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ABSTRACT  

 

DEVELOPMENT OF NEURO-FUZZY MODELS FOR HOLE DRILLING ON 

TI-6AL-4V AND INCONEL 718 USING ELECTRICAL DISCHARGE 

MACHINING  

 

ALAN, Fatih 

M.Sc. in Mechanical Engineering 

Supervisor: Assist. Prof. Dr. A. Tolga BOZDANA 

January 2011, 86 Pages 

 

The aim of this study is to develop ANFIS models for prediction of input-output 

relationships in hole drilling EDM process. It is a nontraditional machining process 

preferred to produce holes on difficult-to-cut materials, particularly aerospace alloys, 

in a fast and accurate way with a good surface finish. There are many parameters in 

this process, and their effects on the process outputs are very complicated. It is 

usually not possible to define such complex relationships by means of conventional 

modeling techniques. Fuzzy logic and neural networks are intelligent modeling 

techniques to predict the response of a process in accordance with the given inputs. 

 

For this purpose, an Adaptive Neuro-Fuzzy Inference System (ANFIS) has been 

implemented to develop neuro-fuzzy models. The experimental data were obtained 

by making several holes on specimens of Ti-6Al-4V and Inconel 718 using copper 

and brass electrodes (Ø2 mm) with input parameters of current, pulse-on and pulse-

off times, and capacitance. The output parameters were material removal rate, 

electrode wear rate, and surface roughness. The comparison between experimental 

and ANFIS results reveal that developed models can predict the values of process 

outputs for given input parameters within the lowest error range. 

 

Key Words: Hole Drilling EDM, Ti-6Al-4V, Inconel 718, ANFIS 
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ÖZET 

 

TI-6AL-4V VE INCONEL 718 MALZEMELERİNDE ELEKTRİKSEL 

EROZYON YÖNTEMİYLE DELİK DELME İŞLEMİ İÇİN SİNİRSEL 

BULANIK MODELLER GELİŞTİRİLMESİ 

 

ALAN, Fatih 

Yüksek Lisans Tezi, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. A. Tolga BOZDANA 

Ocak 2011, 86 Sayfa 

 

Bu çalışmada amaç, elektriksel erozyon prosesi ile delik delme işleminde girdi-çıktı 

parametre ilişkilerinin Adaptif Ağ Tabanlı Bulanık Mantık Çıkarım Sistemi (ANFIS) 

sayesinde belirlenmesidir. Bu proses; uzay ve havacılık malzemeleri gibi işlenmesi 

zor malzemelerde iyi yüzey kalitesine sahip deliklerin hızlı ve doğru şekilde 

delinebilmesi için kullanılır. Bu proseste, girdi parametrelerinin (akım, vurum ve 

nefes alma süreleri, kapasitans) çıktı parametrelerine (iş parçası işleme hızı, elektrot 

aşınma hızı, yüzey pürüzlülüğü) etkisi oldukça karmaşıktır. Bu karmaşık ilişkileri 

geleneksel modelleme teknikleri ile ortaya koymak mümkün değildir. Yapay zeka 

teknikleri olarak bilinen bulanık mantık ve yapay sinir ağları kullanılarak belirli girdi 

parametrelerine göre çıktı parametrelerinin sonuçları tahmin edilebilmektedir. 

 

Bu amaçla; Ti-6Al-4V ve Inconel 718 malzemelerinde 2mm çapında pirinç ve bakır 

elektrotlar kullanılarak farklı girdi parametreleri ile belirli sayıda delikler delinmiş ve 

çıktı parametreleri elde edilmiştir. Deneysel veriler doğrultusunda geliştirilen ANFIS 

modellerinin sonuçları gözönüne alındığında; bu modeller kullanılarak istenen girdi 

parametreleri için çıktı parametreleri en düşük hata oranı ile tahmin edilebilmektedir. 

 

Anahtar Kelimeler: Elektriksel Erozyon Prosesi ile Delik Delme, Ti-6Al-4V, 

Inconel 718, ANFIS 
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CHAPTER 1 

INTRODUCTION 

 
 
Electrical Discharge Machining (EDM) is a nontraditional machining process for 

removal of metal that is associated with the erosive effects (Tsai and Wang, 2001). 

Such effects occur under a series of successive electrical sparks generating with the 

tool electrode and the workpiece. There is a small gap between tool and workpiece, 

and the process takes place in a dielectric fluid with constant electric field. The 

process is widely used for manufacturing tools, dies and other difficult-to-cut parts 

and materials in automotive, aerospace and medical applications. There are different 

type of EDM processes such as die-sinking EDM in which electrode is made with a 

desired shape of machining, Wire-cut EDM (WEDM) in which a continuous wire 

cuts the workpiece, and hole drilling EDM to produce small holes on the parts. 

 

Hole drilling EDM process is a special type in which a rotating tubular electrode is 

used through which the dielectric fluid flows with a high pressure (Leao et al., 2005). 

This technique can be used for making holes in a fast and accurate way with a good 

surface finish. There are many controllable and incontrollable parameters in hole 

drilling EDM process. The effects of these parameters on the process outputs are 

very complicated. The effect of a single parameter on an output parameter can be 

different than that of multiple parameters. Moreover, the effect of certain parameters 

may be significant while the effect of others may be negligible. As a result, it is 

usually not possible to define these complex relationships between input and output 

parameters by means of conventional modeling techniques. 

 

In recent years, Artificial Intelligence (AI) techniques have been used to represent 

nonlinear and complicated modeling of manufacturing processes including EDM 

process. These techniques are imitating the abilities of humans and their way of 
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thinking, resulting in advanced modeling techniques (Bozdana, 1999). Among them, 

fuzzy logic is at the forefront in modeling the systems involving an input-output data 

set. Fuzzy logic can predict the response of a process or system in accordance with 

the given inputs. However, such models do not have the capability of tuning (i.e. the 

effectiveness of models cannot be improved with respect to the errors occurring due 

to inconsistent or imprecise data). Neural network has been adapted recently into 

fuzzy logic to obtain a hybrid modeling approach. This enables to construct neuro-

fuzzy models that can learn from the known data sets so that the response of models 

for unknown data can be predicted. Despite of many research on the use of AI 

techniques for modeling, optimization and/or intelligent control of different 

manufacturing processes, neuro-fuzzy modeling of hole drilling EDM process is not 

existent in the related literature. 

 

In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) has been 

implemented for developing neuro-fuzzy models in order to predict the values of 

process outputs in hole drilling EDM process for the given input parameters. The 

input parameters were Current (I), Pulse-on Time (ton), Pulse-off Time (toff), and 

Capacitance (C). Accordingly, Material Removal Rate (MRR), Electrode Wear Rate 

(EWR), and Surface Roughness (SR) were process outputs. The experimental data 

used in this study was taken from a research project recently completed in University 

of Gaziantep, Turkey (Yılmaz et al. 2010). This was done by producing several holes 

on specimens made of two aerospace alloys (Ti-6Al-4V and Inconel 718) using 

copper and brass electrodes having diameter of Ø2 mm. The number experiments as 

well as the values of input parameters in such experiments were specified using 

Central Composite Design (CCD) technique. The corresponding values of process 

outputs were measured and/or calculated accordingly. In addition to the data used in 

developing the models, additional holes with completely different input values were 

also produced to validate the efficiency and reliability of models. 

 

The related literature on the use of AI techniques for modeling EDM processes are 

summarized in Chapter 2 with particular applications of fuzzy logic and neural 

networks. Chapter 3 presents the theory of fuzzy logic and a brief description of 

ANFIS method. The structure of fuzzy logic is explained in detail on a case study, 

and is compared with the structure of ANFIS. Chapter 4 introduces the principle of 
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hole drilling EDM process with brief description of controllable and uncontrollable 

parameters. The experimental work and Design of Experiments (DOE) for obtaining 

experimental data are included in Chapter 5. The procedure for developing neuro-

fuzzy models using ANFIS is explained in detail on a case study with a selected data 

set. The predicted results obtained from developed models are also discussed and 

compared with the experimental results. Finally, the concluding remarks and 

highlights of this study as well as the suggestions for potential future works are given 

in Chapter 6. The details of several trials with different modeling options as well as 

the properties of all developed models with the results of their validation are also 

reported in Appendices. 
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CHAPTER 2 

LITERATURE SURVEY 

 
 
2.1 Introduction 

Artificial intelligence techniques such as Fuzzy Logic (FL), Artificial Neural 

Networks (ANNs), Genetic Algorithms (GAs), and so on have been applied by many 

researches to modeling for prediction, control and optimization of die-sinking EDM, 

WEDM and hole drilling EDM processes. In addition to these techniques, other 

advanced methods (for instance Taguchi and Grey Fuzzy Logic) have also been 

implemented. Besides, hybrid approaches with the use of multiple techniques have 

been found in the literature for significant applications. This chapter presents a 

comprehensive literature survey on the use of such techniques on different type of 

EDM processes. The summary of related literature is given in Fig. 2.1. The details of 

research works are reported in the following sections. 

 
USE OF ARTIFICIAL INTELLIGENCE TECHNIQUES ON EDM PROCESSES

Process Modeling and Prediction

ANFIS
• Çaydaş et al. (2009)
• Maji and Pratihar (2010)
• Pradhan and Biswas (2010)
• Tsai and Wang (2001a)
• Tsai and Wang (2001b)

Fuzzy Logic
• Yılmaz et al. (2006)

Process Control

Fuzzy Logic
• Behrens and Ginzel (2003)
• Kaneko and Onodera (2004)
• Kao et al. (2008)
• Kao and Shih (2008)
• Lee and Liao (2007)
• Yan et al. (1999)
• Yang et al. (2010)

Process Optimization

Grey Fuzzy Logic
• Lin et al. (2002)
• Lin and Lin (2005)
• Kao et al. (2009)

ANN & GA
• Guiqin et al. (2007)
• Rao et al. (2009)

Fuzzy Logic & Taguchi
• Puri and Deshpande (2004)
• Tzeng and Chen (2006)

USE OF ARTIFICIAL INTELLIGENCE TECHNIQUES ON EDM PROCESSES

Process Modeling and Prediction

ANFIS
• Çaydaş et al. (2009)
• Maji and Pratihar (2010)
• Pradhan and Biswas (2010)
• Tsai and Wang (2001a)
• Tsai and Wang (2001b)

Fuzzy Logic
• Yılmaz et al. (2006)

Process Control

Fuzzy Logic
• Behrens and Ginzel (2003)
• Kaneko and Onodera (2004)
• Kao et al. (2008)
• Kao and Shih (2008)
• Lee and Liao (2007)
• Yan et al. (1999)
• Yang et al. (2010)

Process Optimization

Grey Fuzzy Logic
• Lin et al. (2002)
• Lin and Lin (2005)
• Kao et al. (2009)

ANN & GA
• Guiqin et al. (2007)
• Rao et al. (2009)

Fuzzy Logic & Taguchi
• Puri and Deshpande (2004)
• Tzeng and Chen (2006)  

Figure 2.1 Summary of related literature on use of AI techniques on EDM processes 
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2.2 Literature on Process Modeling and Prediction 

Çaydaş et al. (2009) have developed an adaptive neuro-fuzzy inference system 

(ANFIS) model for WEDM process. In this study, 24 experiments were performed 

on AISI D5 tool steel using Ø0.25 mm CuZn37 brass wire electrode with tap water 

as dielectric fluid. Then, the effect of input parameters (pulse duration, open circuit 

voltage, wire speed and dielectric flushing) on WEDM outputs (surface roughness 

and white layer thickness) were modeled. 

