
 

UNIVERSITY OF GAZĐANTEP  
GRADUATE SCHOOL OF  

NATURAL & APPLIED SCIENCES 
 
 
 

 
 
 

MODELLING AND IDENTIFICATION OF 
AN INTERNAL COMBUSTION ENGINE 

TO PROVIDE SIMULATOR FOR 
CONTROL PURPOSES 

 
 
 
 
 
 
 
 
 
 
 
 

Ph.D THESIS 
IN 

 MECHANICAL ENGINEERING  
 
 
 
 
 
 
 

BY 
NECLA KARA TOĞUN 

SEPTEMBER 2010 
 
 
 



 
 
 
 
 
 

 
 

Modelling and Identification of an Internal 
Combustion Engine to Provide Simulator for Control 

Purposes 
 
 
 
 
 
 
 
 

 PhD Thesis 
in 

Mechanical Engineering 

University of Gaziantep 
 
 
 
 
 
 
 
 

 

Supervisor  
Prof. Dr. Sedat BAYSEÇ 

 
 
 
 

 
 

by 

Necla KARA TOĞUN 

September 2010 

 



T.C. 
UNIVERSITY OF GAZĐANTEP 

GRADUATE SCHOOL OF  
NATURAL & APPLIED SCIENCES 

NAME OF THE DEPARTMENT 
Name of the thesis   : Modelling and identification of an internal combustion engine to   
                                   provide simulator for control purposes 
Name of the student: Necla KARA TOĞUN 
Exam date                : 03.09.2010 
 
Approval of the Graduate School of Natural and Applied Sciences 
 
 
                                                 

 
 

                  Prof. Dr. Ramazan KOÇ                                    
                                                      
 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor of 
Philosophy. 
 
 
 
 
                                               

                                                   Prof. Dr. L. Canan DÜLGER 
                                                                           Head of Department 
 
This is to certify that we have read this thesis and that in our opinion it is fully adequate, in 
scope and quality, as a thesis for the degree of Doctor of Philosophy. 
 
 
 
 
         Prof. Dr. Sedat BAYSEÇ 

                                                                                        Supervisor                       
 
 
Examining Committee Members        signature 
     
                                                           
Prof. Dr. Đbrahim Deniz AKÇALI 
            
Prof. Dr. Sedat BAYSEÇ 
         
Prof. Dr. Đbrahim Halil GÜZELBEY 
 
Prof. Dr. L. Canan DÜLGER 
 
Assoc. Prof. Dr. Đlyas EKER



 iii

ABSTRACT 
 

MODELLING AND IDENTIFICATION OF AN INTERNAL 
COMBUSTION ENGINE TO PROVIDE SIMULATOR FOR CONTROL 

PURPOSES 
 
 

TOĞUN, Necla KARA 
Ph.D. in Mechanical Engineering. 

Supervisor: Prof. Dr. Sedat BAYSEÇ 
August 2010, 222 pages 

 
Field of “System Identification” has become an important discipline. Identification is 
basically the process of developing a mathematical representation of a physical 
system using experimental data. The identification of nonlinear dynamical systems is 
a substantial part of the control science and therefore appropriate models should be 
developed to control nonlinear dynamic systems. The main idea that lies under the 
procedure is to obtain a regular and mathematically tractable model of the system of 
interest. Automotive internal combustion engine (ICE) control is one of the most 
complex control problems for control system engineers and researchers. Among all 
the engine control variables, the engine torque is one of the most important 
performance variables of an ICE and, for this reason, a technique based on 
optimizing the engine torque control can improve substantially the performance of 
the overall vehicle. There are two objective of this work. First one is to develop a 
steady-state model of a gasoline engine torque and brake specific fuel consumption 
by using neural network and genetic programming and second one is to develop an 
accurate and robust model of a spark ignition (SI) engine torque by using the most 
common nonlinear black-box parametric models namely Hammerstein model, 
nonlinear auto-regressive with exogenous inputs (NARX) model and neural network 
model that is including multilayer feedforward neural network (FFNN) model, radial 
basis function (RBF) neural network model and Elman type recurrent neural network 
model. These developed methods are implemented to an existing 1400 cc, four 
cylinder Fiat SI engine. The artificial neural network (ANN) is a newly developed 
technique among the other identification methods. There are various methods used 
for training of ANN. Two of them are included in this study. These are, namely, the 
bacpropagation method and the Levenberg-Marquardt algorithm. The different 
nonlinear identification approaches are used in this thesis. The neural network based 
model has captured the dynamics very well and the method has been found suitable 
for modeling the SI engine torque. However all the nonlinear identification methods 
identified the SI engine torque dynamics at acceptable levels of accuracy. 

 
Key Words: SI engine, engine torque identification, nonlinear modeling, nonlinear 
identification, Hammerstein model, NARX model, neural networks, genetic 
programming
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ÖZET 
 

ĐÇTEN YANMALI BĐR MOTORUN KONTROL AMAÇLI 
SĐMULATORÜNÜN SAĞLANMASI ĐÇĐN MODELLENMESĐ VE 

TANIMLANMASI 
 
 

TOĞUN, Necla KARA 
Doktora Tezi, Makina Müh. Bölümü 

Tez Yöneticisi: Prof. Dr. Sedat BAYSEÇ 
Ağustos 2010, 222 sayfa 

 

Sistem tanımlanması alanı önemli disiplin haline gelmiştir. Tanımlama temelde 

fiziksel bir sistemi deneysel verileri kullanarak matematiksel olarak modelinin 

geliştirilmesidir. Doğrusal olmayan dinamik sistemlerin tanımlanması kontrol için 

önemli bir bölümdür. Bu nedenle, uygun modeller doğrusal olmayan dinamik 

sistemleri kontrol etmek için geliştirilmelidir. Prosedürün altında yatan ana düşünce 

ilgilenilen sisteme ilişkin düzenli ve matematiksel olarak kolay işlenebilir bir 

modelin elde edilmesidir.  Otomotiv içten yanmalı motor kontrolü, kontrol sistem 

mühendisleri ve araştırmacılar için en karmaşık kontrol sorunlarından biridir. Tüm 

motor kontrol değişkenleri arasında motor torku bir motorun en önemli performans 

değişkenlerinden biridir. Bu nedenle, bir tork kontrol sistemi tüm aracın büyük 

ölçüde performansını arttırabilir. Bu çalışmanın iki amacı vardır. Birincisi, benzinli 

bir motor torkunu ve özgül yakıt tüketimini yapay sinir ağları ve genetik 

programlama kullanarak kararlı hal modelini geliştirmektir. Đkincisi, benzinli bir 

motorun torkunun en yaygın doğrusal olmayan Hammerstein and NARX parametrik 

modeli kullanılarak oluşturulması ve ileri beslemeli, radyal tabanlı ve Elman tipi 

yinelenen yapay sinir ağı modelinin doğru ve kesin olarak geliştirilmesidir. Bu 

geliştirlen metotlar 1400 hacimli 4 silindirli fiat marka benzinli bir motora 

uygulanmıştır.  Yapay sinir ağları (YSA) tanımlama yöntemleri arasında yeni 

geliştirilmiş bir tekniktir. Yapay sinir ağlarının eğitiminde birçok yöntem 

kullanılmaktadır. Bu çalışmada iki yöntem ele alınmıştır: hata geriye yayma yöntemi 

ve Levenberg-Marquardt algoritmasıdır. Bu tezde farklı doğrusal olmayan 

tanımlama yaklaşımları kullanılmıştır. Bunlar arasından yapay sinir ağları tabanlı 

model sistem dinamiklerini çok iyi yakalamıştır ve bu model benzinli bir motor 

torkunu modellemek için uygundur. Ancak, tüm doğrusal olmayan tanımlama 

metotları doğruluğu kabul edilebilir düzeyde bir motor tork dinamiğini tanımlamıştır.  
  
Anahtar Kelimeler: Benzinli motor, motor tork tanımlama, doğrusal olmayan 
modelleme, doğrusal olmayan tanımlama, Hammerstein model, NARX model, sinir 
ağları, genetik programlama 



 v 

ACKNOWLEDGEMENTS 
 
 

First of all, I would like to express my sincere gratitude to Prof. Dr. Sedat BAYSEÇ 

without whose guidance, encouragement and advice, this thesis would not have been 

a reality. He motivated me to pursue my studies in all stages of the thesis.  

 
I would also like to thank the other members of my PhD committee who monitored 

my work and took effort in reading and providing me valuable comments on earlier 

versions of this thesis: Prof. Dr. Đbrahim Deniz AKÇALI and Prof. Dr. L. Canan 

DÜLGER. I sincerely thank Prof. Dr. Đbrahim GÜZELBEY for his valuable advices.  

 

I would like to express my deepest gratitude to Dr. Orhan ARPA from Department of 

Mechanical Engineering Dicle University for his support. I would like to thank Dr. 

Tolgay KARA for his support.   

 
I would like to emphasize my love and encomium to my mother and my father, my 

dear husband Đsmail, my lovely daughter Elif Nisa, my sister and my brothers and 

my friends in mechanical engineering department for their continuous 

encouragement in idiomorphic time. My efforts would have been fruitless without 

their zeal to support me throughout this study.  

 

 



 vi

 
 
 
 
 
CONTENTS 

 

ABSTRACT ........................................................................................................... iii 

ÖZET  ................................................................................................................ iv 

ACKNOWLEDGEMENTS ......................................................................................v 

CONTENTS ........................................................................................................... vi 

LIST OF FIGURES ..................................................................................................x 

LIST OF TABLES ................................................................................................ xiii 

LIST OF SYMBOLS .............................................................................................xiv 

CHAPTER 1: INTRODUCTION ..............................................................................1 

1.1 Motivation of the Thesis ............................................................................1 

1.2 The Purpose and Contribution of the Thesis ..............................................4 

1.3 Layout of the Thesis ..................................................................................5 

CHAPTER 2: LITERATURE SURVEY  ..................................................................7 

2.1 Introduction ...............................................................................................7 

2.2 Classical Nonlinear Identification of the Engine ........................................7 

2.3 Artificial Neural Network Approach for Nonlinear Identification of Engine 

  ................................................................................................................ 16 

2.4 Genetic Programming Approach for Nonlinear Identification of Engine .. 31 

2.5 Conclusions ............................................................................................. 36 

CHAPTER 3: DYNAMIC MODELING OF RECIPROCATING ENGINE ............ 38 

3.1 Introduction ............................................................................................. 38 

3.2 Equation of Motion for a Slider-Crank Mechanism .................................. 38 

3.3 Kinematic Analysis ................................................................................. 47 

3.4 Dynamic Model Results .......................................................................... 47 

3.5 Conclusions ............................................................................................. 50 

CHAPTER 4: SYSTEM IDENTIFICATION .......................................................... 51 

4.1 Introduction ............................................................................................. 51 

4.2 Nonlinear System Identification .............................................................. 53 

4.2.1 Nonlinear System Representation ........................................................ 53 



 vii

4.2.1.1 Volterra Series Model .................................................................. 55 

4.2.1.2 Wiener Model .............................................................................. 55 

4.2.1.3 Hammerstein Model..................................................................... 56 

4.2.1.4 NARMAX Model ........................................................................ 58 

4.3 Identification of Hammerstein Model ...................................................... 59 

4.4 Conclusions ............................................................................................. 62 

CHAPTER 5: ARTIFICIAL NEURAL NETWORK ............................................... 63 

5.1 Introduction ............................................................................................. 63 

5.2 History of Neural Networks ..................................................................... 64 

5.3 Biological and Artificial Neurons ............................................................ 65 

5.4 Types of Activation Function .................................................................. 67 

5.5 Neural Network Architectures ................................................................. 68 

5.5.1 Multilayer Perceptron  Feedforward Neural Network ........................... 68 

5.5.2 Radial Basis Function Neural Network ................................................ 70 

5.5.3 Recurrent Neural Network ................................................................... 72 

5.5.3.1 Elman Recurrent Neural Network ................................................ 74 

5.6 Learning Algorithm ................................................................................. 76 

5.6.1 Backpropagation Algorithm ................................................................. 77 

5.6.2 Levenberg-Marquardt Algorithm ......................................................... 78 

5.7 Neural Networks for Identification of Nonlinear Dynamic Systems ......... 80 

5.7.1 External Dynamics .............................................................................. 82 

5.7.2 Internal Dynamics ............................................................................... 83 

5.7.3 Training Feedforward and Recurrent Structures ................................... 83 

5.7.4 Choosing a Model................................................................................ 84 

5.8 Conclusions ............................................................................................. 85 

CHAPTER 6: MEAN VALUE MODEL OF A SPARK IGNITION ENGINE ........ 86 

6.1 Introduction ............................................................................................. 86 

6.2 Intake Manifold Filling Dynamics ........................................................... 89 

6.2.1 Throttle Body Flow ............................................................................. 89 

6.2.2 Cylinder Flow ...................................................................................... 91 

6.3 Fueling Dynamics ................................................................................... 91 

6.4 Crankshaft Speed Dynamics .................................................................... 93 

6.4.1 Indicated Combustion Torque .............................................................. 93 

6.4.2 Friction and Pumping Losses ............................................................... 94 



 viii

6.5 Conclusions ............................................................................................. 95 

CHAPTER 7: EXPERIMENTAL SET-UP AND MEASUREMENT DEVICES..... 96 

7.1 Introduction ............................................................................................. 96 

7.2 The Experimental Set-up ......................................................................... 96 

7.2.1 Torque Measurement ........................................................................... 98 

7.2.2 Mass Fuel Flow Rate Measurement ................................................... 101 

7.2.3 Servo Motor ...................................................................................... 101 

7.2.4 Data Acquisition ................................................................................ 102 

7.2.5 Matlab Toolbox ................................................................................. 104 

7.3 Experimental Procedure for Steady-State Condition .............................. 104 

7.4 Experimental Procedure for Dynamic Condition .................................... 105 

7.5 Uncertainty Analysis ............................................................................. 105 

CHAPTER 8: CASE STUDIES ............................................................................ 110 

8.1 Introduction ........................................................................................... 110 

8.2 Case Studies .......................................................................................... 111 

8.2.1 Prediction of torque and specific fuel consumption of a gasoline engine 

by using artificial neural networks ..................................................... 111 

8.2.1.1 Introduction ............................................................................... 111 

8.2.1.2 Artificial Neural Network Model and Parameters ....................... 113 

8.2.1.3 Analysis Results ........................................................................ 114 

8.2.1.4 Conclusions ............................................................................... 119 

8.2.2 Genetic programming approach to predict torque and brake specific fuel 

consumption of a gasoline engine ...................................................... 120 

8.2.2.1 Introduction ............................................................................... 120 

8.2.2.2 Overview of Genetic Expression Programming (GEP) ............... 123 

8.2.2.3 Modeling with GP ...................................................................... 125 

8.2.2.4 Results and Discussion ............................................................... 127 

8.2.2.5 GP vs Neural Network (NN) ...................................................... 131 

8.2.2.6 Conclusions ............................................................................... 132 

8.2.3 Nonlinear modeling and identification of a spark ignition engine torque 

using Hammerstein model ................................................................. 133 

8.2.3.1 Introduction ............................................................................... 133 

8.2.3.2 Simplified Mean-value SI Engine Model ................................... 136 

8.2.3.3 Nonlinear System Identification ................................................. 139 



 ix

8.2.3.4 Hammerstein Model of Nonlinear SI Engine Dynamics ............. 143 

8.2.3.5 Identification Results ................................................................. 144 

8.2.3.6 Model Validation ....................................................................... 147 

8.2.3.7 Conclusions ............................................................................... 148 

8.2.4 Nonlinear modeling and identification of a spark ignition engine torque 

using NARX model ........................................................................... 149 

8.2.4.1 Introduction ............................................................................... 149 

8.2.4.2 NARX Model ............................................................................ 150 

8.2.4.3 Identification Results ................................................................. 152 

8.2.4.4 NARX Model Validation ........................................................... 156 

8.2.4.5 Conclusions ............................................................................... 158 

8.2.5 A comparative study of neural network structures in identification of 

gasoline engine torque ....................................................................... 159 

8.2.5.1 Introduction ............................................................................... 159 

8.2.5.2 Neural Network System Identification ....................................... 161 

8.2.5.2.1 Feed Forward Neural Networks (FFNN) for System 

Identification ........................................................................ 163 

8.2.5.2.2 Radial Basis Function (RBF) Neural Networks for System 

Identification ........................................................................ 169 

8.2.5.2.3 Recurrent Neural Networks (RNN) for System Identification174 

8.2.5.3 Comparison of the Three Approaches ........................................ 179 

8.2.5.4 Conclusions ............................................................................... 180 

CHAPTER 9: CONCLUSIONS ............................................................................ 182 

9.1 Recommendations for Future Work ....................................................... 186 

REFERENCES ..................................................................................................... 188 

APPENDIX 1: IDENTIFICATION OF THE GENERAL NARMAX MODEL ..... 215 

APPENDIX 2: SPECIFICATIONS OF THE DYNOMOMETER ......................... 217 

APPENDIX 3: SPECIFICATIONS OF THE PRESURE TRANSDUCER ............ 218 

APPENDIX 4: TECHNICAL SPECIFICATIONS OF THE SERVO MOTOR ..... 219 

APPENDIX 5: SPECIFICATIONS OF THE DATA ACQUISITON CARD ......... 220 

CURRICULUM VITAE ....................................................................................... 221 



 x 

 
 
 
 
 
LIST OF FIGURES 

 

Figure 3.1 Slider-crank mechanism ......................................................................... 39 

Figure 3.2 A four-cylinder in-line engine ................................................................ 46 

Figure 3.3 Numerical results of a slider crank mechanism for a) angle θ b) angular       

velocity θ&  c) the angular acceleration θ&& of the crank .............................................. 48 

Figure 3.4 Numerical results of a slider crank mechanism for a) displacement b) 

speed and c) acceleration of a slider ........................................................................ 49 

Figure 3.5 Kinetic, potential and total energy of a slider-crank mechanism ............. 50 

Figure 4.1 A dynamic system with input )(tu , output )(ty and disturbance )(tv , where 

t denotes time [27] .................................................................................................. 51 

Figure 4.2 Schematic flowchart of system identification [27] .................................. 52 

Figure 4.3 Overview of system identification methods [78] ..................................... 54 

Figure 4.4 Nonlinear system with additive noise ..................................................... 55 

Figure 4.5 General Wiener model structure ............................................................. 55 

Figure 4.6 Hammerstein model structure ................................................................. 57 

Figure 4.7 General NARMAX system structure [152] ............................................. 58 

Figure 5.1 A simplified model of a biological neuron [156] .................................... 65 

Figure 5.2 A simplified model of an artificial neuron [156] ..................................... 66 

Figure 5.3 Basic elements of an artificial neuron ..................................................... 66 

Figure 5.4 Multilayer perceptron neural network structure ...................................... 69 

Figure 5.5 Radial basis function neural network structure ....................................... 71 

Figure 5.6 Recurrent neural network structure ......................................................... 73 

Figure 5.7 Elman recurrent neural network structure ............................................... 74 

Figure 5.8 a) Series-parallel model b) parallel model .............................................. 81 

Figure 6.1 Main system’s input/output signals in a COM of an SI engine ................ 87 

Figure 6.2 Mean-value SI engine structure [172] ..................................................... 87 

Figure 6.3 Cause and effect diagram of an SI engine system [172] .......................... 88 

Figure 6.4 Throttle body flow ................................................................................. 90 

Figure 7.1 Schematics of test engine and setup ........................................................ 97 



 xi

Figure 7.2 Photograph of the SI test engine ............................................................. 97 

Figure 7.3 Schematic representations of water brake dynamometer and measurement 

devices. 1) Dynamometer body, 2) jam nut, 3) end push rod, 4) hydraulic load cell, 

5) digital voltmeter, 6) electrical power supply, 7) transducer ............................... 100 

Figure 7.4 Go Power System DA 516 model water brake dynamometer ................ 100 

Figure 7.5 Schematic representations of throttle valve position control and control 

unit on it. 1) throttle valve, 2) servo motor, 3) control panel, 4) data logger 5) 

computer. .............................................................................................................. 102 

Figure 7.6 Photograph of the throttle valve position control .................................. 102 

Figure 7.7 DT 304 Data Acquisition Card [180] .................................................... 103 

Figure 7.8 Data Translation STP 300 Screw Terminal Panel and EP305 Cable [180]

 ............................................................................................................................. 103 

Figure 8.1 Architecture of proposed NN model ..................................................... 114 

Figure 8.2 Prediction of NN and actual values for training sets (a) T (b) BSFC ..... 115 

Figure 8.3 Prediction of NN and actual values for testing sets (a) T (b) BSFC ....... 116 

Figure 8.4 Percentage error of training set (a) T (b) BSFC .................................... 116 

Figure 8.5 Percentage error of testing set (a) T (b) BSFC ...................................... 117 

Figure 8.6 Genetic Programming Flowchart [206] ................................................ 124 

Figure 8.7 Expression tree (ET) ............................................................................ 125 

Figure 8.8 Expression tree for engine torque ......................................................... 129 

Figure 8.9 Expression tree for brake specific fuel consumption ............................. 130 

Figure 8.10 GP vs test results for (a) torque and (b) BSFC .................................... 131 

Figure 8.11 Simplified mean-value schematic SI engine diagram .......................... 137 

Figure 8.12 Simplified conceptual throttle model .................................................. 138 

Figure 8.13 Simplified conceptual torque generation model .................................. 139 

Figure 8.14 Hammerstein system structure ............................................................ 140 

Figure 8.15 Hammerstein model for torque generation .......................................... 143 

Figure 8.16 Hammerstein model of SI engine dynamics ........................................ 144 

Figure 8.17 Results of the identification experiment. Torque response of the SI 

engine is given in solid line, and estimated torque recorded through recursions is 

given in dotted line ............................................................................................... 145 

Figure 8.18 Validation of identification results. Torque response of the SI engine to a 

PRBS input is given in solid line, and simulated response of the obtained 

Hammerstein model is given in dotted line ............................................................ 146 



 xii

Figure 8.19 Validation of identification results by a different set of data. Torque 

response of the SI engine to a square wave input is given in solid line, and simulated 

response of the obtained Hammerstein model is given in dotted line ..................... 147 

Figure 8.20 NARX model structure ....................................................................... 151 

Figure 8.21 PRBS of the throttle valve position (bottom) and measured values of 

torque (top) ........................................................................................................... 155 

Figure 8.22 Results of the identification experiment. Torque response of the SI 

engine is given in solid line, and NARX model estimated torque is given in dotted 

line ....................................................................................................................... 156 

Figure 8.23 Validation of identification results. Torque response of the SI engine to 

PRBS input is given in solid line, and simulated response of the obtained NARX 

model is given in dotted line ................................................................................. 157 

Figure 8.24 Series- parallel model for neural network identification ...................... 162 

Figure 8.25 FFNN architecture .............................................................................. 167 

Figure 8.26 Modeling results of the FFNN model with identification experiment  168 

Figure 8.27 Modeling results of the FFNN model with validation of identification 

results ................................................................................................................... 168 

Figure 8.28 RBF neural network structure ............................................................. 172 

Figure 8.29 Modeling results of the RBF neural network model with identification 

experiment ............................................................................................................ 173 

Figure 8.30 Modeling results of the RBF neural network model with validation of 

identification results .............................................................................................. 174 

Figure 8.31 Structure of Elman neural network ..................................................... 175 

Figure 8.32 Modeling results of the Elman NN model with identification experiment

 ............................................................................................................................. 178 

Figure 8.33 Modeling results of the Elman NN model with validation of 

identification results .............................................................................................. 178 



 xiii

LIST OF TABLES 

 

Table 3.1 Fiat Tofaş 131 motor parameters ............................................................. 39 

Table 5.1 Types of activation function .................................................................... 67 

Table 7.1 Test engine specifications ........................................................................ 98 

Table 7.2 Uncertainty values for measurements .................................................... 109 

Table 8.1 Range of input-output parameters in training-testing phase and 

normalization values ............................................................................................. 115 

Table 8.2 Statistical parameters of train and test sets ............................................. 115 

Table 8.3 Variables used in model construction .................................................... 126 

Table 8.4 Parameters of the GP model .................................................................. 126 

Table 8.5 Statistical results of GP and NN models for training and testing sets...... 132 

Table 8.6 Estimates of Hammerstein model parameters ........................................ 145 

Table 8.7 MSE values for nonlinear identification experiments ............................. 148 

Table 8.8 MSE values and nonlinear parameters for nonlinear identification with 

different polynomial orders ................................................................................... 148 

Table 8.9 Parameters of SISO NARX models ....................................................... 153 

Table 8.10 MSE values for nonlinear identification experiments ........................... 158 

Table 8.11 Performance comparison for neural models ......................................... 166 

Table 8.12 Performance comparison for Elman neural network model .................. 176 

Table 8.13 Statistical performance of three approaches ......................................... 180 

 

 

 

 

 

 

 



 xiv

LIST OF SYMBOLS 

 

bi constant term (bias) 

FE external disturbance force 

FB friction force 

g gravitational acceleration (m/s2)  

Ic the centroidal mass moment of inertia (kg.m2) 

J Jacobian matrix for Levenberg-Marquardt algorithm 

l2 connecting rod length (mm) 

L Lagrange function 

m  mass (kg) 

m&  mass flow rate (kg/sec) 

r1 crankshaft radius (mm) 

t time 

T the kinetic energy of a slider-crank mechanism  

ui weighted average obtained by combining all input numerical information                           

from upstream nodes 

)(tu   input variables 

)(tv  disturbances 

)(ty  output variables 

V the potential energy of a slider-crank mechanism  

xj activation for each node 

wij weight values 

x∂  virtual displacement 

θ∂  virtual angle 

AW∂  virtual work 

atm&  air mass flow rate past through throttle plate 

 

 



 xv 

apm&  air mass flow rate into the intake port 

P pressure (pa or bar) 

R ideal gas constant (J/kg K) 

T temperature (C) 

V volume (m3) 

cd  discharge coefficient 

A area (m2) 

ω speed (rad/sec) 

θ the angle position of the crank (rad) 

 

 

Abbreviations 
 

AFR Air-fuel ratio 

AI   Artificial Intelligence 

ANFIS   Neuro-fuzzy inference systems 

ANN   Artificial neural network 

ARMA  Autoregressive moving average 

ARMAX  Autoregressive moving average with exogenous input 

ARX   Auto-regressive with exogenous inputs 

BP   Back-propagation  

BSFC   Brake specific fuel consumption 

CA   Crank angle 

COM   Control oriented models 

EGR   Exhaust gas recirculation 

ETs   Expression trees 

FFNN   Feedforward neural network 

GA   Genetic algorithm 

GEP   Gene-Expression programming 

GP   Genetic programming 

HCCI   Homogenous charge compression ignition engine 

ICE   Internal combustion engine 

IPS   Induction-to-power-stroke 

LM   Levenberg-Marquardt 



 xvi

LMS   Least mean square 

LPG   Liquefied petroleum gas 

MATLAB Matrix laboratory 

MAE   Mean absolute error 

MAPE   Mean absolute percentage error 

MIMO   Multi input multi output 

MLP   Multilayer perceptron 

MLPFF  Multilayer perceptron feedforward 

MSE   Mean squared error 

MVEM  Mean-value engine model 

NARMAX Nonlinear autoregressive moving average with exogenous 

input 

NARX   Nonlinear auto-regressive with exogenous inputs 

N   Engine speed 

NN   Neural network 

NOE   Nonlinear output error 

PRBS Pseudo-random-binary-signal 

R   Correlation coefficient 

RAS   Random amplitude signals 

RBF   Radial basis function 

RGS   Random Gaussian signals 

RLS   Recursive least square 

RNN   Recurrent neural network 

SA   Spark advance 

SI   Spark ignition 

SISO single input single output 

T   Torque  

TDNN   Time delay neural network 

TP   Throttle position 

 

 

 

 

 



 xvii

Subscripts 

 

α, a, β  the air or ambient 

m  the manifold or mean values 

φ, ψ, f  the fuel 

ζ  the timing (ignition, injection,…) 

ε  exhaust gas recirculation 

e  the engine 

d  displacement of the engine cylinder 

c  the crankshaft 

cr  the connecting rod 

p  the piston 

 

Greek Letters 

 

γn   phase difference between the angular position of the first and nth cylinder 

βn   the phase difference between the firing angle of engine cylinders 

τ  the applied torque 

∇   the gradient operator 

ηvol   the volumetric efficiency 

λ forgetting factor 



 1 

CHAPTER 1 
 

1. INTRODUCTION 
 

1.1 Motivation of the Thesis 
 
Automotive internal combustion engine (ICE) control is one of the most complex 

control problems for control system engineers and researchers. Due to increasing 

requirements of governments and customers, car manufacturers always strive to 

reduce substantially, emissions and fuel consumption while maintaining the best 

engine performance. To satisfy these requirements, a variety of variables need to be 

controlled, such as engine speed, engine torque, spark ignition timing, fuel injection 

timing, air intake, air-fuel ratio (AFR) and so on. These variables are complicatedly 

related to each other. Moreover, car engines have several different operating modes 

including start up, idle, running and braking. Engine dynamics is highly nonlinear 

and multivariable because of these factors [1-5]. 

 

Among all the engine control variables, the engine torque has important applications 

in the automotive industry: for example, automatically setting gears, optimizing 

engine performance, reducing emissions and designing drivelines [6]. For these 

reasons; a good torque control system can improve substantially the performance of 

the overall vehicle [7, 8]. Torque models can be classified according to their inputs. 

Most are directly based on engine inputs such as the air and fuel mass flow rates, 

intake and exhaust pressures, ignition timing, injection timing, engine speed and 

throttle angle have been widely used for torque model and control application [6, 9]. 

Torque modeling efforts have been based on an experimental method of system 

identification that captures the nonlinear engine torque characteristics [10].  

 

Exact mathematical models of mechanical systems are derivable by Lagrange, 

Hamilton and Newton-Euler formulations or by energy methods. This requires all the 
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system parameters such as masses, mass moments of inertia, stiffnesses, damping 

coefficients and physical dimensions explicitly. The system generally needs be 

dismantled into its main components where each parameter of the system is lumped 

for measurement. In applications where this is not possible, system identification 

becomes very useful, generating an empirical mathematical model for the response 

of the system [11].  

 

System modeling plays a fundamental role in modern engineering, as it is typically 

the first step in a design cycle. However, it is also one of the more complicated tasks 

in engineering, as it is more closely connected with reality (in contrast with the tasks 

of analysis and design, which are usually performed on mathematical models). In 

some cases, one can build a so called “white-box” model based on first principles 

(Newton’s law, Kirchhoff’s laws, laws of thermodynamics, etc.), but in many cases 

such models will be overly complex and perhaps even impossible to obtain in 

reasonable time due to complex nature of many systems and processes. A much more 

common approach is therefore to start from measurements of the behavior of the 

system and the external influences (inputs to the system) and try to determine a 

mathematical relation between them without going into the details of what is actually 

happening inside the system. This approach is called system identification [12].  

  

Most systems encountered in the real word are nonlinear in nature, and since linear 

models can not capture the rich dynamic behavior of limit cycles, bifurcations, etc. 

associated with nonlinear systems, it is imperative to have identification techniques 

which are specific for nonlinear systems [13]. System identification has become an 

important area of study because of the increasing need to estimate the behavior of a 

system with partially known dynamics. Especially in the areas of control, pattern 

recognition and even in the realm of stock markets, the system of interest needs to be 

known to some extent [14, 15].   

 

In engineering dynamics, control engineering and many other areas, auto-regressive 

with exogenous inputs (ARX) models are widely utilized for describing dynamic data 

regimes for linear and nonlinear systems [16]. And also, the Hammerstein model is 

probably the most widely known and applied nonlinear dynamic modeling approach. 



 3 

It assumes a separation between the nonlinearity and the dynamics of the process 

[17]. 

 

In classical polynomial approaches for nonlinear system identification, Nonlinear 

auto-regressive with exogenous input (NARX) model, Hammerstein model, Wiener 

model are suitable only restricted classes of processes [17]. However, even when 

there exists some structural process/model mismatch these simplified models may be 

sufficiently accurate for many applications, and thus some of them, in particular the 

Hammerstein structure, are widely utilized in practice. [17]. 

 

Artificial neural network (ANN) has opened a new horizon in identification and 

control of highly nonlinear and complex structured systems. These networks are 

implemented using massive connections among the neurons with variable strengths. 

Moreover, their parallel, distributed and fault tolerant processing properties make 

them powerful tools for both identification and control of nonlinear dynamical 

systems. Especially learning capabilities of these networks enable them to process 

the information adaptively [18, 19].  

 

Neural networks (NN) have been proved to be effective in modeling complex 

nonlinear systems. They are natural candidates to approximate a nonlinear process 

due to their inherent nonlinearity and computational simplicity. There are many 

kinds of neural networks that can be used for nonlinear function approximation. For 

example, multilayer feedforward neural network (FFNN), radial basis function 

(RBF) neural network, recurrent neural network (RNN) is just a few examples [1].  

 

The use of artificial neural network (ANN) in system identification has been gaining 

more and more attention in recent years. Neural networks (NN) have good general 

approximation capabilities for reasonable nonlinear systems [20, 21]. Nerandra and 

Parthasaraty [22] have demonstrated that ANN could be used successfully for the 

identification and control of nonlinear dynamic systems. A series of works 

performed by Chen and Billings and their coworkers have developed the foundation 

of using neural networks as a tool for nonlinear system identification [23-25]. 
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1.2 The Purpose and Contribution of the Thesis 
 
The objective of this work has been to develop an accurate and robust model of a 

spark ignition (SI) engine torque by using the most common nonlinear black-box 

parametric models, namely Hammerstein model and Nonlinear auto-regressive with 

Exogenous inputs (NARX) model and neural network model that is including 

multilayer feedforward neural network (FFNN) model, radial basis function (RBF) 

neural network model and Elman type recurrent neural network model. These 

developed methods are implemented to an existing 1400 cc, four cylinder Fiat SI 

engine. 

