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ABSTRACT  
 
 

NEURAL NETWORK MODELING OF TORSIONAL  
STRENGTH OF RC BEAMS 

 
 

DERELİ, Gökşen Melih 
M.Sc. in Civil Eng. 

Supervisor:  Assoc. Prof.Dr. Abdulkadir ÇEVİK 
January 2011,   78 pages 

 
 
 
 

 

This study presents the application of Neural Networks (NN) for modeling torsion of 

RC beams. The NN models are proposed for the computation of selected two 

different NN models.  The proposed NN models are based on a wide range 

experimental database. The accuracy of the proposed NN models is quite satisfactory 

as compared to  results of design codes. Moreover, the results of proposed NN 

formulations are compared with existing models and are found to be more accurate 

than the expression available in the literature. The generalization capability of 

proposed NN models is also verified by a set of parametric studies. 

 

 Keywords: Neural Networks, Torsional Strength, RC beams. 
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ÖZET 
 
 

BETONARME K İRİŞLERİN BURULMA DAYANIMININ YAPAY S İNİR 
AĞLARI İLE MODELLENMES İ 

 
 
 
 
 

DERELİ, Gökşen Melih 
Yüksek Lisans Tezi, İnş Müh. Bölümü 

Tez Yöneticisi: Doç. Dr. Abdulkadir ÇEVİK 
Ocak 2011, 78 sayfa 

 
 
 
 
 
Bu çalışmada betonarme kirişlerin yapay sinir ağları ile modellenmesi anlatılmıştır. 

Çalışmalar için iki farklı yapay sinir ağı modeli önerildi ve önerilen yapay sinir ağı 

modelleri geniş aralıklı deneysel veri tabanlarına dayandırıldı. Dizayn kodlarının 

sonuçları ile karşılaştırılan yapay sinir ağı modellerinin doğruluğunun oldukça 

memnuniyet verici olduğu görüldü. Ayrıca önerilen yapay sinir ağı modellerinin 

formüllerinin sonuçları var olan modellerle karşılaştırıldığında litaratürdeki benzer 

çalışmalardan daha doğru olduğu bulundu. Önerilen yapay sinir ağı modellerinin 

genellenme kapasitesi parametrik çalışmalar tarafından doğrulandı.    

 
 
 
 
Anahtar Kelimeler : Yapay Sinir Ağları, Burulma Dayanımı, Betonarme Kirişler. 
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CHAPTER 1 

 
 

INTRODUCTION 

 

 

1.1 General Introduction 

 

There are many variables affecting the torsional strength of RC beams such as cross-

sectional area of beams, dimensions of closed strirrup, spacing of stirrups, cross-

sectional are of one-leg of closed stirrup, yield strength of stirrup and longitudinal 

reinforcement and concrete compressive strength. The effect of these variables on the 

torsional strength of RC beams has been extensively studied and some empirical 

approach has been developed related to variables. For instance, Victor and 

Muthukrishnan (1973) studied the effect of variations in stirrups on the torsional 

capacity of RC beams and they proposed an empirical relationship for the 

contribution by stirrups to torsional capacity.  Rasmussen and Baker (1995) 

examined the behavior of reinforced normal concrete and high strength concrete 

beams subjected to pure torsion.  

 

The test have showed that high strength concrete increase the beam torsional 

capacity and stiffness.  McMullen and Rangan (1978) presented the results of torsion 

test on rectangular RC beams with the aspects ratio and amount reinforcement as 

main variables. The effect of high strength concrete on the torsional behavior of RC 

beams under pure tension was investigated by Koutchoukali and Belarbi (2001) and 

Fang and Shiau (2004). According to the research the torsional capacity of under – 

reinforced beams is independent of concrete strength. They also found that the 

amount of longitudinal reinforcement was more effective in controlling crack width 

than the amount of transverse reinforcement. The torsional behavior of normal 

strength concrete beams has also been reported by other researchers. 
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Test data are often used for validation, calibration or even development of models. 

Even though the torsional strength of RC beams has been carefully examined 

experimentally, estimation of torsional strength is still difficult task because of 

complex behavior of RC beam under torsional action.  

