2.2 Overview of Genetic Expression Programming (GEP)

Koza [206] proposed genetic programming (GP) technique which is an extension to
Genetic Algorithms. In genetic programming, populations of hundreds or thousands
of computer programs are genetically bred. This breeding is done using the
Darwinian principle of survival and reproduction of the fittest along with a genetic
recombination (crossover) operation appropriate for mating computer programs
[206]. GP breeds computer programs to solve problems by executing the following

three steps (Figure 8.6):

(1) Generate an initial population of random computer programs composed of the

primitive functions and terminals of the problem.

(2) Iteratively perform the following sub-steps until the termination criterion is
satisfied:

(a) Execute each problem in the population so that a fitness measure
indicating how well the program solves the problem can be computed for the
program.

(b) Create a new population of programs by selecting programs in the
population with a probability based on fitness and then applying the following
primary operations:

(i) Reproduction: Copy an existing program to the new population.

(i1) Crossover: Create new computer programs by crossover.

(ii1) Mutation: Create new computer programs by mutation.

(iv) Choose an architecture-altering operation to one selected program.

(3) The single best computer program in the population produced during the run (best

solution so far) is designated as the result of genetic programming [206].

Gene expression programming (GEP) software is an extension to GP that evolves

computer programs encoded in linear chromosomes of fixed length. The structure of
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GEP chromosomes allows the easy implementation of multiple genes, each encoding
a data set [209, 210]. In addition, the structural and functional organization of the
linear chromosomes allows the unconstrained operation of important genetic
operators such as mutation, transposition, and recombination. One strength of the
GEP approach is that the creation of genetic diversity is extremely simplified as
genetic operators work at the chromosome level. Another strength of GEP consists of
its unique, multigenic nature which allows the evolution of more complex programs
composed of several sub-programs. As a result GEP surpasses the old GP system by

a factor of 100-10,000 times [210].
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Figure 8.6 Genetic Programming Flowchart [206]

The main difference between GA, GP and GEP resides in the nature of the

individuals: in GAs the individuals are symbolic strings of fixed length
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(chromosomes); in GP the individuals are nonlinear entities of different sizes and
shapes (parse trees); and in GEP the individuals are encoded as symbolic strings of
fixed length (chromosomes) which are then expressed as nonlinear entities of
different sizes and shapes (expression trees). The main parameters in GEP are the
chromosomes and expression trees (ETs). The process of information decoding (from
the chromosomes to the ETs) is called translation which implies obviously a kind of
code and a set of rules. The genetic code is very simple: a one-to-one relationship
between the symbols of the chromosome and the functions or terminals they
represent. The rules that are also very simple determine the spatial organization of
the functions and terminals in the ETs and the type of interaction between sub-ETs

[209, 210].

In GEP there are two languages: the language of genes and the language of ETs and
knowing the sequence or structure of one, is knowing the other. In nature, despite
being possible to infer the sequence of proteins given the sequence of genes and vice
versa this is called as Karva language. Consider, for example, the algebraic

expression (d0—d4—d2+d1+(d0/d4) can be represented by a diagram which is

the expression tree as shown in Figure 8.7.

Figure 8.7 Expression tree (ET)

8.2.2.3 Modeling with GP

The main aim of this study is to obtain a model for torque (T) and brake specific fuel
consumption (bsfc) of gasoline engine at steady-state conditions using genetic
programming based on experimental results. Details of the experimental procedure

have been explained in Section 7.3.
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The details of the experimental database including the parameters and their range are
presented in Table 8.3. To achieve generalization capacity for the formulations, the
experimental database is divided into two sets as training and test sets. The
formulations are based on training sets and are further tested by test set values to
measure their generalization capability. In the literature, this type of studies includes
test sets as 20-30% of the training set. The patterns used in testing and training sets
are selected randomly. Among the experimental data, 63 sets were used for GP
training and 18 sets for GP testing. It should be noted that the proposed GP
formulation is valid for the ranges of training set given in Table 8.3. Parameters of

the GP models are presented in Table 8.4.

Table 8.3 Variables used in model construction

Code Input variable Range Output variable Range

do Ignition time 0-10 Torque (Nm) 40.7-92.8

dl Throttle position  50-100 Bsfc (g/kWhr)  248.41-458.49
d2 Speed (rpm) 1500-3500

Table 8.4 Parameters of the GP model

P1  Number of generation Between 3000 and 20000

P2 Function set +,-,% [, power, exp, In(x), log, \/,
X2, X2, (17X).

P3  Chromosomes 30-55

P4 Number of genes 3,4,5,6,7,8

P5 Head size 8, 10, 15

P6  Linking function Addition, multiplication

P7 Mutation rate 0,044

P8 Inversion rate 0,1

P9 One-point recombination rate 0,3

P10 Two-point recombination rate 0,3

P11  Gene recombination rate 0,1

P12 Gene transposition rate 0,1
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The purpose of this case study is to obtain a model for the torque and the brake
specific fuel consumption (bsfc) of a gasoline engine as a function of spark advance
(SA), the throttle position (TP) and the engine speed (n). Explicit formulations based

on GP for torque and bsfc were obtained as a function of experimental parameters as

Torque and bsfc = f(SA,TP,n)

Figure 8.8 and Figure 8.9 show the expression tress of GP models, whose explicit

formulations are:

Torque = [4.93(1 + sin(2SA° * TP — 40.85)]+ | 8.48 * sin(2.99p) + 254 +8-48)
sin(8.48)

54 8.1)
+ {TP *gsin(sin(TP + — + 1.057))}

n
bsfc = {COS(TP + 2SAJ #(9.9516 + cos(—17.8228))}

n

#[cos(cos(TP) — (log(log(TP)) — 3.62n)) + 4.7926| (8.2)

#[cos(SA +0.6181%* cos((nSA) +7.6941)) + 7.6941]

It should be noted that proposed GP formulations in Equations (8.1) and (8.2) is valid

for the ranges of training set given in Table 8.3.

8.2.2.4 Results and Discussion

Data (81 tests in total), taken from the experimental study were used as training and
testing sets for the GP architecture. Among these, 18 were randomly reserved for the
test and the remaining data were used for the training. The overall performances of
both sets were evaluated by the correlation coefficient (R) and mean squared error

(MSE) given by:
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(8.3)
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_(di=y
MSE:—Z’:‘(' )
N

(8.4)

where y”are the mean values of d,and y,and N is the number of total number of

data.

The GP estimates are compared to the experimental data for training and testing sets.
The training results proved that the proposed GP models have impressively learned
well the nonlinear relationship between the input and output variables with high
correlation (R=0.9878 for torque and R=0.9744 for bsfc) and relatively low error
(MSE=3.5719 for torque and MSE= 148.441 for bsfc) values.
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Figure 8.8 Expression tree for engine torque
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Figure 8.9 Expression tree for brake specific fuel consumption
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Comparing the GP predictions with the experimental data for the test stage (see
Figure 8.10) demonstrates a high generalization capacity of the proposed model
(R=0.9869 for torque and R=0.9855 for bsfc) and relatively low error (MSE=4.1878
for torque and MSE= 167.985 for bsfc) values. All these findings show a successful
performance of the GP model for estimating torque and bsfc both in training and
testing stages.
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Figure 8.10 GP vs test results for (a) torque and (b) BSFC

8.2.2.5 GP vs Neural Network (NN)

Proposed GP based models of torque and bsfc were compared with neural network
(NN) model that has been presented by Togun and Baysec [208]. The same training
and testing data were utilized in both studies. The statistical performance of both
methods in testing and training stage is given in Table 8.5. It can be deduced from
the table that both methods performed well in simulating torque and bsfc relatively
small mean absolute error (MAE) and high correlation (R). The mean absolute error

is given by:

d, -y,

MAE :‘ /N (8.5)

i
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Table 8.5 Statistical results of GP and NN models for training and testing sets

Parameter Set Model MSE MAE Corr. Coff. R Rgp/Rnn

Torque (T) Train GP 3.5719 1.5749 0.9878
NN 0.0001 0.2912  0.9997
Brake specific ~ Train GP 148.441 9.6672 0.9744

0.988

fuel NN 0.0001 1.0186  0.9971

. 0.977
consumption
(bsfc)
Torque Test  GP 4.1878 1.6592  0.9869

NN 0.002 1.74 0.99505 0-992

Brake specific =~ Test  GP 167.985 10.838  0.9855
fuel NN 0.0005  2.7588  0.98331 100
consumption
(bsfc)

In fact, NN performed slightly better performance than GP in prediction of torque
and bsfc. The prediction of the proposed GP formulation vs NN formulation

(Rgp/Rnn) is also given in Table 8.5.

8.2.2.6 Conclusions

This study presents a new and efficient approach for the modeling of engine
performance parameters at steady-state conditions using GP. This is done for the first
time. The objective of the study is to develop an alternative robust formulations
based on experimental data and to verify the use of GP for generating the
formulations for gasoline engine torque and brake specific fuel consumption. The
proposed GP formulations are empirical formulations based on experimental results
collected from a test engine. The proposed GP formulations show very good
agreement with the experimental results. The performance of accuracies of proposed
GP models are quite satisfactory (R* = 0.9878 for gasoline engine torque and R* =
0.9744 for gasoline engine brake specific fuel consumption). The results of the
proposed GP formulations are compared to the neural network model developed by

Togun and Baysec [208] with which the results are found to be in excellent
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agreement. The outcomes of the study are very promising. This study proves that GP
can be effectively used to obtain formulations for high nonlinear function

approximation problems in general.

8.2.3 Nonlinear modeling and identification of a spark ignition engine torque

using Hammerstein model

8.2.3.1 Introduction

System identification is the process of creating models of dynamic process from
input-output signal. System identification is the art and methodology of making
mathematical models from dynamic systems base on the input-output data [211].
System modeling and identification refers to a systematic way to determine and
improve the mathematical models for proper representation of dynamic systems [30].

A large body of work on the topic is available in the literature [26, 27].

Most systems encountered in the real word are nonlinear in nature, and since linear
models can not capture the rich dynamic behavior of limit cycles, bifurcations, etc.
associated with nonlinear systems, it is imperative to have identification techniques
which are specific for nonlinear systems [13]. System identification has become an
important area of study because of the increasing need to estimate the behavior of a
system with partially known dynamics. Especially in the areas of control, pattern
recognition and even in the realm of stock markets, the system of interest needs to be

known to some extent [14].

