
 
UNIVERSITY OF GAZİANTEP  

GRADUATE SCHOOL OF 
 NATURAL & APPLIED SCIENCES 

 
 
 
 
 
 
 
 
 

SOLVING THE 3D CONTAINER LOADING 
PROBLEM WITH METAHEURISTICS 

 
 
 
 
 
 
 
 

 Ph.D THESIS 
IN 

INDUSTRIAL ENGINEERING 
 
 
 
 
 
 
 

BY 
GÜLESİN SENA DAŞ 

JUNE 2010 
 
 
 
 
 
 



 
 
 
 
 
 
 

Solving the 3D Container Loading Problem with 
Metaheuristics 

 
 
 
 
 
 
 

PhD Thesis 
in 

Industrial Engineering 
University of Gaziantep 

 
 
 
 
 
 
 

 
 

Supervisor  
Prof. Dr. Türkay DERELİ 

 
 

 
 

 
 
 
 

by 

Gülesin Sena DAŞ 

Haziran 2010 



i 
 

 
 
 
 
 
 

ABSTRACT 
 

SOLVING THE 3D CONTAINER LOADING PROBLEM WITH 
METAHEURISTICS 

 
DAŞ, Gülesin Sena 

Ph.D. in Industrial Eng. Dept. 
Supervasor:  Prof. Dr. Türkay DERELİ 

June 2010, 121 pages 
 

Container Loading (CL) is a quite interesting and very difficult problem to solve. 
Given a set of small rectangular items and a rectangular container with known 
dimensions, the aim is to load the items into the container in such a way that 
maximum volume utilization of the container is achieved. The Operations Research 
(OR) literature classifies this problem as NP-hard. Due to the complex nature of the 
problem, in the first part of this thesis two swarm intelligence (SI) based solution 
approaches namely Ant Colony Optimization (ACO) and Bees Algorithm (BA) are 
offered to solve the CL Problem. The results obtained with these approaches are 
compared with the available approaches in the literature and the performances of 
these approaches are discussed. Comparison of the proposed approaches in terms of 
utilization ratio revealed that BA is the best performing algorithm. In addition to this, 
a CL decision support system - to determine and visualize the packing pattern of a 
CL problem - is also designed.  
 
In the second part, a multi-objective CL (MOCL) problem inspired from a real 
industrial problem is introduced. The main goal of the MOCL problem is to pack a 
group of items into the container without any overlap while maximizing the total 
weight of the packed items and the utilization rate of the container simultaneously. 
These two objectives are conflicting since the volume of an item is usually not 
proportional to its weight. The problem is solved via selected multi objective 
optimization methods (Goal Programming and Weighted-Sum) and the Simulated 
Annealing algorithm. The proposed algorithms are tested on real data provided by a 
distribution company and the positive impact of the obtained solution to the 
company’s transportation policy is discussed. 
 
Key Words: Container Loading, Swarm Intelligence, Ant Colony Optimization, 
Bees Algorithm, Multi- Objective Container Loading, Decision Support System 



ii 
 

 
 
 
 
 
 

ÖZET 
 

3 BOYUTLU KONTEYNER YÜKLEME PROBLEMİNİN 
METASEZGİSELLERLE ÇÖZÜLMESİ 

 
DAŞ, Gülesin Sena 

Doktora Tezi, Endüstri Müh. Böl. 
Tez Yöneticisi: Prof. Dr. Türkay DERELİ 

Haziran 2010, 121 sayfa 
 
Konteyner Yükleme (KY) oldukça ilginç ve çözülmesi çok zor bir problemdir. Bir 
grup küçük dikdörtgen nesnenin, boyutları bilinen dikdörtgen bir konteynere; 
konteyner hacminden maksimum şekilde faydalanmak amacıyla yerleştirilmesidir. 
Yöneylem Araştırması (YA) yazını problemi NP-zor olarak sınıflamaktadır. 
Problemin karmaşık doğası gereği, bu tezin ilk kısmında sürü zekası tabanlı iki 
çözüm yaklaşımı ismen Karınca Kolonisi Optimizasyonu (KKO) ve Arı Algoritması 
(AA) KY problemini çözmek için önerilmiştir. Bu yaklaşımlarla elde edilen sonuçlar 
yazında mevcut diğer yaklaşımlarla kıyaslanmış ve bu yaklaşımların performansları 
tartışılmıştır. Önerilen algoritmalarla kıyaslandığında AA’nın performansının daha 
iyi olduğu görülmüştür. Bunlara ek olarak, bir KY problemine ait doldurma 
düzeninin belirlenmesi ve görüntülenmesi için bir KY karar destek sistemi de 
tasarlanmıştır. 
 
Tezin ikinci kısmında ise, gerçek bir endüstriyel problemden esinlenen çok-amaçlı 
bir KY (ÇAKY) problemi tanıtılmıştır. ÇAKY problemin ana amacı; bir grup 
nesnenin herhangi bir çakışmada olmadan, yüklenen nesnelerin toplam ağırlığını ve 
konteyner kullanım oranını eş zamanlı maksimize ederek konteynere yüklemektir. 
Bu iki amaç, bir nesnenin hacminin ağırlığına orantılı olmadığında çoğunlukla 
birbirine zıttır. Problem seçilmiş çok-amaçlı optimizasyon metotları (Hedef 
Programlama ve Ağırlıklı-Toplam) ve Tavlama Benzetimi algoritması vasıtasıyla 
çözülmüştür. Önerilen algoritmalar bir dağıtım firması tarafından sağlanan gerçek 
veri üzerine test edilmiş ve elde edilen sonuçların firmanın ulaştırma politikasına 
olumlu etkisi tartışılmıştır. 
 
Anahtar Kelimeler: Konteyner Yükleme, Sürü Zekası Algoritmaları, Karınca 
Kolonisi Optimizasyonu, Arı Algoritması, Çok-Amaçlı Konteynır Yükleme, Karar 
Destek Sistemi 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Introduction  

 

The globalization of the supply chains has significantly increased container shipment 

all around the world. %90 of all cargo moves in containers and approximately 250 

million are shipped annually (van de Voort et al., 2003). One of the critical parts of 

the container shipment process is the loading phase. Packing a shipment into the 

containers or onto the pallet is a complex process. It often takes several days to 

allocate the pooled goods into the number of containers and then to pack the 

allocated goods into the containers. Occasionally, workers must unload some 

containers and then reload them in a different pattern to pack more goods in the 

containers (Chien and Deng, 2002). Thereby, the need for more efficient algorithms 

to ship and transport goods has become apparent. This study will make an attempt to 

offer alternative solution algorithms to solve Container Loading (CL) problems (both 

single objective and multi-objective) and a real-world case.  

 

1.2. Motivation of the Thesis 

 

With increasing global competition, organizations are forced to review their 

processes and their overall systems. At this stage, organizations have realized that it 

is no longer competitive to work alone but as a part of a certain network having the 

resources beyond the reach of an organization. This search for competitiveness has 

lead to a new structure called “supply chains” as well as its management.  

 

The organizations that are linked together through the supply chain aim to supply 

goods and services to fulfill the demands of the end-customers. This is achieved by 

the material and information flow along the supply chain. An analogy to the flow of 
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water in a river is often used to describe organizations near the source (raw material 

suppliers) as upstream, and those near the end customer (retailers) as downstream 

(Harrison et al., 2002).  Harrison et al. (2002) defined the supply chain management 

as; the alignment of upstream and downstream capabilities of supply chain partners 

to deliver superior value to the end customers at less cost to the supply chain as a 

whole. In the literature, it is widely recognized that effective management of material 

and information along the chain is vital for the performance of the whole supply 

chain. Unless this is achieved, it is difficult to satisfy the customer demand on time. 

This makes “logistics” a critical element for the supply chain management.  

 

The word “logistics” was originally used for military applications but today covers 

commercial activities as well (Wood et al., 2002). The Council of Logistics 

Management (Wood et al., 2002) defines logistics as; the process of planning, 

implementing and controlling the physical and information flows concerned with 

materials and final goods from point of origin to point of usage. A detailed definition 

of logistics can be given as the strategic management of the procurement, movement 

and storage of materials, parts and finished product inventory and the related 

information flows, through the organization and its marketing channel in such a way 

that the current and the future profitability of the organization are maximized through 

the cost-effective fulfillment of orders (Harrison et al., 2002).    

 

Transportation is critical to logistical performance (Bowersox et al., 2002). The 

objective is to transport goods from one place to another, on time in an economic 

way. For organizations trying to decrease their operational costs, “cheap 

transportation” is a practical alternative. To take this alternative as an opportunity, 

goods should be transported from one place to another, on time in an economic way. 

With the aim of transporting more goods/items with low cost, less energy and time, 

especially in overseas logistics applications, goods should be packed optimally or at 

least near optimally. This introduces the question of the effective use of containers.  

 

Containers are large boxes that are used to transport goods from one destination to 

another. Compared to conventional bulk, the use of containers has several 

advantages, namely less product packaging, less damage of goods and higher 

productivity (Agerschou et al., 1983). For transportation facilities, standard ISO 
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containers are generally preferred. ISO shipping containers are provided in two basic 

sizes of length: 20ft (6.1 meters) also referred to as twenty-feet-equivalent-unit 

(TEU) containers and 40ft (12.2 meters) containers expressed by 2 TEU (web1). The 

overall (outside) width of the containers is a standard 2.438 meters and the heights 

vary between 8′6″ (2.59m) height and 9′6″ (2.896m). The most widely used type of 

container is the general-purpose (dry cargo) containers. General Purpose (GP) 

containers (Figure 1.1.a) are abbreviated as 20′DC (Dry Container) or 40'DC. Some 

special purpose containers such as open-top containers, flat racks etc. are also 

available (Figure 1.1.b& 1.1.c). 

 
Figure 1.1 Different types of containers (a) General purpose container (b) Open-top 

container (c) Flat rack  

 

Rising fuel cost now provide a strong incentive for container carriers to maximize 

available container space, thereby minimizing the number of required trips across the 

global container transportation system (Wang et al., 2008). The efficient loading of 

containers, that is, the minimization of empty spaces inside of them, is not only an 

economic requirement but also an ecological issue due to the adverse consequences 

of increased traffic on environmental resources (Parreno et al., 2010). This study will 

make an attempt to offer alternative solution algorithms to solve Container Loading 

(CL) problems (both single objective and multi-objective) and a real-world case.  

 

CL is an interesting and difficult problem to solve. The problem can be described as 

follows: Given a set of small rectangular items and a rectangular container with 

known dimensions, load the items in to the container in such a way that maximum 

utilization of volume of the container is achieved.  
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The operations research literature classifies this problem as NP-hard (Pisinger, 

2002). That is these problems are not solvable in polynomial time, which in turn 

means that it is not possible to find an exact solution for large sized problems. In 

general, only approximate solutions can be found for large sized problems. The use 

of special-purpose heuristics and meta-heuristic algorithms can be a good to provide 

good solutions for large sized problems. 

 

1.3. Statement of the Thesis 

 

In the first part of this thesis, two swarm intelligence based solution approaches 

namely Ant Colony Optimization and Bees Algorithm are offered to solve the CL 

problem. For the first part of the thesis, algorithms based on Swarm Intelligence (SI) 

are utilized. These algorithms, which are inspired by the behaviors of swarm of 

biological organisms, are preferred since they are previously applied to solve 

difficult and complex real-world problems. The detailed examination of the literature 

on the subject has revealed that approaches based on the application of SI techniques 

to the CL problems are quite limited. Having this in mind, the ultimate goal of this 

thesis is to offer some Swarm Intelligence (SI) based solution approaches to the CL 

Problem.  

 

Another considerable contribution of this thesis is the definition of a new problem 

called multi-objective CL problem. The problem is mostly encountered in 

transportation and wholesaling industry. The main goal is to load the items (boxes) 

that would provide the highest total weight to the container in the best possible way. 

These two objectives (maximization of weight and maximization of volume 

utilization) are conflicting since the volume of a box is usually not proportional to its 

weight. Using some multi-objective optimization techniques such as goal 

programming and weighted-sum approach, the objectives are combined into a single 

objective. A Simulated Annealing (SA) algorithm accompanied by a heuristic filling 

procedure is then proposed to solve the model. The proposed algorithm has been 

tested on a set of benchmark problems available in the literature and also on real-

world data provided by a distribution company.  
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1.4. Overview of the Thesis  

 

This study includes eight chapters. Following this Introduction chapter, a detailed 

discussion about Cutting and Packing problems which also embraces the CL 

problems is presented in Chapter 2. In Chapter 3, the literature survey about the CL 

problems and the SI based technique are discussed.  The literature survey about the 

CL problems is examined according to the type of the solution technique proposed: 

heuristic approaches, meta-heuristic approaches and exact approaches. In Chapter 4, 

the proposed heuristic filling procedure that is used together with all the proposed 

algorithms is presented. The developed BA is presented in Chapter 5. In Chapter 6, 

two algorithms based on ACO namely: hybrid–ACO-1 and hybrid-ACO-2 are 

presented. The computational results for both algorithms are also supplied within this 

chapter. In Chapter 7, the developed container loading support system is introduced 

and its functions are explained with examples. A new problem – multi-objective CL 

problem- is defined in Chapter 8. Finally, in Chapter 9 conclusions and future works 

are presented.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



6 
 

 

 

 

 

CHAPTER 2 

 

CUTTING AND PACKING PROBLEMS 

 

2.1. Cutting and Packing problems  

 

Cutting and Packing Problems (CPP) are a set of widely studied problems. In the 

literature, they appear under various names such as cutting stock or trim-loss 

problems, bin or strip packing problems, vehicle, pallet or container loading 

problems, nesting problems, knapsack problems,...etc (Dyckhoff, 1990). In this 

study, a packing problem (PP), namely Container Loading problem is considered. 

 

PP is concerned with finding a good arrangement of multiple items in larger 

containing regions (objects). The placement is described by a set of rules or 

constraints. The objective of the process is to maximize the volume utilization and 

hence, minimize the “wasted” area (Hopper and Turton, 1997). 

 

These problems are encountered in many industries, with different industries 

incorporating different constraints and objectives. The wood, glass and paper 

industries are mainly concerned with the cutting of regular figures, whereas in the 

shipbuilding, textile and leather industries irregular, arbitrary shaped items are 

packed (Hopper and Turton, 2001). 

 

Dyckhoff (1992) defines these problems as geometric - combinatorial problems. 

CPP are geometric-based because within each large object, one or more small items 

are arranged in such a way as to avoid overlapping and to fit into the object’s 

geometric boundaries. They are also combinatorial-based since small items are to be 

assigned to the large objects. In other words, each large object is assigned a given set 

of small items and each item is assigned to at most one large object (Dyckhoff, 

1992).  
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In his work “A typology for cutting and packing problems”, Dyckhoff presents 

several criteria to classify packing problems. These are: 

 

• Dimensionality – This is the most important issue that should be stated in the 

problem definition. A problem can be stated as one- (1), two- (2), three- (3) 

or more dimensional (N).  

• Kind of Assignment - Two categories can be presented under this heading: 

The assignment of all objects to a selection of items (B) or the assignment of 

all items to a selection of object (V).  

• Assortment of large objects – The use of one (O) or more objects is 

mentioned under this heading. In case of using multi objects, these objects 

can be defined as identical (I) or different (D) in dimensions. 

• Assortment of small items – Four types can be defined regarding the 

assortment of small items: few small items of different figures (F), many 

small items with most of them having different figures (M), many small items 

with relatively few different figures (R) and all small items with congruent 

figures (C).  

 

According to this typology Container Loading problem is classified as a combined 

problem as 3/ V/ I or 3/ B/ O. An overview of CPP as summarized by Dyckhoff is 

given in Figure 2.1. 

 

Following this work, an improved typology of cutting and packing problems is 

published by Wäscher et al. (2007), which is partially based on the Dyckhoff’s 

typology. This typology presents some new categorization criteria that is different 

from those of Dyckhoff.  
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Figure 2.1. Overview of CPP (Dyckhoff, 1992) 

Wäscher et al. (2007) gives a common definition for cutting and packing problems 

as: 

 

Given are two sets of elements, namely 

• A set of large objects (input, supply) and 

• A set of small items (output, demand) which are defined exhaustively 

in one, two, three or an even larger number (n) of geometric dimensions. 

Select some or all small items, group them into one or more subsets and 

assign each of the resulting subsets to one of the large objects such that the 

geometric condition holds, i.e. the small items of each subset have to be 

laid out on the corresponding large object where, 

• All small items of the subset lies entirely within the large object,  

• The small items do not overlap, 

and a given (single-dimensional of multi-dimensional) objective function is to 

be optimized.  
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In the light of this definition, they distinguish five sub-problems: 

 

• Selection problem regarding the large objects, 

• Selection problem regarding the small items, 

• Grouping problem regarding the selected small items, 

• Allocation problems regarding the assignment of the small items to large 

objects, 

• Layout problem regarding the arrangement of the small items on each of the 

selected large objects with respect to the geometric condition.  

 

In 2007, Wäscher and colleagues modified criteria for the definition of the problem 

types in the set of CPP. These are; 

 

Dimensionality: one-, two-, three-, or more dimensional as previously defined by 

Dyckhoff. 

 

Kind of assignment:  based on the Dyckhoff’s typology named as output (value) 

maximization and input (value) minimization. 

 

• output (value) maximization refers to the assignments of a set of small items 

to a set of large objects where the set of large objects is not sufficient to 

accommodate all items. 

• input (value) minimization refers to the assignments of a set of small items to 

a set of large objects where the set of large objects is sufficient to 

accommodate all small items. 

 

Assortment of small items: under this heading three cases are defined; identical 

small items, a weakly heterogeneous assortment of small items and a strongly 

assortment of small items. 
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Assortment of large objects: The use of one large object (all dimensions are fixed 

or one or more variable dimensions) or several large objects (identical large objects, 

weakly heterogeneous assortment, strongly heterogeneous assortment). 

 

Shape of small items: Regular small items (rectangles, circles, boxes, cylinders, 

balls, etc.) and irregular small items.  

 

According to these criteria, Wäscher et al. (2007) developed some basic, intermediate 

and refined problem types. Basic types of CPP are developed by taking into account 

type of assignment and assortment of small items. These basic types are illustrated 

in Figure 2.2. 

 

 

 

 

 

 

 

 

 

Figure 2.2. Basic problem types (Wäscher et al., 2007) 

Intermediate problem types are developed by adding the criteria assortment of large 

objects to the basic problem types. Figure 2.3 and 2.4 presents these intermediate 

problem types in terms of output maximization and input minimization.  
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Figure 2.3. Intermedite problem types: output maximization (Wäscher et al., 2007) 
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Single Large Object Placement Problem (SLOPP). Wäscher et al. (2007) states that 

this problem requires loading a fairly large, weakly heterogeneous consignment of 

boxes into a given container such that the volume or value of the packed boxes is 

maximized, or equivalently, the unused space of the container or the value of the 

unpacked boxes is minimized.  

 

2.2. Container Loading Problems 

 

CL and related problems such as the ones mentioned above have recently received 

considerable attention in the literature. There are several reasons of this popularity as 

reported by (Ertek and Kılıç, 2006). First of all, the CL problem is a NP-hard 

problem (Pisinger, 2002) and it has been recognized that it has a wide range of 

industrial applications. It is also possible to define new variants of CL problems by 

using different types of objective functions and the constraints as well. Therefore, 

there are many approaches (both heuristic and meta-heuristic based) proposed to 

solve CL problems, which are a sub-problem of Cutting and Packing problems. 

 

CL problems can be defined as follows;  

 

Given a set of n items with width ( lw ), depth ( id ) and height ( ih ) and a single 

container with known dimensions ),,( HDW  where Wwl ≤ ,  Hhi ≤  and Ddi ≤ ,  the 

problem is to pack items into the container without overlapping while maximizing 

the utilization rate of the container. The utilization of the container is calculated in 

terms of the volumes of the allocated boxes. Suppose that; 

 

U :  Utilization of the container 

pV : Total volume of the allocated boxes into the container 

cV  : Volume of the container where cV W D H= × ×  

  

100 p

c

V
U

V
= ×                                                                                                           (2.1) 
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The problem is solved under the following assumptions: 

 

(1) Items are rectangular boxes defined with known dimensions ),,( iil hdw   

(2) Boxes are placed completely in the container 

(3) Overlapping between the boxes is avoided 

(4) Items can be rotated in any dimension if there is not a restriction defined (see 

Figure 2.5). 

 

 

 

 
Figure 2.5. Six different rotation variants of a box 

 

In addition to the above mentioned assumptions further constraints can be 

considered. Bischoff and Ratcliff (1995) discussed some factors that can be 

considered when solving the problem.  
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Orientation Constraints: Some items/boxes can have a transportation instruction 

such as “this way up”. Alternatively, some boxes can be placed in any of the six 

possible dimensions. 

Load bearing strength of items: Another transportation instruction that can be 

encountered is “stack no more than x items high”.  

Handling Constraints: The size or weight of an item and the loading equipment used 

may to some extent dictate the positioning within a container. For example, it may be 

necessary to put large items on the container floor or to restrict heavy ones to 

positions below a certain height. It may also be desirable from the viewpoint of 

easy/safe materials handling to place certain items near the door of the container. 