 

The general aims of this study is to investigate the usability of artificial neural 

network (ANN) models in predicting the torsional strength of RC beams and to 

evaluate the accuracy of the building codes in predicting the ultimate torsional 

strength of RC beams. To achieve these objectives, experimental data of 76 beams 

subjected to torsion were used from the existing database of  Rasmussen and Baker 

(1995), Koutchoukali and Belarbi (2001), Fang and Shiau (2004), (Hsu ,1968) .  By 

using their experimental results, the 12 different back-propagation algorithms were 

performed for the training of torsional strength of RC beams. Training error, test 

error, training time and correlation coefficient (R2) that indicates the initial 

performance evaluation of different back propagation, were also compared for each 

of the 12 ANN algorithms. In addition to these, some building code’ approaches as 

ACI-318-2005 (2005), Eurocode-2 (2002), TBC-500-2000 (2000), CSA (1994), 

BS8110 (1985) and AS3600 (2001) are also examined by comparing their predictions 

with mentioned experimental studies results. The results obtained by ANNs and 

building codes are compared with each other. 

 

1.2 Layout of the Thesis 

The layout of the thesis is described below: 

• A literature survey for torsional strength of reinforced concrete beams and 

artificial neural networks are summarized in the next chapter. 

• Chapter 3 is devoted to the torsional strength of RC beams. The basic theory 

and torsional strength formula of  RC beams presented and several Building 

Codes examples are studied. 

• Chapter 4 is presents history, element and classification of  artificial neural 

network. Back propagation algorithm, MATLAB NN Toolbox and optimal 

NN model selection are summarized. 
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• Chapter 5 deals with statistical parameters of testing and training sets and 

overall results of NN models and experimental results 2D and 3D graphics of 

NN models. 

• Finally in Chapter 6 brief conclusions are presented together with some 

suggestions for future works. 
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CHAPTER 2  

 
 

LITERATURE REVIEW 

 

 

 

 

2.1 Engineering Analysis 

 

Engineering analysis is the process of taking given "input" information defining the 

physical situation at hand and, through an appropriate set of  manipulations, 

converting that input into a different form of information, the “output,” which 

provides the answer to some questions of interest (Gallegher, 1995 ). The purpose 

of any engineering analysis is to predict the behavior of an engineering system under 

specified conditions. In other words: given the input to the system what is the 

output from the system? The engineering system under analysis could be, for 

example, a simple elastic beam, a complex nonlinear three-dimensional structure, 

mechanical equipment or a hydraulic network  

Irrespective of what the engineering system (the physical system) is, it is, first 

converted into a mathematical model and the mathematical model is then analyzed 

to predict its behavior whether the mathematical model is a simple one or a complex 

one and whether the analysis is a simple hand calculation or an elaborate 

computerized analysis, results of the analysis will always have a certain amount of 

uncertainty associated with it. Uncertainties arise because of the approximations 

and assumptions made in the conversion of the physical system to a mathematical 

model in the analysis procedure. Traditionally the uncertainty is not quantified but 

is recognized and accounted for in designs through safety factors (Ayyub, 1997). 
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2.2 RC Beams 

 

Various approaches are available in the literature for the determination of the 

ultimate torsional strength of reinforced concrete beams. The space truss theory 

(Rausch,1929) is overconservative specially for underreinforced sections (Hsu, 1968) 

whereas the skew bending model (Lessig,1953); (Yudin,1962) appears to better 

predict the observ ed results, but is cumbersome to use and sometimes can be 

overconservative. 

 

An interesting limit analysis method to find the ultimate torsional strength of 

reinforced concrete members was proposed by Wang and Hsu (1997), in which the 

work equation based upon the energy dissipation rate and the permissible failure 

mechanism at the ultimate state was used. This method gives good estimates of the 

experimental results reported by (Hsu ,1968). 

 

Taking a clue from their earlier work Phatak and Dhonde (1999), the writers have 

formulated a general equation to determine the ultimate torsional strength of 

reinforced concrete beams using a unique method of dimensional analysis. Hie 

results predicted by dimensional analysis are then compared with the experimental 

results (Hsu ,1968) and the limit analysis method  Wang and Hsu (1997). 

 

 

2.2.1 Advantages of  Using High Strength Concrete 
 

There are many advantages of high strength concrete. The following list provides 

some of them. 

• Reduction in member size, resulting in (a) increase in rentable space and (b) 

reduction in the volume of produced concrete with the accompanying saving 

in construction time. 

• Reduction in the self-weight and superimposed dead load with the 

accompanying saving in smaller foundations. 

• Reduction in formwork area and cost with the accompanying reduction in 

shoring and stripping time due to high early-age gain in strength. 
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• Construction of higher high-rise buildings with the accompanying saving in 

real estate costs in congested areas. 

• Longer spans and fewer beams of the same magnitude of loading. 

• Reduced axial shortening of compression supporting members. 

• Reduction in the number of supports and the supporting foundations due to 

the increase in spans. 