Theory of system identification plays a significant role in many fields of science and
engineering including simulation, automatic control, fault tolerant analysis,
prediction, etc [12, 26, 37]. Several techniques have been proposed for identification
of nonlinear systems. Among the various linear in the parameter structures available,
nonlinear autoregressive exogenous model (NARX)/NARMAX (Nonlinear
Autoregressive Moving Average with Exogenous input) is one of the earliest and
perhaps most widely used model types, with many successful industrial applications
reported. For example, it has been used in the modeling and control of power

systems, such as internal combustion engine (ICE) [37], automotive diesel engine
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[50], dynamic modeling of three way catalysts [212]. Ref. [36] deals with the
nonlinear identification of a turbocharged diesel engine. A combined use of
NARMAX models and group method data handling method is proposed in an
attempt to provide a systematic approach to identify nonlinear systems using
relatively simple models well suited to computer handling. A nonlinear system
identification procedure, based on a polynomial NARMAX representation, is applied
to a variable geometry turbocharged diesel engine [57]. A nonlinear black box engine
model is derived using the NARMAX models proposed. Input-output models allow
the identification of black-box models derived purely from experimental data, both

online and offline [42].

An identification procedure for NARX models describing the pressure inside the
intake manifold and the crankshaft speed of ICE have been handled in [32-34]. A
number of methodologies for idle speed control design have been presented in

literature [34, 35].

A new approach to control air management process of a diesel engine has been
proposed. Predictive control and model identification schemes for Wiener and
Hammerstein models have been shown [31]. Ref. [89] has described and compared
two approaches to the experimental identification of dynamic nonlinear processes:
the dynamic multi layer perceptron and the generalized Hammerstein model. A large
number of research studies have indicated the superior capability and effectiveness of

Wiener models in nonlinear dynamic system identification and control [29].

Tan and Saif have proposed a recurrent neural network for modeling the nonlinear
dynamics of the intake manifold pressure for onboard diagnosis application [1].
Dynamic of air manifold and fuel injection of spark ignited (SI) engines are very fast,
severely nonlinear and with constraints imposed on the states and inputs [1, 5]. To
model volumetric efficiency of internal combustion by using parametric,

nonparametric and neural network techniques is studied [5].

Advanced research on engine control often relies on model based control strategies.
Model based engine diagnostics also is another area that relies on an engine model.

Therefore, the development of simplified models of automotive engines appropriate
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for control/diagnostic system research and design is an important subject for research
and development [1]. Ref. [88] deals with methods based on engine model
linearization in order to apply linear control theory. Jones et al. [39] implemented a
nonlinear least squares state estimator for an adaptive control schema. Least square
support vector machines have been handled regression problems [46]. NARX models
have already been used in engine modeling for control and diagnosis purposes [42].
Dynamic models in ICE have been applied to design, optimization or diagnosis [48,
49], using geometric and dynamic engine characteristics. Several different methods
have been proposed and investigated for pressure reconstruction, mathematical
engine models [48, 213]. A procedure for the identification of emission models for

the design of optimal control of SI engine is presented [41].

Automotive engine control is one of the most complex control problems for control
system engineers and researches. Due to the increasing requirements of governments
and customers, car manufacturers always strive to reduce substantially emissions and
fuel consumption while maintaining the best engine performance. To satisfy these
requirements, a variety of variables need to be controlled, such as engine speed,
engine torque, spark ignition timing, fuel injection timing, air intake, air/fuel ratio
(AFR) and so on. These variables are complicatedly related to each other. Engine
dynamics are highly nonlinear and multivariable because of these factors [1, 2].
Among all the engine control variables, engine torque estimation has important
applications in the automotive industry: for example, automatically setting gears,
optimizing engine performance, reducing emissions and designing drivelines [6]. The
coordinated overall torque reference value is realized by the manipulation of

variables like throttle position, ignition timing, injection timing and others [9].

A number of such control strategies has been reported in the literature during the
current decade. Most of these control schemes deal with manifold pressure control,
AFR control and idle speed control [47]. The article deals with nonlinear modeling
of AFR dynamics of gasoline engines during transient operation [52]. The influence
identification scheme developed in Ref. [214] is applied to the system for the
determination of the inputs that affect exhaust oxygen content and the appropriate
time delays that the system imposes on each variable. Ref. [215] included the effect

of exhaust gas recirculation in a nonlinear model to investigate engine dynamics. In
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another application, a finite difference model is used to represent engine nonlinear
inverse dynamics between engine speeds and throttle duty cycle signals [216]. A
detailed physically motivated simulation model is derived in [217]. An adaptive
(online) identification algorithm, developed recently in [218] for continuous time
Single-Input-Single-Output (SISO) linear time delay system with uncertain time-
invariant parameters, is tested in an experimental study of the transient fuel

parameter identification in a port fuel injected ICE.

The engine torque is one of the most important performance variables of an ICE and,
for this reason; a torque control system can improve substantially the performance of
the overall vehicle [7, 8]. Their modeling efforts were focused on an experimental
method of system identification that captures the nonlinear engine torque
characteristics for a large range of operating conditions [10]. In recent years
considerable interest has been placed on the estimation of ICE torque both for control
and diagnostic applications. Ref. [51] discusses a method for the identification of a
nonlinear model of the dynamics relating combustion pressure to crankshaft angular
velocity. A linear gray box approach to modeling the torque and NOx dynamics in

response to combined fuel quantity/timing excitations has been handled in [53].

This study basically focuses on nonlinear modeling and identification of SI engine
torque. In this case study section, a procedure to provide the nonlinear model of the
dynamics between the throttle valve command and torque in a gasoline engine
directly from raw data is presented. The nonlinear system model is built and a

nonlinear Hammerstein model structure is used for the identification procedure.

8.2.3.2 Simplified Mean-value SI Engine Model

Automotive engines are multivariable system with severe nonlinear dynamics, and
their modeling and control are challenging tasks for control engineers. Mean value
engine models (MVEM) are generally accepted as the modeling paradigm for engine
control, and are extensively described in the literature [170, 172, 173]. It allows
modeling the mean value behavior of some engine parameters. This kind of model
represents the global dynamic of the engine and can be easily identified using the

common measurements available on production vehicles. The engine model adopted
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in this paper is referred to as the MVEM developed by Guzzella and Onder [172],

which is widely used benchmark for engine modeling and control.

Up
Intake manifold l
Throttle
valve injectors
- A ERn =
R "]
T cylinders
Ug,

Figure 8.11 Simplified mean-value schematic SI engine diagram

Mean-value models developed for SI engines include nonlinear dynamic equations
and time varying terms like induction-to-power-stroke (IPS) delay. A simplified
schematic diagram of the SI engine process is given in Figure 8.11. The torque
generation phase, which consists of the cylinders that convert the chemical energy in
air fuel mixture inflow into mechanical engine torque, is governed by a nonlinear
dynamic equation of dependent variables including air/fuel ratio, fuel mass in
cylinders, engine speed, ignition and injection timing, and several others. The mean-
value engine torque is therefore expressed as a nonlinear function of these variables
and time [172]. For control and identification purposes, nonlinear dynamic and time-
varying terms create difficulties, which can be overcome by developing simplified
approximate models. The Hammerstein model of nonlinear system dynamics is a
simplified model that contains the dynamics and nonlinearity separately in cascaded
form, resulting in a more complete model compared to linear approximations, and
superior power to apply conventional identification techniques compared to

nonlinear dynamic models [28].

a) Throttle Model

The throttle input is the throttle valve angle in radians, and the output is the air-fuel
mixture mass flow rate in kilograms per second. It is assumed that the valve angle
and the air mass flow rate are proportionally related [178]. The air-fuel-ratio (AFR)

is taken to be 6.8 per cent, which is typical to gasoline engines under stoichiometric
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conditions [178]. The conceptual block diagram of the combined throttle model is

given in Figure 8.12, where

Ug i) m
—> Kq 1.068 +——

A 4

Figure 8.12 Simplified conceptual throttle model

U : throttle valve angle (rad.)

m, :air mass flow rate through the intake manifold (kg/sec)
o) : total mixture flow rate into the cylinders (kg/sec)

Ko : valve constant.

In the model, spark advance (SA) input is disregarded, and transport delay along the
intake manifold is negligibly small. The frictional losses are also neglected. Thus, the
throttle valve output mass flow rate is taken to be the input of the torque generation

sub process.

b) Torque Generation Model

The torque generation sub process is a process with nonlinear dynamics and variable
time delay. The time delay is a result of the fact that the torque generated by the
engine does not respond immediately to an increase in the manifold pressure, but
after a certain amount of time called the induction-to-power-stroke (IPS) delay

approximately given in terms of the engine speed by:

~27z

T[PS

e

The engine speed takes a minimum value of 600 rpm in idle speed condition, which
corresponds to an angular speed of @, =207 rad/sec. Consequently, the maximum

possible delay is found to be 0.1 seconds, which can be neglected in the process
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dynamics. The model then reduces to a time-invariant single-input-single-output

nonlinear dynamic model, which is given in Figure 8.13.

Nonlinear T
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Figure 8.13 Simplified conceptual torque generation model

8.2.3.3 Nonlinear System Identification

Ljung [26] and Soderstom and Stoica [27] published a comprehensive book detailing
many system identification algorithms, nonrecursive and recursive, such as least
squares, recursive least squares, instrumentation methods, and recursive prediction

error methods. Their work is considered as a cornerstone reference quide.

The identification process consists of estimating the unknown parameters of the
system dynamics [26]. Consequently, determination of the assumed system structure

is of great importance in the process of system identification [27].

The recursive least squares (RLS) method has been recommended for the
identification process for easy implementation and application to real systems [26,
27]. For the linear identification process, a discrete time ARX model for the
mechatronic system has been used. This model structure is, in some sense, a linear
regression form and permits easy implementation of the linear regression based

identification [26]. The ARX model for the linear system is given as in Ref. [27]:

Alg™)y(1) = B(g™Hu(t) +e(r) (8.6)

Where

Alqg Y =1+a,q" +a,q” ++a,q",

—nb

B(q_l) =b, +blq_l +l?2q_2 +--+a,q
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and the symbol ¢~' denotes the backward shift operator, (y(t—1)=gq"'y(1)),
u(t)and y(r) are the symbol input and output, respectively, e(¢) is assumed to be an
immeasurable, statistically independent noise sequence with E{ e(¢) }=0 of variance

o’ . The parameters a, and b, are the real coefficients, a;,b, € R, and n, and n, are

the orders of the polynomials A(g™') and B(q™'), respectively, where n, >n, . It is
also assumed that the polynomial 1+ zi[zlaiq’i never becomes zero in|z| =1, and the

model parameters a, and b, do not become zero simultaneously.