Load Stability: The movement of the load should be avoided during the 

transportation if the cargo is of an easily damaged type. Straps, airbags and other 

devices can be used to prevent cargo movement.  

Grouping of items: Items belonging to the same group for example, by a common 

recipient or the same type can be positioned in close proximity. 

Multi-Drop situation: If a container is carrying cargo for a number of different 

destinations, items in the same consignment should be close together in the order of 

distribution to avoid unloading and reloading of a large part of the cargo several 

times. 

Separation of items within a container: If the cargo compromises items that may 

adversely affect some of the other goods (both foodstuffs and perfumery articles), 

then the loading arrangement takes account of this. 

Complete shipment of certain items: If the cargo is composed of sub-sets that may 

constitute functional entities ( components for assembly into a piece of machinery) or 

may need to be treated as a single entity for administrative reasons, and if any part of 

such a sub-set is packed, then all the other items belonging to it are also to be 

included in the shipment. 

Shipment priorities: If the shipment of some items is more important than all of the 

others, then this rating can represent a shipping priority such that no item in a lower 

priority class is shipped if this causes items with higher ratings to be left behind. 



15 
 

Complexity of the loading arrangement: Generally complex packing patterns results 

in a greater materials handling effort.  

Container weight limit: If the total weight of the cargo is fairly high, the weight limit 

of a container may represent a more strict constraint than the loading space of the 

container.  

Weight distribution within a container: From the transportation and handling point 

of view, it is desirable that its centre of gravity is close to the geometrical mid-point 

of the container floor. If the weight is distributed very unevenly, certain handling 

operations may be impossible to be carried out. In cases where a container is 

transported by road at some stage of its journey, the implications of its internal 

weight distribution for the axle loading of the vehicle can be an important 

consideration. 

 

2.3. Conclusion 

 

Lately, the CL problem is classified as the Single Large Object Placement Problem 

(SLOPP) in terms of the Kind of Assignment of the small items. Single Large Object 

Placement problems are defined under the type Output Maximization.  

 

Single CL Problem is an example of the three-dimensional, rectangular SLOPP 

(Wäscher et al., 2007). According to Wäscher et al. (2007) published research 

concentrates on five problem types of CPP which are ODP (102 papers, 23%), 

SBSBPP (89 papers, 20%), SKP (86 papers, 19%), SLOPP (56 papers, 13%) and the 

SSSCSP (38 papers, 9%). Papers on these five problem types account for 371 out of 

445 publications (83%). Among these papers focused on SLOPP, 19 out of 56 (34%) 

are concentrated on three-dimensional SLOPP problems.  
 

In this study, the problem that is dealt is the Single CL problem (so called Container 

Loading Problem in the literature). In the first part of the study, the classical problem 

is handled without any additional constraints; however, in the second part a multi-

objective CL problem is dealt.  
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CHAPTER 3 

 

LITERATURE REVIEW ON CONTAINER LOADING PROBLEMS 

 

3.1. Literature on Container Loading Problems 

 

Many approaches have been proposed to solve CL problems along with many 

practical constraints and different objective functions. Most of the published work on 

the subject utilizes different types of data structures such as graphs or trees  

(Morabito and Arenales, 1994; Eley, 2002, Lim et al., 2005), heuristics algorithms 

(George and Robinson, 1980; Bischoff and Marriott, 1990; Gehring et al., 1990; 

Haessler and Talbot, 1990; Ngoi et al., 1994; Pisinger, 2002; Bischoff, 2003; Moura 

and Oliveira, 2005), meta-heuristic algorithms, such as Genetic Algorithms (GAs) 

(Gehring and Bortfeldt, 1997; Bortfeldt and Gehring, 2001;Yeung and Tang, 2005), 

Simulated Annealing (SA) (Faina, 2000, Mack et al., 2004) and Tabu Search (TS) 

(Bortfeldt and Gehring,1998) to solve different variants of the problem. Also a few 

parallel approaches, including a parallel GA (Gehring and Bortfeldt, 2002), a parallel 

TS (Bortfeldt et al., 2002, Mack et al., 2004), a parallel SA (Mack et al., 2004) and a 

parallel hybrid local search meta-heuristic (Mack et al., 2004) are available.   

 

CL problems are NP-hard problems (Pisinger, 2002). Due to this fact, there are few 

exact approaches (Chen et al., 1995; Li et al., 2003). Most of the published work on 

the subject utilizes different types of data structures, such as graphs and trees, 

heuristics algorithms and meta-heuristic algorithms, such as Genetic Algorithms 

(GAs), Simulated Annealing (SA) and Tabu Search (TS) to solve different variants 

of the problem. An overview of solution approaches for the CL problems is 

presented in Table 3.1.  
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The publications on CL problems are examined according to specific criteria such as:  

• objective(s),  

• constraint(s): No Constraints (NC), Constraints included (CI)  

• number of containers (bins) that is used in the solution: Single (S), Multiple 

(M)  

• type of the boxes that are allocated: Homogeneous (H), Weak 

Heterogeneous (WHe), Strong Heterogeneous (SHe) and  

• the solution approach that is employed.  

Following Table 3.1., the published literature on CL problems is examined.  

 



18 
 

Table  3.1. Reviewed works in the literature 
 

Authors (Year) Type of boxes No of 
bin(s) 

Objective (s) Constraint Solution 
approach 

H WHe SHe S M NC CI 

George, Robinson (1980)  X  X  Maximize the box 
volume accommodated X  

Heuristic 
Algorithm 

Bischoff, Marriott (1990) X X X X  
Minimize the container 
length needed to 
accommodate the box 

X  
Heuristic 
Algorithms 

Gehring et al. (1990)    X X  Minimize inevitable 
space  X 

Heuristic 
Algorithm 

Haessler, Talbot (1990)  X  X  Maximize the box 
volume accommodated  X 

Heuristic 
Algorithm 

Morabito, Arenales (1994)  X X X  Maximize the box 
volume accommodated  X 

AND/OR Graph 
approach 

Ngoi et al.(1994)  X  X  
Maximize the usage of 
space for a fully 
packed container 

X  
Heuristic 
Algorithm 

Chen et al. (1995)  X   X 

Minimize unused space 
by selecting a number 
of containers to pack 
all the boxes 

  

Zero—One 
Mixed Integer 
Programming 

Gehring, Bortfeldt (1997)  X X X  Maximize the box 
volume accommodated  X 

Genetic 
Algorithm 

Chien, Wu (1998) - - - X  Minimize waste of 
container space X  

Dynamic 
programming 
based recursive 
algorithm 

Faina (2000)  X X X  
Minimize the used 
container height used 
to pack the box 

X  

Global 
optimization 
algorithm based 
on Simulated 
Annealing 

Martello et al. (2000)  X X X X 
Packing all items into 
the minimum number 
of bins  

X  Branch and bound 
algorithm  

Terno, et al. (2000)  X X X X 

To find the minimum 
number of pallets to 
load the whole 
consignment 

  
Heuristic with 
branch and bound 
framework 

Bortfeldt, Gehring (2001)   X X  Maximize stowed box 
volume  X Hybrid Genetic 

Algorithm 

Lodi et al. (2002)  X X  X 
Minimize the number 
of bins that contains all 
the items 

X  
Heuristics and 
Hybrid Tabu 
Search Algorithm 

 
 
constraints dealt: No Constraints (NC), Constraints included (CI) 
number of containers: Single Container (S), Multiple Containers (M) 
type of the boxes: Homogeneous (H), Weak Heterogeneous (WHe), Strong Heterogeneous (SHe) 
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Table  3.1. Reviewed works in the literature (continues) 
 
Authors (Year) Type of boxes No of 

bin(s) 
Objective (s) Constraint Solution approach 

H WHe SHe S M NC CI 

Eley  (2002)  X X X X 

Multiple objectives 
(treated singularly) 
- volume utilization 
- load stability 
- weight distribution 

X  Tree search 

Pisinger (2002) X X X X  Maximize the box 
volume accommodated X  Heuristic Algorithm

Gehring, Bortfeldt (2002)   X X  Maximize the box 
volume accommodated X X Parallel Genetic 

Algorithm 

Bortfeldt et al. (2003)  X  X  Maximize stowed box 
volume  X 

Parallel Tabu 
Search 
Algorithm 

Li et al. (2003)  X  X  
Packing box into a 
rectangular container 
having minimal space 

X  
Zero—One Mixed 
Integer 
Programming 

Bischoff (2004)  X  X  Maximize the box 
volume accommodated  X Heuristic Algorithm

Mack et al. (2004)  X  X  Maximize the stowed 
box volume X  Parallel Hybrid 

Local Search 

Moura, Oliveira (2005)  X X X  Minimize wasted space 
in the container  X GRASP Algorithm 

Lim et al. (2005) X X X X  Maximize the box 
volume accommodated  X Tree search 

heuristic 

Yeung, Tang  (2005)  X X X  
Minimize the used 
container height used to 
pack the box 

 X Hybrid Genetic 
Algorithm 

Nepomuceno et al. (2007)  X X X  
The maximum 
volume of the loaded 
boxes 

X  
Integer Linear 
Programming and 
Genetic Algorithm 

Liang et al. (2007)   X  X  

Determine the 
arrangement of objects 
with the best utilization 
ratio in the container 

X  

A hybrid meta-
heuristic based on 
Ant Colony 
optimization and 
Genetic Algorithms 

Wang, Li (2007)  X   X  

Maximizing the 
number of boxes that 
can be loaded into the 
single container.  

X  Heuristic 
Algorithms 

Wang et al. (2008)  X  X  

Determine a loading 
scheme that will 
maximize 
the space usage of the 
container 

X  Tree based 
Heuristic Algorithm

Huang, He (2009)  X X X  Maximize the volume 
of the packed items X  Heuristic Algorithm

Parreno et al. (2010)  X X X  Maximization of space 
usage   X 

Heuristics, Variable 
Neighborhood 
Search 

Kang et al. (2010)  X X X X 

Single Container 
Problem: maximizing 
the use of container’s 
volume 
Multiple Container: 
minimizing the number 
of containers 

X  Heuristic Algorithm

 
constraints dealt: No Constraints (NC), Constraints included (CI) 
number of containers: Single Container (S), Multiple Containers (M) 
type of the boxes: Homogeneous (H), Weak Heterogeneous (WHe), Strong Heterogeneous (SHe) 
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3.1.1. Exact Approaches  

 

As mentioned before, the studies on exact solution approaches are very limited. The 

first analytical work on CL problems is presented by Chen et al. (1995). They 

developed a zero – one mixed integer programming model for the general three 

dimensional CL problems. This model is presented here in order to demonstrate the 

complexity of the problem  

 

If x, y, and z is denoted as the width, length, and height of the container (x>0, y>0, 

z>0), then the packing optimization problem is stated as follows (Chen et al., 1995): 

 

Minimize xyz 

subject to; 

(1) All of n boxes are non-overlapping. 

(2) All of n boxes are within the range of x, y, and z. 

(3) xm ≤  x ≤ xM,  ym ≤ y ≤yM, and zm ≤ z ≤ zM   

(x, y, and z are integers and xm, ym, zm, xM, yM, and zM are constants). 

 

The related terminologies notations used in the packing model are; 

  

(pi, qi, ri) : Parameters indicating the length, width, and height of carton i. 

(x, y, z)     : Continuous variables indicating the length, width, and height of the 

container. 

(xi, yi, zi)  : Continuous variables (for location) indicating the coordinates of the front-

left-bottom corner of carton i. 

 

(lxi, lyi, lzi): Binary variables indicating whether the length of carton i is parallel to the 

X-, Y-, or Z-axis. For example, the value of lxi is equal to 1 if the length of carton i is 

parallel to the X-axis; otherwise, it is equal to 0. It is clear that lxi+ lyi+ lzi =1. 

 

(wxi, wyi, wzi) : Binary variables indicating whether the width of carton i is parallel to 

the X-, Y-, or Z-axis. For example, the value of wxi is equal to 1 if the width of carton 

i is parallel to the X-axis; otherwise, it is equal to 0. It is clear that  wxi+ wyi+ wzi =1. 
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(hxi, hyi, hzi) : Binary variables indicating whether the height of carton i is parallel to 

the X-, Y-, or Z-axis. For example, the value of hxi is equal to 1 if the height of carton 

i is parallel to the X-axis; otherwise, it is equal to 0. It is clear that hxi+ hyi+ hzi =1. 

 

For a pair of cartons (i,k) where i<k, there is a set of 0–1 vectors (aik, bik, cik, dik, eik, 

fik) defined as; 

 

aik = 1 if carton i is to the left of carton k, otherwise aik=0. 

bik = 1 if carton i is to the right of carton k, otherwise bik=0. 

cik = 1 if carton i is behind carton k, otherwise cik=0. 

dik = 1 if carton i is in front of carton k, otherwise dik=0. 

eik = 1 if carton i is below carton k, otherwise eik=0. 

fik = 1 if carton i is above carton k, otherwise fik=0. 

 

The front-left-bottom corner of the container is fixed at the origin. The packing 

problem can then be formulated as follows (Chen et al., 1995): 

 

Minimize xyz                                                                (3.1) 

subject to; 

xi + pi lxi + qiwxi + rihxi ≤ xk + (1 - aik)M          for all i, k, i<k                           (3.2) 

 

xk + pklxk + qkwxk + rkhxk ≤ xi + (1 - bik)M        for all i, k, i<k                (3.3) 

 

yi + pi lyi + qiwyi + rihyi ≤ yk + (1 - cik)M          for all i, k, i<k               (3.4) 

 

yk + pklyk + qkwyk + rkhyk ≤ yi + (1 - dik)M        for all i, k, i<k                (3.5) 

 

zi + pi lzi + qiwzi + rihzi ≤ zk + (1 - eik)M           for all i, k, i<k                (3.6) 

 

zk + pklzk + qkwzk + rkhzk ≤ zi + (1 - fik)M          for all i, k, i<k                (3.7) 

 

aik + bik + cik + dik + eik + fik ≥ 1                       for all i, k, i<k                (3.8) 

 

xi + pilxi + qiwxi + rihxi ≤  x                                for all i, k, i<k               (3.9) 
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yi + pilyi + qiwyi + rihyi ≤ y       for all i, k, i<k              (3.10) 

 

zi + pi lzi + qiwzi + rihz i≤ z       for all i, k, i<k              (3.11) 

 

lxi + lyi + lzi = 1  for all i                                     (3.12) 

wxi + wyi+ wzi = 1   for all i                                        (3.13) 

hxi+ hyi + hzi = 1   for all i                                                (3.14) 

lxi + wxi + hxi = 1   for all i                                         (3.15) 

lyi + hyi + wyi = 1  for all i                                     (3.16) 

lzi + wzi + hzi = 1   for all i                                       (3.17) 

 

where lxi, lyi, lzi, wxi, wyi, wzi, hxi, hyi, hzi, aik, bik, cik, dik, eik and fik are 0–1 variables,  

M = max{ xM, yM, zM }, xi, yi, zi ≥ 0, 0 < xm ≤ x ≤ xM, 0 < ym ≤ y ≤ yM, 0 < zm ≤ z ≤zM , x, 

y, and z are integers, and xm, ym, zm, xM, yM, and zM are constants. The objective of this 

model is to minimize the volume of the container. Constraints (3.2)–(3.8) are non-

overlapping conditions used to ensure that none of these n boxes overlap each other. 

Constraints (3.9)–(3.11) guarantee that all boxes are within the enveloping container. 

Constraints (3.12)–(3.17) describe the allocation restrictions among logic variables. 

For instance, constraint (3.12) implies that the length of carton i is parallel to one of 

the axes. Constraint (3.15) implies that only one of length, width and height of carton 

i is parallel to X-axis. 

 

The developed model takes into account the issues of carton orientations, 

overlapping of cartons, multiple carton sizes and multiple container sizes. They also 

extended the model for some special container loading problems. Although the 

model reaches an optimum solution, it takes fifteen minutes to solve a small scale 

problem in which the objective is to allocate six non-identical boxes to three non-

identical containers. Unfortunately, using this model for the real-world problems is 

not practical since the number of variables increase greatly as the number of boxes 

increase. 
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Martello et al. (2000) proposed an exact branch and bound method for the 3D BPP. 

The algorithm iteratively solves sub problems which have to fill a single bin. For this 

purpose, a procedure called main branching tree assigns items to the bin and a 

branch and bound algorithm called onebin checks whether those items can fit in a 

single bin. If the items can fit in a single bin, the algorithm tries to obtain the best 

filling. The computational work that is presented shows that all the problems up to 30 

items and %84 of problems up to 50 items are solved to optimality. However, the 

performance of the algorithm decline as the number of items that should be located 

into a single bin increases.  

 

The later study of Li et al. (2003) extended the zero – one mixed integer 

programming model of Chen et al. (1995) by reducing the number of variables in the 

mathematical model. The original model proposed by Chen et al. (1995) uses 

nnn 9)1(3 +−  0-1 variables where as the reformulated model uses nnn 9)1(
2
3

+−  0-

1 variables. In spite of this improvement in the model, it is not clear how many boxes 

can be allocated to a container using this model within a reasonable amount of time. 

 

3.1.2. Heuristic Approaches  

 

Most of the approaches proposed so far are heuristic algorithms. The most common 

heuristic approaches can be classified as; 

 

 Wall building algorithms (utilizing layers), 

 Stack building algorithms, 

 Guillotine cutting algorithms and 

 Cuboid arrangement algorithms (Pisinger, 2002). 

 

One of the earliest publications on CL was published by George and Robinson 

(1980). They proposed a wall building algorithm. Their heuristics packing algorithm 

pack a set of non- identical boxes into a container where the total volume of boxes is 

little less than the volume of the container. The proposed algorithm fills the container 

by building layers across the container width. The depth of each layer is determined 

by the box that has the highest rank Layers are produced from boxes of the same 
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type. The empty spaces that are occurred in layers and in between the layers are 

filled with the remaining items. Empty spaces in between layers are combined and 

filled with an unused box. However, later work indicated that this algorithm does not 

produce very efficient patterns (Bischoff and Ratcliff, 1995).  

 

Bischoff and Marriott (1990) developed fourteen heuristic algorithms by combining 

six ranking rules and three filling methods based on George and Robinson’s and 

Bischoff and Dowsland’s approach. The developed algorithms (namely B1 and B2) 

have two main differences from the George and Robinson’s approach. Each layer is 

built from a single type of box and each layer is filled through a two dimensional 

packing procedure. The depth of each layer is determined by a heuristic approach. 

Each dimension of a box in turn is accepted as a potential layer depth. With this 

depth fixed, the number of rectangles that fills this layer is calculated. If a full layer 

cannot be formed with the number of boxes that should be loaded, this depth is 

unsuitable. The algorithm checks the other alternatives. If more than one possible 

layer depth occurs (a complete layer can be formed with this dimension), then a 

choice needs to be done. Either the dimension that yields the maximum percentage 

fill of the layer (B1) or the dimension that leaves the least number of items (B2) can 

be selected. The comparison of fourteen heuristics suggests that the performance of 

such heuristics is problem dependent. That is, each algorithm performs different for 

each set of problems.  

 

The approach proposed by Haessler and Talbot (1990) is based on the idea of 

forming stacks from boxes. Their purpose is to arrange order quantities and form a 

loading plan for ordered products. For this purpose, they first estimate the number of 

stacks that can be loaded into a vehicle. Then, they form the stacks with the suitable 

boxes (low density products). Finally, they place these stacks across the container.  

 

Later, Gehring et al. (1990) developed a heuristic algorithm utilizing the wall 

building philosophy of George and Robinson’s approach and Haessler and Talbot’s 

(1990) approach. Similar to George and Robinson’s approach, the container is filled 

by building layers across the container width. The depth of each layer is decided by 

the layer determining box. Alternative loading patterns are obtained by chancing the 

dimensions of the layer determining box or changing the layer determining box. 
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Empty spaces in each layer are filled by the suitable box having the highest volume. 

Different from the George and Robinson’s approach, empty spaces in between layers 

cannot be combined. The algorithm produces alternative loading plans that can be 

selected by the decision-maker.   

 

Morabito and Arenales (1994) proposed a guillotine cutting algorithm which uses a 

slicing tree. The algorithm slices the container into smaller parts using guillotine 

cuts. Thus, the initial node of the tree corresponds to the container and the leaf nodes 

correspond to the boxes. They argued that solving the problem by stacks was better 

than solving it by layers but their algorithm produced better solutions than these two.  

 

The paper presented by Ngoi et al. (1994) utilizes spatial representation techniques to 

solve the 3D container loading problem. Their algorithm determines the empty 

spaces and compares the volume of unpacked boxes within these spaces. The box 

that gives the least amount of leftover space is selected. Then the packed boxes are 

updated into the spatial representation system. (the approach uses some ranks to 

determine the best suitable box). 

 

Chien and Wu (1998) proposed a (dynamic programming based) computational 

procedure for the 3D container loading problem. The procedure reduces the problem 

to two dimensional, and one dimensional case, respectively. For this purpose, they 

first cut the container volume into a layer along length, width and height. Then they 

cut each of the layers into horizontal and vertical strips. The best solution is one of 

the three different cutting patterns. However, their work is completely theoretical. 