• Reduction in the thickness of floor slabs and supporting beam sections    

      (a  major  component of the weight and cost of the majority of structures). 

• Superior long-term service performance under static, dynamic, and fatigue 

loading. 

• Low creep and shrinkage. 

• Greater stiffness as a result of a higher modulus, Ec. 

• Higher resistance to freezing and thawing, chemical attack, and significantly 

improved long-term durability and crack propagation. 

 
 
2.3 Neural Networks 

 

Over the past few years, interest in artificial neural networks has grown rapidly. 

Professionals from such diverse fields as engineering, philosophy, physiology, and 

psychology recognize the potential offered by this technology and are seeking 

applications within their disciplines. Recently, the artificial neural network has 

experienced a surge in popularity and is now one of the most rapidly expanding areas 

of research across many disciplines. The main reason is in its powerful and adaptive 

abilities to treat various complex problems. One can be sure that with its further 

developments, neural networks will strongly impact many conventional disciplines 

from the standpoint of methodology. In the field of mechanics, the research and 

application of both neural network and revolutionary computing are especially active 

and successful. The back propagated multilayered network is one of the main types 

applied to engineering (Zeng,1998). 
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2.3.1 Neural Networks in Structural Mechanics 

 
The application of NNs in structural mechanics has been gaining support in the 

recent years. The NN models adopted for structural mechanics may have different 

architectures and may possess different patterns of connectivity. NNs have been used 

as computational tools in various areas of structural mechanics, amongst them, 

identification, simulation, assessment, optimization, analysis and design. The range of 

applications of Backpropagation neural networks in computational structural 

mechanics may include design, optimization, identification, mesh generation and 

analysis (Topping and Bahreininejad, 1997).   

 

One of the major tasks in NN studies is obviously the determination of the optimum 

NN architecture which is based on trial and error processes. This is the most difficult 

and time consuming part of the study. However, there is no well established study in 

the fields of structural analysis by NNs covering the automatic selection of the 

optimum NN architecture.This will save much more time and simplify NN 

applications to a great extent. 
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CHAPTER 3 

 
THEORY OF TORSIONAL STRENGTH OF 

REINFORCED CONCRATE BEAMS 
 

 

 

3.1 Torsional Strength  

3.1.1 Theories of Torsional Strength and Torsion in the Building Standards 

 

The method for analysis of torsional strength can be roughly classified into two main 

categories: the skew-bending and the space-truss analogy theory. In this section, the 

two theories for torsional strength of reinforced concrete members are reviewed 

briefly. On the other hand, the ACI Building Code provisions for torsional design 

were selected and used in this study for comparison with the results from the RBFN 

models. Therefore, the ACI equations for torsional strength of RC beams are also 

outlined in the following. 

 

In the space truss model the torsion is resisted by compression diagonals that consist 

of the concrete between cracks that spiral around the beam at a constant angle. The 

theory has been extended later by many scholars in this field (Hsu,1968), Elfegren et 

al.(1974). It is assumed in this theory that the concrete beam behaves in torsion 

similar to a thin-walled box with a constant shear flow in the wall cross-section, 

producing a constant torsional moment (Nawy,2003). The absence of core does not 

affect the strength of such members in torsion; hence the acceptability of the space 

truss analogy approach based on hollow sections. Therefore, in the process of torsion 

design of a RC beam, the beam can be considered to be equivalent tubular member 

Çevik et al.(2010). 
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In 1958, the skew-bending theory which considers in detail the internal 

deformational behavior of the series of transverse warped surfaces along the beam 

was proposed by (Lessig,1959). The model was further refined by Collins et 

al.(1965) in 1965 as well as Hsu and Zia (Hsu,19689,Zia and Hsu (2004). Especially 

Hsu made a major contribution experimentally to the development of the skew-

bending theory as it presently stands. The basic approach of the theory is that the 

failure of a rectangular section in torsion occurs by bending about an axis which is 

parallel to wider face of the section and inclined at about 45o to the longitudinal axis 

of the beam. In previous versions of ACI code (from 1971 to 1989) (ACI 

Committee), torsional strength of beams was calculated by using this theory. 

According to the codes, torsional strength Tn of beams was considered to be made up 

of two parts: one part is contributed by concrete Tc while the other part is contributed 

by web reinforcement Ts.  