 

Maji and Pratihar (2010) have focused on forward and reverse mappings of die-

sinking EDM process using ANFIS. In this study, mild steel workpiece (diameter of 

Ø30 mm and thickness of 6 mm) and copper electrode together with dielectric fluid 

of paraffin oil were used. The relationships between input parameters (peak current, 

pulse-on time, pulse-duty factor) and output parameters (MRR, SR) have been 

determined by means of regression analysis. ANFIS models using triangular and 

bell-shape membership functions were then developed and the results from these 

models were compared. 

 

Neuro-fuzzy and neural network-based prediction in die-sinking EDM process of 

AISI D2 steel was performed by Pradhan and Biswas (2010). The experiments were 

done with copper tool electrode using commercial grade EDM oil. ANOVA analyses 

were done based on input (discharge current, pulse duration, duty cycle, voltage) and 

output (MRR, tool wear rate, radial overcut) parameters. According to the results of 

such analyses, the models for outputs were developed based on ANN as well as 

Mamdani and Sugeno type neuro-fuzzy inference systems. 

 

Predictions on surface finish of aluminum and iron parts after die-sinking EDM 

process have been done by Tsai and Wang (2001a) based upon several neural 

network models including ANFIS. The experimental data were obtained by using 

copper electrode and SPE oil on a CNC EDM machine. ANFIS models were trained 

and validated by means of a number of experiments. Then, the surface roughness 

results of models were evaluated. The same methodology has also been applied by 

the authors in order to obtain the predictions on MRR (Tsai and Wang, 2001b). 
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Yılmaz et al. (2006) have developed a user-friendly fuzzy-based system for the 

selection of die-sinking EDM process parameters. AISI 4340 tool steel was 

machined using copper electrode (Ø8 mm) with dielectric fluid of kerosene. In this 

study, input parameters were discharge current, pulse duration and pulse interval 

whereas MRR, EWR and SR were output parameters. 

 

2.3 Literature on Process Control 

Behrens and Ginzel (2003) presented a control system for die-sinking EDM process 

consisting of a fuzzy gap-width controller adapted by a neural network. The parts 

made of 56NiCrMoV7 steel were machined using electrolytic copper electrodes 

having different tip shapes. Experimental results showed the working efficiency of 

developed neuro-fuzzy system. 

 

Kaneko and Onodera (2004) have studied the improvement of machining 

performance of die-sinking EDM process using self-adjusting fuzzy control. The 

system has been implemented on steel workpiece using cylindrical copper electrode 

with diameter of Ø4 mm. Remarkable improvements in machining speed and 

maximum depth of cut were achieved by use of a simplified fuzzy inference with 

only two input signals (i.e. a frequency of short circuit and a frequency of arcing).  

 

Micro-hole EDM system with adaptive fuzzy logic control has been developed by 

Kao et al. (2008). For fuzzy-logic control, a high-speed monitoring system was 

implemented to measure gap voltage, current, and ignition delay time to derive input 

parameters of average gap voltage, deviation in spark ratio, and change in the 

deviation in spark ratio during machining of AISI 1010 steel. Effects of single and 

multiple input parameters on the performance and speed of drilling process were 

experimentally studied. The results showed that the fuzzy-logic control system yields 

more stable and efficient process. In other study of authors (Kao and Shih, 2008), the 

design and tuning of a three-input fuzzy logic controller for EDM of diesel injector 

spray holes were presented. The input parameters were selected as gap voltage, spark 

ratio, and change of spark ratio for drilling hardened AISI 52100 steel workpiece at 

different thicknesses using Ø75 μm and Ø150 μm wire electrodes. The tuned fuzzy 

logic controller is comparable with the gain scheduling controller in drilling time and 
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demonstrates its advantages on different EDM drilling configurations, including 

deep-hole and small-diameter micro-hole drilling. 

 

An adaptive self-tuning fuzzy-logic control of WEDM process with grey prediction 

was accomplished by Lee and Liao (2007). For this purpose, experiments on SKD11 

alloy steel using brass wire electrode (Ø0.25 mm) were conducted with process 

parameters of pulse-on and pulse-off time, arc-on and arc-off time, wire speed and 

tension, flushing pressure, and voltage. Their effect on SR was measured via RS485 

card connection. 

 

The design of a fuzzy controller for servo feed control in WEDM was presented by 

Yan et al. (1999) from the viewpoint of industrial application and implementation. 

The proposed controller contains two control loops: the main loop employs fuzzy 

logic as a rule-based control strategy for the gap voltage control whereas a secondary 

loop is used to maintain machining stability by adjusting the reference voltage. The 

developed control system was tested on SKD11 tool steel using brass wire (Ø0.25 

mm) under the conditions of approach machining, rough machining, and cutting a 

part with a corner working path. Experimental results showed that the developed 

fuzzy controller was more feasible and effective than a proportional controller. 

 

Yang et al. (2010) recently proposed a discharge state detection method in micro-

hole EDM process based on fuzzy control technique using Matlab. Based on the 

rules that were obtained using different levels of voltage and current, a number of 

experiments were performed on copper workpiece with 300 μm thick using brass 

electrodes of Ø200 μm in the environment of kerosene dielectric fluid. Compared 

with the traditional detection methods, the proposed method gained better results by 

using the discharge state of fuzzy controller, and significantly shortens the machining 

time and improves the machining efficiency. 

 

2.4 Literature on Process Optimization 

Grey fuzzy logic has recently been used for process optimization. The outputs of 

hole drilling EDM process were optimized by Lin et al. (2002) and Lin and Lin 

(2005) based on Grey FL technique. The input parameters were pulse on time, duty 
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factor and discharge current while MRR, EWR and SR were taken as output 

parameters. A number of holes were drilled using cylindrical copper electrode (Ø8 

mm) with dielectric fluid of kerosene on SKD11 alloy steel.  

 

Kao et al. (2009) have also studied the optimization of hole drilling EDM parameters 

on machining of Ti-6Al-4V with multiple quality characteristics. Electrolytic copper 

electrode with Ø10 mm was used to drill several holes of different input parameters, 

and kerosene was used as dielectric fluid. Grey fuzzy logic approach has been 

applied with input parameters of discharge current, open voltage, pulse duration and 

duty factor. The output parameters were MRR, EWR and SR. 

 

The use of ANN and GA were also found in the literature. Guiqin et al. (2007) have 

studied neuro-fuzzy modeling and genetic optimization of WEDM process. Several 

experiments using input parameters of workpiece thickness pulse-on time, peak and 

mean current were conducted, and the output parameters of MRR and SR were 

predicted. Rao et al. (2009) have developed a hybrid model to optimize the surface 

roughness in die-sinking EDM process using neural networks and genetic algorithm. 

Four types of workpiece materials (i.e. Ti-6Al-4V, HE15, 15CVD6, M-250) were 

machined using copper electrode and kerosene dielectric fluid. A number of 

experiments were done by using input factors (current, voltage, and machining time) 

in order to predict SR. 

 

Taguchi optimization of EDM processes were also integrated with fuzzy logic 

approach. Multiple quality characteristics of WEDM process has been optimized by 

Puri and Deshpande (2004) based on fuzzy logic and Taguchi techniques. High-

Carbon-High-Chromium (HCHC) die steel plate (Ø30 mm) has been machined using 

cylindrical hard copper wire (Ø0.25 mm) in dielectric fluid of tap water. Several 

experiments have been done with input parameters (gap voltage and current, wire 

feed, and duty factor) and output parameters (MRR and SR). Tzeng and Chen (2006) 

have also studied multi-objective optimization of die-sinking EDM process using a 

taguchi fuzzy-based approach. SKD11 tool steel and electrolytic copper was selected 

as workpiece and electrode materials while dielectric fluid was kerosene. The effects 

of pulse time, duty cycle, and peak current have been predicted on MRR and SR. 
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2.5 Discussions and Summary 

As reported in the previous sections of this chapter, there are a number of 

applications of AI techniques on the prediction of relationships between process 

parameters and outputs of process as well as intelligent control and optimization of 

process outputs. Beside the use of a single technique, hybrid approaches with use of 

multiple techniques have also been implemented. 

 

On the other hand, although some applications of AI methods on EDM processes 

exist in the literature, the modeling of hole drilling EDM process for machining of 

aerospace alloys (Ti-6Al-4V and Inconel 718) with implementation of ANFIS 

technique have not been conducted in the related literature. This is a key gap from 

the viewpoint of research and industrial applications for predicting the response of 

process (i.e. the values of process outputs) in accordance with the desired values of 

certain input parameters. Therefore, neuro-fuzzy models have been developed in this 

study in order to define the input-output relationships in hole drilling EDM process 

for the case of drilling aerospace alloys under different machining conditions. 
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CHAPTER 3 

FUZZY LOGIC and NEURO-FUZZY SYSTEMS 

 
 
3.1 Introduction 

This chapter presents ANFIS systems which integrate neural networks into fuzzy 

logic technique. The structure of fuzzy logic, which is the core of ANFIS, is 

described in detail by presenting an industrial example of air conditioner. The 

methodology used in ANFIS is also described followed by fuzzy logic. 

 

3.2 Artificial Intelligence 

Artificial Intelligence (AI) is the science and engineering of making intelligent 

machines, especially intelligent computer programs. It is related to the similar task of 

using computers to understand human intelligence. In other words, it is a tool used in 

intelligent manufacturing associated with human behavior. The aim of implementing 

AI is to simulate human behavior on computers such as learning, reasoning, complex 

problem solving, thinking and understanding, etc. (Bozdana, 1999). In recent years, 

AI tools have been designed and used for capturing, representing, organizing and 

utilizing knowledge by computers. There are several AI techniques with applications 

in different engineering fields such as Expert Systems (ESs), Artificial Neural 

Networks (ANNs), Genetic Algorithm (GA), Fuzzy Logic (FL). 

 

ES is an intelligent computer program that uses knowledge techniques to solve 

problems that are difficult enough, requiring significant human expertise for their 

solution. Unlike conventional programs, ESs can explain their actions, justify their 

conclusions and provide end users with details of the knowledge they contain. They 

are widely used in design, process planning and scheduling, material handing, quality 



 11

control, machine diagnosis, machine layout, and so on. ANN is a hardware or 

software that attempts to emulate the processing patterns of the biological brain. 

These systems are capable of high-level functions, such as adaptation or learning, 

and lower level functions such as data pre-processing for different kinds of inputs. 

There are numerous applications of ANNs in data analysis, pattern recognition and 

control. GAs are search algorithms based on the mechanics of neural selection and 

genetics. They are one of the best ways to solve a problem for which limited 

knowledge is available. Many of the real world problems involved finding optimal 

parameters would be ideal for GAs. 

 

3.3 Theory of Fuzzy Logic 

Fuzzy logic is a powerful problem-solving methodology with many applications in 

embedded control and information processing. This technique provides a simple 

way to reach definite conclusions from vague, ambiguous or imprecise information. 

In a sense, fuzzy logic resembles human decision making with its ability to work 

from approximate data and find precise solutions. Classical logic requires a deep 

understanding of a system, exact equations, and precise numeric values. On the 

other hand, fuzzy logic incorporates an alternative way of thinking, which allows 

modeling complex systems using a higher level of abstraction originating from our 

knowledge and experience. Fuzzy logic allows expressing this knowledge with 

subjective concepts (such as very hot, bright red, long time, etc.) which is mapped 

into exact numeric ranges. 