They did not present any computational work to evaluate the performance of the 

proposed approach. 

 

Terno et al. (2000) developed a branch and bound based heuristics for the multi 

pallet loading problem. They utilized layers to pack the cargo but they used vertical 

layers which does not seem very practical for container loading. First, they 

developed a splitting procedure to partition the whole cargo into k pallets. Afterwards 

they used some loading strategies to load the pallets. These are G4 heuristic to load 

identical pieces, M4 heuristic to load pieces with same heights or height combination 

(at most 4 pieces) or M4 and M8 to load the rest of the items. The results presented 
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in the study reveals that the performance of this approach outperforms some 

previously offered CL algorithms by Ngoi et al. (1994) and Gehring et al. (1997). 

Although offered for multi-pallet loading problem, the authors argued that their 

algorithm is also suitable for the CL problems.  

 

Eley (2002) used a different filling approach to deal with the single and multiple 

container loading problems under stability and weight distribution constraints. Eley 

neither used layers nor towers but used homogeneous blocks (similar to towers) 

made up of identical items. His approach is based on a greedy heuristic to form the 

blocks and a tree search procedure to improve the solution. The results of the 

benchmark problems indicate that the algorithm can compete with CBGAT and 

CBGAS but remains poor compared to TS approach of Bortfeldt and Gehring. He 

also proposed a simple methodology in order to obtain an even weight distribution 

within the container. First the container is filled with nonstraddling walls across the 

width of the container. Then an even weight distribution is obtained by chancing the 

places of the walls along the length of the container.   

 

Pisinger (2002) proposed a heuristic algorithm based on wall building approach. 

First, he formed layers and strips in each layer. He determined the layer depth and 

strip width using a tree search algorithm. Then, he filled each strip using a knapsack 

algorithm. He also searched the effects of different ranking rules for the selection of 

layer depths and strip widths. He observed that a compromise between the largest 

box dimension and the most frequent dimension leads to a high solution quality. He 

pointed out that the filling ratio of his algorithm is about %95 which is high 

compared to Gehring, Bortfeldt (1997) (%87.7), Morabito and Arenales (1994) 

(around %95). 

 

An algorithm based on greedy randomized search procedure (GRASP) is presented 

by Moura and Oliveira (2005). The newly proposed algorithm; first builds a solution 

using the improved version of the George and Robinson’s heuristic which is based on 

wall building algorithm, then the solution is improved with a local-search algorithm. 

More, the authors tackle the cargo stability issues in the algorithm as a constraint in 

the construction phase of the algorithm. They obtained an average of 86.74% for the 

test problems. 
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Lim et al. (2005) used a different approach to deal with the container loading 

problems. They developed a basic heuristic and two augmenting heuristics based on 

the tree search. The basic heuristic packs a box into the container. Then, the 

generated empty spaces as a result of this packing are accepted as the root of a tree 

and each are packed with the suitable boxes.  

 

Wang, Li (2007) proposed two heuristic approaches to pack homogeneous boxes into 

a single container. Both algorithms are based on layers on the faces of the container. 

In the first approach, layers are built on the selected layer face whereas in the second 

approach the algorithm selects the layer face dynamically according to the rameining 

container space as a result of the previously filled layer. Boxes are filled to the layers 

by a block-based 2D packing procedure.  
 

Wang et al. (2008) used a tertiary-tree model for weakly heterogeneous CL 

problems. First, they placed block of homogeneous boxes into the container. 

Afterwards, they applied a dynamic space decomposition method to the remaining 

container space. To reach a high ratio, they used an optimal-fitting sequencing and an 

inner-right corner occupying action.  

 

Huang and He (2009) proposed a heuristic approach in which the key issue is to pack 

an item into a corner or even a cave in the container such that the item is packed as 

compactly and closely to the other items as possible. Tested on some of the test cases 

from the literature, the proposed heuristics performs quiet well compared to the other 

approaches in the literature.  

 

Recently, Parreno and colleagues (2010) proposed a new heuristic algorithm based 

on variable neighborhood search. The heuristic uses several new neighborhoods 

based on the elimination of layers, insertion of columns or boxes and a stronger 

move based on emptying a region of the container. The experiments with the test 

cases showed that the VNS algorithm competes favorably with the best performing 

algorithms. They also dealt with cargo stability aspects and compared their algorithm 

with some works dealing with cargo stability such as Eley (2002), Moura and 

Oliviera (2005)…etc. 
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A new block strategy is proposed both the Single Container and the Multiple 

Container Loading Problem by Kang et al. (2010). They used blocks made up of 

homogeneous boxes to fill the container. Using these blocks first the container is 

build recursively until all the boxes are stowed or no empty space is left behind. By 

replacing the previously placed blocks with the alternative blocks they generated 

alternative packing patterns and compared these patterns with each other to find the 

best packing patterns. The performance of this strategy is quite high even compared 

to the algorithm offered by Parreno and colleagues (2010). 

 

3.1.3. Meta-heuristic Approaches 

 

Gehring and Bortfeldt (1997) presented a Genetic Algorithm (GA) for the 3D 

container loading problem (CBGAT) in which a set of constraints related with 

weight and stability aspects are taken into account. The algorithm fills the container 

in two steps. First, a set of stable box towers is generated by a greedy algorithm. 

Then the container floor is covered by this box towers using GA. They suggested that 

this algorithm achieves high container utilization for both weak and strong 

heterogeneous problems.  

 

Faina (2000) introduced a geometric model which reduces the general 3D packing 

problem to a finite enumeration scheme. He developed a Simulated Annealing based 

algorithm that uses the method of zones. Different from the previous algorithms, the 

proposed algorithm neither uses a ranking rule nor a packing strategy, such as wall 

building, stack building, etc. In this method each box is defined as zones. The 

algorithm starts packing by placing the first box to the origin. Then the second box 

moves in the direction of decreasing z dimension, than in the direction of decreasing 

x dimension and finally in the direction of decreasing y dimension, until it touches 

the border of the zone of the first box. After obtaining an initial solution in this 

manner, the algorithm performs a small perturbation on this initial solution and 

constructs a new solution. The algorithm provides high quality results up to 32 

boxes, but the solution quality gets worse as the number of boxes increases.  

 

In 2001, Bortfeldt and Gehring proposed another GA (named CBGAS) for the same 

problem but this time utilized layers to fill the container. Similar to Gehring et al’s 
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(1990) approach, each solution is composed of non-overlapping vertical layers along 

the container. Using GA and problem-specific GA operators, the best sequence of 

each of the formed layer is determined.  However, the results of the benchmark 

problems does not indicate a slight performance difference between the two GA 

developed by Bortfeldt and Gehring. The presented algorithm (CBGAS) seems more 

suitable for the strong heterogeneous problems. This finding supports the idea that 

the quality of heuristic algorithms for 3D container loading problems is usually 

problem dependent.  

 

Gehring and Bortfeldt (2002) offered the parallel version of the GA which was 

published previously in 1998 by the same authors. Since the relevant article is 

written in German, it is not possible to discuss the details of this algorithm. Different 

designs for the parallelization were offered and one of them was chosen. With the 

parallelized algorithm an improvement of 0.7% is obtained compared to the original 

algorithm. 

 

Lodi et al. (2002) proposed a two phased constructive heuristic for the 3D Bin 

Packing Problems (3D BPP). 3D BPP have relevant practical interest in industrial 

applications such as, e.g., cutting foam rubber in arm-chair production, container and 

pallet loading and packing design (Lodi et al., 2002). Therefore, this study is also 

reviewed here. The proposed two-phased heuristic packs the items by layers. The 

layers are filled either by items which are sorted in non-increasing height (Phase 1) 

or by items which are sorted by non-increasing area (Phase 2).  One important point 

is that, Phase 2 use the layers produced by Phase 1. Two solutions are obtained as a 

result of the two phases. To obtain both solutions, produced layers are combined into 

finite bins using the 1D BPP algorithm. Finally, the better of two solutions is chosen. 

Later, this constructive heuristic called HA is embedded into the TS algorithm. When 

compared to H1 and H2 heuristics and exact algorithm BB of Martello et al. (2000) 

and constructive heuristic HA, TS with HA produce better solutions. When 

compared to GLS algorithm by Fareo et al.(), for some cases TS with HA performs 

better and for some cases GLS performs better.  

 

Bortfeldt et al. (2003) used Tabu Search (TS) algorithm to solve the weakly 

heterogeneous 3D container loading problem. They load the container with what they 
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called local arrangements, which are predefined box arrangements. They mainly 

investigated the effect of parallel computing on solution quality. For this purpose, 

they programmed a modular algorithm with two TS algorithms, one of which is a 

sequential one and the other being a parallel one.  

 

Mack et al. (2004) proposed a hybrid meta-heuristic for the CL problem which 

combines a SA algorithm with a TS algorithm. The SA algorithm has been 

transformed into a hybrid meta-heuristic by post-proccesing the final solution 

obtained from SA with TS. The authors had also offered the parallel versions of all 

these algorithms. When the offered SA and TS algorithms are compared it is found 

out that SA algorithm yields better solutions. However, the average computational 

time of SA increases significantly compared to TS. The results revealed that 

parallelization and hybridization gives the best solution quality. With a 93.78% 

filling ratio (for Bischoff and Ratcliff cases which will be introduced later) their 

results dominated the results of the other authors in the literature.  

 

Yeung and Tang (2005) hybridized the GA with a new heuristic filling strategy that 

is able to produce stable solutions. The heuristic filling algorithm packs a sequence 

of boxes using vertical layers. These layers can be regular or irregular in shape. 

Using GA they obtained the best placement sequence.  

 

Nepomuceno et al. (2007) proposed a hybrid approach based on Integer Linear 

Programming and Genetic Algorithms. The hybrid approach has two components; 

Generator of Reduced Instances and the Decoder of Reduced Instances. The first 

component is in charge of producing reduced problem instances of the problem while 

the second component is responsible to interpret and solve any generated problem 

instances coming out of the first component. The optimal solution is achieved with 

solving the sub problems of the original problem in an iterative manner.   

 

Lately, Liang et al. (2007) proposed a hybrid meta-heuristic algorithm based on Ant 

Colony Optimization and Genetic Algorithms. This study is probably one of the few 

approaches using Ant Colony Optimization for CL problems. In the first phase of the 

method, tower sets made up of objects are constructed with the pheromone updating 

structure of the ant colony optimization algorithms. Following this construction 
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phase, towers are assigned to the container’s bottom plane with Genetic Algorithm. 

The utilization rate obtained with the method was satisfactory however it was not better than 

results obtained by Mack et al. (2004). 

 

3.2. Literature on Swarm Intelligence Techniques 

 

SI as a term was first used in 1988 by Gerardo Beni (Beni, 1988) in the context of 

cellular robotic systems. As Bonabeau (1999) stated, SI describes any attempt to 

design algorithms or distributed problem-solving devices inspired from the collective 

behavior of social insect colonies and other animal societies. SI indicates a recent 

computational and behavioral metaphor for solving distributed problems that 

originally took inspiration from the biological examples provided by the social 

insects and by swarming, flocking and herding behaviors in vertebrates (Zhao et al., 

2006).  

 

Social insects have lived on Earth for millions of years, building nests and more 

complex dwellings, organizing production and procuring food (Teodorovic, 2003). 

SI algorithms draw inspiration from the problem-solving ability of social insects that 

live in colonies, such as ants, bees, wasps, termites. These insects interact with each 

other in various ways including bee dancing for food foraging, ants laying 

pheromone to the path, etc. This kind of communication systems between individual 

insects shows the connection between ‘individual insect behaviour’ and ‘collective 

intelligence’ of social insect colonies (Teodorovic, 2003; Bonabeau, 1999). Another 

interesting feature of social insects is their self organization capability. When acting 

as a community, these insects even with very limited individual capability can jointly 

(cooperatively) perform many complex tasks necessary for their survival. Problems 

like finding and storing foods, selecting and picking up materials for future usage 

require a detailed planning and are solved by insect colonies without any kind of 

supervisor or controller (Abraham et al., 2008).  

 

Although there are many animals or colonies available in the real world in order to 

mimic, two main types of SI algorithms can be found in the literature, namely; Ant 

Colony Optimization (ACO) and Particle Swarm Optimization (PSO) (Engelbrecht, 

2005; Kennedy et al., 2001; de Castro, 2002). An increasing number of researchers 
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have also implemented Bee(s) Algorithms (BA) which imitates the foraging behavior 

of swarms of honey bees to solve a variety of diverse real-world problems (Dereli et 

al., 2009). 

 

It is worth noting that some algorithms like Genetic Algorithms (GAs) and 

Stochastic Diffusion Search (SDS) are occasionally considered in the family of SI, 

although they are not inspired by the behavior of social insect colonies and other 

animal colonies. Other algorithms that can occasionally be classified under SI; like: 

(Dereli et al., 2009) 

 

• Stochastic Diffusion Search (SDS)  

• Bacteria Swarm Foraging Optimization (BSFO) or Bacteria Foraging 

Optimization Algorithm (BFAO)  

• Artificial Immune System (AIS)  

• Carabid Beetle Foraging 

• Wasp or Wasp Colony Algorithm  

• Physarum Solver  

 

The most commonly used technique among these methods inspired by social insects 

is the ACO algorithm which was conceived by Dorigo et al. (1991). The algorithm 

can be described as an evolutionary search procedure based on the way that ant 

colonies cooperate in locating shortest routes to food sources.  Ants are social 

insects, that is, insects that live in colonies and whose behavior is directed more to 

the survival of the colony as a whole than to that of a single individual component of 

the colony (Dorigo et al., 1999). The specific interest of researchers on ant colonies 

is their foraging behaviour and how they can find the shortest path between food 

sources and the nest. Ants communicate among themselves through a chemical 

substance called “pheromone”, which they lay on the ground along the path they 

traverse. It has been observed that the more ants use a particular path, the more 

pheromone is deposited on that path and the more it becomes attractive to the other 

ants seeking food. If an obstacle is suddenly placed on an established path leading to 

the food source, ants will initially go right or left in a seemingly random manner. 

Those choosing the side that is in fact shorter will reach the food more quickly and 
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will make the return journey more often. The pheromone that is deposited on the 

shorter path will eventually become the preferred route for the stream of ants (Gravel 

et al., 2002). 

 

Besides ACO, another population based optimization technique, which is relatively 

new, is the Particle Swarm Optimization (PSO) algorithm. It was developed by 

Eberhart and Kennedy in 1995 (Kennedy and Eberhart, 1995), inspired by the social 

behavior of bird flocking or fish schooling. The particle swarm concept originated as 

the simulation of a simplified social system. The original intent was to graphically 

simulate the choreography of a bird of a bird block or a school of fish. However, it 

was found that particle swarm model can be used as an optimizer. The PSO 

algorithm includes a swarm of particles moving in the n- dimensional problem space 

where each particle represents a potential solution having a fitness function that is to 

be optimized. Each particle in the swarm has a position and a velocity which is 

updated both by its own (pbest) and neighbours experience (gbest) in the search 

space. In analogy with evolutionary computation paradigms, a swarm is similar to a 

population, while a particle is similar to an individual (Engelbrecht, 2006).  

 

Bee(s) algorithm (BA) is the youngest algorithm compared to ACO and PSO. 

Numerous researchers have recently been inspired from the interesting features of 

honey bee colonies. It is a well-known fact that if only some of the nature or 

behaviour of honeybees can be exploited and some new characteristics could be 

added, a class of algorithms can be devised (Yang, 2005). Due to this fact, 

considerable research has been conducted to develop algorithms that mimic the 

foraging, learning, mating and dancing behaviours of the honeybees. It has been also 

reported that these algorithms - namely bee(s) or bee colony algorithms are mainly 

inspired from two behaviors: (Abbass, 2001; Afshar et. al, Teo and Abbass, 2003; 

Koudil et. al, 2007) and food foraging (Lucic, 2002; Yang, 2005; Pham et. al, 2006) 

(Dereli and Daş, 2007). Most of the works in this field of research have been mainly 

affected from (or based on) the pioneering works of von Frisch (1967), Seeley (1995) 

and Dyer (2002). In utilization of the proposed models in this field, a number of 

algorithms based on the behaviors of honey-bee colonies have been developed by 

different researchers. It has been recently recognized that honeybees can manage to 

efficiently collect the best nectar without any central command and the swarm 
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intelligence of these amazingly organized bees can also be used for optimization 

problems (Nakrani and Tovey, 2007).  

 

Despite its relatively short history, these approaches that have been inspired from the 

behaviors of the honey bees have been applied to job shop scheduling (Chong et.al, 

2006), transportation problems (Lucic, 2002), partitioning and scheduling problems 

(Koudil et. al, 2007), training of multi-layered perception networks (Pham et. al, 

2006a), recognizing patterns in control charts (Pham et. al, 2006b), optimization of 

continuous functions (Karaboğa and Baştürk, 2007; Pham et. al, 2006c), water 

resources management problems (Bozorg and Afshar, 2004), data mining problems 

(Fathian et al., 2007; Benatchba et al., 2005) and to generalized assignment problems 

(Baykasoglu et al., 2007).  

 

Among the above introduced SI based algorithms, two swarm-based techniques 

namely; ACO and BA are applied to CL problems in this study. In fact, PSO is not 

preferred compared to ACO and BA. The reason is that both PSO and some BA are 

originally proposed for continuous optimization problems (Yang and Simon, 2005; 

Pham et al., 2006). The use of these two population based optimization techniques 

for the solution of CL problems is one of the original contributions of this thesis. 

 

3.3. Conclusion 

 

The literature review on CL problems revealed that many different solution 

approaches have been offered. In addition to exact approaches mostly heuristics and 

meta-heuristic approaches are proposed due to the complexity of the problem. Meta-

heuristic approach is the most common method (Liang et al., 2007). 

 

Among the proposed heuristic approaches, the most popular ones that are widely 

utilized by the researchers are “wall building” and “stack building” approaches. In 

this thesis, a heuristic filling procedure based on the “wall building” approach is 

used. The wall-building and layering approach, first introduced by George and 

Robinson (1980), is most commonly used and modified by later researchers for its 

high efficiency and high quality (He and Huang, 2009). It should be noted that, for 

each meta-heuristic approach, a heuristic filling approach (a kind of decoder 
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algorithm) is needed. Without this decoder algorithm, it is not possible to compute 

the objective function value of a solution which is volume utilization in the classical 

CL problem. This approach is explained in detail in Section 4.2. 

 

The literature survey revealed that the most popular meta-heuristic algorithm used so 

far was GA. In addition to this, SA and TS which are widely used in combinatorial 

optimization have also been utilized for the CL problem. Interestingly, the algorithms 

based on SI techniques, such as ACO, PSO and BA algorithms have not been widely 

applied to these problems. A few studies in the literature are based on these 

approaches. Therefore, this study is concentrated on the use of some SI techniques to 

solve CL problems. For this purpose, the use of BA and ACO is considered in this 

study. In the following chapters, the findings related to the applicability of these 

methods to CL problems are investigated in detail.   
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CHAPTER 4 

 

THE HEURISTIC FILLING PROCEDURE 

 

4.1. Introduction 

 

The heuristic filling procedure that is used together with BA and ACO to solve the 

CL problem and with SA algorithm to solve the multi-objective CL problems is 

presented in this chapter. First, the nature of the procedure which is based on wall 

building approach is introduced in the following section. Then, details about 

determining the dimension of a layer and filling a layer is shared. Finally, the test 

cases which are used in the literature to test the performance of a CL algorithm are 

introduced. 

 

4.2. Heuristic Filling Procedure 

 

The proposed heuristic filling procedure is a “wall-building” approach that loads the 

container layer-by-layer in a recursive manner. Before filling each layer, its 

dimensions are determined as it will be explained in detail in Section 4.2.1.  

 

Layers are filled one at a time. If it is not possible to fill a layer with the boxes in the 

set of available boxes, the current layer is closed and a new one is started. The 

procedure is repeated until it is not possible to locate a new layer to the remaining 

container width or when the set of available boxes is empty. As a result of this 

packing process, the container is filled with the isolated vertical layers where 

spanning of the boxes between layers is avoided.  
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4.2.1. Determination of the layer dimensions 

 
Before starting the filling process, it is important to determine the dimensions of a 

layer since the width of a layer must be carefully selected to obtain a good 

performance (Pisinger, 2002).  

 

In this study, the width of each layer Lw  is set equal to the width of the Layer 

Determining Box (LDB) (Gehring et al., 1990). In order to determine the LDB, first 

the boxes among the set of available boxes are sorted by width dimension in non-

increasing order. Thus, the box with the greatest width dimension is given the highest 

priority.  In case of a tie among the boxes with the same width dimension, the box 

with the smallest depth dimension id  is given a higher priority. Finally, the highest 

priority box in the set of available boxes is chosen as the LDB.   

 

After the determination of the LDB, the layer having width Lw  equal to the width iw  

of the LDB, height Lh  and depth Ld  equal to those of the container is filled. As a 

result, the dimensions of the layer are determined as seen in Equation (4.1); 

 

Dd
Hh

niwhereww

L

L

iL

=
=

== ...,,1,)(max
                                                                      (4.1) 

 

4.2.2. Filling the layer 

 
Following the determination of the layer dimensions, it is possible to fill the layers. 

