

UNIVERSITY OF GAZİANTEP

GRADUATE SCHOOL OF
 NATURAL & APPLIED SCIENCES

SOLVING THE 3D CONTAINER LOADING
PROBLEM WITH METAHEURISTICS

 Ph.D THESIS
IN

INDUSTRIAL ENGINEERING

BY
GÜLESİN SENA DAŞ

JUNE 2010

Solving the 3D Container Loading Problem with
Metaheuristics

PhD Thesis
in

Industrial Engineering
University of Gaziantep

Supervisor
Prof. Dr. Türkay DERELİ

by

Gülesin Sena DAŞ

Haziran 2010

i

ABSTRACT

SOLVING THE 3D CONTAINER LOADING PROBLEM WITH
METAHEURISTICS

DAŞ, Gülesin Sena

Ph.D. in Industrial Eng. Dept.
Supervasor: Prof. Dr. Türkay DERELİ

June 2010, 121 pages

Container Loading (CL) is a quite interesting and very difficult problem to solve.
Given a set of small rectangular items and a rectangular container with known
dimensions, the aim is to load the items into the container in such a way that
maximum volume utilization of the container is achieved. The Operations Research
(OR) literature classifies this problem as NP-hard. Due to the complex nature of the
problem, in the first part of this thesis two swarm intelligence (SI) based solution
approaches namely Ant Colony Optimization (ACO) and Bees Algorithm (BA) are
offered to solve the CL Problem. The results obtained with these approaches are
compared with the available approaches in the literature and the performances of
these approaches are discussed. Comparison of the proposed approaches in terms of
utilization ratio revealed that BA is the best performing algorithm. In addition to this,
a CL decision support system - to determine and visualize the packing pattern of a
CL problem - is also designed.

In the second part, a multi-objective CL (MOCL) problem inspired from a real
industrial problem is introduced. The main goal of the MOCL problem is to pack a
group of items into the container without any overlap while maximizing the total
weight of the packed items and the utilization rate of the container simultaneously.
These two objectives are conflicting since the volume of an item is usually not
proportional to its weight. The problem is solved via selected multi objective
optimization methods (Goal Programming and Weighted-Sum) and the Simulated
Annealing algorithm. The proposed algorithms are tested on real data provided by a
distribution company and the positive impact of the obtained solution to the
company’s transportation policy is discussed.

Key Words: Container Loading, Swarm Intelligence, Ant Colony Optimization,
Bees Algorithm, Multi- Objective Container Loading, Decision Support System

ii

ÖZET

3 BOYUTLU KONTEYNER YÜKLEME PROBLEMİNİN
METASEZGİSELLERLE ÇÖZÜLMESİ

DAŞ, Gülesin Sena

Doktora Tezi, Endüstri Müh. Böl.
Tez Yöneticisi: Prof. Dr. Türkay DERELİ

Haziran 2010, 121 sayfa

Konteyner Yükleme (KY) oldukça ilginç ve çözülmesi çok zor bir problemdir. Bir
grup küçük dikdörtgen nesnenin, boyutları bilinen dikdörtgen bir konteynere;
konteyner hacminden maksimum şekilde faydalanmak amacıyla yerleştirilmesidir.
Yöneylem Araştırması (YA) yazını problemi NP-zor olarak sınıflamaktadır.
Problemin karmaşık doğası gereği, bu tezin ilk kısmında sürü zekası tabanlı iki
çözüm yaklaşımı ismen Karınca Kolonisi Optimizasyonu (KKO) ve Arı Algoritması
(AA) KY problemini çözmek için önerilmiştir. Bu yaklaşımlarla elde edilen sonuçlar
yazında mevcut diğer yaklaşımlarla kıyaslanmış ve bu yaklaşımların performansları
tartışılmıştır. Önerilen algoritmalarla kıyaslandığında AA’nın performansının daha
iyi olduğu görülmüştür. Bunlara ek olarak, bir KY problemine ait doldurma
düzeninin belirlenmesi ve görüntülenmesi için bir KY karar destek sistemi de
tasarlanmıştır.

Tezin ikinci kısmında ise, gerçek bir endüstriyel problemden esinlenen çok-amaçlı
bir KY (ÇAKY) problemi tanıtılmıştır. ÇAKY problemin ana amacı; bir grup
nesnenin herhangi bir çakışmada olmadan, yüklenen nesnelerin toplam ağırlığını ve
konteyner kullanım oranını eş zamanlı maksimize ederek konteynere yüklemektir.
Bu iki amaç, bir nesnenin hacminin ağırlığına orantılı olmadığında çoğunlukla
birbirine zıttır. Problem seçilmiş çok-amaçlı optimizasyon metotları (Hedef
Programlama ve Ağırlıklı-Toplam) ve Tavlama Benzetimi algoritması vasıtasıyla
çözülmüştür. Önerilen algoritmalar bir dağıtım firması tarafından sağlanan gerçek
veri üzerine test edilmiş ve elde edilen sonuçların firmanın ulaştırma politikasına
olumlu etkisi tartışılmıştır.

Anahtar Kelimeler: Konteyner Yükleme, Sürü Zekası Algoritmaları, Karınca
Kolonisi Optimizasyonu, Arı Algoritması, Çok-Amaçlı Konteynır Yükleme, Karar
Destek Sistemi

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. I am grateful to my advisor Prof. Dr. Türkay Dereli for his

supervision, mentorship and foremost support. I would also like to thank the

members of my thesis advisory committee, Prof. Dr. Rızvan Erol and Prof. Dr. Adil

Baykasoğlu.

I would like to thank TUBİTAK BIDEB for their support under the PhD. Fellowship

Programme.

My special thanks are to my colleagues and my intimate friends Tolunay Göçken and

Mustafa Göçken from the Department of Industrial Engineering, University of

Gaziantep for their valuable friendship and endless support. Without their motivation

and support, it would be not able to complete this thesis.

I thank all my friends in Gaziantep who always made me feel at home. I am also

grateful to my colleagues from TUBITAK, especially to Selda, Övgü, Tuba, Zeynep

and Betül for always being very encouraging.

I am also grateful to Şiir Kılkış for proofreading this thesis and her invaluable

comments on it and to Erdal Dayak for his great helps.

I would like to thank my mother and father, and also my siblings for their patience

and their motivation. Last but not least, my very special thanks to my patient and

sensible husband Taylan whom made me smile even in my worse times, and my

sons, Ömer Görkem and Yiğit who had to grow up together with this PhD thesis.

They are the best things in my life… I had an invaluable degree by being their

mum…

iv

CONTENTS

page

ABSTRACT ..

i
ÖZET . ii
ACKNOWLEDGMENTS iii
CONTENTS. iv
LIST OF TABLES . vii
LIST OF FIGURES . ix
LIST OF SYMBOLS . xi

CHAPTER 1: INTRODUCTION
1.1. Introduction. 1
1.2. Motivation of the Thesis . 1
1.3. Statement of the Thesis . 4
1.4. Overview of the thesis . 5

CHAPTER 2: CUTTING AND PACKING PROBLEMS
2.1. Cutting and Packing Problems. .
2.2. Container Loading Problems .

6
12

2.3.Conclusion……………………………………………………………………... 15

CHAPTER 3: LITERATURE REVIEW ON CONTAINER LOADING
PROBLEMS
3.1. Literature on Container Loading Problems . 16
 3.1.1. Exact Approaches . ….. 20
 3.1.2. Heuristic Approaches. …... 23
 3.1.3. Meta-heuristic Approaches 28
3.2. Literature on Swarm Intelligence Techniques……………………………… 31
3.3. Conclusions. 34

CHAPTER 4: THE HEURISTIC FILLING PROCEDURE
4.1. Introduction . 36
4.2. Heuristic Filling Procedure . 36
 4.2.1. Determination of the layer dimensions . 37
 4.2.2. Filling the layer………………………………………………………… 37
4.3.Test Cases……………………………………………………………………… 42

v

CHAPTER 5: A BEES ALGORITHM FOR SOLVING CONTAINER
LOADING PROBLEMS
5.1. Introduction . 43
5.2. A Bees Algorithm for Container Loading. 43
 5.2.1. Representation of a solution and neighborhood search for the BA. 46
5.3. Computational Results for the hybrid-BA. 49
 5.3.1. Determination of the parameters of the hybrid-BA algorithm 53
5.4. Conclusion. . 56

CHAPTER 6: AN ANT COLONY ALGORITHMS SOLVING CONTAINER
LOADING PROBLEMS
6.1. Introduction. 57
6.2. Ant Colony Optimization . 57
 6.2.1 Behaviours of real ants. 57
 6.2.2. Simple ACO and Ant Colony System . 58

6.3. The hybrid-ACS-1 and hybrid-ACs-2 algorithms for solving container
 loading problems

62

 6.3.1. Determination of the parameters of the hybrid-ACS-1 and the hybrid-
 ACS-2 algorithms

65

6.4. Computational work. 71
6.5. Conclusion. 74

CHAPTER 7: CONTAINER LOADING SUPPORT SYSTEM
7.1. Introduction. 75
7.2. The Container Loading Support System. 76
7.3. The Graphical User Interface and the Simulation Program. 77
7.4. An Illustrative Example. 78
7.5. Conclusion. 82

CHAPTER 8: MULTI-OBJECTIVE CONTAINER LOADING PROBLEM
8.1. Introduction. 83
8.2.The Case Study. ……………………………………………………….. 84
8.3. Problem formulation . ………. 85
8.4. Simulated annealing (SA) algorithm. 85
8.5..Computational work.. ………………. 88
 8.5.1. Solution of container loading (CL) problems with single objective
 function ………………………………………………………………… 88
 8.5.2. Solution of container loading (CL) problems with multi-objective
 functions (through a real example)……………………………………. 92
 8.5.2.1. Goal Programming model……………………………………..
 8.5.2.2. Weighted-sum model .

 95
100

8.6. Conclusion. 102

CHAPTER 9: CONCLUSIONS
9.1. Present Study. 103
9.2. Observations on the Developed SI-based Algorithms. 104

vi

9.3. Observations on the proposed MOCL problem and Further Studies. 107

REFERENCES . 110

vii

LIST OF TABLES

Table 3.1 Reviewed works in the literature 18

Table 5.1 Data for a CL problem . . . 46

Table 5.2 Comparative results with test cases of LN – heuristic approaches . . . 50

Table 5.3 Comparative results with test cases of LN – meta-heuristic

approaches ..

 50

Table 5.4 Comparative results with the test cases of BR – heuristic approaches. 51

Table 5.5 Comparative results with the test cases of BR – meta-heuristic

approaches .

 51

Table 5.6 Levels of factors for the factorial design . 53

Table 5.7 Factorial design on hybrid-BA response (obtained from Minitab) . . . 54

Table 5.8 Analysis of the randomness in hybrid-BA over 10 runs 56

Table 6.1 The steps of the hybrid-ACS-1 algorithm . 63

Table 6.2 General ACO parameters . 66

Table 6.3 Levels of factors for the factorial design 66

Table 6.4 Factorial design on hybrid-ACS-1 response 67

Table 6.5 Levels of factors for the factorial design 68

Table 6.6 Factorial design on hybrid-ACS-2 response 69

Table.6.7 Comparative results with test cases of LN – heuristic approaches . . . 71

Table 6.8 Comparative results with test cases of LN – meta-heuristic

approaches .

72

Table 6.9 Comparative results with the test cases of BR – heuristic approaches 72

Table 6.10 Comparative results with the test cases of BR- meta-heuristic

approaches .

73

Table 7.1 Data about the user selected problem 78

Table 8.1 A pseudo-code of the proposed SA . 88

Table 8.2 Comparative results with the test cases of LN – heuristic approaches. 89

Table 8.3 Comparative results with the test cases of LN – meta-heuristic 90

viii

approaches .

Table 8.4 Comparative results with the test cases of BR – heuristic approaches. 91

Table 8.5 Comparative results with the test cases of BR– meta-heuristic

approaches …………………………………………………………………

91

Table 8.6 An order list including all of the required data for MO CL problem… 95

Table 8.7 Results obtained for the MOCL problem . . ………………………..

Table 8.8 Results obtained for the MOCL problem……………………………..

97

101

Table 9.1 Results obtained with the offered algorithm for the test cases of LN 105

Table 9.2 Results obtained with the offered algorithm for the test cases of BR… 106

ix

LIST OF FIGURES

Figure 1.1 Different types of containers (a) General purpose container (b)

Open-top container (c) Flat rack .

 3

Figure 2.1 Overview of CPP . 8

Figure 2.2 Basic problem types . 10

Figure 2.3 Intermediate problem types: output maximization 11

Figure 2.4 Intermediate problem types: input minimization…. 11

Figure 2.5 Six different rotation variants of a box . 13

Figure 4.1 The working principle of the recursive algorithm developed for the

two dimensional case.

39

Figure 4.2 Empty spaces “in front” and “above” of the LDB. 40

Figure 4.3 Empty space “beside” a packed box in the layer 40

Figure 4.4 The proposed heuristic filling approach . 41

Figure 5.1 Waggle dance of bees 44

Figure 5.2 Algorithm of the hybrid-BA 45

Figure 5.3 Bit string representation of a solution (only for a base-rotated box)… 47

Figure 5.4 The rotation of a box (only for a base-rotated box) 47

Figure 5.5 The use of “1-flip” operator 48

Figure 5.6 The operation of the defined operators . 49

Figure 5.7 Graphical representation of the obtained results for BR test cases. . . 52

Figure 5.8 Convergence graph of a problem from test case BR7 52

Figure 5.9 Main effects plots . 55

Figure 5.10 Interaction plots. 55

Figure 6.1 (a) Ants in a pheromone trail between nest and food (b) an obstacle

interrupts the trail (c) ants find two paths to go around the obstacle (d) a new

pheromone trail is formed along the shorter path .

58

Figure 6.2 The steps of the hybrid-ACS-2 algorithm . 65

Figure 6.3 Main effects plots . 67

Figure 6.4 Interaction plots . 68

x

Figure 6.5 Main effects plots . 70

Figure 6.6 Interaction plots . 70

Figure 6.7 Performance of the hybrid-ACS-2 algorithm for different problems . 73

Figure 6.8 Convergence graph of a problem from test case BR7. 74

Figure 7.1 The snapshot of the GUI . 76

Figure 7.2 Data Flow Diagram of the CLSS system . 77

Figure 7.3 The dialog window for the Problem Selection 79

Figure 7.4 The final packing pattern obtained for the problem with 120 boxes . . 80

Figure 7.5.The final packing pattern obtained for the problem with 120 boxes –

BA algorithm (scene from a different angle) ..

81

Figure 7.6. The final packing pattern obtained for the problem with 120 boxes –

ACS algorithm

81

Figure 8.1 Neighborhood solution generation using the flip operator (only for

base-rotated boxes)

86

Figure 8.2 Convergence graph for the hybrid-SA algorithm. 92

Figure 8.3 Classification of MOO methods. 93

Figure 8.4 Convergence graph for the first goal. 98

Figure 8.5 Convergence graph for the second goal. 98

Figure 8.6 Filled container (a) side view (b) top view 99

Figure 8.7 The Pareto curve for the solved problem. 101

xi

LIST OF SYMBOLS

3D - Three Dimensional

ACO – Ant Colony Optimization

BA – Bees Algorithm

BR – Bischoff and Ratcliff test cases

CL – Container Loading

CPP – Cutting and Packing Problems

DSS – Decision Support System

GA – Genetic Algorithm

LDB – Layer Determining Box

LN – Loh and Nee test cases

MOCL – Multiple Objective Container Loading

MOO - Multiple Objective Optimization

NP – Nondeterministic Polynomial-time

OR – Operations Research

PP – Packing Problem

SA – Simulated Annealing (Algorithm)

SI – Swarm Intelligence

SOO – Single Objective Optimization

TS – Tabu Search algorithm

1

CHAPTER 1

INTRODUCTION

1.1. Introduction

The globalization of the supply chains has significantly increased container shipment

all around the world. %90 of all cargo moves in containers and approximately 250

million are shipped annually (van de Voort et al., 2003). One of the critical parts of

the container shipment process is the loading phase. Packing a shipment into the

containers or onto the pallet is a complex process. It often takes several days to

allocate the pooled goods into the number of containers and then to pack the

allocated goods into the containers. Occasionally, workers must unload some

containers and then reload them in a different pattern to pack more goods in the

containers (Chien and Deng, 2002). Thereby, the need for more efficient algorithms

to ship and transport goods has become apparent. This study will make an attempt to

offer alternative solution algorithms to solve Container Loading (CL) problems (both

single objective and multi-objective) and a real-world case.

1.2. Motivation of the Thesis

With increasing global competition, organizations are forced to review their

processes and their overall systems. At this stage, organizations have realized that it

is no longer competitive to work alone but as a part of a certain network having the

resources beyond the reach of an organization. This search for competitiveness has

lead to a new structure called “supply chains” as well as its management.

The organizations that are linked together through the supply chain aim to supply

goods and services to fulfill the demands of the end-customers. This is achieved by

the material and information flow along the supply chain. An analogy to the flow of

2

water in a river is often used to describe organizations near the source (raw material

suppliers) as upstream, and those near the end customer (retailers) as downstream

(Harrison et al., 2002). Harrison et al. (2002) defined the supply chain management

as; the alignment of upstream and downstream capabilities of supply chain partners

to deliver superior value to the end customers at less cost to the supply chain as a

whole. In the literature, it is widely recognized that effective management of material

and information along the chain is vital for the performance of the whole supply

chain. Unless this is achieved, it is difficult to satisfy the customer demand on time.

This makes “logistics” a critical element for the supply chain management.

The word “logistics” was originally used for military applications but today covers

commercial activities as well (Wood et al., 2002). The Council of Logistics

Management (Wood et al., 2002) defines logistics as; the process of planning,

implementing and controlling the physical and information flows concerned with

materials and final goods from point of origin to point of usage. A detailed definition

of logistics can be given as the strategic management of the procurement, movement

and storage of materials, parts and finished product inventory and the related

information flows, through the organization and its marketing channel in such a way

that the current and the future profitability of the organization are maximized through

the cost-effective fulfillment of orders (Harrison et al., 2002).

Transportation is critical to logistical performance (Bowersox et al., 2002). The

objective is to transport goods from one place to another, on time in an economic

way. For organizations trying to decrease their operational costs, “cheap

transportation” is a practical alternative. To take this alternative as an opportunity,

goods should be transported from one place to another, on time in an economic way.

With the aim of transporting more goods/items with low cost, less energy and time,

especially in overseas logistics applications, goods should be packed optimally or at

least near optimally. This introduces the question of the effective use of containers.

Containers are large boxes that are used to transport goods from one destination to

another. Compared to conventional bulk, the use of containers has several

advantages, namely less product packaging, less damage of goods and higher

productivity (Agerschou et al., 1983). For transportation facilities, standard ISO

3

containers are generally preferred. ISO shipping containers are provided in two basic

sizes of length: 20ft (6.1 meters) also referred to as twenty-feet-equivalent-unit

(TEU) containers and 40ft (12.2 meters) containers expressed by 2 TEU (web1). The

overall (outside) width of the containers is a standard 2.438 meters and the heights

vary between 8′6″ (2.59m) height and 9′6″ (2.896m). The most widely used type of

container is the general-purpose (dry cargo) containers. General Purpose (GP)

containers (Figure 1.1.a) are abbreviated as 20′DC (Dry Container) or 40'DC. Some

special purpose containers such as open-top containers, flat racks etc. are also

available (Figure 1.1.b& 1.1.c).

Figure 1.1 Different types of containers (a) General purpose container (b) Open-top

container (c) Flat rack

Rising fuel cost now provide a strong incentive for container carriers to maximize

available container space, thereby minimizing the number of required trips across the

global container transportation system (Wang et al., 2008). The efficient loading of

containers, that is, the minimization of empty spaces inside of them, is not only an

economic requirement but also an ecological issue due to the adverse consequences

of increased traffic on environmental resources (Parreno et al., 2010). This study will

make an attempt to offer alternative solution algorithms to solve Container Loading

(CL) problems (both single objective and multi-objective) and a real-world case.

CL is an interesting and difficult problem to solve. The problem can be described as

follows: Given a set of small rectangular items and a rectangular container with

known dimensions, load the items in to the container in such a way that maximum

utilization of volume of the container is achieved.

4

The operations research literature classifies this problem as NP-hard (Pisinger,

2002). That is these problems are not solvable in polynomial time, which in turn

means that it is not possible to find an exact solution for large sized problems. In

general, only approximate solutions can be found for large sized problems. The use

of special-purpose heuristics and meta-heuristic algorithms can be a good to provide

good solutions for large sized problems.

1.3. Statement of the Thesis

In the first part of this thesis, two swarm intelligence based solution approaches

namely Ant Colony Optimization and Bees Algorithm are offered to solve the CL

problem. For the first part of the thesis, algorithms based on Swarm Intelligence (SI)

are utilized. These algorithms, which are inspired by the behaviors of swarm of

biological organisms, are preferred since they are previously applied to solve

difficult and complex real-world problems. The detailed examination of the literature

on the subject has revealed that approaches based on the application of SI techniques

to the CL problems are quite limited. Having this in mind, the ultimate goal of this

thesis is to offer some Swarm Intelligence (SI) based solution approaches to the CL

Problem.

Another considerable contribution of this thesis is the definition of a new problem

called multi-objective CL problem. The problem is mostly encountered in

transportation and wholesaling industry. The main goal is to load the items (boxes)

that would provide the highest total weight to the container in the best possible way.

These two objectives (maximization of weight and maximization of volume

utilization) are conflicting since the volume of a box is usually not proportional to its

weight. Using some multi-objective optimization techniques such as goal

programming and weighted-sum approach, the objectives are combined into a single

objective. A Simulated Annealing (SA) algorithm accompanied by a heuristic filling

procedure is then proposed to solve the model. The proposed algorithm has been

tested on a set of benchmark problems available in the literature and also on real-

world data provided by a distribution company.

5

1.4. Overview of the Thesis

This study includes eight chapters. Following this Introduction chapter, a detailed

discussion about Cutting and Packing problems which also embraces the CL

problems is presented in Chapter 2. In Chapter 3, the literature survey about the CL

problems and the SI based technique are discussed. The literature survey about the

CL problems is examined according to the type of the solution technique proposed:

heuristic approaches, meta-heuristic approaches and exact approaches. In Chapter 4,

the proposed heuristic filling procedure that is used together with all the proposed

algorithms is presented. The developed BA is presented in Chapter 5. In Chapter 6,

two algorithms based on ACO namely: hybrid–ACO-1 and hybrid-ACO-2 are

presented. The computational results for both algorithms are also supplied within this

chapter. In Chapter 7, the developed container loading support system is introduced

and its functions are explained with examples. A new problem – multi-objective CL

problem- is defined in Chapter 8. Finally, in Chapter 9 conclusions and future works

are presented.

6

CHAPTER 2

CUTTING AND PACKING PROBLEMS

2.1. Cutting and Packing problems

Cutting and Packing Problems (CPP) are a set of widely studied problems. In the

literature, they appear under various names such as cutting stock or trim-loss

problems, bin or strip packing problems, vehicle, pallet or container loading

problems, nesting problems, knapsack problems,...etc (Dyckhoff, 1990). In this

study, a packing problem (PP), namely Container Loading problem is considered.

PP is concerned with finding a good arrangement of multiple items in larger

containing regions (objects). The placement is described by a set of rules or

constraints. The objective of the process is to maximize the volume utilization and

hence, minimize the “wasted” area (Hopper and Turton, 1997).

These problems are encountered in many industries, with different industries

incorporating different constraints and objectives. The wood, glass and paper

industries are mainly concerned with the cutting of regular figures, whereas in the

shipbuilding, textile and leather industries irregular, arbitrary shaped items are

packed (Hopper and Turton, 2001).

Dyckhoff (1992) defines these problems as geometric - combinatorial problems.

CPP are geometric-based because within each large object, one or more small items

are arranged in such a way as to avoid overlapping and to fit into the object’s

geometric boundaries. They are also combinatorial-based since small items are to be

assigned to the large objects. In other words, each large object is assigned a given set

of small items and each item is assigned to at most one large object (Dyckhoff,

1992).

7

In his work “A typology for cutting and packing problems”, Dyckhoff presents

several criteria to classify packing problems. These are:

• Dimensionality – This is the most important issue that should be stated in the

problem definition. A problem can be stated as one- (1), two- (2), three- (3)

or more dimensional (N).

• Kind of Assignment - Two categories can be presented under this heading:

The assignment of all objects to a selection of items (B) or the assignment of

all items to a selection of object (V).

• Assortment of large objects – The use of one (O) or more objects is

mentioned under this heading. In case of using multi objects, these objects

can be defined as identical (I) or different (D) in dimensions.

• Assortment of small items – Four types can be defined regarding the

assortment of small items: few small items of different figures (F), many

small items with most of them having different figures (M), many small items

with relatively few different figures (R) and all small items with congruent

figures (C).

According to this typology Container Loading problem is classified as a combined

problem as 3/ V/ I or 3/ B/ O. An overview of CPP as summarized by Dyckhoff is

given in Figure 2.1.