 

As an extension of classical set theory, the theory of fuzzy logic was first presented 

in 1965 by Prof. Lotfi Zadeh at University of California in Berkley (Zadeh, 1965). 

He defined the fuzzy logic as a set of mathematical principles for knowledge 

representation based on degrees of membership rather than on crisp membership of 

classical binary logic. As given in Fig. 3.1, unlike two-valued Boolean logic (i.e. 

either 0 or 1), fuzzy logic is multi-valued (i.e. a value between 0 and 1). Fuzzy logic 

deals with degrees of membership and degrees of truth. In other words, it uses the 

continuum of logical values between 0 (completely false) and 1 (completely true). 

Therefore, instead of just black and white, fuzzy logic employs the spectrum of 

colors, accepting that things can be partly true and partly false at the same time. 
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Boolean Logic Multi-valued Logic

0 1 10 0.2 0.4 0.6 0.8 100 1 10

Boolean Logic Multi-valued Logic

0 10 1 10 0.2 0.4 0.6 0.8 100 1 10  
Figure 3.1 Range of logical values in Boolean and fuzzy logic (Negnevitsky, 2005) 

 

Fuzzy logic has been applied into many different fields by engineers, philosophers, 

psychologists, and sociologists. In recent years, it has widely been used in parameter 

selection, modeling and control of manufacturing processes and machine elements, 

electronic and mechatronic systems, automobile and aerospace industries, and so on. 

Exclusive applications of fuzzy logic can be found in elevator control, handheld 

computers, TV and sound systems, washing machines, air-conditioners, vacuum 

cleaners, antilock braking system (ABS) in vehicles, subway train systems, etc. 

 
3.4 Structure of Fuzzy Logic 

The structure of fuzzy logic is illustrated in Fig. 3.2. The first stage is fuzzification of 

crisp values of input parameters into fuzzified values (i.e. fuzzy inputs). The fuzzy 

inputs are then implemented in a fuzzy inference engine working together with IF-

THEN type of fuzzy rules to obtain fuzzified values of output parameters. Finally, 

the fuzzified values of output parameters are defuzzified into crisp output values. 

Each stage is described in the following sections. 

 

 
Figure 3.2 Schematic view of Fuzzy Logic process (adapted from Jang, 1993) 
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3.5 A Fuzzy Logic Application – Air Conditioner 

In this section, the methodology of fuzzy logic is explained in detail on an example 

application of air conditioner. Air conditioner is used for controlling temperature and 

humidity of an enclosed space.  It has a fan which blows/cools/circulates fresh air 

and has a cooler under thermostatic control. Generally, the amount of air being 

compressed is proportional to the ambient temperature. Consider that the range (i.e. 

domain) of input parameter (i.e. temperature) is between 0 and 30 °C whereas the 

range of output parameter (i.e. fan speed) varies from 0 to 100 rpm. 

 

3.5.1 Stage I: Fuzzification 

At this stage, the fuzzy sets are defined and the degrees of membership for crisp 

inputs in appropriate fuzzy sets are determined. Crisp and fuzzy sets are presented in 

Fig. 3.3. Crisp sets can be fuzzified according to the requirements of tolerance. 

 

 
Figure 3.3 Representation of crisp and fuzzy sets for variable X (Negnevitsky, 2005) 

 

Membership function is the mathematical representation of degree of membership 

for a variable in a fuzzy set. Membership functions characterize the fuzziness of 

variables in a fuzzy set. There are 11 different types of membership functions in 

fuzzy logic (Fig. 3.4). All membership functions have the letters mf at the end of 

their names. The simplest membership functions (trimf and trapmf) are formed using 

straight lines. Triangular function (trimf) consists of three points forming a triangle. 

Trapezoidal function (trapmf) is a truncated triangle curve with a flat top. These two 

functions have the advantage of simplicity. 

 

Some membership functions are built on the Gaussian distribution curve: a simple 

Gaussian curve (gaussmf) and a two-sided composite of two different Gaussian 

curves (gauss2mf). Generalized bell membership function (gbellmf) has one more 
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parameter than gaussmf so that it can approach a non-fuzzy set if the free parameter 

is tuned. Both gaussmf and gbellmf functions have the advantage of being smooth 

and nonzero at all points. However, these functions are unable to specify asymmetric 

membership functions which may be required in certain applications. 

 

trimf trapmf 
 

gbellmf 

gaussmf gauss2mf 
 

pimf 

sigmf dsigmf 
 

psigmf 

smf zmf 

 

Figure 3.4 MFs in fuzzy logic (Fuzzy Logic Toolbox in Matlab) 

 

There is also sigmodial membership function (sigmf) that is either open left or open 

right. Asymmetric and closed sigmf functions can be synthesized the difference 

between two sigmf functions (dsigmf) or the product of two sigmf functions (psigmf). 

Polynomial based curves are named according to their shape. Z-shape function (zmf) 

is the asymmetrical polynomial curve open to the left, S-shape function (smf) is the 

mirror-image function that opens to the right, and P-shape function (pimf) is zero on 

both extremes with a rise in the middle. 

 

Fuzzy set allows a continuum of possible choices. The degree of membership (also 

called membership value) of an element in a fuzzy set is represented by a value 

between 0 and 1. In our case, five control switches for temperature (i.e. COLD, 

COOL, PLEASANT, WARM, and HOT) and five corresponding speed settings (i.e. 
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MINIMAL, SLOW, MEDIUM, FAST, and BLAST) can be used. Fig. 3.5 and 3.6 

show the crisp sets versus fuzzy sets defined for temperature and fan speed. The 

triangular membership function (trimf) is selected as an example. 
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Figure 3.5 Air-conditioner example: crisp vs. fuzzy sets for temperature 
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Figure 3.6 Air-conditioner example: crisp vs. fuzzy sets for fan speed 
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For instance, temperature of 16 °C in Fig. 3.5 belongs to crisp set of pleasant with a 

membership value of 1.0. On the other hand, it is a member of cool fuzzy set with a 

degree of membership of 0.3, and at the same time, it is also a member of pleasant 

fuzzy set with a degree of 0.4. 

 

3.5.2 Stage II: Rule Evaluation 

The fuzzy rules for this application are defined as given in Table 3.1. In fuzzy rules, 

both antecedent (i.e. IF part) and consequent (i.e. THEN part) are linguistic 

variables. In other words, the values of variables are expressed in linguistic form. 

However, the variables have numerical values in case of classical type of rules (e.g. 

Rule 1 in classical form: IF Temperature is < 5 °C THEN Speed is MINIMAL). 

 

Table 3.1 Air-conditioner example: fuzzy rules 
Rule 1 : IF Temperature is COLD THEN Speed is MINIMAL 

Rule 2 : IF Temperature is COOL THEN Speed is SLOW 

Rule 3 : IF Temperature is PLEASANT THEN Speed is MEDIUM 

Rule 4 : IF Temperature is WARM THEN Speed is FAST 

Rule 5 : IF Temperature is HOT THEN Speed is BLAST 
 

3.5.3 Stage III: Fuzzy Inference and Aggregation of Rule Outputs 

There are two common inference methods in fuzzy logic: Mamdani and Sugeno. The 

most commonly used technique is Mamdani method. In 1975, Professor Ebrahim 

Mamdani of London University built one of the first fuzzy systems to control a steam 

engine and boiler combination (Mamdani and Assilian, 1975). Mamdani inference 

requires finding the centroid of a two-dimensional shape by integrating across a 

continuously varying function. In general, this process is not computationally 

efficient. Instead of this approach, a single spike (i.e. a singleton) can be used as the 

membership function of the rule consequent. This method was first introduced by 

Michio Sugeno in 1985 (Sugeno, 1985). Singleton is a fuzzy set with a membership 

function that is unity at a single particular point on the domain and zero elsewhere. 

 

As mentioned in Section 3.5.1, the related fuzzy sets for 16 °C are cool and pleasant. 

At the inference stage, Rule 2 and Rule 3 are fired as seen from Table 3.1. Hence, the 
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affected fuzzy sets for output variable (i.e. fan speed) are slow and medium. Fig. 3.7 

shows the Mamdani-style inference process. Mamdani-style inference deals with the 

area of fuzzy sets, and hence the areas shaded in Fig. 3.7 are taken into consideration 

according to the membership values (i.e. 0.3 for cool fuzzy set, and 0.4 for pleasant 

fuzzy set) obtained from firing Rule 2 and Rule 3. The corresponding areas in output 

fuzzy sets (namely slow and medium sets in fan speed) are determined based on the 

same membership values. 
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Figure 3.7 Air-conditioner example: determination of rule outputs in Mamdani-style 

 

The next step is aggregation of the rule outputs (i.e. composition). Aggregation is the 

process of unification of the outputs of all rules. Fig. 3.8 shows the methodology of 

aggregation of rule outputs according to Mamdani-style inference. The areas from 

slow and medium fuzzy sets are composed (i.e. unified). In other words, the 

membership functions of all rule consequents are combined into a single fuzzy set. 
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Figure 3.8 Air-conditioner example: aggregation of rule outputs in Mamdani-style 
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In contrast to Mamdani-style, Sugeno uses singleton fuzzy sets. This means that, 

instead of dealing with “area” as in case of Mamdani-style, “single crisp values” of 

outputs are calculated in consequent (i.e. THEN part of fuzzy rules) membership 

functions in Sugeno-style inference. Fig. 3.9 shows the Sugeno-style inference 

process. The output values are determined from each membership value of output 

fuzzy sets (i.e. 0.3 for slow fuzzy set, and 0.4 for medium fuzzy set) obtained from 

firing Rule 2 and Rule 3. As a coincidence for this example, the crisp outputs from 

each rule are identical values (i.e. 44 rpm). 
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Figure 3.9 Air-conditioner example: determination of rule outputs in Sugeno-style 

 

3.5.4 Stage IV: Defuzzification 

The last stage is defuzzification. Fuzzification helps to evaluate the rules, but the 

final output of a fuzzy system has to be a crisp number. Therefore, in contrast to 

fuzzification, the fuzzy output is required to be converted into a crisp output. There 

are several defuzzification methods (Ross, 2009), but probably the most popular one 

is the centroid technique that is commonly used in Mamdani-style. This technique 

finds the centre of gravity (COG) of the unified area obtained in stage III. Fig. 3.10 

shows the defuzzification (i.e. obtaining the crisp output value) by COG method. 
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Figure 3.10 Air-conditioner example: defuzzification in Mamdani-style 

 

Thus, the resulting crisp value for fan speed based on Mamdani-style inference is 

calculated as given in Eq. 3.1. The composition and defuzzification using Sugano-

style inference gives a crisp value of speed as given in Eq. 3.2. 

 

rpmS  54.45 
0.25  (5) 0.4  (11) 0.3  0.25  0.125

(57.5) 0.25  55)47.5(45 0.4  42.5)20(17.5 0.3  (15) 0.25  (12.5) 0.125
=

++++
++…++++…++++

=  Eq. 3.1
 

prmS  44
0.40.3

(44) 0.4  (44) 0.3
=

+
+

=  Eq. 3.2
 

As seen from results, the value of fan speed for 16 °C was found to be 45.54 rpm 

according to Mamdani-style inference. However, Sugeno-style inference determined 

the speed value as 44 rpm. The question may arise here that which technique should 

be used? Sugeno method is computationally effective and works well with 

optimization and adaptive techniques, which makes it very attractive in control 

problems, particularly for dynamic nonlinear systems. Therefore, Sugeno-style 

inference should be preferred in case of our example. 