Identification of nonlinear systems can be achieved in a number of ways. Several
methods for nonlinear system representation and identification have been proposed
[26, 27]. Nonparametric methods of nonlinear system identification do not require
parametric expressions for the system nonlinearities. In addition, these methods have
the advantage of applicability to nonlinear systems with dynamic nonlinearities [28].
However, these methods take the system as a whole and do not permit separate
analysis and identification of the linear dynamics. With the assumption that the
nonlinearities in the system are static, in other words, the system dynamics can be
expressed in linear terms only, the parametric identification methods can be
employed. This assumption leads to nonlinear system structures called the
Hammerstein model, the Wiener model and the general NARMAX model [28]. The
nonlinear Hammerstein model structure, given in Figure 8.14, has several
advantages, such as the nonlinear system identification problem can be put into linear
regression form, methods of linear system identification can be applied and it can
describe a nonlinearity of a dynamical system efficiently [28]. In addition, this

structure covers wide range of nonlinear systems despite its simplicity [28, 219].

u(t) Static x(1) Dynamic y(t)
» _>

>

Nonlinear Linear

Figure 8.14 Hammerstein system structure
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The dynamical linear part in the Hammerstein model can be represented by an ARX
model as for the linear system model [28]. The relationship between the linear part

input x(¢) and the output y(#) can be given as:
Alg ™)y = B(g™)x(@)+e0) (8.7)
where x(t)is the output of the nonlinearity.

The nonlinear part in the Hammerstein model is generally chosen to be polynomial
of known order. The order of the polynomial is selected in accordance with the

hardness of the nonlinearity in the system. The nonlinearity function x(¢)is given by
[28]:

xX(1) = yu(t) + yu’ )+ + y,u" (1) (8.8)

where y; (j=1,...,n) are the nonlinearity parameters, ¥, € R. The nonlinear

equation, Eq. (3), is re-arranged to be [28]:
Alg )y =B@")D yu’ () +e() (8.9)
j=1

In Equation (8.9), the coefficients of B (¢”") do not appear explicitly. Without loss of
generality, the nonlinear part can be normalized with respect toy,, and Equation

(8.9) can be rewritten with the assumption that ¥, =1as follows:

n

g™y = BgHuw+ Y. Y b y,q ' 1)+ e (8.10)

Jj=2 k=0

define a polynomial S;(¢™")
S(g=yB(g")=s,+s,q" ++ S d " 8.11)
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where Sy = 7/jl;k,j =1,...,n,k=0,...,n,. Then, Equation (8.10) is improved to be

Ag™y) = BlgMum+ Y8 (g™’ (1) + (o) 8.12)

j=2
Equation (8.12) can be put into linear regression form as follows:

y(t)= 9" (1)0+e(r) (8.13)

where

¢(t) = (—y(f—1)7—)’(1—2),---,—)’(1_’% ),u(t),u(l—1),...,u(t—nb),
(8.14)
uz(t),...,uz(t—n,,),...,u"(t),...,u”(t—nh))T

Qz(al,az,...,a ,bo,bl,...,bnb,szo,...,sm,... S K ) (8.15)

n, 2P n02* > nn,

The linear regression representation for the system given in Equation (8.13) permits
direct application of the RLS method. However, the vector of unknown parameters
does not include the coefficients of the polynomial B (g~") explicitly. These
coefficients are implicitly expressed in the form of products with the nonlinear
subsystem parameters 7, (j =1,...,n). Consequently, the identification of the system
parameters can not be performed at a single stage. The RLS method is, therefore,
implemented in two steps. The first step of the algorithm gives the estimates of the

parameters a, ands; , and the second step estimates the parameters b, and 7, using

the results of the first step, wherei =1,...,n,, j=1,..,n, k=1,...,n,. The nonlinear

identification algorithm steps are summarized as follows:

(vi)  Choose initial values for the covariance matrix P and forgetting
factor 4.
(vii))  Acquire the input and output of the system and form the data vector

@as given in Equation (8.14) for time instant t using the present and

past values of the input u , output y and powers of u .
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(viii) Solve for the parameter estimates 4, ,l;k .8 ; using RLS estimates rule:
£ = y() - ¢" 8 -1)

#(1)@” (1)P(r—1) }
A+¢" ()P —-1)p(1)

P(t) = %P(r - 1){11, -

0(1) = 6(t = 1) + P()(H)e(t)

(ix)  (v)  Solve for the estimates 7, j=1,...,n using the estimated values

b,.§ by the formula :
n, -1 n,

7, = [be} Dby j=loan
k=1 k=1

(x) Update the time instant, ¢ =7 +1. Return to step (ii).

8.2.3.4 Hammerstein Model of Nonlinear SI Engine Dynamics

It is possible to decompose the nonlinear torque generation dynamics given in Figure
8.13 into its nonlinear static and linear dynamic parts, which constitute a
Hammerstein type structure. This model relies on the assumption that the
nonlinearity in the process, which is a result of thermodynamics and mechanics of
the gas in the cylinders, and mechanics of piston motion, is approximately static, and
the dynamics of system behavior are approximately linear [28]. With this

assumption, the torque generation conceptual diagram is given in Figure 8.15,
where g(.) is a static nonlinear function, and H (q'l) is a linear transfer function in
terms of the discrete delay operatorg™. For the sake of simplicity and ease of

calculation, the nonlinearity in the model is given as a polynomial of known order

with constant coefficients.

m____, 2(.) H(q_l) >

A 4

Figure 8.15 Hammerstein model for torque generation
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The combination of the throttle model and torque generation model is obtained by
integrating the throttle sensitivity given by 1.068K, and its powers up to order n into
the nonlinear function. Without loss of generality, the nonlinear polynomial
coefficients can be normalized with respect to the constant term that is the zeroth
order term of the polynomial. The combined Hammerstein system structure is given

in Figure 8.16.

Uy, T,
— £ ¢") —

A 4

Figure 8.16 Hammerstein model of SI engine dynamics

With the introduction of the combined Hammerstein model in Figure 8.15, the
problem of nonlinear system identification reduces to the problem of estimation of

model parameters given by ¥,, bj, and a, (i=2,...,n; j=0,...,np; k=1,...,n,).

8.2.3.5 Identification Results

Spark ignition engine identification experiments were performed using the set-up
described in section 7.4. Nonlinear parameter estimation procedure for Hammerstein
system structure was used following the steps in section 8.2.3.3. Nonlinear
polynomial order, maximum output delay, and maximum input delay are selected
respectively as: n=2, n,=4, n,=3. The parameter estimation algorithm, coded and
run in Matlab environment, converged to the values tabulated in Table 8.6. Figure
8.17 gives the recorded response of the experimental set-up to the PRBS test signal
together with the estimated response recorded during the recursive identification
process. Since RLS relies on the minimization of the cost function, which requires
the minimization of the error of recursive estimation, the two signals are close as
expected. However, convergence of the estimated response to the real system output
in a recursive identification algorithm does not guarantee the convergence of the
parameter estimates to the true values. Consequently, minimizing the least squares

error alone is not enough to show the success of the identification procedure.
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Obtained model should be validated using the estimated parameters to generate a

new set of output data by simulation of the identified model.
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Figure 8.17 Results of the identification experiment. Torque response of the SI
engine is given in solid line, and estimated torque recorded through recursions is
given in dotted line

Table 8.6 Estimates of Hammerstein model parameters

a a, as a, b, b, b, b, V>

-1.1935 | 0.1138 | 0.0635 | -0.0791 | 0.0708 0.0707 | 0.0707 | 0.0708 | -12.4¥107

The Hammerstein model obtained by identification of the engine is tested by
simulating the model with two input data sets. First set belongs to the PRBS input
signal applied to the process for identification. The simulated response is given in
Figure 8.18 together with the real system response obtained by experiment.

Secondly, in order to generate an independent set of data, a square wave is applied to
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the engine and response is recorded. This input signal is applied to the identified
Hammerstein model as well, of which response is recorded as a result of digital

simulation. Results are given in Figure 8.19.
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Figure 8.18 Validation of identification results. Torque response of the SI engine to a
PRBS input is given in solid line, and simulated response of the obtained
Hammerstein model is given in dotted line

Inspection of the identification results in Figure 8.17 reveals that the identification
procedure generates a highly accurate estimated response to input variations even in
fast transient phases and high frequency load effects. Although it does not guarantee
that the identified model accurately represents the process behavior, this result gives
useful information for online applications of control. Figures 8.18 and 8.19 give plots
of the model validation experiments. The identified model is tested using the set of
data used in identification, and results in Figure 8.18 reveal the performance of the
model in response to the PRBS test signal. Identified model is also tested using a
square wave input to get the results of an independent model validation experiment.
The model obtained consists of a second order polynomial cascaded to a fourth order

linear system. Despite the fact that this model is too simple to represent the highly
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nonlinear and complex thermodynamics, gas dynamics, and mechanics in the engine,
the identified model response follows the true torque measurement with an
acceptable degree of accuracy. However, it should be noted that the model is
insufficient in representing the high frequency components that result from effects

like measurement noise and mechanical vibrations in the process.
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Figure 8.19 Validation of identification results by a different set of data. Torque
response of the SI engine to a square wave input is given in solid line, and simulated
response of the obtained Hammerstein model is given in dotted line

8.2.3.6 Model Validation

The mean square error (MSE) method is the most commonly used one for model

testing purposes [28, 219].

MSE = %Z@m ~5)° (8.16)
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where ¥(¢)is the predicted output and N is the number of samples used in the

identification process. The MSE values for the nonlinear identification experiments

were calculated for different model orders, and the results are tabulated in Table 8.7.

During the nonlinear identification, the order of the nonlinear polynomial was kept
constant at two. The linear identification experiments result in the selection of the
fourth or fifth order model for representing the present system. The nonlinear
identification results, however, reveal definitely that the fourth order model gives the
best result as far as the identification error is concerned. Further increase in the
model order brought no significant improvement in the performance of the predicted
models. The MSE values for different orders of the nonlinear polynomial were
calculated and tabulated with the linear part of order fourth. The results presented in
Table 8.8 reveal clearly that the selection of the second order nonlinearity in the

nonlinear identification experiments gives the best result.