 

Hsu (Hsu,1968) on hollow and solid rectangular beams, it was observed that the 

concrete core does not contribute to the ultimate torsional strength. Later he 

concluded that the concrete contribution Tc was mainly due to the shear resistance of 

the diagonal concrete struts  

Fig3.1 Thin-walled tube and space-truss analogy (Tang, 2006) 
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                          Fig3.2 Skew-bending theory analogy (Tang, 2006) 

 

ACI code (1995) was proposed a radically different design procedure based on the 

thin-walled tube, space truss analogy which is considerably simpler to understand 

and apply and is equally accurate. The torsion provisions in the ACI 318 have been 

revised using the thin walled tube analogy (ACT ,1999).  

 

According to the current torsion provision of ACI 318-2005 (2005), meaningful 

additional torsional strength Tn of RC beams can be achieved only by using both 

closed stirrups and longitudinal steel bars while the torsion moment Tc 

resisted by the concrete compression struts is assumed as zero.  

Thus the concrete contribution is ignored; there is no advantage in using higher 

concrete strengths in resisting ultimate torsion. The torsional strength  Tn  is given as 

follows; 

 

                              θ= cot
s

fAA2
T yvtO

n               (3.1) 

 

 

(b) Forces acting on skew plane at failure     
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In the Eq.1, cot θ can be assumed as  

 

                                
hyvt

y

pfA

sfA
cot ll=θ     (3.2) 

 

 

In the equation 1 and 2,  Ao is the gross area enclosed by the shear flow path that can 

be equal to 0.85 Ash, where Ash is the area enclosed by the centre of stirrups. θ angle 

of compression diagonals, fyℓ yield strength of longitudinal torsional reinforcement, 

fyv is yield strength of closed stirrups, Aℓ total area of longitudinal torsional 

reinforcement, ph perimeter of centerline of outmost closed transverse torsional 

reinforcement, s spacing of stirrups, At cross sectional area of one-leg of closed 

stirrup Çevik et al.(2010). 

 

In Australian Standard AS3600 (2001) and Canadian Standard CSA,(1994) the 

design of RC beams subjected to pure torsion is based on the space truss model and 

the Tn value is given as the same equation with ACI-318-2005 (2002).  Different 

from ACI 318-2005 (1995), CSA (1994) and AS3600 (2001), The British Standards 

BS8110 (1985) for RC structures, the torsional strength shall be calculated from 

Equation 3 as; 

 

                          
s

A)f87.0(yx8.0
T svys11

n =                             (3.3) 

 

 

where Asv is the area of the two legs of stirrups at a section and x1 and y1 are the 

center-to-center of the shorter and longer legs of stirrups given in Figure 3.1. The 

torsional strength Tn is described as Equation 4 in Turkish Building Code TBC-500-

2000. 

  

                                )yx(2

fAA2
T

11

yve
n +

= l

        (3.4) 
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In the Equation 4, Ae is area enclosed by lines connecting the centroids of the 

reinforcing bars at the corner of the section as seen in Figure 3.3.  

 

 

Fig3. 3 The cross section of a rectangular reinforced concrete beam  

                                                           Çevik et al.(2010). 

             

According to the European Standard Eurocode-2 (2002), torsional strength shall be 

calculated with three ways and the minimum result is chosen. 

 

                       ( ) θ= cotA2s/AfT kswysn                                      (3.5) 

( ) θ= tanA2u/AfT kksyn                                          (3.6) 

θθ−= cossintAf)250/f1(2.1T efkccn                      (3.7) 

 

Where Ak is the area enclosed by the centre-lines of the effective wall thickness. The 

effective wall thickness, tef can be calculated as A/u where A is the total area and u is 

the perimeter of the cross-section, fc is the compressive strength of concrete Çevik et 

al.(2010). 

 

3.1.2 Pure Torsion in Concrete Elements 

An introduction to the subject of torsional stress distribution has to start with the 

basic elastic behavior of simple sections, such as circular or rectangular sections. 

Most concrete beams subjected to twist are components of rectangles. They are 

usually flanged sections such as T beams and L beams.  



 

 

 

13

Although circular sections are rarely a consideration in normal concrete construction, 

a brief discussion of torsion in circular sections serves as a good introduction to the 

torsional behavior of other types of sections. Shear stress is equal to shear strain 

times the shear modulus at the elastic level in circular sections. As in the case of 

flexure, the stress is proportional to its distance from the neutral axis and is 

maximum at the extreme fibers.  When deformation takes place in the circular shall, 

the axis of the circular cylinder is assumed to remain straight. All radii in a cross-

section also remain straight  and rotate through the same angle about the axis. As the 

circular element starts to behave plastically, the stress in the plastic outer ring 

becomes constant while the stress in the inner core remains elastic, as shown in Fig 

3.4. (Nawy,2005). 