The layers are filled in a recursive manner. The main advantage of using recursive 

algorithms is that they reduce the solution to a problem with a particular set of input 

to the solution of the same problem with smaller input values (Rosen, 2003). 

Besides, the recursive algorithms are simple and easy to implement.  

 

To explain better how the recursion works, a recursive procedure developed for a 

two-dimensional case is presented below. This procedure which is the primitive of 

the one that is presented later in this section is as follow; 
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 Pack the first item into the bottom left corner ((0, 0) coordinate) of the object 

(This operation also divides the packing “space S” into two subsequent 

subspaces). 

 Pack the next item into the “subspace S1”. If packing to the “subspace S1” is not 

possible, then pack the item to the “subspace S2”. Call this procedure recursively 

until all the items are packed. 
 

In Figure 4.1, the working principle of the recursive filling procedure is illustrated. 

The first item is packed in the bottom-left corner of the larger object. As a result of 

this packing, two empty subspaces (S1 and S2) are generated. The algorithm tries to 

pack the next item into the bottom-left corner of the empty space - subspace S1. If 

this is not possible, the item is packed to the bottom-left corner of the empty space - 

subspace S2. This packing will again divide the subspace in which packing is done 

into two subspaces. The algorithm will try to pack a new item firstly to subspace 

S11, then to subspaces S12, S21 and to S22.  The procedure will be called 

recursively until all the items are allocated into the large object (Dereli and Daş, 

2007). 
 

For the CL problem, this heuristic procedure is adopted to the three dimensional 

case. The large object in the previously described procedure can be considered as a 

layer and items can be considered as boxes. Similar to the empty subspaces that are 

produced every time an item is placed on the large object, empty spaces in a layer are 

produced every time a box is allocated to the layer having predetermined dimensions. 
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Figure 4.1 The working principle of the recursive algorithm developed for the two 

dimensional case  
 

When the first box (that is LDB) is allocated into the layer, three empty new-spaces 

namely “beside”, “in front” and “above” of the packed box are produced. In the 

given situation (see Figure 4.2 and 4.3), only two of these spaces “in front” and 

“above” occurs as a result of the allocation of the first box into the layer. Thus, only 

these spaces are shown in Figure 4.2. However, when a box having a width smaller 

than the LDB is packed into the layer, an empty space beside the packed box occurs 

as seen in Figure 4.3. In the proposed filling procedure, the empty spaces are filled in 

the following order: first, the empty space “in front” of the packed box is filled, then 

the empty spaces “beside” and “above” of the packed box is filled, respectively.  
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Figure 4.2 Empty spaces “in front” and “above” of the LDB 

 

 

 

 

 

 

 

 

 
Figure 4.3 Empty space “beside” a packed box in the layer 

 
Now suppose that there is a packed box in the layer as shown in Figure 4.2 and it is 

desired to pack the next highest priority box in the set of available boxes into the 

container. First, the space “in front” of the packed box is checked. If it is possible to 

allocate this box into this space, then it is packed there and removed from the set of 

available boxes since there is not an empty space “beside” the packed box in the 

current layer the space “above” the packed box is checked. If it is possible to 

allocate this box into this space, then the box is packed to this space and the packed 

box is removed from the set of available boxes. Otherwise, the suitability of the next 

highest priority box in the set of available boxes to the available empty spaces in the 

layer is investigated. The process is repeated in a recursive manner for each box in 

the set of available boxes and for all of the empty spaces available in current layer 

until it is not possible to fill the empty spaces with a box in the set of available boxes. 

 

Empty space 
beside 

Empty space 
infront 

Empty space 
above 

Container width 

C
ontainer height  

Container depth  

Current layer 
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After this detailed introduction of the basic features of the heuristic filling procedure, 

the main steps of the procedure is presented in Figure 4.4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4. The proposed heuristic filling-procedure 
 
 
 
 
 

Calculate the utilization rate of the container and stop. 

Input the problem data and calculate 
the rank of each box according to 

the determined ranking criteria 
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unfilled in the layer?

No

Yes 

Select LDB as the box with the highest rank among the set of available boxes 

Select the box with the highest rank in the set of available boxes  

Is it possible to pack 
the selected box to
the current layer? 

Pack the selected box and remove the packed box from the set of available boxes  

Update the available space data in the layer 
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container width for 

a new layer? 
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No
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4.3. Test Cases 
 
All throughout the study, the performance of the proposed approaches are tested 

using the well known test cases from the literature known as Loh and Nee (LN) 

(1992) test cases and Bischoff and Ratcliff (BR) (1995) test cases. Each class in BR 

test cases includes 100 problems whereas each LN test case represents a single 

problem. In both test cases the aim is to allocate a set of boxes with varying 

dimensions into a container without any overlap to maximize the volume utilization 

of the container for each problem.  

 

Each test problem is run three times with different seed values and the average of 

these runs is used to test the performance of the algorithm.  

 

When comparing the performance of the proposed algorithms it should be noted that 

figures computed by Loh and Nee (named as packing density) are not directly 

comparable to the volume utilization figures in the other columns, as they are quoted 

only on the basis of the smallest rectangular enclosure of the loaded boxes, rather 

than the actual container dimensions (Bischoff and Ratcliff ,1995). 

 

The proposed algorithms are coded in C++ language and the problems are run on a 

computer with 2.4 GHz. Intel Pentium IV. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



43 
 

 
 

 

 

CHAPTER 5 

 

A BEES ALGORITHM FOR SOLVING CONTAINER LOADING 

PROBLEMS 

 

5.1. Introduction  

 

The main goal of this chapter is to discuss the usability of Bees algorithm (BA) to 

find a “good” solution to CL problems, which are difficult combinatorial 

optimization problems. In the next section details related to the implementation of 

BA to the CL problems is described. Computational results and conclusions are 

presented in Section 5.3 and 5.4, respectively.  

 

5.2. A Bees Algorithm (BA) for Container Loading  
 

A search algorithm for this part of the study is considered, since it is essential to find 

out the dimensions of a layer for a good container loading performance as discussed 

in Section 4.2. As it was mentioned before, the width of the layers is set equal to the 

width of the boxes, which has the highest priority in the set of available boxes. If the 

priority of the boxes in the set of available boxes can be altered, alternative widths 

for the layers can be considered to reach a good container-loading performance. In 

our algorithm, the priorities of the boxes (in the set of available boxes) are changed 

by enabling or disabling the rotation of the boxes. 

 

In this study, motivated by the algorithm proposed by Pham et al. (2006) a BA for 

CL problems is proposed to reach the above mentioned goal. The algorithm makes 

an analogy to a colony of honey bees that tries to find promising food sources in the 

nature. The natural food foraging process of a honey bee colony starts with a number 

of scout bees from the colony searching the food sources. When the scout bees find a 
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rich food source they begin a so called “waggle dance” in the hive (Dyer, 2002) as 

shown in Figure 5.1. 

 

 
Figure 5.1. Waggle dance of bees (web2) 

 

This dance which is a form of communication between the bees in the colony 

includes information about the distance, the direction and the quality of the food 

source. Equipped with this important knowledge the colony sends follower bees - 

more follower bees are sent to more promising food sources - to these food sources 

to collect the food. While collecting the food, bees evaluate the food level of the 

source and collect the needed information for the next waggle dance. The employed 

BA mimics the food foraging process of the honey bee colony. The main steps of the 

BA for CL (hybrid-BA) problems, which is hybridized with the heuristic filling 

procedure presented in the previous section, are schematized in Figure 5.2.   

 

In implementing the hybrid-BA for CL several parameters should be determined. 

These key parameters are number of scout bees n, number of selected sites m,  

number of elite sites e chosen from m sites, number of bees recruited to search e elite 

sites nep, number of bees recruited to search m-e other sites nsp, and the termination 

criteria. These parameters of the algorithm are adjusted by trial and error since there 

is not a defined procedure to help the users choose the most appropriate set of 

parameters.  
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Figure 5.2. Algorithm of the hybrid-BA (Daş and Dereli, 2007) 

 

As can be seen in Figure 5.2., the algorithm starts with n scout bees being placed 

randomly in the search space. These n scout bees represent the initial population. 

Following the acquiring of random initial solutions, solutions found by scout bees are 

evaluated by the proposed heuristic filling procedure. Bees that have good fitness 

among this initial population are selected so that m sites are chosen for neighborhood 

search. The search is primarily around the best sites among these m sites known as 

elite sites e and other selected sites m-e. Here, elite sites (e) represent the more 
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Run until the stopping criteria is met 



46 
 

promising solutions which are searched with nep bees greater than nsp bees 

searching the other (m-e) sites. 

 

To obtain the next bee population, the bees (evaluated with the heuristics filling 

procedure) with the highest fitness value are selected from each m sites. In order to 

complete the population to n bees, the remaining n-m bees are assigned randomly to 

the search space in order to find new solutions. These steps are repeated until the 

stopping criterion is met or the solution converges. 

 

At this point, it is meaningful to explain why a “hybridization” of the algorithm is 

required. The hybridization of the BA algorithm with the heuristic filling-procedure 

is essential, since the objective function values corresponding to each solution is 

needed all through the algorithm. Without these values of objective function, the 

neighborhood search is not started in the algorithm. In Figure 5.2., the interactions 

between the BA algorithm and the heuristic procedure are also illustrated. As it is 

clear from Figure 5.2, the heuristic procedure is called upon whenever the objective 

value of a solution is needed by the BA algorithm.  

5.2.1. Representation of a solution and neighborhood search for the BA  
 
 
Each bee in the population represents a bit string of length equal to the number of 

box types of a given CL problem. Each bit in this string shows an alternative 

orientation of a box type (there can be different rotation orientations for different 

problems). Suppose that, a CL problem having the relevant data like the one 

presented in Table 5.1 is being dealt with.  

Table 5.1. Data for a CL problem 

Box Type Width Depth Height Total number 
Type 1 108 65 55 45 
Type 2 95 52 45 55 
Type 3 70 62 35 20 
Type 4 83 40 20 30 
Type 5 90 70 40 18 
Type 6 55 48 37 27 
Type 7 68 20 10 34 
Type 8 100 83 44 41 
Type 9 60 32 23 50 
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The problem contains a total of 320 boxes of 9 different box types (boxes in the same 

type has the same dimensions) and the bit string representation of this problem is as 

shown in Figure 5.3. Suppose that these boxes can only be base rotated. That is there 

is a “this way up” constraint for these boxes.  Each bit in this string represents a box 

type and the numbers “0” and “1” represents whether the boxes of a type are rotated 

or not. The rotation of an ordinary box is shown in Figure 5.4. 

  

 

 

Figure 5.3.  Bit string representation of a solution (only for a base-rotated box) 

 

 
 

 
 

Figure 5.4. The rotation of a box (only for a base-rotated box) 

 

The solution shown in Figure 5.3 tells the program to rotate (to exchange width and 

depth dimensions in case only rotation on the base is allowed) all the boxes of the 

type 2, 3, 5, 7, 8, 9 and then allocate these boxes into the container in this new 

rotation-orientation. This structure is preferred to the structure in which each bit in 

0 1 1 0 1 0 1 1 1 
Type1 Type2 Type3 Type4 Type5 Type6 Type7 Type8 Type9 
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the string represents a box in the problem. In this case, the resulting bit string will be 

of length 320 which will be a very inconvenient and time-consuming structure for the 

large sized problems. 

 

Three operators, namely; “1-flip” and “k-flip” are defined in this work in order to 

reach the neighborhood solutions. In case of “1-flip” type of operator, the value of a 

randomly selected bit is flipped from “1 to 0” or “0 to 1. The operation of this 

operator is illustrated in Figure 5.5. 
 
 
 

 

 
 

Figure 5.5. The use of “1-flip” operator 

 
The second operator is designed with the motivation from the work of Kong et al. 

(2007). They designed a simple random 4-flip method as the local search. This 

operator randomly selects four variables from the solution and flips their values from 

“1 to 0” or “0 to 1”. If the newly generated solution is better, they replaced the 

original solution with the new one. They applied this method 1000 times for each 

solution. They selected the number of flips and the number of execution through a set 

of experiments.  Similar to this structure, an operator named “k-flip” is designed in 

this work. This operator rotates a corresponding number of boxes (k times “total box 

number”) that are selected randomly. It is possible to rotate boxes of a specific box-

type as well as the boxes from alternative box-types by the use of operators one after 

another. For example, for the sample problem provided in Table 5.1, the 

neighborhood search process through the use of operators discussed above is 

illustrated and explained in Figure 5.6. For the example provided above, firstly 1-flip 

operator is applied and the 1-flip operator is applied to the randomly selected bit. 

Accordingly, randomly selected bit representing all the boxes of Type 3 is rotated. 

Following the 1-flip operator, also k-flip operator is applied to the example bit string. 

The k-flip is applied to a number of selected bit position which is equal to the k times 

the total box number in the position (where k < 1). If the k is selected 0.5, then a total 

of 320 x 0.5 individual boxes that are selected randomly should be rotated. For 

0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 
Apply 1-flip  
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example, randomly selected boxes; box number 15 having Type 1, box number 123 

having Type 3,…etc.  

 

 

                      

 

 

 

 

 

 

 

 

Figure 5.6 The operation of the defined operators 

 

If the obtained neighborhood solution is better than the current solution, then the 

neighborhood solution is saved. Otherwise, the current solution is saved. Using both 

operators, it is possible to evaluate a large number of solutions.  

 
5.3. Computational Results for the hybrid-BA 

 

The results of the LN and BR test cases are presented as a single column in Table 5.3 

and Table 5.5 where volume-utilization ratios obtained by each study in the literature 

are also presented in Table 5.2, 5.3, 5.4 and 5.5.  

 

The parameters of the hybrid-BA algorithm for both test cases are set to the 

following; number of bees (population) n = 20; number of selected sites m = 4; 

number of elite sites e = 2; number of bees send to elite points nep = 4 and number 

of bees send to other selected points nsp = 2 for 1000 iterations.  

 

The k- coefficient is defined as a ratio of the total number of boxes in the problem 

(thus defined between 0 and 1) and the value of this coefficient is determined 

through a set of experiments. For both test cases this coefficient is set to 0.6.  

 

0 1 1 0 1 0 1 1 1 

0 1 1 1 1 0 1 1 1 

1-flip 
Rotate a selected box 

k-flip 
Rotate 320 x 0.5 individual 

boxes 

Neighborhood Solution
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Table 5.2. Comparative results with test cases of LN– heuristic approaches 

 

 
Table 5.3. Comparative results with test cases of LN– metaheuristic approaches 

*These values are not computed in this study,      ** These values are not available separately. 

 

The results indicate that the proposed algorithm - hybrid-BA - is capable of solving 

CL problems. The algorithm reaches 11 out of 15 best-known solutions for LH test 

cases. On the other hand, for harder problems LN02, LN06, LN07 and LN013 the 

algorithm found feasible solutions. The hybrid-BA algorithm is the second best 

performing algorithm after the heuristic approach of Eley (2002) which is the best 

Problem Loh and 
Nee 

(1992)* 

Ngoi        
et al. 

(1994) 

Bischoff   
et al. 

(1995) 

Bischoff 
and Ratcliff 

(1995) 

Eley (2002) Bischoff    
(2003) 

Lim       
et al. 

(2005) 
LN01 78.1 62.5 62.5 62.5 62.5 NC* 62.5 
LN02 76.8  80.7  89.7 90.0  90.8 NC 80.4 
LN03 69.5 53.4 53.4 53.4 53.4 NC 53.4 
LN04 59.2 55.0 55.0 55.0 55.0 NC 55.0 
LN05 85.8 77.2 77.2 77.2 77.2 NC 76.7 
LN06 88.6  88.7  89.5  83.1 87.9 NC 84.8 
LN07 78.2  81.8  83.9  78.7  84.7 NC 77.0 
LN08 67.6 59.4 59.4 59.4 59.4 NC 59.4 
LN09 84.2 61.9 61.9 61.9 61.9 NC 61.9 
LN10 70.1 67.3 67.3 67.3 67.3 NC 67.3 
LN11 63.8 62.2 62.2 62.2 62.2 NC 62.2 
LN12 79.3 78.5 76.5  78.5 78.5 NC 69.5 
LN13 77.0  84.1  82.3  78.1  85.6 NC 73.3 
LN14 69.1 62.8 62.8 62.8 62.8 NC 62.8 
LN15 65.6 59.5 59.5 59.5 59.5 NC 59.5 
Mean 74.2 69.0 69.5 68.6 69.9 - 67.0 

Problem Gehring   
et al. 

(1997) 

Bortfeldt  
et al. 

(1998) 

Bortfeldt  
et al. 

(2001) 

Gehring 
and 

Bortfeldt 
(2002) 

Bortfeldt, 
et al. 

(2002) 

Moura 
and 

Oliveira 
(2005) 

hybrid-BA 
 

LN01 62.5 62.5 62.5 NC*   NA** NA 62.5 

LN02 90.7  96.7  89.8  NC NA NA 86.3 

LN03 53.4 53.4 53.4 NC NA NA 53.4 

LN04 55.0 55.0 55.0 NC NA NA 55.0 

LN05 77.2 77.2 77.2 NC NA NA 77.2 

LN06 91.1 96.3  92.4  NC NA NA 89.2 

LN07 82.7  84.7 84.7 NC NA NA 83.2 

LN08 59.4 59.4 59.4 NC NA NA 59.4 

LN09 61.9 61.9 61.9 NC NA NA 61.9 

LN10 67.3 67.3 67.3 NC NA NA 67.3 

LN11 62.2 62.2 62.2 NC NA NA 62.2 

LN12 78.5 78.5 78.5 NC NA NA 78.5 

LN13 85.6 85.6 85.6 NC NA NA 83.6 

LN14 62.8 62.8 62.8 NC NA NA 62.8 

LN15 59.5 59.5 59.5 NC NA NA 59.5 

Mean 70.0 70.9 70.1 - 70.9 70.3 69.46 
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performing heuristic algorithm among the compared heuristic approaches and a quiet 

well performing algorithm among the compared meta-heuristic approaches. When 

the performance of the hybrid-BA is compared to other meta-heuristic approaches 

available in the literature, there is a performance gap of 2.03% between the best 

performing meta-heuristic algorithm and the proposed algorithm.  

 

Table 5.4. Comparative results with the test cases of BR– heuristic approaches 
 

 

 

 

 

 

 

 

 

*These values are not available separately. 

 
Table 5.5. Comparative results with the test cases of BR – metaheuristic approaches 

 

The performance of the hybrid-BA for the test cases of BR is also comparable with 

the other heuristic and meta-heuristic approaches. There is a performance gap of 

9.7% between the best performing meta-heuristic algorithm and the proposed 

algorithm and a performance gap of 6.54% between the best performing heuristic 

algorithm and the proposed algorithm. 

 

 

 

Problem 
(box type) 

Bischoff 
et al. (1995) 

Bischoff 
and Ratcliff 

(1995) 

Eley (2002) Bischoff 
(2003) 

Lim et al. 
(2005) 

BR1(3) 81.76 83.79 NA* 89.39 87.40 
BR2(5) 81.70 84.44 NA* 90.26 88.70 
BR3(8) 82.98 83.94 NA* 91.08 89.30 
BR4(10) 82.60 83.71 NA* 90.90 89.70 
BR5(12) 82.76 83.80 NA* 91.05 89.70 
BR6(15) 81.50 82.44 NA* 90.70 89.70 
BR7(20) 80.51 82.01 NA* 90.44 89.40 

Mean 81.97 83.50 88.75 90.55 89.13 

Problem 
(box 
type) 

Gehring   
et al. 

(1997) 

Bortfeldt  
et al. 

(1998) 

Bortfeldt  
et al. 

(2001) 

Gehring, 
Bortfeldt, 

(2002) 

Bortfeldt, 
et al. 

(2003) 

Mack et 
al. 

(2004) 

Moura, 
Oliveira 
(2005) 

hybrid-
BA 

BR1(3) 85.80 92.63 87.81 88.10 93.52 93.70 89.07 83.41 
BR2(5) 87.26 92.70 89.40 89.56 93.77 94.30 90.43 84.60 
BR3(8) 88.10 92.31 90.48 90.77 93.58 94.54 90.86 85.42 
BR4(10) 88.04 91.62 90.63 91.03 93.05 94.27 90.42 85.19 
BR5(12) 87.86 90.86 90.73 91.23 92.34 93.83 89.57 85.11 
BR6(15) 87.85 90.04 90.72 91.28 91.72 93.34 89.71 84.69 
BR7(20) 87.68 88.63 90.65 91.04 90.55 92.5 88.05 83.99 

Mean 87.50 91.26 90.10 90.43 92.70 93.78 89.73 84.63 
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Each problem set in BR test cases contains different number of box types. The results 

summarized in Table 5.5 reveals that the performance of the algorithm first shows 

sharp increase as the number of box type increase, but then shows a gradual 

decrease. This can also be seen in Figure 5.7. A similar behavior can also be 

observed in some of the algorithms in the literature (refer to Table 5.5).  

 

 
Figure 5.7. Graphical representation of the obtained results for BR test cases 
 

The convergence graph of the hybrid-BA algorithm for a problem from BR7 is 

presented in Figure 5.8. It is clear from the convergence graph in Figure 5.8 that the 

algorithm converges after a reasonable number of iterations. 