 
3.6 Advantages and Disadvantages of Fuzzy Logic 

Here is a list of significant features of fuzzy logic (Fuzzy Logic Toolbox in Matlab): 

 

 Fuzzy logic is conceptually easy to understand. The mathematical concepts behind 

fuzzy reasoning are very simple. Fuzzy logic is a more intuitive approach without 

high levels of complexity. 

 Fuzzy logic is flexible. With any given system, it is easy to build-up more 

functionality without starting again from scratch. 
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 Fuzzy logic is tolerant of imprecise data. Everything is imprecise if you look 

closely enough, but more than that, most things are imprecise even on careful 

inspection. Fuzzy reasoning builds this understanding into the process. 

 Fuzzy logic can model nonlinear functions of arbitrary complexity. A fuzzy 

system can be constructed to match any set of input-output data. This is made 

particularly easy by adaptive techniques like Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS). 

 Fuzzy logic can be built on top of the experience of experts. In contrast to complex 

and difficult-to-understand models developed by neural networks, fuzzy logic 

relies on the experience of people who already understand the system or problem. 

 Fuzzy logic can be blended with conventional control techniques. Fuzzy systems 

do not necessarily replace conventional control methods. In many cases, fuzzy 

systems improve and simplify their implementation. 

 Fuzzy logic is based on natural language. The basis for fuzzy logic is the basis for 

human communication. This observation supports many of other statements about 

fuzzy logic. Fuzzy logic is easy to use since it is built on the structures of 

qualitative description used in everyday language. 

 

Despite these advantages of fuzzy logic over conventional techniques, there are some 

disadvantages of this technique as below: 

 

 Fuzzy logic is not a cure-all. Fuzzy logic is a convenient way to map an input 

space to an output space. If a simpler solution already exists, that should be used. 

 Fuzzy logic is the codification of common sense. For instance, many controllers do 

a fine job without using fuzzy logic. 

 

As a conclusion, fuzzy logic can be a very powerful tool for dealing efficiently with 

imprecision and nonlinearity. This technique has been used in many applications as 

mentioned previously. In recent years, fuzzy logic has been used in combination with 

other AI techniques so that the disadvantages of these techniques can be eliminated. 

Hybrid systems with use of multiple AI techniques provide significant performance 

and efficiency in several engineering applications such as parameter selection, 

optimization, control, inspection, and so on. ANFIS is one of such systems in which 

neural networks is adapted into fuzzy logic, as explained in the following sections. 
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3.7 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The acronym ANFIS derives its name from adaptive neuro-fuzzy inference system. 

Using a given input/output data set, ANFIS constructs a fuzzy inference system (FIS) 

whose membership function parameters are tuned (adjusted) using either a back 

propagation algorithm only or in combination with a least squares type of method. 

The structure of ANFIS is presented in Fig. 3.11, which is similar to that of fuzzy 

logic. Basically, six layers (Table 3.2) are used to construct ANFIS models. The 

function of each layer is very similar to that of each stage followed in fuzzy logic as 

described in the previous sections. 
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Figure 3.11 Structure of ANFIS (adapted from Jang, 1993) 

 

Table 3.2 Layers in ANFIS structure 

Layer 1: input layer that includes the input parameters (x1 and x2). 

Layer 2: fuzzification layer where type and number of the membership functions 
for input parameters (µA1 and µA2) are specified. 

Layer 3: rule layer that involves fuzzy rules (w1 and w2) generated from the 
relationships between functions given in Layer 2. 

Layer 4: normalization layer that normalizes values ( 1w  and 2w ) obtained from 
each node in Layer 3. 

Layer 5: defuzzification layer where the weighted output value from each rule, 
i.e. y1 = f1 (x1, x2) and y2 = f2 (x1, x2), is calculated. 

Layer 6: output layer that calculates the overall value for output parameter, .i.e. 
y = f (x1, x2). There is only one node here into which the weighted 
values from all nodes in Layer 5 are added. 
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3.8 Summary 

The integration of neural networks into fuzzy logic allows the fuzzy systems to learn 

from the data that they are modeling. Such framework makes the ANFIS modeling 

more systematic and less reliant on expert knowledge. The methodology in 

development of ANFIS models are explained step-by-step in Chapter 5. ANFIS 

editor included within Fuzzy Logic Toolbox in Matlab has been used to develop 

models. Once the models were developed, they were trained and validated using 

experimental data. After that, the predicted results were obtained via fuzzy logic rule 

viewer, and they were compared with experimental results. 
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CHAPTER 4 

ELECTRICAL DISCHARGE MACHINING 

 
 
4.1 Introduction 

The origin of EDM dates back to 1770 when English scientist Joseph Priestly 

discovered the erosive effect of electrical discharges. During 1930s, attempts were 

made for the first time to machine metals and diamonds with electrical discharges. 

Erosion was caused by intermittent arc discharges occurring in air between electrode 

and workpiece connected to a DC power supply. These processes were not very 

precise due to overheating of machining area and may be defined as arc machining 

rather than spark machining (Ho and Newman, 2003). 

 

Pioneering work on electrical discharge machining was carried out in 1943 during 

World War II by two Russian scientists, B.R. and N.I. Lazarenko at the Moscow 

University (Lazarenko, 1943). The destructive effect of an electrical discharge was 

channelized, and a controlled process for machining materials was developed. RC 

(resistance–capacitance) relaxation circuit was introduced in 1950s, which provided 

the first consistent dependable control of pulse times and also a simple servo control 

circuit to automatically find and hold a given gap between electrode and workpiece. 

 

In recent years, due to its unique features over traditional techniques, EDM process 

has been used in many applications, particularly for machining the difficult-to-cut 

materials. Also, numerous developments in EDM have focused on the production of 

micro-features (Pham et al., 2004). This has become possible due to the availability 

of new CNC systems and advanced spark generators that have helped to improve 

machined surface quality. This chapter presents the principle of EDM process and 

type of EDM machines used in industry, particularly focusing on hole drilling EDM. 
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The description of process parameters and their effects on Material Removal Rate 

(MRR), Electrode Wear Rate (EWR) and Surface Roughness (SR) are also reported. 

 

4.2 Electrical Discharge Machining (EDM) 

EDM is the process of machining electrically conductive materials by using precisely 

controlled sparks that occur between an electrode and a workpiece in the presence of 

a dielectric fluid (Jameson, 2001). This method is preferred to machine difficult-to-

cut materials, particularly aerospace alloys, which cannot be machined easily by 

means of traditional techniques. 

 

EDM is sometimes called "spark machining" as it removes material from workpiece 

by producing a rapid series of repetitive electrical discharges. The sparking principle 

is illustrated in Fig. 4.1. Such electrical discharges are built between the electrode 

and the workpiece. The small amount of material that is removed from the workpiece 

is flushed away with a continuously flowing fluid. The repetitive discharges create a 

set of successively deeper craters in the work piece until the final shape is produced. 

 

( c )

( a )

( d )

( b )

( c )

( a )

( d )

( b )

 
Figure 4.1 Principle of sparking in EDM process (Jameson, 2001) 

 



 25

EDM Process has been commonly used in tool and die-making industry. In recent 

years, EDM has also become an integral part of making prototypes and drilling 

small-scale cooling holes. Such applications are particularly seen in aerospace and 

electronics industries where production quantities remain low. For this purpose, there 

are different types of EDM machines for specific applications. Die-sinking (aka ram-

type) EDM machines require an electrode having the exact opposite shape as the one 

in the workpiece. Wire (or wire-cut) EDM machines use a continuous wire as the 

electrode where the sparking takes place from the wire-side of electrode to the 

workpiece. Hole drilling EDM machines simply incorporate drilling of small-size 

holes using cylindrical hollow electrodes. 

 

4.3 Hole Drilling EDM Process 

Despite of using the same principle as other EDM techniques, hole drilling EDM 

process has two distinctive features (Fig. 4.2): a constantly rotated hollow-shape 

electrode and the pumping of dielectric fluid through this electrode. High flushing 

pressure of dielectric fluid flowing through the rotating electrode helps in flushing 

the particles away during machining. The electrode guider keeps the electrode on 

location and prevents drifting while the rotating electrode is cutting. With the aid of 

electrode guider and flushing effects on the electrode, this technique can be used for 

making holes in a fast and accurate way with a good surface finish. 
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Figure 4.2 Hole drilling EDM process (adapted from Leao et al., 2005) 
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Use of traditional techniques in drilling holes on aerospace alloys cause problems of 

tool wear/breakage and slow machining rates, leading to inaccurate hole dimensions 

and unacceptable surface quality. Hole drilling EDM has been recently used to 

produce cooling holes on aeroengine components such as turbine blades and nozzle 

guide vanes. The combination of using high pressure (70-100 bar) dielectric pump, 

the rotation of tubular electrode and the high electrode feed rate (controlled by a fast 

response servo) make it possible to produce holes at a very fast rate. Drilling rates of 

1 mm/s can be achieved, and the hole size is generally Ø0.15-3 mm with a length-to-

diameter ratio of over 150:1 (Leao et al., 2005). 

 

4.4 Process Parameters 

The parameters in hole drilling EDM process can be grouped as controllable and 

uncontrollable parameters as given in Table 4.1. Controllable parameters, also called 

machining parameters, are the parameters which can be set or adjusted on EDM 

machine. Uncontrollable parameters can be selected or defined before the process. 

 

Table 4.1 Controllable and uncontrollable EDM parameters 

Controllable Parameters  Uncontrollable (Fixed) Parameters 

Name Unit Symbol  Name Unit Symbol

Peak current A I  Dielectric fluid - - 

Pulse-on time μs ton  Electrode rotation rpm N 

Pulse-off time μs toff  Polarity - - 

Capacitance μF C  Voltage volts V 

    Dielectric flushing pressure bar - 
 

4.4.1 Controllable Parameters 

The controllable parameters in EDM process are as follows: 

 

Peak current: This is the amount of power used in discharge machining, and it is the 

most important machining parameter in EDM. During each pulse-on time, the current 

increases until it reaches a preset level, which is expressed as the peak current as 

seen in Fig. 4.3. Higher currents will improve MRR, but at the cost of SR and EWR. 
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Pulse-on and pulse-off time: Each sparking cycle during EDM process has pulse-on 

time (aka pulse duration) and pulse-off time (aka pulse interval). Since all the work 

is done during pulse-on time, the duration of pulses and the number of cycles per 

second (frequency) are important. With longer pulse duration, more workpiece 

material will be melted away. The resulting crater will be broader and deeper than a 

crater produced by shorter pulse duration, which will cause a rougher surface finish. 

The cycle is completed when sufficient pulse interval is allowed before the start of 

the next cycle. Pulse interval will affect the speed and stability of the cut. In theory, 

the shorter the interval, the faster will be the machining operation. On the other hand, 

if the interval is too short the eroded workpiece material will not be swept away by 

the flow of dielectric fluid, which will cause the next spark to be unstable. 
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Figure 4.3 Peak current versus pulse-on and pulse-off times (Kumar et al., 2009) 

 

Capacitance: In resistance-capacitor type discharge pulse generator (Fig. 4.4), the 

capacitor controls the action of charging and discharging as well as the frequency of 

discharging. An increase in capacitance results in higher material removal rate due to 

larger discharge energy. As capacitance becomes larger, peak current also increases. 

Therefore, deeper craters will be generated which causes an increase in MRR and SR 

as well as slight increase in EW. 