 

When the physical system structure and parameters are not available or dependent on 

time or operating conditions, a mathematical model representing the system behavior 

may be very difficult to obtain. For such a case, the system parameters should be 

obtained using a system identification procedure [26, 27]. Identification of linear 

systems is rather an old field of study, and many methods are available in literature 

[26, 27]. However, identification of nonlinear systems is respectively a new topic of 

interest [26-28]. In internal combustion engines (ICE), identification is an 

occasionally employed method for examination and detection of the system 

parameters. The nonlinear identification of ICE has also been of interest in recent 

years.  

 

To satisfy the intended objective, the following scope of works was carried out. 

 

1. A comprehensive literature review has been carried out on identification and 

modeling of the internal combustion engine (ICE). 

 

2. Steady-state experiments were carried out in a spark ignition (SI) engine to model 

the SI engine torque and brake specific fuel consumption (bsfc) using soft computing 

techniques. 

 

3. Dynamic experiments were carried out in a SI engine to identify and model the SI 

engine. 
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4. Development of artificial neural network (ANN) and Gene-Expression 

Programming (GEP) model of SI engine torque and brake specific fuel consumption 

at steady-state conditions and comparison with ANN model and GEP model. 

 

5. Development of Hammerstein model and NARX model for identifying and 

modeling of SI engine torque for control purposes and their comparison. 

 

6. Development of various kinds of neural network structure for modeling and 

identification of SI engine torque for control purposes and comparison of the neural 

network structures.  

 

7. For the modeling and identification of SI engine, an attempt has been made to 

develop a computer program using Matlab based on system identification toolbox 

and artificial neural network toolbox of Matlab.  

 

The results of this PhD thesis came up very promising. The proposed models came 

up far more accurate than all the work published, when compared to real test engine 

output. 

 

1.3 Layout of the Thesis 
 
The presentation of the work done in this thesis is organized as follows: 
 
In Chapter 2, a comprehensive literature review on identification and modeling of the 

internal combustion engine (ICE) is presented. The survey is presented under three 

titles: classical nonlinear identification, neural network nonlinear identification and 

genetic programming nonlinear identification.   

 

In Chapter 3, the dynamic formulations of a piston-crank mechanism have been done 

with only one independent variable using Lagrange equation. And also, more 

complex sets of equations of motion are derived for multi-cylinder engines.    

 

In Chapter 4, a general view of nonlinear system modeling and identification with a 

parametric approach is given. Identification of Hammerstein model is presented in 

this chapter.  
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In Chapter 5, background information on neural network and neural network 

structures is given. Neural networks for identification of nonlinear dynamic systems 

are explained in this chapter. 

 

In Chapter 6, the mean value engine model (MVEM) which is generally accepted as 

the modeling paradigm in engine control is extensively described. 

 

In Chapter 7, a detailed description of the spark ignition (SI) engine experimental 

set-up and the measuring devices on it are presented. The experimental set up details 

are provided with the specifications of the measuring instruments. The experimental 

procedure for steady-state condition and the experimental procedure for dynamic 

condition are given in this chapter. The uncertainty analysis has been carried out to 

calculate the percentage of measurement errors in this chapter. 

 

In Chapter 8, steady-state modeling of the gasoline engine torque and brake specific 

fuel consumption is investigated by means of a number of case studies. These case 

studies can be categorized under two headings with respect to the used methods 

namely the neural network and the genetic programming approach. Nonlinear 

identification and modeling of a gasoline engine torque is investigated by means of a 

number of case studies. These case studies which can be categorized under three 

headings with respect to the used methods namely the Hammerstein model, NARX 

model and the Neural Network models, are presented also in this chapter. 

 

In Chapter 9, conclusions drawn from the study are pointed out and further 

recommendations for study are provided. 
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CHAPTER 2 
 

2. LITERATURE SURVEY 
 

2.1 Introduction 
 
In this chapter, a comprehensive literature survey on identification and modeling of 

the internal combustion engine (ICE) is presented. The survey is presented under 

three headings: classical nonlinear identification, neural network nonlinear 

identification and genetic programming nonlinear identification. The survey provides 

a historical view and various methodologies developed over the years. 

 

2.2 Classical Nonlinear Identification of the Engine  
 
In order to control nonlinear dynamic systems, appropriate models should be 

developed. A discrete time nonlinear dynamic system can be described by a 

nonlinear autoregressive with exogenous input (NARX) model, nonlinear 

autoregressive moving average with exogenous input (NARMAX) model, 

Hammerstein model and Wiener model [29].  

 

System modeling and identification refers to a systematic method to determine and 

improve the mathematical models for the proper representation of dynamic systems 

[30]. Many articles were published in order to control and identify the internal 

combustion engine. Majors of these are given below. 

 

Pérez et al. [31] have proposed a new approach to control the air management 

process of a Diesel engine. Identification and control schemes based on model 

predictive control and Wiener and Hammerstein models have been proposed. 

Proposed algorithms were implemented on a real world engine. In the end, useful 

hints are given, offering an improvement in the application, were proposed. 
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Nicolao et al. [32-34] have presented an application of the identification procedure 

for nonlinear autoregressive with exogenous input (NARX) models and control of 

ICEs in idle speed conditions. The inputs of the nonlinear identification model were 

the position of the idle speed air actuation system and the spark advance, while 

outputs were the pressure inside the intake manifold and the crankshaft speed. The 

estimated model was then used to synthesize an idle speed controller with the linear 

quadratic technique. Some identification and control results obtained by applying this 

method to a 1200 cm3 engine [32], a 1400 cm3 engine [33] and two more commercial 

engines namely a 1200 and 1600 cm3 [34] were reported to witness the effectiveness 

of the proposed approach.  

 

Hrovat and Sun [35] have surveyed different ICE models and controller design 

methodologies for idle speed control applications. Linear engine models used for 

control system synthesis and analysis, as well as nonlinear models for computer 

simulation and control design validation are discussed. The survey includes both 

classical designs and those based on advanced control theory. 

 

Rachid et al. [36] have studied the nonlinear identification of a turbocharged Diesel 

engine. A combined use of nonlinear autoregressive moving average with exogenous 

input (NARMAX) models and group method data handling method was proposed in 

an attempt to provide a systematic approach to identify nonlinear systems using 

relatively simple models well suited to computer handling. 

 

Glass and Frankchek [37] have presented in a detail their study of a single input 

single output (SISO) nonlinear modeling and robust controller design methodology 

experimentally on an ICE. The methodology begins with the identification of a 

NARMAX model that captures the nonlinear dynamics relating the input to the 

output of a system. This model is converted to a describing function representation 

for the purpose of robust feedback controller design. For the engine idle speed 

control application of this study, a SISO NARMAX model of the engine was 

developed between the by-pass idle air valve and engine speed. The controller 

performance is then validated through numerical simulations and experimental 

verification.  

 



 9 

Pfeiffer et al. [38] have investigated the potential of the use of inlet air temperature 

as a means of control for ignition actuation. This study describes a method for system 

identification of the homogenous charge compression ignition engine process, and 

development of an effective linear quadratic Gaussian controller for the combustion 

process, Matlab and Simulink being used in computations and simulations.  

 

Jones et al. [39] have explored the use of adaptive control as a means of precise 

control of the AFR. A control-oriented, physics based engine model, in which the 

sampling rate is based on crank angle instead of time, has been utilized to construct a 

feedforward/feedback control scheme to regulate AFR. A nonlinear least squares 

identification technique is used to accurately determine the model parameters using 

normal engine operating data. These parameter values are then employed in the 

design of an estimator based controller for a single cylinder engine. 

 

Souder and Hedrick [40] have used a simplified model of an ICE to derive a sliding 

mode control law. Adaptive update laws are derived for two fueling parameters that 

describe fuel flow into cylinders, and a third parameter that describes air flow. The 

performance of sliding mode adaptive controllers have been found encouraging and 

described as an effective method of achieving accurate AFR control. 

 

Arsie et al. [41] have presented a procedure for the identification of emission models 

for the design of an optimal controller for a SI engine. A two step scheme has been 

built: in the first step the available physical models, based on a multi-zone 

thermodynamic model with emission sub-models, are parameterized and an 

intermediate model, based on Taylor approximation, is derived in order to describe 

the nonlinear influences exerted by the physical parameters; in the second step the 

physical parameters are modeled by means of nonlinear regression, taking into 

account the effect of operating engine variables, and the optimal parameters obtained 

via stepwise approach.  

 

Luh and Rizzoni [42] have presented the application of advanced modeling 

techniques to construct engine models for the detection and isolation of incipient 

faults. A nonlinear black-box engine model is derived using the NARMAX models. 

A forward-regression estimator is applied to identify the model parameters. 
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Experimental validation is performed using data from a production engine. They 

have pointed out that the agreement between the estimated and measured values of 

all the variables have been excellent except for the load torque. Further, they have 

stated that this kind of a model was adequate for diagnostic purposes. 

 

Falcone et al. [43] have proposed a combustion model of direct injection diesel 

engine to calculate the in-cylinder pressure and a slider-crank mechanism model to 

calculate instantaneous indicated torque. The crankshaft is modeled as a rigid body. 

The parameters of both models are identified via nonlinear least square optimization 

algorithm. The model is generated using pressure data collected from an engine test 

bed, equipped with a BMW four cylinder diesel engine. The obtained model was 

intended to be the benchmark to develop and test another model which would be able 

to estimate the produced torque and to be implemented on commercial vehicles 

simply.  

 

Ingram et al. [10] have presented a robust feedback controller design procedure to 

regulate the torque of a SI engine equipped with an electronic throttle mass air flow 

controller. A Ford 4.6 L V8 SI engine torque production system level model was 

experimentally determined. In addition, an H∞ controller was designed to control 

engine torque. It was observed that the torque disturbances may be reduced using the 

same controller design methodology outlined in this paper by taking into account 

spark timing and exhaust gas recirculation.   

 

Khiar et al. [44] have estimated the combustion torque of an ICE with the only 

measurement available on a mass production car. Two estimators have been 

developed based on two different unknown input observers: a high gain and a second 

order sliding mode. The main advantage of these designs is the systematic aspect of 

the method to deal with a large class of ICE.  The method has been applied to a three 

cylinder-turbocharged gasoline engine. The results showed the efficiency of the 

proposed method.  

 

Rakotomamonjy et al. [6] have compared the torque estimation problem using four 

methods: linear least squares, linear and nonlinear neural networks and support 

vector machines. It has been found that a nonlinear model structure is necessary for 
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accurate torque estimation. The most efficient torque model built came up to be a 

nonlinear neural network that achieves about 2% test normalized mean square error 

in nominal conditions.  

  

Franco et al. [45] have presented a real time engine brake torque estimation model 

whose input is the instantaneous engine speed. This model is separated into steady-

state and transient torque estimations. The steady-state portion of the model is 

developed using orthogonal least squares estimation, where as the transient portion is 

identified using a time domain identification method. This study had shown that the 

engine speed and mean engine speed were sufficient to estimate the engine brake 

torque. Validation of the engine brake torque model is provided using a 

computational engine model for a 6 cylinder heavy duty diesel engine.  

 

Vong et al. [46] have determined the approximated power and torque model of a 

vehicle engine by training the sample data acquired from the dynamometer with least 

square support vector machines. The vehicle engine is run on the dynamometer to 

show the actual engine output torque and power. In this paper, the construction, 

validation and accuracy of the functions are discussed. The study has shown that the 

predicted results using the estimated model from least squares support vector 

machines are in good agreement with the actual test results. Also, the study 

conducted in Ref. [56] illustrated the significance of the least squares support vector 

machines methodology, in predicting automotive engine power and torque by 

comparing the results with that regressed using multilayer feed forward neural 

networks. From the perspective of automotive engineering, the construction of 

modern automotive gasoline engine power and torque functions using proposed 

method, least squares support vector machines, is a new attempt and this 

methodology can also be applied to different kinds of vehicle engines.  

 

Ali and Blath [47] have proposed a nonlinear state space controller for the optimal 

torque of a SI engine. The controller design is based on feedback linearization in 

combustion with pole placement. The resulting controller basically compensates the 

intake manifold filling dynamics and thus improves tracking performance of torque 

demand changes generated by the driver. The tracking performance is superior to the 

performance of the original controller supplied by the ECU manufacturer.  
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Ali and Blath [9] have investigated the application of three modern design techniques 

to the torque control problem of a SI direct injection engine. The system to be 

controlled is a highly nonlinear system characterized mainly by the intake manifold 

dynamics. Control laws based on feedback linearization in order to achieve a linear 

and uniform system behavior over the whole range of operation, nonlinear model 

predictive control in order to optimize the control law over a finite time horizon 

taking the input and state constraints into account during optimization and gain 

scheduled LQ optimal control in order to describe the system in state-space form are 

derived for the highly nonlinear automotive engine. A comparative study of these 

schemes with the help of computer simulation is presented. The schemes have shown 

that all of these schemes are capable of achieving a high performance of the control 

loop. Nonlinear model predictive control outperforms other two schemes in the sense 

of uniformity of the loop response.   

 

Falcone et al. [7] have presented an engine torque estimator. The results reported that 

a good performance of the estimator and validate the design criteria. This feature 

makes it suitable for applications in which a good estimation of engine torque is 

required.  

 

Connolly and Yagle [48] have presented a new model relating cylinder combustion 

pressure to crankshaft angular velocity in an ICE. There are three aspects to this 

model. First, by changing the independent variable from time to crankshaft angle, 

second, parametrising the pressure by the sample modulating sequence, third, the 

inverse problem of reconstructing pressure from noisy angular velocity 

measurements. Simulation result show that the parameterized pressure can be 

deconvolved at low noise levels, and combustion misfires detected, in all real time. 

The second part of their study [49] have presented and discussed the experimental 

results that confirm this model, at least at the relatively low-speed, low-to-moderate 

load operating conditions analyzed. They have shown that cyclic combustion 

pressure variation is fairly well modelled and may be directly estimated from angular 

velocity measurements. The experimental data are taken from an actual V-6 

automobile engine.  
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Billings et al. [50] have described the identification of both linear and nonlinear 

models of a Leyland TL11 turbocharged, direct injection diesel engine. Two sets of 

data are used in the identification and in both cases the input is fuel rack position and 

the output is engine speed. A hydraulic (position) actuator acts directly onto the fuel 

rack of the injection pump. The fuel rack was perturbed by a pseudo-random-binary-

signal (PRBS). An input-output model is a means for representing the input-output 

relationship of a system and therefore a NARMAX model is chosen. The objective of 

the study was to demonstrate that parsimonious nonlinear models can be used to 

predict engine response. It has been shown that the combined procedure of 

orthogonal and prediction-error estimation coupled with correlation and chi-squared 

model validity tests provides a powerful interactive toolkit for fitting parsimonious 

models to practical systems.  

 

Rizzoni and Zhang [51] have discussed a method for the identification of a nonlinear 

model of the dynamics relating combustion pressure to crankshaft angular velocity. 

Such a model can be useful in the implementation of control strategies that require an 

estimate of individual cylinder indicated torque or pressure. The method 

demonstrated in this paper utilizes a known model structure and employs nonlinear 

programming for the identification of relevant model parameters. The technique is 

applied to single cylinder research engine, and successfully validated with 

experimental data. Finally, the model thus derived is used to design an input observer 

for the estimation of indicated torque. The accuracy achieved is sufficient to permit 

the design of indicated torque estimators, with potential application to diagnostic and 

control tasks. The diagnostic application of this modeling technique included as end-

of assembly tests, misfire detection, detection of abnormal piston and ring friction, 

poor compression, and the diagnosis of other malfunctions related to the combustion 

process and the reciprocating and rotating dynamics of the engine.  

 

Polόni et al. [52] have proposed a nonlinear modeling of AFR dynamics of gasoline 

engines during transient operations. In advanced control methods the model plays the 

most important role. The purpose of the study is to identify a suitable model for 

nonlinear model based control strategy and verify its ability to deal with nonlinear 

parameter varying AFR dynamics. They have discussed an open loop identification 

procedure of AFR on a 2.8 liter engine. Specifically, composite local linear ARX 
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models with weighted validity are identified to model AFR nonlinear dynamics. The 

global AFR model is then validated against the measured data. The estimation of 

local ARX model parameters is performed using the data from engine which are 

measured with an exhaust gas oxygen sensor and with the air mass flow sensor as a 

reference sensor. To excite the air path dynamics they have applied PRBS to the 

throttle and have recorded the AFR signal. All signals were sampled with a 

frequency of 10 Hz. It has been found that the studied global model has the ability to 

approximate nonlinear effects and varying dynamics of AFR.  

 

Brahma et al. [53] have investigated a system approach to modeling the response of 

brake torque and NOx emissions of a high speed common rail diesel engine. A 

multivariate mean value model is proposed, identified and validated. They proposed 

a linear grey-box approach to modeling the torque and NOx dynamics in response to 

combined fuel quantity-timing excitation. Brake torque was measured using the 

dynamometer load cell and NOx was measured using a Horiba emissions bench. 

Observers are presented for the physically based model and it is shown that torque 

and NOx can be predicted using existing measurements of manifold pressure and air 

mass flow.  

 

Bengtsson et al. [54] have estimated dynamic models of homogenous charge 

compression ignition engine (HCCI), both SISO and MIMO models. Two different 

actuator approaches (dual fuel and variable valve actuation) were used and models 

for both approaches were estimated. Model based control synthesis requiring 

dynamic models of low complexity and HCCI combustion models were estimated by 

system identification and by physical modeling. The models identified by system 

identification were used to design model predictive control with several desirable 

features and today applicable very fast systems. Whereas satisfactory results were 

obtained for both approaches, the dynamics were different among the models. 

Finally, system identification and model predictive control provide effective and 

pragmatic means to control system.  

 

Cook and Powell [55] have presented the development of a basic nonlinear 

representation of an engine dynamic system. The model contains descriptions for the 

induction process and engine power system as well as characterization of the fuel 
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system. In addition, a linear model has been developed for a particular six cylinder 

engine and a time response of the system is presented.  

 

Jankovic [56] has shown how the disturbance decoupling results and the notation of 

relative degree introduced by the geometric theory of nonlinear control can be used 

to design a controller that coordinates the throttle and the variable cam timing 

actuator to achieve the desired transient performance. This study also illustrated the 

design aspects relevant to experimental implementation of the control law. Due to its 

nonlinear, multivariable nature, engine control systems can benefit from application 

of advanced nonlinear control techniques.  

 

Fritzsche and Dünow [8] have discussed a control approach for torque control of a 

gasoline engines. The torque controller can be designed on base of linear models. An 

appropriate standard control concept for the superordinate torque controller is the 

model predictive control principle. The control approach described in this study 

demonstrated that modern control approaches have considerable potential to improve 

the performance of embedded control systems.  

 

Zito and Landau [57] have applied a nonlinear system identification procedure, based 

on polynomial NARMAX representation, to a variable geometry turbocharged diesel 

engine. The relation between the variable geometry turbine command and the intake 

manifold air pressure is described by a nonlinear model, directly identified by raw 

data. The intent of the study is to explore the advantages of such a modeling 

procedure in automotive applications in terms of efficiency and complexity, in view 

of the related controller design and tuning problem. Simulation results on a diesel 

engine model illustrate the whole procedure. 

 

Weeks and Moskwa [58] have presented an automotive engine model designed for 

real-time control applications in the context of a Simulink engine and control system 

model. Subsystems within the model were briefly described with some additional 

detail related to the air and fuel dynamics portion of the intake manifold subsystem. 

Example simulations were presented to show some of the potential uses of the 

model. In general, they are stated that the model may be used in five different ways: 

1. as a nonreal-time engine model for testing engine control algorithms, 2. as a real-
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time engine model for hardware-in-the-loop testing, 3. as an embedded model within 

a control algorithm or observer, 4. as a system model for evaluating engine sensor 

and actuator models, 5. as a subsystem in a powertrain or vehicle dynamics model. 

Although developed and validated for a specific engine, the model is generic enough 

to be used for a wide range of SI engines.  

 

Larimore and Javaherian [59] have presented to extend and refine the nonlinear 

canonical variate analysis methods for system identification and monitoring of 

automotive engines. In the nonlinear case, departures from optimality are 

investigated, but the procedure is shown to still work quite effectively for detecting 

and identifying system faults and changes.  

 

Ohata et al. [60] have proposed the identification approach for a nonlinear stable 

system by the nonlinear ARX model. The identification of ARX coefficients is done 

around the selected level of input and/or output. The dependence of the parameters 

on the levels of input and output is easily represented by the nonlinear functions like 

polynomials. The propose approach may be used for the practical study of the 

industrial processes like automotive engine. The proposed method gives an approach 

to identify and to represent a nonlinear system which may be used to design a 

controller.  

 

2.3 Artificial Neural Network Approach for Nonlinear Identification of Engine  
 
The use of artificial neural networks (ANN) in system identification has been gaining 

more and more attention in recent years. Recently, neural networks have become an 

attractive tool in the construction of models of complex nonlinear processes. This is 

because neural networks have an inherent ability to learn and approximate nonlinear 

functions arbitrarily well, and a large number of identification and control structures 

based on neural networks have been proposed [22, 23, 61-68]. 

 

The ability of neural networks to approximate large classes of nonlinear function 

sufficiently accurately makes them an important candidate for use in dynamic model 

representation of nonlinear systems [69, 70]. One of the most common neural 

networks in the area of system identification and control is the multilayer 
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feedforward neural network and recurrent neural network [63]. Feedforward neural 

networks with backpropagation learning algorithm have been successfully utilized to 

identify nonlinear dynamical systems [71]. In neural network system identification 

algorithms, the process model is usually described as continuous-time [72, 73] model 

or discrete-time model. In nonlinear system identification, the Hopfield neural 

network is used a new dynamic neural network model [74].  

 

After pioneering works mentioned above, many prominent researches contributed to 

the further development of neural networks and system identification and the 

dissemination of its application. Work in this area is continuing. Among the works of 

the rich literature of the neural network concept, the major works related internal 

combustion engine are taken below.  

 

Arsie et al. [75] have studied the identification of recurrent neural network (RNN) 

for simulating the air-fuel ratio (AFR) dynamics into the intake manifold of a spark 

ignition (SI) engine.  Considering the manifold as an MISO system, the basic input 

variables are the manifold pressure, the engine speed and the injected fuel flow rate, 

while the model output is the AFR. The main contribution of this work was the 

development of a procedure that allows identifying a RNN based AFR simulator 

with high generalization and limiting data set. The procedure tested by comparing 

RNN simulations with AFR transients generated using a nonlinear dynamic engine 

model. In this paper, a second order method based on the Levenberg-Marquardt 

training algorithm was considered. A dynamic model of SI engine powertrain has 

been used to generate AFR transients for training and testing the RNN. The model, 

developed by the authors is run in Matlab-Simulink environment. The results showed 

how training the network making use of inputs that are uncorrelated and distributed 

over the entire engine operating domain allows improving model generalization and 

reducing the experimental burden. The three following steps have to be 

accomplished to design a neural network (NN) model: (1) choose the proper learning 

procedure to find the weights of the neurons connections; (2) define the network 

structure with the minimum number of layers and nodes; (3) generate training data 

set extended enough to guarantee acceptable generalization of the knowledge 

retained in the training examples.  
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Arsie et al. [76] have focused on the experimental identification and validation of 

RNN models for AFR estimation and control in SI engines. Suited training 

procedures and experimental tests are proposed to improve the RNN precision and 

generalization in predicting AFR transients for a wide range of operating scenarios. 

The simulations performed on test-sets show that the ability of the RNN to reproduce 

the target patterns with satisfactory accuracy.  

 

Tan and Saif [1] have presented a procedure for using neural networks to identify the 

nonlinear dynamic models for the manifold pressure and the mass air flow process in 

an automotive engine. A dynamic neural network called external RNN, was used for 

dynamic mapping and model construction. Dynamic Levenberg-Marquardt algorithm 

was then applied to the weight-estimation problem. In this paper, measured 

input/output data is employed to construct neural network model of the manifold 

dynamics. Experimental results in this paper indicated that the NN based models 

have more precise, a rather simple structure and generalized in performance than the 

first principles based models. In this models can be used for control system design, 

or in a model based fault detection and diagnosis strategy.  

 

Wang et al. [2-4] have presented an application of adaptive neural network modeling 

and model based predictive control for modeling the crankshaft speed, intake 

manifold pressure, manifold temperature [2], air fuel ratio [3] and engine speed [4]. 

A radial basis function (RBF) neural network was utilized for them. This studies 

shown that adaptive model based predictive control was superior over the fixed 

parameter model based control.  In these papers investigated the effectiveness of the 

adaptive neural network model in modeling parameter uncertainties and severe 

nonlinearities of SI engines, as well as the feasibility of the adaptive model based 

model predictive control for air-fuel ratio control. The adaptive RBF neural network 

trained by recursive least squares method with fixed centers is proved to be more 

appropriate for modeling the air-fuel ratio dynamics of a SI engine. In these studies 

concluded that the adaptive neural network model based model predictive control is a 

potential control scheme to replace the PI control for controlling air-fuel ratio.  

 

Zhai and Yu [77] have applied an adaptive RBF model based model predictive 

control to the AFR control of automotive engines. The constructed model was 
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adapted in on-line mode to cope with system uncertainty and time varying effects. 

Thus, the control performance is more accurate and robust compared with non 

adaptive model based methods.  The simulation results demonstrated that the 

effectiveness of the developed method.   

 

Beham and Yu [78] have compared different neural networks like multilayer 

perceptron (MLP), pseudo linear radial basis function and local linear model tree 

networks for modeling a variable valve timing SI engine torque, HC, NOx, CO2 and 

CO. Five MISO models were developed with each modeling model of the engine 

outputs. Different model orders and a number of hidden layer nodes were tested in 

the model training and validation to find the most appropriate model structure for the 

nonlinear dynamic behavior of the process. Real data were collected when the engine 

was under different operating conditions and these data were used in training and 

validation of the developed neural models. The obtained models were finally tested 

in a real time online model configuration on the test bench. The model outputs were 

compared with process output and compared among different models. These models 

performed well and can be used in the model based engine control and optimization. 

Comparison between different types of network model has been done. It was 

revealed that the local linear model tree networks and pseudo linear radial basis 

function network models performed better than MLP. The best models for the HC 

have been achieved using the pseudo linear radial basis function network, while for 

NOx, CO2 and CO the best models were achieved using the local linear model tree 

networks. They used the different neural network methods to model the torque of a 

variable valve timing SI engine in Ref. [79]. The best models for the torque have 

been achieved using the pseudo linear radial basis function network models.  

 

Wang and Yu [80] have proposed to develop adaptive RBF neural network method 

to estimate two control parameters in on-line mode, so as to compensate for the 

model uncertainty and engine time varying dynamics. The adaptive law of the neural 

network is derived using the Lyapunov method, so that the stability of the whole 

system and the convergence of the networks are guaranteed. Computer simulations 

based on a mean value engine model demonstrate the effectiveness of the technique. 

The simulation results indicated that a significant improvement in AFR when the 

engine is subjected to a sudden change of throttle angle with 25% uncertainty.  
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Nicolao et al. [5] have modeled the volumetric efficiency of internal combustion 

engine (ICE). The volumetric efficiency represents a measure of the effectiveness of 

an air pumping system, and is one of the most commonly used parameters in the 

characterization and control of four-stroke ICE. Physical models of volumetric 

efficiency require the knowledge of some quantities usually not available in normal 

operating conditions. Hence, a purely black-box approach is often used to determine 

the dependence of volumetric efficiency upon the main engine variables, like the 

crankshaft speed and intake manifold pressure. In this work, various black-box 

approaches for the estimation of volumetric efficiency are reviewed, varying from 

parametric (polynomial-type) models, to non-parametric and neural network 

techniques, like additive models, radial basis function neural network and multi-layer 

perceptrons. The benefits and limitations of these approaches were examined and 

compared. The problem considered here can be viewed as a realistic benchmark for 

different estimation techniques. The performance of the different identification 

methods, as measured by the sum of square of residuals on the validation data set and 

the corresponding standard deviation of residuals were presented.  

 

Zhang et al. [81] have presented recurrent neural network (RNN) model for air-fuel 

ratio (AFR) estimation in SI engine. AFR estimation is difficult due to the 

nonlinearity and dynamic behavior in SI engine. Additionally, delays in engine 

dynamics limit the performance of engine controller. RNN is trained using data from 

engine simulations in Matlab/Simulink environment. Uncorrelated signals were 

generated for training and validation. It has been shown that RNN can predict engine 

simulations with reasonably good accuracy. These predictions were found to be quite 

accurate as estimation errors are within ±0.02 for approximately 95% of the 

transient. This estimation model can be used for indirect control of AFR.  

 

Yin and Ge [82] have applied neural network identification approach to establish the 

dynamic model of torque and fuel consumption of Santana 2000 EFI engine through 

the learning of a great deal of test data. A multi layer feed forward neural network 

was applied in this study. The result of their studies showed that the obtained model 

compared with the model built by traditional identification method, the dynamic 

model based on neural network has higher precision and generalizing capability.  
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Efe and Kaynak [14, 15] have investigated the identification of nonlinear systems by 

utilizing soft computing approaches. As the identification methods, feedforward 

neural networks, radial basis function neural networks, Runge-Kutta neural 

networks, and adaptive neuro-fuzzy inference systems (ANFIS) based identification 

mechanisms were studied and their performances are comparatively evaluated on a 

three degrees of freedom anthropomorphic robotic manipulator [14] and a two 

degrees of freedom direct drive robotic manipulator [15]. The results presented in 

both studies have indicated that ANFIS structure is a good candidate for 

identification purposes.   

 

Hafner et al. [83] have presented the application of fast neural network models for 

engine control design purposes. Advanced engine control systems require accurate 

dynamic models of the combustion process, which are substantially nonlinear. In this 

work the special local linear radial basis function network is initially introduced 

followed by a description of the process of building adequate dynamic engine model. 

These neuro-models are then integrated into upper-level emission optimization tool, 

which calculates a cost function for exhaust versus consumption/torque and 

determines optimal engine settings. According to the authors, the system allows a 

fast application of the optimization tool at the engine test stand. Hafner et al. [84] 

presented a fast neural network of local linear model tree type models for model 

based control of diesel engine exhaust.  

 

Isermann and Muller [85] have applied a dynamic local linear neural network 

approach for modeling the NOx emission characteristics of a 1.9 direct injection 

diesel engine. The obtained dynamic model for the NOx emissions can be used for 

off-line or on-line optimization of exhaust gas emissions, and has been implemented 

on a rapid control prototyping system as explained in this paper. The structure of 

rapid control prototyping system was explained, which allows fast measurement 

signal evaluation, and rapid prototyping of advanced engine control algorithm.  

 

Zweiri [86] has presented an artificial neural networks approach to estimate the 

indicated torque of a single-cylinder diesel engine from crankshaft angular position 

and velocity measurements. The estimator may be useful in the implementation of 

the control or diagnostic strategies that require cylinder indicated torque. The 
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approach is to design indicated torque estimators using feedback and an ANN model 

as feedforward. Such an approach can offer the advantage of being amenable to real 

time implementation. The estimated results of the engine indicated torque are 

presented, which compare with experimental data indicate a good agreement.  

 

Zweiri et al. [87] have presented three different dynamic models for a single cylinder 

diesel engine. The models have been implemented in Matlab/Simulink. The models 

describe the dynamic relationship between indicated pressure and engine speed. The 

first model is a detailed analytical nonlinear dynamic model, including dynamometer 

dynamics, instantaneous friction components, viscosity variations with temperature 

and inertia variations with piston pin offset. In cycle calculations are performed at 

each crank angle. The second model is a nonlinear dynamic model which includes a 

mean friction model for the engine components and dynamometer dynamics, but 

does not include the piston pin offset as well as the inertia variations. The third 

model is obtained by an identification procedure to find a low order linear transfer 

function between the engine input and output. The three models are used to predict 

the behavior of a diesel engine. The models are compared using experimentally 

measured engine speed, under steady state and transient operating conditions. The 

paper discusses the suitability of the models for various control applications such as 

engine simulation, fueling control system design and fault diagnostics.   

 

Chamaillard et al. [88] have presented a simple method for designing a robust 

controller which can be used on uncertain and nonlinear systems. The method has 

been illustrated on an SI engine torque control. In terms of control, the engine torque 

has a single input system: the throttle angle. A very precise model is used to simulate 

the engine. A PRBS was designed for throttle angle position to obtain a 

representative set of input-output data. Two controllers have been defined: a PI 

controller and an LQ controller. The best results have been obtained for a PI 

controller. In all cases, robust stability is guaranteed in the whole range of engine 

torque control. 

 

Ayoubi [89] has described and compared two approaches to the experimental 

identification of dynamic nonlinear processes: the dynamic multi layered perceptron 

and the generalized Hammerstein model. The performance comparison was based on 
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the identification of the charging process in diesel engines. The charging process is 

mainly determined by the resulting loading pressure.  The experimental identification 

based on the neural network needed no a priori assumptions about the process 

structures, which highlights flexibility and universality of the model. The application 

of the Hammerstein model, in contrast, was based on the assumption that the process 

nonlinearity has to be static in nature, and involved in the process inputs as well. 