Following this work, an improved typology of cutting and packing problems is

published by Wäscher et al. (2007), which is partially based on the Dyckhoff’s

typology. This typology presents some new categorization criteria that is different

from those of Dyckhoff.

8

Figure 2.1. Overview of CPP (Dyckhoff, 1992)

Wäscher et al. (2007) gives a common definition for cutting and packing problems

as:

Given are two sets of elements, namely

• A set of large objects (input, supply) and

• A set of small items (output, demand) which are defined exhaustively

in one, two, three or an even larger number (n) of geometric dimensions.

Select some or all small items, group them into one or more subsets and

assign each of the resulting subsets to one of the large objects such that the

geometric condition holds, i.e. the small items of each subset have to be

laid out on the corresponding large object where,

• All small items of the subset lies entirely within the large object,

• The small items do not overlap,

and a given (single-dimensional of multi-dimensional) objective function is to

be optimized.

Cutting & Packing
Problems

Packing or
Loading of
-Vehicles
-Pallets
-Containers…etc.

Abstract Dimensions

Weight dimension

Time dimension

e.g. Vehicle
Loading
Knapsack Problems

e.g. Assembly Line
Balancing
Multi – Processor
Scheduling

Financial dimensions e.g. Capital
Budgeting
Changing Coins

Other dimensions e.g. Memory
Allocation for
data storage

Spatial Dimensions

Cutting
material

Packing
space

Cutting
space

Packing
material duality

9

In the light of this definition, they distinguish five sub-problems:

• Selection problem regarding the large objects,

• Selection problem regarding the small items,

• Grouping problem regarding the selected small items,

• Allocation problems regarding the assignment of the small items to large

objects,

• Layout problem regarding the arrangement of the small items on each of the

selected large objects with respect to the geometric condition.

In 2007, Wäscher and colleagues modified criteria for the definition of the problem

types in the set of CPP. These are;

Dimensionality: one-, two-, three-, or more dimensional as previously defined by

Dyckhoff.

Kind of assignment: based on the Dyckhoff’s typology named as output (value)

maximization and input (value) minimization.

• output (value) maximization refers to the assignments of a set of small items

to a set of large objects where the set of large objects is not sufficient to

accommodate all items.

• input (value) minimization refers to the assignments of a set of small items to

a set of large objects where the set of large objects is sufficient to

accommodate all small items.

Assortment of small items: under this heading three cases are defined; identical

small items, a weakly heterogeneous assortment of small items and a strongly

assortment of small items.

10

Assortment of large objects: The use of one large object (all dimensions are fixed

or one or more variable dimensions) or several large objects (identical large objects,

weakly heterogeneous assortment, strongly heterogeneous assortment).

Shape of small items: Regular small items (rectangles, circles, boxes, cylinders,

balls, etc.) and irregular small items.

According to these criteria, Wäscher et al. (2007) developed some basic, intermediate

and refined problem types. Basic types of CPP are developed by taking into account

type of assignment and assortment of small items. These basic types are illustrated

in Figure 2.2.

Figure 2.2. Basic problem types (Wäscher et al., 2007)

Intermediate problem types are developed by adding the criteria assortment of large

objects to the basic problem types. Figure 2.3 and 2.4 presents these intermediate

problem types in terms of output maximization and input minimization.

Weakly
heterogeneous

Output
Maximization

Identical

CPP

Arbitrary Strongly
heterogeneous

Input
Minimization

Weakly
heterogeneous

Strongly
heterogeneous

Identical
Item

Packing
Problem

Placement
Problem

Knapsack
Problem

Open
Dimension
Problem

Cutting Stock
Problem

Bin Packing
Problem

11

identical
weakly

heterogeneous

strongly

heterogeneous

All

dimensions

fixed

one large

object

Identical Item
Packing Problem

IIPP

Single Large Object
Placement Problem

SLOPP

Single Knapsack
Problem

SKP

identical
 Multiple Identical

Large object
placement problem

MILOPP

Multiple Identical
Knapsack Problem

MIKP

heterogeneous

 Multiple
Heterogenous
Large Object

Placement Problem

MHLOPP

Multiple
Heterogenous

Problem

MHKP

Figure 2.3. Intermedite problem types: output maximization (Wäscher et al., 2007)

weakly heterogeneous strongly heterogeneous

All

dimensions

fixed

identical
Single Stock Size Cutting Stock

Problem

SSSCSP

Single Bin Size Bin Packing
Problem

SBSBPP

weakly

heterogeneous

Multiple Stock Size Cutting
Stock Problem

MSSCSP

Multiple Bin Size Bin
Packing Problem

MBSBPP

strongly

heterogeneous

Residual Cutting Stock
Problem

RCSP

Residual Bin Packing
Problem

RBPP

One large object variable

dimension (s)

Open Dimension Problem

ODP

Figure 2.4. Intermediate problem types: input minimization (Wäscher et al., 2007)

According to this typology, Container Loading Problem (also called Single Container

Loading) is a Placement Problem according to the Kind of Assignment and named

Assortment of
the small items

Characteristics of
the large objects

Assortment of
the small items

Characteristics of
the large objects

12

Single Large Object Placement Problem (SLOPP). Wäscher et al. (2007) states that

this problem requires loading a fairly large, weakly heterogeneous consignment of

boxes into a given container such that the volume or value of the packed boxes is

maximized, or equivalently, the unused space of the container or the value of the

unpacked boxes is minimized.

2.2. Container Loading Problems

CL and related problems such as the ones mentioned above have recently received

considerable attention in the literature. There are several reasons of this popularity as

reported by (Ertek and Kılıç, 2006). First of all, the CL problem is a NP-hard

problem (Pisinger, 2002) and it has been recognized that it has a wide range of

industrial applications. It is also possible to define new variants of CL problems by

using different types of objective functions and the constraints as well. Therefore,

there are many approaches (both heuristic and meta-heuristic based) proposed to

solve CL problems, which are a sub-problem of Cutting and Packing problems.

CL problems can be defined as follows;

Given a set of n items with width (lw), depth (id) and height (ih) and a single

container with known dimensions),,(HDW where Wwl ≤ , Hhi ≤ and Ddi ≤ , the

problem is to pack items into the container without overlapping while maximizing

the utilization rate of the container. The utilization of the container is calculated in

terms of the volumes of the allocated boxes. Suppose that;

U : Utilization of the container

pV : Total volume of the allocated boxes into the container

cV : Volume of the container where cV W D H= × ×

100 p

c

V
U

V
= × (2.1)

13

The problem is solved under the following assumptions:

(1) Items are rectangular boxes defined with known dimensions),,(iil hdw

(2) Boxes are placed completely in the container

(3) Overlapping between the boxes is avoided

(4) Items can be rotated in any dimension if there is not a restriction defined (see

Figure 2.5).

Figure 2.5. Six different rotation variants of a box

In addition to the above mentioned assumptions further constraints can be

considered. Bischoff and Ratcliff (1995) discussed some factors that can be

considered when solving the problem.

14

Orientation Constraints: Some items/boxes can have a transportation instruction

such as “this way up”. Alternatively, some boxes can be placed in any of the six

possible dimensions.

Load bearing strength of items: Another transportation instruction that can be

encountered is “stack no more than x items high”.

Handling Constraints: The size or weight of an item and the loading equipment used

may to some extent dictate the positioning within a container. For example, it may be

necessary to put large items on the container floor or to restrict heavy ones to

positions below a certain height. It may also be desirable from the viewpoint of

easy/safe materials handling to place certain items near the door of the container.

Load Stability: The movement of the load should be avoided during the

transportation if the cargo is of an easily damaged type. Straps, airbags and other

devices can be used to prevent cargo movement.

Grouping of items: Items belonging to the same group for example, by a common

recipient or the same type can be positioned in close proximity.

Multi-Drop situation: If a container is carrying cargo for a number of different

destinations, items in the same consignment should be close together in the order of

distribution to avoid unloading and reloading of a large part of the cargo several

times.

Separation of items within a container: If the cargo compromises items that may

adversely affect some of the other goods (both foodstuffs and perfumery articles),

then the loading arrangement takes account of this.

Complete shipment of certain items: If the cargo is composed of sub-sets that may

constitute functional entities (components for assembly into a piece of machinery) or

may need to be treated as a single entity for administrative reasons, and if any part of

such a sub-set is packed, then all the other items belonging to it are also to be

included in the shipment.

Shipment priorities: If the shipment of some items is more important than all of the

others, then this rating can represent a shipping priority such that no item in a lower

priority class is shipped if this causes items with higher ratings to be left behind.

15

Complexity of the loading arrangement: Generally complex packing patterns results

in a greater materials handling effort.

Container weight limit: If the total weight of the cargo is fairly high, the weight limit

of a container may represent a more strict constraint than the loading space of the

container.

Weight distribution within a container: From the transportation and handling point

of view, it is desirable that its centre of gravity is close to the geometrical mid-point

of the container floor. If the weight is distributed very unevenly, certain handling

operations may be impossible to be carried out. In cases where a container is

transported by road at some stage of its journey, the implications of its internal

weight distribution for the axle loading of the vehicle can be an important

consideration.

2.3. Conclusion

Lately, the CL problem is classified as the Single Large Object Placement Problem

(SLOPP) in terms of the Kind of Assignment of the small items. Single Large Object

Placement problems are defined under the type Output Maximization.

Single CL Problem is an example of the three-dimensional, rectangular SLOPP

(Wäscher et al., 2007). According to Wäscher et al. (2007) published research

concentrates on five problem types of CPP which are ODP (102 papers, 23%),

SBSBPP (89 papers, 20%), SKP (86 papers, 19%), SLOPP (56 papers, 13%) and the

SSSCSP (38 papers, 9%). Papers on these five problem types account for 371 out of

445 publications (83%). Among these papers focused on SLOPP, 19 out of 56 (34%)

are concentrated on three-dimensional SLOPP problems.

In this study, the problem that is dealt is the Single CL problem (so called Container

Loading Problem in the literature). In the first part of the study, the classical problem

is handled without any additional constraints; however, in the second part a multi-

objective CL problem is dealt.

16

CHAPTER 3

LITERATURE REVIEW ON CONTAINER LOADING PROBLEMS

3.1. Literature on Container Loading Problems

Many approaches have been proposed to solve CL problems along with many

practical constraints and different objective functions. Most of the published work on

the subject utilizes different types of data structures such as graphs or trees

(Morabito and Arenales, 1994; Eley, 2002, Lim et al., 2005), heuristics algorithms

(George and Robinson, 1980; Bischoff and Marriott, 1990; Gehring et al., 1990;

Haessler and Talbot, 1990; Ngoi et al., 1994; Pisinger, 2002; Bischoff, 2003; Moura

and Oliveira, 2005), meta-heuristic algorithms, such as Genetic Algorithms (GAs)

(Gehring and Bortfeldt, 1997; Bortfeldt and Gehring, 2001;Yeung and Tang, 2005),

Simulated Annealing (SA) (Faina, 2000, Mack et al., 2004) and Tabu Search (TS)

(Bortfeldt and Gehring,1998) to solve different variants of the problem. Also a few

parallel approaches, including a parallel GA (Gehring and Bortfeldt, 2002), a parallel

TS (Bortfeldt et al., 2002, Mack et al., 2004), a parallel SA (Mack et al., 2004) and a

parallel hybrid local search meta-heuristic (Mack et al., 2004) are available.

CL problems are NP-hard problems (Pisinger, 2002). Due to this fact, there are few

exact approaches (Chen et al., 1995; Li et al., 2003). Most of the published work on

the subject utilizes different types of data structures, such as graphs and trees,

heuristics algorithms and meta-heuristic algorithms, such as Genetic Algorithms

(GAs), Simulated Annealing (SA) and Tabu Search (TS) to solve different variants

of the problem. An overview of solution approaches for the CL problems is

presented in Table 3.1.

17

The publications on CL problems are examined according to specific criteria such as:

• objective(s),

• constraint(s): No Constraints (NC), Constraints included (CI)

• number of containers (bins) that is used in the solution: Single (S), Multiple

(M)

• type of the boxes that are allocated: Homogeneous (H), Weak

Heterogeneous (WHe), Strong Heterogeneous (SHe) and

• the solution approach that is employed.

Following Table 3.1., the published literature on CL problems is examined.

18

Table 3.1. Reviewed works in the literature

Authors (Year) Type of boxes No of
bin(s)

Objective (s) Constraint Solution
approach

H WHe SHe S M NC CI

George, Robinson (1980) X X Maximize the box
volume accommodated X

Heuristic
Algorithm

Bischoff, Marriott (1990) X X X X
Minimize the container
length needed to
accommodate the box

X
Heuristic
Algorithms

Gehring et al. (1990) X X Minimize inevitable
space X

Heuristic
Algorithm

Haessler, Talbot (1990) X X Maximize the box
volume accommodated X

Heuristic
Algorithm

Morabito, Arenales (1994) X X X Maximize the box
volume accommodated X

AND/OR Graph
approach

Ngoi et al.(1994) X X
Maximize the usage of
space for a fully
packed container

X
Heuristic
Algorithm

Chen et al. (1995) X X

Minimize unused space
by selecting a number
of containers to pack
all the boxes

Zero—One
Mixed Integer
Programming

Gehring, Bortfeldt (1997) X X X Maximize the box
volume accommodated X

Genetic
Algorithm

Chien, Wu (1998) - - - X Minimize waste of
container space X

Dynamic
programming
based recursive
algorithm

Faina (2000) X X X
Minimize the used
container height used
to pack the box

X

Global
optimization
algorithm based
on Simulated
Annealing

Martello et al. (2000) X X X X
Packing all items into
the minimum number
of bins

X Branch and bound
algorithm

Terno, et al. (2000) X X X X

To find the minimum
number of pallets to
load the whole
consignment

Heuristic with
branch and bound
framework

Bortfeldt, Gehring (2001) X X Maximize stowed box
volume X Hybrid Genetic

Algorithm

Lodi et al. (2002) X X X
Minimize the number
of bins that contains all
the items

X
Heuristics and
Hybrid Tabu
Search Algorithm

constraints dealt: No Constraints (NC), Constraints included (CI)
number of containers: Single Container (S), Multiple Containers (M)
type of the boxes: Homogeneous (H), Weak Heterogeneous (WHe), Strong Heterogeneous (SHe)

19

Table 3.1. Reviewed works in the literature (continues)

Authors (Year) Type of boxes No of

bin(s)
Objective (s) Constraint Solution approach

H WHe SHe S M NC CI

Eley (2002) X X X X

Multiple objectives
(treated singularly)
- volume utilization
- load stability
- weight distribution

X Tree search

Pisinger (2002) X X X X Maximize the box
volume accommodated X Heuristic Algorithm

Gehring, Bortfeldt (2002) X X Maximize the box
volume accommodated X X Parallel Genetic

Algorithm

Bortfeldt et al. (2003) X X Maximize stowed box
volume X

Parallel Tabu
Search
Algorithm

Li et al. (2003) X X
Packing box into a
rectangular container
having minimal space

X
Zero—One Mixed
Integer
Programming

Bischoff (2004) X X Maximize the box
volume accommodated X Heuristic Algorithm

Mack et al. (2004) X X Maximize the stowed
box volume X Parallel Hybrid

Local Search

Moura, Oliveira (2005) X X X Minimize wasted space
in the container X GRASP Algorithm

Lim et al. (2005) X X X X Maximize the box
volume accommodated X Tree search

heuristic

Yeung, Tang (2005) X X X
Minimize the used
container height used to
pack the box

 X Hybrid Genetic
Algorithm

Nepomuceno et al. (2007) X X X
The maximum
volume of the loaded
boxes

X
Integer Linear
Programming and
Genetic Algorithm

Liang et al. (2007) X X

Determine the
arrangement of objects
with the best utilization
ratio in the container

X

A hybrid meta-
heuristic based on
Ant Colony
optimization and
Genetic Algorithms

Wang, Li (2007) X X

Maximizing the
number of boxes that
can be loaded into the
single container.

X Heuristic
Algorithms

Wang et al. (2008) X X

Determine a loading
scheme that will
maximize
the space usage of the
container

X Tree based
Heuristic Algorithm

Huang, He (2009) X X X Maximize the volume
of the packed items X Heuristic Algorithm

Parreno et al. (2010) X X X Maximization of space
usage X

Heuristics, Variable
Neighborhood
Search

Kang et al. (2010) X X X X

Single Container
Problem: maximizing
the use of container’s
volume
Multiple Container:
minimizing the number
of containers

X Heuristic Algorithm

constraints dealt: No Constraints (NC), Constraints included (CI)
number of containers: Single Container (S), Multiple Containers (M)
type of the boxes: Homogeneous (H), Weak Heterogeneous (WHe), Strong Heterogeneous (SHe)

20

3.1.1. Exact Approaches

As mentioned before, the studies on exact solution approaches are very limited. The

first analytical work on CL problems is presented by Chen et al. (1995). They

developed a zero – one mixed integer programming model for the general three

dimensional CL problems. This model is presented here in order to demonstrate the

complexity of the problem

If x, y, and z is denoted as the width, length, and height of the container (x>0, y>0,

z>0), then the packing optimization problem is stated as follows (Chen et al., 1995):

Minimize xyz

subject to;

(1) All of n boxes are non-overlapping.

(2) All of n boxes are within the range of x, y, and z.

(3) xm ≤ x ≤ xM, ym ≤ y ≤yM, and zm ≤ z ≤ zM

(x, y, and z are integers and xm, ym, zm, xM, yM, and zM are constants).

The related terminologies notations used in the packing model are;

(pi, qi, ri) : Parameters indicating the length, width, and height of carton i.

(x, y, z) : Continuous variables indicating the length, width, and height of the

container.

(xi, yi, zi) : Continuous variables (for location) indicating the coordinates of the front-

left-bottom corner of carton i.

(lxi, lyi, lzi): Binary variables indicating whether the length of carton i is parallel to the

X-, Y-, or Z-axis. For example, the value of lxi is equal to 1 if the length of carton i is

parallel to the X-axis; otherwise, it is equal to 0. It is clear that lxi+ lyi+ lzi =1.

(wxi, wyi, wzi) : Binary variables indicating whether the width of carton i is parallel to

the X-, Y-, or Z-axis. For example, the value of wxi is equal to 1 if the width of carton

i is parallel to the X-axis; otherwise, it is equal to 0. It is clear that wxi+ wyi+ wzi =1.

21

(hxi, hyi, hzi) : Binary variables indicating whether the height of carton i is parallel to

the X-, Y-, or Z-axis. For example, the value of hxi is equal to 1 if the height of carton

i is parallel to the X-axis; otherwise, it is equal to 0. It is clear that hxi+ hyi+ hzi =1.

For a pair of cartons (i,k) where i<k, there is a set of 0–1 vectors (aik, bik, cik, dik, eik,

fik) defined as;

aik = 1 if carton i is to the left of carton k, otherwise aik=0.

bik = 1 if carton i is to the right of carton k, otherwise bik=0.

cik = 1 if carton i is behind carton k, otherwise cik=0.

dik = 1 if carton i is in front of carton k, otherwise dik=0.

eik = 1 if carton i is below carton k, otherwise eik=0.

fik = 1 if carton i is above carton k, otherwise fik=0.

The front-left-bottom corner of the container is fixed at the origin. The packing

problem can then be formulated as follows (Chen et al., 1995):

Minimize xyz (3.1)

subject to;

xi + pi lxi + qiwxi + rihxi ≤ xk + (1 - aik)M for all i, k, i<k (3.2)

xk + pklxk + qkwxk + rkhxk ≤ xi + (1 - bik)M for all i, k, i<k (3.3)

yi + pi lyi + qiwyi + rihyi ≤ yk + (1 - cik)M for all i, k, i<k (3.4)

yk + pklyk + qkwyk + rkhyk ≤ yi + (1 - dik)M for all i, k, i<k (3.5)

zi + pi lzi + qiwzi + rihzi ≤ zk + (1 - eik)M for all i, k, i<k (3.6)

zk + pklzk + qkwzk + rkhzk ≤ zi + (1 - fik)M for all i, k, i<k (3.7)

aik + bik + cik + dik + eik + fik ≥ 1 for all i, k, i<k (3.8)

xi + pilxi + qiwxi + rihxi ≤ x for all i, k, i<k (3.9)

22

yi + pilyi + qiwyi + rihyi ≤ y for all i, k, i<k (3.10)

zi + pi lzi + qiwzi + rihz i≤ z for all i, k, i<k (3.11)

lxi + lyi + lzi = 1 for all i (3.12)

wxi + wyi+ wzi = 1 for all i (3.13)

hxi+ hyi + hzi = 1 for all i (3.14)

lxi + wxi + hxi = 1 for all i (3.15)

lyi + hyi + wyi = 1 for all i (3.16)

lzi + wzi + hzi = 1 for all i (3.17)

where lxi, lyi, lzi, wxi, wyi, wzi, hxi, hyi, hzi, aik, bik, cik, dik, eik and fik are 0–1 variables,

M = max{ xM, yM, zM }, xi, yi, zi ≥ 0, 0 < xm ≤ x ≤ xM, 0 < ym ≤ y ≤ yM, 0 < zm ≤ z ≤zM , x,

y, and z are integers, and xm, ym, zm, xM, yM, and zM are constants. The objective of this

model is to minimize the volume of the container. Constraints (3.2)–(3.8) are non-

overlapping conditions used to ensure that none of these n boxes overlap each other.

Constraints (3.9)–(3.11) guarantee that all boxes are within the enveloping container.

Constraints (3.12)–(3.17) describe the allocation restrictions among logic variables.

For instance, constraint (3.12) implies that the length of carton i is parallel to one of

the axes. Constraint (3.15) implies that only one of length, width and height of carton

i is parallel to X-axis.

The developed model takes into account the issues of carton orientations,

overlapping of cartons, multiple carton sizes and multiple container sizes. They also

extended the model for some special container loading problems. Although the

model reaches an optimum solution, it takes fifteen minutes to solve a small scale

problem in which the objective is to allocate six non-identical boxes to three non-

identical containers. Unfortunately, using this model for the real-world problems is

not practical since the number of variables increase greatly as the number of boxes

increase.

23

Martello et al. (2000) proposed an exact branch and bound method for the 3D BPP.

The algorithm iteratively solves sub problems which have to fill a single bin. For this

purpose, a procedure called main branching tree assigns items to the bin and a

branch and bound algorithm called onebin checks whether those items can fit in a

single bin. If the items can fit in a single bin, the algorithm tries to obtain the best

filling. The computational work that is presented shows that all the problems up to 30

items and %84 of problems up to 50 items are solved to optimality. However, the

performance of the algorithm decline as the number of items that should be located

into a single bin increases.

The later study of Li et al. (2003) extended the zero – one mixed integer

programming model of Chen et al. (1995) by reducing the number of variables in the

mathematical model. The original model proposed by Chen et al. (1995) uses

nnn 9)1(3 +− 0-1 variables where as the reformulated model uses nnn 9)1(
2
3

+− 0-

1 variables. In spite of this improvement in the model, it is not clear how many boxes

can be allocated to a container using this model within a reasonable amount of time.

3.1.2. Heuristic Approaches

Most of the approaches proposed so far are heuristic algorithms. The most common

heuristic approaches can be classified as;

 Wall building algorithms (utilizing layers),

 Stack building algorithms,

 Guillotine cutting algorithms and

 Cuboid arrangement algorithms (Pisinger, 2002).

One of the earliest publications on CL was published by George and Robinson

(1980). They proposed a wall building algorithm. Their heuristics packing algorithm

pack a set of non- identical boxes into a container where the total volume of boxes is

little less than the volume of the container. The proposed algorithm fills the container

by building layers across the container width. The depth of each layer is determined

by the box that has the highest rank Layers are produced from boxes of the same

24

type. The empty spaces that are occurred in layers and in between the layers are

filled with the remaining items. Empty spaces in between layers are combined and

filled with an unused box. However, later work indicated that this algorithm does not

produce very efficient patterns (Bischoff and Ratcliff, 1995).

Bischoff and Marriott (1990) developed fourteen heuristic algorithms by combining

six ranking rules and three filling methods based on George and Robinson’s and

Bischoff and Dowsland’s approach. The developed algorithms (namely B1 and B2)

have two main differences from the George and Robinson’s approach. Each layer is

built from a single type of box and each layer is filled through a two dimensional

packing procedure. The depth of each layer is determined by a heuristic approach.

Each dimension of a box in turn is accepted as a potential layer depth. With this

depth fixed, the number of rectangles that fills this layer is calculated. If a full layer

cannot be formed with the number of boxes that should be loaded, this depth is

unsuitable. The algorithm checks the other alternatives. If more than one possible

layer depth occurs (a complete layer can be formed with this dimension), then a

choice needs to be done. Either the dimension that yields the maximum percentage

fill of the layer (B1) or the dimension that leaves the least number of items (B2) can

be selected. The comparison of fourteen heuristics suggests that the performance of

such heuristics is problem dependent. That is, each algorithm performs different for

each set of problems.

The approach proposed by Haessler and Talbot (1990) is based on the idea of

forming stacks from boxes. Their purpose is to arrange order quantities and form a

loading plan for ordered products. For this purpose, they first estimate the number of

stacks that can be loaded into a vehicle. Then, they form the stacks with the suitable

boxes (low density products). Finally, they place these stacks across the container.