 

 
Figure 4.4 RC discharge pulse generation circuit (Jung et al., 2007) 
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4.4.2 Uncontrollable Parameters 

The following parameters can only be selected before the EDM operation: 

 

Voltage: Discharge voltage in EDM is related to spark gap and breakdown strength 

of the dielectric. High voltage settings increase the gap, which improves the flushing 

conditions and helps to stabilize the cutting action. MRR, EWR, and SR increase by 

increasing open circuit voltage since the electric field strength increases.  

 

Dielectric fluid: EDM process takes place in presence of a dielectric fluid. Basic 

characteristics of a dielectric are high dielectric strength and quick recovery after 

breakdown, effective quenching and flushing ability. EWR and MRR are affected by 

the type of dielectric and the method of its flushing. It is either a petroleum product 

or deionized water. Petroleum products are often referred to hydrocarbon fluids as 

they break down into hydrogen, carbon and other products when they are heated 

during sparking. Deionized water is free of impurities so that it is electrically 

conductive. The heat of sparking breaks down this water into hydrogen and oxygen. 

Deionized water is usually used in wire EDM, hole drilling EDM, and high precision 

die-sinking EDM machines due to its low viscosity and carbon-free characteristics. 

 

Polarity: It can be either positive or negative. The spark creates high temperatures 

causing material evaporation at both electrode and workpiece. In general, the polarity 

is determined by experiments, and it is a matter of electrode material, workpiece 

material, current density and pulse length combinations. 

 

4.4.3 Process Outputs 

Outputs of hole drilling EDM process are MRR, EWR, and SR. Among these, MRR 

and EWR are calculated based on the weight of workpiece, machining time and loss 

in electrode length. On the other hand, SR can be measured on the machined hole 

surfaces. Determination of EDM outputs are explained in detail in the next chapter. 
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CHAPTER 5 

DEVELOPMENT OF ANFIS MODELS 

 

 

5.1 Introduction 

In this chapter, the methodology for development of ANFIS models for a selected 

application is presented. The experimental work including the description of EDM 

machine, the procedure of conducting experiments, and obtaining the experimental 

data are explained. After that, the development of ANFIS models for the selected 

data set is presented step-by-step. In each step, the findings are discussed by means 

of screenshots of ANFIS software. Finally, the results on training and validation 

capabilities of developed models are compared with experimental data. 

 

5.2 Experimental Work 

As mentioned previously in Chapter 1, the experimental data used in this study has 

been obtained from the research project (Yılmaz et al., 2010). This section presents 

the experimental work including the material properties for workpiece and electrode 

as well as the setup for conducing experiments. The design of experiments, the input 

parameters and the measurement of values of corresponding outputs are also 

described briefly in this section. 

 

5.2.1 Workpiece and Electrode Materials 

The workpiece materials used in this study were common aerospace super alloys: 

α+β type Ti-6Al-4V (aka Ti64) and Inconel 718 (aka IN718). In spite of their poor 

machinability and low mechanical properties, these materials are preferred in 
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aerospace applications due to their specific thermal and physical properties (Bozdana 

et al., 2010). The chemical compositions of Ti64 and IN718 are given in Table 5.1. 

 

Table 5.1 Chemical composition of Ti64 and IN718 (wt. %) 
Ti-6Al-4V  Inconel 718 
Ti 89.464  Ni 50-55 Si 0.35 (max) 
Al 6.08  Cr 17-21 Mn 0.35 (max) 
V 4.02  Fe Balanced Cu 0.30 (max) 

Fe 0.22  Nb 4.75-5.50 C 0.08 (max) 
O 0.18  Mo 2.80-3.30 B 0.06 (max) 
C 0.02  Co 1.00 (max)  
N 0.01  Ti 0.65-1.15  
H 0.0053  Al 0.20-0.80  

 

Brass and copper electrodes with a tubular shape (single-channel) were used during 

experiments. These are commonly used tool electrode materials in EDM hole drilling 

applications due to their desirable thermal and electrical properties seen in Table 5.2. 

 

Table 5.2 Material properties of tool electrodes 
 Copper Brass 
Melting point (ºC) 1084.62 900-940 
Electrical resistivity (Ω-cm)  1.69 4.7 
Thermal conductivity (W/m-ºK) 391 159 
Specific heat capacity (J/g-ºC) 0.385 0.38 

 

5.2.2 Experimental Setup 

Several holes were produced at different machining conditions on Ti64 and IN718 

specimens with dimensions of 6 x 11 x 35 mm. The flat surfaces of two specimens 

were aligned in order to ensure that the mating surfaces could be secured accurately 

using a specially designed and manufactured fixture as illustrated in Fig. 5.1. Upper 

and lower surfaces of specimens were ground prior to experiments. The holes were 

drilled on the line of mating interface to enable implementation of standardized 

experiments, easier handling of specimens after experiments, and performing reliable 

surface roughness measurements on the hole surfaces. 
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Figure 5.1 Sketch of specimens and drilled holes 

 

The experiments were performed on JS EDM AD-20 hole drilling EDM machine 

manufactured by Jiann Sheng Machinery and Electric Industrial Co. Ltd. 

Specifications of this machine are given in Fig. 5.2. 

 

 
Figure 5.2 Specifications of JS AD-20 EDM machine 

 

The components of experimental setup are shown in Fig. 5.3. The vertical movement 

of electrode is controlled by servo control whereas location of holes on the specimen 

is adjusted by means of table movement. Coordinates of corresponding movements 

are viewed on the coordinate display. The dielectric fluid is filtered, and it flows 

through hollow electrode during operation. The measurements of current and voltage 

were performed using an oscilloscope. On the other hand, the values of pulse-on 

time, pulse-off time, and capacitance were specified by the machine manufacturer. 

Fig. 5.4 shows a close-up view of the process with the occurrence of spark. The 

electrode guider holds the electrode and provides a stable electrode rotation. 
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Figure 5.3 Components of JS AD-20 EDM machine 
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Figure 5.4 Close-up view of EDM process 

 

Machine settings are adjusted on the control panel, as seen in Fig. 5.5. The desired 

levels for controllable parameters can be chosen on this panel. The values of current 
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(A), pulse-on and pulse-off times (μs), and capacitance (μF) at selected settings are 

presented in the next section. 

 

Controllable 
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Settings

 
Figure 5.5 Control panel of JS AD-20 EDM machine 

 

5.2.3 Design of Experiments and Machining Conditions 

Design of Experiments (DOE) is a structured and organized method for determining 

the relationships between input parameters affecting the process outputs. The benefit 

of using this method is to obtain useful information about the process by conducting 

only minimum number of experiments (Montgomery, 2000). In this study, the 

minimum number of experiments was determined by method of Central Composite 

Design (CCD) that gives 31 experiments to be conducted in a specific order. 

 

The experiments were performed using four input parameters (i.e. I, ton, toff, and C). 

For each input parameter, five different settings on the machine (i.e. 5, 6, 7, 8, and 9) 

were selected. Table 5.3 shows the machine settings and the corresponding values of 

input parameters. This means that 54 = 625 experiments in total was required if all 

machine settings were used. However, CCD method requires only 31 experiments to 

be conducted in a specific order so that the effect of input parameters at different 

machine settings can be analyzed. The results of these 31 experiments, as given in 

Table 5.4, were used for training the ANFIS models in this study. 
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Table 5.3 Machine settings and the corresponding values of input parameters 
Real Values of Input parameters 

Machine Setting I (A) ton (μs) toff (μs) C (μF) 
5 8.2 27 16 1100 
6 8.8 30 18 1217 
7 10.2 35 20 1316 
8 11.5 38 23 1422 
9 12.0 44 26 1476 

 

Table 5.4 The experiments used for training data 
Machine Settings Corresponding Values Exp. 

No. I ton toff C I (A) ton (μs) toff (μs) C (μF) 
1 6 6 6 6 8.8 30 18 1217 
2 7 7 5 7 10.2 35 16 1316 
3 8 8 8 8 11.5 38 23 1422 
4 8 6 8 8 11.5 30 23 1422 
5 7 7 7 7 10.2 35 20 1316 
6 7 7 7 7 10.2 35 20 1316 
7 7 7 7 7 10.2 35 20 1316 
8 7 7 7 9 10.2 35 20 1476 
9 8 8 6 8 11.5 38 18 1422 

10 6 8 6 8 8.8 38 18 1422 
11 6 6 8 6 8.8 30 23 1217 
12 7 7 7 7 10.2 35 20 1316 
13 6 8 8 8 8.8 38 23 1422 
14 8 6 8 6 11.5 30 23 1217 
15 8 8 6 6 11.5 38 18 1217 
16 9 7 7 7 12.0 35 20 1316 
17 6 8 6 6 8.8 38 18 1217 
18 6 6 6 8 8.8 30 18 1422 
19 7 7 9 7 10.2 35 26 1316 
20 7 9 7 7 10.2 44 20 1316 
21 8 6 6 6 11.5 30 18 1217 
22 7 7 7 7 10.2 35 20 1316 
23 7 7 7 7 10.2 35 20 1316 
24 7 5 7 7 10.2 27 20 1316 
25 6 8 8 6 8.8 38 23 1217 
26 8 8 8 6 11.5 38 23 1217 
27 6 6 8 8 8.8 30 23 1422 
28 8 6 6 8 11.5 30 18 1422 
29 5 7 7 7 8.2 35 20 1316 
30 7 7 7 5 10.2 35 20 1100 
31 7 7 7 7 10.2 35 20 1316 
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As highlighted in Table 5.4, seven experiments with the same settings (exp. no. 5, 6, 

7, 12, 22, 23, and 31) were repeated to check the consistency of results for 

experiments conducted at machine settings of I = 7, ton = 7, toff = 7, and C = 7. It is 

expected that the results obtained from these experiments would be different due to 

the irregularities within microstructure of electrode and workpiece materials, and 

also variations in the environmental factors (i.e. temperature, vibration, dielectric 

fluid, etc). This causes a repeatability error during the experiments that was also 

introduced into training capabilities of the developed models, as discussed in the 

following sections. 

 

In addition to 31 experiments used for training data, the experimental data obtained 

from 5 additional experiments having different values of input parameters were used 

for validation of the system, as given in Table 5.5. The machine settings in these 5 

experiments were selected randomly among possible 625 experiments. 

 

Table 5.5 The experiments used for checking data 
Machine Settings Corresponding Values Exp. 

No. I ton toff C I (A) ton (μs) toff (μs) C (μF) 
V1 7 8 7 8 10.2 38 20 1422 
V2 8 7 7 6 11.5 35 20 1217 
V3 6 8 8 7 8.8 38 23 1316 
V4 6 7 8 9 8.8 35 23 1476 
V5 7 9 5 8 10.2 44 16 1422 

 

5.2.4 Uncontrollable Parameters 

There are some uncontrollable parameters on EDM machine as listed in Table 5.6. 

These parameters were kept constant during experiments. 