Table 8.7 MSE values for nonlinear identification experiments

Model order 1 2 3 4 5 6 7

MSE 151312 129.072 31.28 17782  20.127 22939 23.124

Table 8.8 MSE values and nonlinear parameters for nonlinear identification with
different polynomial orders

order 2 3 4
MSE 17.782 5.891%10° 6.908%10"
7 -0.0124 -0.0853 22.6186
7, - 0.0014 -1.664
7. - - 0.0269

8.2.3.7 Conclusions

This case study deals with the problem of identifying of a spark ignition engine
torque from input-output data. Nonlinear model was developed for the system. A

nonlinear representation and identification approach using the nonlinear
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Hammerstein system structure was used for the present system. A suitable
experimental setup was built and tested using RLS identification algorithm for the
nonlinear case. The measured data obtained experimental setup is used by a software
program that runs in Matlab environment to identify unknown system parameters.
The nonlinear system identification with fourth order linear dynamics gives the best
result. And also selection of the second order nonlinearity gives the best result. The
results are numerically and graphically demonstrated. Inspection of the identification
results reveals that the identification procedure generates a highly accurate estimated
response to input variations even in fast transient phases and high frequency load
effects. The results of the present study are meant to constitute a starting point for on
going studies on identification of gasoline engine system by other nonlinear methods

and adaptive control applications for nonlinear systems.

8.2.4 Nonlinear modeling and identification of a spark ignition engine torque

using NARX model

8.2.4.1 Introduction

System identification, as a subject of control engineering, refers to the procedure of
building a mathematical description of the dynamic behavior of a system/process
from measured data so as to provide accurate prediction of the feature behavior for
given inputs [26, 27, 220]. The key problem in system identification is to find a
suitable model structure, within which a good model is to be found [21].
Development of nonlinear model is the critical step in the application of nonlinear
model based control strategies. Nonlinear behavior is the rule, rather than the
exception, in the dynamic behavior of physical systems. Most physical systems have
nonlinear characteristics outside a limited linear range [221, 222]. The development
of simplified models of automotive engines appropriate for control/diagnostic system

research and design is an important subject for research and development [3].

In engineering dynamics, control engineering and many other areas, auto-regressive
with exogenous inputs (ARX) models are widely utilized for describing dynamic
data regimes for linear and nonlinear systems [16]. Hovewer, the performance of

these linear models for prediction and control has been limited. In particular, the
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nonlinear nature and strong directionality of the process present problems during
identification. NARX model has been considered as alternatives to linear models in a
number of ICE applications such as describing the pressure inside the intake
manifold and the crankshaft speed of ICE [32, 34], identification and control of ICE
in idle-speed conditions [33]. NARX model from input-output data are used by [60]

to identify a nonlinear system.

The engine torque is one of the most important performance variables of an ICE and,
for this reason; a torque control system can improve substantially the performance of
the overall vehicle [7, 8]. Their modeling efforts were focused on an experimental
method of system identification that captures the nonlinear engine torque
characteristics for a large range of operating conditions [10]. The objective of this
case study is to obtain a nonlinear model of SI engine torque. In this case study, a
procedure to provide the nonlinear model of the dynamics between the throttle valve
command and torque in a gasoline engine directly from raw data is presented. The
nonlinear system model is built and a sigmoid based nonlinear ARX model is

developed using input and output regressors.

8.2.4.2 NARX Model

Nonlinear ARX models extend the linear ARX models to the nonlinear case and have

this structure:

y(0) = f(y@—=0D),..., y(t — na),u(t — nk),...,u(t —nk —nb +1)) (8.17)
where the function f depends on a finite number of previous inputs u and outputs y.
na is the number of past output terms used to predict the current output. nb is the
number of past input terms used to predict current output. nk is the delay from the

input to the output.

The nonlinear ARX structure models dynamic systems using a parallel combination

of nonlinear and linear blocks, as shown in the Figure 8.20.
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Figure 8.20 NARX model structure

The nonlinear and linear functions are expressed in terms of variables called
regressors, which are functions of measured input-output data. The predicted output

y(t) of a nonlinear model at time ¢ is given by the following general equation.

y(@) = F(x(t)) (8.18)

where, x(f)represents the regressors. F is a nonlinear regression function, which is

approximated by the nonlinearity estimators. The function F can include both linear

and nonlinear functions of x(¢), as show in Figure 8.20.

The sigmoidnet based nonlinear is used to capture the nonlinearity of the NARX

model. The function F(x) is given by the following expression:

F(x)=(x—=r)PL+a,f((x—=r)0b,c,)+a, f((x—r)0b,c,)+

(8.19)
..ta, f((x-=r)Qb,c,)+d
The sigmoid function f in the above equation is given by
f(z) =1/(exp(=2) +1) (8.20)

where
P is a nonlinear subspace matrix

Q is a linear subspace matrix
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r is a regressor mean vector

L is a linear coefficients vector
b, is a dilation matrix

a, is an output coefficients vector
cn 1s a translation vector

d is an output offset scalar

The parameters of sigmoidnet based NARX models were estimated using the ident
function system identification toolbox version 7.0 in Matlab. The iterative
prediction-error minimization method discussed in Ljung [26] was used to calculate

the model parameters.

8.2.4.3 Identification Results

SI engine identification experiments were performed using the set-up described in
section 7.4. SISO NARX model is developed in this case study to model the
nonlinear dynamics of the SI engine. The SISO NARX model is used throttle valve

position as inputs and engine torque as output.

The position of a throttle valve is controlled by a servo motor. The air flow rate in
the intake manifold is controlled by the size of the valve opening through which the
air flows into the manifold. The output engine torque is then a function of the throttle
valve position. Figure 8.21 shows measured values of the throttle valve size u and the
output engine torque y, which are input and output signals respectively. As seen in
the output engine torque, we have a very oscillative settling period after a change of
the throttle valve size. These oscillations are caused by highly nonlinear and complex
thermodynamics, gas dynamics, and mechanics in the engine. The parameter
estimation algorithm, coded and run in Matlab environment, converged to the values

tabulated in Table 8.9.
In the SISO NARX model used this work, sigmoidnet function is used as nonlinear

regressor function containing five past output regressors (1,=5) and minimum of a

one-sample input delay (n;=1) and the four past input regressor (n,=4), i.e.
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Table 8.9 Parameters of SISO NARX models

Model parameters

SISO NARX model

[0.1276 —2.0132 —0.6882 —-0.3795 1.3535 13.2895 —35.9536 37.6343 24.1571 |
0.0973 —-2.1296 -1.0093 -0.0027 0.7169 8.5022 10.3721 —-63.2216 —-65.1947
Nonlinear subspace (P) matrix 0.0689 —-2.1929 -1.2830 0.2247 —-0.1168 1.1941 38.9912 —2.9281 83.3336
& 0.0426 -2.1937 -1.5172 0.3691 —0.8655 —6.8742 15.5663 63.6563 —63.3491
) ) P=0=0.0192 -2.1294 -1.7186 0.4380 —-1.6306 —13.7905 -—-32.8414 —-34.4972 21.8677
Linear subspace matrix (Q)
0.9959 1.2437 —5.2582 —-7.3901 -—5.1429 1.0373 0.3517 0.1251 —0.1905
1.0393 0.6317 -2.1063 7.2699 12.2621 —-1.3791 -0.1453 —-0.0112 0.2706
1.0416 —-0.1725 2.4483 7.1016 —12.3218 1.2461 —0.3405 0.1863 -0.1012
11.0025 —-0.9636 52342 -7.5648  5.0326 —2.9368 1.0130 —-0.8017 -0.1871
[ 0.0254
—0.0583
0.0082
0.0074
Linear coefficients L=| 0.0004
0.0238
-0.0127
—0.0008
_0.0078_
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Table 8.9 Cont’d

(00139 62438  0.0014  0.0026 |
00229 55581 —0.0957 —0.0025
~0.0095 4.0224  0.1936 —0.0011
~0.0044 —0.4914 0.0055 —0.0026

Dilation b, =1x10°[ —0.0004 —1.6669 —0.2226 —0.0018
0.0032 —-13183 00171 —0.0022

~0.0077 —-1.8584 0.0003  0.0045

0.0097  5.1746 —0.0002 0.0026

| 00267 22908  0.0001 —0.0006 |

Output coefficients a, =[-0.0141 —0.0119 —0.0682 0.0199]

Regressor mean r=[0.6067 0.6065 0.6062 0.6058 0.6052 0.6932 0.6926 0.6921 0.6916]
Translation ¢, =1x10*[0.0067 -1.2068 —0.0001 0.0011]
Output offset d =0.6425
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Figure 8.21 PRBS of the throttle valve position (bottom) and measured values of
torque (top)

The regression vector

x=[yt=1), y(t-2), y(t=3), yt—4), y(t =5),u(t —1),u(t —2),u(t—3),u(t—4)] where y and u are
the output and the input of the system, respectively. Figure 8.22 gives the recorded
response of the experimental set-up to the PRBS test signal together with the
estimated response recorded during the iterative prediction-error minimization
method. The parameters which give the minimum are then used in the nonlinear
model. As seen in Figure 8.22, the two signals are close as expected. However,
convergence of the estimated response to the real system output in an iterative
prediction-error method does not guarantee the convergence of the parameter
estimates to the true values. Consequently, minimizing the prediction error alone is
not enough to show the success of the identification procedure. Obtained model
should be validated using the estimated parameters to generate a new set of output

data by simulation of the identified model.
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Figure 8.22 Results of the identification experiment. Torque response of the SI
engine is given in solid line, and NARX model estimated torque is given in dotted
line

8.2.4.4 NARX Model Validation

Model validation provides the way to assess the quality of a proposed model and also
to find out the inadequacy of the model in explaining an observed system behavior
[223]. The last step of the system identification procedure is the validation of the
estimated model. After estimating, the model should be validated to determine
whether the model can reproduce system behavior by estimating within acceptable

bounds.

The selection of model structure and their orders is the main purpose. The selection
of model structure depends on nonlinear effects in the system, system properties and
prior knowledge of the system. The second purpose is selection of the model orders.

The model orders were determined by trial and error method. After estimation the
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best model by using the trial and error. In fact, another input data is given to the
system and the model and their outputs are compared [223].

The NARX model obtained by identification of the engine is tested by simulating the
model with PRBS input data set. The PRBS input signal applied to the process for
identification. The simulated response is given in Figure 8.23 together with the real

system response obtained by experiment.

110 ‘

I
measured torque |
|
|
|
I

fffff NARX model

100

90

80

70/

output engine torque (Nm)

60

|

|

|

|

|

50 :
175 180 1
Time

195

P i
o
o
pr-y I
o

sec)

Figure 8.23 Validation of identification results. Torque response of the SI engine to
PRBS input is given in solid line, and simulated response of the obtained NARX
model is given in dotted line

Inspection of the identification results in Figure 8.22 reveals that the identification
procedure generates a highly accurate estimated response to input variations even in
fast transient phases and high frequency load effects. Although it does not guarantee
that the identified model accurately represents the process behavior, this result gives
useful information for online applications of control. Figure 8.23 gives plot of the
model validation experiments. The identified model is tested using the set of data
used in identification, and results in Figure 8.23 reveal the performance of the model

in response to the PRBS test signal. Despite the fact that this model is too simple to
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represent the highly nonlinear and complex thermodynamics, gas dynamics, and
mechanics in the engine, the identified model response follows the true torque
measurement with an acceptable degree of accuracy. However, it should be noted
that the model is insufficient in representing the high frequency components that

result from effects like measurement noise and mechanical vibrations in the process.