Later, Gehring et al. (1990) developed a heuristic algorithm utilizing the wall

building philosophy of George and Robinson’s approach and Haessler and Talbot’s

(1990) approach. Similar to George and Robinson’s approach, the container is filled

by building layers across the container width. The depth of each layer is decided by

the layer determining box. Alternative loading patterns are obtained by chancing the

dimensions of the layer determining box or changing the layer determining box.

25

Empty spaces in each layer are filled by the suitable box having the highest volume.

Different from the George and Robinson’s approach, empty spaces in between layers

cannot be combined. The algorithm produces alternative loading plans that can be

selected by the decision-maker.

Morabito and Arenales (1994) proposed a guillotine cutting algorithm which uses a

slicing tree. The algorithm slices the container into smaller parts using guillotine

cuts. Thus, the initial node of the tree corresponds to the container and the leaf nodes

correspond to the boxes. They argued that solving the problem by stacks was better

than solving it by layers but their algorithm produced better solutions than these two.

The paper presented by Ngoi et al. (1994) utilizes spatial representation techniques to

solve the 3D container loading problem. Their algorithm determines the empty

spaces and compares the volume of unpacked boxes within these spaces. The box

that gives the least amount of leftover space is selected. Then the packed boxes are

updated into the spatial representation system. (the approach uses some ranks to

determine the best suitable box).

Chien and Wu (1998) proposed a (dynamic programming based) computational

procedure for the 3D container loading problem. The procedure reduces the problem

to two dimensional, and one dimensional case, respectively. For this purpose, they

first cut the container volume into a layer along length, width and height. Then they

cut each of the layers into horizontal and vertical strips. The best solution is one of

the three different cutting patterns. However, their work is completely theoretical.

They did not present any computational work to evaluate the performance of the

proposed approach.

Terno et al. (2000) developed a branch and bound based heuristics for the multi

pallet loading problem. They utilized layers to pack the cargo but they used vertical

layers which does not seem very practical for container loading. First, they

developed a splitting procedure to partition the whole cargo into k pallets. Afterwards

they used some loading strategies to load the pallets. These are G4 heuristic to load

identical pieces, M4 heuristic to load pieces with same heights or height combination

(at most 4 pieces) or M4 and M8 to load the rest of the items. The results presented

26

in the study reveals that the performance of this approach outperforms some

previously offered CL algorithms by Ngoi et al. (1994) and Gehring et al. (1997).

Although offered for multi-pallet loading problem, the authors argued that their

algorithm is also suitable for the CL problems.

Eley (2002) used a different filling approach to deal with the single and multiple

container loading problems under stability and weight distribution constraints. Eley

neither used layers nor towers but used homogeneous blocks (similar to towers)

made up of identical items. His approach is based on a greedy heuristic to form the

blocks and a tree search procedure to improve the solution. The results of the

benchmark problems indicate that the algorithm can compete with CBGAT and

CBGAS but remains poor compared to TS approach of Bortfeldt and Gehring. He

also proposed a simple methodology in order to obtain an even weight distribution

within the container. First the container is filled with nonstraddling walls across the

width of the container. Then an even weight distribution is obtained by chancing the

places of the walls along the length of the container.

Pisinger (2002) proposed a heuristic algorithm based on wall building approach.

First, he formed layers and strips in each layer. He determined the layer depth and

strip width using a tree search algorithm. Then, he filled each strip using a knapsack

algorithm. He also searched the effects of different ranking rules for the selection of

layer depths and strip widths. He observed that a compromise between the largest

box dimension and the most frequent dimension leads to a high solution quality. He

pointed out that the filling ratio of his algorithm is about %95 which is high

compared to Gehring, Bortfeldt (1997) (%87.7), Morabito and Arenales (1994)

(around %95).

An algorithm based on greedy randomized search procedure (GRASP) is presented

by Moura and Oliveira (2005). The newly proposed algorithm; first builds a solution

using the improved version of the George and Robinson’s heuristic which is based on

wall building algorithm, then the solution is improved with a local-search algorithm.

More, the authors tackle the cargo stability issues in the algorithm as a constraint in

the construction phase of the algorithm. They obtained an average of 86.74% for the

test problems.

27

Lim et al. (2005) used a different approach to deal with the container loading

problems. They developed a basic heuristic and two augmenting heuristics based on

the tree search. The basic heuristic packs a box into the container. Then, the

generated empty spaces as a result of this packing are accepted as the root of a tree

and each are packed with the suitable boxes.

Wang, Li (2007) proposed two heuristic approaches to pack homogeneous boxes into

a single container. Both algorithms are based on layers on the faces of the container.

In the first approach, layers are built on the selected layer face whereas in the second

approach the algorithm selects the layer face dynamically according to the rameining

container space as a result of the previously filled layer. Boxes are filled to the layers

by a block-based 2D packing procedure.

Wang et al. (2008) used a tertiary-tree model for weakly heterogeneous CL

problems. First, they placed block of homogeneous boxes into the container.

Afterwards, they applied a dynamic space decomposition method to the remaining

container space. To reach a high ratio, they used an optimal-fitting sequencing and an

inner-right corner occupying action.

Huang and He (2009) proposed a heuristic approach in which the key issue is to pack

an item into a corner or even a cave in the container such that the item is packed as

compactly and closely to the other items as possible. Tested on some of the test cases

from the literature, the proposed heuristics performs quiet well compared to the other

approaches in the literature.

Recently, Parreno and colleagues (2010) proposed a new heuristic algorithm based

on variable neighborhood search. The heuristic uses several new neighborhoods

based on the elimination of layers, insertion of columns or boxes and a stronger

move based on emptying a region of the container. The experiments with the test

cases showed that the VNS algorithm competes favorably with the best performing

algorithms. They also dealt with cargo stability aspects and compared their algorithm

with some works dealing with cargo stability such as Eley (2002), Moura and

Oliviera (2005)…etc.

28

A new block strategy is proposed both the Single Container and the Multiple

Container Loading Problem by Kang et al. (2010). They used blocks made up of

homogeneous boxes to fill the container. Using these blocks first the container is

build recursively until all the boxes are stowed or no empty space is left behind. By

replacing the previously placed blocks with the alternative blocks they generated

alternative packing patterns and compared these patterns with each other to find the

best packing patterns. The performance of this strategy is quite high even compared

to the algorithm offered by Parreno and colleagues (2010).

3.1.3. Meta-heuristic Approaches

Gehring and Bortfeldt (1997) presented a Genetic Algorithm (GA) for the 3D

container loading problem (CBGAT) in which a set of constraints related with

weight and stability aspects are taken into account. The algorithm fills the container

in two steps. First, a set of stable box towers is generated by a greedy algorithm.

Then the container floor is covered by this box towers using GA. They suggested that

this algorithm achieves high container utilization for both weak and strong

heterogeneous problems.

Faina (2000) introduced a geometric model which reduces the general 3D packing

problem to a finite enumeration scheme. He developed a Simulated Annealing based

algorithm that uses the method of zones. Different from the previous algorithms, the

proposed algorithm neither uses a ranking rule nor a packing strategy, such as wall

building, stack building, etc. In this method each box is defined as zones. The

algorithm starts packing by placing the first box to the origin. Then the second box

moves in the direction of decreasing z dimension, than in the direction of decreasing

x dimension and finally in the direction of decreasing y dimension, until it touches

the border of the zone of the first box. After obtaining an initial solution in this

manner, the algorithm performs a small perturbation on this initial solution and

constructs a new solution. The algorithm provides high quality results up to 32

boxes, but the solution quality gets worse as the number of boxes increases.

In 2001, Bortfeldt and Gehring proposed another GA (named CBGAS) for the same

problem but this time utilized layers to fill the container. Similar to Gehring et al’s

29

(1990) approach, each solution is composed of non-overlapping vertical layers along

the container. Using GA and problem-specific GA operators, the best sequence of

each of the formed layer is determined. However, the results of the benchmark

problems does not indicate a slight performance difference between the two GA

developed by Bortfeldt and Gehring. The presented algorithm (CBGAS) seems more

suitable for the strong heterogeneous problems. This finding supports the idea that

the quality of heuristic algorithms for 3D container loading problems is usually

problem dependent.

Gehring and Bortfeldt (2002) offered the parallel version of the GA which was

published previously in 1998 by the same authors. Since the relevant article is

written in German, it is not possible to discuss the details of this algorithm. Different

designs for the parallelization were offered and one of them was chosen. With the

parallelized algorithm an improvement of 0.7% is obtained compared to the original

algorithm.

Lodi et al. (2002) proposed a two phased constructive heuristic for the 3D Bin

Packing Problems (3D BPP). 3D BPP have relevant practical interest in industrial

applications such as, e.g., cutting foam rubber in arm-chair production, container and

pallet loading and packing design (Lodi et al., 2002). Therefore, this study is also

reviewed here. The proposed two-phased heuristic packs the items by layers. The

layers are filled either by items which are sorted in non-increasing height (Phase 1)

or by items which are sorted by non-increasing area (Phase 2). One important point

is that, Phase 2 use the layers produced by Phase 1. Two solutions are obtained as a

result of the two phases. To obtain both solutions, produced layers are combined into

finite bins using the 1D BPP algorithm. Finally, the better of two solutions is chosen.

Later, this constructive heuristic called HA is embedded into the TS algorithm. When

compared to H1 and H2 heuristics and exact algorithm BB of Martello et al. (2000)

and constructive heuristic HA, TS with HA produce better solutions. When

compared to GLS algorithm by Fareo et al.(), for some cases TS with HA performs

better and for some cases GLS performs better.

Bortfeldt et al. (2003) used Tabu Search (TS) algorithm to solve the weakly

heterogeneous 3D container loading problem. They load the container with what they

30

called local arrangements, which are predefined box arrangements. They mainly

investigated the effect of parallel computing on solution quality. For this purpose,

they programmed a modular algorithm with two TS algorithms, one of which is a

sequential one and the other being a parallel one.

Mack et al. (2004) proposed a hybrid meta-heuristic for the CL problem which

combines a SA algorithm with a TS algorithm. The SA algorithm has been

transformed into a hybrid meta-heuristic by post-proccesing the final solution

obtained from SA with TS. The authors had also offered the parallel versions of all

these algorithms. When the offered SA and TS algorithms are compared it is found

out that SA algorithm yields better solutions. However, the average computational

time of SA increases significantly compared to TS. The results revealed that

parallelization and hybridization gives the best solution quality. With a 93.78%

filling ratio (for Bischoff and Ratcliff cases which will be introduced later) their

results dominated the results of the other authors in the literature.

Yeung and Tang (2005) hybridized the GA with a new heuristic filling strategy that

is able to produce stable solutions. The heuristic filling algorithm packs a sequence

of boxes using vertical layers. These layers can be regular or irregular in shape.

Using GA they obtained the best placement sequence.

Nepomuceno et al. (2007) proposed a hybrid approach based on Integer Linear

Programming and Genetic Algorithms. The hybrid approach has two components;

Generator of Reduced Instances and the Decoder of Reduced Instances. The first

component is in charge of producing reduced problem instances of the problem while

the second component is responsible to interpret and solve any generated problem

instances coming out of the first component. The optimal solution is achieved with

solving the sub problems of the original problem in an iterative manner.

Lately, Liang et al. (2007) proposed a hybrid meta-heuristic algorithm based on Ant

Colony Optimization and Genetic Algorithms. This study is probably one of the few

approaches using Ant Colony Optimization for CL problems. In the first phase of the

method, tower sets made up of objects are constructed with the pheromone updating

structure of the ant colony optimization algorithms. Following this construction

31

phase, towers are assigned to the container’s bottom plane with Genetic Algorithm.

The utilization rate obtained with the method was satisfactory however it was not better than

results obtained by Mack et al. (2004).

3.2. Literature on Swarm Intelligence Techniques

SI as a term was first used in 1988 by Gerardo Beni (Beni, 1988) in the context of

cellular robotic systems. As Bonabeau (1999) stated, SI describes any attempt to

design algorithms or distributed problem-solving devices inspired from the collective

behavior of social insect colonies and other animal societies. SI indicates a recent

computational and behavioral metaphor for solving distributed problems that

originally took inspiration from the biological examples provided by the social

insects and by swarming, flocking and herding behaviors in vertebrates (Zhao et al.,

2006).

Social insects have lived on Earth for millions of years, building nests and more

complex dwellings, organizing production and procuring food (Teodorovic, 2003).

SI algorithms draw inspiration from the problem-solving ability of social insects that

live in colonies, such as ants, bees, wasps, termites. These insects interact with each

other in various ways including bee dancing for food foraging, ants laying

pheromone to the path, etc. This kind of communication systems between individual

insects shows the connection between ‘individual insect behaviour’ and ‘collective

intelligence’ of social insect colonies (Teodorovic, 2003; Bonabeau, 1999). Another

interesting feature of social insects is their self organization capability. When acting

as a community, these insects even with very limited individual capability can jointly

(cooperatively) perform many complex tasks necessary for their survival. Problems

like finding and storing foods, selecting and picking up materials for future usage

require a detailed planning and are solved by insect colonies without any kind of

supervisor or controller (Abraham et al., 2008).

Although there are many animals or colonies available in the real world in order to

mimic, two main types of SI algorithms can be found in the literature, namely; Ant

Colony Optimization (ACO) and Particle Swarm Optimization (PSO) (Engelbrecht,

2005; Kennedy et al., 2001; de Castro, 2002). An increasing number of researchers

32

have also implemented Bee(s) Algorithms (BA) which imitates the foraging behavior

of swarms of honey bees to solve a variety of diverse real-world problems (Dereli et

al., 2009).

It is worth noting that some algorithms like Genetic Algorithms (GAs) and

Stochastic Diffusion Search (SDS) are occasionally considered in the family of SI,

although they are not inspired by the behavior of social insect colonies and other

animal colonies. Other algorithms that can occasionally be classified under SI; like:

(Dereli et al., 2009)

• Stochastic Diffusion Search (SDS)

• Bacteria Swarm Foraging Optimization (BSFO) or Bacteria Foraging

Optimization Algorithm (BFAO)

• Artificial Immune System (AIS)

• Carabid Beetle Foraging

• Wasp or Wasp Colony Algorithm

• Physarum Solver

The most commonly used technique among these methods inspired by social insects

is the ACO algorithm which was conceived by Dorigo et al. (1991). The algorithm

can be described as an evolutionary search procedure based on the way that ant

colonies cooperate in locating shortest routes to food sources. Ants are social

insects, that is, insects that live in colonies and whose behavior is directed more to

the survival of the colony as a whole than to that of a single individual component of

the colony (Dorigo et al., 1999). The specific interest of researchers on ant colonies

is their foraging behaviour and how they can find the shortest path between food

sources and the nest. Ants communicate among themselves through a chemical

substance called “pheromone”, which they lay on the ground along the path they

traverse. It has been observed that the more ants use a particular path, the more

pheromone is deposited on that path and the more it becomes attractive to the other

ants seeking food. If an obstacle is suddenly placed on an established path leading to

the food source, ants will initially go right or left in a seemingly random manner.

Those choosing the side that is in fact shorter will reach the food more quickly and

33

will make the return journey more often. The pheromone that is deposited on the

shorter path will eventually become the preferred route for the stream of ants (Gravel

et al., 2002).

Besides ACO, another population based optimization technique, which is relatively

new, is the Particle Swarm Optimization (PSO) algorithm. It was developed by

Eberhart and Kennedy in 1995 (Kennedy and Eberhart, 1995), inspired by the social

behavior of bird flocking or fish schooling. The particle swarm concept originated as

the simulation of a simplified social system. The original intent was to graphically

simulate the choreography of a bird of a bird block or a school of fish. However, it

was found that particle swarm model can be used as an optimizer. The PSO

algorithm includes a swarm of particles moving in the n- dimensional problem space

where each particle represents a potential solution having a fitness function that is to

be optimized. Each particle in the swarm has a position and a velocity which is

updated both by its own (pbest) and neighbours experience (gbest) in the search

space. In analogy with evolutionary computation paradigms, a swarm is similar to a

population, while a particle is similar to an individual (Engelbrecht, 2006).

Bee(s) algorithm (BA) is the youngest algorithm compared to ACO and PSO.

Numerous researchers have recently been inspired from the interesting features of

honey bee colonies. It is a well-known fact that if only some of the nature or

behaviour of honeybees can be exploited and some new characteristics could be

added, a class of algorithms can be devised (Yang, 2005). Due to this fact,

considerable research has been conducted to develop algorithms that mimic the

foraging, learning, mating and dancing behaviours of the honeybees. It has been also

reported that these algorithms - namely bee(s) or bee colony algorithms are mainly

inspired from two behaviors: (Abbass, 2001; Afshar et. al, Teo and Abbass, 2003;

Koudil et. al, 2007) and food foraging (Lucic, 2002; Yang, 2005; Pham et. al, 2006)

(Dereli and Daş, 2007). Most of the works in this field of research have been mainly

affected from (or based on) the pioneering works of von Frisch (1967), Seeley (1995)

and Dyer (2002). In utilization of the proposed models in this field, a number of

algorithms based on the behaviors of honey-bee colonies have been developed by

different researchers. It has been recently recognized that honeybees can manage to

efficiently collect the best nectar without any central command and the swarm

34

intelligence of these amazingly organized bees can also be used for optimization

problems (Nakrani and Tovey, 2007).

Despite its relatively short history, these approaches that have been inspired from the

behaviors of the honey bees have been applied to job shop scheduling (Chong et.al,

2006), transportation problems (Lucic, 2002), partitioning and scheduling problems

(Koudil et. al, 2007), training of multi-layered perception networks (Pham et. al,

2006a), recognizing patterns in control charts (Pham et. al, 2006b), optimization of

continuous functions (Karaboğa and Baştürk, 2007; Pham et. al, 2006c), water

resources management problems (Bozorg and Afshar, 2004), data mining problems

(Fathian et al., 2007; Benatchba et al., 2005) and to generalized assignment problems

(Baykasoglu et al., 2007).

Among the above introduced SI based algorithms, two swarm-based techniques

namely; ACO and BA are applied to CL problems in this study. In fact, PSO is not

preferred compared to ACO and BA. The reason is that both PSO and some BA are

originally proposed for continuous optimization problems (Yang and Simon, 2005;

Pham et al., 2006). The use of these two population based optimization techniques

for the solution of CL problems is one of the original contributions of this thesis.

3.3. Conclusion

The literature review on CL problems revealed that many different solution

approaches have been offered. In addition to exact approaches mostly heuristics and

meta-heuristic approaches are proposed due to the complexity of the problem. Meta-

heuristic approach is the most common method (Liang et al., 2007).

Among the proposed heuristic approaches, the most popular ones that are widely

utilized by the researchers are “wall building” and “stack building” approaches. In

this thesis, a heuristic filling procedure based on the “wall building” approach is

used. The wall-building and layering approach, first introduced by George and

Robinson (1980), is most commonly used and modified by later researchers for its

high efficiency and high quality (He and Huang, 2009). It should be noted that, for

each meta-heuristic approach, a heuristic filling approach (a kind of decoder

35

algorithm) is needed. Without this decoder algorithm, it is not possible to compute

the objective function value of a solution which is volume utilization in the classical

CL problem. This approach is explained in detail in Section 4.2.

The literature survey revealed that the most popular meta-heuristic algorithm used so

far was GA. In addition to this, SA and TS which are widely used in combinatorial

optimization have also been utilized for the CL problem. Interestingly, the algorithms

based on SI techniques, such as ACO, PSO and BA algorithms have not been widely

applied to these problems. A few studies in the literature are based on these

approaches. Therefore, this study is concentrated on the use of some SI techniques to

solve CL problems. For this purpose, the use of BA and ACO is considered in this

study. In the following chapters, the findings related to the applicability of these

methods to CL problems are investigated in detail.

36

CHAPTER 4

THE HEURISTIC FILLING PROCEDURE

4.1. Introduction

The heuristic filling procedure that is used together with BA and ACO to solve the

CL problem and with SA algorithm to solve the multi-objective CL problems is

presented in this chapter. First, the nature of the procedure which is based on wall

building approach is introduced in the following section. Then, details about

determining the dimension of a layer and filling a layer is shared. Finally, the test

cases which are used in the literature to test the performance of a CL algorithm are

introduced.

4.2. Heuristic Filling Procedure

The proposed heuristic filling procedure is a “wall-building” approach that loads the

container layer-by-layer in a recursive manner. Before filling each layer, its

dimensions are determined as it will be explained in detail in Section 4.2.1.

Layers are filled one at a time. If it is not possible to fill a layer with the boxes in the

set of available boxes, the current layer is closed and a new one is started. The

procedure is repeated until it is not possible to locate a new layer to the remaining

container width or when the set of available boxes is empty. As a result of this

packing process, the container is filled with the isolated vertical layers where

spanning of the boxes between layers is avoided.

37

4.2.1. Determination of the layer dimensions

Before starting the filling process, it is important to determine the dimensions of a

layer since the width of a layer must be carefully selected to obtain a good

performance (Pisinger, 2002).

In this study, the width of each layer Lw is set equal to the width of the Layer

Determining Box (LDB) (Gehring et al., 1990). In order to determine the LDB, first

the boxes among the set of available boxes are sorted by width dimension in non-

increasing order. Thus, the box with the greatest width dimension is given the highest

priority. In case of a tie among the boxes with the same width dimension, the box

with the smallest depth dimension id is given a higher priority. Finally, the highest

priority box in the set of available boxes is chosen as the LDB.

After the determination of the LDB, the layer having width Lw equal to the width iw

of the LDB, height Lh and depth Ld equal to those of the container is filled. As a

result, the dimensions of the layer are determined as seen in Equation (4.1);

Dd
Hh

niwhereww

L

L

iL

=
=

== ...,,1,)(max
 (4.1)

4.2.2. Filling the layer

Following the determination of the layer dimensions, it is possible to fill the layers.

The layers are filled in a recursive manner. The main advantage of using recursive

algorithms is that they reduce the solution to a problem with a particular set of input

to the solution of the same problem with smaller input values (Rosen, 2003).

Besides, the recursive algorithms are simple and easy to implement.

To explain better how the recursion works, a recursive procedure developed for a

two-dimensional case is presented below. This procedure which is the primitive of

the one that is presented later in this section is as follow;

38

 Pack the first item into the bottom left corner ((0, 0) coordinate) of the object

(This operation also divides the packing “space S” into two subsequent

subspaces).

 Pack the next item into the “subspace S1”. If packing to the “subspace S1” is not

possible, then pack the item to the “subspace S2”. Call this procedure recursively

until all the items are packed.

In Figure 4.1, the working principle of the recursive filling procedure is illustrated.

The first item is packed in the bottom-left corner of the larger object. As a result of

this packing, two empty subspaces (S1 and S2) are generated. The algorithm tries to

pack the next item into the bottom-left corner of the empty space - subspace S1. If

this is not possible, the item is packed to the bottom-left corner of the empty space -

subspace S2. This packing will again divide the subspace in which packing is done

into two subspaces. The algorithm will try to pack a new item firstly to subspace

S11, then to subspaces S12, S21 and to S22. The procedure will be called

recursively until all the items are allocated into the large object (Dereli and Daş,

2007).

For the CL problem, this heuristic procedure is adopted to the three dimensional

case. The large object in the previously described procedure can be considered as a

layer and items can be considered as boxes. Similar to the empty subspaces that are

produced every time an item is placed on the large object, empty spaces in a layer are

produced every time a box is allocated to the layer having predetermined dimensions.

39

Figure 4.1 The working principle of the recursive algorithm developed for the two

dimensional case

When the first box (that is LDB) is allocated into the layer, three empty new-spaces

namely “beside”, “in front” and “above” of the packed box are produced. In the

given situation (see Figure 4.2 and 4.3), only two of these spaces “in front” and

“above” occurs as a result of the allocation of the first box into the layer. Thus, only

these spaces are shown in Figure 4.2. However, when a box having a width smaller

than the LDB is packed into the layer, an empty space beside the packed box occurs

as seen in Figure 4.3. In the proposed filling procedure, the empty spaces are filled in

the following order: first, the empty space “in front” of the packed box is filled, then

the empty spaces “beside” and “above” of the packed box is filled, respectively.

40

Figure 4.2 Empty spaces “in front” and “above” of the LDB

Figure 4.3 Empty space “beside” a packed box in the layer

Now suppose that there is a packed box in the layer as shown in Figure 4.2 and it is

desired to pack the next highest priority box in the set of available boxes into the

container. First, the space “in front” of the packed box is checked. If it is possible to

allocate this box into this space, then it is packed there and removed from the set of

available boxes since there is not an empty space “beside” the packed box in the

current layer the space “above” the packed box is checked. If it is possible to

allocate this box into this space, then the box is packed to this space and the packed

box is removed from the set of available boxes. Otherwise, the suitability of the next

highest priority box in the set of available boxes to the available empty spaces in the

layer is investigated. The process is repeated in a recursive manner for each box in

the set of available boxes and for all of the empty spaces available in current layer

until it is not possible to fill the empty spaces with a box in the set of available boxes.

Empty space
beside

Empty space
infront

Empty space
above

Container width

C
ontainer height

Container depth

Current layer

41

After this detailed introduction of the basic features of the heuristic filling procedure,

the main steps of the procedure is presented in Figure 4.4.