 

Table 5.6 The list of uncontrollable parameters 
Name of parameter Value 
Voltage 27 V 
Dielectric fluid Deionized water 
Dielectric flushing pressure 75 bar 
Electrode rotational speed 150 rpm 
Polarity of electrode Negative (-) 
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5.2.5 Measurement of Output Parameters 

The drilling time for each hole was recorded using an electronic timer. The test 

pieces were weighed before and after drilling using a digital precision scale. Based 

on these measurements, Material Removal Rate (MRR) for each experiment was 

calculated by the following formula: 

 

 timedrilling
 weightfinal weightinitial(mg/min) MRR −

=  Eq. 5.1

 

Electrode Wear Rate (EWR) was determined according to the drilling time of hole 

and the corresponding amount of electrode consumption (i.e. the variation in 

electrode length): 

 

 timedrilling
lengthin n consumptio electrode(mm/min) EWR =  Eq. 5.2

 

Surface Roughness (SR) of machined surfaces was measured using optical surface 

measurement tool. For this purpose, photos of machined hole surfaces were taken 

using SEM and the roughness values (Ra, μm) were measured on these photos by 

means of a special-purpose software 3D Mex produced by Alicona. For obtaining 

reliable results, the roughness values at the entrance, the middle, and the exit 

locations of holes were measured, and the average of these values was taken. 

 

5.3 Development of ANFIS Models 

In this study, ANFIS editor (Fig. 5.6) within the Fuzzy Logic Toolbox of Matlab was 

used for development of models. As stated in previous sections, the aim was to 

achieve ANFIS models for Ø2 mm holes drilled on Inconel 718 and Ti-6Al-4V 

workpiece materials using brass and copper electrodes. As numbered in Fig. 5.6, the 

methodology to develop models is explained step-by-step in this section. For this 

purpose; Inconel 718 workpiece material and brass electrode were chosen as a case 

study, and this model was named as “D2NiBr”. Other models were also named in a 

similar way (i.e. D2NiCu, D2TiBr, and D2TiCu) as given in Appendix D. 
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Figure 5.6 Screenshot of ANFIS editor 

 

Table 5.7 and 5.8 present the experimental data used for training and checking the 

model D2NiBr, respectively. The experiments used for validation were named as V1, 

V2, V3, V4, and V5 in order to prevent confusion throughout the report. As 

mentioned in Section 5.2.3, the repeated experiments with the same input values, 

shaded in Table 5.7, have different output values. Such differences in values are 

evaluated as repeatability error, which shows the precision of EDM machine in 

producing consistent outputs with respect to the identical machining conditions. 

Table 5.9 shows the repeatability errors for outputs MRR, EWR, and SR for repeated 

experiments in set of D2NiBr. The average of values for repeated experiments is 

calculated, and then the deviation of each value from the average is determined. 

 

As seen from Table 5.9, the deviations are within ±20%, which means that the 

repeatability error in experimental data for D2NiBr is acceptable. The experimental 

data used for validation of the models for other sets of data (i.e. D2NiCu, D2TiBr, 

and D2TiCu) are given in Appendix D. The following sections describe the 

methodology of developing ANFIS models for outputs of MRR, EWR and SR for 

the case of D2NiBr using these training and checking data. 
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Table 5.7 Experimental data used for training the model D2NiBr 
Input Parameters Output Parameters 

Exp. 
No. 

I 
(A) 

ton 
(μs) 

toff 
(μs) 

C 
(μF) 

MRR 
(mg/min)

EWR 
(mm/min) 

SR 
(μm) 

1 8.8 30 18 1217 61.869 0.384 10.941
2 10.2 35 16 1316 92.841 0.866 12.054
3 11.5 38 23 1422 128.193 1.825 3.982
4 11.5 30 23 1422 107.012 1.655 3.771
5 10.2 35 20 1316 80.847 0.814 12.809
6 10.2 35 20 1316 80.200 0.722 11.608
7 10.2 35 20 1316 78.600 0.702 12.305
8 10.2 35 20 1476 103.575 1.341 3.858
9 11.5 38 18 1422 136.235 2.118 3.863

10 8.8 38 18 1422 118.510 1.612 4.357
11 8.8 30 23 1217 69.042 0.701 11.483
12 10.2 35 20 1316 88.828 0.814 10.513
13 8.8 38 23 1422 117.843 1.498 4.037
14 11.5 30 23 1217 83.322 0.779 12.086
15 11.5 38 18 1217 102.023 0.827 10.659
16 12.0 35 20 1316 147.381 1.962 3.545
17 8.8 38 18 1217 89.486 0.742 10.630
18 8.8 30 18 1422 93.032 1.194 4.672
19 10.2 35 26 1316 81.371 0.941 10.690
20 10.2 44 20 1316 102.987 0.930 11.728
21 11.5 30 18 1217 93.832 0.822 12.277
22 10.2 35 20 1316 88.068 0.736 10.462
23 10.2 35 20 1316 84.444 0.736 11.592
24 10.2 27 20 1316 75.478 0.623 10.312
25 8.8 38 23 1217 82.187 0.675 11.633
26 11.5 38 23 1217 95.830 0.870 11.871
27 8.8 30 23 1422 94.277 1.219 3.810
28 11.5 30 18 1422 113.766 1.812 4.447
29 8.2 35 20 1316 62.807 0.611 11.105
30 10.2 35 20 1100 84.804 0.850 10.767
31 10.2 35 20 1316 73.941 0.576 10.005

 

Table 5.8 Experimental data used for checking (validating) the model D2NiBr 
Input Parameters Output Parameters 

Exp. 
No. 

I 
(A) 

ton 
(μs) 

toff 
(μs) 

C 
(μF) 

MRR 
(mg/min)

EWR 
(mm/min) 

SR 
(μm) 

V1 10.2 38 20 1422 152.679 1.821 3.294
V2 11.5 35 20 1217 134.000 1.247 10.737
V3 8.8 38 23 1316 117.943 0.881 8.672
V4 8.8 35 23 1476 135.652 1.604 5.090
V5 10.2 44 16 1422 154.951 2.196 2.917
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Table 5.9 Repeatability errors in experimental data for D2NiBr 
MRR (mg/min) EWR (mm/min) SR (μm) Exp. 

No. Value Deviation Value Deviation Value Deviation 
5 80.847 1.56 0.814 -11.68 12.809 -13.08 
6 80.200 2.35 0.722 0.89 11.608 -2.47 
7 78.600 4.30 0.702 3.64 12.305 -8.63 

12 88.828 -8.15 0.814 -11.71 10.513 7.19 
22 88.068 -7.23 0.736 -1.08 10.462 7.64 
23 84.444 -2.81 0.736 -0.97 11.592 -2.33 
31 73.941 9.97 0.576 20.90 10.005 11.67 

Ave. 82.133 0.729 11.328  
 

5.3.1 Step I: Loading Data Files into System 

At the first step, training and checking data that will be used for training and 

checking (validation) of the model are loaded into system. For instance, the input 

parameters and the corresponding MRR values used for training of the model are 

recorded in “D2NiBr_Trndata_MRR.dat” file as shown in Fig. 5.7a. Similarly, the 

checking data for validation of model are recorded in “D2NiBr_Chkdata_MRR.dat” 

file (Fig. 5.7b). In these files, the first four columns represent the values of input 

parameters whereas the values of output parameter (MRR) are given in the last 

column. The screenshot of the system after loading these files is given in Fig. 5.8. 

 

 
a. Training data 

 
b. Checking (Validation) data 

Figure 5.7 The experimental data used for D2NiBr_MRR 
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Figure 5.8 Training and checking data loaded into the system 

 

In ANFIS, it is possible to define multiple input parameters. However, only one 

output parameter can be defined. This is due to the fact that Sugeno approach is used 

as inference methodology in ANFIS. Therefore, training and checking data for EWR 

and SR were also introduced into the system, and the corresponding ANFIS models 

were developed separately. 

 

5.3.2 Step II: Generating FIS 

The membership functions for input and output parameters as well as IF-THEN type 

of fuzzy rules that define the relationships between such functions are specified at 

this step. For this purpose, there are two common methodologies in ANFIS: “grid 

partitioning” and “subtractive clustering”. In grid partitioning method, the 

relationships between input and output parameters are analyzed one-by-one and the 

fuzzy rules for specifying such relationships are generated. On the other hand, in 

subtractive clustering method, similar relationships between input and output 

parameters are grouped and added into clusters, and the corresponding fuzzy rules 

are generated based on such clusters. 
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The number of rules generated in the first method is usually higher than that in the 

second method. This is due to the fact that the first method generates a rule for each 

relationship whereas the rules for clusters only are generated in the second method. 

Therefore, training time for the models developed based on the first method is longer 

due to large number of rules. However, such models present more accurate and 

reliable results as compared to those in the second method. Grid partitioning method 

is suggested when there are less than six input parameters and limited number of 

training data (Jang). Thereby, grid partitioning method was chosen in this study and 

all models were developed based on this method. 

 

As seen in Fig. 5.9, type and number of membership functions for input parameters 

as well as type of membership function for output parameter are specified in grid 

partitioning method. For each input parameter, different number of membership 

function can be specified. Total number of fuzzy rules generated within the system 

depends upon number of input parameters and number of membership function for 

each input parameter (Eq. 5.3). 

 

 
Figure 5.9 Specifying the properties of model using grid partitioning method 

 

Total number of fuzzy rules = [number of MFs](number of input parameters) Eq. 5.3
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Therefore, the number of rules will increase accordingly with higher number of 

membership functions. This will cause the system to be trained in a longer time. Due 

to this reason, several trials were performed in training the models using different 

number of membership functions, and the most suitable number of membership 

function for each input parameter was found to be “2 2 3 3”. This means that the total 

number of fuzzy rules in the models is defined as 2 ∗ 2 ∗ 3 ∗ 3 = 36 rules. 

 

The membership functions available in ANFIS were given previously in Fig. 3.4. It 

is quite difficult to make a choice among these functions since the efficiency of each 

function will vary according to certain applications. In this study, the models were 

built using different membership functions and the obtained results revealed that the 

most suitable function is “psigmf”. This function was chosen over other functions 

due to its smoothness and ability of being used for asymmetrical data. Besides, the 

type of membership function for output parameter was selected as “constant” that 

has provided better performance than “linear” option during training of models. 

 

5.3.3 Step III: Structure of FIS 

Each model has four input parameters (i.e. I, ton, toff, and C) and one output parameter 

(i.e. MRR, EWR, or SR) with 36 fuzzy rules (as given in Fig. 5.10). 

 

 
Figure 5.10 Structure of developed model 
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5.3.4 Step IV: Training FIS 

In this section, the model having the FIS structure is supposed to be trained. Fig. 5.11 

shows the procedure of training the model for MRR output and obtaining the training 

error. In this study, “hybrid learning algorithm” was used as optimization method in 

training. This algorithm uses the combined effect of “minimum square algorithm” 

and “back propagation algorithm” to obtain the optimum training performance. The 

error obtained by hybrid algorithm is the Root Mean Square Error (RMSE) value (i.e. 

standard deviation) of the output MRR values. The target for error tolerance was not 

specified (i.e. error tolerance was set to zero) so that the possible minimum error 

value could be achieved. The epoch number for all models was defined as 500 by 

default. However, the most appropriate epoch number for each model was defined 

after obtaining the error curves. 

 

 
Figure 5.11 Training and checking of the model for MRR 

 

As seen in Fig. 5.11, the error curve for training data decreases until a specific value 

(i.e. 2.3465) and continues horizontally after 100 epochs. Therefore, the most 

appropriate epoch number for this model can be accepted as 100 since the error value 

beyond this epoch number is constant. However, this should not be decided based on 

only observing training error curve. 
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Considering the checking error curve; the checking error first decreases until a 

specific value and increases as the training continues, and finally reaches a constant 

value after about 200 epochs. This means that selecting 200 epochs for this model 

would be more appropriate. As a conclusion, both training and error curves should be 

observed for determining the most appropriate epoch number, which is explained in 

detail in the next section. 