The mean square error (MSE) method given in Equation 8.16 is the most commonly
used one for model testing purposes [28, 219]. The MSE values for the nonlinear
identification experiments were calculated for different model orders, and the results

are tabulated in Table 8.10.

Table 8.10 MSE values for nonlinear identification experiments

Model order 1 2 3 4 5 6 7

MSE 42.596 39.362 38.513 37.008 36.644  48.513 81.156

The nonlinear identification results, however, reveal definitely that the fifth order
model gives the best result as far as the identification error is concerned. Further
increase in the model order brought no significant improvement in the performance

of the predicted models.

8.2.4.5 Conclusions

This case study deals with the problem of identifying of a spark ignition engine
torque from input-output data. Nonlinear model was developed for the system. A
nonlinear representation and identification approach using the sigmoid based
nonlinear ARX model structure was used for the present system. A suitable
experimental setup was built and tested using iterative prediction-error minimization
method. The measured data obtained experimental setup is used by a software
program that runs in Matlab environment to identify unknown system parameters.
The nonlinear system identification with fifth order nonlinear dynamics gives the
best result. The results are numerically and graphically demonstrated. Inspection of
the identification results reveals that the identification procedure generates a highly
accurate estimated response to input variations even in fast transient phases and high

frequency load effects. The results of the present study are meant to constitute a
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starting point for on going studies on identification of gasoline engine system by

other nonlinear methods and adaptive control applications for nonlinear systems.

8.2.5 A comparative study of neural network structures in identification of

gasoline engine torque

8.2.5.1 Introduction

System identification has become an important area of study because of the
increasing needs in estimating the behavior of a system with partially known
dynamics. Especially in the areas of control, pattern recognition and even in the
realm of stock markets the system of interest needs to be known to some extent. A
common property of real life systems is the fact that they have multiple variables,
some of which are subjected to stochastic disturbances. Since a system may have a
complicated dynamic behavior, the varying environmental changes make the
identification process much more difficult than the cases in which those changes are

modeled deterministically [14, 15].

Artificial neural network (ANN) opened a new horizon in identification and control
of highly nonlinear and complex structured systems. These networks are
implemented using massive connections among the neurons with variable strengths.
Moreover, their parallel, distributed and fault tolerant processing properties make
them powerful tools for both identification and control of nonlinear dynamical
systems. Especially learning capabilities of these networks enable them to process

the information adaptively [18, 19].

The use of ANN in system identification has been gaining more and attention in
recent years. Neural networks have good general approximation capabilities for
reasonable nonlinear systems [20, 21]. Nerandra and Parthasaraty [22] have
demonstrated that artificial neural networks could be used successfully for the
identification and control of nonlinear dynamic systems. A series of works
performed by Chen and Billings and their coworkers have developed the foundation

of using neural networks as a tool for nonlinear system identification [23-25].
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The engine torque is one of the most important performance variables of an ICE and,
for this reason; a torque control system can improve substantially the performance of
the overall vehicle [7, 8]. Their modeling efforts were focused on an experimental
method of system identification that captures the nonlinear engine torque
characteristics for a large range of operating conditions [10]. Automotive engines are
multivariable system with severe nonlinear dynamics, and their modeling and control

are challenging tasks for control engineers [77].

Moreover, ANN has been proven to be useful for modeling and identification
nonlinear dynamic systems. RNN have been used by many researchers. Some of
which are used for simulating the air-fuel ratio (AFR) dynamics into the intake
manifold of a spark ignition (SI) engine [75], for identify the nonlinear dynamic of
the intake manifold and the throttle body processes in an automotive engine [1], for
modeling air-fuel ratio in SI engine [81], for AFR identification and control in SI
engines [76], for AFR identification in SI engine [105]. Different neural network
structures like multilayer perceptron (MLP), pseudo linear radial basis function and
local linear model tree networks for modeling variable valve timing [78] and torque
[79] of a SI engine has been studied. An artificial neural networks approach to
estimate the indicated torque of a single-cylinder diesel engine from crankshaft
angular position and velocity measurements are presented in [86]. The dynamic multi
layered perceptron and the generalized Hammerstein model are described and
compared to the experimental identification of the charging process in diesel engines
[89]. Hou et al. [91] provided a method of identifying AFR of a HL495Q gasoline
engine based on elman neural network. A dynamic local neural network approach
has been applied for modeling the NOy emissions characteristics of a 1.91 direct
injection diesel engine [85]. A neural approach has been applied for modeling and
control of a turbocharged diesel engine speed with pollution constraints [92]. A
different neural network approach has been used for fault diagnosis and identification
in automotive engine [94]. Exhaust gas recirculation control in SI LPG engine has
been proposed using RBF neural network approach. Autoregressive Neural network
has been used for identification of locomotive diesel engine [101]. Neural network
model has been presented for identification and control of the AFR of automotive

engine [102].
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Neural networks have been successfully used in wide range of automotive control
applications. An adaptive RBF model based model predictive control to the air/fuel
ratio control of automotive engines [77]. Wang et al. [2-4] presented an application
of adaptive neural network modeling and model based predictive control for
modeling the crankshaft speed, intake manifold pressure, manifold temperature [2],
air fuel ratio [3] and engine speed [4]. A radial basis function (RBF) neural network
was utilized for them. A fast neural network models for engine control design
purposes are applied in [83, 84, 98, 99]. A nonlinear model based control has been
proposed for an efficient control of the air actuators of a turbocharged SI engine
using neural network [93]. SI engine idle speed control has been presented using
ANN [100]. ANN has been used for adaptive AFR control in gasoline engines and
for adaptive AFR control in SI engine [80]. Transient fueling control of SI engine has

been presented using feed forward neural network [111, 112].

In this case study, different neural network structures are used to identify nonlinear
dynamic models for the SI engine torque. Dynamic Levenberg-Marquardt algorithm
is applied to the weight-estimation using the neural network toolbox version 7.0 in
Matlab. Experimental results show that the neural network based models are more
precise and generalized in performance than the Hammerstein and NARX models.
Such models can be used for control system design, or in a model-based fault

detection and diagnosis strategy.

8.2.5.2 Neural Network System Identification

The neural network based black-box method is used to model the SI engine torque
dynamics taking into account the interaction between the input and output of the
SISO system. The simplest linear discrete-time input-output model is the ARX

model [17]. The optimal predictor of an mth order ARX model is

yt)=butk=1)+...+b utk—m)—a,ytk=1)—...—a, y(k —m). (8.21)

As we know, a wide class of nonlinear systems can be described by NARX
(nonlinear ARX) model [224] in a straightforward manner by replacing the linear

relationship in Equation (8.21) with unknown nonlinear function f(.), that is,
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y(k) = fuk =1),...,utk —m), y(k—1),..., y(k —m)) (8.22)

Identifying the nonlinear dynamic system using the neural network is to find a fit
neural network structure to substitute for the nonlinear function f (.) under the known
system model structure as shown in Equation 8.22. By readjusting the connection
weight value of the neural network, the output of neural network is equal to the

output of the plant. Identified model was obtained the as following

k) = fy k =1),...;utk —n,), y(k=1),..., y(k —n,)) (8.23)

where y(k) denotes the output vector, u(k) the input vector, n, and n, denoted the

dynamic order of the model output and input respectively.

Thus, the NARX model is trained in series-parallel configuration, whose structure
was shown in Figure 8.24. This model can be considered as a feedforward network

model.

u(k) y(k)

Training
Algorithm

Figure 8.24 Series- parallel model for neural network identification

The number of past outputs and control inputs required to be fed for the system
identification depends upon the order and the structure of the system. One drawback

of models with output feedback is that the choice of the dynamic order m is crucial
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for the performance and no really efficient methods for its determination are

available. Often the user is left with a trial-and-error approach.

8.2.5.2.1 Feed Forward Neural Networks (FFNN) for System Identification

An identification procedure, in the most general sense, entails a matching between
the system outputs and an identifier output. Artificial neural networks (ANNs) are
massively parallel distributed structures and have ability to learn through experience
[158]. ANNs due to their ability to act as universal approximators can very
effectively be used for this purpose [14, 15]. Narandra and Parthasarathy [22] have
reported an extensive study on the use of these networks for identification and

control purposes.

Useful properties of ANNs such as nonlinearity, input/output mapping and
adaptability have been exploited to model the dynamic of the SI engine torque. As
one hidden layer with sufficient number of neurons is good enough to approximate
any nonlinear function [158], only one hidden layer is used for the present work.
Levenberg-Marquardt (LM) optimization algorithm is used to minimize the cost

function defined by the mean square error (MSE) given by
MSE—lN( -5 () 8.24
NZ vy, (k)= 9, (k) (8.24)

where N is the number of data points, and y (k) and ¥ (k) denote the desired and
model output at the kth sample points. Actually, the desired y (k) is the observation
data in the experiments. The output of the network is computed by proceeding layer
by layer through the network. The net internal activity level ij for a neuron j in

hidden layer k is given by

Vim)= ZW (n)Y " (n (8.25)
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where Yl.k‘1 (n) is the output of neuron i of the layer k£ —1, Wj’lf (n)is the net weight of

neuron j in the layer k connecting to the i, neuron of layer k —1. the output of the

neuron j in layer k is computed using the tan-hyperbolic activation function given by
2

Yi(m)=1- 2
;) 1+exp(2V (n)) (8.26)

For neural network training using LM algorithm, the gradient vector can be

calculated as

g(6)=J"(6)e(6) (8.27)

where J(6) is the system Jacobian matrix, @ is the parameter vector and e(é) is the

error vector defined by

e(0) = [el,ez,...,en]T (8.28)

The minimum is found by iteratively solving the equation

J (@) J(O)+ul)AO =—J(0)" e(8) (8.29)

where u is a scalar quantity and / is an identity matrix.