Figure 4.4. The proposed heuristic filling-procedure

Calculate the utilization rate of the container and stop.

Input the problem data and calculate
the rank of each box according to

the determined ranking criteria

Is there any space
unfilled in the layer?

No

Yes

Select LDB as the box with the highest rank among the set of available boxes

Select the box with the highest rank in the set of available boxes

Is it possible to pack
the selected box to
the current layer?

Pack the selected box and remove the packed box from the set of available boxes

Update the available space data in the layer

Are there any boxes
in the set of

available boxes?

Is there enough
container width for

a new layer?

Yes

No

No

Yes

Yes

No

42

4.3. Test Cases

All throughout the study, the performance of the proposed approaches are tested

using the well known test cases from the literature known as Loh and Nee (LN)

(1992) test cases and Bischoff and Ratcliff (BR) (1995) test cases. Each class in BR

test cases includes 100 problems whereas each LN test case represents a single

problem. In both test cases the aim is to allocate a set of boxes with varying

dimensions into a container without any overlap to maximize the volume utilization

of the container for each problem.

Each test problem is run three times with different seed values and the average of

these runs is used to test the performance of the algorithm.

When comparing the performance of the proposed algorithms it should be noted that

figures computed by Loh and Nee (named as packing density) are not directly

comparable to the volume utilization figures in the other columns, as they are quoted

only on the basis of the smallest rectangular enclosure of the loaded boxes, rather

than the actual container dimensions (Bischoff and Ratcliff ,1995).

The proposed algorithms are coded in C++ language and the problems are run on a

computer with 2.4 GHz. Intel Pentium IV.

43

CHAPTER 5

A BEES ALGORITHM FOR SOLVING CONTAINER LOADING

PROBLEMS

5.1. Introduction

The main goal of this chapter is to discuss the usability of Bees algorithm (BA) to

find a “good” solution to CL problems, which are difficult combinatorial

optimization problems. In the next section details related to the implementation of

BA to the CL problems is described. Computational results and conclusions are

presented in Section 5.3 and 5.4, respectively.

5.2. A Bees Algorithm (BA) for Container Loading

A search algorithm for this part of the study is considered, since it is essential to find

out the dimensions of a layer for a good container loading performance as discussed

in Section 4.2. As it was mentioned before, the width of the layers is set equal to the

width of the boxes, which has the highest priority in the set of available boxes. If the

priority of the boxes in the set of available boxes can be altered, alternative widths

for the layers can be considered to reach a good container-loading performance. In

our algorithm, the priorities of the boxes (in the set of available boxes) are changed

by enabling or disabling the rotation of the boxes.

In this study, motivated by the algorithm proposed by Pham et al. (2006) a BA for

CL problems is proposed to reach the above mentioned goal. The algorithm makes

an analogy to a colony of honey bees that tries to find promising food sources in the

nature. The natural food foraging process of a honey bee colony starts with a number

of scout bees from the colony searching the food sources. When the scout bees find a

44

rich food source they begin a so called “waggle dance” in the hive (Dyer, 2002) as

shown in Figure 5.1.

Figure 5.1. Waggle dance of bees (web2)

This dance which is a form of communication between the bees in the colony

includes information about the distance, the direction and the quality of the food

source. Equipped with this important knowledge the colony sends follower bees -

more follower bees are sent to more promising food sources - to these food sources

to collect the food. While collecting the food, bees evaluate the food level of the

source and collect the needed information for the next waggle dance. The employed

BA mimics the food foraging process of the honey bee colony. The main steps of the

BA for CL (hybrid-BA) problems, which is hybridized with the heuristic filling

procedure presented in the previous section, are schematized in Figure 5.2.

In implementing the hybrid-BA for CL several parameters should be determined.

These key parameters are number of scout bees n, number of selected sites m,

number of elite sites e chosen from m sites, number of bees recruited to search e elite

sites nep, number of bees recruited to search m-e other sites nsp, and the termination

criteria. These parameters of the algorithm are adjusted by trial and error since there

is not a defined procedure to help the users choose the most appropriate set of

parameters.

45

In
iti

al
 P

op
ul

at
io

n

N
ei

gh
bo

rh
oo

d
Se

ar
ch

N
ew

 P
op

ul
at

io
n

Figure 5.2. Algorithm of the hybrid-BA (Daş and Dereli, 2007)

As can be seen in Figure 5.2., the algorithm starts with n scout bees being placed

randomly in the search space. These n scout bees represent the initial population.

Following the acquiring of random initial solutions, solutions found by scout bees are

evaluated by the proposed heuristic filling procedure. Bees that have good fitness

among this initial population are selected so that m sites are chosen for neighborhood

search. The search is primarily around the best sites among these m sites known as

elite sites e and other selected sites m-e. Here, elite sites (e) represent the more

Begin

Initialize a population of n scout bees

The fitness of the points are evaluated

H
E
U
R
I
S
T
I
C

F
I
L
L
I
N
G

P
R
O
C
E
D
U
R
E

Select m good sites for neighborhood search

Select e elite sites from selected good sites

Do neighborhoods search from e sites by
elite bees nep

Does neighborhood search from m-e sites by
other bees nsp

Select best bee from each site

Assign the n-m remaining bees to random
search

Obtain new population of scout bees from
these neighborhood search and random

searches

Run until the stopping criteria is met

46

promising solutions which are searched with nep bees greater than nsp bees

searching the other (m-e) sites.

To obtain the next bee population, the bees (evaluated with the heuristics filling

procedure) with the highest fitness value are selected from each m sites. In order to

complete the population to n bees, the remaining n-m bees are assigned randomly to

the search space in order to find new solutions. These steps are repeated until the

stopping criterion is met or the solution converges.

At this point, it is meaningful to explain why a “hybridization” of the algorithm is

required. The hybridization of the BA algorithm with the heuristic filling-procedure

is essential, since the objective function values corresponding to each solution is

needed all through the algorithm. Without these values of objective function, the

neighborhood search is not started in the algorithm. In Figure 5.2., the interactions

between the BA algorithm and the heuristic procedure are also illustrated. As it is

clear from Figure 5.2, the heuristic procedure is called upon whenever the objective

value of a solution is needed by the BA algorithm.

5.2.1. Representation of a solution and neighborhood search for the BA

Each bee in the population represents a bit string of length equal to the number of

box types of a given CL problem. Each bit in this string shows an alternative

orientation of a box type (there can be different rotation orientations for different

problems). Suppose that, a CL problem having the relevant data like the one

presented in Table 5.1 is being dealt with.

Table 5.1. Data for a CL problem

Box Type Width Depth Height Total number
Type 1 108 65 55 45
Type 2 95 52 45 55
Type 3 70 62 35 20
Type 4 83 40 20 30
Type 5 90 70 40 18
Type 6 55 48 37 27
Type 7 68 20 10 34
Type 8 100 83 44 41
Type 9 60 32 23 50

47

The problem contains a total of 320 boxes of 9 different box types (boxes in the same

type has the same dimensions) and the bit string representation of this problem is as

shown in Figure 5.3. Suppose that these boxes can only be base rotated. That is there

is a “this way up” constraint for these boxes. Each bit in this string represents a box

type and the numbers “0” and “1” represents whether the boxes of a type are rotated

or not. The rotation of an ordinary box is shown in Figure 5.4.

Figure 5.3. Bit string representation of a solution (only for a base-rotated box)

Figure 5.4. The rotation of a box (only for a base-rotated box)

The solution shown in Figure 5.3 tells the program to rotate (to exchange width and

depth dimensions in case only rotation on the base is allowed) all the boxes of the

type 2, 3, 5, 7, 8, 9 and then allocate these boxes into the container in this new

rotation-orientation. This structure is preferred to the structure in which each bit in

0 1 1 0 1 0 1 1 1
Type1 Type2 Type3 Type4 Type5 Type6 Type7 Type8 Type9

48

the string represents a box in the problem. In this case, the resulting bit string will be

of length 320 which will be a very inconvenient and time-consuming structure for the

large sized problems.

Three operators, namely; “1-flip” and “k-flip” are defined in this work in order to

reach the neighborhood solutions. In case of “1-flip” type of operator, the value of a

randomly selected bit is flipped from “1 to 0” or “0 to 1. The operation of this

operator is illustrated in Figure 5.5.

Figure 5.5. The use of “1-flip” operator

The second operator is designed with the motivation from the work of Kong et al.

(2007). They designed a simple random 4-flip method as the local search. This

operator randomly selects four variables from the solution and flips their values from

“1 to 0” or “0 to 1”. If the newly generated solution is better, they replaced the

original solution with the new one. They applied this method 1000 times for each

solution. They selected the number of flips and the number of execution through a set

of experiments. Similar to this structure, an operator named “k-flip” is designed in

this work. This operator rotates a corresponding number of boxes (k times “total box

number”) that are selected randomly. It is possible to rotate boxes of a specific box-

type as well as the boxes from alternative box-types by the use of operators one after

another. For example, for the sample problem provided in Table 5.1, the

neighborhood search process through the use of operators discussed above is

illustrated and explained in Figure 5.6. For the example provided above, firstly 1-flip

operator is applied and the 1-flip operator is applied to the randomly selected bit.

Accordingly, randomly selected bit representing all the boxes of Type 3 is rotated.

Following the 1-flip operator, also k-flip operator is applied to the example bit string.

The k-flip is applied to a number of selected bit position which is equal to the k times

the total box number in the position (where k < 1). If the k is selected 0.5, then a total

of 320 x 0.5 individual boxes that are selected randomly should be rotated. For

0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1
Apply 1-flip

49

example, randomly selected boxes; box number 15 having Type 1, box number 123

having Type 3,…etc.

Figure 5.6 The operation of the defined operators

If the obtained neighborhood solution is better than the current solution, then the

neighborhood solution is saved. Otherwise, the current solution is saved. Using both

operators, it is possible to evaluate a large number of solutions.

5.3. Computational Results for the hybrid-BA

The results of the LN and BR test cases are presented as a single column in Table 5.3

and Table 5.5 where volume-utilization ratios obtained by each study in the literature

are also presented in Table 5.2, 5.3, 5.4 and 5.5.

The parameters of the hybrid-BA algorithm for both test cases are set to the

following; number of bees (population) n = 20; number of selected sites m = 4;

number of elite sites e = 2; number of bees send to elite points nep = 4 and number

of bees send to other selected points nsp = 2 for 1000 iterations.

The k- coefficient is defined as a ratio of the total number of boxes in the problem

(thus defined between 0 and 1) and the value of this coefficient is determined

through a set of experiments. For both test cases this coefficient is set to 0.6.

0 1 1 0 1 0 1 1 1

0 1 1 1 1 0 1 1 1

1-flip
Rotate a selected box

k-flip
Rotate 320 x 0.5 individual

boxes

Neighborhood Solution

50

Table 5.2. Comparative results with test cases of LN– heuristic approaches

Table 5.3. Comparative results with test cases of LN– metaheuristic approaches

*These values are not computed in this study, ** These values are not available separately.

The results indicate that the proposed algorithm - hybrid-BA - is capable of solving

CL problems. The algorithm reaches 11 out of 15 best-known solutions for LH test

cases. On the other hand, for harder problems LN02, LN06, LN07 and LN013 the

algorithm found feasible solutions. The hybrid-BA algorithm is the second best

performing algorithm after the heuristic approach of Eley (2002) which is the best

Problem Loh and
Nee

(1992)*

Ngoi
et al.

(1994)

Bischoff
et al.

(1995)

Bischoff
and Ratcliff

(1995)

Eley (2002) Bischoff
(2003)

Lim
et al.

(2005)
LN01 78.1 62.5 62.5 62.5 62.5 NC* 62.5
LN02 76.8 80.7 89.7 90.0 90.8 NC 80.4
LN03 69.5 53.4 53.4 53.4 53.4 NC 53.4
LN04 59.2 55.0 55.0 55.0 55.0 NC 55.0
LN05 85.8 77.2 77.2 77.2 77.2 NC 76.7
LN06 88.6 88.7 89.5 83.1 87.9 NC 84.8
LN07 78.2 81.8 83.9 78.7 84.7 NC 77.0
LN08 67.6 59.4 59.4 59.4 59.4 NC 59.4
LN09 84.2 61.9 61.9 61.9 61.9 NC 61.9
LN10 70.1 67.3 67.3 67.3 67.3 NC 67.3
LN11 63.8 62.2 62.2 62.2 62.2 NC 62.2
LN12 79.3 78.5 76.5 78.5 78.5 NC 69.5
LN13 77.0 84.1 82.3 78.1 85.6 NC 73.3
LN14 69.1 62.8 62.8 62.8 62.8 NC 62.8
LN15 65.6 59.5 59.5 59.5 59.5 NC 59.5
Mean 74.2 69.0 69.5 68.6 69.9 - 67.0

Problem Gehring
et al.

(1997)

Bortfeldt
et al.

(1998)

Bortfeldt
et al.

(2001)

Gehring
and

Bortfeldt
(2002)

Bortfeldt,
et al.

(2002)

Moura
and

Oliveira
(2005)

hybrid-BA

LN01 62.5 62.5 62.5 NC* NA** NA 62.5

LN02 90.7 96.7 89.8 NC NA NA 86.3

LN03 53.4 53.4 53.4 NC NA NA 53.4

LN04 55.0 55.0 55.0 NC NA NA 55.0

LN05 77.2 77.2 77.2 NC NA NA 77.2

LN06 91.1 96.3 92.4 NC NA NA 89.2

LN07 82.7 84.7 84.7 NC NA NA 83.2

LN08 59.4 59.4 59.4 NC NA NA 59.4

LN09 61.9 61.9 61.9 NC NA NA 61.9

LN10 67.3 67.3 67.3 NC NA NA 67.3

LN11 62.2 62.2 62.2 NC NA NA 62.2

LN12 78.5 78.5 78.5 NC NA NA 78.5

LN13 85.6 85.6 85.6 NC NA NA 83.6

LN14 62.8 62.8 62.8 NC NA NA 62.8

LN15 59.5 59.5 59.5 NC NA NA 59.5

Mean 70.0 70.9 70.1 - 70.9 70.3 69.46

51

performing heuristic algorithm among the compared heuristic approaches and a quiet

well performing algorithm among the compared meta-heuristic approaches. When

the performance of the hybrid-BA is compared to other meta-heuristic approaches

available in the literature, there is a performance gap of 2.03% between the best

performing meta-heuristic algorithm and the proposed algorithm.

Table 5.4. Comparative results with the test cases of BR– heuristic approaches

*These values are not available separately.

Table 5.5. Comparative results with the test cases of BR – metaheuristic approaches

The performance of the hybrid-BA for the test cases of BR is also comparable with

the other heuristic and meta-heuristic approaches. There is a performance gap of

9.7% between the best performing meta-heuristic algorithm and the proposed

algorithm and a performance gap of 6.54% between the best performing heuristic

algorithm and the proposed algorithm.

Problem
(box type)

Bischoff
et al. (1995)

Bischoff
and Ratcliff

(1995)

Eley (2002) Bischoff
(2003)

Lim et al.
(2005)

BR1(3) 81.76 83.79 NA* 89.39 87.40
BR2(5) 81.70 84.44 NA* 90.26 88.70
BR3(8) 82.98 83.94 NA* 91.08 89.30
BR4(10) 82.60 83.71 NA* 90.90 89.70
BR5(12) 82.76 83.80 NA* 91.05 89.70
BR6(15) 81.50 82.44 NA* 90.70 89.70
BR7(20) 80.51 82.01 NA* 90.44 89.40

Mean 81.97 83.50 88.75 90.55 89.13

Problem
(box
type)

Gehring
et al.

(1997)

Bortfeldt
et al.

(1998)

Bortfeldt
et al.

(2001)

Gehring,
Bortfeldt,

(2002)

Bortfeldt,
et al.

(2003)

Mack et
al.

(2004)

Moura,
Oliveira
(2005)

hybrid-
BA

BR1(3) 85.80 92.63 87.81 88.10 93.52 93.70 89.07 83.41
BR2(5) 87.26 92.70 89.40 89.56 93.77 94.30 90.43 84.60
BR3(8) 88.10 92.31 90.48 90.77 93.58 94.54 90.86 85.42
BR4(10) 88.04 91.62 90.63 91.03 93.05 94.27 90.42 85.19
BR5(12) 87.86 90.86 90.73 91.23 92.34 93.83 89.57 85.11
BR6(15) 87.85 90.04 90.72 91.28 91.72 93.34 89.71 84.69
BR7(20) 87.68 88.63 90.65 91.04 90.55 92.5 88.05 83.99

Mean 87.50 91.26 90.10 90.43 92.70 93.78 89.73 84.63

52

Each problem set in BR test cases contains different number of box types. The results

summarized in Table 5.5 reveals that the performance of the algorithm first shows

sharp increase as the number of box type increase, but then shows a gradual

decrease. This can also be seen in Figure 5.7. A similar behavior can also be

observed in some of the algorithms in the literature (refer to Table 5.5).

Figure 5.7. Graphical representation of the obtained results for BR test cases

The convergence graph of the hybrid-BA algorithm for a problem from BR7 is

presented in Figure 5.8. It is clear from the convergence graph in Figure 5.8 that the

algorithm converges after a reasonable number of iterations.

Figure 5.8. Convergence graph of a problem from test case BR7

53

5.3.1. Determination of the parameters of the hybrid-BA algorithm

The results for the proposed algorithm are already discussed in the previous section.

Nevertheless, an attempt to determine the parameters of this algorithm and to discuss

the contribution of this newly determined set of parameters to the performance of the

algorithm is made in this section. For this purpose, factorial design is preferred.

Factorial designs are efficient tools for problems where the study of two or more

factors is needed (Montgomery, 1991).

To study the effects of the BA’s parameters on the hybrid-BA’s solution quality, a

factorial analysis with four control parameters; number of scout bees n, number of

selected sites m, number of bees send to elite points nep and number of iterations iter

is designed. This design with four control parameters of the hybrid-BA algorithm is

given in Table 5.6 and 5.7. In order to test the effects of these control parameters

(factors), 10 problems from the BR7 test cases with 2*2*2*2 (= 16) different setting

is run 3 times with different seed and totally 48 experiments are conducted. Minitab

statistical software is used for the analysis.

Table 5.6. Levels of factors for the factorial design

Factors Levels

number of scout bees n(nob) 10 20

number of selected sites m 2 4

numbers of bees send to elite points nep 2 4

number of iterations iter 500 1000

The results of the analysis obtained from the Minitab have revealed that all the

factors (n, m, nep and iter) are significantly affecting the performance of the

proposed algorithm (relevant p-values for these parameters are smaller than 0.05). As

the number of scout bees, numbers of bees send to elite points and number of

iterations increases, the solution quality of the algorithm improves. On the other

hand, as the number of selected sites decreases, the solution quality of the algorithm

increases. There are no significant two-way, three-way and four-way interactions

54

between the parameters. Main Effects plots and Interaction plots of this analysis are

also shown in Figure 5.9 and 5.10.

Table 5.7. Factorial design on hybrid-BA response (obtained from Minitab)
Estimated Effects and Coefficients for C5 (coded units)

Term Effect Coef SE Coef T P
Constant 0,835130 0,000289 2886,75 0,000
n 0,003170 0,001585 0,000289 5,48 0,000
m -0,001636 -0,000818 0,000289 -2,83 0,008
nep 0,001546 0,000773 0,000289 2,67 0,012
iter 0,003063 0,001531 0,000289 5,29 0,000
n*m -0,000245 -0,000122 0,000289 -0,42 0,675
n*nep 0,000515 0,000258 0,000289 0,89 0,380
n*iter -0,001090 -0,000545 0,000289 -1,88 0,069
m*nep -0,000337 -0,000169 0,000289 -0,58 0,564
m*iter 0,000633 0,000316 0,000289 1,09 0,282
nep*iter 0,000154 0,000077 0,000289 0,27 0,791
n*m*nep -0,000772 -0,000386 0,000289 -1,33 0,192
n*m*iter 0,000262 0,000131 0,000289 0,45 0,654
n*nep*iter 0,000754 0,000377 0,000289 1,30 0,202
m*nep*iter -0,000113 -0,000056 0,000289 -0,20 0,847
n*m*nep*iter -0,000631 -0,000316 0,000289 -1,09 0,283

S = 0,00200431 PRESS = 0,000289244
R-Sq = 72,47% R-Sq(pred) = 38,05% R-Sq(adj) = 59,56%

Analysis of Variance for C5 (coded units)

Source DF Seq SS Adj SS Adj MS F P
Main Effects 4 0,00029399 0,00029399 0,00007350 18,30 0,000
2-Way Interactions 6 0,00002462 0,00002462 0,00000410 1,02 0,429
3-Way Interactions 4 0,00001494 0,00001494 0,00000373 0,93 0,459
4-Way Interactions 1 0,00000478 0,00000478 0,00000478 1,19 0,283
Residual Error 32 0,00012855 0,00012855 0,00000402
 Pure Error 32 0,00012855 0,00012855 0,00000402
Total 47 0,00046688

As it can be seen from the main effects plot (Figure 5.9), the best results are obtained

for the parameters; n equals to 20, m equals to 2, nep equals to 4 and iter equals to

1000. Furthermore, the value of the parameters e (number of elite sites e chosen from

m sites) and nsp (number of bees recruited to search m-e other sites) is chosen equal

to 50% of the value of the parameters m and nep, respectively.

55

Figure 5.9. Main effects plots

Figure 5.10. Interaction plots

In the proposed algorithm, random numbers are used in different part of the

algorithm especially for the neighborhood search. Results presented previously were

obtained by three runs. In order to study both the effect of randomness and the effect

of the new set of parameters, the algorithm is run 10 times using the new set of

parameters for the first 10 problems of the BR test cases. The computational results

obtained from this analysis and relevant run times (shown in second column) are

56

summarized in Table 5.8. The third column of Table 5.8 shows the results obtained

over three runs, whereas column number 4 to 8 shows the results obtained over 10

runs.

Table 5.8. Analysis of the randomness in hybrid-BA over 10 runs

The results of ten runs are higher than the results of three runs. This can be due to the

variability available in the algorithm and/or to the new set of parameters. The values

of the average standard deviation and average range also support this finding.

Therefore, running the algorithm several times in spite of longer computational time,

can lead to an increase in volume.

5.4. Conclusion

In this chapter, a relatively new algorithm namely ‘bee(s) algorithm’ is offered as an

alternative solution approach for the CL problem. Hybridized with a heuristic filling

procedure based on “wall building” approach, the proposed algorithm (so called

hybrid-BA) is proved to be successful in solving these problems. The performance of

the proposed algorithm against the performances of the other heuristics and meta-

heuristics approaches (proposed for the same problems) is compared based on the

volume utilization. The hybrid-BA produced comparable results with those of the

other approaches.

Problem
(box type)

Avg.
Elapsed

Time (sec)
(100

problems)

hybrid-BA
(3 runs)

hybrid-BA
(10 runs)

(10 problems)
Min Max Mean SD Range

BR1 (3) 276,77 83.41 83.13 83.63 83,37 0.16 0,5
BR2 (5) 203,19 84.60 85.10 85.77 85,47 0.22 0,67
BR3 (8) 201,19 85.42 85.84 86.06 85,96 0.07 0,22
BR4 (10) 195,82 85.19 85.67 86.20 85,39 0.15 0,53
BR5 (12) 193,10 85.11 84.92 85.29 85,06 0.13 0,37
BR6 (15) 188.57 84.69 84.64 85.14 84.80 0.15 0,5
BR7 (20) 184.42 83.99 83.75 84.38 84.04 0.22 0,63

Mean 214,014 84.63 84,72 85,21 84,87 0,16 0,48

57

CHAPTER 6

AN ANT COLONY ALGORITHM FOR SOLVING CONTAINER LOADING

PROBLEMS

6.1. Introduction

As it is obvious from the literature review presented in Chapter 3, up to the present

study efforts on applying ant colony algorithms to CL problems are very limited.

With this motivation, a new approach to CL problems by using Ant Colony

Optimization is proposed.

6.2. Ant Colony Optimization

6.2.1. Behaviors of real ants

Ants are social insects, that is, insects that live in colonies and whose behavior is

directed more to the survival of the colony as a whole than to that of a single

individual component of the colony (Dorigo et al., 1999). Real ants are capable of

finding the shortest path from a food source to their nest without using visual cues by

exploiting pheromone information (Dorigo and Gambardella, 1997). Ants

communicate among themselves through this pheromone. Pheromone, is a chemical

substance that they lay on the ground along the path they traverse. This way they

form pheromone trails on the ground. If no pheromone on the ground is available,

then ants move randomly. Otherwise, ants observe the pheromone trail and are

attracted to it while the path is marked again and will attract even more ants to follow

the trail (Zhao et al., 2006).

This mechanism can be explained as follows; Figure 6.1(a) illustrates the shortest

way between the nest and food source.