 

                              

          Fig3.4 Torsional stress distribution through circular section (Nawy,2005). 

 

 

                           

 

 

 

 

 

Fig3. 5 Pure torsion stress distribution in a rectangular section (Nawy,2005). 
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In rectangular sections, the torsional problem is considerably more complicated. The 

originally plane cross sections undergo warping due to the applied torsional moment, 

this moment produces axial as well as circumferential shear stresses with zero values 

at the corners of the section and the centroid of the rectangle and maximum values on 

the periphery at the middle of the sides, as seen in Figure3.5. The maximum torsional 

shearing stress would occur at midpoints A and B of the larger dimension of the 

cross-section. These complications plus the fact that reinforced concrete sections are 

neither homogeneous nor isotropic make it difficult to develop exact mathematical 

formulations based on physical models (Nawy,2005). 

For over sixty years, the torsional analysis of concrete members has been based on 

either (1) the classical theory of elasticity developed through mathematical 

formulations coupled with membrane analogy verifications (St. Venant's) or (2) the 

theory of plasticity represented by the sand-heap analogy (Nadai's). Both theories 

were applied essentially to the state of pure torsion. But experiments revealed that 

the elastic theory is not entirely satisfactory for the accurate prediction of the state of 

stress in concrete in pure torsion. The behavior of concrete was found to be better   

represented   by   the plastic approach. Consequently, almost all developments in 

torsion as applied to concrete and reinforced concrete have been in the latter 

direction (Nawy,2005). 

 

3.1.3 Torsion in Elastic Materials 

 

St. Venant presented in 1853 his solution to the elastic torsional problem with 

warping due to pure torsion that develops in noncircular sections. Prandil in 1903 

demonstrated the physical significance of the mathematical formulations by his 

membrane analogy model. The model establishes particular relationships between 

the deflected surface of the loaded membrane and the distribution of torsional 

stresses in a bar subjected to twisting moments. Figure 3.6 shows the membrane 

analogy behavior for rectangular as well as L-shaped forms. For small deformations, 

it can be proved that the differential equation of the deflected membrane surface has 

the same form as the equation that determines the stress distribution over the cross-

section of the bar subjected to twisting moments. Similarly, it can be demonstrated; 
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(1) the tangent to a contour line at any point of a deflected membrane gives the 

direction of the shearing stress at the corresponding cross-section of the actual 

member subjected to twist; (2) the maximum slope of the membrane at any point is 

proportional to the magnitude of shear stress  at the corresponding point in the actual 

member: (3) the twisting moment to which the actual member is subjected is 

proportional to twice the volume under the deflected membrane. It can be seen from 

Fig3.3. that the torsional shearing stress is inversely proportional to the distance 

between the contour lines. The closer the lines are, the higher the stress, leading to 

the previously stated conclusion that the maximum torsional shearing stress occurs: it 

the middle of (he longer side of the rectangle. From the membrane analogy, this 

maximum stress has to be proportional to the steepest slope of the tangents at points 

A and B (Zhang,2002). 

 

            (a)                                                     

 

                  

          (c) 

 

Fig3. 6 Membrane analogy in elastic pure torsion: (a) membrane under pressure; 

 (b) contours in a real beam or in a membrane; (c) L-section; (d) rectangular section 

(Nawy,2005). 

(d) 

(b) 
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If δ = maximum displacement of the membrane from the tangent at point A, then 

from  basic principles of mechanics and St. Venant's theory, (Nawy,2005). 

 

 

where G is the shear modulus and θ  is the angle of twist. But Vt(max) is proportional 

to the slope of tangent;  hence (Nawy,2005). 

 

                                                 (max) 1tV k bGθ=                    (3.9) 

 

where the k's are constants. The corresponding torsional moment Tl  is proportional 

to twice the volume under the membrane (Nawy,2005), or 

 

                                             2

2
2

3
T bh k bhα δ δ  = 

 
l           (3.10)     

or; 

                                              
3

3T k b hGθ=
l                        (3.11) 

 

3.1.4 Torsion in Plastic Materials 

 

 As indicated earlier, the plastic sand-heap analogy provides a better representation of 

the behavior of brittle elements such as concrete beams subjected to pure torsion. 

The torsional moment is also proportional to twice the volume under the heap, and 

the maxi-mum torsional shearing stress is proportional to the slope of the sand heap  

Figure3.7 is a two- and three-dimensional illustration of the sand heap.  