 

 
Figure 5.8. Convergence graph of a problem from test case BR7 
 



53 
 

 
5.3.1. Determination of the parameters of the hybrid-BA algorithm 

 

The results for the proposed algorithm are already discussed in the previous section. 

Nevertheless, an attempt to determine the parameters of this algorithm and to discuss 

the contribution of this newly determined set of parameters to the performance of the 

algorithm is made in this section. For this purpose, factorial design is preferred. 

Factorial designs are efficient tools for problems where the study of two or more 

factors is needed (Montgomery, 1991). 

 

To study the effects of the BA’s parameters on the hybrid-BA’s solution quality, a 

factorial analysis with four control parameters; number of scout bees n, number of 

selected sites m, number of bees send to elite points nep and number of iterations iter 

is designed. This design with four control parameters of the hybrid-BA algorithm is 

given in Table 5.6 and 5.7. In order to test the effects of these control parameters 

(factors), 10 problems from the BR7 test cases with 2*2*2*2 (= 16) different setting 

is run 3 times with different seed and totally 48 experiments are conducted. Minitab 

statistical software is used for the analysis. 

 
Table 5.6. Levels of factors for the factorial design  

Factors Levels 

number of scout bees n(nob) 10 20 

number of selected sites m 2 4 

numbers of bees send to elite points nep 2 4 

number of iterations iter 500 1000 

 
 

The results of the analysis obtained from the Minitab have revealed that all the 

factors (n, m, nep and iter) are significantly affecting the performance of the 

proposed algorithm (relevant p-values for these parameters are smaller than 0.05). As 

the number of scout bees, numbers of bees send to elite points and number of 

iterations increases, the solution quality of the algorithm improves. On the other 

hand, as the number of selected sites decreases, the solution quality of the algorithm 

increases. There are no significant two-way, three-way and four-way interactions 
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between the parameters. Main Effects plots and Interaction plots of this analysis are 

also shown in Figure 5.9 and 5.10.  

 
Table 5.7. Factorial design on hybrid-BA response (obtained from Minitab) 
Estimated Effects and Coefficients for C5 (coded units) 
 
Term               Effect       Coef   SE Coef        T      P 
Constant                    0,835130  0,000289  2886,75  0,000 
n                0,003170   0,001585  0,000289     5,48  0,000 
m               -0,001636  -0,000818  0,000289    -2,83  0,008 
nep              0,001546   0,000773  0,000289     2,67  0,012 
iter             0,003063   0,001531  0,000289     5,29  0,000 
n*m             -0,000245  -0,000122  0,000289    -0,42  0,675 
n*nep            0,000515   0,000258  0,000289     0,89  0,380 
n*iter          -0,001090  -0,000545  0,000289    -1,88  0,069 
m*nep           -0,000337  -0,000169  0,000289    -0,58  0,564 
m*iter           0,000633   0,000316  0,000289     1,09  0,282 
nep*iter         0,000154   0,000077  0,000289     0,27  0,791 
n*m*nep         -0,000772  -0,000386  0,000289    -1,33  0,192 
n*m*iter         0,000262   0,000131  0,000289     0,45  0,654 
n*nep*iter       0,000754   0,000377  0,000289     1,30  0,202 
m*nep*iter      -0,000113  -0,000056  0,000289    -0,20  0,847 
n*m*nep*iter    -0,000631  -0,000316  0,000289    -1,09  0,283 
 
 
S = 0,00200431   PRESS = 0,000289244 
R-Sq = 72,47%    R-Sq(pred) = 38,05%   R-Sq(adj) = 59,56% 
 
 
Analysis of Variance for C5 (coded units) 
 
Source              DF      Seq SS      Adj SS      Adj MS      F      P 
Main Effects         4  0,00029399  0,00029399  0,00007350  18,30  0,000 
2-Way Interactions   6  0,00002462  0,00002462  0,00000410   1,02  0,429 
3-Way Interactions   4  0,00001494  0,00001494  0,00000373   0,93  0,459 
4-Way Interactions   1  0,00000478  0,00000478  0,00000478   1,19  0,283 
Residual Error      32  0,00012855  0,00012855  0,00000402 
  Pure Error        32  0,00012855  0,00012855  0,00000402 
Total               47  0,00046688 

 

 

 
As it can be seen from the main effects plot (Figure 5.9), the best results are obtained 

for the parameters; n equals to 20, m equals to 2, nep equals to 4 and iter equals to 

1000. Furthermore, the value of the parameters e (number of elite sites e chosen from 

m sites) and nsp (number of bees recruited to search m-e other sites) is chosen equal 

to 50% of the value of the parameters m and nep, respectively. 
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Figure 5.9. Main effects plots 
 

 

 
Figure 5.10. Interaction plots 
 
 
In the proposed algorithm, random numbers are used in different part of the 

algorithm especially for the neighborhood search. Results presented previously were 

obtained by three runs. In order to study both the effect of randomness and the effect 

of the new set of parameters, the algorithm is run 10 times using the new set of 

parameters for the first 10 problems of the BR test cases. The computational results 

obtained from this analysis and relevant run times (shown in second column) are 
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summarized in Table 5.8. The third column of Table 5.8 shows the results obtained 

over three runs, whereas column number 4 to 8 shows the results obtained over 10 

runs. 

 
Table 5.8. Analysis of the randomness in hybrid-BA over 10 runs 

 
 

The results of ten runs are higher than the results of three runs. This can be due to the 

variability available in the algorithm and/or to the new set of parameters. The values 

of the average standard deviation and average range also support this finding. 

Therefore, running the algorithm several times in spite of longer computational time, 

can lead to an increase in volume. 

 
5.4. Conclusion  
 

In this chapter, a relatively new algorithm namely ‘bee(s) algorithm’ is offered as an 

alternative solution approach for the CL problem. Hybridized with a heuristic filling 

procedure based on “wall building” approach, the proposed algorithm (so called 

hybrid-BA) is proved to be successful in solving these problems. The performance of 

the proposed algorithm against the performances of the other heuristics and meta-

heuristics approaches (proposed for the same problems) is compared based on the 

volume utilization. The hybrid-BA produced comparable results with those of the 

other approaches. 

Problem 
(box type) 

Avg. 
Elapsed 

Time (sec) 
(100 

problems) 

hybrid-BA 
(3 runs) 

 

hybrid-BA 
(10 runs) 

(10 problems) 
Min Max Mean SD Range 

BR1 (3) 276,77 83.41 83.13 83.63 83,37 0.16 0,5 
BR2 (5) 203,19 84.60 85.10 85.77 85,47 0.22 0,67 
BR3 (8) 201,19 85.42 85.84 86.06 85,96 0.07 0,22 
BR4 (10) 195,82 85.19 85.67 86.20 85,39 0.15 0,53 
BR5 (12) 193,10 85.11 84.92 85.29 85,06 0.13 0,37 
BR6 (15) 188.57 84.69 84.64 85.14 84.80 0.15 0,5 
BR7 (20) 184.42 83.99 83.75 84.38 84.04 0.22 0,63 

Mean 214,014 84.63 84,72 85,21 84,87 0,16 0,48 
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CHAPTER 6 

 

AN ANT COLONY ALGORITHM FOR SOLVING CONTAINER LOADING 

PROBLEMS 

 

6.1. Introduction 

 

As it is obvious from the literature review presented in Chapter 3, up to the present 

study efforts on applying ant colony algorithms to CL problems are very limited. 

With this motivation, a new approach to CL problems by using Ant Colony 

Optimization is proposed.   

 

6.2. Ant Colony Optimization 

 

6.2.1. Behaviors of real ants 

 

Ants are social insects, that is, insects that live in colonies and whose behavior is 

directed more to the survival of the colony as a whole than to that of a single 

individual component of the colony (Dorigo et al., 1999). Real ants are capable of 

finding the shortest path from a food source to their nest without using visual cues by 

exploiting pheromone information (Dorigo and Gambardella, 1997). Ants 

communicate among themselves through this pheromone. Pheromone, is a chemical 

substance that they lay on the ground along the path they traverse. This way they 

form pheromone trails on the ground. If no pheromone on the ground is available, 

then ants move randomly. Otherwise, ants observe the pheromone trail and are 

attracted to it while the path is marked again and will attract even more ants to follow 

the trail (Zhao et al., 2006).  

 

This mechanism can be explained as follows; Figure 6.1(a) illustrates the shortest 

way between the nest and food source. 
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Figure 6.1. (a) Ants in a pheromone trail between nest and food (b) an obstacle 
interrupts the trail (c) ants find two paths to go around the obstacle (d) a new 
pheromone trail is formed along the shorter path (Peretto and Lopes, 2005)  
 
As it is mentioned before, the ants have the ability to find the shortest way in case of 

any changes in the path that they follow. In case of putting an obstacle to their path 

between the nest and the food source as shown in Figure 6.1(b), they randomly 

choose the upper path or the lower path as can be seen in Figure 6.1(c). If it is 

assumed that the ants move at approximately the same speed, the ants which choose 

the upper path (shorter path) return the nest faster. As the time passes, the amount of 

the pheromone on the shortest path increases much more quickly than the longer 

path. Thus, more ants choose the shortest way which has a greater amount of 

pheromone on it and follow the shorter path as illustrated in Figure 6.1(d).  

 

6.2.2. Simple ACO and Ant Colony System  

 

Algorithms based on the foraging behavior of ants have been first introduced by 

Dorigo and were formalized as a new meta-heuristic termed Ant Colony 

Optimization (ACO) in 1999 (Zhao et al., 2006). ACO is a technique for hard 

combinatorial optimization problems. Early implementations of the algorithm 

focused on the traveling salesman and other routing problems but nowadays, it is 

being applied to an increasingly diverse range of combinatorial optimization 

problems including shortest common super sequence, generalized assignment, 
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multiple knapsack, constraint satisfaction problems, among others (Cordon et al, 

2002).    

 

Up to date, several ACO algorithms have been proposed in the literature. The 

original Ant System and some successful variants are the Ant Colony System, MAX-

MIN Ant System, Rank- based Ant system and Best-Worst Ant System (Cordon et 

al, 2002).  The most successful of these are Ant System (AS), Ant Colony System 

(ACS) and MAX-MIN Ant System (web3). In this study, Ant Colony System which 

is proposed by Dorigo and Gambardella (1997) is made to become the focused 

algorithm. 

 

Prior to the introduction of ACS, the simple ACO algorithm is presented below; 

 

Consider the problem of finding the shortest path between two nodes on a graph, 

),( EVG = , where V is the set of vertices (nodes) and E is a matrix representing 

connections between nodes (Engelbrecht, 2005). Here, 

 

=Gn  is the number of nodes in the graph 

=kL  is the path constructed by ant k  

=ijτ  is the total pheromone concentration in the edge (i,j) 

=)0(ijτ  is the initial pheromone in the edge (i,j) 

 

At the beginning, a number of ants, knk ,...,1= , are randomly placed on the source 

node. In each iteration, each ant incrementally constructs a path to the destination 

node (Engelbrecht, 2005). At each node, each ant tries to determine which node to 

visit next. If ant k is currently at node i, it selects the next node k
iNj ∈  using a 

transition probability; 
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where k
iN  is the set of feasible nodes connected to the node i, that ant k can visit. In 

Equation (6.1), α  is a positive integer which magnifies the influence of pheromone 

concentrations.  

 

When all ants complete their tour from the source to destination, each ant retraces its 

path to the source node deterministically and deposits a pheromone amount of; 

 

( ) )(/1 tLt kk
ij ατΔ                                                                                                (6.2) 

 

to each link (i,j), of the corresponding path; )(tLk  is the length of the path 

constructed by ant k at time step t  (Engelbrecht, 2005). 
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)()()1( τττ                                                                           (6.3) 

 

According to Equation (6.3), the total pheromone intensity of a link is proportional to 

the desirability of the path in which the link occurs, based on the length of the path.  

 

At each iteration of the algorithm, pheromone intensities on the links are evaporated 

to force ants to explore more and to prevent premature convergence. For each link 

(Engelbrecht, 2005),  

 

( ) ( ) ]1,0[).1( ∈−← pwherett ijij τρτ                                                                (6.4) 

 

The constant p  here determines the rate of evaporation of the pheromone, which 

also cause ants to forget previous decisions.  
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ACS differs from AS and the simple ACO in four aspects: (1) a different transition 

rule is used, (2) different pheromone update rule is defined, (3) local pheromone 

updates are introduced and (4) candidate lists are used to favor specific nodes 

(Engelbrecht, 2005).  

 

ACS uses pseudo-random-proportional transition rule given in Equation (6.5). This 

rule balances exploration and exploitation abilities of the algorithm. According to 

this rule an ant k located in node i selects the next node j as (Engelbrecht, 2005); 

 

0( )

0

arg max { ( ) ( )}   if r r

                                          if r > r

k
i

iu iuu N t
t t

j
J

α βτ η
∈

⎧ ≤⎪= ⎨
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                                                              (6.5) 

 

In Equation (6.5), iuτ  is the amount of pheromone from node i to node u,  iu
βη  is the 

heuristic information from node i to node u, β  is a parameter between 1 and 10 that 

determines the relative importance of the heuristic information, r is a random number 

between 0 and 1 and 0r  is a user defined parameter. According to this equation, if the 

random number r is grater that r0 ( 0rr > ), then the best edge is chosen according to 

the Equation (6.6) (Engelbrecht, 2005); 
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iJ
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=
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                                                                                       (6.6) 

 

In addition, it should be noted that ACS transition rule uses 1α =  and therefore can 

be omitted from the equation.   

  

In ACS, only the globally best ant is allowed to deposit pheromone. The globally 

best ant refers to the ant that completes the tour with the minimum distance. The aim 

of this updating rule is to make the search more directed. The global updating is 

applied after all ants complete their tours (that is why it is called global updating). 

The pheromone for the global updating is updated according to the Equation (6.7) 

and (6.8) (Engelbrecht, 2005);  
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where 1p  is pheromone decay parameter and valued between 0 and 1, and in 

Equation (6,8), )(tx+  is the shortest path and ijτΔ  is the inverse of the tour length of 

the global best ant.  

 

The other pheromone updating rule is local pheromone updating. The difference of 

this rule from the global one is the time of the application. This local pheromone 

update is applied just after a node is visited according to Equation (6.9) (Engelbrecht, 

2005); 

 

022 )1()( τττ ppt ijij +−=                                                                                        (6.9) 

 

where 2p  is the local pheromone decay parameter and between 0 and 1, and 0τ  is a 

small positive constant. The essential aim of the local updating is to wide the 

neighborhood of the previous tours by changing the desirability of the edges visited 

previously.  

 

6.3. The hybrid-ACS-1 and hybrid-ACS-2 algorithms for solving container 

loading problems 

 

CL is an optimization problem which is not defined on a graph. Due to this, first the 

problem is restated as a graph/ network search problem. It is assumed that a CL 

problem containing n boxes is similar to a graph having n nodes. Each ant has an 

empty container and at each node there is a virtual box. As an ant travels the graph, it 

collects the boxes from the nodes that it visits. That is, when the tour of an ant is 

completed, it tries to pack the boxes into the container.  
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After ants build solutions, the fitness of each solution that is built by each ant is 

calculated with the use of the heuristic filling procedure and only the best ant is 

allowed to make the global updating. Local updating is done by each ant every time 

an ant selects a node to visit. The algorithm is run until the predetermined number of 

iterations is reached. 

 

In the ant algorithms pheromone trail should be determined according to the typeof the 

problem. In the proposed algorithms the pheromone trail is defined in the similar way to 

that of Levine and Ducatelle (2004). In their study for the one-dimensional BPP, they 

defined the ),( jiτ  as the favorability of packing items i and j in the same bin (only one 

dimension, that is weight is considered). In the proposed algorithms ),( jiτ  shows the 

favorability of choosing item j after item i to allocate into the container.  

 

Another important choice is the determination of a heuristic that is vital for the 

pheromone calculations. The heuristic information jwjn =)(  is set equal to an 

items width for the proposed algorithm. 

 

The algorithm that is working in the above mentioned manner is called the hybrid-

ACS-1 algorithm. This algorithm uses original problem data about the problem all 

through the process. However, if there are too many boxes in a problem, this solution 

approach could be very inefficient. In such a situation, reducing the number of boxes 

that is reducing the number of nodes to be visited by each ant could improve the 

solution. The steps of the hybrid-ACS-1 are illustrated in Table 6.1.  

 

Table 6.1.  The steps of the hybrid-ACS-1 algorithm 

 

 

 

 

 

 

 

 

Initialize parameters 

for each ant do 
construct the full path  
apply local updating 
compute the fitness of each path 

end 
  
for each link do 

apply global updating 
end 
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In order to test the hypothesis whether reducing the number of nodes with this 

method will produce better results or not, the hybrid-ACS-2 algorithm is proposed as 

an improved version of the hybrid-ACS-1.  

 

As it is previously discussed in Chapter 4, the heuristic filling procedure proposed in 

this study fills a container in a “layer-by-layer” manner. That is the volume 

utilization of a container greatly depends on the volume utilization of each layer. 

Therefore, one way of improving the volume utilization of a container could be to 

improve the volume utilization of an individual layer.  

 

In the proposed hybrid-ACS-2 algorithm, first the container is filled layer-by-layer 

by the heuristic filling procedure. Afterwards, a utilization-threshold-level (UTL) is 

determined and the layers of the obtained solution are evaluated according to this 

value. That is a pre-evaluation to each layer have been applied. According to this; if a 

layer having volume utilization above the UTL is found, this layer is saved as it and 

the boxes in this layer is removed from the problem. Otherwise, the boxes in the 

layers having volume utilization below the UTL are added to the set of available box 

list. Thus, the numbers of boxes in the problem is reduced and the layers with high 

volume utilization are saved. Following this step, the layers above the UTL level are 

allocated to the container and the dimensions of the container are updated. Then, the 

ACO algorithm is applied to the reduced problem and the overall volume utilization 

of the container is calculated. The steps of the proposed hybrid algorithm are 

illustrated in Figure 6.2. 

 

Different from the hybrid-ACS-2 algorithm, in the hybrid-ACS-1 algorithm a pre-

evaluation of the layers is not available. 
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Fill the container using the heuristic filling procedure 

Calculate the utilization of each layer 

Empty this layer and 
add the boxes to the 
set of available boxes 

Y 

N 

Has the pre-evaluation 
for all layers been 

completed?  

Is the utilization rate 
of the current layer 
smaller than UTL?  

Calculate the total volume and 
width used by this layers and 
update problem data (boxes in 
the set of available boxes and 
the width of the container). 

Y N 

Update the dimensions of 
the container. 

Apply ACO algorithm to fill the remaining volume in the 
container with the remaining boxes 

Calculate the overall volume utilization of the container and 
stop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. The steps of the hybrid-ACS-2 algorithm (Dereli and Daş, 2010c) 

 

6.3.1. Determination of the parameters of the hybrid-ACS-1 and hybrid-ACS-2 

algorithms 

 

A general ACO algorithm has a number of control parameters that affect the 

performance of the algorithm. These parameters are shown in Table 6.2. 
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Table 6.2 General ACO parameters (Engelbrecht, 2005). 
Parameter Meaning Comment 

kn  Number of ants  

tn  Maximum number of iterations  

0τ  Initial pheromone amount not for Max Min Ant System 

p  Pheromone persistence 21 , pp  for ACS 

α  Pheromone intensification 1=α  for ACS 

β  Heuristic intensification Not for SACO, ANTS, between 1 and 10 

 

In order to determine the parameters of hybrid-ACS-1 and hybrid-ACS-2 algorithms, 

factorial design is used.  

 

A factorial analysis with three control parameters; namely, beta β , number of ants 

m  and number of iterations iter  is presented in order to demonstrate the effects of 

hybrid-ACS-1 parameters on the solution quality. Design of experiment with three 

control parameters of the hybrid-ACS-1 algorithm is given in Table 6.3 and 6.4. In 

order to test the effects of these control parameters (factors), 10 problems from the 

BR7 test cases with 3*3*2 (= 18) different setting is run 3 times with different seed 

and totally 54 experiments are conducted. Minitab statistical software is used for the 

analysis. 

 

Table 6.3. Levels of factors for the factorial design  

Factors Levels 

beta β  1 2 5 

number of ants m , 2 4 6 

number of iterations iter  1000 5000  

 

The results of the design of experiment have revealed that only factors: iter  and m  

significantly affects the performance of the proposed algorithm. The only significant 

two-way interaction is detected between parameters β  and m . Since the F-ratio of 

the parameter m  is higher than the others, it can be concluded that it is the most 
significant parameter. This reveals that the number of ants (parameter m ) in the 

algorithm affects the solution quality of the algorithm. Apart from these interactions, 
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there are no significant two-way and three-way interactions between the parameters. 

Main Effects plots and Interaction plots of this analysis are also shown in Figure 6.3 

and 6.4. As a result of this analysis, the beta β  value of 5, number of ants m  value 

of 6 and number of iterations iter  value of 5000 are determined for the proposed 

hybrid-ACS-1 algorithm.  