58

Figure 6.1. (a) Ants in a pheromone trail between nest and food (b) an obstacle
interrupts the trail (c) ants find two paths to go around the obstacle (d) a new
pheromone trail is formed along the shorter path (Peretto and Lopes, 2005)

As it is mentioned before, the ants have the ability to find the shortest way in case of

any changes in the path that they follow. In case of putting an obstacle to their path

between the nest and the food source as shown in Figure 6.1(b), they randomly

choose the upper path or the lower path as can be seen in Figure 6.1(c). If it is

assumed that the ants move at approximately the same speed, the ants which choose

the upper path (shorter path) return the nest faster. As the time passes, the amount of

the pheromone on the shortest path increases much more quickly than the longer

path. Thus, more ants choose the shortest way which has a greater amount of

pheromone on it and follow the shorter path as illustrated in Figure 6.1(d).

6.2.2. Simple ACO and Ant Colony System

Algorithms based on the foraging behavior of ants have been first introduced by

Dorigo and were formalized as a new meta-heuristic termed Ant Colony

Optimization (ACO) in 1999 (Zhao et al., 2006). ACO is a technique for hard

combinatorial optimization problems. Early implementations of the algorithm

focused on the traveling salesman and other routing problems but nowadays, it is

being applied to an increasingly diverse range of combinatorial optimization

problems including shortest common super sequence, generalized assignment,

59

multiple knapsack, constraint satisfaction problems, among others (Cordon et al,

2002).

Up to date, several ACO algorithms have been proposed in the literature. The

original Ant System and some successful variants are the Ant Colony System, MAX-

MIN Ant System, Rank- based Ant system and Best-Worst Ant System (Cordon et

al, 2002). The most successful of these are Ant System (AS), Ant Colony System

(ACS) and MAX-MIN Ant System (web3). In this study, Ant Colony System which

is proposed by Dorigo and Gambardella (1997) is made to become the focused

algorithm.

Prior to the introduction of ACS, the simple ACO algorithm is presented below;

Consider the problem of finding the shortest path between two nodes on a graph,

),(EVG = , where V is the set of vertices (nodes) and E is a matrix representing

connections between nodes (Engelbrecht, 2005). Here,

=Gn is the number of nodes in the graph

=kL is the path constructed by ant k

=ijτ is the total pheromone concentration in the edge (i,j)

=)0(ijτ is the initial pheromone in the edge (i,j)

At the beginning, a number of ants, knk ,...,1= , are randomly placed on the source

node. In each iteration, each ant incrementally constructs a path to the destination

node (Engelbrecht, 2005). At each node, each ant tries to determine which node to

visit next. If ant k is currently at node i, it selects the next node k
iNj ∈ using a

transition probability;

60

()

k
i

k
i

Nj
ij

ijk
ij

Njif

Njif
t

t
tp

k
i

∉

∈
⎪
⎩

⎪
⎨

⎧

=
∑
∈

0

)(
)(

α

α

τ
τ

 (6.1)

where k
iN is the set of feasible nodes connected to the node i, that ant k can visit. In

Equation (6.1), α is a positive integer which magnifies the influence of pheromone

concentrations.

When all ants complete their tour from the source to destination, each ant retraces its

path to the source node deterministically and deposits a pheromone amount of;

())(/1 tLt kk
ij ατΔ (6.2)

to each link (i,j), of the corresponding path;)(tLk is the length of the path

constructed by ant k at time step t (Engelbrecht, 2005).

∑
=

Δ+=+
kn

k
ij

k
ijij ttt

1

)()()1(τττ (6.3)

According to Equation (6.3), the total pheromone intensity of a link is proportional to

the desirability of the path in which the link occurs, based on the length of the path.

At each iteration of the algorithm, pheromone intensities on the links are evaporated

to force ants to explore more and to prevent premature convergence. For each link

(Engelbrecht, 2005),

() ()]1,0[).1(∈−← pwherett ijij τρτ (6.4)

The constant p here determines the rate of evaporation of the pheromone, which

also cause ants to forget previous decisions.

61

ACS differs from AS and the simple ACO in four aspects: (1) a different transition

rule is used, (2) different pheromone update rule is defined, (3) local pheromone

updates are introduced and (4) candidate lists are used to favor specific nodes

(Engelbrecht, 2005).

ACS uses pseudo-random-proportional transition rule given in Equation (6.5). This

rule balances exploration and exploitation abilities of the algorithm. According to

this rule an ant k located in node i selects the next node j as (Engelbrecht, 2005);

0()

0

arg max { () ()} if r r

 if r > r

k
i

iu iuu N t
t t

j
J

α βτ η
∈

⎧ ≤⎪= ⎨
⎪⎩

 (6.5)

In Equation (6.5), iuτ is the amount of pheromone from node i to node u, iu
βη is the

heuristic information from node i to node u, β is a parameter between 1 and 10 that

determines the relative importance of the heuristic information, r is a random number

between 0 and 1 and 0r is a user defined parameter. According to this equation, if the

random number r is grater that r0 (0rr >), then the best edge is chosen according to

the Equation (6.6) (Engelbrecht, 2005);

() ()()
() ()k

i

k iJ iJ
iJ

iu iuu N

t tp t
t t

α β

α β

τ η
τ η

∈

=
∑

 (6.6)

In addition, it should be noted that ACS transition rule uses 1α = and therefore can

be omitted from the equation.

In ACS, only the globally best ant is allowed to deposit pheromone. The globally

best ant refers to the ant that completes the tour with the minimum distance. The aim

of this updating rule is to make the search more directed. The global updating is

applied after all ants complete their tours (that is why it is called global updating).

The pheromone for the global updating is updated according to the Equation (6.7)

and (6.8) (Engelbrecht, 2005);

62

)()1()1(11 tppt ijijij τττ Δ+−=+ (6.7)

⎭
⎬
⎫

⎩
⎨
⎧ ∈

=Δ
++

otherwise
txjiiftxf

tij 0
)(),())((/1

)(τ (6.8)

where 1p is pheromone decay parameter and valued between 0 and 1, and in

Equation (6,8),)(tx+ is the shortest path and ijτΔ is the inverse of the tour length of

the global best ant.

The other pheromone updating rule is local pheromone updating. The difference of

this rule from the global one is the time of the application. This local pheromone

update is applied just after a node is visited according to Equation (6.9) (Engelbrecht,

2005);

022)1()(τττ ppt ijij +−= (6.9)

where 2p is the local pheromone decay parameter and between 0 and 1, and 0τ is a

small positive constant. The essential aim of the local updating is to wide the

neighborhood of the previous tours by changing the desirability of the edges visited

previously.

6.3. The hybrid-ACS-1 and hybrid-ACS-2 algorithms for solving container

loading problems

CL is an optimization problem which is not defined on a graph. Due to this, first the

problem is restated as a graph/ network search problem. It is assumed that a CL

problem containing n boxes is similar to a graph having n nodes. Each ant has an

empty container and at each node there is a virtual box. As an ant travels the graph, it

collects the boxes from the nodes that it visits. That is, when the tour of an ant is

completed, it tries to pack the boxes into the container.

63

After ants build solutions, the fitness of each solution that is built by each ant is

calculated with the use of the heuristic filling procedure and only the best ant is

allowed to make the global updating. Local updating is done by each ant every time

an ant selects a node to visit. The algorithm is run until the predetermined number of

iterations is reached.

In the ant algorithms pheromone trail should be determined according to the typeof the

problem. In the proposed algorithms the pheromone trail is defined in the similar way to

that of Levine and Ducatelle (2004). In their study for the one-dimensional BPP, they

defined the),(jiτ as the favorability of packing items i and j in the same bin (only one

dimension, that is weight is considered). In the proposed algorithms),(jiτ shows the

favorability of choosing item j after item i to allocate into the container.

Another important choice is the determination of a heuristic that is vital for the

pheromone calculations. The heuristic information jwjn =)(is set equal to an

items width for the proposed algorithm.

The algorithm that is working in the above mentioned manner is called the hybrid-

ACS-1 algorithm. This algorithm uses original problem data about the problem all

through the process. However, if there are too many boxes in a problem, this solution

approach could be very inefficient. In such a situation, reducing the number of boxes

that is reducing the number of nodes to be visited by each ant could improve the

solution. The steps of the hybrid-ACS-1 are illustrated in Table 6.1.

Table 6.1. The steps of the hybrid-ACS-1 algorithm

Initialize parameters

for each ant do
construct the full path
apply local updating
compute the fitness of each path

end

for each link do

apply global updating
end

64

In order to test the hypothesis whether reducing the number of nodes with this

method will produce better results or not, the hybrid-ACS-2 algorithm is proposed as

an improved version of the hybrid-ACS-1.

As it is previously discussed in Chapter 4, the heuristic filling procedure proposed in

this study fills a container in a “layer-by-layer” manner. That is the volume

utilization of a container greatly depends on the volume utilization of each layer.

Therefore, one way of improving the volume utilization of a container could be to

improve the volume utilization of an individual layer.

In the proposed hybrid-ACS-2 algorithm, first the container is filled layer-by-layer

by the heuristic filling procedure. Afterwards, a utilization-threshold-level (UTL) is

determined and the layers of the obtained solution are evaluated according to this

value. That is a pre-evaluation to each layer have been applied. According to this; if a

layer having volume utilization above the UTL is found, this layer is saved as it and

the boxes in this layer is removed from the problem. Otherwise, the boxes in the

layers having volume utilization below the UTL are added to the set of available box

list. Thus, the numbers of boxes in the problem is reduced and the layers with high

volume utilization are saved. Following this step, the layers above the UTL level are

allocated to the container and the dimensions of the container are updated. Then, the

ACO algorithm is applied to the reduced problem and the overall volume utilization

of the container is calculated. The steps of the proposed hybrid algorithm are

illustrated in Figure 6.2.

Different from the hybrid-ACS-2 algorithm, in the hybrid-ACS-1 algorithm a pre-

evaluation of the layers is not available.

65

Fill the container using the heuristic filling procedure

Calculate the utilization of each layer

Empty this layer and
add the boxes to the
set of available boxes

Y

N

Has the pre-evaluation
for all layers been

completed?

Is the utilization rate
of the current layer
smaller than UTL?

Calculate the total volume and
width used by this layers and
update problem data (boxes in
the set of available boxes and
the width of the container).

Y N

Update the dimensions of
the container.

Apply ACO algorithm to fill the remaining volume in the
container with the remaining boxes

Calculate the overall volume utilization of the container and
stop.

Figure 6.2. The steps of the hybrid-ACS-2 algorithm (Dereli and Daş, 2010c)

6.3.1. Determination of the parameters of the hybrid-ACS-1 and hybrid-ACS-2

algorithms

A general ACO algorithm has a number of control parameters that affect the

performance of the algorithm. These parameters are shown in Table 6.2.

66

Table 6.2 General ACO parameters (Engelbrecht, 2005).
Parameter Meaning Comment

kn Number of ants

tn Maximum number of iterations

0τ Initial pheromone amount not for Max Min Ant System

p Pheromone persistence 21 , pp for ACS

α Pheromone intensification 1=α for ACS

β Heuristic intensification Not for SACO, ANTS, between 1 and 10

In order to determine the parameters of hybrid-ACS-1 and hybrid-ACS-2 algorithms,

factorial design is used.

A factorial analysis with three control parameters; namely, beta β , number of ants

m and number of iterations iter is presented in order to demonstrate the effects of

hybrid-ACS-1 parameters on the solution quality. Design of experiment with three

control parameters of the hybrid-ACS-1 algorithm is given in Table 6.3 and 6.4. In

order to test the effects of these control parameters (factors), 10 problems from the

BR7 test cases with 3*3*2 (= 18) different setting is run 3 times with different seed

and totally 54 experiments are conducted. Minitab statistical software is used for the

analysis.

Table 6.3. Levels of factors for the factorial design

Factors Levels

beta β 1 2 5

number of ants m , 2 4 6

number of iterations iter 1000 5000

The results of the design of experiment have revealed that only factors: iter and m

significantly affects the performance of the proposed algorithm. The only significant

two-way interaction is detected between parameters β and m . Since the F-ratio of

the parameter m is higher than the others, it can be concluded that it is the most
significant parameter. This reveals that the number of ants (parameter m) in the

algorithm affects the solution quality of the algorithm. Apart from these interactions,

67

there are no significant two-way and three-way interactions between the parameters.

Main Effects plots and Interaction plots of this analysis are also shown in Figure 6.3

and 6.4. As a result of this analysis, the beta β value of 5, number of ants m value

of 6 and number of iterations iter value of 5000 are determined for the proposed

hybrid-ACS-1 algorithm.

Table 6.4. Factorial design on hybrid-ACS-1 response
Analysis of Variance for C8, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

m 2 0,0044598 0,0044598 0,0022299 135,61 0,000
iter 1 0,0005143 0,0005143 0,0005143 31,28 0,000
beta 2 0,0000115 0,0000115 0,0000057 0,35 0,708
m*iter 2 0,0000189 0,0000189 0,0000094 0,57 0,568
m*beta 4 0,0007430 0,0007430 0,0001858 11,30 0,000
iter*beta 2 0,0000226 0,0000226 0,0000113 0,69 0,509
m*iter*beta 4 0,0000476 0,0000476 0,0000119 0,72 0,582
Error 36 0,0005920 0,0005920 0,0000164
Total 53 0,0064097

S = 0,00405505 R-Sq = 90,76% R-Sq(adj) = 86,40%

642

0,765

0,760

0,755

0,750

0,745

50001000

521

0,765

0,760

0,755

0,750

0,745

m

M
ea

n

iter

beta

Main Effects Plot for C8
Data Means

Figure 6.3 Main effects plots

68

521

0,770

0,765

0,760

0,755

0,750

0,745

0,740

beta

M
ea

n

2
4
6

m

Interaction Plot for C8
Data Means

Figure 6.4 Interaction plots

A factorial analysis with four control parameters; namely, beta β , number of ants

m , number of iterations iter and utilization-threshold-level level is presented in

order to demonstrate the effects of hybrid-ACS-2 parameters on the solution quality.

Design of experiment with four control parameters of the hybrid-ACS-2 algorithm is

given in Table 6.5 and 6.6. 10 problems with 3*3*2*2 (= 36) different setting is run

3 times with different seed and totally 108 experiments are conducted for the hybrid-

ACS-2.

Table 6.5. Levels of factors for the factorial design

Factors Levels

beta β 1 2 5

number of ants m , 2 4 6

number of iterations iter 1000 5000

utilization-threshold-level level 0,8 0,85

The results of the design of experiment have also revealed that factors: β , m , iter

and level , all significantly affects the performance of the proposed algorithm.

Among these, the parameter m is again the most significant parameter with its high

F-ratio. It is observed that for the hybrid-ACS-2 algorithm, the parameter level is

also a significant parameter. However, the parameters iter and beta are not so

significant parameters for this algorithm. The findings show that both the number of

69

ants (parameter m) in the algorithm and the selected utilization-threshold-level

(parameter level) affect the solution quality of the algorithm.

Table 6.6. Factorial design on hybrid-ACS-2 response
Analysis of Variance for C9, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
beta 2 0,0001590 0,0001590 0,0000795 5,00 0,009
m 2 0,0040857 0,0040857 0,0020428 128,48 0,000
iter 1 0,0002789 0,0002789 0,0002789 17,54 0,000
level 1 0,0010490 0,0010490 0,0010490 65,97 0,000
beta*m 4 0,0001746 0,0001746 0,0000436 2,74 0,035
beta*iter 2 0,0000063 0,0000063 0,0000031 0,20 0,821
beta*level 2 0,0000302 0,0000302 0,0000151 0,95 0,392
m*iter 2 0,0002503 0,0002503 0,0001252 7,87 0,001
m*level 2 0,0001409 0,0001409 0,0000705 4,43 0,015
iter*level 1 0,0000068 0,0000068 0,0000068 0,43 0,514
beta*m*iter 4 0,0000200 0,0000200 0,0000050 0,31 0,867
beta*m*level 4 0,0000992 0,0000992 0,0000248 1,56 0,194
beta*iter*level 2 0,0000041 0,0000041 0,0000021 0,13 0,878
m*iter*level 2 0,0000237 0,0000237 0,0000119 0,75 0,478
beta*m*iter*level 4 0,0000490 0,0000490 0,0000123 0,77 0,548
Error 72 0,0011448 0,0011448 0,0000159
Total 107 0,0075226

S = 0,00398752 R-Sq = 84,78% R-Sq(adj) = 77,38%

There are also significant two-way interactions between β and m , m and iter and

m and level . However, they are not so significant. The analysis also shows that

there is no significant three-way and four-way interactions of the parameters. Main

Effects plots and Interaction plots of this analysis are also shown in Figure 6.5 and

6.6. As a result of this analysis, the beta β value of 5, number of ants m value of 6,

number of iterations iter value of 5000 and utilization-threshold-level level of value

0,8 are determined for the proposed hybrid-ACS-2 algorithm.

70

521

0,785

0,780

0,775

0,770
642

50001000

0,785

0,780

0,775

0,770
0,850,80

beta

M
ea

n

m

iter level

Main Effects Plot for C9
Data Means

Figure 6.5 Main effects plots

642 50001000 0,850,80

0,784

0,776

0,768

0,784

0,776

0,768

0,784

0,776

0,768

beta

m

iter

level

1
2
5

beta

2
4
6

m

1000
5000

iter

Interaction Plot for C9
Data Means

Figure 6.6 Interaction plots

As a result of this analysis, the β value of 5, m value of 6, iter value of 5000 are

determined for the hybrid-ACS-1 algorithm and the β value of 5, m value of 6, iter

value of 5000 and level (UTL) of value 0,8 are determined for the proposed hybrid-

ACS-2 algorithm. Finally, initial pheromone amount is set to 0.001, α is set to 1,

p1 is set to 0.9 and p2 is set to 0.9.
0τ

71

6.4. Computational work

The proposed ACO algorithms are also tested on LN and BR test cases. These test

cases are also solved by some of the previous work using different heuristic and

meta-heuristic algorithms. The results obtained by the proposed algorithm for these

test cases along with the previously reported results are presented in Table 6.7 and

6.8.

Table 6.7. Comparative results with test cases of LN – heuristic approaches

Problem Loh and
Nee

(1992)*

Ngoi
et al.

(1994)

Bischoff
et al.

(1995)

Bischoff
and

Ratcliff
(1995)

Eley
(2002)

Bischoff
(2003)

Lim
et al.

(2005)

LN01 78.1 62.5 62.5 62.5 62.5 NC* 62.5
LN02 76.8 80.7 89.7 90.0 90.8 NC 80.4
LN03 69.5 53.4 53.4 53.4 53.4 NC 53.4
LN04 59.2 55.0 55.0 55.0 55.0 NC 55.0
LN05 85.8 77.2 77.2 77.2 77.2 NC 76.7
LN06 88.6 88.7 89.5 83.1 87.9 NC 84.8
LN07 78.2 81.8 83.9 78.7 84.7 NC 77.0
LN08 67.6 59.4 59.4 59.4 59.4 NC 59.4
LN09 84.2 61.9 61.9 61.9 61.9 NC 61.9
LN10 70.1 67.3 67.3 67.3 67.3 NC 67.3
LN11 63.8 62.2 62.2 62.2 62.2 NC 62.2
LN12 79.3 78.5 76.5 78.5 78.5 NC 69.5
LN13 77.0 84.1 82.3 78.1 85.6 NC 73.3
LN14 69.1 62.8 62.8 62.8 62.8 NC 62.8
LN15 65.6 59.5 59.5 59.5 59.5 NC 59.5
Mean 74.2 69.0 69.5 68.6 69.9 - 67.0

72

Table 6.8. Comparative results with test cases of LN – metaheuristic approaches

*These values are not computed in this study, ** These values are not available separately.

As can be seen from Table 6.8, hybrid-ACS-2 performs better than the hybrid-ACS-1

algorithm. The hybrid-ACS-2 finds optimal solutions for all problems except for

problems 2, 6, 7, 12 and 13. When the performance of the hybrid-ACS-2 algorithm is

compared to the heuristic approaches available in the literature, the performance gap

between the best performing algorithm and the hybrid-ACS-2 algorithm is only 1.72

%. When compared to the meta-heuristic approaches, the performance gap between

the best performing algorithm and the hybrid-ACS-2 is 3.1 %. Since the hybrid-

ACS-2 algorithm performs better than the hybrid-ACS-1 algorithm, BR test cases are

only solved using the hybrid-ACS-2 algorithm. The obtained results along with the

previously reported results are presented in Table 6.9 and 6.10.

Table 6.9. Comparative results with the test cases of BR – heuristic approaches

Problem Gehring
et al.

(1997)

Bortfeldt
et al.

(1998)

Bortfeldt
et al.

(2001)

Gehring
and

Bortfeldt
(2002)

Bortfeldt,
Gehring,

Mack
(2003)

Moura
and

Oliveira
(2005)

Hybrid-
ACS-1

(this
study)

Hybrid-
ACS-2

(this
study)

LN01 62.5 62.5 62.5 NC* NA** NA 62,5 62,5
LN02 90.7 96.7 89.8 NC NA NA 84,3 80,8
LN03 53.4 53.4 53.4 NC NA NA 53,4 53,4
LN04 55.0 55.0 55.0 NC NA NA 55,0 55,0
LN05 77.2 77.2 77.2 NC NA NA 77,2 77,2
LN06 91.1 96.3 92.4 NC NA NA 82,5 85,2
LN07 82.7 84.7 84.7 NC NA NA 82,9 84,0
LN08 59.4 59.4 59.4 NC NA NA 59,4 59,4
LN09 61.9 61.9 61.9 NC NA NA 61,9 61,9
LN10 67.3 67.3 67.3 NC NA NA 67,3 67,3
LN11 62.2 62.2 62.2 NC NA NA 62,2 62,2
LN12 78.5 78.5 78.5 NC NA NA 74,8 77,3
LN13 85.6 85.6 85.6 NC NA NA 81,6 81,6
LN14 62.8 62.8 62.8 NC NA NA 62,8 62,8
LN15 59.5 59.5 59.5 NC NA NA 59,5 59,5
Mean 70.0 70.9 70.1 - 70.9 70.3 68,5 68, 7

Problem Bischoff
et al. (1995)

Bischoff
and Ratcliff

(1995)

Eley (2002) Bischoff
(2003)

Lim et al.
(2005)

BR1 81.76 83.79 NA* 89.39 87.40
BR2 81.70 84.44 NA* 90.26 88.70
BR3 82.98 83.94 NA* 91.08 89.30
BR4 82.60 83.71 NA* 90.90 89.70
BR5 82.76 83.80 NA* 91.05 89.70
BR6 81.50 82.44 NA* 90.70 89.70
BR7 80.51 82.01 NA* 90.44 89.40

Mean 81.97 83.50 88.75 90.55 89.13

73

Table 6.10. Comparative results with the test cases of BR – metaheuristic
approaches

An average of 79.57% volume utilization is obtained for the BR test cases with the

hybrid-ACS-2 algorithm. Compared with other approaches for the BR test cases,

there is a performance gap of 14.16% and a performance gap of 12.12% with the best

performing meta-heuristic approach and the best performing heuristic approach,

respectively.

76
76,5

77
77,5

78
78,5

79
79,5

80
80,5

81

BR1 (3) BR2 (5) BR3 (8) BR4 (10) BR5 (12) BR6 (15) BR7 (20)

Av
er

ag
e

U
til

iz
at

io
n

R
at

e

Problem (Box Type)

Figure 6.7. Performance of the hybrid-ACS-2 algorithm for different problems

The performance of the proposed algorithm is changed with the number of box types as can

be seen in Figure 6.7. As the number of box type increase; first a sharp increase, but

then a gradual decrease is observed (similar to the proposed BA presented in Chapter 5).

The best utilization rate is obtained for the BR3 problem set with 8 different box

types.

Problem Gehring
et al.

(1997)

Bortfeldt
et al.

(1998)

Bortfeldt
et al.

(2001)

Gehring,
Bortfeldt
(2002)

Bortfeldt,
et al.

(2003)

Mack et
al.

(2004)

Moura,
Oliveira
(2005)

Hybrid-
ACS-2

(this
study)

BR1 85.80 92.63 87.81 88.10 93.52 93.70 89.07 77.75
BR2 87.26 92.70 89.40 89.56 93.77 94.30 90.43 79.41
BR3 88.10 92.31 90.48 90.77 93.58 94.54 90.86 80.41
BR4 88.04 91.62 90.63 91.03 93.05 94.27 90.42 80.40
BR5 87.86 90.86 90.73 91.23 92.34 93.83 89.57 79.94
BR6 87.85 90.04 90.72 91.28 91.72 93.34 89.71 79.87
BR7 87.68 88.63 90.65 91.04 90.55 92.5 88.05 79.23
Mean 87.50 91.26 90.10 90.43 92.70 93.78 89.73 79.57

74

In Figure 6.8, the convergence graph of the hybrid-ACS-2 algorithm for a problem

from BR7 is presented. It is observed that the algorithm converges after 300

iterations (approximately) which is reasonable.

Figure 6.8 Convergence graph of a problem from test case BR7

6.5. Conclusion

In this chapter, two different algorithms based on ACO named hybrid-ACS-1 and

hybrid-ACS-2 is presented. The hybrid-ACS-2 algorithm is proposed in an attempt to

improve the performance of the hybrid-ACS-1 algorithm by reducing the number of

nodes in the solution (each node represents a box to be filled into the container). The

performances of both the hybrid-ACS-1 and its later version hybrid-ACS-2 are

evaluated via the tests on well known test cases. The comparison between the

proposed approaches and other approaches available in the literature indicated that

ACO based solution approaches proposed in this study are not very high performing.