Such a priori assumptions require a physical insight into the process and are 

restrictive, since good results can only be obtained if the model structure matches the 

process structure.  

 

Yazdanpanah and Kalhor [90] have presented an efficient method in AFR for SI 

engines using a controller based on a neural network and an estimator. This study 

shown that by combining two separate methods, a useful control strategy may be 

generated. Simulation results revealed the superiority of this method. Also the 

robustness of this method because of using neural network is high against the error 

estimation of parameters. 

 

Hou et al. [91] have provided a method of identifying AFR of a HL495Q gasoline 

engine based on elman neural network. AFR is a key index affecting power 

performance and fuel economy and exhaust emissions of the gasoline engine whose 

accurate model is the foundation of accuracy AFR control. They choose sigmoid 

function as the activation function of elman neural network structure.  This study 

shown that the AFR model based on elman neural network has simple structure and 

can accurately approximate AFR transient process and average relative error is less 

than 1%. And also shown that AFR based on elman neural network is better than 

AFR model based on back propagation NN.  

 

Ouladsine et al. [92] have described a neural approach for modeling and control of a 

turbocharged diesel engine. A neural model was built for the engine speed, intake 

manifold pressure and exhaust gas opacity. The objective of the study was to build a 

model to be used to control the diesel engine. Multilayer perceptron (MLP) neural 

network architectures with one hidden layer of sigmoid function and linear activation 

function for the output unit was used in this study. Training was performed by 

minimizing the mean squared error (MSE) function, with a Levenberg-Marquardt 
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algorithm. Neural networks, which are flexible and parsimonious nonlinear black-

box models, with universal approximation capabilities, can accurately describe or 

control complex nonlinear systems, with little a priori theoretical knowledge. The 

results highlight the interest of using neural networks both for engine modeling and 

control, despite strong dynamics and nonlinearities. Preliminary results show that 

neural networks can be used as embedded models for engine control, to satisfy the 

more and more restricting pollutant emission legislation. Particularly, they are able to 

model nonlinear dynamics and outperform during transients the control schemes 

based on static mappings.  

 

Colin et al. [93] have performed the airpath control of SI engines using neural 

network. An efficient control of the air actuators: intake throttle, turbine wastegate 

and variable camshaft timing presented. Artificial neural networks have been the 

focus of a great deal of attention due to their capabilities to solve nonlinear problems 

by learning from data. As physical models are too complex, black-box solutions as 

NNs become attractive techniques for engine modeling and control. The control 

scheme proposed here a nonlinear model based control scheme which combines 

separate, but coordinated, control modules for the different actuators. These modules 

are based on different model based control strategies: internal model control, model 

predictive control and optimal control. It was shown how neural models can be used 

at different levels and included in the control modules.  

 

Sangha et al. [94] have investigated fault detection and isolation in dynamic data 

from an automotive engine air path using ANN. A generic SI mean value engine 

model is used for experimentation. RBF neural networks are trained to detect and 

diagnose the faults. Three dynamic cases of fault occurrence were considered with 

increasing generality of engine operation. The approach shown the results are 

successful in each case. 

 

Cui [95] has presented a neural network approach to control exhaust gas recirculation 

(EGR) in a liquefied petroleum gas (LPG) engine. RBF neural network and on-line 

adaptation strategy are applied in this paper. EGR system is introduced to achieve a 

significant reduction of NOx emissions. Neural networks are suitable for the 

identification and control of nonlinear dynamic systems. Neural networks for the 



 25 

EGR control have been developed on a 1.46 liter 4 cylinder SI LGG engine. The 

experimental result shown that the EGR system can achieve satisfied control effect.  

 

Li and Yu [96] have proposed continuous time recurrent multilayer perceptrons to 

identify nonlinear systems. The system outputs are manifold pressure and engine 

speed, whereas control inputs are throttle angle and spark advance. Using the 

function approximation theorem for multilayer perceptrons, they concluded that 

recurrent multilayer perceptron can approximate any dynamic system in any degree 

of accuracy.  

 

Ayeb et al. [97] have proposed a procedure to derive global dynamic models based 

on dynamic neural networks. The abilities of neural networks as universal 

approximation tools of nonlinear functional relationships as well as identification 

tools for nonlinear dynamic systems have been recognized and used successfully in 

many application areas like modeling, control and diagnosis of systems. In this paper 

RNN model with Levenberg-Marquardt training algorithm was used. The procedure 

can be used to derive robust models ensuring a minimized parameters variance. The 

application described shows the ability of dynamic neural networks to present 

complex behavior such as the dependencies between engine torque and engine states 

and control parameters. 

 

Isermann and Muller [98] have introduced the identification of nonlinear process 

with grid based look-up tables and a special local linear radial basis function 

network, a comparison is made with regard to computation effort, storage 

requirements and convergence speed. A PRBS signals were used because it is often 

very suitable as process inputs because they excite the process at a wide range of 

amplitudes and frequencies. Application examples and experimental results are 

shown for multidimensional nonlinear model of NOx emissions of a diesel engine, 

and for the adaptive feedforward control of the ignition angle of a SI engine.  

 

Hafner et al. [99] have presented a new approach towards a model based 

optimization of ICE control on dynamometers. The proposed methodology 

comprises advanced measurement strategies for a fast dynamic measurement of 

engine characteristics on dynamometers, a model based offline optimization of 
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feedforward control maps, and the optimization of dynamic transitions of 

turbocharged engines with exhaust gas recirculation. This study shortly reviews the 

design of measurement, the identification of the engine and the optimization of the 

static and dynamic engine behavior.  

 

Czarnigowski [100] has presented an algorithm of idle speed stabilization in the SI 

engine by means of spark advance control. The used algorithm is based on a well 

known approach of a model based adaptive control and uses ANN. The control 

algorithm is based on a NN model observer of the additional effective torque. The 

algorithm was experimentally compared with PID and adaptive algorithms. The 

experiments were conducted in a steady state. The effective torque model was 

constructed on the basis of a MLP BP neural network.  

 

Biao et al. [101] have built the dynamic model of the 16 cylinders locomotive diesel 

engine with neural network. The diesel engine system identification with neural 

network belongs to the experiments modeling, which has strong information 

integrate capability and can deal with large numbers of different inputs at the same 

time. The neural network also can solve the redundancy and the inconsistency of the 

input information, so it is suitable to the diesel engine modeling. In this study used 

NARMAX as the main structure and used Levenberg-Marquardt algorithm to train 

the network. Comparison between the train results and the measured results show 

that the dynamic model has the good real-time performances and little output error. 

So the model can meet the need of the system character analysis and technology 

application.  

 

Alippi et al. [102] have suggested a neural network based solution to the AFR control 

in fuel injection systems. An indirect control approach has been considered which 

requires a preliminary modeling of the engine dynamics. The model for the engine 

and the final controller are based on RNN with external feedbacks. Requirements for 

feasible control actions and the static precision of control have been integrated in the 

controller design to guide learning toward an effective control solution. In this study, 

they considered a fuel injection system composed of a SI engine with a catalytic 

converter and a linear oxygen sensor on the exhaust manifold to measure the AFR 
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after the combustion process. The case study was applied to an Alfa Romeo 1.31 

engine. 

 

Alippi et al. [103] have presented an application where neural techniques can be 

effectively used in the automotive field: the control of AFR to keep minimum value 

the exhaust car engine emissions. They focused the attention on SI engines 

characterized by a catalytic converter and a linear oxygen sensor at the output of the 

exhaust manifold which measures the features of the combustion. The neural 

controller has been obtained with an indirect control scheme, based on a neural 

model of the process. It was designed to optimize performance and limit the 

necessary control actions. Encouraging results were obtained and validated on 

simulations and transients coming from a real engine.  

 

Frith et al. [104] have investigated the application ANNs for adaptive AFR control in 

gasoline engines.  Multiple ANN architecture has been designed and implemented to 

accommodate the variable time constant, gain and time delay aspects of the engine 

process. The paper discussed the rationale behind the multiple network design, the 

problems encountered in developing an ANN model of a process already under 

control, and a possible technique for online adaption of that model. They pointed out 

that ANNs offer the capability to model the process nonlinearities, clearing the way 

for nonlinear ANN model based predictive engine control.  

 

Saraswati and Chand [105] have used RNN for AFR identification in SI engine. AFR 

identification is difficult due to nonlinear and dynamic behavior of SI engines. 

Delays present in the engine dynamics limits the performance of engine controller. 

Identifying AFR few steps in advance can help engine controller to take care of 

these. RNN is trained using data from engine simulations in Matlab/Simulink 

environment. Uncorrelated signals were generated for training and generalization and 

it has been shown that RNN can predict engine simulations with reasonable good 

accuracy.  

 

Wu et al. [106] have described an ICE fault diagnosis system using the manifold 

pressure of the intake system. The manifold pressure of the engine intake system 

always demonstrates the engine condition and affects the volumetric efficiency, fuel 



 28 

consumption and performance of ICE. In this study, a system consisted of manifold 

pressure signal feature extraction using discrete wavelet transform and fault 

recognition using the neural network technique is proposed. To verify the effect of 

the proposed system for identification, both the RBF and generalized regression 

neural network are used and compared in this study.  The experimental results 

indicated that the proposed system using manifold pressure signal as data input is 

effective for engine fault diagnosis in the experimental engine platform.  

 

Thompson et al. [107] have shown the application of a neural network to model the 

output torque and exhaust emissions from a modern heavy duty diesel engine 

[Navistar T444E). They predicted the continuous torque and exhaust emissions from 

a heavy duty diesel engine for the Federal heavy duty engine transient test procedure 

cycle and two random cycles to within 5 percent of their measured values after only 

100 minute of transient dynamometer training. Neural network based engine 

modeling offers the potential for a multidimensional, adaptive, learning control 

system that does not require knowledge of the governing equations for engine 

performance or the combustion kinetics of emission formation that a conventional 

map based engine model requires. Applications of such a neural network model 

include emissions virtual sensing, on-board diagnostics and engine control 

optimization.  

 

García-Nieto et al. [108] have proposed a new approach to control the air 

management process of a diesel engine. This study can be concluded as follows: 1) 

predictive control and model identification schemes for local model network models 

shown. Proposed algorithms are easily implemented in a real engine, 2) a test 

platform is developed, including complex nonlinear behavior and real hardware data 

acquisition, 3) practical application based on local model networks modeling and 

explicit model predictive control, 4) results from applying the proposed control 

schemes, offering an improvement in the system behavior, are shown.  

 

Worden et al. [109] have provided an overview of a number of nonlinear system 

identification methods as applied to the analysis of nonlinear automotive dampers. 

Three different approaches are presented as follows: 1) the restoring force surface 

method, which is capable of forming a nonparametric visualization of the nonlinear 
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characteristics of the absorber, 2) the versatile nonlinear identification by feedback of 

outputs approach, which is capable of fitting parametric models where the 

parameters actually encode frequency dependence, 3) the discussion returns to the 

time domain for a method motivated by a neural network analogy that fits a 

parametric model assuming a hyperbolic tangent form for the damping force of the 

absorber. The approaches are demonstrated on both synthetic data and data obtained 

from testing of real dampers.  

 

Turin and Geering [110] have deduced convenient models of the significant dynamic 

processes, i.e., intake manifold, wall-wetting and oxygen sensor dynamics. They 

separated the analysis in terms of an air and a fuel path. In the case of linear 

dynamics they aim to achieve a linear regression form whereas in the case of 

nonlinear dynamics, they will augment the system state and apply extended Kalman 

filter theory. They showed that the proposed Kalman filtering methods provide 

highly effective means to solve the present classes of identification problems.  

 

Franchek et al. [111] have presented a feedforward fueling controller identification 

methodology for the transient fueling control of a SI engines. The feedforward 

fueling control of SI engines can be separated into steady state and transient 

phenomena and that the majority of the nonlinear behavior associated with engine 

fueling can be captured with nonlinear steady state models. The proposed transient 

controller identification process is built from standard nonparametric identification 

techniques followed by parametric model recovery. Crank angle serves as the 

independent variable for these models. Two separate system identification problems 

are solved to identify the air path dynamics and fueling path dynamics. The transient 

feedforward controller is then calculated as the ratio of the air path over the fueling 

path dynamics thereby coordinating the engine fueling with the air path dynamics. It 

is shown that a linear transient feedforward fueling controller operating in tandem 

with a nonlinear steady state fueling controller can achieve AFR regulation 

comparable to the production fueling controller without the extensive controller 

calibration process. The engine used in this investigation is a 1999 Ford 4.6 L V8 

fuel injected engine. 
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Stroh et al. [112] have presented an adaptive, model based, transient and steady-state 

fueling control system for SI engines. Since the fueling control system is model 

based, the engine maps currently used in engine fueling control are eliminated. 

Models are developed using an input-output approach with only measurable 

parameters which concisely represent the static and dynamic behavior of the AFR 

loop. The steady state fueling compensation utilizes a feedforward controller which 

determines the necessary fuel pulsewidth after a throttle transient to achieve 

stoichiometric.  This feedforward controller is comprised of two nonlinear models 

capturing the steady state characteristics of the fueling process. These models are 

identified from an input-output testing procedure where the inputs are fuel 

pulsewidth and mass air flow signal and the output is AFR. The transient fueling 

compensation also utilizes a feedforward controller that captures the essential 

dynamic characteristics of the transient fueling operation. This controller is measured 

using a frequency domain system identification approach. This proposed fueling 

control system is demonstrated on a Ford 4.6 L V-8 fuel injected engine.  

 

Ye [113] has presented a thorough review of various dynamic control technologies 

which have been successfully applied to idle speed control systems. Automotive idle 

speed control is one of the most challenging aspects in engine control fields. 

Essentially it is a highly nonlinear, time-varying, complicated and uncertain dynamic 

control problem. In particular, practical implementations on a variety of different 

engine types are provided, which cover broad areas of control, including classical 

control, modern control and intelligent control. Over 90 selected papers are reviewed 

and then summarized from a control point of view.  

 

Ortner and del Re [114] have presented the model based control of the air path of 

diesel engines in terms of an optimal control problem. A multilinear model identified 

from data and a switched controller design is used to cope with the nonlinearity of 

the engine. Experimental results on a production engine confirm that the proposed 

control method strongly improves the dynamics of the air path and enormously 

reduces the parameterization work if compared with the conventional approach.   
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2.4 Genetic Programming Approach for Nonlinear Identification of Engine  
 
A variety of system identification techniques are applied to the modeling of process 

dynamics. Identification of nonlinear system suffers many problems including 

determination of the structure and parameters of the system. Many methods of 

system identification are based on parameter estimation, and mainly rely on least 

squares method. Recently, soft computing based system identification approaches 

have been proposed, mainly fuzzy systems, artificial neural network, and 

evolutionary computation methods [115].  

 

GP is an evolutionary method which may be applied to the identification of the 

nonlinear structure of a dynamic model from experimental data [116, 117]. Several 

publications describe the usage of GP for nonlinear process modeling [118-120]. The 

nonlinear system identification method based on genetic expression programming 

(GEP) can find the accurate mode on the condition that there is less or none 

information about the system [121, 122].  

 

Recently, the identification of nonlinear systems by genetic programming (GP) 

approaches has been successfully applied in many applications. However a GP based 

identification and modeling of ICE, to the best knowledge of the authors, has not yet 

existed in the literature. In this section major studies of the genetic programming 

identification in the literature are given with important applications of system 

identification. 

 

Coelho and Pessȏa [115] have applied the nonlinear system identification procedure, 

based on NARX representation and GP to empirical case study of an experimental 

ball-and-tube system. The result demonstrated that the GP with orthogonal least 

squares is a promising technique for NARX modeling.  

 

Rodríguez-Vázguez and Fleming [123] have applied successfully multiobjective GP-

NARMAX approach to the identification of gas turbine engine. In order to identify a 

model capable of representing the engine at all operating points, they used 

multiobjective GP approach on the same data and allocated weights to various 

objectives, to assess their significance in the structure selection of NARMAX models 
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of the engine. A simple NARX model was identified which was able to represent 

both the small and large signal dynamics of the engine. They demonstrated that a 

practical application of this technique to obtain a model of the relationship between 

the fuel feed and the shaft speed dynamics of a gas turbine engine. Rodríguez-

Vázguez and Fleming [124] have shown that a multiobjective evolutionary 

identification method produce a similar and even better performance in nonlinear 

system identification than conventional techniques. 

 

Evans et al. [125] have improved the efficiency and cost-effectiveness of system 

identification techniques. Three system identification approaches were outlined in 

their study. They are based upon: multisine testing and frequency domain 

identification, time varying models estimated using extended least squares with 

optimal smoothing, and multiobjective genetic programming to select model 

structure. They provide significant insights into alternative identification strategies. 

They concentrated on the dynamic relationship between the measured input fuel flow 

and the high pressure and low pressure shaft speeds. Arkov et al. [126] outlined four 

system identification techniques. Only one method added to the study of [126] 

namely identification using ambient noise only data.   

 

Ruano et al. [127] have presented identification results for the shaft speed dynamics 

of an aircraft gas turbine under normal operation. They considered two different 

approaches: NARX models, and NN models, namely multilayer perceptrons, RBF 

networks and B-spline networks. They gave a special attention to GP, in a 

multiobjective fashion, to determine the structure of NARMAX and B-spline models. 

 

Rodríguez-Vázguez et al. [128] has presented a method for identifying the structure 

of nonlinear polynomial dynamic models. This approach uses a GP in a 

multiobjective fashion to generate global models which describe the dynamic 

behavior of the nonlinear system under investigation. The validation stage of system 

identification is simultaneously evaluated using the multiobjective tool, in order to 

direct the identification process to a set of global models of the system.  

 

Kiguchi et al. [129] have proposed an effective identification method using soft 

computing techniques (combination of GP and NN) in order to identify robot 
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manipulators. The back-propagated error is used for finding the important subtrees in 

each NN. The experimental results with two degree of freedom robot manipulator 

showed that the effectiveness of the proposed identification method.  

 

Kronberger et al. [130] have used linear regression, support vector regression, and 

GP to create linear and nonlinear models describing different aspects of the blast 

furnace process: the melting rate, the required specific amount of oxygen and the 

carbon content in the hot metal.  

 

Han et al. [131] have proposed a new method for chaotic system identification based 

on polynomial NARMAX representation and multiobjective GP. NARMAX model 

representation is used for the basis of the hierarchical tree encoding in GP. The 

simulation results show that the proposed technique provides an efficient method to 

get the optimum NARMAX difference equation model of chaotic systems.  

 

Beligiannis et al. [132] have proposed an effective GP based technique for system 

identification of complex biomedical data. The method combines the ability of GP to 

explore automatically and effectively the whole set of candidate model structures and 

the robustness of evolutionally multimodel partitioning filters. Simulation results 

show that the algorithm identifies the true model and the true values of the unknown 

parameters for each different model structure, thus assisting the GP technique to 

converge more quickly to the near optimal structure.  

 

Yang et al. [133] have presented a GP based method for the identification of 

unknown excitation force of dynamic systems. The numerical examples show that 

the GP system is able to identify the excitation force of a single-degree, a three-

degree and more complex frame dynamic systems. Comparison between the 

measured and the estimated force have validated the proposed GP based method. 

 

Hussian et al. [134] have presented a new method for modeling the dynamics of a 

winding process using GP and compare it with traditional modeling approaches. 

They used three methods for modeling a wire winding machine. These models 

include moving average, ARMA models and GP models. They used data sets 

collected from an actual industrial process throughout the experiments. It is 
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concluded that GP for modeling nonlinear systems are promising, and with the 

proper evaluation function and tuning of the GP system, they can get better results. 

 

Winkler et al. [135] have described research that was done for the project 

‘specification, design and implementation of a GP approach for identifying nonlinear 

models of mechatronic systems’. The goal of the project is to find model for 

mechatronic system. Their task was to examine whether the methods of GP are 

suitable for determining the structures of physical systems by analyzing a system’s 

measured behavior or not.  

 

Willis et al. [136] have used a GP algorithm to developed empirical models chemical 

process systems. Initially, steady-state model development using GP algorithm 

considered, next the methodology is extended to the development of dynamic input-

output models. Two examples were used to highlight the utility of this approach: a 

vacuum distillation column and a twin screw cooking extruder. The results revealed 

that in each case the GP algorithm can generate an accurate model based solely on 

observed data. McKay et al. [137] have demonstrated the usefulness of the GP 

technique by the development of steady-state models for two typical processes, a 

vacuum distillation column and a chemical reactor system.  

 

Grosman and Lewin [138] have described an improved GP to facilitate the 

generation of steady-state nonlinear empirical models for process system engineering 

applications. The key feature of the method is its ability to adjust the complexity of 

the required model to accurately predict the true process behavior. The improved GP 

code incorporates a novel fitness calculation, the optimal creation of new 

generations, and parameter allocation. The advantages of these modifications are 

tested against the more commonly used approaches.   

 

Hinchliffe and Willis [139] have used GP to evolve discrete time models of dynamic 

systems. GP algorithm is its ability to automatically discover the appropriate time 

history of model terms required to build an accurate model. Two case studies were 

used to compare the performance of the GP algorithm with that of filter based neural 

networks. A test system is with a time delay and an industrial cooking extruder. They 
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show that a major benefit of the GP approach is that additional model performance 

criteria can be included during the model development process.  

 

Witczak et al. [140] have provided a new system identification framework based on a 

GP technique. System identification is one of the most important research directions. 

It is diverse field which can be employed in many different areas. One of them is the 

model based fault diagnosis. Thus, the problems of system identification and fault 

diagnosis are closely related. Unfortunately, in both cases, the research is strongly 

oriented towards linear systems, while the problem of identification and fault 

diagnosis of nonlinear dynamic systems still remains open. A fault diagnosis scheme 

for nonlinear systems was proposed. In particular, a new fault detection observer was 

presented, and the Lyapunow approach was used to show that the propose observer is 

convergent under certain conditions. It is also shown how to use the GP technique to 

increase the convergence rate of the observer. The final part of this study contains 

numerical examples concerning identification of chosen parts of the evaporation 

station at the Lublin Sugar Factory, as well as state estimation and fault diagnosis of 

an induction motor.  

 

Lew et al. [141] have extended the class of possible models considerably by carrying 

out a general symbolic regression using a GP approach. The approach is 

demonstrated on both univariate and multivariate problems with both computational 

and experimental data. The results also showed that GP could identify the most 

influential design variables with respect to output.  

 

Yuan et al. [142] have defined two levels of crossover operation. A linear time-

invariant system, a nonlinear time invariant and a time varying system were 

identified by the improved GP algorithm, good models of object systems were 

achieved with accurate and simultaneous identification of both structures and 

parameters. This study shown that GP is good at handling different kinds of dynamic 

system identification problems and is better than other artificial intelligence 

algorithms like neural network or fuzzy logic which only model systems as complete 

black boxes.  
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Grosman and Lewin [143] have described the use of GP to generate empirical 

dynamic model of a process, and its use in a nonlinear, model predictive control 

strategy. GP derives both a model structure and its parameter values in such a way 

that the process trajectory is predicted accurately. Consequently, the performance of 

the nonlinear model predictive control strategy are described, and demonstrated by 

simulation on two simulated processes: (a) a mixing vessel fed by streams of salt and 

fresh water, in which the control objectives are to be maintain a desired fluid level 

and a salt concentration in the tank, and (b) a Karr liquid-liquid extraction column, 

which has been verified against experimental data.  They demonstrated that the GP 

based nonlinear model predictive control strategy leads to good closed-loop 

performance in both cases.  

 

2.5 Conclusions 
 
The extended overview has provided in this chapter indicates that there are a large 

number studies on nonlinear identification and modeling of ICE in literature. A good 

fraction of these studies have considered NARX and NARMAX models when 

identifying and modeling the nonlinear systems. This thesis differs from the 

previously conducted studies as follows: 

 

a) The presented study is on the nonlinear identification and modeling of gasoline 

engine. The thesis is original in this scope and content and there is no such study in 

the open literature, to the best of the author’s knowledge and it is the main 

motivation behind this study.  

 

b) In literature, a small number of studies consider gasoline engine torque modeling 

and identification. The analysis in the literature studies are mostly related to 

nonlinear identification and modeling of AFR of ICE.   

 

c) Identification of linear systems is a rather old field of study, and many methods 

are available in literature. However, identification of nonlinear systems is a 

respectively new topic of interest. The nonlinear identification of internal combustion 

engines have also been of interest in recent years.  
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d) However, ICE modeling is still an open field of research due to the antithetical 

needs of describing a very complex, nonlinear system and driving simple model 

structures suitable for the control synthesis or diagnosis phase. 
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CHAPTER 3 
 

3. DYNAMIC MODELING OF RECIPROCATING ENGINE 
 

3.1 Introduction 
 
Exact mathematical models of mechanical systems are derivable by Lagrange, 

Hamilton and Newton-Euler formulations or by energy methods. This requires all the 

system parameters such as masses, mass moments of inertia, stiffnesses, damping 

coefficients and physical dimensions explicitly. The system generally needs be 

dismantled into its main components where each parameter of the system is lumped 

for measurement. In applications where this is not possible, system identification 

becomes very useful, generating empirical mathematical model for the response of 

the system [11]. 

 

3.2 Equation of Motion for a Slider-Crank Mechanism 
 
A slider-crank mechanism is widely used in gasoline and diesel engines, and has 

been studied extensively in the past three decades [144]. Slider-crank mechanism 

converts the translational motion of piston to rotary motion of crank. Driving effect 

of slider-crank mechanism is obtained by a gas pressure arising from combustion of 

mixture consisting of fuel and air. The force corresponds to this pressure causes the 

piston to translate along the vertical axis and this action is transmitted to crank 

through connecting rod [145].  

 

The dynamic formulation is expressed by only one independent variable of rotation 

angle. A slider-crank mechanism is a single-looped mechanism with a very simple 

construction shown in Figure 3.1. Lagrange equation and geometric constraints are 

employed to formulate the differential equation of motion for a slider-crank 

mechanism. Euler-Lagrange equation is used to derive the dynamic modeling
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of mechanism and the dynamic equation obtained in terms of only one independent 

variable .θ  The main parameters of a slider-crank mechanism of a four cylinder 1.6 

injection Ford Escort motor are given in Table 3.1. 

 

Table 3.1 Fiat Tofaş 131 motor parameters 

 
Crankshaft weight (mc) 2.61 kg (for a single slider-crank mechanisms only) 

Connecting rod  weight (mcr) 0.560 kg (including bearings at both ends and assembly bolts 
and washers) 

Piston weight (mp) 0.278 kg (standard 76 mm diameter piston, including piston 
pin and 3 piston rings) 

Crankshaft radius (r1)  35.75 mm (location of the mass center of the crank is 1.917 
mm offset from the crankshaft axis, on the 
symmetry line, towards the counterbalance weights) 
 

Connecting rod length (l2) 

 

Crankshaft inertia (Ic) 

Connecting rod inertia (Icr) 

107.25 mm 

 

0.00781 kgm2 

0.00236 kgm2 

(location of the mass center of the connecting rod 
from crank bearing center, on the symmetry axis is 
35.75 mm towards the piston end) 

 
(for a single slider-crank mechanisms only) 
 
(including bearings at both ends and assembly bolts 
and washers) 
 

 

 

 

Figure 3.1 Slider-crank mechanism 

 

Due to the complexity of the system examined, its equations of motion will be 

derived by applying Lagrange’s equations. For this reason, the kinetic energy of the 

engine model is considered first. In particular, this quantity is split in the form 

 

pcrc TTTT ++=                   (3.1) 

 

l1 

r2 

l2 

r1 
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where the three terms on the right-hand side represent the kinetic energy of the crank, 

the connecting rod and piston, respectively. Since the crankshaft performs plane 

motion, its kinetic energy is expressed in the form 

 

 

( )222

2

1

2

1
ccccc yxmIT &&& ++= θ                  (3.2) 

 

where Ic is the centroidal mass moment of inertia and mc is the mass of the 

crankshaft. Moreover, the couple (xc, yc) identifies the position of the crank center of 

mass. From elementary kinematics it can be immediately be seen from Figure 3.1 

that 

 

θcos1rxc =  and  θsin1ryc =                 (3.3) 

 

which after differentiation yield the velocity components of the crank center of mass 

in the form 

 

θθ sin1
&& rxc −=  and θθ cos1

&& ryc =                (3.4) 

 

then, substitution in Equation 3.2 and performance of some algebraic manipulations 

yields eventually the kinetic energy of the crank in the form 

 

)cossin(
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2

1 222

1
222

1
2 θθθθθ &&& rrmIT ccc ++=  

                               (3.5) 
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Likewise, taking into account that the connecting rod undergoes a plane motion also, 

its kinetic energy is expressed in the form 

 

)(
2

1

2

1 222
crcrcrcrcr yxmIT &&& ++= β                 (3.6) 
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the geometric positions of gravity centers of the connecting rod are as follows: 

 

βθ coscos 21 rlxcr +=  and βsin)( 22 rlycr −=              (3.7) 

The mechanism has a constrained condition as follows: 

 

 βθ sinsin 21 ll =                   (3.8) 

 

θβ sinsin
2

1

l

l
=  and θβ 2

2
2

2

1 sin1cos
l

l
−=              (3.9) 

 

After differentiation a constrained equation with respect to time yield the angular 

velocity of connecting rod in the form 

 

ββθθ coscos 21
&& ll =        

                   (3.10) 

θ

θθ
β

22
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1
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which after differentiation yield the velocity components of the connecting rod center 

of mass in the form 

 

ββθθ sinsin 21
&&& rlxcr −−=  and ββ cos)( 22

&& rlycr −=            (3.11) 

 

Then, substitution in Equations 3.9 and 3.10 into Equation 3.11 

 

θ
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θ22

1

2
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So, rearranging Equation 3.12 
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Then, substitution in Equation 3.6 and performance of some algebraic manipulations 

yields eventually the kinetic energy of the connecting rod in the form of  
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Finally, kinetic energy of the piston can be written as, 

 

)(
2

1 22

pppp yxmT && +=                (3.17) 

 

while the piton is translating along the axis x only, with displacement 

 

βθ coscos 21 llx p +=  and 0=py             (3.18) 

 

After differentiation of Equation 3.18 with respect to time yield the velocity 

components of the piston in the form of,  

 

 ββθθ sinsin 21
&&& llx p −−=  
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Then, substitution into Equation 3.17 and performance of some algebraic 

manipulations yields eventually the kinetic energy of the piston in the form of,  
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Finally total kinetic energy of the slider-crank mechanism is 
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The gravitational potential energy of the crank, connected rod and piston is written 

respectively 
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The Lagrange function L is obtained as follows: 

 

 VTL −=  
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The virtual works AW∂  done by the external disturbance force FE and friction force 

FB with the virtual displacement x∂  of the slider, and the applied torque τ with the 

virtual angle θ∂  are summed as 
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The Euler-Lagrange equation will be applied in the following form; 
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Finally Euler-Lagrange equation is obtained as follows: 
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Figure 3.2 A four-cylinder in-line engine 

 

Finally, more complex sets of equations of motion are derived for multi-cylinder 

engines, like the one shown in Figure 3.2, by application of similar methodologies. In 

particular, when the engine parts are considered to be rigid, the form of equations of 

motion remains the same as that of the single-cylinder engine. However, the equation 

of motion is determined by taking into account the engine set-up, including the 

relative position of the cylinders and their firing sequence [146]. For instance, the 

equation of motion for the system shown in Figure 3.2, with a four cylinder in-line 

engine, takes the form 
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γn is the phase difference between the angular position of the first and nth cylinder, so 

that γ1= γ4=0 and γ2= γ3=π. Likewise, the angles βn indicate the phase difference 

between the firing angle of engine cylinders, so that β1=0, β2=3π, β3=π and β4=2π 

[146].  

 

3.3 Kinematic Analysis 
 
In the kinematic analysis, taking the first and second derivatives of the displacement 

of slider with respect to time, the speed and acceleration of slider are as follows: 

 

βθ coscos 21 llxB +=                (3.29) 
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Similarly, angular velocity β&  and acceleration β&&  are obtained from Equation 3.8 as 

follows 
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3.4 Dynamic Model Results 
 
Equation 3.27 is calculated by the Runge-Kutta method with time step 001.0=∆t s 

from 0 to 2 s to obtain numerical solutions, which are used to dynamic equation 

results of a slider-crank mechanism, and shown in Figures 3.3 (a), (b) and (c) for the 

angle θ, the angular velocity θ&  and the angular acceleration θ&& of the crank, 
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respectively. The displacement, velocity and acceleration of a slider are shown in 

Figures 3.4 (a), (b) and (c), respectively.  
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Figure 3.3 Numerical results of a slider crank mechanism for a) angle θ b) angular 

velocity θ&  c) the angular acceleration θ&& of the crank 
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Figure 3.4 Numerical results of a slider crank mechanism for a) displacement b) 
speed and c) acceleration of a slider 
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It is seen that the responses θ, ,θ&  ,θ&& ,Bx Bx&  and Bx&& numerical results are calculated 

by using Euler-Lagrange equation. Therefore, the simulation responses of a slider-

crank mechanism are well predicted by the numerical results. But internal 

combustion engine mostly have nonlinear characteristics, so that to obtain dynamic 

equation very difficult and impossible.   System identification becomes very useful, 

generating empirical mathematical model for the response of the system where the 

dynamic equations are not obtained.  