SI engine identification experiments were performed using the set-up described in
section 7.4. For identification of SI engine, the SISO neural network model is used
throttle valve position u as the input vector and engine torque y as the output vector.
The neural network training is performed off-line utilizing a previously generated
training data set. The backpropagation, backpropagation with adaptive learning rate,
backpropagation with momentum and Levenberg-Marquardt (LM) training
algorithms of Matlab were tested. As mentioned in [225], the LM algorithm was
found to be the fastest training algorithm, but requiring more memory with the same

error convergence bound compared to the other algorithms.
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The system identification problem requires a suitable excitation signal. Usually a
signal, which is sufficiently rich and persistently exciting all the system modes, is
selected. PRBS (pseudo random binary signal) well suited for identification. Imitates
white noise in discrete time with a deterministic signal and thus excites all
frequencies equally well [17]. To create the disturbances needed to perform
identification of the process, PRBS were used [41, 95]. A PRBS was designed for
throttle angle position to obtain a representative set of input-output data. A set of data
samples, including throttle valve position and the torque was collected for the system

identification. Each set contains 2000 data samples.

After training the network, the identification process is tested by using the Figure

8.24. The speed estimate y(k) of the so called identifier will be compared with the
experimental and/or simulated output y(k) to evaluate the performance of the

identified NN reflecting the dynamics of SI engine.

Several neural networks with different structures were tried in order to find the
optimal model. The data sequences are divided into two sections. One section is used
for training and another section is used for testing. Table 8.11 shows the performance
comparison. In Table 8.11, hn is defined as the number of the hidden neurons of the

neural network model.

Based on the results of Table 8.11, it is seen that both the orders of the input
variables and the number of the hidden neurons have an effect on the model
performance. The results presented in Table 8.11 reveal clearly that the selection of
the number of the hidden neurons is ten, while the orders of the input variables are,

respectively n, =4 and n, =4.

A two-layer feedforward neural network with eight input neurons, ten neurons in the
hidden layer and one output neuron, denoted as 8-10-1, has been used in the network.
The proposed ANN model is given in Figure 8.25. The learning algorithm used in the
study is Levenberg-Marquardt (LM); activation function is tan-sigmoid (tansig)
transfer functions. The number of hidden neurons has been determined by trial-and-

error. Using a larger number of hidden neurons can approximate the system
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dynamics better with a time penalty for training. For the LM training algorithm, the

data was normalized within the [-0.5, +0.5] range, which is a common practice for

Table 8.11 Performance comparison for neural models

Neural network structure Correlation coefficient (R)
n,=2,n,=2,hn=7 0.98403
n,=2,n,=2,hn=8 0.98418
n,=2,n,=2,hn=9 0.9841
n,=2,n,=2,hn=10 0.98481
n,=3,n,=3,hn=7 0.9851
n,=3,n,=3,hn=38 0.9855
n,=3,n,=3,hn=9 0.9856
n,=3,n,=3,hn=10 0.9865
n,=4,n,=4,hn=7 0.9854
n,=4,n,=4,hn=8 0.9861
n,=4,n,=4,hn=9 0.9868
n,=4,n,=4,hn=10 0.9871

the neural network training using tan-sigmoid activation function. The algorithm
itself selected the initial weights randomly. This induced the possibility of having

slightly differing results at each training.

The identifier has been assessed using the following test signal shown in Figure 8.21.
The real system response and the identifier outputs are shown in Figure 8.26.
Obtained model should be validated using the estimated parameters to generate a
new set of output data by simulation of the identified model. The simulated response
is given in Figure 8.27 together with the real system response obtained by

experiment.
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Inspection of the identification results in Figure 8.26 reveals that the identification
procedure generates a highly accurate estimated response to input variations even in
fast transient phases and high frequency load effects. Although it does not guarantee
that the identified model accurately represents the process behavior, this result gives
useful information for online applications of control. Figure 8.27 give plots of the
model validation experiments. The identified model is tested using the set of data
used in identification, and results in Figure 8.27 reveal the performance of the model

in response to the PRBS test signal.
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Figure 8.25 FFNN architecture
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Figure 8.26 Modeling results of the FFNN model with identification experiment
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Figure 8.27 Modeling results of the FFNN model with validation of identification

results
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8.2.5.2.2 Radial Basis Function (RBF) Neural Networks for System

Identification

Feedforward neural networks trained with the backpropagation (BP) algorithm have
been widely used in system identification and control. There are several drawbacks
of such formulation, however, such as potentially pre-converging to a local minima,
relatively slow convergence rate, and difficulties to determine an adequate

architecture to obtain a minimum, etc., [226].

Another popular layered feedforward network is the radial-basis function (RBF)
network which has important universal approximation properties [158]. Comparing
with the feedforward neural networks and multi-layer perceptron neural networks,
RBF neural networks has some better approximation properties [227], such as high
accuracy of approximation, especially, the connection weights from the hidden layer
to the output layer are linear (which implies that linear optimal algorithms can be
used in RBF neural networks and guarantees the global convergence of the
parameters). Moreover, while training RBF neural networks, only one part of the
nodes will be affected by a given input, and only a portion of the model parameters
may be need to be adjusted, thus reducing the training time and computational
burden [226]. A RBF neural network has an input layer, a nonlinear hidden layer and
a linear output layer. The nodes within each layer are fully connected to the previous
layer nodes. The input variables are each assigned to nodes in the input layer and
connected directly to the hidden layer without weights. The hidden layer nodes are
RBF units. The nodes calculate the Euclidean distances between the centers and the
network input vector, and pass the results through a nonlinear function [228]. The

output layer nodes are weighted linear combinations of the RBF in hidden layer.

For a RBF neural network with m inputs nodes, p outputs nodes and N hidden nodes,

the hidden unit can be expressed as a matrix

y=ly, v, - ¥yl (8.30)
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and the neural networks weight W:{w.. i=L2,...,N, j=1,2,...,p}, where,

ij?

input X (k) = (5, (k)sesx, ), PR = (5,(K).... 9,0, w,(XK) is a

nonlinear function and it is chosen as a Gaussian activation function
[xto-c)|
v, (X (k))=exp e (8.31)
j

where C j( j=12,...,N)eR Vis the center of the jth hidden unit, and with the same
dimension as the input vector X (k), /1j the width of the jth RBF hidden unit,

|||| Euclidean norm.

Then ith RBF network output can be represented as a linearly weighted sum of N

basis functions
N

.k = wy, + D ww (X (k)), i=12,....p (8.32)
j=1

where w;, and w,, are the weights.

With the structure described above, the transformation from the input layer to the

hidden layer is nonlinear, due to the use of Gaussian functions ¥/(.) for RBF, and the

connection of the hidden layer to the output layer is linear [228].

The objective of this case study is to use RBF neural networks to model the SI
engine torque. According to identification structure of SI engine torque in Figure
8.22, where TDL is the tapped delay line that the output vector has for its elements

delayed values of the input signal.
In Figure 8.24, the predictive error e(k) = y(k)— y(k), and y(k) is the predictive

output of the neural networks. In this case study, the criterion of training a RBF

neural networks is to minimize mean square errors (MSE) given in Equation (8.24).
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Training of the RBF neural networks can be divided into two-stage procedures. The

first stage involves selecting basis function centre vectors C;. The selection
principle of C;is that they should be chosen to form a representation of the

probability density of the input data [228]. Most published papers simply assume that
the centers are arbitrarily selected from input data points, which will often result in
that either the RBF neural networks perform poorly or the computational burden of
the neural networks training increases largely. Moreover, numerical ill-conditioning
frequently occurs owing to the near linear dependency caused by some centers being
too close. So, here an adequate technique to determine RBF neural networks centers,

i.e., the orthogonal least squares (OLS) method is adopted [229].

After the neural networks centers have been chosen, the weight values of the neural
networks are also determined at the same time from solution the following group of

equations

Y (k)= Wo twy W+ wy Wy
: (8.33)

5)1) (k) = W(),p + Wl,pl/ll +o-t WN,pl//NA

The width parameters A;of the RBF may be calculated by many techniques. Here we

choose all widths to be equal to about twice the average space between the basis

function centers [228].

We use the Matlab neural network toolbox to perform the training and testing. The
experimental sampled data are 2000 observations of input-output data. Firstly,
because the sampled data don’t fall into (0, 1), normalization are needed to transform
all the input and output data into (0, 1). To compare the results of the RBF neural
networks modeling with the modeling results of a feedforward neural networks
training with the backpropagation (BP) algorithm, the same data set were used to
train a RBF neural network. The data sequences are divided into two sections. One

section is used for training and another section is used for testing.
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The number of hidden units is previously determined by trial-error fashion. Based on
satisfying the minimum MSE conditions in Equation (8.24) and shorter training time.
A neural network is trained using all the available data set based on satisfying the
condition of not greater than the objective MSE. The structure of a RBF neural

networks with the orders of the input variables are, respectively n, =4 and n, =4

given in Figure 8.28.

Input layer Hidden layer Output layer

Figure 8.28 RBF neural network structure

The identifier has been assessed using the following test signal shown in Figure 8.19.
The real system response and the identifier outputs are shown in Figure 8.29.
Obtained model should be validated using the estimated parameters to generate a
new set of output data by simulation of the identified model. The simulated response
is given in Figure 8.30 together with the real system response obtained by

experiment.
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Inspection of the identification results in Figure 8.29 reveals that the identification
procedure generates a highly accurate estimated response to input variations even in
fast transient phases and high frequency load effects. Although it does not guarantee
that the identified model accurately represents the process behavior, this result gives
useful information for online applications of control. Figure 8.30 give plots of the
model validation experiments. The identified model is tested using the set of data
used in identification, and results in Figure 8.30 reveal the performance of the model

in response to the PRBS test signal.
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Figure 8.29 Modeling results of the RBF neural network model with identification
experiment
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Figure 8.30 Modeling results of the RBF neural network model with validation of
identification results

8.2.5.2.3 Recurrent Neural Networks (RNN) for System Identification

The recurrent neural network (RNN) that is a special type of the dynamic neural
networks is derived from the multi layer perceptron feedforward neural networks
(MLPNN) by considering feedback connections among the neurons. RNN has the
advantage of detecting and identifying time-varying model. Elman neural network is

a kind of recurrent network.