The reasons behind this situation are discussed in detail in Chapter 9.

75

CHAPTER 7

CONTAINER LOADING SUPPORT SYSTEM

7.1. Introduction

This chapter describes the container loading support system (CLSS) developed to

determine and visualize the container packing pattern of a CL process. The proposed

CLSS composes of three main components; a Bees Algorithm and an Ant Colony

System as the computational algorithms, the graphical user interface (GUI) and a

simulation program. The aim of the designed system is to make the packing pattern

more visible to the user in order to simplify the loading process. An illustrative

example – a CL problem from the literature - is also provided to introduce the

operation of the system and to prove its efficiency.

In the previous chapter, the nature of the CL problem and its importance for

industrial applications is discussed briefly. Even if a CL problem is solved to its

optimum, packing a shipment into a container is a complex process. It often takes

several days to allocate the pooled goods into the number of containers and then to

pack the allocated goods into the containers. Occasionally, workers must unload

some containers and then reload them in a different pattern to pack more goods in the

containers (Chien and Deng, 2002). Chien and Deng (2002) were the first researchers

that realized this difficulty. They proposed a decision support system (DSS) based on

a heuristic packing procedure. Another DSS for a similar problem namely Air-Cargo

Loading Problem was proposed by Chan et al. (2006). The two-phased system is

proposed to load air cargo pallets efficiently using Linear Programming and a

heuristic.

Different from the previously proposed DSS that are using heuristic algorithms, the

designed CLSS is using SI based algorithms namely Bees Algorithm and Ant Colony

76

System as the core of the system. The details about these algorithms are previously

presented in Chapter 5 and 6. Other than the computational algorithms, the CLSS has

a graphical user interface (GUI) and a simulation program that visualize the actual

packing process in a 3D manner.

7.2. The Container Loading Support System

The CLSS composed of the computational algorithms module containing two

algorithms (one is a ant colony based algorithm and the other one is a recently new

SI-based algorithm called Bees Algorithm), the GUI and a simulation program that

visualize the actual packing process. The data flow of the system is schematized in

Figure 7.1 (Dereli and Daş, 2010a).

Figure 7.1. Data Flow Diagram of the CLSS system (Dereli and Daş, 2010a).

In order to operate the CLSS, the user should select the parameters of the

computational algorithm and problem data from the GUI. If the parameters of the BA

or the ACS are selected by the user, it is possible to run the relevant algorithms and

see the obtained results found by the selected algorithm. By comparing the obtained

results, the user could view the best result provided via CLSS. The parameters of the

BA algorithm and the ACS algorithm are introduced in Chapter 5 and 6 in detail.

Problem Database Visual File
Problem data

Comp.Algs.

2.0

User’s choice

Sim. Prog.

3.0

Computed volume
utilization

Visualized packing pattern
USER

USER

User selected parameters

GUI
1.0

User selected problem

77

Later, this data is sent to the computational algorithm where actual processing is

done. By using the corresponding problem data (obtained from the problem

database) and the parameters defined previously by the user, the module containing

both algorithms starts working. When the pre-determined number of iterations is

reached, the data about the volume utilization of the solution is sent to the GUI and

the data about the position of each box is sent to a file called visual file. The visual

file contains the x, y and z coordinates of each box of the final solution computed by

the computational algorithm. Finally, the simulation program visualizes the final

packing pattern using the visual file.

7.3. The Graphical User Interface and the Simulation Program

The GUI of the CLSS is designed in Borland Builder. This interface is used to select

the problem type and the parameters of the computational algorithms and to visualize

the packing pattern. The snapshot of the interface is supplied in Figure 7.2.

Figure 7.2. The snapshot of the GUI

A simulation program is used to visualize the packing pattern. The simulated

program is coded in OpenGL and integrated to the GUI for user friendly use.

78

7.4. An Illustrative Application

The following example is supplied to demonstrate how the CLSS system works in a

step-by step manner. The problem is selected from the LN (1992) test cases. The aim

is to allocate a set of boxes with varying dimensions into a container without any

overlap to maximize the volume utilization of the container for each problem.

Step 1: The user selects a test case that is composed of a set of problems from the

GUI and determines the individual problem from this set. The snapshot of the CLSS

presented in Figure 7.3 illustrates the Problem Selection window used for this

operation. Suppose that the user selects the LN test cases and problem number 12. A

container having a width of 3200, depth of 2400 and height of 1000 units and a total

of 120 boxes of 6 different box types is considered in this example. The dimensions

of the boxes corresponding to the selected problem are presented in Table 7.1.

Step 2: Following the selection of the problem from the Problem Selection window,

the user enters the parameters of the preferred computational algorithm directly to

the cells in the Problem Parameters section. The Problems Parameters section

includes the parameters regarding the computational algorithms. These parameters

are; number of scout bees n, number of selected sites m, number of elite sites e

chosen from m sites, number of bees recruited to search e elite sites nep, number of

bees recruited to search m-e other sites nsp and maximum number of iterations as the

termination criteria for the BA algorithm and beta β , number of ants m and

maximum number of iterations as the termination criteria for the ACS algorithm.

Table 7.1. Data about the user selected problem

Type Width Depth Height Number of boxes

1 900 275 200 10

2 400 350 275 33

3 1200 300 250 10

4 500 375 275 27

5 800 400 200 15

6 600 300 225 25

79

Suppose that, for the solution of the selected LN problem the following set of BA

parameters is used; number of bees (population) n = 5, number of selected sites m =

3, number of elite sites e = 2, number of bees send to elite points nep = 4, number of

bees send to other selected points nsp = 3 and maximum number of iterations = 100.

Although such a choice of parameters is used for this example, the user is given the

opportunity to try different values for the parameters of the computational algorithm.

Figure 7.3. The dialog window for the Problem Selection

Step 3: Having selected the problem and the corresponding parameters of the

selected algorithm, the user can run the selected computational algorithm by clicking

the “RUN ACS” or “RUN BA” (one at a time).

Step 4: The BA algorithms work until the number of iterations are reached. Then,

the data about the selected problem and the obtained solution is viewed in the

Problem Details section of the GUI. Besides the value of the obtained solution, it is

also possible to learn the elapsed time passed to solve the problem in Time Details

section.

Step 5: When the user clicks the “ILLUSTRATE” button on the spreadsheet, the

simulation program attached to the GUI executes and the program visualize the

packing pattern. The program reads the x, y and z coordinates of each box from the

visual data file and shows how each box is loaded into the 3D container one by one.

80

The resultant 3D graph of the packing pattern can be viewed from different angles

using the arrow buttons located below the three dimensional graph. In the three

dimensional graph each loaded box is shown with different colors. It is also possible

both to pause the simulation by using the “PAUSE” button and to adjust the speed of

the simulation by using the “-/+” buttons in both sides of the Speed bar.

Figure 7.4 illustrates the final packing pattern for the selected problem together with

the volume utilization of the problem in the Problem Details section. As can be seen

from Figure 7.4 and 7.5, the volume utilization of 78.51% (optimal value for this

problem) is reached in 16 seconds.

Figure 7.4. The final packing pattern obtained for the problem with 120 boxes – BA
algorithm

81

Figure 7.5. The final packing pattern obtained for the problem with 120 boxes- BA
algorithm (scene from a different angle)

It is possible to solve the same problem with the ACS algorithm. When the current

problem is solved with the ACS algorithm (the parameters that are determined in

Chapter 6 is used), the final packing is supplied in Figure 7.6.

Figure 7.6. The final packing pattern obtained for the problem with 120 boxes –
ACS algorithm

82

7.5. Conclusion

In this chapter, a CLSS to determine and visualize the container packing pattern of a

CL process is presented. The system composes of three main components; the

computational algorithms based on SI-based algorithm (BA and ACS) hybridized

with a heuristic filling procedure, the GUI and the Simulation Program. The module

of the Computational Algorithms solves the selected problem by using the input from

the GUI. Here the user could run both algorithms and could view the best obtained

solution found by these algorithms via CLSS. The GUI, which is coded in Borland

Builder, enables the determination of problem related choices by the user (input to

the Computational Algorithms), and the Simulation Program which is coded via

OpenGL, illustrates the final packing pattern in a 3D manner. The CLSS is also

suitable for decision makers

The presented Simulation Program, which is a component of the proposed DSS, can

be used independent of the CLSS to visualize a packing pattern computed with a

different algorithm especially to check if there occurs an overlapping between boxes

or not. Thus, this component of the system can also be used for academic work on

CL problems where visualizing the packing pattern is necessary.

83

CHAPTER 8

MULTI-OBJECTIVE CONTAINER LOADING PROBLEM

8.1. Introduction

As briefly discussed in Chapter 3, many approaches have been developed to solve

CL problems along with many practical constraints and different objective functions.

There are several reasons of this popularity as reported in Ertek and Kılıç (2006).

First of all, the CL problem is a NP-hard problem (Pisinger, 2002) and it has been

recognized that it has a wide range of industrial applications.

Despite this considerable attention, studies on CL problems with multiple objectives

are very limited (Liu et al., 2006). This issue was also pointed out in Dyckhoff

(1990) in his typology where he stated that for many CPP, more than one objective

has to be considered. One of the main contributions of this thesis is to study CL

problems with multiple objectives which are frequently encountered in a typical

transportation process. The case, from which the described problem is motivated, is

presented in the following Section. Next, the described problem and problem

assumptions are supplied in Section 8.3. In order to solve the mentioned problem,

two multi-objective optimization methods; goal programming and weighted-sum

approach are utilized. Due to the complexity of the model (which is presented in

Chapter 3), for both approaches a SA algorithm hybridized with a heuristic filling

procedure (previously described in Chapter 4) is used to solve the offered models.

Some introductory information about the SA is given in Section 8.4. Finally, the

computational work and the relevant results obtained as a result of the both model

are shared in Sections 8.5.

84

8.2. The Case Study

A medium-sized distribution company in Gaziantep (a metropolitan province located

in south-east of Turkey) delivers goods ordered by supermarkets which are located in

the south-east part of Turkey. The firm mainly distributes Procter and Gamble’s

products and their own products (paper towels, toilet tissues, paper napkins, etc.)

which are manufactured at their own plant in Gaziantep, Turkey. The orders are

stored in a database and a decision-maker decides which orders/ products to load to

their own vehicles or to rented carriers. The rented trucks are paid according to the

total weight of the shipment regardless of the total volume (for example, 10 $ per

ton). Thus, the decision-maker prefers to load and ship a shipment with a higher total

weight into its own vehicles rather than a shipment with a low total weight. On the

other hand, shipping the shipment in an on-time manner is an important issue for the

company. If the decision-maker can utilize the capacity of the owned vehicle in the

best possible way, he/she can guarantee the on-time delivery of all of the products in

its own vehicle.

Another issue that the decision-maker should take into account is the relation

between the volume of the items and the weight of the items. In particular, the weight

of the house-hold, personal care, sanitary paper products and shaving products per

unit volume drastically differs from one product to the other that is x cm3 of product

A, which may yield a smaller weight than y cm3 of product B (x >>y). Having

considered this situation, each day the decision-maker should load the items (boxes) -

that would provide the highest total weight - to the vehicles in the best possible way

to decrease transportation cost and in turn increase the profitability of the company.

Motivated from the above described situation, two objective functions for the CL

problem are defined in this thesis. The first objective is to obtain a packing pattern

with maximum total weight and the second objective is to maximize the volume

utilization of the vehicle. The mentioned goals and the proposed models for the

solution of the problem is introduced in the next Section.

85

8.3. Problem formulation

CL problems with multi-objectives can be defined as follows; Given a set of n items

with width (iw), depth (id), height (ih) and weight (iweight) and a single container

with known dimensions),,(HDW where Wwi ≤ , Hhi ≤ and Ddi ≤ , the problem

is to pack items into the container without any overlap while maximizing the total

weight of the packed items and the utilization rate of the container (Dereli and Daş,

2010b). The problem is solved under the following assumptions:

(1) Items are rectangular boxes defined with known dimensions),,(iii hdw

(2) Each box can be arranged originally in the container in a maximum of 6

“rotation variants” if not prohibited.

(3) Each box can lie on the container floor or can be stacked on top of another.

(4) Stability of the box arrangements is not considered thus the use of spacing

material is considered to avoid possible problems.

8.4. Simulated annealing (SA) algorithm

SA is a method for obtaining good solutions to difficult optimization problems and is

introduced by Kirkpatrick et al. (1983) as an analogy to the statistical mechanics of

annealing in solids. It is a non-derivative method which has received much attention

over the last few years (Eglese, 1990). Similar to other non-derivative methods such

as Genetic algorithms, Random search, Tabu search and complex/simplex, SA is

more likely to find a global optimum and not be stuck on local optima as gradient

methods might do. It is also slightly less computational expensive as compared to

Genetic Algorithms (Andersson, 2000).

SA differs from iterative algorithms in that it has a mechanism which helps it to

escape from local optimum and rather reach to global optimum. This is because SA

not only accepts neighborhood solutions better than the current solution, but also

accepts neighborhood solutions worse than current solution with a probability. This

probability which is known as acceptance probability is related to the temperature,

which decreases during the process. As the temperature decreases, the acceptance

86

probability also decreases. This means that as the temperature decreases, the

probability of accepting worse neighborhood solutions decreases. During the

annealing process, the temperature decreases gradually. At each temperature, a

predetermined number of iterations to search the solution space are conducted. The

search terminates when the stopping criteria are met (Dereli and Daş, 2007).

Both the proposed goal programming model and the weighted-sum model is solved

with a SA algorithm which is the adapted to solve the multi objective problems. The

proposed algorithms are motivated from the work of Baykasoğlu (2005). The

fundamentals of the proposed algorithm are summarized as follows;

• A solution is represented by a bit string representation. For example, bit string

representation of a solution composed of seven different types of boxes, for which

only the base rotation is permitted, is presented in Figure 8.1. It should be noted that

the length of this string is determined by the number of different types of boxes in

the problem. This structure is preferred to the structure in which each bit in the string

represents a box in the problem. In a problem where there are 100 boxes of seven

different box types, the second structure will yield a bit string of length 100 which

will be a very inconvenient and time-consuming structure for the large-sized

problems.

Figure 8.1. Neighborhood solution generation using the flip operator (only for base-

rotated boxes)

• In order to reach neighborhood solutions, the flip operator used for the BA

(explained previously in Chapter 5) is employed.

• For the goal programming approach, objective function of a solution is

presented as the weighted sum of the deviations from the defined goals, whereas for

1 0 0 1 1 0 1 1 0 0 0 1 0 1 flip

87

the weighted-sum approach, objective function of a solution is presented as the

weighted-sum of the normalized objectives.

• For the solution of the goal programming model; if a neighborhood solution

having the objective value of (0.11) is obtained as a result of the flip operator, this

solution should be accepted when the previous solution has an objective value of

(0.12). Because the sum of the deviations are minimized in the reached neighborhood

solution. However, a neighborhood solution having an objective value (0.13) could

be accepted with probability or rejected since it has a worse objective value than the

current solution. At this point acceptance or rejection is related to the temperature

which greatly affects the acceptance probability.

For the solution of the weighted-sum model, suppose that a neighborhood solution

having the objective value of (0.12) is obtained as a result of the flip operator. Then,

this solution will be accepted since the previous solution has an objective value of

(0.11). The value of the objective function is maximized in this newly reached

neighborhood solution. However, a neighborhood solution having an objective value

(0.10) could be accepted with probability or rejected since it has a worse objective

value than the current solution. At this point acceptance or rejection is related to the

temperature which greatly affects the acceptance probability.

A generic pseudo-code of the SA algorithm which is hybridized with the heuristic

filling procedure - used for the both approaches- is presented in Table 8.1.

88

Table 8.1. A pseudo-code of the proposed SA

Step 1. Generate an initial solution and calculate the value of the objective function (fitness0) using

the heuristic filling algorithm;

Solution = fitness0;

Step 2. Parameter initialization;

2.1. Set the annealing parameters; Tin. Tf. ilmax and α.

2.2. Read the number of box types N.

Step 3. Annealing Schedule;

3.1. Inner loop initialization; il = 0;

3.2. At every temperature achieve equilibrium. Execute inner loop until the condition in 3.2.4

is met;

3.2.1. il =il + 1;

3.2.2. Generate a neighborhood solution and calculate the value of the objective function

(fitnessil) using the heuristic filling algorithm;

3.2.3. Accept or reject the solution as described previously;

3.2.4. IF (il ≥ ilmax)

THEN terminate inner loop and GOTO step 3.3

ELSE continue inner loop and GOTO step 3.2.1

3.3. Titer+1= α * Titer;

3.4. IF (Titer+1 < Tf)

THEN terminate inner loop and GOTO step 4

ELSE continue inner loop and GOTO step 3.1

Step 4. Terminate the best solution Solution and stop.

8.5. Computational work

8.5.1. Solution of container loading (CL) problems with single objective function

The proposed algorithm for the multi-objective container loading (MOCL) problem

is first tested on LN and BR test cases which are composed of problems defined with

a single objective function. Following choices are made for the solution of the LN

test cases with the SA algorithm.

• Initial value of the temperature inT is set to 200.

• To change the temperature a proportional temperature function is employed.

 99.08.0)()1(≤≤=+ αα whereiterTiterT (8.1)

89

α is a constant and lies between 0.8 and 0.99. In this work, the value of α is 0.987.

• The number of iterations maxil that should be performed at each temperature is

equal to the number of box types N in each order.

• When the value of the final temperature fT falls below 0.05 the algorithm is

terminated.

LN test cases are also solved by some of the previous work using different heuristic

and meta-heuristic algorithms. The results obtained by the proposed algorithm for

these test cases along with the previously reported results are presented in Table 8.2

and 8.3.

Table 8.2. Comparative results with the test cases of LN – heuristic approaches

* These values are not computed and/or presented. ** These values are not available separately.

Problem Loh and
Nee
(1992)*

Ngoi
et al.
(1994)

Bischoff
et al.
(1995)

Bischoff
and
Ratcliff
(1995)

Eley
(2002)

Bischoff
(2003)

Lim
et al.
(2005)

LN01 78.1 62.5 62.5 62.5 62.5 NC* 62.5
LN02 76.8 80.7 89.7 90.0 90.8 NC* 80.4
LN03 69.5 53.4 53.4 53.4 53.4 NC* 53.4
LN04 59.2 55.0 55.0 55.0 55.0 NC* 55.0
LN05 85.8 77.2 77.2 77.2 77.2 NC* 76.7
LN06 88.6 88.7 89.5 83.1 87.9 NC* 84.8
LN07 78.2 81.8 83.9 78.7 84.7 NC* 77.0
LN08 67.6 59.4 59.4 59.4 59.4 NC* 59.4
LN09 84.2 61.9 61.9 61.9 61.9 NC* 61.9
LN10 70.1 67.3 67.3 67.3 67.3 NC* 67.3
LN11 63.8 62.2 62.2 62.2 62.2 NC* 62.2
LN12 79.3 78.5 76.5 78.5 78.5 NC* 69.5
LN13 77.0 84.1 82.3 78.1 85.6 NC* 73.3
LN14 69.1 62.8 62.8 62.8 62.8 NC* 62.8
LN15 65.6 59.5 59.5 59.5 59.5 NC* 59.5
Mean 74.2 69.0 69.5 68.6 69.9 - 67.0

90

Table 8.3. Comparative results with the test cases of LN – metaheuristic approaches

* These values are not computed and/or presented. ** These values are not available separately.

As can be seen from Table 8.3, the proposed algorithm in this study finds optimal

solutions for all problems except for problems 2, 6, 7 and 13 (the average

computation time for all problems is 138.86 seconds). When the performance of the

proposed algorithm is compared to the heuristic approaches available in the

literature, the algorithm performs quite well after the heuristic proposed in Bischoff

et al. (1995). When compared to the meta-heuristic approaches, the performance gap

between the best performing algorithm and the proposed algorithm is only 1.9 %.

Following the solution of LN test cases, the test cases from BR are also solved. For

these problems - which are harder as compared to LN test cases - SA parameters are

re-determined experimentally where the values of the variables inT is 5000, α is

0.987, maxil is N (equal to the number of box types in each problem) and fT is

0.0001. The results obtained by the proposed algorithm for the test cases along with

the previously reported results are presented in Table 8.4 and 8.5.

Problem Gehring
et al.
(1997)

Bortfeldt
et al.
(1998)

Bortfeldt
et al.
(2001)

Gehring
and
Bortfeldt
(2002)

Bortfeldt,
Gehring,
Mack
(2002)

Moura
and
Oliveira
(2005)

This work

LN01 62.5 65.5 62.5 NC* NA** NA** 62.5
LN02 90.7 96.7 89.8 NC* NA** NA** 90.1
LN03 53.4 53.4 53.4 NC* NA** NA** 53.4
LN04 55.0 55.0 55.0 NC* NA** NA** 55.0
LN05 77.2 77.2 77.2 NC* NA** NA** 77.2
LN06 91.1 96.3 92.4 NC* NA** NA** 85.8
LN07 82.7 84.7 84.7 NC* NA** NA** 84.2
LN08 59.4 59.4 59.4 NC* NA** NA** 59.4
LN09 61.9 61.9 61.9 NC* NA** NA** 61.9
LN10 67.3 67.3 67.3 NC* NA** NA** 67.3
LN11 62.2 62.2 62.2 NC* NA** NA** 62.2
LN12 78.5 78.5 78.5 NC* NA** NA** 78.1
LN13 85.6 85.6 85.6 NC* NA** NA** 83.9
LN14 62.8 62.8 62.8 NC* NA** NA** 62.8
LN15 59.5 59.5 59.5 NC* NA** NA** 59.5
Mean 70.0 70.9 70.1 - 70.9 70.3 69.6

91

Table 8.4. Comparative results with the test cases of BR – heuristic approaches

*These values are not available separately.

Table 8.5. Comparative results with the test cases of BR– metaheuristic approaches

BR test cases are solved in a reasonable amount of time (195 seconds – average

computation time for single problem) by using the proposed SA algorithm with a

filling performance of 86.26%. When compared to the best performing algorithm,

there is a performance gap of 4.6%. The results obtained for the both test cases reveal

that the proposed algorithm is a suitable tool for solving container loading problems

with its relatively simple structure.

The convergence graph obtained for a problem from test case BR1 is illustrated in

Figure 8.2. It is obvious from the graph that, the algorithm converges after a

reasonable number of iterations.

Problem Bischoff
et al.

(1995)

Bischoff
and Ratcliff

(1995)

Eley
(2002)

Bischoff
(2003)

Lim et al.
(2005)

BR1 81.76 83.79 NA* 89.39 87.40
BR2 81.70 84.44 NA* 90.26 88.70
BR3 82.98 83.94 NA* 91.08 89.30
BR4 82.60 83.71 NA* 90.90 89.70
BR5 82.76 83.80 NA* 91.05 89.70
BR6 81.50 82.44 NA* 90.70 89.70
BR7 80.51 82.01 NA* 90.44 89.40

Mean 81.97 83.50 88.75 90.55 89.13

Problem

Gehring
et al.

(1997)

Bortfeldt
et al.

(1998)

Bortfeldt
et al.

(2001)

Gehring
and

Bortfeldt,
(2002)

Bortfeldt,
Gehring,
Mack,
(2003)

Moura,
Oliveira
(2005)

This
work

BR1 85.80 92.63 87.81 88.10 93.52 89.07 86.38
BR2 87.26 92.70 89.40 89.56 93.77 90.43 87.70
BR3 88.10 92.31 90.48 90.77 93.58 90.86 87.06
BR4 88.04 91.62 90.63 91.03 93.05 90.42 86.61
BR5 87.86 90.86 90.73 91.23 92.34 89.57 86.10
BR6 87.85 90.04 90.72 91.28 91.72 89.71 85.47
BR7 87.68 88.63 90.65 91.04 90.55 88.05 84.49
Mean 87.50 91.26 90.10 90.43 92.70 89.73 86.26

92

Figure 8.2. Convergence graph for the hybrid-SA algorithm

8.5.2. Solution of container loading (CL) problems with multi-objective

functions (through a real example)

Many methods are available for solving Multi Objective Optimization (MMO)

problems, and many of them involve converting the MOO problem into one or a

series of Single Objective Optimization (SOO) problems. Each of these problems

involves the optimization of a ‘scalarizing’ function, which is a function of original

objectives, by a suitable method for SOO (Rangaiah, 2009). Thus, there are many

MOO methods available. In Figure 8.3 these methods are classified as generating

methods and preference-based methods.

93

Figure 8.3. Classification of MOO methods (Rangaiah, 2009)

Generating methods generate one or more Pareto-optimal solutions without any

inputs from the decision maker; on the other hand, preference-based methods utilize

the preferences specified by the decision makers at some stage(s) in solving the

MOO problem (Rangaiah, 2009).

No preference method, posteriori methods using scalarization and posteriori methods

using multi-objective approach are generating methods. In the No preference method,

decision maker do not articulate her/his decisions during the process. Examples of

No preference method are the method of global criterion and multiple objective

proximal bundle method.