 

The total kinetic energy and potential energy of a slider-crank mechanism can be 

obtained and their figures shown in Figure 3.5. 
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Figure 3.5 Kinetic, potential and total energy of a slider-crank mechanism 
 

3.5 Conclusions 
 

The dynamic formulations of a slider- crank mechanism have been successfully 

formulated with only one independent variable. Dynamic responses of the numerical 

simulations were obtained for the dynamic modeling. The dynamic formulation can 

give a good interpretation of a slider-crank mechanism by using numerical 

simulations.  
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CHAPTER 4 
 
4. SYSTEM IDENTIFICATION 
 
4.1 Introduction 
 
System identification is the process of developing a mathematical model of a 

dynamic system based on the input and output data from the actual process [26]. This 

means it is possible to sample the input and output signals of a system and using this 

data generate a mathematical model. An important stage in control system design is 

the development of a mathematical model of the system to be controlled. In order to 

develop a controller, it must be possible to analyse the system to be controlled and 

this is done using a mathematical model. Another advantage of system identification 

is evident if the process is changed or modified.  System identification allows the real 

system to be altered without having to calculate the dynamical equations and the 

model parameters again.  

 
System identification is concerned with developing models [147]. A dynamic system 

can be conceptually described as in Figure 4.1. The system is driven by input 

variables )(tu and disturbance )(tv . The user can control )(tu  but not )(tv . The 

output signals are variables which provide useful information about the system [27]. 

 

 

Figure 4.1 A dynamic system with input )(tu , output )(ty and disturbance )(tv , where 
t denotes time [27]

Input  Output  

Disturbance  
      )(tv  

)(tu  )(ty  
 System 
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Basically system identification is achieved by the adjusting the parameters of the 

model until the model output is similar to the output of the real system. Steps in   

 

 

Figure 4.2 Schematic flowchart of system identification [27] 
 

system identification are shown in Figure 4.2. The procedures for carrying out 

system identification can be divided into the following steps [148]:   

 
a. Specify and parameterize a class of mathematical models that represents the 

system to be identified. 
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b. Apply an appropriately chosen test signal to the system and record the input-

output data. If the system is in continuous operation data and a test signal is 

not permitted, then we a must use the normal operating data for identification. 

c. Perform the parameter identification to select the model in the specified class 

that best fits the statistical data. 

d. Perform a validation test to see if the model chosen adequately represents the 

system with respect to final identification objectives. 

e. If the validation test is passed, the procedure ends. Otherwise, another class 

of models must be selected and steps (b) through (d) performed until a 

validation model is obtained.    

 

In this chapter, system identification methods for nonlinear dynamic systems are 

presented. The methods are applicable to spark ignited engine.  

 

4.2 Nonlinear System Identification 
 
4.2.1 Nonlinear System Representation 

  
A linear model is simple but is not always good enough to adequately approximate 

an inherent nonlinear process over its entire operating region [1]. Linearity has 

frequently been assumed in modeling input output characteristics of real systems and 

in developing the control rules. Hovewer, the input output characteristics of real 

systems contain nonlinearity and development of the nonlinear modeling approach 

seems to be very important in order to achieve highly precise prediction and control 

of nonlinear systems [149]. In addition, most systems encountered in the real world 

are nonlinear in nature, and since linear models can not capture the rich dynamic 

behaviour associated with nonlinear systems [13]. As a result, nonlinear system 

modeling and identification is necessary in control system science. 

 

It is beneficial to first develop a model of the system to accurately control a system. 

The fundamental objective for the modeling and identification task is to obtain a 

good and reliable tool for analysis and control system development [150].   

 

Almost all the systems in nature are inherently nonlinear over their operating range. 

Linearization of the models of these systems is in many cases possible only around a 
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specific operating point. Hovewer, in many cases we need to use nonlinear systems 

over the entire operating range and that is the main reason to think about nonlinear 

system modeling [64].  The theory and application of nonlinear system identification 

is as vast and varied as nonlinear systems themselves [151].  

 

When the system is to be represented nonlinearly, the problem is far from being a 

simple order determination and parameter estimation problem. Unlike linear systems, 

there exists no straightforward way of expressing a general nonlinear system. This 

fact raises the need to decide in what form to represent the nonlinear system as a first 

step. In the last century, the studies on nonlinear system theory have evolved 

considerably, and many methods for representing nonlinear systems have been 

proposed [152]. As far as nonlinear system identification and control system design 

are concerned, the methods of premium concern are the Volterra series 

representation, the Hammerstein representation, the Wiener representation and the 

Wiener-Hammerstein or the nonlinear autoregressive moving average with 

exogenous input (NARMAX) representation [148]. 

 

Various system identification techniques that can be broadly classified as parametric 

and nonparametric techniques have been successfully applied in system 

identification. There are different kinds of identification methods for nonlinear 

dynamic systems, as can be seen in Figure 4.3.  

 

Figure 4.3 Overview of system identification methods [78] 
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4.2.1.1 Volterra Series Model 
 
Most of the nonlinear systems can be represented by a Volterra series [148]. The 

single input single output (SISO) nonlinear system with additive noise shown in 

Figure 4.4.  

 

Figure 4.4 Nonlinear system with additive noise  
 

The Volterra series explicitly expresses the input-output relationship of a nonlinear 

system as follows: 
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The nth order Volterra kernel ),,( 1 nng ττ K represents the weighting function of nth 

degree.  

 

4.2.1.2 Wiener Model 
 
The nonlinear Wiener models consist of a linear dynamic element followed in series 

by a static nonlinear element is schematically shown in Figure 4.5.  

Figure 4.5 General Wiener model structure 
 
An autoregressive exogenous (ARX) model is typically choosen to represent the 

linear dynamics of the model. This model is described by the following equation: 
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which is represented in operator form by 
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where the operators ( )1−qA  and ( )1−qB  are 
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Although any form of nonlinear function may be used as the static nonlinearity of the 

Wiener model, a polynomial model is usually employed. This is the most general 

form and has an inverse by means of its roots [153]. The complete Wiener model is 

represented by 
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4.2.1.3 Hammerstein Model 
 
As is well known, many real systems of very different physical nature can be 

modeled as a cascade interconnection of a static nonlinearity and a linear model; this 

interconnection is referred to as Hammerstien model of the real system [154].  

 

Hammerstein model consists of a static nonlinear function followed by a linear 

dynamic function. This model is widely used to approximate many real world 

processes [148]. The Figure 4.6 represents this Hammerstein model:  
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Figure 4.6 Hammerstein model structure 
 

Let the static nonlinearity be represented by a nonlinear operator (.)F . Then,  
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The dynamical linear part in the Hammerstein model can be represented by an 

autoregressive with exogenous input (ARX) model. Then, 
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where 1−q is the backward time shift operator. The static nonlinear model (.)F is 

approximated by a power polynomial of order p , 
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where ),,1( nji K=γ are the nonlinearity parameters, .Rj ∈γ   

 

Hammerstein models are popular in control engineering. It is easy to compensate the 

nonlinear process behavior by a controller that implements the inverse static 

nonlinearity ( ).1−q  at its output. Another advantage of the distinction into nonlinear 

and linear blocks is that stability is determined solely by the linear part of the model, 

which can be easily checked. Thus, the Hammerstein model has many appealing 

features [17]. 
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4.2.1.4 NARMAX Model 
 
The Hammerstein and Wiener models for nonlinear systems are special cases of the 

general NARMAX representation of nonlinear systems [152]. Leontaritis and 

Billings [155] introduced the nonlinear autoregressive moving average with 

exogenous input (NARMAX) approach as a means of describing the input-output 

relationship of a nonlinear system. The model represents the extension of the well-

known ARMAX model to the nonlinear case.   

 

The NARMAX model structure with input nonlinearity (.)iF and output nonlinearity 

(.)oF  is shown in Figure 4.7, where )(kξ is the white noise disturbance [152]. 

 

 
Figure 4.7 General NARMAX system structure [152] 
 

The equation (4.12) which is commonly known as the ARMAX model is represented 

in operator form with input )(kx and output )(ky  in the linear subsystem by 
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The input nonlinearity has the following static characteristics: 
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The output nonlinearity is given by 
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The relationship between the overall system output )(tyo and input )(tx is as follows: 
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If the response of the system is dominated by nonlinear characteristics, it is often 

necessary to use a nonlinear model. The NARMAX representation gives a concise 

description for a large class of discrete time nonlinear systems [24]. NARMAX 

representation gives a more general nonlinear system model in comparison with the 

Hammerstein and the Wiener model [152]. Identification of systems represented by a 

NARMAX model can be found in Appendix 1.  

 

4.3 Identification of Hammerstein Model 
 
The Hammerstein model is probably the most widely known and applied nonlinear 

modeling approach. It assumes a separation between the linear dynamics and the 

nonlinear static part of the system [17]. The method to be used in Hammerstein 

system identification depends on the availability of a priori information. If sufficient 

amount of information is available, the system can be linearly parametrized and 

simple least square based identification algorithms can be built and applied [152].  

 

The dynamical linear part in the Hammerstein model can be represented by an ARX 

model as for the linear system model [28]. The relationship between the linear part 

input )(tx and output )(ty can be given as: 

 

)()()()()( 11 tetxqBtyqA += −−               (4.15) 

 

where )(tx  is the output of the nonlinearity, the polynomials in Equation 4.15 are 

given in Equations 4.4 and 4.5.  

 

The static nonlinearity in the Hammerstein model is classically approximated by a 

polynomial of known order. The order of the polynomial is selected in accordance 
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with the hardness of the nonlinearity in the system. Consider the system in Figure 

4.6. The static nonlinearity in the Hammerstein model can be approximated by a 

polynomial in input )(tu  of predetermined order ,p  as in Equation 4.10. The 

accuracy of this approximation depends on the suitable selection of the coefficients 

iγ  and the order .p   

 

The additive noise )(te  in Equation 4.15 is a random variable of zero mean. The 

problem of identification of the Hammerstein model reduces to estimating ,ia ,ib  

and iγ  using the data sequences )(tu  and ),(ty  for predetermined values of p and 

.n  

 

The combination of the linear and the nonlinear subsystems gives: 
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In Equation 4.16, the coefficients of ( )1−qB  do not appear explicitly. Without loss of 

generality, the nonlinear part can be normalized with respect to 1γ , and the Equation 

4.16 can be rewritten with the assumption that 11 =γ as follows: 
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where ,jiij bs γ=  ,,,1 pi K=  .,,1 nj K=  Then, Equation 4.17 is improved to be 
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Equation 4.19 can be put into linear regression forms as follows: 
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The linear regression representation for the system given in Equation 4.20 permits 

direct application of the recursive least square (RLS) method. However, the vector of 

unknown parameters does not include the coefficients of the polynomial 

)( 1−qB explicitly. These coefficients are implicitly expressed in the form of products 

with the nonlinear subsystem parameters ),...,1( njj =γ . Consequently, the 

identification of the system parameters can not be performed at a single stage. The 

RLS method is, therefore, implemented in two steps. The first step of the algorithm 

gives the estimates of the parameters ia  and jks , and the second step estimates the 

parameters kb and jγ using the results of the first step, where ani ,...,1= , nj ,...,1= , 

bnk ,...,1= . The nonlinear identification algorithm steps are summarized as follows: 

 

(i) Choose initial values for the covariance matrix P and forgetting 

factorλ . 
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(ii) Acquire the input and output of the system and form the data vector 

φ as given in Equation 4.21 for time instant t using the present and 

past values of the input u , output y and powers of u . 

(iii) Solve for the parameter estimates jkki sba ˆ,ˆ,ˆ using RLS estimates rule: 

)1(ˆ)()()( −−= tttyt T θφε  
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(iv) (iv) Solve for the estimates jγ̂ nj ,...,1= using the estimated values 

jkk sb ˆ,ˆ by the formula : 
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(v) Update the time instant, 1+= tt . Return to step (ii) 

 

 

4.4 Conclusions 
 
In this chapter, a general view of nonlinear system modeling and identification with a 

parametric approach is given. Hammerstein, Volterra series, Wiener and NARMAX 

models are examined in detail. Identification of Hammerstein model is presented in 

this chapter. The model and identification method are applicable to all the nonlinear 

systems including gasoline engine.  
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CHAPTER 5 
 

5. ARTIFICIAL NEURAL NETWORK 
 

5.1 Introduction 
 
Artificial Intelligence (AI) systems are widely accepted as a technology offering an 

alternative way to tackle complex and ill-defined problems. They can learn from 

examples, are fault tolerant in the sense that they are able to handle noisy and 

incomplete data, are able to deal with nonlinear problems, and once trained can 

perform prediction and generalization at high speed. They have been used in diverse 

applications in control, robotics, pattern recognition, forecasting, medicine, power 

systems, manufacturing, optimization, signal processing, and social/psychological 

sciences. They are particularly useful in system modeling such as in implementing 

complex mappings and system identification. AI systems comprise areas like, expert 

systems, artificial neural networks (ANN), genetic algorithm, fuzzy logic and various 

hybrid systems, which combine two or more techniques. [156]. 

 

ANNs mimic somewhat the learning process of a human brain. Instead of complex 

rules and mathematical routines, ANNs are able to learn the key information patterns 

within a multidimensional information domain. In addition, the inherently noisy data 

does not seem to present a problem, since they are neglected [157]. 

 

According to Haykın [158], a neural network is a massively parallel distributed 

processor that has a natural propensity for storing experiential knowledge and 

making it available for use. It resembles the human brain in two respects; the 

knowledge is acquired by the network through a learning process, and inter-neuron 

connection strengths known as synaptic weights are used to store the knowledge.
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Neural network (NN) operates like a “black box” model, and does not require 

detailed information about the system. Instead, it learns the relationship between the 

input parameters and the controlled and uncontrolled variables by studying 

previously recorded data, in similar way that a nonlinear regression might be 

performed. Another advantage of using ANNs is their ability to handle large and 

complex systems with many interrelated parameters. They simple ignore excess input 

data that are of minimal significance and concentrate instead on the more important 

inputs [156]. 

 

ANN has emerged as a powerful learning technique to perform complex tasks in 

highly nonlinear dynamic environment. Some of the prime advantages of using ANN 

models are their ability to learn based on optimization of an appropriate error 

function and their excellent performance for approximation of nonlinear function 

[158]. Neural networks have good general approximation capabilities for reasonable 

nonlinear systems [20]. Nerandra and Parthasaraty [22] demonstrated that artificial 

neural networks could be used successfully for the identification and control of 

nonlinear dynamic systems. Chen and Billings [23] have reported nonlinear system 

modeling and identification using ANN structures.  

 

5.2 History of Neural Networks 
 
The modern era of NNs began with the pioneering work of Warren McCulloch, a 

neurophysiologist, and a young mathematician, Walter Pitts, wrote a paper on how 

neurons might work in 1943. They modeled a simple neural network with electrical 

circuit. The next major development in NNs came in 1949 with the publication of 

Hebb’s book The Organization of Behavior, in which an explicit statement of a 

physiological learning rule for synaptic modification was presented for the first time. 

After the publication of McCulloch and Pitt’s classic paper, a new approach to the 

pattern recognition problem was introduced by Rosenblatt (1958) in his work on the 

perceptron, a novel method of supervised learning. In 1959, Widrow and Hoff 

introduced the least mean square (LMS) algorithm and used it to formulate Adaline 

and Madaline which was the first NN to be applied to a real world problem. Minsky 

and Papert published the book in 1969 which used mathematics to demonstrate that 

there are fundamental limits on what single layer perceptrons can compute [158].  
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A more mathematical approach to NN started in the 1970s, but only gained success 

in the early 1980s. In 1982, Hopfield invented the Hopfield network whose dynamics 

were guaranteed to converge. After this invention, NN studies have raised again. In 

1986, the development of the backpropagation algorithm was reported by Rumelhart, 

Hinton and Williams which has emerged as the most popular learning algorithm for 

the training of multilayer perceptrons [159].    

 

5.3 Biological and Artificial Neurons 
 
ANN is a system loosely modeled on the human brain. A biological neuron is shown 

in Figure 5.1. In brain, there is a flow of coded information from the synapses 

towards the axon.  The axon of each neuron transmits information to a number of 

other neurons. The neuron receives information at the synapses from a large number 

of other neurons [156].  

 

 

 

 

Figure 5.1 A simplified model of a biological neuron [156] 
 

Figure 5.2 shows a highly simplified model of an artificial neuron, which may be 

used to stimulate some important aspects of the real biological neuron.  

 

A neural network is composed of large numbers of highly interconnected processing 

elements known as neurons. The basic elements of an artificial neuron are shown in 

Figure 5.3. Artificial neuron consists of weight, bias and activation function mainly. 

Each neuron receives inputs ,21 ,.....,, nxxx attached with a weight iω which shows the 

connection strength for a particular input for each connection. Every input is then   



 66 

 

 

Figure 5.2 A simplified model of an artificial neuron [156]  
 

multiplied by the corresponding weight of the neuron connection. A bias ib can be 

defined as a type of connection weight with a constant nonzero value added to the 

summation of inputs and corresponding weights ,u given in Equation 5.1. 
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The summation iu  is transferred using a scalar-to-scalar function called an 

“activation or transfer function”, ),( iuf  to yield a value called the unit’s “activation”, 

given in Equation 5.2. 
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Figure 5.3 Basic elements of an artificial neuron 
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5.4 Types of Activation Function 
 
Activation functions serve to introduce nonlinearity into neural networks which 

makes it more powerful than linear transformation. There are many forms of 

activation functions, which are selected to the specific problem. All the NN 

architectures employ the activation function [158]. Table 5.1 summarizes the basic 

types of activation functions. The most practical activation functions are the sigmoid 

and the hyperbolic tangent functions. This is because they are differentiable [160].  

 

Table 5.1 Types of activation function 
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5.5 Neural Network Architectures 
 
Artificial neural network can be viewed as weighted directed graphs in which 

artificial neurons are nodes and directed edges (with weights) are connections 

between neuron outputs and neuron inputs [161]. Based on the connection pattern 

(architecture), ANNs can be grouped into two categories: 

 
• feedforward networks (multilayer perceptron and radial basis function 

networks) 

• recurrent or feedback networks (Elman and Hopfield networks) 

 
In the most common family of feedforward networks, called multilayer perceptron, 

neurons are organized into layers that have unidirectional connections between them. 

Recurrent, or feedback, networks, on the other hand, are dynamic systems [63, 161].   

 

5.5.1 Multilayer Perceptron  Feedforward Neural Network 

 
In the multilayer NN or multilayer perceptron, the input signal propagates through 

the network in a forward direction, on a layer-by-layer basis. This network has been 

successfully to solve some difficult and diverse problems by training in a supervised 

manner with a highly popular algorithm known as the error back-propagation 

algorithm [158].  

 

Multilayer perceptron feedforward (MLPFF) computational structure is a nonlinear 

model able to perform a mapping between the input vector x and the output vector 

.y In Figure 4.4 a multi input multi output (MIMO) MLPFF is shown; the input data 

(i.e. the independent variables) are propagated from the input layer to the output one, 

through the hidden layers, to generate the corresponding output signal (i.e. the 

dependent variables). Each layer of the MLPFF is composed of several elementary 

processing units (neurons) that work in parallel and are connected each other to 

create a flow of information from input layer to output one. These elements can be 

considered as single output black-box computing units with multiple inputs, where  

outputs is obtained by processing the weighted sum of the inputs with a transfer 

function named activation function, which is usually a nonlinear function [75].  
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In Figure 5.4 )(nxi  represents the input to the network, jf and kf represent the 

output of the two hidden layers and )(nyi represents the output layer of the NN. The 

connecting weights between the input to the first hidden layer, first to second hidden 

layer and second hidden layer to the output layers are represented by respectively. 

 

 

Figure 5.4 Multilayer perceptron neural network structure 

 

If 1P is the number of neurons in the first hidden layer, each element of the output 

vector of first hidden layer may be calculated as, 
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Where jb is the bias to the neurons of the first hidden layer, N is the number of 

inputs and ϕ is the nonlinear activation function in the first hidden layer chosen from 

the Table 5.1. Let 2P be the number of neurons in the first hidden layer. The output of 

this layer is represented as, kf  and may be written as, 
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where,  kb is the bias to the neurons of the second hidden layer. The output of the 

final output layer can be calculated as 
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where, lb  is the bias to the neuron of the final layer and 3P is the number of neurons 

in the output layer. The output of the MLP may be expressed as 
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5.5.2 Radial Basis Function Neural Network 

 
Another popular layered feedforward network is the radial-basis function (RBF) 

network which has important universal approximation properties, and whose 

structure is shown in Figure 5.5 [158]. The alternative neural network architecture 

besides multilayer perceptron (MLP) is radial basis function [162].   

 

RBF networks can be used to approximate any continuous nonlinear function. The 

weight can be linearly regulated. The learning speed and convergence is fast enough. 

The characteristics of RBF networks are suitable for many industrial fields such as 

system identification, control engineering and signal processing [95].  

 

As shown in Figure 5.5, the RBF neural network has three layers: the input layer, the 

hidden layer and the output layer. The hidden layer consists of an array of computing 

units called hidden nodes. Each hidden node contains a centre ,c which is a 

parameter vector, and calculates the Euclidean distance between the centre and the 

network input vector x  defined by )()( tctx j−  where )(tx is the RBF neural 

network inputs, )(tc j is the j th centre. 
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Figure 5.5 Radial basis function neural network structure 

 

The results are then passed through a nonlinear activation function )(tjφ to produce 

the output from the hidden nodes. A popular choice of activation function is the 

Gaussian basis function:  
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where jσ is a positive scalar called a width and hn is the number of centers. Since the 

output layer is essentially a linear combiner, then the i th output of the neural 

network model at time t is a weighted sum of the hidden node outputs: 
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Where w are the output layer weights and q is the number of outputs.  
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RBF networks are best suited for approximating continuous or piecewise continuous 

real valued mapping ,: Ln RRf → where n is sufficiently small. These 

approximation problems include interpolation problems as a special case. From 

Equations 5.7 and 5.8, the RBF network can be viewed as approximating a desired 

function )(xf  by superposition of non-orthogonal, bell-shaped basis functions. The 

degree of accuracy of these RBF networks can be controlled by three parameters: the 

number of basis functions used, their location and their width [163]. 

 

5.5.3 Recurrent Neural Network 

 
The recurrent neural network (RNN) that is a special type of the dynamic neural 

networks is derived from the MLPFF networks given in Figure 5.4 by considering 

feedback connections among the neurons. Thus, a dynamic effect is introduced into 

the computational system by a local memory process [75]. Moreover, by retaining 

the nonlinear mapping features of the MLPFF, the RNN are suitable for black-box 

nonlinear dynamic modeling [158].  

 

Recurrent networks are the state of the art in nonlinear time series prediction, system 

identification, and temporal pattern classification. RNN are classified into local or 

global kind. The application of global feedback can take a variety of forms. The form 

of global feedback has feedback from the output neurons of the multilayer perceptron 

to the input layer given in Figure 5.6. Another possible form of global feedback is 

from the hidden neurons of the network to the input layer [158].  



 73 

 

 

Figure 5.6 Recurrent neural network structure 
 

The RNN with multi-input and single output shown in Figure 5.6 is of the form 

 

∑ ∑
= =









=

HN

i

n

j
jiji tIwswty

1 1

)()(                  (5.9) 

 

where )(ty is the output of the neural model; iw  and ijw  are the synaptic weights 

which connect the hidden nodes with the output, and connect the inputs to the hidden 

nodes, respectively; HN is the number of hidden node; n  is the number of total 

inputs; T
qqq ntxtxmtxtxmtytytI )](,),1();(,),1();(,),1([)( 111 −−−−−−= KKK is 

the input vector where )}(,),1({ mtyty −− K  are the recurrent terms which are the 

neural model output delayed in time. (.)s  is the activation function listed in Table 

5.1 [1].  

 

Elman, Hopfield, self-organizing map can be given as an example of recurrent 

network. Elman network is the simplest structure and easiest to use. Some popular 

recurrent network architectures are the Elman recurrent network in which the hidden 

unit activation values are feedback to an extra set of input [164].  
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5.5.3.1 Elman Recurrent Neural Network 
 
Elman neural network is a dynamic recurrent neural network with feedback layer 

which owns the dynamic characteristics and recurrent function [91]. The feedback 

connections in Elman recurrent neural network are from the outputs of neurons in the 

hidden layer to the context layer units that are called as context nodes. This part of 

input layer, namely, the context layer, plays a role in storing internal states in Elman 

neural networks [165]. Mathematical description of Elman type RNN can be given as 

follows: 

 

The structure of an Elman RNN is illustrated in Figure 5.7. Here, ,X  ,Y ,C Z  and 

1−z  and are input layer vector, hidden layer vector, context layer vector, output layer 

vector and unit delay element respectively [165]. 

 

 

 

Figure 5.7 Elman recurrent neural network structure 
 

Weight matrices are as follows: 1W  is the weight matrix between input layer and 

hidden layer, 3W  the weight matrix between context layer and hidden layer and 2W  

is the weight matrix between hidden layer and output layer [165].  
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At sth iteration, all vector components are as follows: 
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Here, index ,i ,j k  and 'i indicate the number of input nodes, hidden nodes, output 

nodes and context layer nodes, respectively. And also, to compute the hidden node 

outputs, considering the activation function (.)f  for jth hidden node output at sth 

iteration can be defined as 
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where )(s
ja  is linear output of hidden node j at sth iteration. Context layer input at sth 

iteration can also be given by 
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For initial cases of Elman neural network, assuming 
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The context layer input at 1=s  leads to .0)1( =ic  In terms of weight matrix of the 

neural structure, each weight coefficient can be defined as an element of these 

matrices as ,11 Ww ij ∈  ,33 Ww ij ∈ .22 Ww jk ∈  

 

Hence, using the weight matrices, the outputs of the neurons in the hidden layer and 

output layer for sth iteration can be computed as 

 



 76 

,31
1 1

)1()()(











+= ∑ ∑

= =

−
n

i

m

j

s
jij

s
iij

s
j ywxwfy              (5.13) 

and 

.2
1

)()(











= ∑

=

m

j

s
jjk

s
k ywfz                (5.14) 

And also, updated weight coefficients can be given to minimize the approximation 

error E in the output layer by 
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where η is the  learning rate. E is defined for all pattern vectors and output nodes 

with the following relationship: 
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where )(s
kZ is the target value at sth iteration. 

 

Here, p is the length of the training sequence and weight coefficient matrices of 1W  

and ,3W  can be adjusted using the standard Back-Propagation algorithm, because 

this part of the network that takes place between the input and output layers, in the 

feedforward character [165]. 

 

5.6 Learning Algorithm 
 
There are various types of algorithms for training the network. Basically, the purpose 

of every algorithm is to estimate the local error at each neuron and systematically 

update the network weights. In this thesis, the feedforward neural network was 

trained with the back propagation algorithm and Levenberg-Marquardt algorithm to 

estimate/assess their search efficiency and accuracy in this thesis. The details of the 

above algorithms are given in the following section.   
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5.6.1 Backpropagation Algorithm 

 
A back propagation (BP) algorithm, which is the most widely used training algorithm 

for the multi layer perception, is a gradient descent technique to minimize the error 

for a particular training pattern and was popularized by Rumelhart and coworkwers 

[159]. Accordingly, for a given input pattern, a flow of activation is forwarded from 

the input layer to the output layer via hidden layer(s). Then the errors in the output 

are initiated. BP algorithm is used to adjust the weights, a small amount at a time, in 

a way that reduces the error. The training of the network is accomplished by 

adjusting the weights and is carried out through a large number of training sets and 

training cycles (epochs). The goal of the learning procedure is to find the optimal set 

of weights, which in the ideal case would produce the right output for any input. The 

output of the network is compared with a desired response to produce an error. Once 

the ANN is adequately trained, it can generalize to similar cases, which it has never 

seen. The BP algorithm for a neural network works as follows. 

 

Define the instantaneous overall network error at time t as  
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where )(tT j  is the target value of neuron j at time t; and )(tz j is the network output 

of neuron j at time t. 

 

The energy function is obtained by summing )(tE over all time T.  
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The weight change for any particular weight ,jiW which connects neuron j in this 

layer with neuron i in the previous layer, can thus be written as 
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where η is the learning rate parameter. 

 

Using the chain rule for partial derivatives, the weight change can be generalized as  
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where 1−n
jz  represents the output value of neuron j in the )1( −n th layer, 
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11δδ  for the hidden layers, and (.)g represents the first 

derivative of nonlinear activation function.  

 

Further details on the BP algorithm can be found in Ref. [159].  

 

5.6.2 Levenberg-Marquardt Algorithm 

 
Levenberg-Marquardt method is an approximation to Newton’s method [166]. The 

algorithm uses the second-order derivatives of the cost function so that a better 

convergence behavior is observed. In the ordinary gradient descent search, only the 

first-order derivatives are evaluated and the parameter change information contains 

solely the direction along which the cost is minimized, whereas the Levenberg-

Marquardt technique extracts a better parameter change vector [166]. Newton’s 

original approach assumes that a function E(w) is minimized if the successive 

changes defined by Equation (5.21) are given to the parameter vector w. 
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We assume the performance function is defined as follows; 
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In Equation (5.22) q indexes the training pairs, and Q is the number of training pairs, 

t denotes the target output and o denotes the actual output of the network. If Equation 

(5.22) is rewritten with respect to the output error which depends on the weight 

vector, we obtain Equation (5.23).   
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The objective is to minimize each individual multiplication in Equation (5.23). ıf 

Taylor series expansion is applied to (w)eq around w0; 
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In Equation (5.24) J is the Jacobian matrix and evaluated at w0. The entries of this 

matrix represent the derivative of the error evaluated at the ith output with respect to 

the jth parameter of the parameter vector. And, this statement obviously implies that 

the number of rows of the Jacobian matrix is equal to the multiplication of the 

number of network outputs and the number of the training pairs. Similarly, the 

parameter vector will have an entry for all weights and biases of the network [18]. 
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We define an approximate error component as described in Equation (5.26). 

Differentiating this equation with respect to parameter vector w and equating zero 

gives the usual “normal equation” of the linear least squares problem. 

 

)(ˆ)(ˆ)( we wewφ q
T
q=                  (5.26) 

 

0)()( 0 =+− w eJwwJJ q
TT                 (5.27) 

 



 80 

From Equation (5.27), the change in parameter vector turns out to be Equation 

(5.28). 
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The terms appear in Equation (5.28) are explained as follows; 
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Equation (5.29) represents the first derivative of the performance function, Equation 

(5.30) represents the second derivative of the performance function and is called 

Hessian matrix. Levenberg and Marquardt Equation (5.28) by adding extra term to 

the Hessian matrix [18]. The resulting parameter update rule is then introduced to be; 

 

)()( 1 weJµ IJJ∆w q
T-T +−=                (5.31) 

 

In fact, the reason for this modification is that this additional term compensates the 

approximation errors. Actually, the method seems to minimize Φ but this may not 

always imply that E(w) is minimized. Therefore, a scaling is introduced to Hessian 

matrix evaluation part of the method. If a step reduces E(w) then µ is decreased, 

otherwise µ is increased by some factor greater than one. Note that, if µ is large, the 

method becomes steepest descent because the modification dominates the term JTJ 

term only the first order derivative information remains, on the other extreme, if µ is 

too small then the method becomes pure Gauss-Newton method. Therefore the 

method is considered as a trust region modification to Gauss-Newton [18].  

        

5.7 Neural Networks for Identification of Nonlinear Dynamic Systems 
 
In analogy to linear system identification, a nonlinear dynamic model can be used in 

two configurations: series-parallel and parallel models [17]. 
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• Series-parallel model: the previous process inputs )( iku −  and process 

outputs )( iky − are used as inputs to the model. This model can be 

considered as a feedforward. The model is said to have external dynamics. 

• Parallel model: the previous process inputs )( iku −  and the model outputs 

)(ˆ iky − are used as inputs to the model. This model can be considered as a 

recurrent model. The model is said to have internal dynamics.   

 

Figure 5.8 compares the model configuration for both models. In both cases the 

model is trained by minimizing a loss function dependent on the error ).(ke  

 

 

 

Figure 5.8 a) Series-parallel model b) parallel model 
 

For dynamic systems and for controllers, the model must have some way to 

implement time lags. In other words: some memory function must be present in the 

model. In NN modeling this can be done twofold: either delayed inputs and outputs 

are used as extra external inputs, or some memory is included in the individual 

neurons [167].  
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5.7.1 External Dynamics 

 
The external dynamics strategy is by far the most frequently applied nonlinear 

dynamic system modeling and identification approach. It is based on the nonlinear 

input/output model of a m th order in Equation 5.32 [17] 

))(,),1(),(,),1(()(ˆ mkykymkukufky −−−−= KK             (5.32) 

 

All nonlinear dynamic input/output models can be written in the form  
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where the regression  vector )(kϕ can contain previous and possibly current process 

inputs, previous process or model outputs, and previous prediction errors [17].  

 

The three most common linear model structures are autoregressive with exogenous 

input (ARX), autoregressive moving average with exogenous input (ARMAX) and 

output error (OE) models. Their nonlinear counterparts posses the following 

regression vectors with :))(ˆ)()(( kykyke −=  

 

Time delay neural network (TDNN) or NARX 
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NARMAX 
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NOE 
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where euy nnn ,, denoted the dynamic order of the model output, input and error 

respectively.  

 

Thus, the NARX model is trained in series-parallel configuration (Figure 5.8a) and 

the NOE model is trained in parallel configuration. The NARMAX model requires 

both, process outputs )( iky − and model outputs )(ˆ iky − contained in )( ike − [17].  