The torsional moment Tp in Figure3.7 d is proportional to twice the volume of the 

rectangular heap shown in parts (b) and (c). It can also be recognized that the slope 

of the sand-heap sides as a measure of the torsional shearing stress is constant in the 

sand-heap analogy approach, whereas it is continuously variable in the membrane 

analogy approach. This characteristic of the sand heap considerably simplifies the 

solutions (Zhang,2002). 

2b Gδ θ= (3.8) 
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3.1.5  Sand-heap Analogy Applied to L Beams 

 

Most concrete elements subjected to torsion are flanged sections, most commonly L 

beams comprising the external wall beams of a structural floor. The L beam in 

Figure3.8 is chosen in applying the plastic sand-heap approach lo evaluate its 

torsional moment capacity and shear stresses to which it is subjucted (Nawy,2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig3.7 Sand-heap analogy in plastic pure torsion: (a) sand-heap L-section (b) sand-

heap rectangular section; (c) plan of rectangular section; (d) torsional shear stress 

(Nawy,2005). 

 

 

(a) 
(b) 

(c) (d) 
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The sand heap is broken into three volumes: 

'
1V =  pyramid representing a square cross-sectional shape = 

2
1 / 3wy b  

2V = tent portion of the web representing a rectangular cross-sectional shape = 

1 ( ) / 2w wy b h b−  

3V = tent representing the flange of the beam, transferring part PDI to NQM = 

2 ( ) / 2f wy h b b−  

 

Torsional moment is proportional to twice the volume of the sand heaps; hence 

 

 

 

                             
2

21 1
( ) / 2( )

2
3 2 2

f ww w w
p

y h b by b y b h b
T

− −= + + 
 

       (3.12) 

 

 

Also, torsional shear tress is proportional to the slope of the sand heaps; hence 

                                                            1 2
t wv b

y =                                   (3.12a) 

                                                            2 2
t fv h

y =                                  (3.12b) 

 

Substituting 1y  and 2y  from Eqs. 12a and 12b into Eq.12 gives us 
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Fig3.8 Sand-heap analogy of flanged section: (a)sand heap on L-shaped cross 

section;  (b)composite pyramid from web 1V ; (c) tent segment from web 2V ; (d) 

transformed tent of beam flange 3V  (Nawy,2005).  

 

                                  

                              (max) 2 2( / 6)(3 ) ( / 2)( )
p

t
w w f w

T
V

b h b h b b
=

− + −                          (3.13)  

 

 

If both the numerator and denominator of Eqn.13 are divided by 
2( )wb h  and the terms 

rearranged, we have ; 
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2

(max)

/ ( )

1 1
(3 / ) ( / )2( / / )

6 2

p w
t

w f w w

T h b h
V

b h h b b h b h
=
   − + −      

        (3.14a) 

 

 

 If one assumes that 1C  is the denominator in Eqn.14a and 
2

1( )E wJ C b h=  Eqn.14a 

becomes     

 

                                              (max)
p

t
E

T h
V

J
=                                     (3.14b)    

 

where EJ  is the equivalent polar moment of inertia and a function of the shape of the 

beam cross section. Note that Eqn.14b is similar in format to from the membrane 

analogy except for the different values of the denominator J  and  EJ . Eqn 14a can 

be readily applied to rectangular section by setting h=0 (Nawy,2005).    

 

It must also be recognized that concrete is not a perfectly plastic material; hence the 

actual torsional strength of the plain concrete section has a value lying between the 

membrane analogy and the sand-hcap analogy values. Eqn 14b can be rewritten 

designating p cT T=  as the nominal torsional resistance of the plain concrete and 

(max)t tcV V=  using ACI terminology, so that 

                                                
2

2c tcT k b hV=                        (3.15a)     

 

                                                
2

2c tcT k x yV=                        (3.15b)    

 

where x is the smaller dimension of the rectangular section (Nawy,2005).  

 

 

 

Extensive work by Hsu. confirmed by others, has established that 2k , can be taken as 

1

3
. This value originated from research in the skew-bending theory of plain concrete. 



 

 

 

21

It was also established that '6 cf  can be considered as a limiting value of the pure 

torsional strength of a member without torsional reinforcement (Nawy,2005). 

 

Using a reduction factor of 2.5 for the first cracking torsional load '2.4tc cV f= and 

using 2

1

3
k =  in Eqn.15 results in 

                                                  ' 20.8c cT f x y=                  (3.16a)       

 

 

where x is the shorter side of the rectangular section. The high reduction factor of 2.5 

is used to offset any effect of shear and bending moments that might be present. 