For the methods in which the decision-maker articulates her/his preferences after the

process, the decision-makers are given a set of Pareto optimal solutions from which

the decision-maker is free to select the most suitable one that reflects her/his

preference. Posteriori methods using the scalarization approach includes the e-

constraint and weighting methods; whereas Posteriori methods using Multi-objective

approach includes population-based methods such as non-dominated sorting Genetic

Algorithm, multi-objective Differential Evolution and multi-objective Simulated

Annealing.

94

Preference based methods include the Priori methods and Interactive methods. If the

decision-maker articulates her/his preferences before the process, methods on Priori

articulation of preferences are used. Value function methods, lexicographic ordering and

goal programming are examples of these methods.

Methods, which include interaction with the decision makers during the solution of

the problem, are called Interaction methods. Examples of these methods are

interactive surrogate worth trade-off method and the NIMBUS method (Rangaiah,

2009).

In the previous section, the performance of the SA algorithm that is hybridized with

heuristic filling procedure was discussed. This section will focus on the solution of

the previously mentioned MOCL problem with two different methods namely Goal

programming (Priori methods) and Weighted-sum (Posteriori methods using the

scalarization approach).

For both of the selected approaches, problem data that has been collected from the

company mentioned in Section 8.2 is used. The mentioned company distributes

Procter and Gamble’s products and their own products (paper towels, toilet tissues,

paper napkins, etc.), which are manufactured at their own plant. They provided their

order lists which include the products (12 different products in the example) to be

shipped in a particular day as well as quantities, dimensions (width x depth x height)

and weights of the boxes. An order list including all of the required data for the

solution of the MOCL problem is supplied in Table 8.6. The company uses their own

vehicles having a loading capacity of (530x220x210) cm3 (in width x depth x height)

and weight capacity of 7200 kg in order to carry their orders.

95

Table 8.6. An order list including all of the required data for MOCL problem

Product
ID

Product
Description

Dimensions (cm)
Width/Depth/Height

Number
of boxes

Weight of
boxes (kg)

Total
volume (cm3)

1 detergent 40 / 36 / 28 325 20 13104000
2 bleaching liquid 54 / 28 / 30 25 22 1134000
3 personal care 54 / 28 / 30 75 2.35 3402000
4 detergent 39 / 29 / 32 75 20 2714400
5 shaving product 15 / 10 / 20 10 1.47 30000
6 baby care 42 / 37 / 25 150 2.8 5827500
7 toothpaste 36 / 18 / 18 3 3.72 34992
8 shampoo 18 / 17 / 22 25 4.97 168300
9 shampoo 22 / 17 / 22 50 5 411400

10 shampoo 12 / 11 / 16 5 1.33 10560
11 bleaching liquid 30 / 27 / 40 20 17.6 648000
12 shaving product 19 / 7 / 21 3 0.12 8379

TOTAL 766 9905.37 27493531

Both models are solved with the proposed SA algorithm where the parameters inT is

5000, α is 0.987, maxil is N (equal to the number of box types in each problem) and

fT is 0.0001.

8.5.2.1. Goal Programming model

Goal programming is a Priori articulation method and has been employed for the

solution of numerous types of MOO problems in the literature. Marler and Arora

(2004) have also underlined that the most common way of conducting multi-

objective optimization is by priori articulation of the decision-makers preferences.

This means that before the actual optimization is conducted the different objectives

are somehow aggregated to one single figure of merit.

Goal programming (GP) was first introduced by Charnes and Cooper (1961) as a tool

to resolve infeasible linear programming (LP) problems. It is one of the most

commonly used mathematical programming tools to model multiple-objective

optimization problems (Baykasoğlu, 2005). There are two main methods for solving

GP models; weighted GP and preemptive GP. In the weighted GP method, the goals

are assigned weights and a single-objective function is formulated as the

minimization of weighted deviations from the defined goals. In preemptive GP, the

goals are grouped according to their importance and more important goals are

96

achieved before less important goals. In this study, the MOCL container loading

problem is transformed to a SOO problem using weighted GP method.

For the presented goal programming model the following notations are used;

1, 2,... ;

1,
0,

,

,

_

th

i

i i i i i

i

c c

c

t

i n index for the boxes

if the i box is packed
x

otherwise
v Volume of box i where v w d h

weight Weight of box i
V Volume of the container c where V W D H
u Volume utilization rate of the container c
t weight

⎧ ⎫
⎨ ⎬
⎩ ⎭

= × ×

= × ×

Total weight of the packed boxes

Goal 1: Obtaining a packing pattern having total weight as close to max_t weight

(weight capacity of the owned vehicle) as possible where −
2d is the under

achievement and +
2d is the over achievement of the weight goal.

i

n

i
it

t

xweightweighttwhere

weighttddweightt

∑
=

+−

=

=−+

1

max22

_

,__
 (8.2)

Goal 2: Maximizing the volume utilization rate cu of the container c, where −
1d is

the under achievement and +
1d is the over achievement of the volume utilization

goal.

c

i

n

i
i

cc V

xv
uwhereddu

∑
=+− ==−+ 1

11 ,1 (8.3)

In order to reach these goals, a weighted GP model is formulated. The objective is to

minimize the weighted sum of deviations from the defined goals.

97

1 1 2 2

1 1

2 2 max

1 2

1 1 2 2

min

. . 1

_ _
1

(0, 1) 1, 2,...

, , , 0

c

t

i

d d

s t u d d

t weight d d t weight

x where i n

d d d d

λ λ

λ λ

− −

− +

− +

− + − +

+

+ − =

+ − =

+ =
∈ =

≥

 (8.4)

As the defined goals are of different magnitudes, the goals are normalized using the

worst and the best possible values of the objectives. In order to solve the proposed

weighted GP model, a SA algorithm is designed which is described in the next

section. The goals are given weights between 0 to 1 by 0.1 increment/decrements.

The trade-offs between these two goals can be seen in Table 8.7.

Table 8.7. Results Obtained for the MOCL Problem
Weights
(Goal1,
Goal2)

(0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4) (0.7, 0.3) (0.8, 0.2) (0.9, 0.1)

Goal 1 –
weight max. 6713,37 6713,37 7157,06 7157,06 7150,41 7150,41 7150,41 7151.37 7151.37

Goal 2 –

volume util.
87,51 87,51 86,13 86,13 86,09 86,09 86,09 85,96 85,96

Dev. from
Goal 1 (kg) 486,63 486,63 42,94 42,94 49,59 49,59 49,59 48,63 48,63

Dev. from
Goal 2 (%) 12,49 12,49 13,87 13,87 13,91 13,91 13,91 14,04 14,04

Weighted
sum of
deviations 0,192488 0,192488 0,144664 0,144664 0,145988 0,145988 0,145988 0,147154 0,147154

The results offer a set of solutions for the decision maker. In the described situation,

the decision-maker seeks a solution which provides a good balance between the

defined goals. In this case, the decision maker should choose the packing pattern

86.13% of volume utilization and 7157.06 kg, which yields the smallest weighted

sum of deviations from the defined goals. The convergence graph for this solution

can be seen in Figure 8.4 and 8.5. If the decision-maker favors this solution, the final

view of the packing pattern for this order is shown in Figure 8.6.

98

-200
0

200
400
600
800

1000
1200
1400
1600
1800
2000

0 200 400 600 800 1000 1200 1400 1600

Number of iterations

D
ea

vi
at

io
n

fr
om

 th
e

"w
ei

gh
t

m
ax

im
iz

at
io

n"
 g

oa
l

Figure 8.4. Convergence graph for the first goal

0

0,05

0,1

0,15

0,2

0,25

0 200 400 600 800 1000 1200 1400 1600

Number of iterations

D
ev

ia
tio

n
fr

om
 th

e
"v

ol
um

a
ut

ili
za

tio
n"

 o
bj

ec
tiv

e

Figure 8.5. Convergence graph for the second goal

If transporting as many goods as possible to obtain an on-time delivery is an

important goal for the decision maker, then the packing pattern with the 87.51% of

volume utilization can be a good solution. In spite of this, if a very profitable solution

is desired, the decision maker can choose the packing pattern with 86.13% of volume

utilization and 7157.06 kg of total weight, since this packing pattern has the highest

total weight among the other solutions. At this stage, it is decision maker’s job to

select the best alternative by taking into account the company’s transportation policy,

profitability and on-time delivery of the shipments.

99

Figure 8.6(a). Filled container – side view

Figure 8.6(b). Filled container – top view

Finally, the problem is also solved by considering each goal individually. This way

the differences between the solution obtained by considering one and more

objectives can be figured out. The single objective problems are also solved with the

same set of SA parameters which are used for the multi-objective problem. In case of

the consideration of the goal “maximization of weight” alone, a total weight of

7173.52 kg and a volume utilization of 83.06% is achieved whereas when only the

goal “maximization of volume utilization” is considered, a total weight of 6713.37

kg and a volume utilization of 87.51% is achieved. As it is obvious, the proposed

solution with 86.13% of volume utilization and 7157.06 kg is a satisfactory and more

desirable solution for the company as compared to solutions obtained from the

solution of the problem in a single objective manner.

100

8.5.2.2. Weighted-sum model

One of the most popular approaches of Posteriori methods is weighted-sum approach

(Bui and Alam, 2008). In the weighted-sum approach, all the objectives are

combined into a single objective with the use of a weight vector. In this study, the

MOCL problem is solved by obtaining a single objective problem using the

weighted-sum method.

Objective 1: Maximize the total weight of the allocated boxes to the container c.

∑
=

==
n

i
iitt weightxweighttwhereweighttf

1
1 _,_max (8.5)

Objective 2: Maximizing the volume utilization rate cu of the container c.

c

i

n

i
i

cc V

xv
uwhereuf

∑
=== 1

2 ,max (8.6)

In order to reach the set of Pareto optimal solutions, the formulated weighted-sum

model is as follows, where max_ weightt represents the loading capacity of the vehicle

in terms of weight;

niwherex

wwwhereww
weighttweighttts

fwfwf

i ...,2,1)1,0(

0,1
__..

max

2121

max

2211

=∈

>=+
<

+=

 (8.7)

As the defined objectives are of different magnitudes, the objectives are normalized

before. The normalization is done by solving maximization and minimization single

criterion problems for each of the criteria, discarding the rest of the criteria

(Borisova, 2006).

101

}
__

__
{max

min,max,

min,
2

min,max,

min,
1

cc

cc

tt

tt

uu
uu

w
weighttweightt

weighttweightt
w

−
−

+
−

−
 (8.8)

To solve the proposed weighted-sum model, previously described SA algorithm is

used. The objectives are given weights between 0 to 1 by 0.1 increments/

decrements. The trade-offs between these two objectives can be seen in Table 8.8.

Table 8.8. Results obtained for the MOCL problem

Weights
 (w1, w2)

(0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4) (0.7, 0.3) (0.8, 0.2) (0.9, 0.1)

f1 87.518 87.518 86.09 86.13 86.09 85.96 86.09 85.96 86.09

f2 6713.37 6713.37 7150.41 7157.6 7150.41 7151.37 7150.41 7151.37 7150.41

The results offer a set of solutions for the decision maker. The Pareto curve for this

problem can be seen in Figure 8.7. In the described situation, the decision-maker

seeks a solution which provides a good balance between the defined objectives. In

case, the decision maker wants to pay less money to the rented trucks, he/she can

choose the packing pattern 86,13% of volume utilization having a total weight

7157,6 kg, since this packing pattern has the highest total weight among the other

solutions.

Figure 8.7. The Pareto curve for the solved problem

102

Both to obtain an on-time delivery and to transport as many goods as possible, the

packing pattern with an 87,518% of volume utilization having a total weight of

6713,37 kg. can be a good solution.

In case of the consideration of the objective “maximization of weight” alone, a total

weight of 7173.52 kg and a volume utilization of 83.06 % is achieved; whereas when

only the objective “maximization of volume utilization” is considered, a total weight

of 6713.37 kg and a volume utilization of 87.518% is achieved. The handling of the

defined multi-objective problem in a single objective manner revealed that by

handling the defined problem in a multi-objective manner it is able to consider

objectives simultaneously which results in a compromise between the objectives.

8.6. Conclusion

In this chapter, two different approaches to the solution of MOCL problems that are

mostly encountered in transportation and wholesaling industries are explored. The

main goal is to load the items (boxes) that would provide the highest total weight to

the container in the best possible way. These two objectives “maximization of

weight” and “maximization of volume utilization” are conflicting objectives since

the volume of a box is usually not proportional to its weight. Using both the Goal

Programming and the Weighted-sum approach, the objectives are combined into a

single objective. An SA algorithm accompanied by a heuristic filling procedure is

then proposed to solve the model. The proposed algorithm has been tested on a set of

benchmark problems available in the literature and also on real-world data provided

by a distribution company.

103

CHAPTER 9

CONCLUSIONS

9.1. Present Study

CL problem is a NP-Hard problem which is important for commercial applications in

transportation industry. Consequently, approaches in the literature focuses on

offering high performance solutions to improve the efficiency of algorithms for these

commercial applications. In this thesis, an attempt to propose better algorithms has

been done. The research is mainly concentrated on two contributions; one of them is

the application of two population based optimization techniques, BA and ACO to the

CL problem to search alternative ways for the solution of this NP-Hard problem and

the other one is the definition of a new problem called MOCL problem which is

frequently encountered in industry.

Chapter 1 presented an introduction to the CL problem and its logistics dimensions.

A detailed discussion about Cutting and Packing problems which also embraces the

CL problems was presented in Chapter 2. In Chapter 3, a detailed literature survey

about the CL problems was discussed taking into account the type of the solution

technique proposed so far. In Chapter 4, the proposed heuristic filling procedure that

is used for the ACO and BA algorithm and also for the defined MOCL CL problem

was introduced. In Chapter 5, the proposed BA algorithm hybrid-BA had been

supplied. Next, algorithms based on ACO algorithm, hybrid–ACS-1 and hybrid-

ACS-2 were presented. The computational results for both ACO based algorithms

were also supplied within this chapter. The developed decision support system called

CLSS was introduced in Chapter 7. Following these chapters, the newly defined

MOCL problem and its solution were introduced in Chapter 8. Finally, the study is

concluded here, in Chapter 9 with conclusions and recommendations for future work.

104

9.2. Observations on the Developed SI-based Algorithms and Further Studies

As it is mentioned in the previous chapters, two swarm-based techniques ACO and

BA are implemented for the solution of CL problems due to the existing gap in the

literature.

Up to date, BA has not been widely used for solving discrete combinatorial

optimization problems since they were originally developed for solving continuous

optimization problems and their full potential has not been tapped yet. It has been

generally used for solving continuous optimization problems like traveling salesman

and scheduling as well as used in neural network and data mining applications. Its

application to discrete combinatorial optimization problems is less common.

With the purpose of developing a suitable BA algorithm working with the discrete

variables, two operators; 1-flip and k-flip are defined and both operators are utilized

to solve the CL problem. Using both operators, possible rotation variants of the

boxes are reached and the boxes are given priority according to their side

dimensions. Then, starting from the highest priority box, these boxes are filled to the

container by the proposed heuristic filling procedure which is actually a “wall

building” approach. The developed algorithm - called hybrid-BA- is tested on test

cases and finally the performance of it is compared with the previous studies from

the literature that used the same test cases.

Next, the suitability of the ACO-based algorithm is discussed through two different

solution approaches; hybrid-ACS-1 and hybrid-ACS-2 algorithms. In the first

approach (hybrid-ACS-1), with the use of ACO algorithm, a sequence for all of the

boxes in the problem - showing which box should be packed to the container first - is

determined. Then having this sequence, boxes are loaded into the container by the

proposed heuristic filling procedure that is also used for BA. Tests on LN test cases

revealed that the algorithm has a low performance.

The second approach (hybrid-ACS-2) is proposed with the intention to improve the

performance of the first approach. This improved algorithm is inspired from the idea

that the volume utilization of a container greatly depends on the volume utilization of

105

each layer in “wall building” algorithms. For this purpose, first the container is filled

layer-by-layer by the heuristic filling procedure. Afterwards, a utilization-threshold-

level (UTL) is determined experimentally and layers are evaluated according to this

value. If a layer having a volume utilization that is above the UTL is found, this layer

is saved as it is. Otherwise, the boxes in the layers having a volume utilization that is

below the UTL are added to the set of available box list. Thus, the numbers of boxes

in each problem is reduced and layers with high volume utilization are saved.

Following this step, the set of available boxes and the dimensions of the containers

are updated. Then, the ACO algorithm is applied to the reduced problem and the

overall volume utilization of the container is calculated. Tests on test cases have

shown that the later algorithm hybrid-ACS-2 performs better compared to the

hybrid-ACS-1.

In Table 9.1 and 9.2, the results obtained by different approaches offered in this

study are summarized. Although the SA algorithm (named hybrid-SA in the

mentioned tables) presented in Chapter 8 is proposed for the MOCL problem, test

cases specific for the CL problem is solved in order to demonstrate the performance

of the algorithm.

Table 9.1. Results obtained with the offered algorithm for the test cases of LN

Problem hybrid-BA

hybrid-ACS-1 hybrid-ACS-2

hybrid-SA

LN01 62.5 62,5 62,5 62.5
LN02 86.3 84,3 80,8 90.1
LN03 53.4 53,4 53,4 53.4
LN04 55.0 55,0 55,0 55.0
LN05 77.2 77,2 77,2 77.2
LN06 89.2 82,5 85,2 85.8
LN07 83.2 82,9 84,0 84.2
LN08 59.4 59,4 59,4 59.4
LN09 61.9 61,9 61,9 61.9
LN10 67.3 67,3 67,3 67.3
LN11 62.2 62,2 62,2 62.2
LN12 78.5 74,8 77,3 78.1
LN13 83.6 81,6 81,6 83.9
LN14 62.8 62,8 62,8 62.8
LN15 59.5 59,5 59,5 59.5
Mean 69.46 68,5 68, 7 69.6

106

Table 9.2. Results obtained with the offered algorithm for the test cases of BR

The performance evaluation of the proposed SI based algorithms (hybrid-ACS-1,

hybrid-ACS-1 and hybrid-BA) revealed that hybrid-BA is the best performing

algorithm and hybrid-ACS-1 is the worst performing algorithm. When the SA

approach proposed for the MOCL problem is also considered, it is obvious that

hybrid-SA is the best performing algorithm of all.

There could be several reasons behind the poor performance of hybrid-ACS-1

algorithm. One of them could be the mismatch between the used neighborhood

search structure and the nature of the algorithm. A different neighborhood search

structure better suited to the nature of the ACO algorithm which mostly performs

superior for graph-like problems can improve the performance of the proposed ACO-

based algorithms. It is known that pure ACO usually has good globe search ability

but poor local search ability like most evolutionary algorithms do. Local search

process is often performed to explore the neighborhood of a generated solution for

better ones (Luo et al., 2008). Therefore, addition of a local search to the ACO-based

algorithms may improve their performance. Another alternative approach to improve

these algorithms could be the use of specifically designed operators. Both the

mentioned approaches are in the scope of future work.

Mack et al. (2004) expressed that the solution quality of a meta-heuristic for CL

problem depends mainly on the “kernel heuristic” of an algorithm. Here “kernel

algorithm” (also called decoder algorithm) refers to the algorithm that is used for the

selection and placement of the given items. On the other hand, the used meta-

heuristic strategy is certainly another important factor, but its influence on the overall

solution quality is limited (Mack et al., 2004).

Problem
(box type)

hybrid-BA hybrid-ACS-2

hybrid-SA

BR1(3) 83.41 77.75 86.38
BR2(5) 84.60 79.41 87.70
BR3(8) 85.42 80.41 87.06
BR4(10) 85.19 80.40 86.61
BR5(12) 85.11 79.94 86.10
BR6(15) 84.69 79.87 85.47
BR7(20) 83.99 79.23 84.49

Mean 84.63 79.57 86.26

107

It should also be noted that the proposed heuristic filling algorithm used throughout

this thesis is a kind of “wall-building” procedure as mentioned previously. It loads

the container layer-by-layer recursively in a 3D manner. As a result of this packing

process, the container is filled with the isolated vertical layers where spanning of the

boxes between layers is avoided. This way, the objective function value of a solution

is computed. Another issue for further studies could be the improvement of this

procedure with the addition of some specialized features. This could greatly improve

the performance of the algorithm in which the mentioned procedure is used.

According to Mack et al. (2004) type of load is very important when solving CL

problems. For weakly heterogeneous box types, identical item dimension is a good

opportunity. In this case, building an arrangement of identical items is beneficial. For

strongly heterogenous box types, vertical layers produce promising results. Thus, an

opportunity for improvement could be developing a procedure based on different

filling approaches for better volume utilization.

9.3. Observations on the Proposed MOCL Problem and Further Studies

Having been inspired from a real world case, a new problem called MOCL problem

was defined in Chapter 8. This problem is encountered in a medium-sized

distribution company in Gaziantep (a metropolitan province located at the south-east

of Turkey) that delivers the goods ordered by supermarkets. The main goal of this

multi-objective problem is to load the items (boxes) that would provide the highest

total weight to the container in the best possible way. These two objectives

“maximization of weight” and “maximization of volume utilization” are conflicting

since the volume of a box is usually not proportional to its weight. The proposed

solution approach to solve the MOCL container loading problem is an SA algorithm

based on goal programming or weighted-sum approach which is hybridized with a

heuristic filling procedure.

Performance of the proposed SA algorithm is initially compared for the well-known

test cases from the literature with single-objective function. This analysis has

revealed that the proposed algorithm is quite effective in solving the CL problems.

The algorithm is then tested on a real case (which is really large as compared to the

108

problems in the literature) including 766 items/boxes. The suitability of the algorithm

for the multi-objective case is also checked and the results show that the proposed

algorithm can produce a set of Pareto optimal solutions offering some trade-offs

between the two objectives. Supported with this knowledge, it is decision maker’s

job to evaluate the set of solutions and choose a desired solution according to their

particular application. At this point, what the decision maker should do is to select

the best solution by taking into account the company’s transportation policy,

profitability and on-time delivery of the shipments.

It is also well worth pointing out that the development and presentation of a best

performing algorithm was not the main objective of our work. There are already

several high performing algorithms available in the literature. We proposed a simple

but quite effective SA-based algorithm in order to solve MOCL problems described

in this work. The consideration of the multi-objectives is the main feature of our

work. The proposed filling heuristic is designed by taking the neighborhood structure

described for the CL problem into account. Reasonable results which are comparable

with to those produced by other algorithms in the literature have been produced. The

idea underlying this comparison was to discuss the suitability of our approach for the

solution of the MOCL problem described in this study.

Stability is an important aspect to consider in the container loading problems (Moura

and Oliveira, 2005). It prevents cargo from being damaged during transportation.

However, stability of packing is in general not considered by wall-building heuristics

(Kocjan and Holmström, 2006). The case study presented in Chapter 8 focused on a

medium-sized company which distributes the goods ordered by supermarkets such as

paper towels, toilet tissues, paper napkins. Thus the company rarely faces with the

problem of stability. The use of ‘spacing materials’ is considered, if any problem

related to stability will occur. Since our heuristic filling procedure uses no

amalgamation of unused spaces in the filling process while exploiting a wall-

building approach and it is not strictly required by the company, the ‘stability

constraint’ is not considered in this work. This issue is also considered in the list of

assumptions in the ‘problem formulation’ presented in Chapter 8.

109

Having a multi-objective problem at hand, a question that arises is which method is

the best to solve such a problem given the variety of methods for conducting MOO.

Unfortunately, there is no distinct answer. Thus, two different approaches from two

different set of methods namely Goal programming (Priori methods) and Weighted-

sum (Posteriori methods using the scalarization approach) have been employed for

the solution. Further studies could concentrate on the solution of this problem with

different MOO methods.

A similar question about the use of SA could also arise. SA is one of the most

powerful and robust which are more likely to find a global optimum and not be stuck

on local optima as gradient methods might do. It is also slightly less computational

expensive as compared to GAs (Andersson, 2000). In this study, SA is preferred to

the other non-derivative optimization methods because of its outstanding and

inherent properties as described above.

Finally, the proposed algorithm can further be extended with the employment of

different set of objectives and constraints in case of different situations. For example,

new objectives related to the environmental factors can be added to the proposed

model. One of these objectives could be the “minimization of fuel consumption”. It

is known that there is a tradeoff between the weight of a shipment and the fuel

consumption of a vehicle. Taking this into account, a new model including this new

objective could lead to a reduced shipment cost. Due to the lack of exact figures

about this tradeoff, such an objective has not been included in the present model.

Embedding the methodology to a decision making framework could be also

evaluated in the context of further studies.

110

REFERENCES

Abbass, H.A. (2001). MBO: Marriage in Honey Bees Optimization A Haplometrosis

Polygynous Swarming Approach. Proceedings of the Congress on Evolutionary

Computation (CEC2001), Seoul, Korea, 207-214.

Abraham, A., Das, S., Ro, S. (2008). Swarm Intelligence Algorithms for Data

Clustering in Soft Computing for Knowledge Discovery and Data Mining. Springer,

279 -313.

Afshar, A., Haddad O. B., Marino, M.A., Adams, B.J. (2008). Honey-bee mating

optimization (HBMO) algorithm for optimal reservoir operation. Journal of the

Franklin Institute, doi:10.1016/j.jfranklin.2006.06.001.