  

Table 6.4. Factorial design on hybrid-ACS-1 response  
Analysis of Variance for C8, using Adjusted SS for Tests 
 
Source       DF     Seq SS     Adj SS     Adj MS       F      P 

 
m             2  0,0044598  0,0044598  0,0022299  135,61  0,000 
iter          1  0,0005143  0,0005143  0,0005143   31,28  0,000 
beta          2  0,0000115  0,0000115  0,0000057    0,35  0,708 
m*iter        2  0,0000189  0,0000189  0,0000094    0,57  0,568 
m*beta        4  0,0007430  0,0007430  0,0001858   11,30  0,000 
iter*beta     2  0,0000226  0,0000226  0,0000113    0,69  0,509 
m*iter*beta   4  0,0000476  0,0000476  0,0000119    0,72  0,582 
Error        36  0,0005920  0,0005920  0,0000164 
Total        53  0,0064097 
 
S = 0,00405505   R-Sq = 90,76%   R-Sq(adj) = 86,40% 
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Figure 6.3 Main effects plots 
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Figure 6.4 Interaction plots 
 

A factorial analysis with four control parameters; namely, beta β , number of ants 

m , number of iterations iter  and utilization-threshold-level level  is presented in 

order to demonstrate the effects of hybrid-ACS-2 parameters on the solution quality. 

Design of experiment with four control parameters of the hybrid-ACS-2 algorithm is 

given in Table 6.5 and 6.6. 10 problems with 3*3*2*2 (= 36) different setting is run 

3 times with different seed and totally 108 experiments are conducted for the hybrid-

ACS-2. 

 

Table 6.5. Levels of factors for the factorial design  

Factors Levels 

beta β  1 2 5 

number of ants m , 2 4 6 

number of iterations iter  1000 5000  

utilization-threshold-level level  0,8 0,85  

 

The results of the design of experiment have also revealed that factors: β , m , iter  

and level , all significantly affects the performance of the proposed algorithm. 

Among these, the parameter m  is again the most significant parameter with its high 

F-ratio. It is observed that for the hybrid-ACS-2 algorithm, the parameter level  is 

also a significant parameter. However, the parameters iter  and beta are not so 

significant parameters for this algorithm. The findings show that both the number of 



69 
 

ants (parameter m ) in the algorithm and the selected utilization-threshold-level 

(parameter level ) affect the solution quality of the algorithm.  

 

Table 6.6. Factorial design on hybrid-ACS-2 response  
Analysis of Variance for C9, using Adjusted SS for Tests 
 
Source              DF     Seq SS     Adj SS     Adj MS       F      P 
beta                 2  0,0001590  0,0001590  0,0000795    5,00  0,009 
m                    2  0,0040857  0,0040857  0,0020428  128,48  0,000 
iter                 1  0,0002789  0,0002789  0,0002789   17,54  0,000 
level                1  0,0010490  0,0010490  0,0010490   65,97  0,000 
beta*m               4  0,0001746  0,0001746  0,0000436    2,74  0,035 
beta*iter            2  0,0000063  0,0000063  0,0000031    0,20  0,821 
beta*level           2  0,0000302  0,0000302  0,0000151    0,95  0,392 
m*iter               2  0,0002503  0,0002503  0,0001252    7,87  0,001 
m*level              2  0,0001409  0,0001409  0,0000705    4,43  0,015 
iter*level           1  0,0000068  0,0000068  0,0000068    0,43  0,514 
beta*m*iter          4  0,0000200  0,0000200  0,0000050    0,31  0,867 
beta*m*level         4  0,0000992  0,0000992  0,0000248    1,56  0,194 
beta*iter*level      2  0,0000041  0,0000041  0,0000021    0,13  0,878 
m*iter*level         2  0,0000237  0,0000237  0,0000119    0,75  0,478 
beta*m*iter*level    4  0,0000490  0,0000490  0,0000123    0,77  0,548 
Error               72  0,0011448  0,0011448  0,0000159 
Total              107  0,0075226 
 
S = 0,00398752   R-Sq = 84,78%   R-Sq(adj) = 77,38% 

 
 
There are also significant two-way interactions between β  and m , m  and iter  and 

m  and level . However, they are not so significant. The analysis also shows that 

there is no significant three-way and four-way interactions of the parameters. Main 

Effects plots and Interaction plots of this analysis are also shown in Figure 6.5 and 

6.6. As a result of this analysis, the beta β  value of 5, number of ants m  value of 6, 

number of iterations iter  value of 5000 and utilization-threshold-level level  of value 

0,8 are determined for the proposed hybrid-ACS-2 algorithm.  
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Figure 6.5 Main effects plots 
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Figure 6.6 Interaction plots 
 
 
As a result of this analysis, the β  value of 5,  m  value of 6, iter value of 5000 are 

determined for the hybrid-ACS-1 algorithm and the β  value of 5, m value of 6, iter 

value of 5000 and level (UTL) of value 0,8 are determined for the proposed hybrid-

ACS-2 algorithm. Finally, initial pheromone amount       is set to 0.001, α  is set to 1, 

p1 is set to 0.9 and p2 is set to 0.9.  
0τ
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6.4. Computational work 

 

The proposed ACO algorithms are also tested on LN and BR test cases. These test 

cases are also solved by some of the previous work using different heuristic and 

meta-heuristic algorithms. The results obtained by the proposed algorithm for these 

test cases along with the previously reported results are presented in Table 6.7 and 

6.8.  

 

Table 6.7. Comparative results with test cases of LN – heuristic approaches 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem Loh and 
Nee 

(1992)* 

Ngoi        
et al. 

(1994) 

Bischoff   
et al. 

(1995) 

Bischoff 
and 

Ratcliff 
(1995) 

Eley 
(2002) 

Bischoff    
(2003) 

Lim        
et al. 

(2005) 

LN01 78.1 62.5 62.5 62.5 62.5 NC* 62.5 
LN02 76.8  80.7  89.7 90.0  90.8 NC 80.4 
LN03 69.5 53.4 53.4 53.4 53.4 NC 53.4 
LN04 59.2 55.0 55.0 55.0 55.0 NC 55.0 
LN05 85.8 77.2 77.2 77.2 77.2 NC 76.7 
LN06 88.6  88.7  89.5  83.1 87.9 NC 84.8 
LN07 78.2  81.8  83.9  78.7  84.7 NC 77.0 
LN08 67.6 59.4 59.4 59.4 59.4 NC 59.4 
LN09 84.2 61.9 61.9 61.9 61.9 NC 61.9 
LN10 70.1 67.3 67.3 67.3 67.3 NC 67.3 
LN11 63.8 62.2 62.2 62.2 62.2 NC 62.2 
LN12 79.3 78.5 76.5  78.5 78.5 NC 69.5 
LN13 77.0  84.1  82.3  78.1  85.6 NC 73.3 
LN14 69.1 62.8 62.8 62.8 62.8 NC 62.8 
LN15 65.6 59.5 59.5 59.5 59.5 NC 59.5 
Mean 74.2 69.0 69.5 68.6 69.9 - 67.0 
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Table 6.8. Comparative results with test cases of LN – metaheuristic approaches 

*These values are not computed in this study,      ** These values are not available separately. 

 

As can be seen from Table 6.8, hybrid-ACS-2 performs better than the hybrid-ACS-1 

algorithm. The hybrid-ACS-2 finds optimal solutions for all problems except for 

problems 2, 6, 7, 12 and 13. When the performance of the hybrid-ACS-2 algorithm is 

compared to the heuristic approaches available in the literature, the performance gap 

between the best performing algorithm and the hybrid-ACS-2 algorithm is only 1.72 

%. When compared to the meta-heuristic approaches, the performance gap between 

the best performing algorithm and the hybrid-ACS-2 is 3.1 %. Since the hybrid-

ACS-2 algorithm performs better than the hybrid-ACS-1 algorithm, BR test cases are 

only solved using the hybrid-ACS-2 algorithm. The obtained results along with the 

previously reported results are presented in Table 6.9 and 6.10.  

 
Table 6.9. Comparative results with the test cases of BR – heuristic approaches 

 

 

 

 

 

 

 

 

 

Problem Gehring   
et al. 

(1997) 

Bortfeldt  
et al. 

(1998) 

Bortfeldt  
et al. 

(2001) 

Gehring 
and 

Bortfeldt 
(2002) 

Bortfeldt, 
Gehring, 

Mack 
(2003) 

Moura 
and 

Oliveira 
(2005) 

Hybrid-
ACS-1 

(this 
study) 

Hybrid-
ACS-2 

(this 
study) 

LN01 62.5 62.5 62.5 NC*   NA** NA 62,5 62,5 
LN02 90.7  96.7  89.8  NC NA NA 84,3 80,8 
LN03 53.4 53.4 53.4 NC NA NA 53,4 53,4 
LN04 55.0 55.0 55.0 NC NA NA 55,0 55,0 
LN05 77.2 77.2 77.2 NC NA NA 77,2 77,2 
LN06 91.1 96.3  92.4  NC NA NA 82,5 85,2 
LN07 82.7  84.7 84.7 NC NA NA 82,9 84,0 
LN08 59.4 59.4 59.4 NC NA NA 59,4 59,4 
LN09 61.9 61.9 61.9 NC NA NA 61,9 61,9 
LN10 67.3 67.3 67.3 NC NA NA 67,3 67,3 
LN11 62.2 62.2 62.2 NC NA NA 62,2 62,2 
LN12 78.5 78.5 78.5 NC NA NA 74,8 77,3 
LN13 85.6 85.6 85.6 NC NA NA 81,6 81,6 
LN14 62.8 62.8 62.8 NC NA NA 62,8 62,8 
LN15 59.5 59.5 59.5 NC NA NA 59,5 59,5 
Mean 70.0 70.9 70.1 - 70.9 70.3 68,5 68, 7 

Problem Bischoff 
et al. (1995) 

Bischoff 
and Ratcliff 

(1995) 

Eley (2002) Bischoff 
(2003) 

Lim et al. 
(2005) 

BR1 81.76 83.79 NA* 89.39 87.40 
BR2 81.70 84.44 NA* 90.26 88.70 
BR3 82.98 83.94 NA* 91.08 89.30 
BR4 82.60 83.71 NA* 90.90 89.70 
BR5 82.76 83.80 NA* 91.05 89.70 
BR6 81.50 82.44 NA* 90.70 89.70 
BR7 80.51 82.01 NA* 90.44 89.40 

Mean 81.97 83.50 88.75 90.55 89.13 
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Table 6.10. Comparative results with the test cases of BR – metaheuristic 
approaches 

 
 
An average of 79.57% volume utilization is obtained for the BR test cases with the 

hybrid-ACS-2 algorithm. Compared with other approaches for the BR test cases, 

there is a performance gap of 14.16% and a performance gap of 12.12% with the best 

performing meta-heuristic approach and the best performing heuristic approach, 

respectively. 
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Figure 6.7. Performance of the hybrid-ACS-2 algorithm for different problems 
 
 
The performance of the proposed algorithm is changed with the number of box types as can 

be seen in Figure 6.7. As the number of box type increase; first a sharp increase, but 

then a gradual decrease is observed (similar to the proposed BA presented in Chapter 5). 

The best utilization rate is obtained for the BR3 problem set with 8 different box 

types.  

Problem Gehring   
et al. 

(1997) 

Bortfeldt  
et al. 

(1998) 

Bortfeldt  
et al. 

(2001) 

Gehring, 
Bortfeldt 
(2002) 

Bortfeldt, 
et al. 

(2003) 

Mack et 
al. 

(2004) 

Moura, 
Oliveira 
(2005) 

Hybrid-
ACS-2 

(this 
study) 

BR1 85.80 92.63 87.81 88.10 93.52 93.70 89.07 77.75 
BR2 87.26 92.70 89.40 89.56 93.77 94.30 90.43 79.41 
BR3 88.10 92.31 90.48 90.77 93.58 94.54 90.86 80.41 
BR4 88.04 91.62 90.63 91.03 93.05 94.27 90.42 80.40 
BR5 87.86 90.86 90.73 91.23 92.34 93.83 89.57 79.94 
BR6 87.85 90.04 90.72 91.28 91.72 93.34 89.71 79.87 
BR7 87.68 88.63 90.65 91.04 90.55 92.5 88.05 79.23 
Mean 87.50 91.26 90.10 90.43 92.70 93.78 89.73 79.57 
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In Figure 6.8, the convergence graph of the hybrid-ACS-2 algorithm for a problem 

from BR7 is presented. It is observed that the algorithm converges after 300 

iterations (approximately) which is reasonable. 

 

 
Figure 6.8 Convergence graph of a problem from test case BR7 

 

6.5. Conclusion 
 
In this chapter, two different algorithms based on ACO named hybrid-ACS-1 and 

hybrid-ACS-2 is presented. The hybrid-ACS-2 algorithm is proposed in an attempt to 

improve the performance of the hybrid-ACS-1 algorithm by reducing the number of 

nodes in the solution (each node represents a box to be filled into the container). The 

performances of both the hybrid-ACS-1 and its later version hybrid-ACS-2 are 

evaluated via the tests on well known test cases. The comparison between the 

proposed approaches and other approaches available in the literature indicated that 

ACO based solution approaches proposed in this study are not very high performing. 

The reasons behind this situation are discussed in detail in Chapter 9. 
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CHAPTER 7 

 

CONTAINER LOADING SUPPORT SYSTEM 

 

7.1. Introduction 

 

This chapter describes the container loading support system (CLSS) developed to 

determine and visualize the container packing pattern of a CL process. The proposed 

CLSS composes of three main components; a Bees Algorithm and an Ant Colony 

System as the computational algorithms, the graphical user interface (GUI) and a 

simulation program. The aim of the designed system is to make the packing pattern 

more visible to the user in order to simplify the loading process. An illustrative 

example – a CL problem from the literature - is also provided to introduce the 

operation of the system and to prove its efficiency. 

 

In the previous chapter, the nature of the CL problem and its importance for 

industrial applications is discussed briefly. Even if a CL problem is solved to its 

optimum, packing a shipment into a container is a complex process. It often takes 

several days to allocate the pooled goods into the number of containers and then to 

pack the allocated goods into the containers. Occasionally, workers must unload 

some containers and then reload them in a different pattern to pack more goods in the 

containers (Chien and Deng, 2002). Chien and Deng (2002) were the first researchers 

that realized this difficulty. They proposed a decision support system (DSS) based on 

a heuristic packing procedure. Another DSS for a similar problem namely Air-Cargo 

Loading Problem was proposed by Chan et al. (2006). The two-phased system is 

proposed to load air cargo pallets efficiently using Linear Programming and a 

heuristic.  

 

Different from the previously proposed DSS that are using heuristic algorithms, the 

designed CLSS is using SI based algorithms namely Bees Algorithm and Ant Colony 
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System as the core of the system. The details about these algorithms are previously 

presented in Chapter 5 and 6. Other than the computational algorithms, the CLSS has 

a graphical user interface (GUI) and a simulation program that visualize the actual 

packing process in a 3D manner.  

 

7.2. The Container Loading Support System 

 

The CLSS composed of the computational algorithms module containing two 

algorithms (one is a ant colony based algorithm and the other one is a recently new 

SI-based algorithm called Bees Algorithm), the GUI and a simulation program that 

visualize the actual packing process. The data flow of the system is schematized in 

Figure 7.1 (Dereli and Daş, 2010a). 

 

 

 

Figure 7.1. Data Flow Diagram of the CLSS system (Dereli and Daş, 2010a). 

 

In order to operate the CLSS, the user should select the parameters of the 

computational algorithm and problem data from the GUI. If the parameters of the BA 

or the ACS are selected by the user, it is possible to run the relevant algorithms and 

see the obtained results found by the selected algorithm. By comparing the obtained 

results, the user could view the best result provided via CLSS. The parameters of the 

BA algorithm and the ACS algorithm are introduced in Chapter 5 and 6 in detail.   
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Later, this data is sent to the computational algorithm where actual processing is 

done. By using the corresponding problem data (obtained from the problem 

database) and the parameters defined previously by the user, the module containing 

both algorithms starts working. When the pre-determined number of iterations is 

reached, the data about the volume utilization of the solution is sent to the GUI and 

the data about the position of each box is sent to a file called visual file. The visual 

file contains the x, y and z coordinates of each box of the final solution computed by 

the computational algorithm. Finally, the simulation program visualizes the final 

packing pattern using the visual file.  

 

7.3. The Graphical User Interface and the Simulation Program 

 

The GUI of the CLSS is designed in Borland Builder. This interface is used to select 

the problem type and the parameters of the computational algorithms and to visualize 

the packing pattern. The snapshot of the interface is supplied in Figure 7.2.  

 

 
 
Figure 7.2. The snapshot of the GUI 

 

A simulation program is used to visualize the packing pattern. The simulated 

program is coded in OpenGL and integrated to the GUI for user friendly use.  
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7.4. An Illustrative Application 

 
The following example is supplied to demonstrate how the CLSS system works in a 

step-by step manner. The problem is selected from the LN (1992) test cases. The aim 

is to allocate a set of boxes with varying dimensions into a container without any 

overlap to maximize the volume utilization of the container for each problem. 

 

Step 1: The user selects a test case that is composed of a set of problems from the 

GUI and determines the individual problem from this set. The snapshot of the CLSS 

presented in Figure 7.3 illustrates the Problem Selection window used for this 

operation. Suppose that the user selects the LN test cases and problem number 12.  A 

container having a width of 3200, depth of 2400 and height of 1000 units and a total 

of 120 boxes of 6 different box types is considered in this example. The dimensions 

of the boxes corresponding to the selected problem are presented in Table 7.1. 

 

Step 2: Following the selection of the problem from the Problem Selection window, 

the user enters the parameters of the preferred computational algorithm directly to 

the cells in the Problem Parameters section. The Problems Parameters section 

includes the parameters regarding the computational algorithms. These parameters 

are; number of scout bees n, number of selected sites m, number of elite sites e 

chosen from m sites, number of bees recruited to search e elite sites nep, number of 

bees recruited to search m-e other sites nsp and maximum number of iterations as the 

termination criteria for the BA algorithm and beta β , number of ants m and 

maximum number of iterations as the termination criteria for the ACS algorithm. 

 

Table 7.1. Data about the user selected problem 

Type  Width Depth Height Number of boxes 

1 900 275 200 10 

2 400 350 275 33 

3 1200 300 250 10 

4 500 375 275 27 

5 800 400 200 15 

6 600 300 225 25 
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Suppose that, for the solution of the selected LN problem the following set of BA 

parameters is used; number of bees (population) n = 5, number of selected sites m = 

3, number of elite sites e = 2, number of bees send to elite points nep = 4, number of 

bees send to other selected points nsp = 3 and maximum number of iterations = 100. 

Although such a choice of parameters is used for this example, the user is given the 

opportunity to try different values for the parameters of the computational algorithm.  
  

 
Figure 7.3. The dialog window for the Problem Selection  

 

Step 3: Having selected the problem and the corresponding parameters of the 

selected algorithm, the user can run the selected computational algorithm by clicking 

the “RUN ACS” or “RUN BA” (one at a time). 

 

Step 4: The BA algorithms work until the number of iterations are reached. Then, 

the data about the selected problem and the obtained solution is viewed in the 

Problem Details section of the GUI. Besides the value of the obtained solution, it is 

also possible to learn the elapsed time passed to solve the problem in Time Details 

section. 

 

Step 5: When the user clicks the “ILLUSTRATE” button on the spreadsheet, the 

simulation program attached to the GUI executes and the program visualize the 

packing pattern. The program reads the x, y and z coordinates of each box from the 

visual data file and shows how each box is loaded into the 3D container one by one. 
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The resultant 3D graph of the packing pattern can be viewed from different angles 

using the arrow buttons located below the three dimensional graph. In the three 

dimensional graph each loaded box is shown with different colors. It is also possible 

both to pause the simulation by using the “PAUSE” button and to adjust the speed of 

the simulation by using the “-/+” buttons in both sides of the Speed bar.  

 

Figure 7.4 illustrates the final packing pattern for the selected problem together with 

the volume utilization of the problem in the Problem Details section. As can be seen 

from Figure 7.4 and 7.5, the volume utilization of 78.51% (optimal value for this 

problem) is reached in 16 seconds. 
 

 
 
Figure 7.4. The final packing pattern obtained for the problem with 120 boxes – BA 
algorithm 
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Figure 7.5. The final packing pattern obtained for the problem with 120 boxes- BA 
algorithm (scene from a different angle) 
 
It is possible to solve the same problem with the ACS algorithm. When the current 

problem is solved with the ACS algorithm (the parameters that are determined in 

Chapter 6 is used), the final packing is supplied in Figure 7.6. 

 
 
Figure 7.6. The final packing pattern obtained for the problem with 120 boxes – 
ACS algorithm 
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7.5. Conclusion 

 

In this chapter, a CLSS to determine and visualize the container packing pattern of a 

CL process is presented. The system composes of three main components; the 

computational algorithms based on SI-based algorithm (BA and ACS) hybridized 

with a heuristic filling procedure, the GUI and the Simulation Program. The module 

of the Computational Algorithms solves the selected problem by using the input from 

the GUI. Here the user could run both algorithms and could view the best obtained 

solution found by these algorithms via CLSS. The GUI, which is coded in Borland 

Builder, enables the determination of problem related choices by the user (input to 

the Computational Algorithms), and the Simulation Program which is coded via 

OpenGL, illustrates the final packing pattern in a 3D manner. The CLSS is also 

suitable for decision makers  

 

The presented Simulation Program, which is a component of the proposed DSS, can 

be used independent of the CLSS to visualize a packing pattern computed with a 

different algorithm especially to check if there occurs an overlapping between boxes 

or not. Thus, this component of the system can also be used for academic work on 

CL problems where visualizing the packing pattern is necessary. 
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CHAPTER 8 

 

MULTI-OBJECTIVE CONTAINER LOADING PROBLEM 

 

8.1. Introduction 

 

As briefly discussed in Chapter 3, many approaches have been developed to solve 

CL problems along with many practical constraints and different objective functions. 