Since for nonlinear problems the complexity usually increases strongly with the input 

space dimensionality, the application of lower dimensional NARX or NOE models is 

widespread. One drawback of models with output feedback is that the choice of the 

dynamic order is crucial for the performance and no really efficient methods for its 

determination are available. Often the user is left with a trial-and-error approach. 

Another disadvantage of output with feedback is that in general stability can not be 

proven for this kind of models [17].  

 

In opposition to these drawbacks, models with output feedback compared with those 

without output feedback have the strong advantage of being a very compact 

description of the process [17].  

 

5.7.2 Internal Dynamics 

 
Models with internal dynamics are based on the extension of static models with 

internal memory. In contrast to models with external dynamics, the use of past inputs 

and past outputs at the model input is not necessary. Therefore, the application of 

internal dynamic models leads to a desirable reduction of the input space 

dimensionality. Since internal dynamic models posses no external feedback, only the 

parallel model approach in figure 5.8b can be applied. Consequently, these models 

are not well suited one-step prediction tasks.  

 

5.7.3 Training Feedforward and Recurrent Structures 

 
From the internal dynamic approach recurrent structures always arise. From the 

external dynamic approach NARX model are feedforward during training but NOE 

models are recurrent since they apply the parallel model configuration [17]. 
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Training of feedforward structures is equivalent to the training of static models. 

However, training of recurrent structures is more complicated because the feedback 

has to be taken into account. In particular, training recurrent models is always a 

nonlinear optimization problem independent of whether the utilized static model 

architecture is linear or nonlinear in the parameters. This severe drawback is a further 

reason for the popularity of feedforward structures such as the NARX model. 

Therefore, in nonlinear system identification, the choice of the dynamic 

representation is highly interconnected with the choice of the model architecture 

[17]. 

 

5.7.4 Choosing a Model 

 
Models with external dynamics can be seen as one-step predictors. Models with 

internal dynamics are best used for simulation purposes, as the model doesn’t need 

the true plant outputs.  

 

The criteria that determine the choice of the model are the following: 

• Which information is available? It seems obvious that all possible 

information must be used for the model, i.e. the true outputs, the noise 

contributions, and the past inputs. The result is an increasing number of 

model parameters that need to be optimized. If only the exogenous input u is 

known, then the only models possible are NOE. If the plant outputs can be 

measured, a NARX model can be taken into consideration. In general it is not 

possible to know the process noise ,n but it could be estimated for use with a 

NARMAX model. 

• Can significant time lags be estimated? The determination of the values of 

euy nnn ,, is still an open question. It seems obvious that large values allow for 

better prediction of the future state of the NN. However, large time lags also 

result in large parameters vector that need to be optimized. 

• How many measurements are available for the optimization of the parameter 

vector? Models with a large number of parameters, don’t match with a small 

measurement set. 
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• Is the model used for control of simulation purposes? For simulation 

purposes, only NOE or NFIR models fit the job, because they don’t need the 

current plant outputs.  

• Are transients an issue? Model with large time lags or with internal dynamics, 

can suffer from large transients when the system is brought into a new state. 

 

Since it is the goal to have at least number of parameters, it makes sense to choose 

the simplest model available, and switch over to more complex models if this yields 

a significant improvement in performance [167].   

 
5.8 Conclusions 
 

In this chapter, the information about the neural network and neural network 

structures are provided. And also neural networks for identification of nonlinear 

dynamic systems explained. Neural network structures will be used in gasoline 

engine torque identification.  
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CHAPTER 6 
 

6. MEAN VALUE MODEL OF A SPARK IGNITION ENGINE 
 

6.1 Introduction 
 
The engine model is referred to as the mean value engine model (MVEM) developed 

by Hendricks and coworkers [168-170] which is widely used benchmark for engine 

modeling and control. A mean value model (MVM) is a mathematical engine model 

which is intermediate between large cyclic simulation models and simplistic transfer 

function models. It predicts the mean values of major external engine variables like 

crankshaft speed and manifold pressure dynamically in time [171]. 

 

The main engine sub-models include the air system that defines how much air is 

inducted into the cylinder; the fuel system that defines how much fuel is inducted in 

to the cylinder; the torque generation system that defines how much torque is 

produced by the air and fuel in the cylinder as defined by the first two parts; the 

engine inertial system that defines the engine speed; the engine thermal system that 

defines the thermal behavior of the engine; the pollution formation system that 

models the engine out emission [172]. 

 

All these models are control oriented models (COM), i.e. they model the input-output 

behavior of the systems with reasonable precision but low computational complexity, 

and include explicitly, all relevant dynamic effects [172]. 

 

The SI engine has several input (command) signals, one main disturbance signal (the 

load torque) and several output signals as shown in Figure 6.1. The inputs are 

signals, i.e. quantities that can be arbitrarily chosen in order to allow full control of
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engine, usually these will be electric signals. The outputs also are signals that can be 

used by controller without the system behavior being effected [172]. 

 

 

 

Figure 6.1 Main system’s input/output signals in a COM of an SI engine 
 

 

 

Figure 6.2 Mean-value SI engine structure [172] 
 

Spark ignition (SI) engine system has the structure shown in Figure 6.2. In a mean 

value approach, the reciprocating behavior of the cylinders is replaced by a 

continuously working volumetric pump that produces exhaust gases and torque. The 

resulting main engine components are shown in Figure 6.2. 

 

Figure 6.3 shows the resulting simplified cause and effect diagram of an SI engine. 

Both air and fuel paths affect the combustion through some delaying blocks while the 

ignition affects the combustion almost directly. The main output variables of the 
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combustion process are the engine torque Te, the exhaust gas temperature Texh and 

the air/fuel ratio λe. 

 

 

 

Figure 6.3 Cause and effect diagram of an SI engine system [172] 
 

All gasoline fuelled SI MVEMs have basically three main subsytems: 1) the 

manifold air dynamics, 2) the fueling dynamics and 3) the crankshaft dynamics. 

Because of the nature of an SI engine, these subsystems are described by very 

different physical models which are more or less empirical [173].  
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6.2 Intake Manifold Filling Dynamics 
 
The intake manifold of the engine is the volume between the throttle plate and the 

intake valves of the cylinder. The throttle controls the air flow into the intake 

manifold [171]. 

 

The intake manifold filling dynamics are analyzed from the viewpoint of the air mass 

conservation inside the intake manifold [170, 172]. 

 

apatm mmm &&& −=                   (6.1) 

 

where atm&  and apm&  represents air mass flow rate past throttle plate and air mass flow 

rate into the intake port, respectively.  

 

The pressure in the intake manifold pm can be related to the mass of air in the 

manifold mm using ideal gas equation [170-172]: 

 

 mmmm RTmVp =                   (6.2) 

 

where R is the ideal gas constant, Tm is the intake manifold temperature and Vm  is the 

intake manifold volume. 

 

Taking derivatives of equation 6.2 and substituting from equation 6.1, the intake 

manifold pressure equation is obtained as  

 

 ( )apat

m

m
m mm

V

RT
p &&& −=                  (6.3) 

 

6.2.1 Throttle Body Flow 

 
Normally an engine has two mass flows: through the throttle valve and through the 

by-pass throttle valve. It is assumed that the by-pass is open only in the idle speed 

mode. However, nearly all available measurements are for other modes than the idle 

speed mode, so the by-pass air flow in the identification process is neglected. In fact, 
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the by-pass identification is included in the identification of the flow through the 

throttle valve [174]. 

 

 

Figure 6.4 Throttle body flow 
 

The throttle body consists of a cylindrical bore with a throttle plate to control the air 

flow to the engine shown in Figure 6.4. The throttle body model is based on the 

theory for one-dimensional, steady, isentropic, compressible flow of an ideal gas 

across an orifice [174]. The mass flow rate through the throttle body into the intake 

manifold can be calculated from the orifice equation for compressible fluid flow 

[168, 170]. The equation for the air mass flow entering the intake manifold through 

the throttle atm& then becomes: 
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where cd is the discharge coefficient and A is the opened area of throttle, depending 

on the angle (α) of the throttle plate [174]. 
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For many working fluids (e.g., intake air, exhaust gas at lower temperatures, etc.) 

with 4.1≈κ  the flow function (.)Ψ is defined by [172] 
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6.2.2 Cylinder Flow 

 
The air mass flow apm& from the intake manifold into the cylinders follows from the 

so-called speed density formula [170] 
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where ηvol is the volumetric efficiency which is a complex function of many engine 

parameters and the variables pm and ωe, Vd is the displacement volume of the engine 

cylinders and 
m

m

RT

p
is the density of air in the intake manifold.  

 
So, intake manifold pressure dynamic (Equation 6.3) can be written into the form 
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6.3 Fueling Dynamics 
 
The fuel path which is the subsystem that provides the necessary fuel for the 

combustion process to the cylinder has its own dynamics. One of the most important 

dynamic effects in the fuel path is caused by the wall-wetting phenomena. The liquid 

fuel injected into the intake port only partially enters the cylinder in the next intake 

stroke. Some of its stored in fuel puddles of the mass mf at the intake port walls and 

at the back face of the intake valve. Of course, fuel also evaporates from these 

puddles such that a mass balance can be expressed as follows [172]: 
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where ψm& is the fuel mass injected, ϕm& the fuel mass aspirated into the cylinder, and 

mf  the mass of fuel stored in the fuel film. The coefficients κ(.) and τ(.) depend on 

the engine speed and load, and many other variables (mean fuel temperature Tf , etc.) 

[172].  

 

The model applied in [175] is a simplified version of the model used in [172]. The 

fuel mass flow rate ϕm& is typically determined by a fuel injection control system 

which attempts to maintain stoichiometric air to fuel ratio in the cylinders. If it is 

assumed that a stoichiometric air fuel ratio is successfully maintained in the 

cylinders, then the fuel mass flow rate ϕm& is related to the outflow from the intake 

manifold into the cylinders of the engine as follows [175, 176]: 

 

th

ap

L

m
m

.λ
ϕ

&
& =                  (6.11) 

 

where apm& is the air mass flow rate out of the intake manifold an into the cylinder, Lth 

is the stoichiometric air/fuel mass ratio for gasoline (fuel) and λ is the air/fuel 

equivalence ratio. Here, λ=1 and Lth=14.67 [175]. 

 

According to Hendricks’s identification experiments with SI engine, the fuel flow 

dynamics could be described as following equations [177]: 
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where the model is based on keeping track of the fuel mass flow. The parameters in 

the model are the time constant for fuel evaporation, τf, and the proportion Xf  of the 

fuel which is deposited on the intake manifold, ffm& , or close to the intake valves, 

fvm& . These parameters are operating point dependent and thus the model is non-

linear in spite of its linear form. 

 
 
6.4 Crankshaft Speed Dynamics 
 
The primary objective of an engine is to produce mechanical power. The torque 

generation phase, which consists of the cylinders that convert the chemical energy in 

air fuel mixture inflow into mechanical engine torque, is governed by a nonlinear 

dynamic equation of dependent variables including air/fuel ratio, fuel mass in 

cylinders, engine speed, ignition and injection timing, and several others. The mean-

value engine torque is therefore expressed as a nonlinear function of these variables 

and time [172].   

 

The crankshaft rotational dynamics can be represented by [171] 

 

floadindee TTTI +−=ω&                (6.15) 

 

where Ie is the moment of inertia of the engine flywheel, crankshaft, connecting rod, 

piston and valve train assembly. Tload is the external load torque. Under road 

conditions, this torque is mainly due to rolling resistance, aerodynamic drag of the 

vehicle and the friction in the driveline, etc. Also torques to drive engine accessories 

(power-steering, fan and air conditioner) can contribute to Tload. Under testing 

conditions, Tload equals the brake torque applied by the dynamometer (measured). Tf 

is the torque due to friction and pumping losses in the engine. Tind represents the 

indicated combustion torque [174]. 

 

6.4.1 Indicated Combustion Torque 

 
The indicated torque, Tind, is generated by combustion and can be represented by 

[170]:  
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where Hu is the fuel heating value of gasoline (Hu=45.106 J/kg), ηi is the thermal 

efficiency multiplier and accounts for the cooling and exhaust system losses, and ϕm&  

represents the fuel mass flow rate into the cylinders given in Equation 6.11.  

 

In reality, the indicated and friction torques vary as the engine rotates through the 

thermodynamic cycle. In a mean value engine model however, the dynamics of 

rotation are averaged over time [171].  

 

6.4.2 Friction and Pumping Losses 

 
The term Tf in the rotational engine dynamic equation 6.15 represents the 

hydrodynamic and pumping friction losses represented in terms of a loss torque 

[171]. 

 

The fundamental component of mechanical friction losses in an engine is 

hydrodynamic or fluid-film friction. A reasonable choice of polynomial expression 

for these friction losses in terms of engine speed ωe rad/s is [178]: 

 

21
2

0 aaaF eeloss ++= ωω                (6.17) 

 

In this expression, the constant term a2 represents boundary friction, the linear term 

a1ωe accounts for hydrodynamic or viscous friction and a0ωe
2 accounts for turbulent 

dissipation. Turbulent dissipation is found to be proportional to ωe
2 and constant of 

proportionality depends on the geometry of the flow-path [178]. 

 

The pumping losses are found to be proportional to the pumping mean effective 

pressure and the operational speed [170]. The pumping mean effective pressure is 

defined to be the difference between exhaust pressure and manifold pressure, 

.mexh pp −  Therefore the pumping losses can be modeled as [170, 171]: 
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mmeloss pbpbP 10 += ω                 (6.18) 

 

since the exhaust pressure is nearly constant and is equal to the atmospheric pressure. 

 

Total friction and pumping losses in an engine can thus be expressed as polynomials 

in the engine speed and manifold pressure as follows [170, 175]: 

 

mmeeef pbpbaaaT 1021
2

0 ++++= ωωω              (6.19) 

 

where  a0, a1, a2, b0, b1 are parameters dependent on the specific engine. 

 

Finally, the crankshaft speed is derived based on the conservation of the rotational 

energy on the crankshaft. 
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where I is the scaled moment of inertia of the engine and its load and mean injection 

torque time delay has been taken into account with variable ∆τd [94].  

 

6.5 Conclusions 
 
Mean value engine models (MVEM) are generally accepted as the modeling 

paradigm for engine control, and are extensively described in the literature. It allows 

modeling the mean value behavior of some engine parameters. This kind of model 

represents the global dynamic of the engine and can be easily identified using the 

common measurements available on production vehicles. 
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CHAPTER 7 
 

7. EXPERIMENTAL SET-UP AND MEASUREMENT DEVICES 
 

7.1 Introduction 
 
Internal combustion engines have been major power source throughout the history of 

ground vehicles. The purpose of internal combustion engines is the production of 

mechanical power from the chemical energy contained in the fuel [178]. 

 

In this chapter, we present a detailed description of spark ignition (SI) engine 

experimental set-up and measuring devices on it. The experimental set up details is 

provided in section 7.2 along with the specifications of measuring instruments. The 

experimental procedure for steady-state condition is given in section 7.3. Finally, the 

experimental procedure for dynamic condition is given in section 7.4. The accuracy 

of the measuring instruments will affect the calculated results. Hence the uncertainty 

analysis has to be carried out to calculate the percentage of errors in measurements is 

given in section 7.5. 

 

7.2 The Experimental Set-up  
 
The engine used in the study has specifications of four-stroke and four cylinders, 

water cooled cooling system, fueled with carburetor and naturally aspirated. Each 

cylinder has a bore of 76 mm and a stroke of 71.5 mm. Figure 7.1 shows the 

schematic representation of the experimental set-up and also measuring devices on it, 

Figure 7.2 shows the photograph of the SI engine. 

 

The maximum power output of the engine was 52.2 kW at 5500 rpm. The engine is 

produced by the Fiat Company. Besides the engine itself, flywheel, starting motor, 

alternator, fuel pump, fuel tank, dashboard and exhaust assemblies are mounted 
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to the proper places. Specifications of the engine are shown in Table 7.1 in detail. 

The parts of the system were given in the following sections. 

 

 

 

Figure 7.1 Schematics of test engine and setup 
1) carburetor, 2) exhaust manifold, 3) servo motor, 4) transducer, 5) dynamometer,  
6) data logger, 7) computer, 8) control panel, 9) weighing device, 10) fuel container 
 

 

 

 

Figure 7.2 Photograph of the SI test engine 
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Table 7.1 Test engine specifications 

 
Type                                             Fiat Tofaş 131 

Engine type 

Fuel type 

Swept volume (cm3) 

Cylinder bore (mm) 

Cylinder stroke (mm) 

Compression ratio 

Number of cylinders 

Cooling type 

Fuel supply system 

Maximum torque 

Maximum power 

Engine position 

Four-stroke 

Gasoline 

1297 

76 

71.5 

7.8:1 

4 

Water cooled in closed circuit 

Naturally aspirated carburetor 

12.5 kgm at 3000 rpm 

52.2/70 kW/HP at 5500 rpm 

Vertical 

 
 
7.2.1 Torque Measurement 

 
Dynamometers are used to measure torque and power over the engine operating 

ranges of speed and load. They do this by using various methods to absorb the 

energy output of the engine, all of which eventually ends up as in the form of heat. 

Some dynamometers absorb energy in a mechanical friction brake (prony brake). 

These are the simplest dynamometers but are not as flexible and accurate as others at 

high energy levels. Fluid or hydraulic dynamometers absorb engine energy in water 

or oil which are pumped through orifices or dissipated with viscous losses in a rotor-

stator combination. Large amounts of energy can be absorbed in this manner, making 

this an attractive type of dynamometer for the largest engines. Eddy current 

dynamometers use a disk, driven by engine being tested, rotating in a magnetic field 

of controlled strength. One of the best types of dynamometer is the electric 

dynamometer, which absorb energy with electrical output from a connected 

generator [179].  

 

The water brake dynamometer converts the rotating torque of the engine to stationary 

torque that can be exactly measured and calculated. Simply stated, as the amount of 
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water within the dynamometer is increased, the load or resistance on the engine is 

also increased. The resistance made up by dynamometer increases with the speed of 

the engine. The power made up by the engine is absorbed by the dynamometer, 

converted into heat energy and transferred into the water flowing out of the 

absorption unit. The water might enter about at 15 ºC and leave at 50 ºC. 

 

When the force is applied to the hydraulic load cell piston the pressure induced in the 

load cell is transferred to pressure transducer. Schematic diagram and picture of 

water brake engine dynamometer are shown in Figures 7.3 and 7.4, respectively. 

Equipments used in the experimental study such as water brake dynamometer and 

hydraulic system, transducer for torque measurement, electrical power supply and 

voltmeter were schematically shown in Figure 7.3. Torque has obtained in 

dynamometer when load was applied to engine by dynamometer and thus this causes 

pressure increase in hydraulic cylinder (4 in Figure 7.3). Then the pressure is 

measured by transducer volts.  The specifications of the dynamometer used in this 

study were given in Appendix 2. 

 

Dynamometer is calibrated by controlling air in hydraulic system before the 

experiment started. Engine is run under unloaded conditions as idle after taking air 

out from hydraulic system. During this process jam nuts (2 in Figure 7.3) are 

loosened for controlling pressure in hydraulic cylinders (2 in Figure 7.3). Therefore 

system is set-up for 0.5 volt value of voltage in digital voltmeter. After setup 

procedure, nuts (2 in Figure 6.6) are fastened. Transducer gives 0.5-5.5 volt in 0-250 

psi pressure value linear for pressure measurement. The properties of pressure 

transducer which is used to measure torque were given in Appendix 3.  

 

Electrical voltage in voltmeter translated to torque by equation 7.1. 

 

5

250
.VT =  (ft.lb)                   (7.1) 
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Figure 7.3 Schematic representations of water brake dynamometer and measurement 
devices. 1) Dynamometer body, 2) jam nut, 3) end push rod, 4) hydraulic load cell, 
5) digital voltmeter, 6) electrical power supply, 7) transducer 
 

 

 

Figure 7.4 Go Power System DA 516 model water brake dynamometer 
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7.2.2 Mass Fuel Flow Rate Measurement 

 
The electronic scales with 0.1 g resolution were used for the measurement of fuel 

mass flow rate. The measurements were displayed and stored by computer. For fuel 

measuring a weight measuring electronic signal output system was used.  

 

In order to calculate the indicated specific fuel consumption, it is necessary to 

determine accurately the mass of fuel that is consumed by the engine per unit time 

under given operating conditions. To accomplish this, the engine fuel was supplied 

with fuel from a small tank. The tank rests on a digital scale that was calibrated in 

grams. This allows the mass of fuel used by the engine over a given length of time to 

be measured, so the mass fuel consumption per unit time can be calculated. One of 

the most important features of the fuel monitoring system is the fuel line support 

stand. This stand is tripod structure that straddles the scale supporting the fuel line so 

that it does not rest on the beaker, which would cause an error in the fuel mass 

measurements. This digital scale was mounted the computer by using RS-232 port. 

Home-made software was used for reading and saving the outputs of the digital 

scale.  

 

7.2.3 Servo Motor  

 
Throttle valve is a valve used in vehicles to control the air flow into the engine 

combustion system. Throttle valve assembly having a servo motor and servo drive to 

control the opening and closing of the throttle valve in the range of from 0º to about 

80º. In automotive engine throttle valve opening is control by the driver actuating the 

gas pedal. Schematic diagram and picture of servo motor and control unit are shown 

in Figures 7.5 and 7.6, respectively. 

 

Servo motor is connected on the throttle valve and converts the electrical signal into 

a throttle valve angle. Throttle valve position is controlled by servo motor which has 

a 0.75 kW and 3000 rpm. The experimental apparatus consists of a personal 

computer connected to a servo motor to send an input signal for input-output data 

measurement. The specifications of the servo motor used in this study were given in 

Appendix 4. 
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Figure 7.5 Schematic representations of throttle valve position control and control 
unit on it. 1) throttle valve, 2) servo motor, 3) control panel, 4) data logger 5) 
computer. 
 
 

 

 
Figure 7.6 Photograph of the throttle valve position control 
 

7.2.4 Data Acquisition 

 
To read and record the data by computer, an interface is necessary between computer 

and transducers. In our SI engine Data Translation DT 304 DAQ (Data Acquisition 

Card) is used for that purposes. DT 304 is a family of low cost multi function data 

acquisition board and is connected at PCI bus of computer. DT 304 board contains 2 

analog output channels, 16 single-ended or 8 differential analog input channels and 

23 digital input-output channels. Analog channels of the board can acquire or send 

signal at 12 bit resolution and 400 kS/s (i.e. kHz) sampling rate. Analog output 

channels are able to generate voltage between -10 DCV to +10 DCV for controlling 

the position of throttle valve and analog input channels are able to measure between -
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10 DCV to +10 DCV for measuring SI engine output torque via pressure transducer. 

Figure 7.7 shows the general appearance of DT 304 Data acquisition card. 

Specifications of the DT 304 Data Acquisition Card are given in Appendix 5.  

 

The entire data acquisition cards need a screw terminal panel and connection cable to 

acquire or to send signals between card and equipments. In our application, Data 

Translation EP305 68-pin, 2 meter, shielded cable and Data Translation STP300 

screw terminal panel are used and general appearance of the cable and screw 

terminal panel can be seen in Figure 7.8. 

 

 

Figure 7.7 DT 304 Data Acquisition Card [180] 
 

 
 

Figure 7.8 Data Translation STP 300 Screw Terminal Panel and EP305 Cable [180] 
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7.2.5 Matlab Toolbox  

 
Matlab is a mathematic analysis package produced by Mathworks. This program 

enables immediate access to high numerical computing and extended with interactive 

graphical capability. The entire identification and modeling task was performed 

using Matlab Version R2007a. This software provides Data Acquisition Toolbox for 

making measurements with a data acquisition system, System Identification Toolbox 

for fitting nonlinear mathematical models to input and output data from dynamic 

systems and Neural Network Toolbox for ANN model development with different 

types of network structure such as feedforward, recurrent, Elman, Radial Basis as 

well as others.   

 

7.3 Experimental Procedure for Steady-State Condition 
 
Calibration checks of the devices were made two times, one before and one after 

each successive test. To transfer data into a computer, data logger systems were used. 

All measurements were conducted under steady-state condition. The measurement 

was not started until engine runs faultless. Since there were many measurement 

points, three different PC data logger combinations were used to reduce error 

resulting from the measurements. The functions of computers, measuring equipments 

and method of measurement are briefly explained as follows to obtain mass flow rate 

of air, fuel entering the combustion chamber and engine speed.  

 

The experimental work in this investigation was performed at various spark advance, 

throttle position and engine speed conditions. Before starting the engine, the spark 

advance has been adjusted to 10° crank angle (CA), which is a predefined design 

value of the engine. To start with, our computer-controlled gasoline engine, which is 

connected to a hydraulic dynamometer, has been loaded, with the 50% throttle 

position. The engine has been tested in the ranges of 3500- 1500 rpm at intervals of 

250 rpm. Torque, fuel flow rate, air flow rate and specific fuel consumption have 

been recorded. Similarly, these measurements have been repeated for the throttle 

positions of 75% and 100%. 
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After the measurements, the engine has been left to cool. Then the ignition time has 

been adjusted to successively 5 and 0° CA respectively and the above procedure has 

been repeated. 

  

7.4 Experimental Procedure for Dynamic Condition 
 
Throttle valve position is controlled by servo motor which has a 0.75 kW and 3000 

rpm. The torque output was measured by a dynamometer. The experimental 

apparatus consists of a personal computer connected to a servo motor and torque 

output, to some input-output measurement. The measured input-output data are 

transferred with the computer (Pentium III 733 Mhz in speed with 256 MB of RAM) 

by a data acquisition card (Data Translation DT300 series, 400 kHz in speed, 12 bit 

high speed A/D converter with a conversion time of 2.5 µs). The data acquisition 

card permits user defined programs interfaced with Matlab. 

 

System identification is done using the input-output test data. The test data must 

incorporate all the properties of the system. So the way system identification 

experiment is performed is very crucial. In this experiment, considering the engine as 

an SISO system, the basic input variable is throttle valve position, while the model 

output engine torque. In engine data collection, the input-output data must be 

representative of engine behavior in order to identify the engine. This means that 

input and output signals should adequately cover the region in which the system is 

going to be modeled. A set of Pseudo Random Binary Signal (PRBS) signals are 

often very suitable as process inputs because they excite the process at a wide range 

of amplitudes and frequencies [61, 83, 98]. To create the disturbances needed to 

perform identification of the process, PRBS were used [38, 52]. A PRBS was 

designed for throttle angle position to obtain a representative set of input-output data. 

A set of data samples, including throttle valve position and the torque was collected 

for the system identification. Each set contains 2000 data samples. 

 

7.5 Uncertainty Analysis  
 
Any experimental result involves some level of uncertainty that may originate from 

causes such as the lack of accuracy in measurement equipment and approximations 
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in data reduction relations. These individual inaccuracies eventually translate into 

uncertainty in the final results.  

 

The uncertainty in calculated results is related to the primary uncertainty for each 

independent variable. This is based on the method of Kline and McClintock (1953) 

which state: 

 

),,,( 21 nxxxfR K=                     (7.2) 

 

Equation 7.2 is the general form of a calculated result R, a function of n variables 

.,,, 21 nxxx K  We want to estimate the uncertainty in this calculated result based on 

the uncertainties of the individual variables. 

 

=Rw  estimate of the uncertainty in the calculated result R.  

=
ixw  estimate of the uncertainty in the variable xi. 
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Equation 7.3 is a logical but inappropriate estimate of total uncertainty. It seems like 

you could just multiply the uncertainty in each term by its sensitivity coefficient, and 

add them all together to get the total uncertainty. Because of the partials might be 

negative, and this would cancel some of the error, equation 7.3 shouldn’t be used. 
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Equation 7.4 corrects the potential problems with negative errors, but tends to 

overestimate the actual uncertainty. Therefore Equation 7.4 can not be used. 
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Equation 7.5 is the one we want. It is referred to as the root of the sum of the squares 

form, and it not only corrects the sign problem, it has another useful characteristic. 

Equation 7.5 inherits the same level of confidence as the individual terms. For 

example, if you established a 95% confidence level for each of the 
ixw values, then 

Rw  will also have a 95% confidence level. Equation 7.5 can be used. Note that the 

partial derivatives will contain values of the variables themselves. The mean value 

for that variable should be used.  

 

The open form of Equation 7.5 can be written as following 
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Cole Parmer C-68075-50 type pressure transducer was used to torque measurement 

in this study. The specifications of used transducer have been given in Table A.2 in 

Appendix 3. According to Table B.1 the accuracy of transducer is ± 0.25% full-scale. 

For this reason Tw in Equation 7.5 was selected as 0.0025. 

 

Electrical voltage is given by transducer translated to torque by using following 

equation. 

 

356.1.
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.VT =                    (7.7) 

 

Equation 7.7 only depends on voltage (V) variable, thus 
V
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can be written. 
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Substituting Tw and 
V

T

∂

∂
in Equation 7.5 gives the uncertainty for torque 

measurement 
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The brake power delivered by the engine and absorbed by the dynamometer is the 

product of torque and engine speed, which is given in the Equation 7.8 by 
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To calculate uncertainty of power: 
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The uncertainty nw of the tachometer which was used to measure the revolution of 

engine is 0.5. 
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If Equation 7.10 is divided by Equation 7.8, the following relation can be obtained. 
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Brake specific fuel consumption was given in Equation 7.11. The weighing machine 

with sensitivity of ±0.1 g was used to determine fuel consumption of engine. 
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The uncertainty of brake specific fuel consumption can be written as 
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If Equation 7.13 is divided by Equation 7.11, the uncertainty of brake fuel 

consumption is 
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The uncertainties in calculated characteristics with respect to measured parameters 

are shown in Table 7.2. 

 

Table 7.2 Uncertainty values for measurements 

 
 Uncertainty (±) 

Torque (Nm) 0.17 

Bsfc (g/kWh) 0.54 
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CHAPTER 8 
 

8. CASE STUDIES 
 
8.1 Introduction 
 
In this chapter, steady-state modeling of gasoline engine torque and brake specific 

fuel consumption is investigated by means of a number of case studies. These case 

studies can be categorized under 2 headings with respect to the used methods namely 

neural network and genetic programming approach. And nonlinear identification and 

modeling of a gasoline engine torque is investigated by means of a number of case 

studies. These case studies can be categorized under 3 headings with respect to the 

used methods namely Hammerstein model, NARX model and neural network 

models.  

 

a) Steady-state modeling of gasoline engine torque and brake specific fuel 

consumption 

 

b) Nonlinear modeling and identification of gasoline engine torque 

 

The experimental based case studies consist of different types of modeling and 

identification techniques. 

 

a) Steady-state modeling of gasoline engine torque and brake specific fuel 

consumption 

• Prediction of torque and specific fuel consumption of a gasoline engine by 

using artificial neural networks 

• Genetic programming approach to predict torque and brake specific fuel 

consumption of a gasoline engine
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b)  Nonlinear modeling and identification of gasoline engine torque 

 
• Nonlinear modeling and identification of a spark ignition engine torque using 

Hammerstein model. 

• Nonlinear modeling and identification of a spark ignition engine torque using 

NARX model. 

• A comparative study of neural network structures in identification of gasoline 

engine torque. 

 

8.2 Case Studies 
 

8.2.1 Prediction of torque and specific fuel consumption of a gasoline engine by 

using artificial neural networks 

 

8.2.1.1 Introduction 
 
An engineering phenomenon may embed complicated physical, chemical or 

electrical theory and may require very complicated arithmetic to describe them, yet, 

arithmetic emerged may not be solvable in closed form. Artificial neural network 

(ANN) is an alternative technique for providing a relationship between the variable 

quantities of interest. ANN requires only a set of experimental results, numerical in 

nature and describes the relation by analyzing them. In other words, it only needs 

solution examples concerning the problem. ANN techniques require a lot of 

arithmetic basically of trial-end-error nature, involving numerical differentiation and 

integration, noise rejection etc, and are never feasible without fast computation 

facilities. Advent of digital computers providing high speed arithmetic and vast 

amounts of data storage has given rise to the application of ANN techniques to many 

engineering problems. In recent years, this method has been applied to various 

disciplines including automotive engineering, in the forecasting of engine 

characteristics for different working conditions. 

 

The relationship between the temperature of the exhaust gases and fuel consumption 

of an internal consumption engine has been studied in [181]. ANN approach has 

been used in another study, to analyze the effect of cetane number on exhaust 

emissions from the engine [182], and also in [183], to model diesel particulate 
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emission. [184] and [185] are remarkable studies where ANN is used to forecast 

gasoline consumption and the effect of intake valve timing on engine performance 

and fuel economy respectively. Similarly in [1], the effect of throttling is studied, 

taking the intake manifold geometry into consideration. 

 

Numerous studies have been undertaken to predict the performance and exhaust 

emission characteristics of internal combustion engines by using ANNs [122, 186-

189]. Studies done by neural networks and genetic algorithms have been used to 

predict and reduce diesel engine emissions [190].  

 

Neural networks have been found to be the domain for numerous successful 

applications of prediction tasks, in modeling and prediction of energy-engineering 

systems [191], prediction of the energy consumption of passive solar buildings [157], 

and modeling a burner heated catalytic converter during cold start in a four stroke, 

spark ignition engine [192]. And also artificial neural network techniques have been 

applied to control the air fuel ratio of the engine [3, 90] and exhaust gas recirculation 

control [95]. 