 

If the cross section is a T or L section, the area can be broken into component 

rectangles as in Figure3.9, (Nawy,2005) such that 

                                                         ' 20.8c cT f x y= ∑             (3.16b)       

 

3.1.6  Skew-Bending Theory 

 

This theory considers in detail the internal deformational behavior of the series of 

transverse warped surfaces along the beam. Initially proposed by Lessig. it had 

subsequent contributions from Collins, Hsu, Zia. Gesund. Mattock, and Elfgren 

among the several researchers in this field. T. T. C. Hsu made a major contribution 

experimentally to the development   of   the   skew-bending   theory   as   it   

presently stands.   Hsu   details   the development of the theory of torsion as applied 

to concrete structures and how the skew-bending theory formed the basis of the 1989 

ACI Code provisions on torsion. The complexity of the torsional problem can thus 

permit in this textbook only the brief discussion that follows Collins and Mitchell, 

(1980). 
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Fig3.9 Component rectangles for Tc calculation (Nawy,2005). 

 

The failure surface of the normal beam cross section subjected to bending moment 

uM  remains plane after bending, as in Figure3.10a. If a twisting moment uT  is also 

applied exceeding the capacity of the section, cracks develop on three sides of the 

beam cross-section and compressive stresses on portions of the fourth side along the 

beam. As torsional loading proceeds to the limit state at failure, a skewed failure 

surface results due to the combined torsional moment uT  and bending moment uM . 

The neutral axis of the skewed surface and the shaded area in Figure1.10b denoting 

the compression zone would no longer be straight but subtend a varying angle θ  

with the original plane cross-sections (Nawy,2005). 

 

Prior to cracking, neither the longitudinal bars nor the closed stirrups make any 

appreciable contribution to the torsional stiffness of the section. At the post-cracking 

stage of loading, the stiffness of the section is reduced, but its torsional resistance is 

considerably increased, depending on the amount and distribution of both the 

longitudinal bars and the transverse closed ties. It has to be emphasized that little 

additional torsional strength can be achieved beyond the capacity of the plain 

concrete in the beam unless both longitudinal torsion bars and transverse ties are 

used. 
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The skew-bending theory idealizes the compression zone by considering it to be of 

uniform depth. It assumes the cracks on the remaining three faces of the cross section 

to be uniformly spread, with the steel ties (stirrups) at those faces carrying the tensile 

forces all the cracks and the longitudinal bars resisting shear through dowel action 

with the concrete  Figure 3.11a shows the forces acting on the skewlv bent plane 

(Nawy,2005).  

 

 The polygon in Figure 1.11b gives the shear resistance cF  of the concrete, the force  

tT  of the active longitudinal steel bars in the compression zone, and the normal 

compressive block force uC . 

  

The torsional moment cT  of the resisting shearing force cF  generated by the shaded 

compressive block area in Figure 3.11a is thus 

                                   
cos 45

c
c o

F
T =  x its arm about forces vF  in  Fig3.11a 

 

 

 

 

 

 

 

 

 

 

                  

 

 

Fig3.10  Skew bending due to torsion: (a) bending before twist; (b) bending and 

torsion (Nawy,2005). 

 

 

 

(a) (b) 
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Fig 3.11. Forces on the skewly bent planes: (a) all forces acting on skew plane 

                at failure; (b) vector forces on compression zone Nilson and Winter,(1991). 

 

                                                      2 (0.8 )c cT F x=              (3.17a)       

 

 

where x is the shorter side of the beam. Extensive tests to evaluate cF  in terms of 

internal stress in concrete '
1 ck f  and the geometrical torsional constants of the 

section 
2

2k x y led to the expression (Nawy,2005). 

                                                     

                                                     
2 '2.4

c cT x y f
x

=             (3.17b)       

 

 

 

 

Compression zone 
in skew bending 

 

(a) 

xF  and yF = forces on longitudinal bars 

vF  = forces on vertical stirrups spaced at 
distances  s. 

 C = resultant force on compression 
        zone at failure 

(b) 

 



 

 

 

25

3.1.7 Torsion In Reinforced Concrete Elements  

 

Torsion rarely occurs in concrete structures without being accompanied by bending 

and shear. The foregoing should give a sufficient background on the contribution of 

the plain concrete in the section toward resisting part of the combined stresses 

resulting from torsional, axial, shear, or flexurat forces. The capacity of the plain 

concrete to resist torsion when in combination with other loads could, in many cases, 

be lower than when it resists the same laclored external twisting moments alone. 

Consequently, torsional reinforcement has to be provided to resist the excess torque 

(Nawy,2005). 