There are several reasons of this popularity as reported in Ertek and Kılıç (2006). 

First of all, the CL problem is a NP-hard problem (Pisinger, 2002) and it has been 

recognized that it has a wide range of industrial applications.  

 

Despite this considerable attention, studies on CL problems with multiple objectives 

are very limited (Liu et al., 2006). This issue was also pointed out in Dyckhoff 

(1990) in his typology where he stated that for many CPP, more than one objective 

has to be considered. One of the main contributions of this thesis is to study CL 

problems with multiple objectives which are frequently encountered in a typical 

transportation process. The case, from which the described problem is motivated, is 

presented in the following Section. Next, the described problem and problem 

assumptions are supplied in Section 8.3. In order to solve the mentioned problem, 

two multi-objective optimization methods; goal programming and weighted-sum 

approach are utilized. Due to the complexity of the model (which is presented in 

Chapter 3), for both approaches a SA algorithm hybridized with a heuristic filling 

procedure (previously described in Chapter 4) is used to solve the offered models. 

Some introductory information about the SA is given in Section 8.4. Finally, the 

computational work and the relevant results obtained as a result of the both model 

are shared in Sections 8.5.  
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8.2. The Case Study 

 

A medium-sized distribution company in Gaziantep (a metropolitan province located 

in south-east of Turkey) delivers goods ordered by supermarkets which are located in 

the south-east part of Turkey. The firm mainly distributes Procter and Gamble’s 

products and their own products (paper towels, toilet tissues, paper napkins, etc.) 

which are manufactured at their own plant in Gaziantep, Turkey. The orders are 

stored in a database and a decision-maker decides which orders/ products to load to 

their own vehicles or to rented carriers. The rented trucks are paid according to the 

total weight of the shipment regardless of the total volume (for example, 10 $ per 

ton). Thus, the decision-maker prefers to load and ship a shipment with a higher total 

weight into its own vehicles rather than a shipment with a low total weight. On the 

other hand, shipping the shipment in an on-time manner is an important issue for the 

company. If the decision-maker can utilize the capacity of the owned vehicle in the 

best possible way, he/she can guarantee the on-time delivery of all of the products in 

its own vehicle.  

 

Another issue that the decision-maker should take into account is the relation 

between the volume of the items and the weight of the items. In particular, the weight 

of the house-hold, personal care, sanitary paper products and shaving products per 

unit volume drastically differs from one product to the other that is x cm3 of product 

A, which may yield a smaller weight than y cm3 of product B (x >>y). Having 

considered this situation, each day the decision-maker should load the items (boxes) - 

that would provide the highest total weight - to the vehicles in the best possible way 

to decrease transportation cost and in turn increase the profitability of the company. 

 

Motivated from the above described situation, two objective functions for the CL 

problem are defined in this thesis. The first objective is to obtain a packing pattern 

with maximum total weight and the second objective is to maximize the volume 

utilization of the vehicle. The mentioned goals and the proposed models for the 

solution of the problem is introduced in the next Section. 
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8.3. Problem formulation  

 

CL problems with multi-objectives can be defined as follows; Given a set of n items 

with width ( iw ), depth ( id ), height ( ih ) and weight ( iweight ) and a single container 

with known dimensions ),,( HDW  where Wwi ≤ ,  Hhi ≤  and Ddi ≤ ,  the problem 

is to pack items into the container without any overlap while maximizing the total 

weight of the packed items and the utilization rate of the container (Dereli and Daş, 

2010b). The problem is solved under the following assumptions: 

 

(1) Items are rectangular boxes defined with known dimensions ),,( iii hdw   

(2) Each box can be arranged originally in the container in a maximum of 6 

“rotation variants” if not prohibited.  

(3) Each box can lie on the container floor or can be stacked on top of another. 

(4) Stability of the box arrangements is not considered thus the use of spacing 

material is considered to avoid possible problems.  

 

8.4. Simulated annealing (SA) algorithm 

 

SA is a method for obtaining good solutions to difficult optimization problems and is 

introduced by Kirkpatrick et al. (1983) as an analogy to the statistical mechanics of 

annealing in solids. It is a non-derivative method which has received much attention 

over the last few years (Eglese, 1990). Similar to other non-derivative methods such 

as Genetic algorithms, Random search, Tabu search and complex/simplex, SA is 

more likely to find a global optimum and not be stuck on local optima as gradient 

methods might do. It is also slightly less computational expensive as compared to 

Genetic Algorithms (Andersson, 2000).  

 

SA differs from iterative algorithms in that it has a mechanism which helps it to 

escape from local optimum and rather reach to global optimum. This is because SA 

not only accepts neighborhood solutions better than the current solution, but also 

accepts neighborhood solutions worse than current solution with a probability. This 

probability which is known as acceptance probability is related to the temperature, 

which decreases during the process. As the temperature decreases, the acceptance 
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probability also decreases. This means that as the temperature decreases, the 

probability of accepting worse neighborhood solutions decreases. During the 

annealing process, the temperature decreases gradually. At each temperature, a 

predetermined number of iterations to search the solution space are conducted. The 

search terminates when the stopping criteria are met (Dereli and Daş, 2007). 

 

Both the proposed goal programming model and the weighted-sum model is solved 

with a SA algorithm which is the adapted to solve the multi objective problems. The 

proposed algorithms are motivated from the work of Baykasoğlu (2005). The 

fundamentals of the proposed algorithm are summarized as follows; 

  

• A solution is represented by a bit string representation. For example, bit string 

representation of a solution composed of seven different types of boxes, for which 

only the base rotation is permitted, is presented in Figure 8.1.  It should be noted that 

the length of this string is determined by the number of different types of boxes in 

the problem. This structure is preferred to the structure in which each bit in the string 

represents a box in the problem. In a problem where there are 100 boxes of seven 

different box types, the second structure will yield a bit string of length 100 which 

will be a very inconvenient and time-consuming structure for the large-sized 

problems.  

 

 

 

 

 

Figure 8.1. Neighborhood solution generation using the flip operator (only for base-

rotated boxes) 

 

• In order to reach neighborhood solutions, the flip operator used for the BA 

(explained previously in Chapter 5) is employed.  

 

• For the goal programming approach, objective function of a solution is 

presented as the weighted sum of the deviations from the defined goals, whereas for 

1 0 0 1 1 0 1 1 0 0 0 1 0 1    flip 
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the weighted-sum approach, objective function of a solution is presented as the 

weighted-sum of the normalized objectives. 

 

• For the solution of the goal programming model; if a neighborhood solution 

having the objective value of (0.11) is obtained as a result of the flip operator, this 

solution should be accepted when the previous solution has an objective value of 

(0.12). Because the sum of the deviations are minimized in the reached neighborhood 

solution. However, a neighborhood solution having an objective value (0.13) could 

be accepted with probability or rejected since it has a worse objective value than the 

current solution. At this point acceptance or rejection is related to the temperature 

which greatly affects the acceptance probability. 

 

For the solution of the weighted-sum model, suppose that a neighborhood solution 

having the objective value of (0.12) is obtained as a result of the flip operator. Then, 

this solution will be accepted since the previous solution has an objective value of 

(0.11). The value of the objective function is maximized in this newly reached 

neighborhood solution. However, a neighborhood solution having an objective value 

(0.10) could be accepted with probability or rejected since it has a worse objective 

value than the current solution. At this point acceptance or rejection is related to the 

temperature which greatly affects the acceptance probability. 

 

A generic pseudo-code of the SA algorithm which is hybridized with the heuristic 

filling procedure - used for the both approaches- is presented in Table 8.1. 
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Table 8.1.  A pseudo-code of the proposed SA 
 
Step 1. Generate an initial solution and calculate the value of the objective function ( fitness0 ) using 

the heuristic filling algorithm; 

Solution = fitness0; 

Step 2. Parameter initialization; 

2.1. Set the annealing parameters; Tin. Tf. ilmax and α.  

2.2. Read the number of box types N. 

Step 3. Annealing Schedule; 

3.1. Inner loop initialization; il = 0; 

3.2. At every temperature achieve equilibrium. Execute inner loop until the condition in 3.2.4 

is met; 

3.2.1. il =il + 1; 

3.2.2. Generate a neighborhood solution and calculate the value of the objective function 

(fitnessil ) using the heuristic filling algorithm; 

3.2.3. Accept or reject the solution as described previously; 

3.2.4. IF (il ≥ ilmax)  

THEN terminate inner loop and GOTO step 3.3 

ELSE continue inner loop and GOTO step 3.2.1 

3.3. Titer+1= α * Titer; 

3.4. IF (Titer+1 < Tf) 

THEN terminate inner loop and GOTO step 4 

ELSE continue inner loop and GOTO step 3.1 

Step 4. Terminate the best solution Solution and stop. 

 

8.5. Computational work 

 

8.5.1. Solution of container loading (CL) problems with single objective function  

 

The proposed algorithm for the multi-objective container loading (MOCL) problem 

is first tested on LN and BR test cases which are composed of problems defined with 

a single objective function. Following choices are made for the solution of the LN 

test cases with the SA algorithm. 

 

• Initial value of the temperature inT  is set to 200. 

• To change the temperature a proportional temperature function is employed.  

                              99.08.0)()1( ≤≤=+ αα whereiterTiterT             (8.1) 
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α  is a constant and lies between 0.8 and 0.99. In this work, the value of α  is 0.987.  

• The number of iterations maxil  that should be performed at each temperature is 

equal to the number of box types N   in each order. 

• When the value of the final temperature fT  falls below 0.05 the algorithm is 

terminated.  

 

LN test cases are also solved by some of the previous work using different heuristic 

and meta-heuristic algorithms. The results obtained by the proposed algorithm for 

these test cases along with the previously reported results are presented in Table 8.2 

and 8.3.  

 

Table 8.2. Comparative results with the test cases of LN – heuristic approaches 

* These values are not computed and/or presented.   ** These values are not available separately. 

 
 
 
 
 
 
 
 
 
 
 
 

Problem Loh and 
Nee 
(1992)* 

Ngoi         
et al. 
(1994) 

Bischoff   
et al. 
(1995) 

Bischoff 
and 
Ratcliff 
(1995) 

Eley 
(2002) 

Bischoff    
(2003) 

Lim         
et al. 
(2005) 

LN01 78.1 62.5 62.5 62.5 62.5 NC* 62.5 
LN02 76.8  80.7  89.7 90.0  90.8 NC* 80.4 
LN03 69.5 53.4 53.4 53.4 53.4 NC* 53.4 
LN04 59.2 55.0 55.0 55.0 55.0 NC* 55.0 
LN05 85.8 77.2 77.2 77.2 77.2 NC* 76.7 
LN06 88.6  88.7  89.5  83.1 87.9 NC* 84.8 
LN07 78.2  81.8  83.9  78.7  84.7 NC* 77.0 
LN08 67.6 59.4 59.4 59.4 59.4 NC* 59.4 
LN09 84.2 61.9 61.9 61.9 61.9 NC* 61.9 
LN10 70.1 67.3 67.3 67.3 67.3 NC* 67.3 
LN11 63.8 62.2 62.2 62.2 62.2 NC* 62.2 
LN12 79.3 78.5 76.5  78.5 78.5 NC* 69.5 
LN13 77.0  84.1  82.3  78.1  85.6 NC* 73.3 
LN14 69.1 62.8 62.8 62.8 62.8 NC* 62.8 
LN15 65.6 59.5 59.5 59.5 59.5 NC* 59.5 
Mean 74.2 69.0 69.5 68.6 69.9 - 67.0 
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Table 8.3. Comparative results with the test cases of LN – metaheuristic approaches 

* These values are not computed and/or presented.   ** These values are not available separately. 

 

As can be seen from Table 8.3, the proposed algorithm in this study finds optimal 

solutions for all problems except for problems 2, 6, 7 and 13 (the average 

computation time for all problems is 138.86 seconds). When the performance of the 

proposed algorithm is compared to the heuristic approaches available in the 

literature, the algorithm performs quite well after the heuristic proposed in Bischoff 

et al. (1995). When compared to the meta-heuristic approaches, the performance gap 

between the best performing algorithm and the proposed algorithm is only 1.9 %.  

 
Following the solution of LN test cases, the test cases from BR are also solved. For 

these problems - which are harder as compared to LN test cases - SA parameters are 

re-determined experimentally where the values of the variables inT  is 5000, α  is 

0.987, maxil  is N (equal to the number of box types in each problem) and fT  is 

0.0001.  The results obtained by the proposed algorithm for the test cases along with 

the previously reported results are presented in Table 8.4 and 8.5.  

 

 

 

 

 

Problem Gehring   
et al. 
(1997) 

Bortfeldt  
et al. 
(1998) 

Bortfeldt  
et al. 
(2001) 

Gehring 
and 
Bortfeldt 
(2002) 

Bortfeldt, 
Gehring, 
Mack 
(2002) 

Moura  
and 
Oliveira 
(2005) 

This work 

LN01 62.5 65.5 62.5 NC* NA** NA** 62.5 
LN02 90.7  96.7  89.8  NC* NA** NA** 90.1 
LN03 53.4 53.4 53.4 NC* NA** NA** 53.4 
LN04 55.0 55.0 55.0 NC* NA** NA** 55.0 
LN05 77.2 77.2 77.2 NC* NA** NA** 77.2 
LN06 91.1 96.3  92.4  NC* NA** NA** 85.8 
LN07 82.7  84.7 84.7 NC* NA** NA** 84.2 
LN08 59.4 59.4 59.4 NC* NA** NA** 59.4 
LN09 61.9 61.9 61.9 NC* NA** NA** 61.9 
LN10 67.3 67.3 67.3 NC* NA** NA** 67.3 
LN11 62.2 62.2 62.2 NC* NA** NA** 62.2 
LN12 78.5 78.5 78.5 NC* NA** NA** 78.1 
LN13 85.6 85.6 85.6 NC* NA** NA** 83.9 
LN14 62.8 62.8 62.8 NC* NA** NA** 62.8 
LN15 59.5 59.5 59.5 NC* NA** NA** 59.5 
Mean 70.0 70.9 70.1 - 70.9 70.3 69.6 
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Table 8.4. Comparative results with the test cases of BR – heuristic approaches 
 

 

 

 

 

 

 

 

 

*These values are not available separately. 

 
Table 8.5. Comparative results with the test cases of BR– metaheuristic approaches 

 

BR test cases are solved in a reasonable amount of time (195 seconds – average 

computation time for single problem) by using the proposed SA algorithm with a 

filling performance of 86.26%. When compared to the best performing algorithm, 

there is a performance gap of 4.6%. The results obtained for the both test cases reveal 

that the proposed algorithm is a suitable tool for solving container loading problems 

with its relatively simple structure. 

 

The convergence graph obtained for a problem from test case BR1 is illustrated in 

Figure 8.2. It is obvious from the graph that, the algorithm converges after a 

reasonable number of iterations.  

Problem Bischoff   
et al. 

(1995) 

Bischoff 
and Ratcliff 

(1995) 

Eley 
(2002) 

Bischoff 
(2003) 

Lim et al.  
(2005) 

BR1 81.76 83.79 NA* 89.39 87.40 
BR2 81.70 84.44 NA* 90.26 88.70 
BR3 82.98 83.94 NA* 91.08 89.30 
BR4 82.60 83.71 NA* 90.90 89.70 
BR5 82.76 83.80 NA* 91.05 89.70 
BR6 81.50 82.44 NA* 90.70 89.70 
BR7 80.51 82.01 NA* 90.44 89.40 

Mean 81.97 83.50 88.75 90.55 89.13 

 
Problem 

Gehring   
et al. 

(1997) 

Bortfeldt  
et al. 

(1998) 

Bortfeldt  
et al. 

(2001) 

Gehring 
and 

Bortfeldt, 
(2002) 

Bortfeldt, 
Gehring, 
Mack, 
(2003) 

Moura, 
Oliveira 
(2005) 

This 
work 

BR1 85.80 92.63 87.81 88.10 93.52 89.07 86.38 
BR2 87.26 92.70 89.40 89.56 93.77 90.43 87.70 
BR3 88.10 92.31 90.48 90.77 93.58 90.86 87.06 
BR4 88.04 91.62 90.63 91.03 93.05 90.42 86.61 
BR5 87.86 90.86 90.73 91.23 92.34 89.57 86.10 
BR6 87.85 90.04 90.72 91.28 91.72 89.71 85.47 
BR7 87.68 88.63 90.65 91.04 90.55 88.05 84.49 
Mean 87.50 91.26 90.10 90.43 92.70 89.73 86.26 
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Figure 8.2. Convergence graph for the hybrid-SA algorithm  

 

8.5.2. Solution of container loading (CL) problems with multi-objective 

functions (through a real example) 

 

Many methods are available for solving Multi Objective Optimization (MMO) 

problems, and many of them involve converting the MOO problem into one or a 

series of Single Objective Optimization (SOO) problems. Each of these problems 

involves the optimization of a ‘scalarizing’ function, which is a function of original 

objectives, by a suitable method for SOO (Rangaiah, 2009). Thus, there are many 

MOO methods available. In Figure 8.3 these methods are classified as generating 

methods and preference-based methods. 
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Figure 8.3. Classification of MOO methods (Rangaiah, 2009) 

 

Generating methods generate one or more Pareto-optimal solutions without any 

inputs from the decision maker; on the other hand, preference-based methods utilize 

the preferences specified by the decision makers at some stage(s) in solving the 

MOO problem (Rangaiah, 2009). 

 

No preference method, posteriori methods using scalarization and posteriori methods 

using multi-objective approach are generating methods. In the No preference method, 

decision maker do not articulate her/his decisions during the process. Examples of 

No preference method are the method of global criterion and multiple objective 

proximal bundle method.  

 

For the methods in which the decision-maker articulates her/his preferences after the 

process, the decision-makers are given a set of Pareto optimal solutions from which 

the decision-maker is free to select the most suitable one that reflects her/his  

preference. Posteriori methods using the scalarization approach includes the e-

constraint and weighting methods; whereas Posteriori methods using Multi-objective 

approach includes population-based methods such as non-dominated sorting Genetic 

Algorithm, multi-objective Differential Evolution and multi-objective Simulated 

Annealing. 
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Preference based methods include the Priori methods and Interactive methods. If the 

decision-maker articulates her/his preferences before the process, methods on Priori 

articulation of preferences are used. Value function methods, lexicographic ordering and 

goal programming are examples of these methods. 

 

Methods, which include interaction with the decision makers during the solution of 

the problem, are called Interaction methods. Examples of these methods are 

interactive surrogate worth trade-off method and the NIMBUS method (Rangaiah, 

2009).  

 

In the previous section, the performance of the SA algorithm that is hybridized with 

heuristic filling procedure was discussed. This section will focus on the solution of 

the previously mentioned MOCL problem with two different methods namely Goal 

programming (Priori methods) and Weighted-sum (Posteriori methods using the 

scalarization approach).  

 

For both of the selected approaches, problem data that has been collected from the 

company mentioned in Section 8.2 is used. The mentioned company distributes 

Procter and Gamble’s products and their own products (paper towels, toilet tissues, 

paper napkins, etc.), which are manufactured at their own plant. They provided their 

order lists which include the products (12 different products in the example) to be 

shipped in a particular day as well as quantities, dimensions (width x depth x height) 

and weights of the boxes. An order list including all of the required data for the 

solution of the MOCL problem is supplied in Table 8.6. The company uses their own 

vehicles having a loading capacity of (530x220x210) cm3 (in width x depth x height) 

and weight capacity of 7200 kg in order to carry their orders.  
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Table 8.6.  An order list including all of the required data for MOCL problem 

Product 
ID 

Product 
Description 

Dimensions (cm) 
Width/Depth/Height 

Number 
of boxes 

Weight of 
boxes (kg) 

Total 
volume (cm3) 

1 detergent 40 / 36 / 28 325 20 13104000 
2 bleaching liquid 54 / 28 / 30 25 22 1134000 
3 personal care 54 / 28 / 30 75 2.35 3402000 
4 detergent 39 / 29 / 32 75 20 2714400 
5 shaving product 15 / 10 / 20 10 1.47 30000 
6 baby care 42 / 37 / 25 150 2.8 5827500 
7 toothpaste 36 / 18 / 18 3 3.72 34992 
8 shampoo 18 / 17 / 22 25 4.97 168300 
9 shampoo 22 / 17 / 22 50 5 411400 

10 shampoo 12 / 11 / 16 5 1.33 10560 
11 bleaching liquid 30 / 27 / 40 20 17.6 648000 
12 shaving product    19 / 7 / 21 3 0.12 8379 

TOTAL   766 9905.37 27493531 

 

Both models are solved with the proposed SA algorithm where the parameters inT  is 

5000, α  is 0.987, maxil  is N (equal to the number of box types in each problem) and 

fT  is 0.0001. 