 

In this study, a neural network approach was developed to model the torque and 

brake specific fuel consumption of a gasoline engine at steady-state conditions in 

terms of the spark advance, the throttle position and the engine speed. Experimental 

studies were completed to obtain training and testing data. The experimental data 

from totally 81 test runs was used to train and test the ANN model for predicting 

torque and brake specific fuel consumption. Inputs for the network were the spark 

advance, the throttle position and the engine speed, while the outputs were the torque 

and the brake specific fuel consumption. The experimental study to determine the 

torque and the fuel consumption characteristics in a gasoline engine is complex, time 

consuming and costly. It also requires specific instrumentation. To overcome these 

difficulties, an ANN can be used for the prediction of performance in a gasoline 

engine. The proposed ANN approach is quite accurate, fast and practical. 
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8.2.1.2 Artificial Neural Network Model and Parameters 
 
The main focus of this study is modeling of torque (T) and brake specific fuel 

consumption (BSFC) of a gasoline engine at steady-state conditions using ANN 

based on experimental results described in Chapter 7.3. The spark advance, the 

throttle position and the engine speed have been used as input-layer components, 

while the T and BSFC were used separately as output-layer components of the 

ANNs. In the ANN model, the experimental data set includes 81 values, of which 63 

values were used for training the network and 18 values were selected randomly to 

test the performance of the trained network. 

 

In this study, a computer program has been developed and performed under Matlab. 

The back-propagation learning algorithm has been used in feedforward with one 

hidden-layer. The input layer neurons receive information from the outside 

environment and transmit them to the neurons of the hidden layer without 

performing any calculation. The hidden layer neurons then process the incoming 

information and extract useful features to reconstruct the mapping from the input 

space. The neighboring layers are fully interconnected by weights. Finally, the output 

layer neurons produce the network prediction to the outside world.  

 

One of the most important tasks in ANN studies is to determine the optimal network 

architecture which is related to the number of hidden layers and neurons in it. 

Generally, the trial and error approach is used. In this study, the best architecture of 

the network was obtained by trying different number of hidden layers and neurons. 

The trial started on hidden layer with seven neurons, and the performance of each 

network was checked by correlation coefficient (R). The goal is to maximize 

correlation coefficient to obtain a network with the best generalization. Many 

different network models were tried and their R values were calculated. The highest 

correlation coefficient for both T and BSFC was obtained at a network. Based on this 

analysis, the optimal architecture of the ANN was constructed as 3-13-1 NN 

architecture for T and 3-15-1 NN architecture for BSFC representing the number of 

inputs, neurons in hidden layers, and outputs, respectively. The proposed ANN 

model is given in Figure 8.1. The learning algorithm used in the study is Levenberg-



 114 

Marquardt (LM), activation function is logistic sigmoid (logsig) transfer functions 

and number of epochs is 10000. 

 

 

 

Figure 8.1 Architecture of proposed NN model 
 

8.2.1.3 Analysis Results 
 
The ANN approach developed in this study is used to model the T and BSFC based 

on the spark advance, throttle position and engine speed. A total of 63 samples were 

used for training the network and other 18 (choosen randomly) were used as a test 

set. Data set was normalized using a simple normalization method. The range of the 

samples and normalization values are given in Table 8.1. The performance of the 

proposed ANN model was plotted in Figures 8.2 and 8.3 for both T and BSFC, 

respectively. It was observed that a high prediction capability was achieved for both 

training and testing data sets of T and BSFC. Therefore, the ANN appears to have a 

high generalization capability. The statistical values for both T and BSFC in training 

and test sets are given in Table 8.2. As seen in Table 8.2, a high correlation 

coefficient (R) and a low mean absolute percentage error (MAPE) were obtained for  
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Table 8.1 Range of input-output parameters in training-testing phase and 
normalization values 
 

Parameters 
Range of values 

Min                                       Max 
Normalization value 

SA  0 10 10 

TP (%) 50 100 100 

N (rpm) 1500 3500 3500 

T (Nm) 40.7 92.8 30 

BSFC (g/kWhr) 248.41 458.49 500 

 

 
Table 8.2 Statistical parameters of train and test sets 
 
 
  MSE MAPE Corr. Coff. R 

Torque (T) Test set 0.002 1.74 0.99505 

 Train set 0.0001 0.2912 0.9997 

Brake specific fuel 

consumption (BSFC) 

Test set  0.0005 2.7588 0.98331 

Train set 0.0001 1.0186 0.9971 
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Figure 8.2 Prediction of NN and actual values for training sets (a) T (b) BSFC 
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Figure 8.3 Prediction of NN and actual values for testing sets (a) T (b) BSFC 
 

the training and testing data sets for both T and BSFC. The proposed ANN model for 

T and BSFC prediction had correlation coefficients of 0.9997 and 0.9971 

respectively, for training data sets, 0.99505 and 0.98331, respectively, for testing 

data sets. Moreover, MAPE of the T prediction was about 0.2912 and 1.74 for the 

training and testing set, respectively. Similarly, MAPE of the BSFC prediction was 

about 1.0186 and 2.7588 for the training and testing set, respectively. As it is seen 

these MAPE are fairly reasonable. Figures 8.2 and 8.3 also demonstrated that the 

ANN was quite successful in learning the relationship between the different input 

parameters and the outputs (T and BSFC). The result of testing phase in Figures 8.2  
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Figure 8.4 Percentage error of training set (a) T (b) BSFC  
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Figure 8.5 Percentage error of testing set (a) T (b) BSFC 
 
 
and 8.3 has shown that the ANN was capable of generalizing between input variables 

and output reasonably well.  Figures 8.4 and 8.5 demonstrate the percentage errors of 

training and testing sets for the predicted T and BSFC. 

 

ANN applications are treated as black-box applications in literature. However this 

study opens this black box and introduces the ANN application in a closed form 

solution. This study aims to present the closed form solution of T and BSFC based 

on the trained ANN parameters (weights and biases) as a function spark advance 

(SA), throttle position (TP) and engine speed (N). Using weights and biases of 

trained ANN model, engine torque can be given as follows: 

 

),,( NTPSAfT =          
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It should be noted that the proposed explicit formulation of the NN model presented 

above is valid for the ranges of training set. 

 

8.2.1.4 Conclusions 
 
This study presents a new and efficient approach for the modeling of torque and 

brake specific fuel consumption of a gasoline engine at steady-state conditions using 

ANNs. The database used for NN training is based on experimental results. It used 

63 results as data sets to train the network, while 18 results were used as test data 
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from the total of 81 experimental results. To train the network, the spark advance, the 

engine speed, and the throttle positions are used as the input layer, while outputs are 

the engine torque and the brake specific fuel consumption. Back-propagation NNs 

are used for the training process. The proposed NN model shows perfect agreement 

with experimental results.  

 

The proposed ANN model for torque and brake specific fuel consumption had 

correlation coefficients of 0.9997, 0.9971 respectively, for training data sets, 0.99505 

and 0.98331, respectively, for testing data sets. Moreover, MAPE of the T prediction 

was about 0.2912 and 1.74 for the training and testing set, respectively. Similarly, 

MAPE of the BSFC prediction was about 1.0186 and 2.7588 for the training and 

testing set, respectively which may easily consider within the acceptable range. The 

explicit formulation of torque and brake specific fuel consumption based on the 

proposed NN model is also obtained and presented. As a result the proposed NN 

model has strong potential as feasible tools for prediction of torque and brake 

specific fuel consumption. And also the engine torque and brake specific fuel 

consumption can be determined using models with ANN methodology. 

 

8.2.2 Genetic programming approach to predict torque and brake specific fuel 

consumption of a gasoline engine 

 

8.2.2.1 Introduction 
 
Experimental investigations to measure the performance of a gasoline engine are 

complex, time consuming, and costly. To predict the performance parameters from 

the engines, one approach is to use mathematical models. However, their accuracies 

may not be sufficiently high [193]. The alternative to a mathematical model is the 

experiment- based approach. 

 

Genetic Algorithm (GA), which is based on solutions of fixed-length chromosomes, 

usually consisting of binary genes, organized into sequences, often termed schema is 

the most commonly used evolutionary-computation algorithm [194]. Mimicking 

nature, the algorithm starts its search from an initial population of solutions, in which 

the performance of each individual is evaluated using a fitness function, with the 
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most efficient chromosomes having a higher probability to reproduce. In synthetic 

evolution, biological reproduction is mimicked by operators like crossover (pairing) 

and mutation, thus creating a generation of offspring solutions. Crossover generates 

new features in the solution space by combining genetic information, while mutation 

does this by adding random perturbations. Fitness-proportional selection, combined 

with these genetic operators produce generation after generation of offspring 

solutions. Since the more appropriate solutions are given higher probabilities to 

reproduce, one would expect a growing improvement of the solutions over 

generations. 

 

GA as an optimization technique is widely used for optimization of engineering 

problems. Many engineering design problems are very complex and therefore 

difficult to solve with conventional optimization techniques [195]. Numerous studies 

have been undertaken by using GA for optimization of engine characteristics, neural 

networks and genetic algorithms have been used to predict and reduce diesel engine 

emissions [190], genetic algorithm and artificial neural network for engine 

optimization of efficiency and NOx emission [196], a group method of data handling 

type neural network and evolutionary algorithms for modeling the effects of intake 

valve timing and engine speed of a spark ignition engine on both engine torque and 

fuel consumption [197],  genetic algorithms for hydrogen-fueled engine optimization 

of power, economy, emission performance and operating parameters [198], multi-

objective optimization of diesel engine emissions and fuel economy using genetic 

algorithms [199], performance prediction and optimization of liquid rocket engine 

nozzle using genetic algorithm [200], genetic algorithm and its application to diesel 

engine optimization [201], optimization of system parameters for the gas-generator 

engines using multi-objective methods [202].  

 

GA is employed by [203] to optimize the capacity and operation strategy of CCHP 

system on the basis of energy flow. Fuel consumption of a gasoline engine can be 

minimized through dynamic optimization [204]. Neuro-fuzzy interface system 

(ANFIS) to study the effect of boost pressure on the engine performance parameters 

of a single cylinder diesel engine has been studied in [205].  
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However, they are unsuitable for generating empirical model structures, since they 

manipulate populations of solutions of fixed-length chromosomes, while the optimal 

complexity of empirical models is unknown in advance. Because of this perceived 

need for more intelligent construction of empirical models, a new family of 

evolutionary computation methods has emerged, based on established GA ideas. 

These new algorithms, referred to as genetic programming (GP), rely on tree-like 

building blocks, and therefore support populations of model structures of varying 

length and complexity. Activity in genetic programming was introduced by Koza 

[206], who demonstrated their applications in fields such as robotics, games, control, 

and symbolic regression. 

 

Numerous studies have been undertaken by using GP, a member of the evolutionary 

computation field, to a nonlinear identification of aircraft gas turbine engine [125-

127], nonlinear model structure identification [116], identification of a dynamic 

system [128, 142], gas turbine engine identification [123], mechanical system 

identification [115], dynamic system modeling [139] and steady-state process 

modeling [138]. [207] used an intelligent approach by using GP to construct 

mathematical model for diagnosing the engine valve faults correctly and quickly.  

 
Kalogirou [156] reviewed Artificial intelligence for the modeling and control of 

combustion processes. A number of AI techniques have been described in this paper. 

An explicit neural network formulation that predicts the torque and brake specific 

fuel consumption of a gasoline engine as a function of experimental parameters; 

spark advance, throttle position and engine speed, has recently been performed by 

Togun and Baysec [208]. However a GP based explicit formulation for gasoline 

engine performance parameters, to the best knowledge of the authors, has not yet 

existed in the literature. Therefore, the purpose of this study is to develop a GP based 

mathematical model for the prediction of gasoline engine torque and brake specific 

fuel consumption in terms of spark advance, throttle position and engine speed. The 

performance of the proposed models was compared to neural networks model 

developed by Togun and Baysec [208]. The data taken from experimental study were 

utilized in training and testing the developed models. An important advantage of the 

proposed GP approach is the simplicity of the modeling and its wide range of 
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applicability to empirical modeling of various engineering problems where sufficient 

experimental results exist. 

 

8.2.2.2 Overview of Genetic Expression Programming (GEP) 
 
Koza [206] proposed genetic programming (GP) technique which is an extension to 

Genetic Algorithms. In genetic programming, populations of hundreds or thousands 

of computer programs are genetically bred. This breeding is done using the 

Darwinian principle of survival and reproduction of the fittest along with a genetic 

recombination (crossover) operation appropriate for mating computer programs 

[206]. GP breeds computer programs to solve problems by executing the following 

three steps (Figure 8.6): 

 

(1) Generate an initial population of random computer programs composed of the 

primitive functions and terminals of the problem. 

 

(2) Iteratively perform the following sub-steps until the termination criterion is 

satisfied: 

(a) Execute each problem in the population so that a fitness measure 

indicating how well the program solves the problem can be computed for the 

program. 

(b) Create a new population of programs by selecting programs in the 

population with a probability based on fitness and then applying the following 

primary operations: 

(i) Reproduction: Copy an existing program to the new population. 

(ii) Crossover: Create new computer programs by crossover. 

(iii) Mutation: Create new computer programs by mutation. 

(iv) Choose an architecture-altering operation to one selected program. 

 

(3) The single best computer program in the population produced during the run (best 

solution so far) is designated as the result of genetic programming [206]. 

 

Gene expression programming (GEP) software is an extension to GP that evolves 

computer programs encoded in linear chromosomes of fixed length. The structure of 
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GEP chromosomes allows the easy implementation of multiple genes, each encoding 

a data set [209, 210]. In addition, the structural and functional organization of the 

linear chromosomes allows the unconstrained operation of important genetic 

operators such as mutation, transposition, and recombination. One strength of the 

GEP approach is that the creation of genetic diversity is extremely simplified as 

genetic operators work at the chromosome level. Another strength of GEP consists of 

its unique, multigenic nature which allows the evolution of more complex programs 

composed of several sub-programs. As a result GEP surpasses the old GP system by 

a factor of 100–10,000 times [210]. 

 

 

 

Figure 8.6 Genetic Programming Flowchart [206] 

 

The main difference between GA, GP and GEP resides in the nature of the 

individuals: in GAs the individuals are symbolic strings of fixed length 
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(chromosomes); in GP the individuals are nonlinear entities of different sizes and 

shapes (parse trees); and in GEP the individuals are encoded as symbolic strings of 

fixed length (chromosomes) which are then expressed as nonlinear entities of 

different sizes and shapes (expression trees). The main parameters in GEP are the 

chromosomes and expression trees (ETs). The process of information decoding (from 

the chromosomes to the ETs) is called translation which implies obviously a kind of 

code and a set of rules. The genetic code is very simple: a one-to-one relationship 

between the symbols of the chromosome and the functions or terminals they 

represent. The rules that are also very simple determine the spatial organization of 

the functions and terminals in the ETs and the type of interaction between sub-ETs 

[209, 210]. 

 

In GEP there are two languages: the language of genes and the language of ETs and 

knowing the sequence or structure of one, is knowing the other. In nature, despite 

being possible to infer the sequence of proteins given the sequence of genes and vice 

versa this is called as Karva language. Consider, for example, the algebraic 

expression )4/0(1240( dddddd ++−−  can be represented by a diagram which is 

the expression tree as shown in Figure 8.7.  

 

 

 
Figure 8.7 Expression tree (ET) 
 

8.2.2.3 Modeling with GP 
 
The main aim of this study is to obtain a model for torque (T) and brake specific fuel 

consumption (bsfc) of gasoline engine at steady-state conditions using genetic 

programming based on experimental results. Details of the experimental procedure 

have been explained in Section 7.3.  
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The details of the experimental database including the parameters and their range are 

presented in Table 8.3. To achieve generalization capacity for the formulations, the 

experimental database is divided into two sets as training and test sets. The 

formulations are based on training sets and are further tested by test set values to 

measure their generalization capability. In the literature, this type of studies includes 

test sets as 20-30% of the training set. The patterns used in testing and training sets 

are selected randomly. Among the experimental data, 63 sets were used for GP 

training and 18 sets for GP testing. It should be noted that the proposed GP 

formulation is valid for the ranges of training set given in Table 8.3. Parameters of 

the GP models are presented in Table 8.4.  

 

Table 8.3 Variables used in model construction 

Code  Input variable  Range  Output variable Range  

d0 Ignition time 0-10 Torque (Nm) 40.7-92.8 

d1 Throttle position 50-100 Bsfc (g/kWhr) 248.41-458.49 

d2 Speed (rpm) 1500-3500   

 

Table 8.4 Parameters of the GP model 

P1 Number of generation Between 3000 and 20000 

P2 Function set  +,-,*,/,power, exp, ln(x), log, √, 

X2, X3, (1/X). 

P3 Chromosomes 30-55 

P4 Number of genes 3, 4, 5, 6, 7, 8  

P5 Head size 8, 10, 15 

P6 Linking function Addition, multiplication 

P7 Mutation rate 0,044 

P8 Inversion rate 0,1 

P9 One-point recombination rate  0,3 

P10 Two-point recombination rate  0,3 

P11 Gene recombination rate 0,1 

P12 Gene transposition rate 0,1 
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The purpose of this case study is to obtain a model for the torque and the brake 

specific fuel consumption (bsfc) of a gasoline engine as a function of spark advance 

(SA), the throttle position (TP) and the engine speed (n). Explicit formulations based 

on GP for torque and bsfc were obtained as a function of experimental parameters as  

 

Torque and bsfc = ),,( nTPSAf        

 

Figure 8.8 and Figure 8.9 show the expression tress of GP models, whose explicit 

formulations are: 
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It should be noted that proposed GP formulations in Equations (8.1) and (8.2) is valid 

for the ranges of training set given in Table 8.3.  

 

8.2.2.4 Results and Discussion 
 
Data (81 tests in total), taken from the experimental study were used as training and 

testing sets for the GP architecture. Among these, 18 were randomly reserved for the 

test and the remaining data were used for the training. The overall performances of 

both sets were evaluated by the correlation coefficient (R) and mean squared error 

(MSE) given by: 
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where y′ are the mean values of id and iy and N is the number of total number of 

data. 

 

The GP estimates are compared to the experimental data for training and testing sets. 

The training results proved that the proposed GP models have impressively learned 

well the nonlinear relationship between the input and output variables with high 

correlation (R=0.9878 for torque and R=0.9744 for bsfc) and relatively low error 

(MSE=3.5719 for torque and MSE= 148.441 for bsfc) values. 
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Figure 8.8 Expression tree for engine torque 
 



 130 

 

 

 

 

 

Figure 8.9 Expression tree for brake specific fuel consumption 
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Comparing the GP predictions with the experimental data for the test stage (see 

Figure 8.10) demonstrates a high generalization capacity of the proposed model 

(R=0.9869 for torque and R=0.9855 for bsfc) and relatively low error (MSE=4.1878 

for torque and MSE= 167.985 for bsfc) values. All these findings show a successful 

performance of the GP model for estimating torque and bsfc both in training and 

testing stages. 
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Figure 8.10 GP vs test results for (a) torque and (b) BSFC  
 

8.2.2.5 GP vs Neural Network (NN) 
 
Proposed GP based models of torque and bsfc were compared with neural network 

(NN) model that has been presented by Togun and Baysec [208]. The same training 

and testing data were utilized in both studies. The statistical performance of both 

methods in testing and training stage is given in Table 8.5. It can be deduced from 

the table that both methods performed well in simulating torque and bsfc relatively 

small mean absolute error (MAE) and high correlation (R). The mean absolute error 

is given by:  
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Table 8.5 Statistical results of GP and NN models for training and testing sets 

 
Parameter Set Model MSE MAE Corr. Coff. R RGP/RNN 

Torque (T) Train  GP 3.5719 1.5749 0.9878 
0.988 

NN 0.0001 0.2912 0.9997 

Brake specific 

fuel  

consumption 

(bsfc) 

Train GP 148.441 9.6672 0.9744 

0.977 
NN 0.0001 1.0186 0.9971 

Torque Test GP 4.1878 1.6592 0.9869 
0.992 

NN 0.002 1.74 0.99505 

Brake specific 

fuel  

consumption 

(bsfc) 

Test GP 167.985 10.838 0.9855 

1.00 
NN 0.0005 2.7588 0.98331 

 

 

In fact, NN performed slightly better performance than GP in prediction of torque 

and bsfc. The prediction of the proposed GP formulation vs NN formulation 

(RGP/RNN) is also given in Table 8.5.    

 

8.2.2.6 Conclusions 
 
This study presents a new and efficient approach for the modeling of engine 

performance parameters at steady-state conditions using GP. This is done for the first 

time. The objective of the study is to develop an alternative robust formulations 

based on experimental data and to verify the use of GP for generating the 

formulations for gasoline engine torque and brake specific fuel consumption. The 

proposed GP formulations are empirical formulations based on experimental results 

collected from a test engine. The proposed GP formulations show very good 

agreement with the experimental results. The performance of accuracies of proposed 

GP models are quite satisfactory (R2 = 0.9878 for gasoline engine torque and R2 = 

0.9744 for gasoline engine brake specific fuel consumption). The results of the 

proposed GP formulations are compared to the neural network model developed by 

Togun and Baysec [208] with which the results are found to be in excellent 
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agreement. The outcomes of the study are very promising. This study proves that GP 

can be effectively used to obtain formulations for high nonlinear function 

approximation problems in general.  

 

8.2.3 Nonlinear modeling and identification of a spark ignition engine torque 

using Hammerstein model 

 

8.2.3.1 Introduction 
 
System identification is the process of creating models of dynamic process from 

input-output signal. System identification is the art and methodology of making 

mathematical models from dynamic systems base on the input-output data [211]. 

System modeling and identification refers to a systematic way to determine and 

improve the mathematical models for proper representation of dynamic systems [30]. 

A large body of work on the topic is available in the literature [26, 27]. 

 

Most systems encountered in the real word are nonlinear in nature, and since linear 

models can not capture the rich dynamic behavior of limit cycles, bifurcations, etc. 

associated with nonlinear systems, it is imperative to have identification techniques 

which are specific for nonlinear systems [13]. System identification has become an 

important area of study because of the increasing need to estimate the behavior of a 

system with partially known dynamics. Especially in the areas of control, pattern 

recognition and even in the realm of stock markets, the system of interest needs to be 

known to some extent [14].   

 

Theory of system identification plays a significant role in many fields of science and 

engineering including simulation, automatic control, fault tolerant analysis, 

prediction, etc [12, 26, 37]. Several techniques have been proposed for identification 

of nonlinear systems. Among the various linear in the parameter structures available, 

nonlinear autoregressive exogenous model (NARX)/NARMAX (Nonlinear 

Autoregressive Moving Average with Exogenous input) is one of the earliest and 

perhaps most widely used model types, with many successful industrial applications 

reported. For example, it has been used in the modeling and control of power 

systems, such as internal combustion engine (ICE) [37], automotive diesel engine 
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[50], dynamic modeling of three way catalysts [212]. Ref. [36] deals with the 

nonlinear identification of a turbocharged diesel engine. A combined use of 

NARMAX models and group method data handling method is proposed in an 

attempt to provide a systematic approach to identify nonlinear systems using 

relatively simple models well suited to computer handling. A nonlinear system 

identification procedure, based on a polynomial NARMAX representation, is applied 

to a variable geometry turbocharged diesel engine [57]. A nonlinear black box engine 

model is derived using the NARMAX models proposed. Input-output models allow 

the identification of black-box models derived purely from experimental data, both 

online and offline [42]. 

 

An identification procedure for NARX models describing the pressure inside the 

intake manifold and the crankshaft speed of ICE have been handled in [32-34]. A 

number of methodologies for idle speed control design have been presented in 

literature [34, 35].  

 

A new approach to control air management process of a diesel engine has been 

proposed. Predictive control and model identification schemes for Wiener and 

Hammerstein models have been shown [31]. Ref. [89] has described and compared 

two approaches to the experimental identification of dynamic nonlinear processes: 

the dynamic multi layer perceptron and the generalized Hammerstein model. A large 

number of research studies have indicated the superior capability and effectiveness of 

Wiener models in nonlinear dynamic system identification and control [29].  

 

Tan and Saif have proposed a recurrent neural network for modeling the nonlinear 

dynamics of the intake manifold pressure for onboard diagnosis application [1]. 

Dynamic of air manifold and fuel injection of spark ignited (SI) engines are very fast, 

severely nonlinear and with constraints imposed on the states and inputs [1, 5]. To 

model volumetric efficiency of internal combustion by using parametric, 

nonparametric and neural network techniques is studied [5]. 

 

Advanced research on engine control often relies on model based control strategies. 

Model based engine diagnostics also is another area that relies on an engine model. 

Therefore, the development of simplified models of automotive engines appropriate 
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for control/diagnostic system research and design is an important subject for research 

and development [1].  Ref. [88] deals with methods based on engine model 

linearization in order to apply linear control theory. Jones et al. [39] implemented a 

nonlinear least squares state estimator for an adaptive control schema. Least square 

support vector machines have been handled regression problems [46]. NARX models 

have already been used in engine modeling for control and diagnosis purposes [42].  

Dynamic models in ICE have been applied to design, optimization or diagnosis [48, 

49], using geometric and dynamic engine characteristics. Several different methods 

have been proposed and investigated for pressure reconstruction, mathematical 

engine models [48, 213]. A procedure for the identification of emission models for 

the design of optimal control of SI engine is presented [41].  

 

Automotive engine control is one of the most complex control problems for control 

system engineers and researches. Due to the increasing requirements of governments 

and customers, car manufacturers always strive to reduce substantially emissions and 

fuel consumption while maintaining the best engine performance. To satisfy these 

requirements, a variety of variables need to be controlled, such as engine speed, 

engine torque, spark ignition timing, fuel injection timing, air intake, air/fuel ratio 

(AFR) and so on. These variables are complicatedly related to each other. Engine 

dynamics are highly nonlinear and multivariable because of these factors [1, 2]. 

Among all the engine control variables, engine torque estimation has important 

applications in the automotive industry: for example, automatically setting gears, 

optimizing engine performance, reducing emissions and designing drivelines [6]. The 

coordinated overall torque reference value is realized by the manipulation of 

variables like throttle position, ignition timing, injection timing and others [9]. 

 

A number of such control strategies has been reported in the literature during the 

current decade. Most of these control schemes deal with manifold pressure control, 

AFR control and idle speed control [47]. The article deals with nonlinear modeling 

of AFR dynamics of gasoline engines during transient operation [52]. The influence 

identification scheme developed in Ref. [214] is applied to the system for the 

determination of the inputs that affect exhaust oxygen content and the appropriate 

time delays that the system imposes on each variable. Ref. [215] included the effect 

of exhaust gas recirculation in a nonlinear model to investigate engine dynamics. In 
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another application, a finite difference model is used to represent engine nonlinear 

inverse dynamics between engine speeds and throttle duty cycle signals [216]. A 

detailed physically motivated simulation model is derived in [217]. An adaptive 

(online) identification algorithm, developed recently in [218] for continuous time 

Single-Input-Single-Output (SISO) linear time delay system with uncertain time-

invariant parameters, is tested in an experimental study of the transient fuel 

parameter identification in a port fuel injected ICE.  

 

The engine torque is one of the most important performance variables of an ICE and, 

for this reason; a torque control system can improve substantially the performance of 

the overall vehicle [7, 8]. Their modeling efforts were focused on an experimental 

method of system identification that captures the nonlinear engine torque 

characteristics for a large range of operating conditions [10]. In recent years 

considerable interest has been placed on the estimation of ICE torque both for control 

and diagnostic applications. Ref. [51] discusses a method for the identification of a 

nonlinear model of the dynamics relating combustion pressure to crankshaft angular 

velocity. A linear gray box approach to modeling the torque and NOx dynamics in 

response to combined fuel quantity/timing excitations has been handled in [53].  

 

This study basically focuses on nonlinear modeling and identification of SI engine 

torque. In this case study section, a procedure to provide the nonlinear model of the 

dynamics between the throttle valve command and torque in a gasoline engine 

directly from raw data is presented. The nonlinear system model is built and a 

nonlinear Hammerstein model structure is used for the identification procedure. 

 

8.2.3.2 Simplified Mean-value SI Engine Model 
 
Automotive engines are multivariable system with severe nonlinear dynamics, and 

their modeling and control are challenging tasks for control engineers. Mean value 

engine models (MVEM) are generally accepted as the modeling paradigm for engine 

control, and are extensively described in the literature [170, 172, 173]. It allows 

modeling the mean value behavior of some engine parameters. This kind of model 

represents the global dynamic of the engine and can be easily identified using the 

common measurements available on production vehicles. The engine model adopted 
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in this paper is referred to as the MVEM developed by Guzzella and Onder [172], 

which is widely used benchmark for engine modeling and control.  

 

Figure 8.11 Simplified mean-value schematic SI engine diagram 
 

Mean-value models developed for SI engines include nonlinear dynamic equations 

and time varying terms like induction-to-power-stroke (IPS) delay. A simplified 

schematic diagram of the SI engine process is given in Figure 8.11. The torque 

generation phase, which consists of the cylinders that convert the chemical energy in 

air fuel mixture inflow into mechanical engine torque, is governed by a nonlinear 

dynamic equation of dependent variables including air/fuel ratio, fuel mass in 

cylinders, engine speed, ignition and injection timing, and several others. The mean-

value engine torque is therefore expressed as a nonlinear function of these variables 

and time [172].  For control and identification purposes, nonlinear dynamic and time-

varying terms create difficulties, which can be overcome by developing simplified 

approximate models. The Hammerstein model of nonlinear system dynamics is a 

simplified model that contains the dynamics and nonlinearity separately in cascaded 

form, resulting in a more complete model compared to linear approximations, and 

superior power to apply conventional identification techniques compared to 

nonlinear dynamic models [28].  

 

a) Throttle Model 

 
The throttle input is the throttle valve angle in radians, and the output is the air-fuel 

mixture mass flow rate in kilograms per second. It is assumed that the valve angle 

and the air mass flow rate are proportionally related [178]. The air-fuel-ratio (AFR) 

is taken to be 6.8 per cent, which is typical to gasoline engines under stoichiometric 
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conditions [178]. The conceptual block diagram of the combined throttle model is 

given in Figure 8.12, where 

 

 

 

 

 

Figure 8.12 Simplified conceptual throttle model 
 

uα  : throttle valve angle (rad.) 

αm&  : air mass flow rate through the intake manifold (kg/sec) 

 m&   : total mixture flow rate into the cylinders (kg/sec) 

 Kα : valve constant. 

 

In the model, spark advance (SA) input is disregarded, and transport delay along the 

intake manifold is negligibly small. The frictional losses are also neglected. Thus, the 

throttle valve output mass flow rate is taken to be the input of the torque generation 

sub process.  

 

b) Torque Generation Model 
 
The torque generation sub process is a process with nonlinear dynamics and variable 

time delay. The time delay is a result of the fact that the torque generated by the 

engine does not respond immediately to an increase in the manifold pressure, but 

after a certain amount of time called the induction-to-power-stroke (IPS) delay 

approximately given in terms of the engine speed by: 
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≈  

 

The engine speed takes a minimum value of 600 rpm in idle speed condition, which 

corresponds to an angular speed of πω 20=e  rad/sec. Consequently, the maximum 

possible delay is found to be 0.1 seconds, which can be neglected in the process 
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dynamics. The model then reduces to a time-invariant single-input-single-output 

nonlinear dynamic model, which is given in Figure 8.13. 

 

 

 

 

 

 
Figure 8.13 Simplified conceptual torque generation model 
 

8.2.3.3 Nonlinear System Identification 
 
Ljung [26] and Soderstom and Stoica [27] published a comprehensive book detailing 

many system identification algorithms, nonrecursive and recursive, such as least 

squares, recursive least squares, instrumentation methods, and recursive prediction 

error methods. Their work is considered as a cornerstone reference quide.  

 

The identification process consists of estimating the unknown parameters of the 

system dynamics [26]. Consequently, determination of the assumed system structure 

is of great importance in the process of system identification [27]. 

  

The recursive least squares (RLS) method has been recommended for the 

identification process for easy implementation and application to real systems [26, 

27]. For the linear identification process, a discrete time ARX model for the 

mechatronic system has been used. This model structure is, in some sense, a linear 

regression form and permits easy implementation of the linear regression based 

identification [26]. The ARX model for the linear system is given as in Ref. [27]: 
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and the symbol 1−q  denotes the backward shift operator, ))()1(( 1 tyqty −=− , 

)(tu and )(ty  are the symbol input and output, respectively, )(te  is assumed to be an 

immeasurable, statistically independent noise sequence with E{ )(te }=0 of variance 

2
eσ . The parameters ia  and ib  are the real coefficients, ,, Rba ii ∈  and an  and bn are 

the orders of the polynomials )( 1−qA  and )( 1−qB , respectively, where ba nn ≥ . It is 

also assumed that the polynomial iN

i iqa −

=∑+
1

1  never becomes zero in 1≥z , and the 

model parameters ia  and ib  do not become zero simultaneously. 

 

Identification of nonlinear systems can be achieved in a number of ways. Several 

methods for nonlinear system representation and identification have been proposed 

[26, 27]. Nonparametric methods of nonlinear system identification do not require 

parametric expressions for the system nonlinearities. In addition, these methods have 

the advantage of applicability to nonlinear systems with dynamic nonlinearities [28]. 

However, these methods take the system as a whole and do not permit separate 

analysis and identification of the linear dynamics. With the assumption that the 

nonlinearities in the system are static, in other words, the system dynamics can be 

expressed in linear terms only, the parametric identification methods can be 

employed. This assumption leads to nonlinear system structures called the 

Hammerstein model, the Wiener model and the general NARMAX model [28]. The 

nonlinear Hammerstein model structure, given in Figure 8.14, has several 

advantages, such as the nonlinear system identification problem can be put into linear 

regression form, methods of linear system identification can be applied and it can 

describe a nonlinearity of a dynamical system efficiently [28]. In addition, this 

structure covers wide range of nonlinear systems despite its simplicity [28, 219].  