Elman neural network is a dynamic recurrent neural network with feedback layer
which owns the dynamic characteristics and recurrent function [91]. The feedback
connections in Elman recurrent neural network are from the outputs of neurons in the
hidden layer to the context layer units that are called as context nodes. This part of
input layer, namely, the context layer, plays a role in storing internal states in Elman

neural networks [165].
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Figure 8.31 Structure of Elman neural network

The structure of the Elman neural network is illustrated in Figure 8.31. Where
@', ,®"is the corresponding layer the weight matrix, u(f —1) being input vector at
(t—1) time, x(¢) being output vector of contex layer at ¢ time, y(¢)being output
vector of neural network at ¢ time. The neural network is composed of the input
layer, hidden layer, contex layer and output layer. The contex layer can memorize
previous output of the hidden layer unit, therefore the network has the memory
function. The neural network shown in Figure 8.29 has the following nonlinear state

space expression.

x(t) = f(@'x° () + @’ u(t —1)) (8.34)
x“(t) = x(t-1) (8.35)
y(t) = g(@’x(1)) (8.36)

In the above formula, x“is the contex layer output and f(.) and g(.)are the

activation functions of the output layer and hidden layer respectively.
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To identify SI engine torque, the system was exited with a PRBS signal. The data set,
comprising 2000 data points, was divided into two sets; half of the data set was used

to train the network and the other half used to validate the model.

Several neural networks with different structures were tried in order to find the
optimal model. Table 8.12 shows the performance comparison. Based on the results
of Table 8.12, it is seen that both the orders of the input variables and the number of
the hidden neurons have an effect on the model performance. The results presented
in Table 8.12 reveal clearly that the selection of the number of the hidden neurons is

ten, while the orders of the input variables are, respectively n, =4 and n =4,

Table 8.12 Performance comparison for Elman neural network model

Neural network structure Correlation coefficient (R)
n,=2,n,=2,hn=7 0.98777
n,=2,n,=2,hn=38 0.98843
n,=2,n,=2,hn=9 0.98852
n,=2,n, =2,hn=10 0.98942
n,=3,n,=3,hn=7 0.98936
n,=3,n,=3,hn=8 0.98958
n,=3,n,=3,hn=9 0.98962
n,=3,n,=3,hn=10 0.98981
n,=4,n,=4,hn=7 0.99085
n,=4,n,=4,hn=8 0.99143
n,=4,n,=4,hn=9 0.99158
n,=4,n,=4,hn=10 0.99172

Elman neural network is a two-layer BP neural network with a feedback from the
outputs of hidden layer to inputs. Choosing Elman neural network with input layer
eight neurons, hidden layer ten neurons and output layer one neuron, then the

topology structure of Elman neural network of SI engine torque is 8-10-1, has been
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used in the network. The number of hidden neurons has been determined by trial-
and-error. The learning algorithm used in the study is Levenberg-Marquardt (LM);
the activation function of hidden layer neurons is tan-sigmoid (tansig), while it is
purelin of output layer. Elman neural network of SI engine torque identification was

trained using Matlab neural network toolbox.

The SI engine torque actual values taken from the experimental set-up described in
section 7.4 and the output values of Elman neural network model is shown in Figure
8.32. Obtained model should be validated using the estimated parameters to generate
a new set of output data by simulation of the identified model. The simulated
response is given in Figure 8.33 together with the real system response obtained by

experiment.

Inspection of the identification results in Figure 8.32 reveals that the identification
procedure generates a highly accurate estimated response to input variations even in
fast transient phases and high frequency load effects. Although it does not guarantee
that the identified model accurately represents the process behavior, this result gives
useful information for online applications of control. Figure 8.33 give plots of the
model validation experiments. The identified model is tested using the set of data
used in identification, and results in Figure 8.33 reveal the performance of the model

in response to the PRBS test signal.
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Figure 8.33 Modeling results of the Elman NN model with validation of
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8.2.5.3 Comparison of the Three Approaches

This case study has shown a procedure for using neural networks for identification of
the nonlinear process, i.e. output torque in automotive SI engine. To evaluate the
quality of the model identified from the process data, there are various means, among
which the statistical information criteria are one, used to test the quality of the model.
The correlation coefficient (R), the mean square error (MSE) and the mean absolute

percentage error (MAPE) are some of the commonly employed criteria given by

D (k)= Y)(F(Kk) = §)

R = (8.37)
V20 =) Y (5t - )
MAPE = i‘M *#100 (8.38)
N $k)

where y’and 3" are the mean values of y(k) and $(k), respectively N is the

number of total number of data.

The statistical performance of three approaches is given in Table 8.13. It can be seen
from the Table 8.13 that the neural network based model captures the dynamics very
well and the method is suitable for modeling the SI engine torque. The Elman
recurrent neural network slightly outperformed the feedforward network with a high
correlation coefficient (R) and a low mean absolute percentage error (MAPE) and
also a low mean square error (MSE). However all three approaches identified the SI

engine torque dynamics well.

As seen in Table 8.13, a high correlation coefficient (R) and a low mean absolute
percentage error (MAPE) were obtained for the training and testing data sets for the
SI engine torque. The proposed Elman recurrent neural network model for the SI
engine torque had correlation coefficients of 0.99172 and 0.97812 for training and

testing data set, respectively. Moreover, MAPE of the engine torque was 1.3457 and
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Table 8.13 Statistical performance of three approaches

NN structure Set MSE MAPE Corr. Coff. R
Train 0.00019 1.6708 0.98742
FFNN Test 0.00049 22111 0.97317
Train 0.00036 2.3236 0.97846
RBF neural network . 0.00042 2.4624 0.97727
Train 0.00013 1.3457 0.99172
Elman neural network . 0.00040 1.9483 0.97812

1.9483 for the training and testing set, respectively. Similarly, MSE of the engine
was 0.00013 and 0.0004 for the training and testing set, respectively. As it is seen

these statistical performance parameters are fairly reasonable.

8.2.5.4 Conclusions

This case study analyzes the performance of neural network methodologies from the
point of system identification. In the assessment level, correlation coefficient,
together with the mean square error is considered as the primary comparison

measures. Numerous simulations are performed on a SI engine torque model.

All three approaches are tested for the same command signal. For the tracking error
performance, Elman recurrent neural network showed the best performance. On the
other hand, FFNN and RBF neural network are the simplest approaches in the sense

of computational complexity.

The contribution of this case study is to show the identification performance of the
neural network structures and to demonstrate the distinguished performance of the
three approaches with off-line operation. Some results can be concluded in the

following:

1. Neural network based models have simple structure and are not difficult to

obtain based on measured input-output data.
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2. Neural network based models can capture the inherent nonlinearities and the

dynamics of the engine torque in automotive engines.

3. Neural network based models can be as good if not better in performance

accuracy than the nonlinear model obtained according to polynomial models.

The experimental results presented in the case study show that the neural network
based models are promising for modeling for the purpose of control of automotive
engines. In addition, the obtained neural models show good performance in the form
of generalization capability and robustness. However, additional work needs to be
done to fully understand the capabilities of such techniques for modeling the entire

engine.
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CHAPTER 9

9. CONCLUSIONS

The study presented here is on the modeling and identification of a SI engine. The
developed procedure and formulations are applied to a 1400 cc, four cylinder Fiat SI
engine presented at the IC engines Laboratory of the University of Gaziantep. In this

chapter, conclusions and recommendations for future study to succeed this work.

The contributions and achievements can be summarized as follows:

1. The dynamic formulations of a slider- crank mechanism have been successfully
formulated with only one independent variable. These equations are the theoretical
models of the system dynamics, but they are comprised of highly nonlinear
differential equations and so, can not be used for on-line and on-duty applications.
They are good for design purposes, but are not suitable to use in control. For on-line
control, simpler models involving much less calculations are required. This is

actually the scope of this thesis.

2. Steady-state experiments were carried out on a SI engine to model the engine
torque and brake specific fuel consumption using soft computing techniques. Neural
networks (NN) and Gene-Expression Programming (GEP) which is an extension of
Genetic Programming (GP) are used for modeling the SI engine torque at steady-
state conditions. The results of the proposed NN and GEP models show very good
agreement with the experimental results. The performance of accuracies of proposed
NN and GEP models are quite satisfactory. The results of the GEP model are
compared to that of the NN model with which the results are found to be in excellent
agreement. The present study verifies the robustness of soft computing techniques
for the modeling and analysis of various engineering problems where it is difficult to

obtain a mathematical model.
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3. Dynamic experiments were carried out in SI engine to identify and model the
system. The most common nonlinear black-box parametric models namely
Hammerstein model and nonlinear auto-regressive with exogenous inputs (NARX)
model were developed. And also different neural network structures are used to

identify nonlinear dynamic models for the SI engine torque.

4. Nonlinear system modeling approaches with parametric representation are
investigated. Volterra series, Hammerstein, Wiener, and NARMAX models are
explained in detail. Identification of nonlinear systems using the above mentioned

model structures are discussed. Algorithms for the identification processes are given.

5. The experimental study on nonlinear modeling and identification of a SI engine
torque from input-output data is presented. The nonlinear model is developed for the
system. A nonlinear representation and identification approach using the nonlinear
Hammerstein system structure is used for the present system. A suitable
experimental setup is built and tested using the RLS identification algorithm for the
nonlinear case. The measured data obtained experimental setup is used by a
computer program that runs in Matlab environment to identify unknown system
parameters. The results are numerically and graphically demonstrated. Inspection of
the identification results reveals that the identification procedure generates a highly
accurate estimated response to input variations even in fast transient phases and high

frequency load effects.

6. In this study, a nonlinear model of the SI engine torque is obtained. A procedure
to provide the nonlinear model of the dynamics between the throttle valve command
and torque of a gasoline engine, directly from raw data is presented. The nonlinear
system model is built and a sigmoid based nonlinear ARX model is developed using
the input and output data. The model parameters were estimated using an iterative
prediction-error minimization method. The nonlinear system identification with fifth
order nonlinear dynamics is found to give the best result. The model validation
results concluded that the selected model order has the potential of capturing the

nonlinearity of the process.
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7. In this thesis, the artificial neural networks is considered from the identification
perspective. It is well known that the concept of identification plays an important
role in the systems and control area. This, mainly, stems from the fact that we
generally want to obtain an approximate model of the system, such that the resulting
model is mathematically tractable and closely matches the system dynamics. Neural
networks were proven to be successful identifiers, because they can learn any kind of
nonlinear mapping with any degree of accuracy. From this point of view, neural
networks can identify a system so that the identification model could be used to
devise a controller. Training range is another important point in the neural
identification procedure. The backpropagation, backpropagation with adaptive
learning rate, backpropagation with momentum and Levenberg-Marquardt (LM)
training algorithms of Matlab were tested, the LM algorithm was found to be the
fastest training algorithm, but requiring more memory with the same error

convergence bound compared to the other algorithms.