Agerschou, H., Lundgren, T., Sørensen, T., Ernst, J., Korsgaard, L.R., Schmidt and

Chi, W.K. (1983). Planning and Design of Ports and Marine Terminals. John Wiley

and Sons, Chichester.

Andersson J., (2000). A survey of multiobjective optimization in engineering design.

Department of Mechanical Engineering, Linköping University; 581 83 Linköping.

Sweden. Technical Report: LiTH-IKP-R-1097.

Baykasoğlu A., (2005). Preemptive goal programming using simulated annealing.

Engineering Optimization, 37, 49-63.

Baykasoğlu, A., Özbakır, L., Tapkan, P. (2007). Swarm Intelligence: Focus on Ant

and Particle Swarm Optimization. In Felix T. S. Chan & Manoj Kumar Tiwari (Eds),

Artificial Bee Colony Algorithm and Its Application to Generalized Assignment

Problem, 113-144.

111

Benatchba, K., Admane, L., Koudil, M. (2005) ‘Using bees to solve a data mining

problem expressed as a max-sat one’, Proceedings of IWINAC'2005, International

Work Conference on the Interplay between Natural and Artificial Computation,

Canary Islands, Spain, pp.212-220.

Beni, G. (1988) The concept of cellular robotic systems, Proceedings of the IEEE

International Symposium on Intelligent Control, pp.57-62, IEEE Computer Society

Press.

Bischoff E.E., Marriott M.D. (1990). A comparative evaluation of heuristics for

container loading. European Journal of Operational Research, 44, 267-276.

Bischoff E.E., (2003). Dealing with load bearing strength considerations in container

loading problems. Technical Report, European Business Management School.

University of Wales, Swansea,

Bischoff, E.E., Ratcliff, M.S.W. (1995). Issues in the development of approaches to

container loading. Omega. Int. J. Mgmt Sci., 23/4, 337-390.

Bischoff, E.E., Ratcliff, M.S.W. (1995). Loading multiple pallets. Journal of

Operational Research Society, 46/11, 1322-1336.

Bischoff, E.E., Janetz, F., Ratcliff, M.S.W. (1995). Loading pallets with non-

identical items. European Journal of Operational Research, 84, 681-692.

Bonabeau, E., Dorigo, M., Theraulaz, G. (1999). Swarm Intelligence: from natural

to artificial systems. Qxford University Press.

Borissova, D., (2006). Multicriteria Choice of the NVG Optoelectronic Channel

Elements. Problems of Engineering Cybernetics and Robotics, 56, 61-68.

Bortfeldt, A., Gehring, H. (1998). Ein Tabu Search - Verfahren für

Containerbeladeprobleme mit schwach heterogenem Kistenvorrat. OR Spektrum, 20,

237-250.

112

Bortfeldt, A, Gehring, H. (2001). A hybrid genetic algorithm for the container

loading problem. European Journal of Operational Research, 131, 143-161.

Bortfeldt, A., Gehring, H., Mack, D. (2003). A parallel tabu search algorithm for

solving the container loading problem. Parallel Computing, 29, 641-662.

Bowersox D.J., Closs D. J., Cooper M.B., Supply Chain Logistics Management,

McGrawHill, 2002.

Bozorg, H. O., Afshar, A, (2004). MBO Algorithm, A New Heuristic Approach in

Hydrosystems Design and Operation. 1st International Conference on Managing

Rivers in the 21st Century, 499-504.

Bui, L.T., Alam, S. (2008). Multi-objective optimization in computational

intelligence - Theory and practice, IGI Global.

A. Charnes A., W.W. Cooper (1961). Management Models and Industrial

Applications of Linear Programming, Wiley. New York.

Chen, C.S., Lee, S.M., Shen, Q.S., (1995). An analytical model for the container

loading problem. European Journal of Operational Research, 80, 68- 76.

Chan, Felix T. S., Bhagwat, R., Kumar, N., Tiwari, M. K., Lam, P., (2006).

Development of a decision support system for air-cargo pallets loading problem: A

case study. Expert Systems with Applications, Volume 31, Issue 3, 472-485.

Chien, C.F., Deng, J.F., (2002). A container packing support system for determining

and visualizing container packing patterns. Decision Support Systems, 1, 12.

Chien, C., Wu, W., (1998). A recursive computational procedure for container

loading. Computers and Industrial Engineering, 35.

113

Chong, C.S., Low, M.Y.H., Sivakumar, A.I., Gay, K.L. (2006). A bee colony

optimization algorithm to job shop scheduling. Proceedings of the 2006 Winter

Simulation Conference, pp.1954 – 1961.

Cordon, O., Herrera, F., Stützle, T. (2002). A Review on the Ant Colony

Optimization Metaheuristic: Basis, Models and Trends, Mathware & Soft

Computing, 9.

Daş, G.S., Dereli, T. (2007). Container Loading using hybrid Bees Algorithm. 8th

Workshop of the EURO Working Group “EU/ME, the European Chapter on

Metaheuristics", October 4-5, Stuttgart, Germany, 52-59.

de Castro, L.N. (2002). Immune, swarm, and evolutionary algorithms, Part-I: basic

models. Proceedings of the 9th International Conference on Neural Information

Processing (ICONIP'O2), 3, 1464-1468.

Dereli, T., Daş, G. S. (2007). A hybrid simulated annealing algorithm for two-

dimensional strip packing problems. Adaptive and Natural Computing Algorithms,

Part 1, 4431, 508-516.

Dereli, T., Daş, G.S. (2010a). Development A Decision Support System for Solving

Container Loading Problems, Transport, (accepted).

Dereli, T., Daş, G.S. (2010b). A Hybrid Simulated Annealing Algorithm for Solving

Multi-Objective Container Loading Problems, Applied Artificial Intelligence,

(accepted).

Dereli, T., Daş, G.S. (2010c). Konteyner Yükleme Problemleri için Karınca Kolonisi

Optimizasyonu Yaklaşımı, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi

Dergisi, (accepted).

Dereli, T., Seçkiner, S.U., Daş, G.S., Göçken, H., Aydın, M.E. (2009). An

exploration of the literature on the use of ‘swarm intelligence-based techniques’ for

public service problems. European Journal of Industrial Engineering, 3/4, 379-423.

114

Dorigo, M., Maniezzo, V., Colorni, A. (1991). Positive feedback as a search strategy

(Tech. Rep. 91-016). Milan, Italy: Politecnico di Milano, Dipartimento di

Elettronica.

Dorigo, M., Di Caro, G., Gambardella, L. M. (1999). Ant algorithms for discrete

optimization. Artificial Life, 5/2, 137-172.

Dorigo, M., Gambardella, L.M. (1997). Ant Colony System: A Cooperative Learning

Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary

Computation, 1, 1, 53-66.

Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal

of Operational Research, 44/2, 145-159.

Dyer, F.C. (2002). The biology of the dance language. Annual Review of

Entomology, 47, 917-949.

Eley, M. (2002). Solving container loading problems by block arrangement.

European Journal of Operational Research, 141, 393-409.

Eglese R.W. (1990). Simulated Annealing: A tool for Operational Research.

European Journal of Operational Research, 46, 271-281.

Engelbrecht, A.P. (2005). Fundamentals of Computational Swarm Intelligence,

Wiley.

Ertek, G., Kılıç, K. (2006). Decision support for packing in warehouses. Lecture

Notes in Computer Science, 4263, 115-124.

Faina, L. (2000). A global optimization algorithm for the three-dimensional packing

problem. European Journal of Operational Research, 126, 340-354.

115

Fathian, M., Amiri, B., Maroosi, A. (2007). Application of Honey-Bee Mating

Optimization Algorithm on Clustering. Applied Mathematics and Computation,

190/2, 1502-1513.

Gehring, H., Bortfeldt, A. (1997). A genetic algorithm for solving the container

loading problem. International Transactions in Operational Research, 4, 401-418.

Gehring, H., Bortfeldt, A. (2002). A parallel genetic algorithm for solving the

container loading problem. International Transactions on Operational Research, 9/4,

497–511.

Gehring, H., Menschner, K., Meyer, M. A. (1990). Computer-based heuristic for

packing pooled shipment containers. European Journal of Operational Research, 44,

277-288.

George, J.A., Robinson, D.F. (1980). A heuristic for packing boxes into a container.

Computers and Operations Research, 7, 147-156.

Gravel, M., Price, W.L., Gagne, C., (2002). Scheduling continuous casting of

aluminum using a multiple objective ant colony optimization metaheuristic.

European Journal of Operational Research, 143, 218–229.

Haessler, R.W., Talbot, F.B. (1990). Load planning for shipments of low density

products. European Journal of Operational Research, 44, 289-299.

Harrison, A., van Hoek R., (2002). Logistics Management and Strategy, Prentice

Hall.

He, K., Huang, W., (2009). Solving the single container loading problem by a fast

heuristic method. Optimization Methods and Software, 1-15.

Hemminki, U. (1993). A heuristic for container loading. Report 141, University of

Turku, Institute for Applied Mathematics,

116

Hopper, E., Turton, B.C.H., (1997). A genetic algorithm for a 2D industrial packing

problem. Computers and Industrial Engineering, 37, 375-378.

Huang, W., He, K. (2009). A caving degree approach for the single container loading

problem. European Journal of Operational Research, 196, 93–101.

Hopper, E., Turton, B.C.H., (2001). An empirical investigation of meta-heuristic and

heuristic algorithms for a 2D packing problem. European Journal of Operational

Research, 128, 34-57.

Kang, M.K., Jang, C.S., Yoon, K.S. (2010). Heuristics with a new block strategy for

the single and multiple containers loading problems. Journal of the Operational

Research Society, 61, 95-107.

Karaboğa, D., Baştürk, B. (2007). A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (ABC) algorithm. Journal of Global

Optimization, 39/3, 459–471.

Kennedy, J., Eberhart, R.C. (1995). Particle Swarm Optimization, Proceedings of the

IEEE International Conference on Neural Networks (Perth, Australia) , IEEE Service

Center, Piscataway, NJ, IV, pp. 1942-1948.

Kennedy, J., Eberhart, R.C., Shi, Y. (2001). Swarm Intelligence, Morgan Kaufmann.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simulated

annealing. Science, 220, 671-680.

Kocjan, W., Holmström, K. (2006). The AUTOPACK Project, Algorithms for

container loading. Research Report, MdH/IMa, 2006-03, Department of

Mathematics and Physics, Mälardalen University, ISSN 1404-4978, SE-721 23

Västerås, Sweden.

Kong, M., Tian., P., Kao, Y., (2008). A new ant colony optimization algorithm for

the multidimensional knapsack problem. Computers and Operations Research, 35/8,

2672-2683.

117

Koudil, M., Benatchba, K., Tarabet, A., Sahraoui, E.B. (2007). Using Artificial Bees

to Solve Partitioning and Scheduling Problems in Codesign. Applied Mathematics

and Computation, 186/2, 1710-1722.

Levine, J., Ducatelle, F. (2004). Ant colony optimisation for bin packing and cutting

stock problems. Journal of Operational Research Society, 55, 705-716.

Li, H-L., Tsai, J-F, Hu, N-Z, (2003). A distributed global optimization method for

packing problems. Journal of Operational Research Society, 419-425.

Liang S.C., Lee, C.Y., Huang S.W., (2007). Hybrid Meta-Heuristic for the Container

Loading Problem. Communications of the IIMA, 7/4, 73-84,

Lim, Rodrigues, B., Yang, Y. (2005). 3-D Container packing heuristic. Applied

Intelligence, 22, 125-134.

Liu, D.S., Tan, K.C., Goh, C.K., Ho, W.K. (2006). On solving multiobjective bin

packing problems using particle swarm optimization. IEEE Congress on

Evolutionary Computation, 2095-2102.

Lodi A., (2002), “Multi Dimensional packing by tabu search”. Technical Report.

Loh, H. T., Nee, A. Y. C. (1992). A packing algorithm for hexahedral boxes.

Proceedings of the Industrial Automation Conference Singapore, 2, 115-126.

Luo, D., Wu, S., Li, M., Yang, Z. (2008). Ant Colony Optimization with Local

Search Applied to the Flexible Job Shop Scheduling Problems. IEEE, 1015 - 1020.

Lucic, P. (2002). Modeling Transportation Problems Using Concepts of Swarm

Intelligence and Soft Computing, PhD Thesis, Civil Engineering, Faculty of the

Virginia Polytechnic Institute and State University.

Mack, D., Bortfeldt, A., Gehring, H., (2004). A parallel hybrid local search algorithm

for the container loading problem. International Transactions in Operational

Research, 11, 511-533.

118

Marler, R.T., Arora, J.S. (2004). Review of multi-objective optimization concepts

and algorithms for engineering. Technical Report, No: ODL-01.04. Optimal design

laboratory, College of Engineering, The University of Iowa, Iowa City.

Martello S., Pisinger D., Vigo D. (2000). The three-dimensional bin packing

problem, Operations Research, 48, 256-267.

Montgomery, D.C. (1991). Design and analysis of experiments. John Wiley & Sons,

New York.

Morabito, R.N., Arenales, M.N. (1994). An and-or graph approach to the container

loading problem. International Transactions in Operational Research, 1, 59-73.

Moura, A., Oliveira J. (2005). A grasp approach to the container-loading problem.

IEEE Intelligent Systems, 50-57.

Nakrani, S., Tovey, C. (2007). From honeybees to Internet servers: biomimicry for

distributed management of Internet hosting centers. Bioinspiration and Biomimetics,

2, 182-197.

Nepomuceno, N., Pinheiro, P., Coelho, A.L.V., (2007). Tackling the container

loading problem: A hybrid approach based on Integer Linear Programming and

Genetic Algorithms. EvoCOP 2007, LNCS 4446, pp. 154 – 165.

Ngoi, B.K.A., Tay, M.L., Chua, E.S., (1994). Applying spatial representation

techniques to the container packing problem. International Journal of Production

Research, 32/1, 111-123.

Parreno, F., Alvarez-Valdes, R., Oliveira, J.F., Tamarit, J.M. (2010). Neighborhood

structures for the container loading problem : a VNS implementation. Journal of

Heuristics, 16, 1-22.

119

Perretto, M., Lopes, H.S. (2005). Reconstruction of phylogenetic trees using the ant

colony optimization paradigm, Genetics and Molecular Research, 4/3, 581-589.

Pham, D.T., Koc, E., Ghanbarzadeh, A., Otri, S., Rahim, S., Zaidi, M. (2006a) The

bees algorithm - a novel tool for complex optimization problems, Proceedings of the

2nd Int. Virtual Conference on Intelligent Production Machines and Systems

(IPROMS’2006), Oxford, Elsevier.

Pham, D.T., Otri, S., Ghanbarzadeh, A., Koc, E. (2006b). Application of the bees

algorithm to the training of learning vector quantization networks for control chart

pattern recognition, Proceedings of Int. Conference on Information and

Communication Technologies, 24-28 April 2006, Umayyad Palace, Damascus, Syria,

pp.1624-1629.

Pham, D.T., Koc, E., Ghanbarzadeh, A., Otri, S. (2006c). Optimization of the

weights of multi-layered perceptrons using the bees algorithm, Proceedings of the

5th Int.Symposium on Intelligent Manufacturing Systems, Sakarya, Turkey, 38-46.

Pisinger, D. (2002). Heuristics for the container loading problem. European Journal

of Operational Research, 141, 382-392.

Rangaiah, G.P. (2009). Multi-Objective Optimization Techniques and Applications

in Chemical Engineering, World Scientific, Singapore.

Rosen, K, H. (2003). Discrete mathematics and its applications. 5th ed.. McGraw

Hill.

Seeley, T. D. (1955). The wisdom of the hive. Cambridge: Harvard University Press.

Teo , J. Abbass, H.A. (2003). A True Annealing Approach to the Marriage in Honey-

Bees Optimization Algorithm. International Journal of Computational Intelligence

and Applications, 3/2, 199-211.

120

Teodorovic, D. (2003). Transport modeling by multi-agent systems: a swarm

intelligence approach. Transportation Planning and Technology, 26/4, 289-312.

Teodorovic, D., Lucic, P. (2005). Schedule synchronization in public transit using

the fuzzy ant system. Transportation Planning and Technology, 28/1, 47-76.

Terno, J., Scheithauer, G., Sommerweiss, U., Riehme, J. (2000). An efficient

approach for multi-pallet loading problem. European Journal of Operational

Research, 123, 372-381.

van de Voort,M., O'Brien, K.A., Rahman, A., Valeri, L., (2003). Seacurity:

Improving the Security of the Global Sea-Container Shipping System, Rand.

Vis, Iris F.A., de Koster, René, (2003). Transshipment of containers at a container

terminal: An overview. European Journal of Operational Research, 147/1, 1-16.

von Frisch, K. (1967). The Dance Language and Orientation of Bees. Cambridge

MA: Harvard University Press.

Wang, Z., Li, K.W., Levy, J.K. (2008). A heuristic for the container loading

problem: A tertiary-tree-based dynamic space decomposition approach. European

Journal of Operational Research, 191, 86–99.

Wäscher, G., Haussner, H., Schumann, H. (2007). An improved typology of cutting

and packing problems. European Journal of Operational Research. 183, 1109-1130.

Wood, D.F., Barone, A. P., Murphy P.R., Wardlow D.L., (2002). International

Logistics, AMACOM.

Yang, X.S. (2005). Engineering optimizations via nature-inspired virtual bee

algorithms. IWINAC 2005, LNCS 3562, Yang, J. M. and J.R. Alvarez (Eds.),

Springer-Verlag, Berlin Heidelberg, pp.317–323.

Yang, C., Simon, D. (2005). A new particle swarm optimization technique.

Proceedings of the 18th Int. Conf. on Systems Engineering (ISCEng’05).

121

Yeung, L.H.W, Tang, W.K.S. (2005). A hybrid genetic approach for container

loading in logistics industry. IEEE Transactions on Industrial Engineering, 52, 617-

627.

Zhao, P., Zhao, P., Zhang X. (2006). A new ant colony optimization for the knapsack

problem. 7th International Conference on Computer-Aided Industrial Design and

Conceptual Design CAIDCD '06, 2006.

Web1 (www.hlfreght.com/cargo-frameset.html)

Web2 (http://photo.bees.net/biology/ch6/dance2.html)

Web3 (http://www.scholarpedia.org/article/Ant_colony_optimization)

122

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Gülesin Sena Daş
Nationality: Turkish (TC)
Date and Place of Birth: 2 June 1979, Ankara
Marital Status: Married with two children
Phone: +90 506 608 45 76
Fax:
email: senaemre@yahoo.com, sena.das@tubitak.gov.tr

EDUCATION

Degree Institution Year of
Graduation

MS Gaziantep University, Dept. of Industrial Engineering 2003
BS Gazi University, Dept. of Industrial Engineering 2001
High School METU Development Foundation High School,

Ankara
1997

WORK EXPERIENCE

Year Place
2008- Present TÜBİTAK Scientific Programmes

Assistant Expert
2001- 2008 Gaziantep University,

Dept. of Industrial Engineering
Research Assistant

FOREIGN LANGUAGES

English (very good)

PUBLICATIONS

International Journals

Dereli, T., Daş, G.S., Development A Decision Support System For Solving
Container Loading Problems, Transport (accepted).

Dereli, T., Daş, G.S., A Hybrid Simulated Annealing Algorithm for Solving Multi-
Objective Container Loading Problems, Applied Artificial Intelligence (accepted).

123

Dereli, T., Daş, G.S., Konteyner Yükleme Problemleri için Karınca Kolonisi
Optimizasyonu Yaklaşımı, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi
Dergisi, (kabul edildi).

Dereli, T., Daş, G.S., A hybrid ‘bee(s) algorithm’ for solving container loading
problems, Applied Soft Computing (submitted).

Dereli, T., Seçkiner, S.U., Daş, G.S., Göçken, H., Aydın, M.E., An exploration of the
literature on the use of ‘swarm intelligence-based techniques’ for public service
problems, European Journal of Industrial Engineering, 3/4, 379-423, 2009.

Dereli, T., Daş, G.S., A hybrid Simulated annealing algorithm for two-dimensional
strip packing problems, Adaptive and Natural Computing Algorithms, Part 1, 4431,
508-516, 2007.

Baykasoğlu, A., Dereli, T., Daş, S. E., Project Team Selection using Fuzzy
Optimization Approach, Cybernetics and Systems, 38, 155 - 185, 2007.

Dereli, T., Baykasoğlu, A., Daş, S. E., Fuzzy Quality Team Formation for Value
Added Auditing, Journal of Engineering and Technology Management, 2006.

National Journals

Dereli, T., Baykasoglu, A., Emre, G. S., Sevim, T., Çatışma Yönetimi, Kalder
Forum, 4(14), 31-39, 2004.

International and National Conference Papers

Dereli, T., Baykasoglu, A., Emre, S., Tanış, S., Varlık, G., Bir Çeviklik Aracı
Olarak: Yeni Ürün Geliştirme Sürecinin Planlanması, XXIII Yöneylem Araştırması
ve Endüstri Mühendisliği Kongresi, 3-5 Temmuz 2002, İstanbul, Turkey.

Dereli, T., Baykasoglu, A., Emre, S., Tanış , S., Sevim, T., Çeviklik, Tepkisellik ve
Esnekliğin Yeni Ürün Geliştirme Sürecine Yansımaları, III. Ulusal Üretim
Araştırmaları Sempozyumu Bildiriler Kitabı, Kültür Üniversitesi, İstanbul, 19-20
Nisan 2003, pp. 607-612.

Baykasoglu, A., Dereli, T., Emre, S., A Fuzzy Approach To Project Team Formation
Problems, TAINN’2003, International Twelfth Turkish Symposium on Artificial
Intelligence and Neural Networks, 02-04, July, 2003, Çanakkale, Turkey, Vol. E7,
pp.704-714.

Baykasoglu, A., Dereli, T., Emre, S., Göçken, T., Çok ürünlü bulanık ekonomik
parti büyüklüğü probleminin tabu arama ve tavlama benzetimi algoritmaları ile
çözülmesi, YA/EM’2004: Yöneylem Araştırması / Endüstri Mühendisliği Kongresi
XXIV. Ulusal Kongresi, 15-18 Haziran 2004, Gaziantep, Adana , pp. 157-159.

Baykasoglu, A., Dereli, T., Göçken, T., Emre, S., Çok objektifli üretim planlaması
problemlerinin bulanık matematiksel programlama ile çözülmesi, YA/EM’2004:

124

Yöneylem Araştırması / Endüstri Mühendisliği Kongresi XXIV. Ulusal Kongresi,
15-18 Haziran 2004, Gaziantep, Adana, pp. 500-502.

Dereli, T., Baykasoglu, A., Emre, S., Göçken, T., Kalite denetim takımlarının
oluşturulması, YA/EM’2004: Yöneylem Araştırması / Endüstri Mühendisliği
Kongresi XXIV. Ulusal Kongresi, 15-18 Haziran 2004, Gaziantep, Adana, pp. 169-
171.

Dereli, T., Baykasoglu, A., Emre, S., Göçken, T., Üç boyutlu paketleme
problemlerine analitik yaklaşımlar, YA/EM’2004: Yöneylem Araştırması / Endüstri
Mühendisliği Kongresi XXIV. Ulusal Kongresi, 15-18 Haziran 2004, Gaziantep,
Adana, pp. 493-495.

Dereli, T., Daş, G. S., A hybrid simulated annealing algorithm for 2D packing
problems, Proceedings of 5th International Symposium on Intelligent Manufacturing
Systems, May 29-31, 2006, Sakarya University, pp. 55.

Dereli, T., Daş, G. S., Üç Boyutlu Konteyner Yükleme Problemlerinin Çözümü İçin
Sezgisel Bir Yaklaşım, YA/EM’2006: Yöneylem Araştırması / Endüstri
Mühendisliği Kongresi XXVI. Ulusal Kongresi, 3-5 Temmuz 2006, Kocaeli.

Dereli, T., Daş, G. S., Çok amaçlı konteyner yükleme problemi ve bir uygulama,
YA/EM’2007: Yöneylem Araştırması / Endüstri Mühendisliği Kongresi XXVII.
Ulusal Kongresi,2-4 Temmuz 2007, İzmir, pp. 663- 668.

Dereli, T., Daş, G.S., A hybrid Simulated annealing algorithm for two-dimensional
strip packing problems, ICANNGA 2007, Warsaw, Poland.

Daş, G. S., Dereli,T., Container Loading using hybrid Bees Algorithm, 8th
Workshop of the EURO Working Group " EU/ME, the European Chapter on
Metaheuristics", October 4-5, 2007, Stuttgart, Germany, 52-59.

Daş, G. S., Dereli,T., Ant Algorithms for Container Loading Problems, Workshop on
Women in Industrial Engineering Academia – the U.S. and Middle East, July 7 – 11
2008, ANKARA and ISTANBUL, TURKEY, Poster.

HOBBIES

Puzzle, Reading and Travelling.

	UNIVERSITY OF GAZİANTEP_PhD Kapak.pdf
	G_Sena_Das_thesis_abstract_11_06_10.pdf
	CHAPTER 1_9_3_5_2010_SB.pdf