Figure 8.14 Hammerstein system structure 
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The dynamical linear part in the Hammerstein model can be represented by an ARX 

model as for the linear system model [28]. The relationship between the linear part 

input )(tx  and the output )(ty can be given as: 

 

)()()(
~

)()(
~ 11 tetxqBtyqA += −−                  (8.7) 

 

where )(tx is the output of the nonlinearity. 

 

The nonlinear part in the Hammerstein model is generally chosen to be polynomial 

of known order. The order of the polynomial is selected in accordance with the 

hardness of the nonlinearity in the system. The nonlinearity function )(tx is given by 

[28]: 
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where jγ  (j=1,…,n) are the nonlinearity parameters, Rj ∈γ . The nonlinear 

equation, Eq. (3), is re-arranged to be [28]: 
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In Equation (8.9), the coefficients of )(
~ 1−qB  do not appear explicitly. Without loss of 

generality, the nonlinear part can be normalized with respect to 1γ , and Equation 

(8.9) can be rewritten with the assumption that 11 =γ as follows: 
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where .,,0,,,1,
~

bkjjk nknjbs KK === γ Then, Equation (8.10) is improved to be 
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Equation (8.12) can be put into linear regression form as follows: 
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The linear regression representation for the system given in Equation (8.13) permits 

direct application of the RLS method. However, the vector of unknown parameters 

does not include the coefficients of the polynomial )(
~ 1−qB explicitly. These 

coefficients are implicitly expressed in the form of products with the nonlinear 

subsystem parameters ),...,1( njj =γ . Consequently, the identification of the system 

parameters can not be performed at a single stage. The RLS method is, therefore, 

implemented in two steps. The first step of the algorithm gives the estimates of the 

parameters ia  and jks , and the second step estimates the parameters kb and jγ using 

the results of the first step, where ani ,...,1= , nj ,...,1= , bnk ,...,1= . The nonlinear 

identification algorithm steps are summarized as follows: 

 

(vi) Choose initial values for the covariance matrix P and forgetting 

factorλ . 

(vii) Acquire the input and output of the system and form the data vector 

φ as given in Equation (8.14) for time instant t using the present and 

past values of the input u , output y and powers of u . 
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(viii) Solve for the parameter estimates jkki sba ˆ,ˆ,ˆ using RLS estimates rule: 

)1(ˆ)()()( −−= tttyt T θφε  
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(ix) (iv) Solve for the estimates jγ̂ nj ,...,1= using the estimated values 
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(x) Update the time instant, 1+= tt . Return to step (ii). 

 

 

8.2.3.4 Hammerstein Model of Nonlinear SI Engine Dynamics 
 
It is possible to decompose the nonlinear torque generation dynamics given in Figure 

8.13 into its nonlinear static and linear dynamic parts, which constitute a 

Hammerstein type structure. This model relies on the assumption that the 

nonlinearity in the process, which is a result of thermodynamics and mechanics of 

the gas in the cylinders, and mechanics of piston motion, is approximately static, and 

the dynamics of system behavior are approximately linear [28]. With this 

assumption, the torque generation conceptual diagram is given in Figure 8.15, 

where ( ).g  is a static nonlinear function, and ( )1−qH  is a linear transfer function in 

terms of the discrete delay operator .1−q  For the sake of simplicity and ease of 

calculation, the nonlinearity in the model is given as a polynomial of known order 

with constant coefficients.  

 

Figure 8.15 Hammerstein model for torque generation 
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The combination of the throttle model and torque generation model is obtained by 

integrating the throttle sensitivity given by 1.068Kυ and its powers up to order n into 

the nonlinear function. Without loss of generality, the nonlinear polynomial 

coefficients can be normalized with respect to the constant term that is the zeroth 

order term of the polynomial. The combined Hammerstein system structure is given 

in Figure 8.16. 

Figure 8.16 Hammerstein model of SI engine dynamics 

 

With the introduction of the combined Hammerstein model in Figure 8.15, the 

problem of nonlinear system identification reduces to the problem of estimation of 

model parameters given by iγ , jb , and ka  (i=2,…,n; j=0,…,nb; k=1,…,na). 

8.2.3.5 Identification Results 
 
Spark ignition engine identification experiments were performed using the set-up 

described in section 7.4. Nonlinear parameter estimation procedure for Hammerstein 

system structure was used following the steps in section 8.2.3.3. Nonlinear 

polynomial order, maximum output delay, and maximum input delay are selected 

respectively as: n=2, na=4, nb=3.  The parameter estimation algorithm, coded and 

run in Matlab environment, converged to the values tabulated in Table 8.6. Figure 

8.17 gives the recorded response of the experimental set-up to the PRBS test signal 

together with the estimated response recorded during the recursive identification 

process. Since RLS relies on the minimization of the cost function, which requires 

the minimization of the error of recursive estimation, the two signals are close as 

expected. However, convergence of the estimated response to the real system output 

in a recursive identification algorithm does not guarantee the convergence of the 

parameter estimates to the true values. Consequently, minimizing the least squares 

error alone is not enough to show the success of the identification procedure. 

Te 

( ).f  ( )1−qT  
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Obtained model should be validated using the estimated parameters to generate a 

new set of output data by simulation of the identified model.  
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Figure 8.17 Results of the identification experiment. Torque response of the SI 
engine is given in solid line, and estimated torque recorded through recursions is 
given in dotted line 
 
Table 8.6 Estimates of Hammerstein model parameters 
 

 

 

The Hammerstein model obtained by identification of the engine is tested by 

simulating the model with two input data sets. First set belongs to the PRBS input 

signal applied to the process for identification. The simulated response is given in 

Figure 8.18 together with the real system response obtained by experiment. 

Secondly, in order to generate an independent set of data, a square wave is applied to 

1a  2a  3a  4a  0b  1b  2b  3b  2γ  

-1.1935 0.1138 0.0635 -0.0791 0.0708 0.0707 0.0707 0.0708 -12.4*10-3   
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the engine and response is recorded. This input signal is applied to the identified 

Hammerstein model as well, of which response is recorded as a result of digital 

simulation. Results are given in Figure 8.19.  
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Figure 8.18 Validation of identification results. Torque response of the SI engine to a 
PRBS input is given in solid line, and simulated response of the obtained 
Hammerstein model is given in dotted line 
 

Inspection of the identification results in Figure 8.17 reveals that the identification 

procedure generates a highly accurate estimated response to input variations even in 

fast transient phases and high frequency load effects. Although it does not guarantee 

that the identified model accurately represents the process behavior, this result gives 

useful information for online applications of control. Figures 8.18 and 8.19 give plots 

of the model validation experiments. The identified model is tested using the set of 

data used in identification, and results in Figure 8.18 reveal the performance of the 

model in response to the PRBS test signal. Identified model is also tested using a 

square wave input to get the results of an independent model validation experiment. 

The model obtained consists of a second order polynomial cascaded to a fourth order 

linear system. Despite the fact that this model is too simple to represent the highly 
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nonlinear and complex thermodynamics, gas dynamics, and mechanics in the engine, 

the identified model response follows the true torque measurement with an 

acceptable degree of accuracy. However, it should be noted that the model is 

insufficient in representing the high frequency components that result from effects 

like measurement noise and mechanical vibrations in the process. 
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Figure 8.19 Validation of identification results by a different set of data. Torque 
response of the SI engine to a square wave input is given in solid line, and simulated 
response of the obtained Hammerstein model is given in dotted line 
 
 
8.2.3.6 Model Validation 
 
The mean square error (MSE) method is the most commonly used one for model 

testing purposes [28, 219].  

 

∑ −= 2))(ˆ)((
1

tyty
N

MSE                 (8.16) 
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where )(ˆ ty is the predicted output and N is the number of samples used in the 

identification process. The MSE values for the nonlinear identification experiments 

were calculated for different model orders, and the results are tabulated in Table 8.7. 

 

During the nonlinear identification, the order of the nonlinear polynomial was kept 

constant at two. The linear identification experiments result in the selection of the 

fourth or fifth order model for representing the present system. The nonlinear 

identification results, however, reveal definitely that the fourth order model gives the 

best result as far as the identification error is concerned. Further increase in the 

model order brought no significant improvement in the performance of the predicted 

models. The MSE values for different orders of the nonlinear polynomial were 

calculated and tabulated with the linear part of order fourth. The results presented in 

Table 8.8 reveal clearly that the selection of the second order nonlinearity in the 

nonlinear identification experiments gives the best result. 

 

Table 8.7 MSE values for nonlinear identification experiments 

 
Model order 1 2 3 4 5 6 7 

MSE 151.312 129.072 31.28 17.782 20.127 22.939 23.124 

 

Table 8.8 MSE values and nonlinear parameters for nonlinear identification with 
different polynomial orders 
 

order 2 3 4 

MSE 17.782 5.891*103 6.908*1015 

2γ  -0.0124   -0.0853 22.6186 

3γ  - 0.0014 -1.664 

4γ  - - 0.0269 

 

 

8.2.3.7 Conclusions  
 
This case study deals with the problem of identifying of a spark ignition engine 

torque from input-output data. Nonlinear model was developed for the system. A 

nonlinear representation and identification approach using the nonlinear 
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Hammerstein system structure was used for the present system. A suitable 

experimental setup was built and tested using RLS identification algorithm for the 

nonlinear case. The measured data obtained experimental setup is used by a software 

program that runs in Matlab environment to identify unknown system parameters. 

The nonlinear system identification with fourth order linear dynamics gives the best 

result. And also selection of the second order nonlinearity gives the best result. The 

results are numerically and graphically demonstrated. Inspection of the identification 

results reveals that the identification procedure generates a highly accurate estimated 

response to input variations even in fast transient phases and high frequency load 

effects. The results of the present study are meant to constitute a starting point for on 

going studies on identification of gasoline engine system by other nonlinear methods 

and adaptive control applications for nonlinear systems. 

 

8.2.4 Nonlinear modeling and identification of a spark ignition engine torque 

using NARX model 

 

8.2.4.1 Introduction 
 
System identification, as a subject of control engineering, refers to the procedure of 

building a mathematical description of the dynamic behavior of a system/process 

from measured data so as to provide accurate prediction of the feature behavior for 

given inputs [26, 27, 220]. The key problem in system identification is to find a 

suitable model structure, within which a good model is to be found [21]. 

Development of nonlinear model is the critical step in the application of nonlinear 

model based control strategies. Nonlinear behavior is the rule, rather than the 

exception, in the dynamic behavior of physical systems. Most physical systems have 

nonlinear characteristics outside a limited linear range [221, 222]. The development 

of simplified models of automotive engines appropriate for control/diagnostic system 

research and design is an important subject for research and development [3].   

 

In engineering dynamics, control engineering and many other areas, auto-regressive 

with exogenous inputs (ARX) models are widely utilized for describing dynamic 

data regimes for linear and nonlinear systems [16]. Hovewer, the performance of 

these linear models for prediction and control has been limited. In particular, the 
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nonlinear nature and strong directionality of the process present problems during 

identification. NARX model has been considered as alternatives to linear models in a 

number of ICE applications such as describing the pressure inside the intake 

manifold and the crankshaft speed of ICE [32, 34], identification and control of ICE 

in idle-speed conditions [33]. NARX model from input-output data are used by [60] 

to identify a nonlinear system.  

 

The engine torque is one of the most important performance variables of an ICE and, 

for this reason; a torque control system can improve substantially the performance of 

the overall vehicle [7, 8]. Their modeling efforts were focused on an experimental 

method of system identification that captures the nonlinear engine torque 

characteristics for a large range of operating conditions [10]. The objective of this 

case study is to obtain a nonlinear model of SI engine torque. In this case study, a 

procedure to provide the nonlinear model of the dynamics between the throttle valve 

command and torque in a gasoline engine directly from raw data is presented. The 

nonlinear system model is built and a sigmoid based nonlinear ARX model is 

developed using input and output regressors.  

 

8.2.4.2 NARX Model 
 
Nonlinear ARX models extend the linear ARX models to the nonlinear case and have 

this structure: 

 

( ))1(,),(),(,),1()( +−−−−−= nbnktunktunatytyfty KK            (8.17) 

 

where the function f depends on a finite number of previous inputs u and outputs y. 

na is the number of past output terms used to predict the current output. nb is the 

number of past input terms used to predict current output. nk is the delay from the 

input to the output. 

 

The nonlinear ARX structure models dynamic systems using a parallel combination 

of nonlinear and linear blocks, as shown in the Figure 8.20. 
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Figure 8.20 NARX model structure 
 

The nonlinear and linear functions are expressed in terms of variables called 

regressors, which are functions of measured input-output data. The predicted output 

)(ˆ ty of a nonlinear model at time t  is given by the following general equation. 

 

))(()(ˆ txFty =            (8.18) 

 

where, )(tx represents the regressors. F is a nonlinear regression function, which is 

approximated by the nonlinearity estimators. The function F can include both linear 

and nonlinear functions of ),(tx as show in Figure 8.20.  

 

The sigmoidnet based nonlinear is used to capture the nonlinearity of the NARX 

model. The function )(xF  is given by the following expression: 

 

dcQbrxfa

cQbrxfacQbrxfaPLrxxF

nnn +−+

+−+−+−=

))((

))(())(()()( 222111

K

           (8.19) 

 

The sigmoid function f  in the above equation is given by 

 

)1)/(exp(1)( +−= zzf            (8.20) 

 

where 

P is a nonlinear subspace matrix 

Q is a linear subspace matrix 

u(t) Regressors 
u(t-1),y(t-1),… 

Nonlinear 
function 

Linear 
function 

y(t) 

F 
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r is a regressor mean vector 

L is a linear coefficients vector 

bn is a dilation matrix 

an is an output coefficients vector 

cn is a translation vector 

d is an output offset scalar 

 

The parameters of sigmoidnet based NARX models were estimated using the ident 

function system identification toolbox version 7.0 in Matlab. The iterative 

prediction-error minimization method discussed in Ljung [26] was used to calculate 

the model parameters.  

 

8.2.4.3 Identification Results 
 
SI engine identification experiments were performed using the set-up described in 

section 7.4. SISO NARX model is developed in this case study to model the 

nonlinear dynamics of the SI engine. The SISO NARX model is used throttle valve 

position as inputs and engine torque as output.  

 

The position of a throttle valve is controlled by a servo motor. The air flow rate in 

the intake manifold is controlled by the size of the valve opening through which the 

air flows into the manifold. The output engine torque is then a function of the throttle 

valve position. Figure 8.21 shows measured values of the throttle valve size u and the 

output engine torque y, which are input and output signals respectively. As seen in 

the output engine torque, we have a very oscillative settling period after a change of 

the throttle valve size. These oscillations are caused by highly nonlinear and complex 

thermodynamics, gas dynamics, and mechanics in the engine. The parameter 

estimation algorithm, coded and run in Matlab environment, converged to the values 

tabulated in Table 8.9.   

 

In the SISO NARX model used this work, sigmoidnet function is used as nonlinear 

regressor function containing five past output regressors (na=5) and minimum of a 

one-sample input delay (nk=1) and the four past input regressor (nb=4), i.e.  
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Table 8.9 Parameters of SISO NARX models 

Model parameters SISO NARX model  

 

 

 

Nonlinear subspace (P) matrix 

& 

Linear subspace matrix (Q) 
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1871.08017.00130.19368.20326.55648.72342.59636.00025.1

1012.01863.03405.02461.13218.121016.74483.21725.00416.1

2706.00112.01453.03791.12621.122699.71063.26317.00393.1

1905.01251.03517.00373.11429.53901.72582.52437.19959.0

8677.214972.348414.327905.136306.14380.07186.11294.20192.0

3491.636563.635663.158742.68655.03691.05172.11937.20426.0

3336.839281.29912.381941.11168.02247.02830.11929.20689.0

1947.652216.633721.105022.87169.00027.00093.11296.20973.0

1571.246343.379536.352895.133535.13795.06882.00132.21276.0
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Table 8.9 Cont’d 

 

 

 

Dilation 
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×=

0006.00001.02908.20267.0

0026.00002.01746.50097.0

0045.00003.08584.10077.0

0022.00171.03183.10032.0

0018.02226.06669.10004.0

0026.00055.04914.00044.0

0011.01936.00224.40095.0

0025.00957.05581.50229.0

0026.00014.02438.60139.0

101 3
nb  

Output coefficients [ ]0199.00682.00119.00141.0 −−−=na  

Regressor mean [ ]6916.06921.06926.06932.06052.06058.06062.06065.06067.0=r  

Translation [ ]0011.00001.02068.10067.0101 4 −−×=nc  

Output offset 6425.0=d  
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Figure 8.21 PRBS of the throttle valve position (bottom) and measured values of 
torque (top) 
 

The regression vector  

)]4(),3(),2(),1(),5(),4(),3(),2(),1([ −−−−−−−−−= tututututytytytytyx  where y and u are 

the output and the input of the system, respectively. Figure 8.22 gives the recorded 

response of the experimental set-up to the PRBS test signal together with the 

estimated response recorded during the iterative prediction-error minimization 

method. The parameters which give the minimum are then used in the nonlinear 

model. As seen in Figure 8.22, the two signals are close as expected. However, 

convergence of the estimated response to the real system output in an iterative 

prediction-error method does not guarantee the convergence of the parameter 

estimates to the true values. Consequently, minimizing the prediction error alone is 

not enough to show the success of the identification procedure. Obtained model 

should be validated using the estimated parameters to generate a new set of output 

data by simulation of the identified model.  
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Figure 8.22 Results of the identification experiment. Torque response of the SI 
engine is given in solid line, and NARX model estimated torque is given in dotted 
line 
 

8.2.4.4 NARX Model Validation 
 

Model validation provides the way to assess the quality of a proposed model and also 

to find out the inadequacy of the model in explaining an observed system behavior 

[223]. The last step of the system identification procedure is the validation of the 

estimated model. After estimating, the model should be validated to determine 

whether the model can reproduce system behavior by estimating within acceptable 

bounds.  

 

The selection of model structure and their orders is the main purpose. The selection 

of model structure depends on nonlinear effects in the system, system properties and 

prior knowledge of the system. The second purpose is selection of the model orders. 

The model orders were determined by trial and error method. After estimation the 
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best model by using the trial and error. In fact, another input data is given to the 

system and the model and their outputs are compared [223].  

The NARX model obtained by identification of the engine is tested by simulating the 

model with PRBS input data set. The PRBS input signal applied to the process for 

identification. The simulated response is given in Figure 8.23 together with the real 

system response obtained by experiment.  
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Figure 8.23 Validation of identification results. Torque response of the SI engine to 
PRBS input is given in solid line, and simulated response of the obtained NARX 
model is given in dotted line  
 

Inspection of the identification results in Figure 8.22 reveals that the identification 

procedure generates a highly accurate estimated response to input variations even in 

fast transient phases and high frequency load effects. Although it does not guarantee 

that the identified model accurately represents the process behavior, this result gives 

useful information for online applications of control. Figure 8.23 gives plot of the 

model validation experiments. The identified model is tested using the set of data 

used in identification, and results in Figure 8.23 reveal the performance of the model 

in response to the PRBS test signal. Despite the fact that this model is too simple to 



 158 

represent the highly nonlinear and complex thermodynamics, gas dynamics, and 

mechanics in the engine, the identified model response follows the true torque 

measurement with an acceptable degree of accuracy. However, it should be noted 

that the model is insufficient in representing the high frequency components that 

result from effects like measurement noise and mechanical vibrations in the process.    

 

The mean square error (MSE) method given in Equation 8.16 is the most commonly 

used one for model testing purposes [28, 219]. The MSE values for the nonlinear 

identification experiments were calculated for different model orders, and the results 

are tabulated in Table 8.10.  

 

Table 8.10 MSE values for nonlinear identification experiments 

 
Model order 1 2 3 4 5 6 7 

MSE 42.596 39.362 38.513 37.008 36.644 48.513 81.156 
 

The nonlinear identification results, however, reveal definitely that the fifth order 

model gives the best result as far as the identification error is concerned. Further 

increase in the model order brought no significant improvement in the performance 

of the predicted models.  

 

8.2.4.5 Conclusions  
 
This case study deals with the problem of identifying of a spark ignition engine 

torque from input-output data. Nonlinear model was developed for the system. A 

nonlinear representation and identification approach using the sigmoid based 

nonlinear ARX model structure was used for the present system. A suitable 

experimental setup was built and tested using iterative prediction-error minimization 

method. The measured data obtained experimental setup is used by a software 

program that runs in Matlab environment to identify unknown system parameters. 

The nonlinear system identification with fifth order nonlinear dynamics gives the 

best result. The results are numerically and graphically demonstrated. Inspection of 

the identification results reveals that the identification procedure generates a highly 

accurate estimated response to input variations even in fast transient phases and high 

frequency load effects. The results of the present study are meant to constitute a 
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starting point for on going studies on identification of gasoline engine system by 

other nonlinear methods and adaptive control applications for nonlinear systems. 

 

8.2.5 A comparative study of neural network structures in identification of 

gasoline engine torque 

 

8.2.5.1 Introduction 
 
System identification has become an important area of study because of the 

increasing needs in estimating the behavior of a system with partially known 

dynamics. Especially in the areas of control, pattern recognition and even in the 

realm of stock markets the system of interest needs to be known to some extent. A 

common property of real life systems is the fact that they have multiple variables, 

some of which are subjected to stochastic disturbances. Since a system may have a 

complicated dynamic behavior, the varying environmental changes make the 

identification process much more difficult than the cases in which those changes are 

modeled deterministically [14, 15].  

 

Artificial neural network (ANN) opened a new horizon in identification and control 

of highly nonlinear and complex structured systems. These networks are 

implemented using massive connections among the neurons with variable strengths. 

Moreover, their parallel, distributed and fault tolerant processing properties make 

them powerful tools for both identification and control of nonlinear dynamical 

systems. Especially learning capabilities of these networks enable them to process 

the information adaptively [18, 19].  

 

The use of ANN in system identification has been gaining more and attention in 

recent years. Neural networks have good general approximation capabilities for 

reasonable nonlinear systems [20, 21]. Nerandra and Parthasaraty [22] have 

demonstrated that artificial neural networks could be used successfully for the 

identification and control of nonlinear dynamic systems. A series of works 

performed by Chen and Billings and their coworkers have developed the foundation 

of using neural networks as a tool for nonlinear system identification [23-25].  
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The engine torque is one of the most important performance variables of an ICE and, 

for this reason; a torque control system can improve substantially the performance of 

the overall vehicle [7, 8]. Their modeling efforts were focused on an experimental 

method of system identification that captures the nonlinear engine torque 

characteristics for a large range of operating conditions [10]. Automotive engines are 

multivariable system with severe nonlinear dynamics, and their modeling and control 

are challenging tasks for control engineers [77].  

 

Moreover, ANN has been proven to be useful for modeling and identification 

nonlinear dynamic systems. RNN have been used by many researchers. Some of 

which are used for simulating the air-fuel ratio (AFR) dynamics into the intake 

manifold of a spark ignition (SI) engine [75], for identify the nonlinear dynamic of 

the intake manifold and the throttle body processes in an automotive engine [1], for 

modeling air-fuel ratio in SI engine [81], for AFR identification and control in SI 

engines [76], for AFR identification in SI engine [105]. Different neural network 

structures like multilayer perceptron (MLP), pseudo linear radial basis function and 

local linear model tree networks for modeling variable valve timing [78] and torque 

[79] of a SI engine has been studied. An artificial neural networks approach to 

estimate the indicated torque of a single-cylinder diesel engine from crankshaft 

angular position and velocity measurements are presented in [86]. The dynamic multi 

layered perceptron and the generalized Hammerstein model are described and 

compared to the experimental identification of the charging process in diesel engines 

[89]. Hou et al. [91] provided a method of identifying AFR of a HL495Q gasoline 

engine based on elman neural network. A dynamic local neural network approach 

has been applied for modeling the NOx emissions characteristics of a 1.91 direct 

injection diesel engine [85]. A neural approach has been applied for modeling and 

control of a turbocharged diesel engine speed with pollution constraints [92]. A 

different neural network approach has been used for fault diagnosis and identification 

in automotive engine [94]. Exhaust gas recirculation control in SI LPG engine has 

been proposed using RBF neural network approach. Autoregressive Neural network 

has been used for identification of locomotive diesel engine [101]. Neural network 

model has been presented for identification and control of the AFR of automotive 

engine [102].  
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Neural networks have been successfully used in wide range of automotive control 

applications. An adaptive RBF model based model predictive control to the air/fuel 

ratio control of automotive engines [77]. Wang et al. [2-4] presented an application 

of adaptive neural network modeling and model based predictive control for 

modeling the crankshaft speed, intake manifold pressure, manifold temperature [2], 

air fuel ratio [3] and engine speed [4]. A radial basis function (RBF) neural network 

was utilized for them. A fast neural network models for engine control design 

purposes are applied in [83, 84, 98, 99]. A nonlinear model based control has been 

proposed for an efficient control of the air actuators of a turbocharged SI engine 

using neural network [93]. SI engine idle speed control has been presented using 

ANN [100]. ANN has been used for adaptive AFR control in gasoline engines and 

for adaptive AFR control in SI engine [80]. Transient fueling control of SI engine has 

been presented using feed forward neural network [111, 112].  

 

In this case study, different neural network structures are used to identify nonlinear 

dynamic models for the SI engine torque. Dynamic Levenberg-Marquardt algorithm 

is applied to the weight-estimation using the neural network toolbox version 7.0 in 

Matlab. Experimental results show that the neural network based models are more 

precise and generalized in performance than the Hammerstein and NARX models. 

Such models can be used for control system design, or in a model-based fault 

detection and diagnosis strategy. 

 

8.2.5.2 Neural Network System Identification 
 
The neural network based black-box method is used to model the SI engine torque 

dynamics taking into account the interaction between the input and output of the 

SISO system. The simplest linear discrete-time input-output model is the ARX 

model [17]. The optimal predictor of an mth order ARX model is 

 

).()1()()1()(ˆ 11 mkyakyamkubkubty mm −−−−−−++−= KK            (8.21) 

 

As we know, a wide class of nonlinear systems can be described by NARX 

(nonlinear ARX) model [224] in a straightforward manner by replacing the linear 

relationship in Equation (8.21) with unknown nonlinear function f (.), that is,  
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))(,),1(),(,),1(()(ˆ mkykymkukufky −−−−= KK             (8.22) 

 

Identifying the nonlinear dynamic system using the neural network is to find a fit 

neural network structure to substitute for the nonlinear function f (.) under the known 

system model structure as shown in Equation 8.22. By readjusting the connection 

weight value of the neural network, the output of neural network is equal to the 

output of the plant. Identified model was obtained the as following   

 

))(,),1(),(,),1(()(ˆ yuNN nkykynkukufky −−−−= KK             (8.23) 

 

where )(ky  denotes the output vector, )(ku the input vector, yn  and un denoted the 

dynamic order of the model output and input respectively.  

 

Thus, the NARX model is trained in series-parallel configuration, whose structure 

was shown in Figure 8.24. This model can be considered as a feedforward network 

model. 

 

 

Figure 8.24 Series- parallel model for neural network identification 
 

The number of past outputs and control inputs required to be fed for the system 

identification depends upon the order and the structure of the system. One drawback 

of models with output feedback is that the choice of the dynamic order m is crucial 
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for the performance and no really efficient methods for its determination are 

available. Often the user is left with a trial-and-error approach.   

 

8.2.5.2.1 Feed Forward Neural Networks (FFNN) for System Identification 

 
An identification procedure, in the most general sense, entails a matching between 

the system outputs and an identifier output. Artificial neural networks (ANNs) are 

massively parallel distributed structures and have ability to learn through experience 

[158]. ANNs due to their ability to act as universal approximators can very 

effectively be used for this purpose [14, 15]. Narandra and Parthasarathy [22] have 

reported an extensive study on the use of these networks for identification and 

control purposes. 

 

Useful properties of ANNs such as nonlinearity, input/output mapping and 

adaptability have been exploited to model the dynamic of the SI engine torque.  As 

one hidden layer with sufficient number of neurons is good enough to approximate 

any nonlinear function [158], only one hidden layer is used for the present work. 

Levenberg-Marquardt (LM) optimization algorithm is used to minimize the cost 

function defined by the mean square error (MSE) given by 

 

( )∑
=

−=
N
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jj kyky

N
MSE

1

2)(ˆ)(
1

               (8.24) 

 

where N is the number of data points, and )(ky j  and )(ˆ ky j  denote the desired and 

model output at the kth sample points. Actually, the desired )(ky j  is the observation 

data in the experiments. The output of the network is computed by proceeding layer 

by layer through the network. The net internal activity level k
jV for a neuron j in 

hidden layer k is given by 
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where )(1 nY k
i

− is the output of neuron i of the layer 1−k , )(nW k
ji is the net weight of 

neuron j in the layer k connecting to the thi neuron of layer .1−k  the output of the 

neuron j in layer k is computed using the tan-hyperbolic activation function given by 
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−=                 (8.26) 

 

For neural network training using LM algorithm, the gradient vector can be 

calculated as  

 

)()()( θθθ eJg T=                  (8.27) 

 

where )(θJ  is the system Jacobian matrix, θ is the parameter vector and )(θe  is the 

error vector defined by 

 

T
neeee ],,,[)( 21 K=θ                  (8.28) 

 

The minimum is found by iteratively solving the equation  

 

)()())()(( θθθµθθ eJIJJ TT −=∆+                (8.29) 

 

where µ is a scalar quantity and I is an identity matrix. 

 

SI engine identification experiments were performed using the set-up described in 

section 7.4. For identification of SI engine, the SISO neural network model is used 

throttle valve position u as the input vector and engine torque y as the output vector. 

The neural network training is performed off-line utilizing a previously generated 

training data set. The backpropagation, backpropagation with adaptive learning rate, 

backpropagation with momentum and Levenberg-Marquardt (LM) training 

algorithms of Matlab were tested. As mentioned in [225], the LM algorithm was 

found to be the fastest training algorithm, but requiring more memory with the same 

error convergence bound compared to the other algorithms.  
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The system identification problem requires a suitable excitation signal. Usually a 

signal, which is sufficiently rich and persistently exciting all the system modes, is 

selected. PRBS (pseudo random binary signal) well suited for identification. Imitates 

white noise in discrete time with a deterministic signal and thus excites all 

frequencies equally well [17]. To create the disturbances needed to perform 

identification of the process, PRBS were used [41, 95]. A PRBS was designed for 

throttle angle position to obtain a representative set of input-output data. A set of data 

samples, including throttle valve position and the torque was collected for the system 

identification. Each set contains 2000 data samples. 

 

After training the network, the identification process is tested by using the Figure 

8.24. The speed estimate )(ˆ ky  of the so called identifier will be compared with the 

experimental and/or simulated output )(ky  to evaluate the performance of the 

identified NN reflecting the dynamics of SI engine.  

 

Several neural networks with different structures were tried in order to find the 

optimal model. The data sequences are divided into two sections. One section is used 

for training and another section is used for testing. Table 8.11 shows the performance 

comparison. In Table 8.11, hn is defined as the number of the hidden neurons of the 

neural network model.  

 

Based on the results of Table 8.11, it is seen that both the orders of the input 

variables and the number of the hidden neurons have an effect on the model 

performance. The results presented in Table 8.11 reveal clearly that the selection of 

the number of the hidden neurons is ten, while the orders of the input variables are, 

respectively 4=un  and .4=yn  

 

A two-layer feedforward neural network with eight input neurons, ten neurons in the 

hidden layer and one output neuron, denoted as 8-10-1, has been used in the network. 

The proposed ANN model is given in Figure 8.25. The learning algorithm used in the 

study is Levenberg-Marquardt (LM); activation function is tan-sigmoid (tansig) 

transfer functions. The number of hidden neurons has been determined by trial-and-

error. Using a larger number of hidden neurons can approximate the system 
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dynamics better with a time penalty for training. For the LM training algorithm, the 

data was normalized within the [-0.5, +0.5] range, which is a common practice for   

 

Table 8.11 Performance comparison for neural models 

 
Neural network structure Correlation coefficient (R) 

2=un , 2=yn , hn= 7 0.98403 

2=un , 2=yn , hn= 8 0.98418 

2=un , 2=yn , hn= 9 0.9841 

2=un , 2=yn , hn= 10 0.98481 

3=un , 3=yn , hn= 7 0.9851 

3=un , 3=yn , hn= 8 0.9855 

3=un , 3=yn , hn= 9 0.9856 

3=un , 3=yn , hn= 10 0.9865 

4=un , 4=yn , hn= 7 0.9854 

4=un , 4=yn , hn= 8 0.9861 

4=un , 4=yn , hn= 9 0.9868 

4=un , 4=yn , hn= 10 0.9871 

 

the neural network training using tan-sigmoid activation function. The algorithm 

itself selected the initial weights randomly. This induced the possibility of having 

slightly differing results at each training.  

 

The identifier has been assessed using the following test signal shown in Figure 8.21. 

The real system response and the identifier outputs are shown in Figure 8.26. 

Obtained model should be validated using the estimated parameters to generate a 

new set of output data by simulation of the identified model. The simulated response 

is given in Figure 8.27 together with the real system response obtained by 

experiment. 
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Inspection of the identification results in Figure 8.26 reveals that the identification 

procedure generates a highly accurate estimated response to input variations even in 

fast transient phases and high frequency load effects. Although it does not guarantee 

that the identified model accurately represents the process behavior, this result gives 

useful information for online applications of control. Figure 8.27 give plots of the 

model validation experiments. The identified model is tested using the set of data 

used in identification, and results in Figure 8.27 reveal the performance of the model 

in response to the PRBS test signal.  