8. In this study, different neural network structures are used to identify nonlinear
dynamic models for the SI engine torque. System identification is done using the
input-output test data. The test data must incorporate all the properties of the system.
So the way system identification experiment is performed is very crucial. In this
thesis, considering the engine as a single-input single-output (SISO) system, the
basic input variable is the throttle valve position u, while the model output is the
engine torque y. In engine data collection, the input-output data must be
representative of engine behavior in order to identify the engine. This means that
input and output signals should adequately cover the region in which the system is
going to be modeled. A set of Pseudo Random Binary Signal (PRBS) signals are
often very suitable as process inputs because they excite the process at a wide range
of amplitudes and frequencies. To create the disturbances needed to perform
identification of the process, PRBS’s were used. A PRBS was designed for throttle
angle position to obtain a representative set of input-output data. A set of data
samples, including the throttle valve position and the torque was collected for the
system identification. Each set contains 2000 data samples. The neural network
training is performed off-line utilizing a previously generated training data set. The
neural network based black-box method is used to model the SI engine torque

dynamics taking into account the interaction between the input and output of the
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SISO system. NARX model is used in this study because a wide class of nonlinear

systems can be described by NARX.

9. The first type of neural network to be developed here is the feedforward neural
network (FFNN) model. Feedforward networks with a range of hidden layer neurons
were tested. A two-layer feedforward neural network with eight input neurons, ten
neurons in the hidden layer and one output neuron, denoted as 8-10-1, has been used
in the network. The learning algorithm used in the study is Levenberg-Marquardt
(LM); activation function is tan-sigmoid (tansig) transfer functions. The feedforward

networks modeled the SI engine torque well.

10. The second type of neural network to be developed is the Radial Basis Function
(RBF) neural network model. The structure of a RBF neural network with the orders

of the input variables is, respectively n, =4 and n, =4. Orthogonal Least Squares

(OLS) method is adopted to determine RBF neural networks centers. The obtained
results have shown that the modeling accuracy is high and it is feasible to setup the
model of the nonlinear SI engine torque system based on RBF neural networks
identification. The most important is that the modeling process avoids complicated
dynamical modeling and avoids using complicated differential equation groups to
model the torque of a SI engine, and the input-output performance can be achieved

quickly by the neural network model.

11. Finally, Elman type recurrent neural network is developed for SI engine torque
modeling. Choosing Elman neural network with input layer of eight neurons, hidden
layer of ten neurons and output layer of one neuron, then the topology structure of
Elman neural network of SI engine torque is 8-10-1, has been used in the network.
The learning algorithm used in the study is Levenberg-Marquardt (LM); the
activation function of hidden layer neurons is tan-sigmoid (tansig), while it is purelin
of output layer. The obtained results have shown that the SI engine torque has been
identified successfully. The extracted model has predicted the system behavior well.

Identified models have been verified on a real system with equally accurate results.

185



12. Different neural network structures are used to analyze the performance of neural
network methodologies from the point of system identification. The neural network
based model captures the dynamics very well and the method is suitable for
modeling the SI engine torque. The Elman recurrent neural network slightly
outperformed the feedforward network with a high correlation coefficient (R) and a
low mean absolute percentage error (MAPE), and also a low mean square error
(MSE). However all three approaches identified the SI engine torque dynamics well.
The experimental results presented in this thesis show that the neural network based
models are promising for modeling for the purpose of control of automotive engines.
In addition, the obtained neural models show good performance in the form of

generalization capability and robustness.

9.1 Recommendations for Future Work

System identification is the process of developing a mathematical model of a
dynamic system based on the input and output data from the actual process. This
means it is possible to sample the input and output signals of a system and using this
data to generate a mathematical model. An important stage in control systems design
is the development of a mathematical model of the system to be controlled. In order
to develop a controller, it must be possible to analyze the system to be controlled and
this is done using a mathematical model. Another advantage of system identification
is evident if the process is changed or modified. System identification allows the real
system to be altered without having to derive the dynamical equations and measuring

the model parameters again.

It is obvious that artificial intelligence techniques or specifically soft computing
approaches such as Fuzzy logic, NNs, Genetic Algorithm and Genetic Programming,
will have much more profound application areas in the future for nonlinear system

identification and control area.

The following can be suggested for future studies:

1. The existing SI engine can be upgraded by adding measurement device to

identify and model the other SI engine parameters such as, the inlet manifold
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pressure and the temperature, the engine speed, the air/fuel ratio, the air mass flow

rate, the fuel mass flow rate etc.

2. The developed nonlinear models can be used to predict the SI engine torque off-

line which makes it possible to design an off-line controller for SI engine torque.

3. The dynamical systems contain nonlinear relations which are difficult to model
with conventional techniques. In this study, the nonlinear modeling techniques such
as Hammerstein model, NARX model and neural network model have been
successfully applied to unknown nonlinear system identification and modeling. Other
system identification methods have been applied for efficiently identification and
modeling the SI engine dynamics and other nonlinear dynamic systems such as,

genetic programming identification, Fuzzy logic and neuro-fuzzy systems (ANFIS).

4. The system identification problem requires a suitable excitation signal. Usually a
signal, which is sufficiently rich and persistently exciting all the system modes, is
selected. In this study, Pseudo Random Binary Signal (PRBS) was designed for
throttle angle position to obtain a representative set of input-output data. And also,
other signals such as random amplitude signals (RAS), random Gaussian signals

(RGS) and etc. can be used as the training input signal.
5. ICE modeling is still an open field of research due to the antithetical needs of

describing a very complex, nonlinear system and driving simple model structures

suitable for the control synthesis or diagnosis phase.
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APPENDIX 1: IDENTIFICATION OF THE GENERAL NARMAX MODEL

The NARMAX representation of nonlinear systems includes both input and output
nonlinearity. The output nonlinearity is assumed to be an invertible one, which
considerably simplifies the procedure of identification. The method that will be
discussed in this section for the identification of the NARMAX model is the nonlinear

recursive extended least squares (NRELS) method [152].

The general NARMAX system given in Figure 4.7 is considered. The overall system

input-output relationship is given by:

v, (k)=F (%(%E(u(k)ﬂ%% é(k)J (A.1)
Then,
Alg™)F, (v 0) = Blg™)F, (k) + g™ k)

A(q_l XYO (k) + fooyo (k) +...+ Jony, Yo' (k)): B(‘]_l )(M(k) + frou® (k) +...
(A.2)

oot fo w0 (k) + Clg™ G
The equation above can be written in the form below:

Yo (k) = @(k)6 + & (k) (A.3)
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where

o(k) =[-y,(k=1),....—y,(k—n, ),—yé (k),...,—yé (k=n,)s....m Yy (k),...,=yy (k—n,),

u(k),...,u(k —n,),u’(k),...,u” (k=n,),...,u"" (k),...,u" (k—n,),Ek =1),....,E(k —n,)]

T _
0" =lay,....a,  fo, @ -fors-- sty Sozseees fouysee @ Son,, »

bysbyseeisby By fgseishy Frsesbg S oDy Fonr sCraeensy ]

One can see that the linear regression model given in (A.3) allows the estimation of
the parameters a;, b; c; and fy;, which explicitly appear in the parameter vector 0.
However, the parameters of the input nonlinearity, f;; do not appear explicitly, but the

products b, .f, can be estimated. Consequently, the parameters f; can simply be

estimated using ordinary least squares algorithm [152].
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APPENDIX 2: SPECIFICATIONS OF THE DYNOMOMETER

Engine torque was measured with a dynamometer. Water brake dynamometer was
used to measure engine torque at different speeds; by changing the water level in the
dynamometer, the load applied to the engine could be varied. The specifications of

the dynamometer are given in table below.

Table A.1 Specifications of Go Power System DA 516 model water brake

dynamometer
Type of absorption Water brake
Construction High strength aluminum alloy

Loading capacity
Maximum allowable speed
Torque transducer system
Rotation direction

Inlet water flow rate

Inlet water pressure

Water outlet

Measuring device
Maximum torque capacity

Weight

100 HP

7400 rpm

Hydraulic load cell

Clockwise or counterclockwise
221/

240 kPa

Gravity drain to atmosphere
Pressure transducer

1017 Nm

43 kg
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APPENDIX 3: SPECIFICATIONS OF THE PRESURE TRANSDUCER

Pressure transducer was mounted on the hydraulic load cell of the dynamometer. The

specifications of the Cole Parmer C-68075-50 pressure transducer are given in table

below.

Table A.2 Cole Parmer C-68075-50 transducer specifications

Range

Application

Accuracy

Output

Temperature range (compensated)
Operating temperature
Electrical connections
Process connection
Dimensions

Power

Wetted parts

0 to 250 psig

Torque measurement
+0.25 % full-scale
05t055V

-4° to 176°F (-20° to 80°C)
-40° to 260°F (-40° to 125°C)
2-ft cable

1/4" NPT(M)

23/4"Lx 1 1/2" dia

9to 30 VDC

17-4 PH stainless steel

|

Figure B.1 Cole Parmer C-68075-50 transducer
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APPENDIX 4: TECHNICAL SPECIFICATIONS OF THE SERVO MOTOR

Throttle valve position is controlled by servo motor which has a 0.75 kW and 3000

rpm. The specifications of the used servo motor are given in table below.

Table A.3 Specifications of the ECMA-C30807GS servo motor

Rated output power 750 W

Rated torque 2.39 Nm

Rated speed 3000 rpm

Rated current 5.1 A

Armature resistance 0.42 Ohm

Armature inductance 3.53 mH

Insulation resistance >100 MQ, DC 500V
Insulation strength 1500 V AC, 60 seconds
Operating temperature 0°C to 40°C (32°F to 104°F)
Storage temperature -10°C to 80°C (-14°F to 176°F)
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APPENDIX 5: SPECIFICATIONS OF THE DATA ACQUISITON CARD

DT 304 is a family of low cost multi function data acquisition board and is connected

at PCI bus of computer. The specifications of the used data acquisition card are given

in table below.

Table A.4 Specifications of the DT 304 Data acquisition card

Dimensions
Operating temperature range
Storage temperature range

Accessories

Resolution
Analog input
Number of analog input channels

Input ranges

Sampling rate

Maximum input voltage

Analog output

Number of analog output channels

Output range

Sampling rate

Digital I/O

Number of lines

High level input voltage
Output driver high voltage

Number of counter/timer channels

8.5 inches (length) by 4.2 inches (width)
0°Cto 70 °C
-25°C to 85°C

STP 300 Screw Terminal panel and
EP 305 cable
12 bits

16 single ended, 8 differential

+10, £5, £2.5, £1.25 V bipolar
0-10, 5, 2.5, 1.25 V unipolar
400 kS/s@0.03% accuracy

+40 V (protection)

2 (Voltage output)

+10Vor+5V
0to 10,5V
10 kS/s

8 bidirectional
2 V minimum
2.4 V minimum

4
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