 

8.5.2.1. Goal Programming model 

 

Goal programming is a Priori articulation method and has been employed for the 

solution of numerous types of MOO problems in the literature. Marler and Arora 

(2004) have also underlined that the most common way of conducting multi-

objective optimization is by priori articulation of the decision-makers preferences. 

This means that before the actual optimization is conducted the different objectives 

are somehow aggregated to one single figure of merit.  

 

Goal programming (GP) was first introduced by Charnes and Cooper (1961) as a tool 

to resolve infeasible linear programming (LP) problems. It is one of the most 

commonly used mathematical programming tools to model multiple-objective 

optimization problems (Baykasoğlu, 2005). There are two main methods for solving 

GP models; weighted GP and preemptive GP. In the weighted GP method, the goals 

are assigned weights and a single-objective function is formulated as the 

minimization of weighted deviations from the defined goals. In preemptive GP, the 

goals are grouped according to their importance and more important goals are 
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achieved before less important goals. In this study, the MOCL container loading 

problem is transformed to a SOO problem using weighted GP method.  

 

For the presented goal programming model the following notations are used; 

 

1, 2,... ;
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u Volume utilization rate of the container c
t weight
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⎨ ⎬
⎩ ⎭

= × ×

= × ×

Total weight of the packed boxes

 

 

Goal 1: Obtaining a packing pattern having total weight as close to max_t weight  

(weight capacity of the owned vehicle) as possible where −
2d  is the under 

achievement and +
2d  is the over achievement of the weight goal. 
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Goal 2: Maximizing the volume utilization rate cu  of the container c, where −
1d  is 

the under achievement and +
1d  is the over achievement of the volume utilization 

goal. 

c

i

n

i
i

cc V

xv
uwhereddu

∑
=+− ==−+ 1

11 ,1                                                  (8.3)                        

In order to reach these goals, a weighted GP model is formulated. The objective is to 

minimize the weighted sum of deviations from the defined goals.  
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As the defined goals are of different magnitudes, the goals are normalized using the 

worst and the best possible values of the objectives. In order to solve the proposed 

weighted GP model, a SA algorithm is designed which is described in the next 

section. The goals are given weights between 0 to 1 by 0.1 increment/decrements. 

The trade-offs between these two goals can be seen in Table 8.7.  

 

Table 8.7. Results Obtained for the MOCL Problem 
Weights 
(Goal1, 
Goal2)

(0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4) (0.7, 0.3) (0.8, 0.2) (0.9, 0.1) 

Goal 1 – 
weight max. 6713,37 6713,37 7157,06 7157,06 7150,41 7150,41 7150,41 7151.37 7151.37 

Goal 2 – 

volume util. 
87,51 87,51 86,13 86,13 86,09 86,09 86,09 85,96 85,96 

Dev. from 
Goal 1 (kg) 486,63 486,63 42,94 42,94 49,59 49,59 49,59 48,63 48,63 

Dev. from 
Goal 2 (%) 12,49 12,49 13,87 13,87 13,91 13,91 13,91 14,04 14,04 

Weighted 
sum of 
deviations 0,192488 0,192488 0,144664 0,144664 0,145988 0,145988 0,145988 0,147154 0,147154 

 

The results offer a set of solutions for the decision maker. In the described situation, 

the decision-maker seeks a solution which provides a good balance between the 

defined goals. In this case, the decision maker should choose the packing pattern 

86.13% of volume utilization and 7157.06 kg, which yields the smallest weighted 

sum of deviations from the defined goals. The convergence graph for this solution 

can be seen in Figure 8.4 and 8.5. If the decision-maker favors this solution, the final 

view of the packing pattern for this order is shown in Figure 8.6. 
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Figure 8.4. Convergence graph for the first goal 
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Figure 8.5.  Convergence graph for the second goal  

 

If transporting as many goods as possible to obtain an on-time delivery is an 

important goal for the decision maker, then the packing pattern with the 87.51% of 

volume utilization can be a good solution. In spite of this, if a very profitable solution 

is desired, the decision maker can choose the packing pattern with 86.13% of volume 

utilization and 7157.06 kg of total weight, since this packing pattern has the highest 

total weight among the other solutions. At this stage, it is decision maker’s job to 

select the best alternative by taking into account the company’s transportation policy, 

profitability and on-time delivery of the shipments. 
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Figure 8.6(a). Filled container – side view 

 
Figure 8.6(b). Filled container – top view 

 

Finally, the problem is also solved by considering each goal individually. This way 

the differences between the solution obtained by considering one and more 

objectives can be figured out. The single objective problems are also solved with the 

same set of SA parameters which are used for the multi-objective problem. In case of 

the consideration of the goal “maximization of weight” alone, a total weight of 

7173.52 kg and a volume utilization of 83.06% is achieved whereas when only the 

goal “maximization of volume utilization” is considered, a total weight of 6713.37 

kg and a volume utilization of 87.51% is achieved. As it is obvious, the proposed 

solution with 86.13% of volume utilization and 7157.06 kg is a satisfactory and more 

desirable solution for the company as compared to solutions obtained from the 

solution of the problem in a single objective manner.  
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8.5.2.2. Weighted-sum model 

 

One of the most popular approaches of Posteriori methods is weighted-sum approach 

(Bui and Alam, 2008). In the weighted-sum approach, all the objectives are 

combined into a single objective with the use of a weight vector. In this study, the 

MOCL problem is solved by obtaining a single objective problem using the 

weighted-sum method.  

 

Objective 1: Maximize the total weight of the allocated boxes to the container c.  

 

∑
=

==
n

i
iitt weightxweighttwhereweighttf

1
1 _,_max                                             (8.5) 

 

Objective 2: Maximizing the volume utilization rate cu  of the container c. 

c
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In order to reach the set of Pareto optimal solutions, the formulated weighted-sum 

model is as follows, where max_ weightt represents the loading capacity of the vehicle 

in terms of weight;  
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As the defined objectives are of different magnitudes, the objectives are normalized 

before. The normalization is done by solving maximization and minimization single 

criterion problems for each of the criteria, discarding the rest of the criteria 

(Borisova, 2006). 
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To solve the proposed weighted-sum model, previously described SA algorithm is 

used. The objectives are given weights between 0 to 1 by 0.1 increments/ 

decrements. The trade-offs between these two objectives can be seen in Table 8.8.  

 

Table 8.8. Results obtained for the MOCL problem 

Weights 
 (w1, w2) 

(0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4) (0.7, 0.3) (0.8, 0.2) (0.9, 0.1) 

f1 87.518 87.518 86.09 86.13 86.09 85.96 86.09 85.96 86.09 

f2 6713.37 6713.37 7150.41 7157.6 7150.41 7151.37 7150.41 7151.37 7150.41 

 

The results offer a set of solutions for the decision maker. The Pareto curve for this 

problem can be seen in Figure 8.7. In the described situation, the decision-maker 

seeks a solution which provides a good balance between the defined objectives. In 

case, the decision maker wants to pay less money to the rented trucks, he/she can 

choose the packing pattern 86,13% of volume utilization having a total weight 

7157,6 kg, since this packing pattern has the highest total weight among the other 

solutions.  

 

 
Figure 8.7. The Pareto curve for the solved problem 
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Both to obtain an on-time delivery and to transport as many goods as possible, the 

packing pattern with an 87,518% of volume utilization having a total weight of 

6713,37 kg. can be a good solution.  

 

In case of the consideration of the objective “maximization of weight” alone, a total 

weight of 7173.52 kg and a volume utilization of 83.06 % is achieved; whereas when 

only the objective “maximization of volume utilization” is considered, a total weight 

of 6713.37 kg and a volume utilization of 87.518% is achieved. The handling of the 

defined multi-objective problem in a single objective manner revealed that by 

handling the defined problem in a multi-objective manner it is able to consider 

objectives simultaneously which results in a compromise between the objectives. 

 

8.6. Conclusion  

 
In this chapter, two different approaches to the solution of MOCL problems that are 

mostly encountered in transportation and wholesaling industries are explored. The 

main goal is to load the items (boxes) that would provide the highest total weight to 

the container in the best possible way. These two objectives “maximization of 

weight” and “maximization of volume utilization” are conflicting objectives since 

the volume of a box is usually not proportional to its weight. Using both the Goal 

Programming and the Weighted-sum approach, the objectives are combined into a 

single objective. An SA algorithm accompanied by a heuristic filling procedure is 

then proposed to solve the model. The proposed algorithm has been tested on a set of 

benchmark problems available in the literature and also on real-world data provided 

by a distribution company.  
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CHAPTER 9 

 

CONCLUSIONS 

 

9.1. Present Study 

 

CL problem is a NP-Hard problem which is important for commercial applications in 

transportation industry. Consequently, approaches in the literature focuses on 

offering high performance solutions to improve the efficiency of algorithms for these 

commercial applications. In this thesis, an attempt to propose better algorithms has 

been done. The research is mainly concentrated on two contributions; one of them is 

the application of two population based optimization techniques, BA and ACO to the 

CL problem to search alternative ways for the solution of this NP-Hard problem and 

the other one is the definition of a new problem called MOCL problem which is 

frequently encountered in industry. 

 

Chapter 1 presented an introduction to the CL problem and its logistics dimensions. 

A detailed discussion about Cutting and Packing problems which also embraces the 

CL problems was presented in Chapter 2. In Chapter 3, a detailed literature survey 

about the CL problems was discussed taking into account the type of the solution 

technique proposed so far. In Chapter 4, the proposed heuristic filling procedure that 

is used for the ACO and BA algorithm and also for the defined MOCL CL problem 

was introduced. In Chapter 5, the proposed BA algorithm hybrid-BA had been 

supplied. Next, algorithms based on ACO algorithm, hybrid–ACS-1 and hybrid-

ACS-2 were presented. The computational results for both ACO based algorithms 

were also supplied within this chapter. The developed decision support system called 

CLSS was introduced in Chapter 7. Following these chapters, the newly defined 

MOCL problem and its solution were introduced in Chapter 8. Finally, the study is 

concluded here, in Chapter 9 with conclusions and recommendations for future work. 
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9.2. Observations on the Developed SI-based Algorithms and Further Studies 

 

As it is mentioned in the previous chapters, two swarm-based techniques ACO and 

BA are implemented for the solution of CL problems due to the existing gap in the 

literature. 

 

Up to date, BA has not been widely used for solving discrete combinatorial 

optimization problems since they were originally developed for solving continuous 

optimization problems and their full potential has not been tapped yet. It has been 

generally used for solving continuous optimization problems like traveling salesman 

and scheduling as well as used in neural network and data mining applications. Its 

application to discrete combinatorial optimization problems is less common.  

 

With the purpose of developing a suitable BA algorithm working with the discrete 

variables, two operators; 1-flip and k-flip are defined and both operators are utilized 

to solve the CL problem. Using both operators, possible rotation variants of the 

boxes are reached and the boxes are given priority according to their side 

dimensions. Then, starting from the highest priority box, these boxes are filled to the 

container by the proposed heuristic filling procedure which is actually a “wall 

building” approach. The developed algorithm - called hybrid-BA- is tested on test 

cases and finally the performance of it is compared with the previous studies from 

the literature that used the same test cases.  

 

Next, the suitability of the ACO-based algorithm is discussed through two different 

solution approaches; hybrid-ACS-1 and hybrid-ACS-2 algorithms. In the first 

approach (hybrid-ACS-1), with the use of ACO algorithm, a sequence for all of the 

boxes in the problem - showing which box should be packed to the container first - is 

determined. Then having this sequence, boxes are loaded into the container by the 

proposed heuristic filling procedure that is also used for BA. Tests on LN test cases 

revealed that the algorithm has a low performance. 

 

The second approach (hybrid-ACS-2) is proposed with the intention to improve the 

performance of the first approach. This improved algorithm is inspired from the idea 

that the volume utilization of a container greatly depends on the volume utilization of 
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each layer in “wall building” algorithms. For this purpose, first the container is filled 

layer-by-layer by the heuristic filling procedure. Afterwards, a utilization-threshold-

level (UTL) is determined experimentally and layers are evaluated according to this 

value. If a layer having a volume utilization that is above the UTL is found, this layer 

is saved as it is. Otherwise, the boxes in the layers having a volume utilization that is 

below the UTL are added to the set of available box list. Thus, the numbers of boxes 

in each problem is reduced and layers with high volume utilization are saved. 

Following this step, the set of available boxes and the dimensions of the containers 

are updated. Then, the ACO algorithm is applied to the reduced problem and the 

overall volume utilization of the container is calculated. Tests on test cases have 

shown that the later algorithm hybrid-ACS-2 performs better compared to the 

hybrid-ACS-1. 

 

In Table 9.1 and 9.2, the results obtained by different approaches offered in this 

study are summarized. Although the SA algorithm (named hybrid-SA in the 

mentioned tables) presented in Chapter 8 is proposed for the MOCL problem, test 

cases specific for the CL problem is solved in order to demonstrate the performance 

of the algorithm.  

 

Table 9.1. Results obtained with the offered algorithm for the test cases of LN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem hybrid-BA 
 

hybrid-ACS-1 hybrid-ACS-2 
 

hybrid-SA 

LN01 62.5 62,5 62,5 62.5 
LN02 86.3 84,3 80,8 90.1 
LN03 53.4 53,4 53,4 53.4 
LN04 55.0 55,0 55,0 55.0 
LN05 77.2 77,2 77,2 77.2 
LN06 89.2 82,5 85,2 85.8 
LN07 83.2 82,9 84,0 84.2 
LN08 59.4 59,4 59,4 59.4 
LN09 61.9 61,9 61,9 61.9 
LN10 67.3 67,3 67,3 67.3 
LN11 62.2 62,2 62,2 62.2 
LN12 78.5 74,8 77,3 78.1 
LN13 83.6 81,6 81,6 83.9 
LN14 62.8 62,8 62,8 62.8 
LN15 59.5 59,5 59,5 59.5 
Mean 69.46 68,5 68, 7 69.6 
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Table 9.2. Results obtained with the offered algorithm for the test cases of BR 

 

 

 

 

 

 

 

 

The performance evaluation of the proposed SI based algorithms (hybrid-ACS-1, 

hybrid-ACS-1 and hybrid-BA) revealed that hybrid-BA is the best performing 

algorithm and hybrid-ACS-1 is the worst performing algorithm. When the SA 

approach proposed for the MOCL problem is also considered, it is obvious that 

hybrid-SA is the best performing algorithm of all.  

 

There could be several reasons behind the poor performance of hybrid-ACS-1 

algorithm. One of them could be the mismatch between the used neighborhood 

search structure and the nature of the algorithm. A different neighborhood search 

structure better suited to the nature of the ACO algorithm which mostly performs 

superior for graph-like problems can improve the performance of the proposed ACO-

based algorithms. It is known that pure ACO usually has good globe search ability 

but poor local search ability like most evolutionary algorithms do. Local search 

process is often performed to explore the neighborhood of a generated solution for 

better ones (Luo et al., 2008). Therefore, addition of a local search to the ACO-based 

algorithms may improve their performance. Another alternative approach to improve 

these algorithms could be the use of specifically designed operators. Both the 

mentioned approaches are in the scope of future work. 

 

Mack et al. (2004) expressed that the solution quality of a meta-heuristic for CL 

problem depends mainly on the “kernel heuristic” of an algorithm. Here “kernel 

algorithm” (also called decoder algorithm) refers to the algorithm that is used for the 

selection and placement of the given items. On the other hand, the used meta-

heuristic strategy is certainly another important factor, but its influence on the overall 

solution quality is limited (Mack et al., 2004).  

Problem 
(box type) 

hybrid-BA hybrid-ACS-2 
 

hybrid-SA 

BR1(3) 83.41 77.75 86.38 
BR2(5) 84.60 79.41 87.70 
BR3(8) 85.42 80.41 87.06 
BR4(10) 85.19 80.40 86.61 
BR5(12) 85.11 79.94 86.10 
BR6(15) 84.69 79.87 85.47 
BR7(20) 83.99 79.23 84.49 

Mean 84.63 79.57 86.26 
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It should also be noted that the proposed heuristic filling algorithm used throughout 

this thesis is a kind of “wall-building” procedure as mentioned previously. It loads 

the container layer-by-layer recursively in a 3D manner. As a result of this packing 

process, the container is filled with the isolated vertical layers where spanning of the 

boxes between layers is avoided. This way, the objective function value of a solution 

is computed. Another issue for further studies could be the improvement of this 

procedure with the addition of some specialized features. This could greatly improve 

the performance of the algorithm in which the mentioned procedure is used.  

 

According to Mack et al. (2004) type of load is very important when solving CL 

problems. For weakly heterogeneous box types, identical item dimension is a good 

opportunity. In this case, building an arrangement of identical items is beneficial. For 

strongly heterogenous box types, vertical layers produce promising results. Thus, an 

opportunity for improvement could be developing a procedure based on different 

filling approaches for better volume utilization. 

 

9.3. Observations on the Proposed MOCL Problem and Further Studies 

 

Having been inspired from a real world case, a new problem called MOCL problem 

was defined in Chapter 8. This problem is encountered in a medium-sized 

distribution company in Gaziantep (a metropolitan province located at the south-east 

of Turkey) that delivers the goods ordered by supermarkets. The main goal of this 

multi-objective problem is to load the items (boxes) that would provide the highest 

total weight to the container in the best possible way. These two objectives 

“maximization of weight” and “maximization of volume utilization” are conflicting 

since the volume of a box is usually not proportional to its weight. The proposed 

solution approach to solve the MOCL container loading problem is an SA algorithm 

based on goal programming or weighted-sum approach which is hybridized with a 

heuristic filling procedure.  

 

Performance of the proposed SA algorithm is initially compared for the well-known 

test cases from the literature with single-objective function. This analysis has 

revealed that the proposed algorithm is quite effective in solving the CL problems. 

The algorithm is then tested on a real case (which is really large as compared to the 
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problems in the literature) including 766 items/boxes. The suitability of the algorithm 

for the multi-objective case is also checked and the results show that the proposed 

algorithm can produce a set of Pareto optimal solutions offering some trade-offs 

between the two objectives. Supported with this knowledge, it is decision maker’s 

job to evaluate the set of solutions and choose a desired solution according to their 

particular application. At this point, what the decision maker should do is to select 

the best solution by taking into account the company’s transportation policy, 

profitability and on-time delivery of the shipments.  

 

It is also well worth pointing out that the development and presentation of a best 

performing algorithm was not the main objective of our work. There are already 

several high performing algorithms available in the literature. We proposed a simple 

but quite effective SA-based algorithm in order to solve MOCL problems described 

in this work. The consideration of the multi-objectives is the main feature of our 

work. The proposed filling heuristic is designed by taking the neighborhood structure 

described for the CL problem into account. Reasonable results which are comparable 

with to those produced by other algorithms in the literature have been produced. The 

idea underlying this comparison was to discuss the suitability of our approach for the 

solution of the MOCL problem described in this study.  

 

Stability is an important aspect to consider in the container loading problems (Moura 

and Oliveira, 2005). It prevents cargo from being damaged during transportation. 

However, stability of packing is in general not considered by wall-building heuristics 

(Kocjan and Holmström, 2006). The case study presented in Chapter 8 focused on a 

medium-sized company which distributes the goods ordered by supermarkets such as 

paper towels, toilet tissues, paper napkins. Thus the company rarely faces with the 

problem of stability. The use of ‘spacing materials’ is considered, if any problem 

related to stability will occur. Since our heuristic filling procedure uses no 

amalgamation of unused spaces in the filling process while exploiting a wall-

building approach and it is not strictly required by the company, the ‘stability 

constraint’ is not considered in this work. This issue is also considered in the list of 

assumptions in the ‘problem formulation’ presented in Chapter 8. 
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Having a multi-objective problem at hand, a question that arises is which method is 

the best to solve such a problem given the variety of methods for conducting MOO. 

Unfortunately, there is no distinct answer. Thus, two different approaches from two 

different set of methods namely Goal programming (Priori methods) and Weighted-

sum (Posteriori methods using the scalarization approach) have been employed for 

the solution. Further studies could concentrate on the solution of this problem with 

different MOO methods. 

 

A similar question about the use of SA could also arise. SA is one of the most 

powerful and robust which are more likely to find a global optimum and not be stuck 

on local optima as gradient methods might do. It is also slightly less computational 

expensive as compared to GAs (Andersson, 2000). In this study, SA is preferred to 

the other non-derivative optimization methods because of its outstanding and 

inherent properties as described above.  

 

Finally, the proposed algorithm can further be extended with the employment of 

different set of objectives and constraints in case of different situations. For example, 

new objectives related to the environmental factors can be added to the proposed 

model. One of these objectives could be the “minimization of fuel consumption”. It 

is known that there is a tradeoff between the weight of a shipment and the fuel 

consumption of a vehicle. Taking this into account, a new model including this new 

objective could lead to a reduced shipment cost. Due to the lack of exact figures 

about this tradeoff, such an objective has not been included in the present model. 

Embedding the methodology to a decision making framework could be also 

evaluated in the context of further studies.  
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