 

5.3.5 Step V: Checking (Validating) FIS 

The last step is validating the model. Average training and checking errors of the 

model for MRR are shown in Fig. 5.12 and 5.13. In these figures, the experimental 

data for training and checking are represented by circle (ο) and plus (+) signs, 

respectively. The outputs from the model (i.e. FIS outputs) are denoted by star (∗) 

sign. The fitness of developed model in terms of training and checking capabilities 

are measured by the arithmetic mean of corresponding errors between experimental 

data and outputs of the system. 

 

 
Figure 5.12 Training error of the model for MRR 
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Figure 5.13 Checking error of the model for MRR 

 

Despite the model after training exhibits very good fitness in Fig. 5.12, there are 

differences between experimental data and FIS outputs in repeated experiments (i.e. 

5, 6, 7, 12, 22, 23, 31). This is due to repeatability error between such experiments. 

FIS output for these experiments has a single value although the experimental values 

differ from each other, which causes an increase in the average training error. 

 

At this stage, the aim is to obtain the minimum values for training and checking of 

the models. In other words, the model should be trained as good as possible with the 

lowest validation error. Therefore, in all models, the most appropriate epoch number 

must be selected in order to achieve the optimum results for both training and 

checking data. In general, the most appropriate epoch number is chosen at the epoch 

where the training is complete (i.e. the training error curve is stabilized). This means 

that the minimum training error is obtained when the training procedure is complete. 

On the other hand, this may not apply to the case in checking (validation) error, as 

stated in the previous section. 
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For instance, in case of training and checking error curves of the model for EWR 

(Fig. 5.14), different error values were obtained at epoch #1 and epoch #100. The 

training error curve decreases and stabilizes after certain epoch number. The 

checking error curve gradually increases, then exhibits a small drop, and finally 

continues horizontally after certain epoch number. The checking error value at epoch 

#1 is determined as 0.19877 while its value is 0.276 at epoch #100. 

 

 
Figure 5.14 Training and checking of the model for EWR 

 

In this case, it seems that using the model for EWR at epoch #1 is reasonable. 

However, there is a great difference in training error values at epoch #1 (i.e. 0.16499) 

and epoch #100 (i.e. 0.035359). This means that training procedure was incomplete 

at epoch #1 whereas epoch #100 refers to a completely trained model. Therefore, 

epoch #100 should be selected due to the completed training procedure with the 

lowest training error although the checking error at this epoch number is the highest. 

 

The error curves of the model for SR are also examined in Fig. 5.15. Similar to the 

case of models for MRR and EWR, the training error curve decreases until a certain 

error value and stabilizes after about epoch #150. However, the checking error curve 

exhibits unstable progress with falls and rises at different epoch numbers. Therefore, 

the most appropriate epoch number for this model was found to be #125 for 

obtaining the optimum training and checking error levels. 
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Figure 5.15 Training and checking of the model for SR 

 

In some cases, although the training procedure is complete (i.e. the training error 

curve is stabilized), training the model in a continuous way may cause over-training. 

For instance, there is an unstable region in the checking error curve between epoch 

#300 and #375 (Fig. 5.15). In such cases, a stabilized checking error curve cannot be 

achieved due to small leaps in up and down manner. For reliable results, the epoch 

numbers within the unstable region in checking error curve should not be used. 

 

5.3.6 Structure and Properties of Developed Models 

Schematic structure of the models developed by means of ANFIS can be presented 

using FIS editor of Matlab. Fig. 5.16 shows the structure of model for MRR trained 

at epoch #200 as explained in the previous section. In this structure, the input 

parameters (I, ton, toff, C) having membership function of psigmf appear on the left 

side whereas the output parameter (MRR) having singleton (i.e. crisp) function is on 

the right side. The relationships between input and output parameters are defined 

using Sugeno type inference system. 

 

Fig. 5.17 shows the rule editor where the output value for MRR is obtained by 

entering the input parameters. For instance, the value of MRR was found to be 82.1 

mg/min when the values of input parameters were entered as I = 10.2 A, ton = 35 μs, 

toff = 20 μs, and C = 1316 μF. 
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Figure 5.16 Schematic view of structure of the model for MRR 

 

 
Figure 5.17 Obtaining results using Rule Viewer 

 

As mentioned in the previous sections, many trials for MRR, EWR, and SR models 

of D2NiBr have been done using different MF types and various numbers of MFs. 
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The training and checking error curves for MRR, EWR and SR obtained after these 

trials are given in Appendix A, B and C, respectively. As seen from the results, the 

most appropriate combination was found to be 2 2 3 3 with psigmf. Therefore, in all 

models for case of D2NiBr, there are 36 psigmf MFs assigned to input parameters, 

and hence all models consist of 36 fuzzy rules. The output parameter in each model 

is defined by singleton type of MF since Sugeno inference system is used in ANFIS. 

 

However, different epoch numbers were used for training the models for EWR and 

SR. Table 5.10 presents the properties of developed models for all output parameters 

(i.e. MRR, EWR and SR) for D2NiBr. The properties of models (i.e. selected epoch 

number, training and checking error values, and so on.) for other data sets (namely 

D2NiCu, D2TiBr, and D2TiCu) are also reported in Appendix D. 

 

Table 5.10 The properties of developed models for D2NiBr 
Property name MRR EWR SR 
Fuzzification method Grid partitioning 
MF type for input parameters psigmf 
Number of MFs for input parameters 2 2 3 3 
MF type for output parameter Constant 
Total number of fuzzy rules 36 
Target error tolerance 0 
Number of epochs in training 200 100 125 
Training error value 2.3465 0.035359 0.46762 
Checking error value 29.0612 0.276 1.6551 

 

5.4 Analysis of Models for Training Results 

The experimental values used for training the models and the corresponding values 

obtained from models are compared in Table 5.11. Their visual comparisons are also 

given in Fig. 5.18, 5.19, and 5.20. As seen from the results, the percentage errors 

between experimental and ANFIS values are nearly zero. This proves that the models 

for MRR, EWR, and SR in case of D2NiBr were trained very well. On the other 

hand, the errors in repeated experiments (i.e. experiment no. 5, 6, 7, 12, 22, 23, 31) 

are prominent due to the repeatability errors in experimental data. The output of 



 50

models corresponding to such experiments is a single value so that the adverse effect 

of repeatability error arising from experimental data can be compensated. 

 

Table 5.11 Experimental versus ANFIS results for training data for D2NiBr 
MRR (mg/min) EWR (mm/min) SR (µm) Exp. 

No. Exp. ANFIS Err. (%) Exp. ANFIS Err. (%) Exp. ANFIS Err. (%)
1 61.869 61.900 0.051 0.384 0.384 0.015 10.941 10.900 0.375
2 92.841 92.800 0.044 0.866 0.866 0.010 12.054 12.100 0.379
3 128.193 128.000 0.151 1.825 1.820 0.265 3.982 3.980 0.042
4 107.012 107.000 0.011 1.655 1.650 0.320 3.771 3.770 0.018
5 80.847 82.100 1.549 0.814 0.730 10.271 12.809 11.200 12.561
6 80.200 82.100 2.369 0.722 0.730 1.108 11.608 11.200 3.512
7 78.600 82.100 4.453 0.702 0.730 3.989 12.305 11.200 8.980
8 103.575 104.000 0.410 1.341 1.340 0.058 3.858 3.860 0.043
9 136.235 136.000 0.173 2.118 2.120 0.111 3.863 3.860 0.069

10 118.510 119.000 0.414 1.612 1.610 0.109 4.357 4.360 0.069
11 69.042 69.000 0.060 0.701 0.701 0.055 11.483 11.500 0.151
12 88.828 82.100 7.574 0.814 0.730 10.297 10.513 11.200 6.535
13 117.843 118.000 0.133 1.498 1.500 0.131 4.037 4.040 0.066
14 83.322 83.300 0.027 0.779 0.779 0.052 12.086 12.100 0.116
15 102.023 102.000 0.022 0.827 0.827 0.034 10.659 10.700 0.388
16 147.381 147.000 0.258 1.962 1.960 0.097 3.545 3.550 0.141
17 89.486 89.500 0.015 0.742 0.742 0.030 10.630 10.600 0.282
18 93.032 93.000 0.034 1.194 1.190 0.303 4.672 4.670 0.043
19 81.371 81.400 0.036 0.941 0.941 0.036 10.690 10.700 0.090
20 102.987 103.000 0.013 0.930 0.928 0.201 11.728 12.000 2.322
21 93.832 93.800 0.034 0.822 0.822 0.013 12.277 12.300 0.190
22 88.068 82.100 6.777 0.736 0.730 0.864 10.462 11.200 7.051
23 84.444 82.100 2.776 0.736 0.730 0.755 11.592 11.200 3.382
24 75.478 75.100 0.500 0.623 0.620 0.470 10.312 10.700 3.759
25 82.187 82.200 0.016 0.675 0.675 0.035 11.633 11.600 0.284
26 95.830 95.800 0.032 0.870 0.870 0.037 11.871 11.900 0.247
27 94.277 94.300 0.025 1.219 1.220 0.070 3.810 3.810 0.009
28 113.766 114.000 0.205 1.812 1.810 0.093 4.447 4.450 0.075
29 62.807 63.100 0.466 0.611 0.609 0.365 11.105 11.300 1.753
30 84.804 84.800 0.005 0.850 0.850 0.000 10.767 10.800 0.306
31 73.941 82.100 11.035 0.576 0.730 26.684 10.005 11.200 11.940

Average Error (%): 1.280 1.835  2.103
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Figure 5.18 Experimental versus ANFIS results for training data of MRR 
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Figure 5.19 Experimental versus ANFIS results for training data of EWR 
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Figure 5.20 Experimental versus ANFIS results for training data of SR 



 52

Fig. 5.21, 5.22 and 5.23 presents the results of linear regression analysis for MRR, 

EWR and SR respectively. Regression analysis, denoted by R2, is a measure of 

fitness (i.e. efficiency) of a model. Its value varies between 0 and 1. Higher values of 

R2 refer to well fitting models with high confidence levels whereas the models with 

poor fitness usually have lower R2 values. The developed models for MRR, EWR 

and SR exhibit very high R2 values when training data are taken into consideration. 

This means that the training of models was quite successful, and hence reliable 

results can be achieved using these models. 
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Figure 5.21 Regression analysis for training data of MRR 
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Figure 5.22 Regression analysis for training data of EWR 
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Figure 5.23 Regression analysis for training data of SR 

 

5.5 Analysis of Models for Checking Results 

The efficiency (i.e. the reliability) of developed models was also tested using 

checking data. The experiments included within checking data were not known by 

the models (i.e. such data were not used during the training of models). This way, 

response of models for experiments that are not recognized by the system can be 

predicted. Table 5.12 present the experimental values used for validation of the 

models and the corresponding values obtained from models. 

 

Table 5.12 Experimental versus ANFIS results for checking data for D2NiBr 
MRR (mg/min) EWR (mm/min) SR (µm) Exp. 