 

 

 

 
Figure 8.25 FFNN architecture 
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Figure 8.26 Modeling results of the FFNN model with identification experiment 
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Figure 8.27 Modeling results of the FFNN model with validation of identification 
results 
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8.2.5.2.2 Radial Basis Function (RBF) Neural Networks for System 

Identification 

 
Feedforward neural networks trained with the backpropagation (BP) algorithm have 

been widely used in system identification and control. There are several drawbacks 

of such formulation, however, such as potentially pre-converging to a local minima, 

relatively slow convergence rate, and difficulties to determine an adequate 

architecture to obtain a minimum, etc., [226].  

 

Another popular layered feedforward network is the radial-basis function (RBF) 

network which has important universal approximation properties [158]. Comparing 

with the feedforward neural networks and multi-layer perceptron neural networks, 

RBF neural networks has some better approximation properties [227], such as high 

accuracy of approximation, especially, the connection weights from the hidden layer 

to the output layer are linear (which implies that linear optimal algorithms can be 

used in RBF neural networks and guarantees the global convergence of the 

parameters). Moreover, while training RBF neural networks, only one part of the 

nodes will be affected by a given input, and only a portion of the model parameters 

may be need to be adjusted, thus reducing the training time and computational 

burden [226]. A RBF neural network has an input layer, a nonlinear hidden layer and 

a linear output layer. The nodes within each layer are fully connected to the previous 

layer nodes. The input variables are each assigned to nodes in the input layer and 

connected directly to the hidden layer without weights. The hidden layer nodes are 

RBF units. The nodes calculate the Euclidean distances between the centers and the 

network input vector, and pass the results through a nonlinear function [228].  The 

output layer nodes are weighted linear combinations of the RBF in hidden layer.  

 

For a RBF neural network with m inputs nodes, p outputs nodes and N hidden nodes, 

the hidden unit can be expressed as a matrix 

 

][ 21 Nψψψψ L=                 (8.30) 
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and the neural networks weight { },,,2,1,,,2,1, pjNiwW ij KK ===  where, 

input ( ) ,)(,),()( 1
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m kxkxkX K=  ( ) ,)(ˆ,),(ˆ)(ˆ
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T

p kykykY K=  ( ))(kXjψ  is a 

nonlinear function and it is chosen as a Gaussian activation function 
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where N
j RNjC ∈= ),,2,1( K is the center of the jth hidden unit, and with the same 

dimension as the input vector ),(kX jλ  the width of the jth RBF hidden unit, 

. Euclidean norm. 

 

Then ith RBF network output can be represented as a linearly weighted sum of N 

basis functions 
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where  jiw  and iw ,0 are the weights. 

 

With the structure described above, the transformation from the input layer to the 

hidden layer is nonlinear, due to the use of Gaussian functions (.)ψ  for RBF, and the 

connection of the hidden layer to the output layer is linear [228].  

 

The objective of this case study is to use RBF neural networks to model the SI 

engine torque. According to identification structure of SI engine torque in Figure 

8.22, where TDL is the tapped delay line that the output vector has for its elements 

delayed values of the input signal.  

 

In Figure 8.24, the predictive error ),(ˆ)()( kykyke −=  and )(ˆ ky  is the predictive 

output of the neural networks. In this case study, the criterion of training a RBF 

neural networks is to minimize mean square errors (MSE) given in Equation (8.24).  
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Training of the RBF neural networks can be divided into two-stage procedures. The 

first stage involves selecting basis function centre vectors .jC  The selection 

principle of jC is that they should be chosen to form a representation of the 

probability density of the input data [228]. Most published papers simply assume that 

the centers are arbitrarily selected from input data points, which will often result in 

that either the RBF neural networks perform poorly or the computational burden of 

the neural networks training increases largely. Moreover, numerical ill-conditioning 

frequently occurs owing to the near linear dependency caused by some centers being 

too close. So, here an adequate technique to determine RBF neural networks centers, 

i.e., the orthogonal least squares (OLS) method is adopted [229].  

 

After the neural networks centers have been chosen, the weight values of the neural 

networks are also determined at the same time from solution the following group of 

equations 
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              (8.33) 

 

The width parameters jλ of the RBF may be calculated by many techniques. Here we 

choose all widths to be equal to about twice the average space between the basis 

function centers [228].  

 

We use the Matlab neural network toolbox to perform the training and testing. The 

experimental sampled data are 2000 observations of input-output data. Firstly, 

because the sampled data don’t fall into (0, 1), normalization are needed to transform 

all the input and output data into (0, 1). To compare the results of the RBF neural 

networks modeling with the modeling results of a feedforward neural networks 

training with the backpropagation (BP) algorithm, the same data set were used to 

train a RBF neural network. The data sequences are divided into two sections. One 

section is used for training and another section is used for testing.  
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The number of hidden units is previously determined by trial-error fashion. Based on 

satisfying the minimum MSE conditions in Equation (8.24) and shorter training time. 

A neural network is trained using all the available data set based on satisfying the 

condition of not greater than the objective MSE. The structure of a RBF neural 

networks with the orders of the input variables are, respectively 4=un  and 4=yn  

given in Figure 8.28. 

 

 

 

Figure 8.28 RBF neural network structure 

 

The identifier has been assessed using the following test signal shown in Figure 8.19. 

The real system response and the identifier outputs are shown in Figure 8.29. 

Obtained model should be validated using the estimated parameters to generate a 

new set of output data by simulation of the identified model. The simulated response 

is given in Figure 8.30 together with the real system response obtained by 

experiment. 
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Inspection of the identification results in Figure 8.29 reveals that the identification 

procedure generates a highly accurate estimated response to input variations even in 

fast transient phases and high frequency load effects. Although it does not guarantee 

that the identified model accurately represents the process behavior, this result gives 

useful information for online applications of control. Figure 8.30 give plots of the 

model validation experiments. The identified model is tested using the set of data 

used in identification, and results in Figure 8.30 reveal the performance of the model 

in response to the PRBS test signal.  
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Figure 8.29 Modeling results of the RBF neural network model with identification 
experiment 
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Figure 8.30 Modeling results of the RBF neural network model with validation of 
identification results 
 

8.2.5.2.3 Recurrent Neural Networks (RNN) for System Identification 

 
The recurrent neural network (RNN) that is a special type of the dynamic neural 

networks is derived from the multi layer perceptron feedforward neural networks 

(MLPNN) by considering feedback connections among the neurons. RNN has the 

advantage of detecting and identifying time-varying model. Elman neural network is 

a kind of recurrent network.  

 

Elman neural network is a dynamic recurrent neural network with feedback layer 

which owns the dynamic characteristics and recurrent function [91]. The feedback 

connections in Elman recurrent neural network are from the outputs of neurons in the 

hidden layer to the context layer units that are called as context nodes. This part of 

input layer, namely, the context layer, plays a role in storing internal states in Elman 

neural networks [165].  
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Figure 8.31 Structure of Elman neural network 

 

The structure of the Elman neural network is illustrated in Figure 8.31. Where 

321 ,, ωωω is the corresponding layer the weight matrix, )1( −tu being input vector at 

)1( −t  time, )(tx  being output vector of contex layer at t time, )(ty being output 

vector of neural network at t time. The neural network is composed of the input 

layer, hidden layer, contex layer and output layer. The contex layer can memorize 

previous output of the hidden layer unit, therefore the network has the memory 

function. The neural network shown in Figure 8.29 has the following nonlinear state 

space expression.  

 

))1()(()( 21 −+= tutxftx c ωω                (8.34) 

 

)1()( −= txtxc                  (8.35) 

 

))(()( 3 txgty ω=                  (8.36) 

 

In the above formula, cx is the contex layer output and (.)f  and (.)g are the 

activation functions of the output layer and hidden layer respectively.  
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To identify SI engine torque, the system was exited with a PRBS signal. The data set, 

comprising 2000 data points, was divided into two sets; half of the data set was used 

to train the network and the other half used to validate the model.    

 

Several neural networks with different structures were tried in order to find the 

optimal model. Table 8.12 shows the performance comparison. Based on the results 

of Table 8.12, it is seen that both the orders of the input variables and the number of 

the hidden neurons have an effect on the model performance. The results presented 

in Table 8.12 reveal clearly that the selection of the number of the hidden neurons is 

ten, while the orders of the input variables are, respectively 4=un  and .4=yn  

 

Table 8.12 Performance comparison for Elman neural network model 

 
Neural network structure Correlation coefficient (R) 

2=un , 2=yn , hn= 7 0.98777 

2=un , 2=yn , hn= 8 0.98843 

2=un , 2=yn , hn= 9 0.98852 

2=un , 2=yn , hn= 10 0.98942 

3=un , 3=yn , hn= 7 0.98936 

3=un , 3=yn , hn= 8 0.98958 

3=un , 3=yn , hn= 9 0.98962 

3=un , 3=yn , hn= 10 0.98981 

4=un , 4=yn , hn= 7 0.99085 

4=un , 4=yn , hn= 8 0.99143 

4=un , 4=yn , hn= 9 0.99158 

4=un , 4=yn , hn= 10 0.99172 

 

Elman neural network is a two-layer BP neural network with a feedback from the 

outputs of hidden layer to inputs. Choosing Elman neural network with input layer 

eight neurons, hidden layer ten neurons and output layer one neuron, then the 

topology structure of Elman neural network of SI engine torque is 8-10-1, has been 
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used in the network. The number of hidden neurons has been determined by trial-

and-error. The learning algorithm used in the study is Levenberg-Marquardt (LM); 

the activation function of hidden layer neurons is tan-sigmoid (tansig), while it is 

purelin of output layer. Elman neural network of SI engine torque identification was 

trained using Matlab neural network toolbox.   

 

The SI engine torque actual values taken from the experimental set-up described in 

section 7.4 and the output values of Elman neural network model is shown in Figure 

8.32. Obtained model should be validated using the estimated parameters to generate 

a new set of output data by simulation of the identified model. The simulated 

response is given in Figure 8.33 together with the real system response obtained by 

experiment. 

 

Inspection of the identification results in Figure 8.32 reveals that the identification 

procedure generates a highly accurate estimated response to input variations even in 

fast transient phases and high frequency load effects. Although it does not guarantee 

that the identified model accurately represents the process behavior, this result gives 

useful information for online applications of control. Figure 8.33 give plots of the 

model validation experiments. The identified model is tested using the set of data 

used in identification, and results in Figure 8.33 reveal the performance of the model 

in response to the PRBS test signal.  
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Figure 8.32 Modeling results of the Elman NN model with identification experiment 

750 800 850 900 950
50

60

70

80

90

100

110

Number of samples

O
u
tp

u
t 

e
n
g
in

e
 t

o
rq

u
e
 (

N
m

)

 

 

Engine output

Elman NN model output

 

 

Figure 8.33 Modeling results of the Elman NN model with validation of 
identification results 



 179 

8.2.5.3 Comparison of the Three Approaches 
 
This case study has shown a procedure for using neural networks for identification of 

the nonlinear process, i.e. output torque in automotive SI engine. To evaluate the 

quality of the model identified from the process data, there are various means, among 

which the statistical information criteria are one, used to test the quality of the model. 

The correlation coefficient (R), the mean square error (MSE) and the mean absolute 

percentage error (MAPE) are some of the commonly employed criteria given by 
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where y′ and ŷ′  are the mean values of )(ky  and )(ˆ ky , respectively N is the 

number of total number of data.  

 

The statistical performance of three approaches is given in Table 8.13. It can be seen 

from the Table 8.13 that the neural network based model captures the dynamics very 

well and the method is suitable for modeling the SI engine torque. The Elman 

recurrent neural network slightly outperformed the feedforward network with a high 

correlation coefficient (R) and a low mean absolute percentage error (MAPE) and 

also a low mean square error (MSE). However all three approaches identified the SI 

engine torque dynamics well.  

 

As seen in Table 8.13, a high correlation coefficient (R) and a low mean absolute 

percentage error (MAPE) were obtained for the training and testing data sets for the 

SI engine torque. The proposed Elman recurrent neural network model for the SI 

engine torque had correlation coefficients of 0.99172 and 0.97812 for training and 

testing data set, respectively. Moreover, MAPE of the engine torque was 1.3457 and 
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Table 8.13 Statistical performance of three approaches  

 
NN structure  Set   MSE    MAPE Corr. Coff. R 

 
FFNN 

Train 0.00019 1.6708 0.98742 

Test 0.00049 2.2111 0.97317 

 
RBF neural network 

Train 0.00036 2.3236 0.97846 

Test 0.00042 2.4624 0.97727 

 
Elman neural network 

Train 0.00013 1.3457 0.99172 

Test 0.00040 1.9483 0.97812 

 

1.9483 for the training and testing set, respectively. Similarly, MSE of the engine 

was 0.00013 and 0.0004 for the training and testing set, respectively. As it is seen 

these statistical performance parameters are fairly reasonable. 

 

8.2.5.4 Conclusions 
 
This case study analyzes the performance of neural network methodologies from the 

point of system identification. In the assessment level, correlation coefficient, 

together with the mean square error is considered as the primary comparison 

measures. Numerous simulations are performed on a SI engine torque model. 

 

All three approaches are tested for the same command signal. For the tracking error 

performance, Elman recurrent neural network showed the best performance. On the 

other hand, FFNN and RBF neural network are the simplest approaches in the sense 

of computational complexity.  

 

The contribution of this case study is to show the identification performance of the 

neural network structures and to demonstrate the distinguished performance of the 

three approaches with off-line operation. Some results can be concluded in the 

following: 

 

1. Neural network based models have simple structure and are not difficult to 

obtain based on measured input-output data. 
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2. Neural network based models can capture the inherent nonlinearities and the 

dynamics of the engine torque in automotive engines. 

 

3. Neural network based models can be as good if not better in performance 

accuracy than the nonlinear model obtained according to polynomial models. 

 

The experimental results presented in the case study show that the neural network 

based models are promising for modeling for the purpose of control of automotive 

engines. In addition, the obtained neural models show good performance in the form 

of generalization capability and robustness. However, additional work needs to be 

done to fully understand the capabilities of such techniques for modeling the entire 

engine.  
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CHAPTER 9 
 

9. CONCLUSIONS 
 

The study presented here is on the modeling and identification of a SI engine. The 

developed procedure and formulations are applied to a 1400 cc, four cylinder Fiat SI 

engine presented at the IC engines Laboratory of the University of Gaziantep.  In this 

chapter, conclusions and recommendations for future study to succeed this work. 

 

The contributions and achievements can be summarized as follows: 

 

1. The dynamic formulations of a slider- crank mechanism have been successfully 

formulated with only one independent variable. These equations are the theoretical 

models of the system dynamics, but they are comprised of highly nonlinear 

differential equations and so, can not be used for on-line and on-duty applications. 

They are good for design purposes, but are not suitable to use in control. For on-line 

control, simpler models involving much less calculations are required. This is 

actually the scope of this thesis.  

 

2. Steady-state experiments were carried out on a SI engine to model the engine 

torque and brake specific fuel consumption using soft computing techniques. Neural 

networks (NN) and Gene-Expression Programming (GEP) which is an extension of 

Genetic Programming (GP) are used for modeling the SI engine torque at steady-

state conditions.  The results of the proposed NN and GEP models show very good 

agreement with the experimental results. The performance of accuracies of proposed 

NN and GEP models are quite satisfactory. The results of the GEP model are 

compared to that of the NN model with which the results are found to be in excellent 

agreement. The present study verifies the robustness of soft computing techniques 

for the modeling and analysis of various engineering problems where it is difficult to 

obtain a mathematical model. 
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3. Dynamic experiments were carried out in SI engine to identify and model the 

system. The most common nonlinear black-box parametric models namely 

Hammerstein model and nonlinear auto-regressive with exogenous inputs (NARX) 

model were developed. And also different neural network structures are used to 

identify nonlinear dynamic models for the SI engine torque. 

 

4. Nonlinear system modeling approaches with parametric representation are 

investigated. Volterra series, Hammerstein, Wiener, and NARMAX models are 

explained in detail. Identification of nonlinear systems using the above mentioned 

model structures are discussed. Algorithms for the identification processes are given.  

 

5. The experimental study on nonlinear modeling and identification of a SI engine 

torque from input-output data is presented. The nonlinear model is developed for the 

system. A nonlinear representation and identification approach using the nonlinear 

Hammerstein system structure is used for the present system. A suitable 

experimental setup is built and tested using the RLS identification algorithm for the 

nonlinear case. The measured data obtained experimental setup is used by a 

computer program that runs in Matlab environment to identify unknown system 

parameters. The results are numerically and graphically demonstrated. Inspection of 

the identification results reveals that the identification procedure generates a highly 

accurate estimated response to input variations even in fast transient phases and high 

frequency load effects. 

 

6. In this study, a nonlinear model of the SI engine torque is obtained. A procedure 

to provide the nonlinear model of the dynamics between the throttle valve command 

and torque of a gasoline engine, directly from raw data is presented. The nonlinear 

system model is built and a sigmoid based nonlinear ARX model is developed using 

the input and output data. The model parameters were estimated using an iterative 

prediction-error minimization method. The nonlinear system identification with fifth 

order nonlinear dynamics is found to give the best result. The model validation 

results concluded that the selected model order has the potential of capturing the 

nonlinearity of the process.  
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7. In this thesis, the artificial neural networks is considered from the identification 

perspective. It is well known that the concept of identification plays an important 

role in the systems and control area. This, mainly, stems from the fact that we 

generally want to obtain an approximate model of the system, such that the resulting 

model is mathematically tractable and closely matches the system dynamics. Neural 

networks were proven to be successful identifiers, because they can learn any kind of 

nonlinear mapping with any degree of accuracy. From this point of view, neural 

networks can identify a system so that the identification model could be used to 

devise a controller. Training range is another important point in the neural 

identification procedure. The backpropagation, backpropagation with adaptive 

learning rate, backpropagation with momentum and Levenberg-Marquardt (LM) 

training algorithms of Matlab were tested, the LM algorithm was found to be the 

fastest training algorithm, but requiring more memory with the same error 

convergence bound compared to the other algorithms.  

 

8. In this study, different neural network structures are used to identify nonlinear 

dynamic models for the SI engine torque. System identification is done using the 

input-output test data. The test data must incorporate all the properties of the system. 

So the way system identification experiment is performed is very crucial. In this 

thesis, considering the engine as a single-input single-output (SISO) system, the 

basic input variable is the throttle valve position u, while the model output is the 

engine torque y. In engine data collection, the input-output data must be 

representative of engine behavior in order to identify the engine. This means that 

input and output signals should adequately cover the region in which the system is 

going to be modeled. A set of Pseudo Random Binary Signal (PRBS) signals are 

often very suitable as process inputs because they excite the process at a wide range 

of amplitudes and frequencies. To create the disturbances needed to perform 

identification of the process, PRBS’s were used. A PRBS was designed for throttle 

angle position to obtain a representative set of input-output data. A set of data 

samples, including the throttle valve position and the torque was collected for the 

system identification. Each set contains 2000 data samples. The neural network 

training is performed off-line utilizing a previously generated training data set. The 

neural network based black-box method is used to model the SI engine torque 

dynamics taking into account the interaction between the input and output of the 
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SISO system. NARX model is used in this study because a wide class of nonlinear 

systems can be described by NARX.  

 

9. The first type of neural network to be developed here is the feedforward neural 

network (FFNN) model. Feedforward networks with a range of hidden layer neurons 

were tested. A two-layer feedforward neural network with eight input neurons, ten 

neurons in the hidden layer and one output neuron, denoted as 8-10-1, has been used 

in the network. The learning algorithm used in the study is Levenberg-Marquardt 

(LM); activation function is tan-sigmoid (tansig) transfer functions. The feedforward 

networks modeled the SI engine torque well.   

 

10. The second type of neural network to be developed is the Radial Basis Function 

(RBF) neural network model. The structure of a RBF neural network with the orders 

of the input variables is, respectively 4=un  and .4=yn  Orthogonal Least Squares 

(OLS) method is adopted to determine RBF neural networks centers. The obtained 

results have shown that the modeling accuracy is high and it is feasible to setup the 

model of the nonlinear SI engine torque system based on RBF neural networks 

identification. The most important is that the modeling process avoids complicated 

dynamical modeling and avoids using complicated differential equation groups to 

model the torque of a SI engine, and the input-output performance can be achieved 

quickly by the neural network model.  

 

11. Finally, Elman type recurrent neural network is developed for SI engine torque 

modeling. Choosing Elman neural network with input layer of eight neurons, hidden 

layer of ten neurons and output layer of one neuron, then the topology structure of 

Elman neural network of SI engine torque is 8-10-1, has been used in the network. 

The learning algorithm used in the study is Levenberg-Marquardt (LM); the 

activation function of hidden layer neurons is tan-sigmoid (tansig), while it is purelin 

of output layer. The obtained results have shown that the SI engine torque has been 

identified successfully. The extracted model has predicted the system behavior well. 

Identified models have been verified on a real system with equally accurate results.  
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12. Different neural network structures are used to analyze the performance of neural 

network methodologies from the point of system identification. The neural network 

based model captures the dynamics very well and the method is suitable for 

modeling the SI engine torque. The Elman recurrent neural network slightly 

outperformed the feedforward network with a high correlation coefficient (R) and a 

low mean absolute percentage error (MAPE), and also a low mean square error 

(MSE). However all three approaches identified the SI engine torque dynamics well. 

The experimental results presented in this thesis show that the neural network based 

models are promising for modeling for the purpose of control of automotive engines. 

In addition, the obtained neural models show good performance in the form of 

generalization capability and robustness.   

 

9.1 Recommendations for Future Work 
 
System identification is the process of developing a mathematical model of a 

dynamic system based on the input and output data from the actual process. This 

means it is possible to sample the input and output signals of a system and using this 

data to generate a mathematical model. An important stage in control systems design 

is the development of a mathematical model of the system to be controlled. In order 

to develop a controller, it must be possible to analyze the system to be controlled and 

this is done using a mathematical model. Another advantage of system identification 

is evident if the process is changed or modified.  System identification allows the real 

system to be altered without having to derive the dynamical equations and measuring 

the model parameters again.  

 

It is obvious that artificial intelligence techniques or specifically soft computing 

approaches such as Fuzzy logic, NNs, Genetic Algorithm and Genetic Programming, 

will have much more profound application areas in the future for nonlinear system 

identification and control area.  

 
The following can be suggested for future studies: 
 
1. The existing SI engine can be upgraded by adding measurement device to 

identify and model the other SI engine parameters such as, the inlet manifold 
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pressure and the temperature, the engine speed, the air/fuel ratio, the air mass flow 

rate, the fuel mass flow rate etc.  

 

2. The developed nonlinear models can be used to predict the SI engine torque off-

line which makes it possible to design an off-line controller for SI engine torque. 

 

3. The dynamical systems contain nonlinear relations which are difficult to model 

with conventional techniques. In this study, the nonlinear modeling techniques such 

as Hammerstein model, NARX model and neural network model have been 

successfully applied to unknown nonlinear system identification and modeling. Other 

system identification methods have been applied for efficiently identification and 

modeling the SI engine dynamics and other nonlinear dynamic systems such as, 

genetic programming identification, Fuzzy logic and neuro-fuzzy systems (ANFIS).  

 

4. The system identification problem requires a suitable excitation signal. Usually a 

signal, which is sufficiently rich and persistently exciting all the system modes, is 

selected. In this study, Pseudo Random Binary Signal (PRBS) was designed for 

throttle angle position to obtain a representative set of input-output data. And also, 

other signals such as random amplitude signals (RAS), random Gaussian signals 

(RGS) and etc. can be used as the training input signal. 

 

5. ICE modeling is still an open field of research due to the antithetical needs of 

describing a very complex, nonlinear system and driving simple model structures 

suitable for the control synthesis or diagnosis phase. 
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APPENDIX 1: IDENTIFICATION OF THE GENERAL NARMAX MODEL 
 

The NARMAX representation of nonlinear systems includes both input and output 

nonlinearity. The output nonlinearity is assumed to be an invertible one, which 

considerably simplifies the procedure of identification. The method that will be 

discussed in this section for the identification of the NARMAX model is the nonlinear 

recursive extended least squares (NRELS) method [152].  

 

The general NARMAX system given in Figure 4.7 is considered. The overall system 

input-output relationship is given by: 
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The equation above can be written in the form below: 
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One can see that the linear regression model given in (A.3) allows the estimation of 

the parameters aj, bj, cj, and f0j, which explicitly appear in the parameter vector θ. 

However, the parameters of the input nonlinearity, fij, do not appear explicitly, but the 

products ijm fb .  can be estimated. Consequently, the parameters fij can simply be 

estimated using ordinary least squares algorithm [152].  



 217 

APPENDIX 2: SPECIFICATIONS OF THE DYNOMOMETER 
 

Engine torque was measured with a dynamometer. Water brake dynamometer was 

used to measure engine torque at different speeds; by changing the water level in the 

dynamometer, the load applied to the engine could be varied. The specifications of 

the dynamometer are given in table below. 

 

Table A.1 Specifications of Go Power System DA 516 model water brake 

dynamometer 

 
Type of absorption Water brake 

Construction High strength aluminum alloy 

Loading capacity 100 HP 

Maximum allowable speed 7400 rpm 

Torque transducer system Hydraulic load cell 

Rotation direction Clockwise or counterclockwise  

Inlet water flow rate 2.2 l/s 

Inlet water pressure 240 kPa 

Water outlet Gravity drain to atmosphere 

Measuring device Pressure transducer 

Maximum torque capacity 1017 Nm 

Weight  43 kg 
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APPENDIX 3: SPECIFICATIONS OF THE PRESURE TRANSDUCER 
 

Pressure transducer was mounted on the hydraulic load cell of the dynamometer. The 

specifications of the Cole Parmer C-68075-50 pressure transducer are given in table 

below. 

 
Table A.2 Cole Parmer C-68075-50 transducer specifications 
 
Range  0 to 250 psig 
Application Torque measurement 
Accuracy ±0.25 % full-scale 
Output 0.5 to 5.5 V 
Temperature range (compensated) -4º to 176ºF (-20º to 80ºC) 
Operating temperature -40º to 260ºF (-40º to 125ºC) 
Electrical connections 2-ft cable 
Process connection 1/4" NPT(M) 
Dimensions 2 3/4"L x 1 1/2" dia 
Power 9 to 30 VDC 
Wetted parts 17-4 PH stainless steel 
 

 
Figure B.1 Cole Parmer C-68075-50 transducer 
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APPENDIX 4: TECHNICAL SPECIFICATIONS OF THE SERVO MOTOR 
 

Throttle valve position is controlled by servo motor which has a 0.75 kW and 3000 

rpm. The specifications of the used servo motor are given in table below. 

 

Table A.3 Specifications of the ECMA-C30807GS servo motor 

Rated output power 750 W 

Rated torque 2.39 Nm 

Rated speed 3000 rpm 

Rated current 5.1 A 

Armature resistance 0.42 Ohm 

Armature inductance 3.53 mH 

Insulation resistance >100 MΩ, DC 500V 

Insulation strength 1500 V AC, 60 seconds 

Operating temperature 0ºC to 40ºC (32ºF to 104ºF) 

Storage temperature -10ºC to 80ºC (-14ºF to 176ºF) 
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APPENDIX 5: SPECIFICATIONS OF THE DATA ACQUISITON CARD 
 

DT 304 is a family of low cost multi function data acquisition board and is connected 

at PCI bus of computer. The specifications of the used data acquisition card are given 

in table below. 

 

Table A.4 Specifications of the DT 304 Data acquisition card 

Dimensions 8.5 inches (length) by 4.2 inches (width) 

Operating temperature range 0ºC to 70 ºC 

Storage temperature range -25ºC to 85ºC 

Accessories STP 300 Screw Terminal panel and 
EP 305 cable 

Resolution 12 bits 

Analog input  

Number of analog input channels  16 single ended, 8 differential 

Input ranges ±10, ±5, ±2.5, ±1.25 V bipolar 
0-10, 5, 2.5, 1.25 V unipolar 

Sampling rate  400 kS/s@0.03% accuracy 

Maximum input voltage ±40 V (protection) 

Analog output  

Number of analog output channels 2 (Voltage output) 

Output range  ±10 V or ±5 V 
0 to 10, 5 V 

Sampling rate 10 kS/s 

Digital I/O  

Number of lines 8 bidirectional 

High level input voltage 2 V minimum 

Output driver high voltage 2.4 V minimum 

Number of counter/timer channels 4 



 221 

 

CURRICULUM VITAE 
 
PERSONAL INFORMATION 
 

Surname, Name: TOĞUN, Necla KARA 
Nationality: Turkish (TC) 
Date and Place of Birth: 1 November 1978, Gebze 
Marital Status: Married 
Phone: +90 342 317 25 34 
Fax: +90 342 360 11 04 
email: nkara@gantep.edu.tr 
 
EDUCATION 
 
Degree Institution Year of Graduation 

MS 
Gaziantep University, Graduate School 
of Naturel and Applied Sciences 

2004 

BS 
Gaziantep University 
Department of Mechanical Engineering 

2001 

High School Yenimahalle Alparslan Lisesi (Ankara) 1995 
 
WORK EXPERIENCE 
 
Year Place Enrollment 

2002- Present 
Gaziantep University  
Department of Mechanical Engineering 

Research Assistant 

 
 
FOREIGN LANGUAGES  
 

English 
 
 
PUBLICATIONS 
 
International Journal Papers 
 

1. Togun, N.K., Baysec, S. (2010). Prediction of torque and specific fuel 
consumption of a gasoline engine by using artificial neural Networks. Applied 
Energy, 87(1), 349-355. 

 

2. Togun, N., BAYSEC, S. (2010). Genetic programming approach to predict 
torque and brake specific fuel consumption of a gasoline engine. Applied Energy,  
87(11), 3401-3408. 

 
3. Togun, N., Kose, A., Gunay, N., Tarakcioglu, M., Demiryurek, A.T. (2010). 

Formulation of effects of atropine, pralidoxime and magnesium sulfate on cardiac 
tissue levels of nitric oxide, malondialdehyde and glutathione in organophosphate 
poisoning using artificial neural network. Computers in Biology and Medicine, 
40, 29-36. 

 



 222 

4. Togun, N., Baysec, S., Kara, T. (2010). Nonlinear modeling and identification of 
a spark ignition engine torque. Mechanical systems and signal processing. (under 
review). 

 
5. Togun, N., Baysec, S. (2010). Nonlinear modeling and identification of a spark 

ignition engine torque using nonlinear ARX model. ISA Transactions. (under 
review). 

 
National Conference Papers 
 
1. Kara, N.,  Öz, H.R., Yıldırım, C.A. (2005). Yumuşak doku - kemik sisteminde 

ezilme hasarı”, UMTS 2005, 12. Ulusal Makine Teorisi Sempozyumu, 09-11 
Haziran 2005, s. 615-622, Erciyes Üniversitesi, Kayseri. 

 
2. Kara, N., Öz, H.R., Yıldırım, C.A. (2004). Bir deprem senaryosunda Maxwell 

tipi yumuşak doku - kemik sisteminde ezilme hasarı-in vitro modelleme”, 7. 
TÜRKĐYE Acil Tıp Sempozyumu ve 3. Acil Hemşireliği ve Paramedik Sempozyum 
24-27 Kasım 2004, s. 221,Gaziantep. 

 
3. Kara, N.,  Öz, H.R., Yıldırım, C.A., Kaplan, M. (2006). Viskoelastik Yumuşak 

doku-kemik sisteminde ezilme hasarı. Biomekanik 2006, 3. Ulusal Biomekanik 
Kongresi, 01-02 Aralık 2006, s.187-198, Đstanbul Teknik Üniversitesi, Đstanbul. 

 
4. Kara, N., Öz, H.R., Bayram, N. (2006). Solunum yolları sesleri ile akciğer 

hastalıklarının sınıflandırılması. Biomekanik 2006, 3. Ulusal Biomekanik 
Kongresi, 01-02 Aralık 2006, s.275-288, Đstanbul Teknik Üniversitesi, Đstanbul. 

 
5. Kara, N., Öz, H.R., Bayram, N. (2007). Hırıltı (Wheezing) sesi üzerine bir 

literatür araştırması. UMTS 2007, 12. Ulusal Makine Teorisi Sempozyumu, 07-09 
Haziran 2007, s. 563-571, Cumhuriyet Üniversitesi, Sivas. 

 
6. Togun, N.K., Bayseç, S. (2009). Benzinli bir motor torkunun genetik 

programlama kullanarak modellenmesi ve formülasyonu. UMTS 2009, 14. Ulusal 
Makine Teorisi Sempozyumu, 02-04 Temmuz 2009, s. 307-312, ODTÜ Kuzey 
Kıbrıs Kampüsü, Güzelyurt/Kıbrıs. 

 
7. Togun, N.K., Bayseç, S. (2009). Benzinli bir motor torkunun yapay sinir ağları 

kullanarak modellenmesi ve formülasyonu. UMTS 2009, 14. Ulusal Makine 
Teorisi Sempozyumu, 02-04 Temmuz 2009, s. 313-318, ODTÜ Kuzey Kıbrıs 
Kampüsü, Güzelyurt/Kıbrıs. 

 
 
 
HOBBIES 
 

Computer, reading, travelling, cooking. 



 223 

 