No. Exp. ANFIS Err. (%) Exp. ANFIS Err. (%) Exp. ANFIS Err. (%)
1 152.679 133.00 12.889 1.821 1.61 11.608 3.294 4.38 32.982
2 134.000 110.00 17.910 1.247 1.30 4.278 10.737 10.90 1.518
3 117.943 86.60 26.575 0.881 0.78 11.479 8.672 11.60 33.764
4 135.652 102.00 24.808 1.604 1.35 15.854 5.090 3.59 29.465
5 154.951 121.00 21.911 2.196 1.69 23.046 2.917 4.32 48.097

 20.819 13.253  29.165
 

Fig. 5.24, 5.25 and 5.26 compare the experimental and ANFIS results for validation 

of models. Predicted results are generally similar to experimental results although 

some results have relatively higher error values. The possible reasons for such errors 

may arise from repeatability errors, the errors due to operator and/or measurements, 

etc. which are discussed in Chapter 6. 
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Figure 5.24 Experimental versus ANFIS results for checking data of MRR 
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Figure 5.25 Experimental versus ANFIS results for checking data of EWR 
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Figure 5.26 Experimental versus ANFIS results for checking data of SR 
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Regression analyses of checking data results for MRR, EWR and SR are given in 

Fig. 5.27, 5.28 and 5.29, respectively. Similar to regression results obtained for 

training data as reported previously, the models also exhibit relatively high fitness 

levels (i.e. high R2 values) for testing the efficiency of models using checking data. 

This proves that the developed models for D2NiBr were successfully trained and 

validated with a high level of fitness. Regarding the other data sets given in 

Appendix D, this may not be possible in all cases, particularly for validation of 

models, due to the fact that the models may always be trained well whereas the 

effectiveness in their validation may not be satisfactory. 
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Figure 5.27 Regression analysis for checking data of MRR 
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Figure 5.28 Regression analysis for checking data of EWR 
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Figure 5.29 Regression analysis for checking data of SR 

 

5.6 Summary 

In case of D2NiBr, the models for MRR, EWR, and SR were developed using the 

identical modeling options in ANFIS. The models were trained and validated 

successfully by means of training and checking data. The results reveal that the 

applied methodology was appropriate and effective. 

 

The same methodology was also applied to other sets of Ø2 mm (namely D2Nicu, 

D2TiBr, and D2TiCu); and the validation results are reported in Appendix D. In 

particular with validation of models, the results show that the models with high R2 

values generally exhibit lower validation errors. This means that the models would 

present better prediction if their fitness level was higher. 
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

 

 

6.1 Discussions 

The relationships between input and output parameters in hole drilling EDM process 

are very complicated and difficult to model using conventional approaches. Neuro-

fuzzy models have been developed in this study by means of ANFIS technique 

within Matlab software. For this purpose, a number of holes (Ø2 mm) with input 

parameters (current, pulse-on and pulse-off time, and capacitance) have been 

conducted on two commonly used aerospace alloys (Ti-6Al-4V and Inconel 718) 

using two different electrode materials (brass and copper) in an environment of 

dielectric fluid (deionized water). The corresponding process outputs (MRR, EWR, 

and SR) have been determined. These data have been obtained from a research 

project recently completed in University of Gaziantep Yılmaz et al. (2010). 

 

In this study, the aim was to predict the response of process (i.e. output values) under 

certain machining conditions (i.e. given values of inputs). This was accomplished by 

developing models for each process output using different data sets with a 

combination of each workpiece and electrode material. In other words, using Ø2 mm 

electrodes, 12 models in total have been developed separately in order to predict the 

values of MRR, EWR, and SR for case of drilling holes on both workpiece materials 

using both electrode materials. For the ease of understanding, these models were 

given a specific code (e.g. D2NiBr_MRR refers to the model for machining Inconel 

718 using brass electrode with diameter of Ø2 mm for prediction of MRR output). 
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Each model has been trained using training data consisting of 31 experiments. The 

number of these experiments and their machining conditions were specified by 

design of experiments with central composite design technique. The type and number 

of membership functions were identical for training of all models. After training 

stage, all models have been validated by means of 5 additional experiments that were 

not included within experimental training data. This way, the effectiveness of models 

was tested in accordance with a number of validation experiments which were 

unknown to the system. Therefore, the accuracy of developed models was checked 

by comparison of experimental results with outputs from models. Moreover, linear 

regression analyses were done in order to test the reliability of models. 

 

6.2 Conclusions 

The highlights and concluding remarks of this study are as follows: 

 Neuro-fuzzy models developed in this study using ANFIS methodology with 

hybrid learning algorithm can be used to define input-output relationships in hole 

drilling EDM process. Such models can predict the values of process outputs for 

given input parameters within the lowest error range. 

 There are some errors between experimental results and results obtained from 

models. This is caused by several reasons related to experimental aspects. The 

errors within experimental data may arise from experimental setup and apparatus 

such as improper or insufficient electrode rotation, the problems in alignment of 

specimens on the vise, incorrect choice of type of dielectric fluid, insufficient 

pumping pressure of dielectric fluid. Such errors may also come from unknown or 

uncontrollable environmental factors as well as the irregularities in microstructure 

of workpiece and electrode materials. Furthermore, erroneous measurements 

performed by the operator during and after operation are existent. 

 Due to use of design of experiments, seven experiments out of 31 experiments 

were repeated under the same machining conditions. However, the results of these 

experiments were different due to the reasons explained above. This is called 

repeatability error that is inevitable in experimental studies, and it has been 

introduced into the system during training of models. 
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 From modeling viewpoint, some errors are introduced by selection of method of 

inference system (i.e. grid partitioning versus subtractive clustering), inappropriate 

choice of type and number of membership functions which may result in faulty or 

insufficient number of rules, use of incorrect epoch number during training, etc. 

 In conclusion, this study provides a hybrid approach by adapting learning 

algorithm of neural networks into advanced modeling capabilities of fuzzy logic 

technique. The reliability and accuracy of models developed in this study can be 

improved by aspects in the following section. 

 

6.3 Future Studies 

The recommendations on potential future works are as follows: 

 It is evident that training and validating models without any errors is not possible. 

However, the efficiency of models can be improved by refining the experimental 

data and eliminating/minimizing the errors mentioned in the previous section. 

 The models can also be enhanced by selecting different modeling options such as 

using different type and number of membership functions, using subtractive 

clustering method, training parameters and epoch numbers, etc. as well as 

increasing the number of training and validation data. 

 The methodology in this study can be used with different workpiece and electrode 

materials, various electrode diameters, different machining conditions, and so on. 

 Furthermore, the other advanced and AI techniques can be adapted so that the 

efficiency and accuracy of models can be improved. Such techniques can also 

enable the optimization of process outputs. 
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D2NICU 
 

MRR (mg/min) EWR (mm/min) SR (µm) Exp. 
No. Exp. ANFIS Error (%) Exp. ANFIS Error (%) Exp. ANFIS Error (%)
1 31.495 73.400 133.055 0.350 0.877 150.444 3.705 3.940 6.357
2 72.667 70.200 3.394 0.547 0.515 5.793 11.368 11.700 2.923
3 76.000 55.800 26.579 0.714 0.397 44.432 8.874 9.790 10.322
4 61.633 66.100 7.248 0.817 0.893 9.256 3.953 3.630 8.163
5 114.000 79.000 30.702 1.962 1.250 36.290 3.359 3.570 6.292

 40.196 49.243 6.812
 

Features of ANFIS model (MRR) 
Fuzzification method : Grid partitioning

MF type for inputs : psigmf 
Number of input MFs : 2 2 3 3 

MF type for output : constant 
Total number of rules : 36 
Target error tolerance : 0 

Number of epochs : 100 
Training error : 1.7575 

Checking error : 26.1224 20
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Features of ANFIS model (EWR) 
Fuzzification method : Grid partitioning

MF type for inputs : psigmf 
Number of input MFs : 2 2 3 3 

MF type for output : constant 
Total number of rules : 36 
Target error tolerance : 0 

Number of epochs : 150 
Training error : 0.042409 

Checking error : 0.44921 0.0
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Features of ANFIS model (SR) 
Fuzzification method : Grid partitioning

MF type for inputs : psigmf 
Number of input MFs : 2 2 3 3 

MF type for output : constant 
Total number of rules : 36 
Target error tolerance : 0 

Number of epochs : 100 
Training error : 0.25252 

Checking error : 0.47658 0
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D2TIBR 
 

MRR (mg/min) EWR (mm/min) SR (µm) Exp. 
No. Exp. ANFIS Error (%) Exp. ANFIS Error (%) Exp. ANFIS Error (%)
1 67.500 86.600 28.296 0.604 0.727 20.331 3.705 4.970 34.155
2 80.000 61.100 23.625 0.675 0.377 44.108 11.333 13.000 14.709
3 60.300 58.300 3.317 0.273 0.403 47.619 10.320 12.500 21.120
4 75.000 59.700 20.400 0.590 0.422 28.475 2.645 3.080 16.468
5 79.500 70.000 11.950 0.668 0.665 0.375 3.204 3.710 15.805

 17.518 28.181 20.451
 

Features of ANFIS model (MRR) 
Fuzzification method : Grid partitioning

MF type for inputs : psigmf 
Number of input MFs : 2 2 3 3 

MF type for output : constant 
Total number of rules : 36 
Target error tolerance : 0 

Number of epochs : 40 
Training error : 3.8845 

Checking error : 14.5045 50

55

60

65

70

75

80

85

90

0 1 2 3 4 5 6
Experiment No.

M
RR

 (m
g/
m
in
)

Experimental

ANFIS

R2 for checking data : 0.007 

 

Features of ANFIS model (EWR) 
Fuzzification method : Grid partitioning

MF type for inputs : psigmf 
Number of input MFs : 2 2 3 3 

MF type for output : constant 
Total number of rules : 36 
Target error tolerance : 0 

Number of epochs : 40 
Training error : 0.02922 

Checking error : 0.17279 0.2
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Features of ANFIS model (SR) 
Fuzzification method : Grid partitioning

MF type for inputs : psigmf 
Number of input MFs : 2 2 3 3 

MF type for output : constant 
Total number of rules : 36 
Target error tolerance : 0 

Number of epochs : 250 
Training error : 0.4431 

Checking error : 1.373 1
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D2TICU 
 

MRR (mg/min) EWR (mm/min) SR (µm) Exp. 
No. Exp. ANFIS Error (%) Exp. ANFIS Error (%) Exp. ANFIS Error (%)
1 37.154 59.700 60.683 0.148 0.235 59.115 3.566 4.600 29.008
2 62.933 49.500 21.345 0.153 0.123 19.783 11.843 11.900 0.478
3 47.948 30.500 36.389 0.077 0.075 3.484 10.150 10.100 0.496
4 51.133 36.800 28.031 0.166 0.179 8.146 3.411 4.010 17.549
5 64.675 60.500 6.456 0.505 0.327 35.189 2.987 4.450 48.962

 30.581 25.143 19.299
 

Features of ANFIS model (MRR) 
Fuzzification method : Grid partitioning

MF type for inputs : psigmf 
Number of input MFs : 2 2 3 3 

MF type for output : constant 
Total number of rules : 36 
Target error tolerance : 0 

Number of epochs : 12 
Training error : 5.3286 

Checking error : 15.5938 25
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Features of ANFIS model (EWR) 
Fuzzification method : Grid partitioning

MF type for inputs : psigmf 
Number of input MFs : 2 2 3 3 

MF type for output : constant 
Total number of rules : 36 
Target error tolerance : 0 

Number of epochs : 1 
Training error : 0.021934 

Checking error : 0.089948 0.0
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Features of ANFIS model (SR) 
Fuzzification method : Grid partitioning

MF type for inputs : psigmf 
Number of input MFs : 2 2 3 3 

MF type for output : constant 
Total number of rules : 36 
Target error tolerance : 0 

Number of epochs : 70 
Training error : 0.20612 

Checking error : 0.84656 0
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