 

Inclusion of longitudinal and transverse reinforcement to resist part of the torsional 

moments introduces a new element in the set oí forces and moments in the section. 

 

nT = required total nominal torsional resistance of the section including the 

reinforcement 

cT = nominal torsional resistance of the plain concrete 

xT = torsional resistance of the reinforcement  

 

Then ; 

                                                       

                                                          n c xT T T= +                  (3.18)        

 

Tc is assumed equal to zero for desiga simplification, and all the torsion is assumed 

to be borne by the longitudinal steel bars and the closed transverse stirrups. To study 

the contribution of the longitudinal steel bars and the closed stirrups, one has to 

analyze the system of forces acting on the warped cross-sections of the structural 

element at the limit state of failure. A modified space truss analogy is presented 

comparable to the plane truss analogy used for the design of shear stirrups. In this 

theory, both the longitudinal reinforcement and the transverse stirrups (ties) are 

utilized as components of the space truss (Nawy,2000). 
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3.1.8  Space Truss Analogy Theory 

 

This theory was originally developed by Rausch and extended later by Lampert and 

Collins, with additional work by Hsu. Thurliman. Elfgren, and others. Further 

refinement was introduced by Collins and Mitchell (Hsu,1983)   as a compression 

field theory. 

 

( Hsu,1983 ) proposed combining the equilibrium, compatibility, and the softened 

constitutive laws of concrete in a unified theory that can predict with reasonable 

accuracy the shear and torsional behavior of beams (the softened truss model). The 

shear flow concept is utilized in deriving the relevant expressions for shear 

equilibrium. 

 

The space truss analogy is an extension of the model used in the design of the shear 

resisting stirrups, in which the diagonal tension cracks, once they start to develop, arc 

resisted by the stirrups. Because of the nonplanar shape of the cross-sections due to 

the twisting moment, a space truss composed of the stirrups is used as the diagonal 

tension members, and the idealized concrete strips at a variable angle between the 

cracks are used as the compression members, as shown in Figure3.12. (Nawy,2005). 

 

It is assumed in this theory that the concrete beam behaves in torsion similar to a 

thin-walled box with a constant shear flow in the wall cross-section, producing a 

constant torsional moment. The use of hollow-walled sections rather than solid 

sections proved to give essentially the same ultimate torsional moment, provided that 

the walls are not too thin. Such a conclusion is borne out by tests, which have shown 

that the torsional strength of the solid sections is composed of the resistance of the 

closed stirrup cage, consisting of the longitudinal bars and transverse stirrups, and 

the idealized concrete inclined compression struts in the plane of the cage wall. The 

compression struts are the inclined concrete strips between the cracks in Figure 3.12. 

(Hassoun,1985). 
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The CFB-FIP code is based on the space truss model. In this code, the effective wall 

thickness of the hollow beam is taken as 
1

6 aD  where aD   is the diameter of the circle 

inscribed in the rectangle connecting the corner longitudinal bars; that is 0 aD x=  in 

Figure3.12. (Nawy,2005). 

 

 A rational method to derive the effective wall thickness was given by Hsu 

(Nawy,2000). This nonlinear analysis takes into account the warping compatibility 

condition ofthe wall. In summary, the absence of the core does not affect the strength 

of such members in torsion: hence the acceptability of the space truss analogy 

approach based on hollow box. 

 

 

 

 

 

 

 

 

 

 

  

                       

       

         Fig3.12  Forces on hollow box concrete surface by truss analogy (Nawy,2005). 

 

3.1.9  Equilibrium in Element Shear 

 

A unit square membrane element of thickness h is subjected to shear flow q due to 

pure shear as in Figure 3.13 (Nawy,2000). Reinforcement in both the longitudinal (E-

W) direction l  and transverse (N-S) direction t is subjected to a unit stres / tf s
l  and 

/vf s  respectively  such that the shear flow q can be defined by the equilibrium 

equations  

F =tensile force in each longitudinal 
bar                                                                                                                 

xC =inclined compressive force on 
horizontal side 

yC =inclined compressive force on 
vertical side 

tτ  =shear flow force per unit length of 
wall = q 
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                                                        tanq F θ=
l                     (3.19a) 

where unit / tF A f s=
l l l   and ; 

                                                        cottq F θ=                     (3.19b)  

where unit /tF A f s=
l l , A  is the cross-sectional area of the reinforcement,s

l  and 

s  are the spacings in the  t  and  l directions, respectively. 

 

 From the geometry of the triangles in Figure 3.13, the shear flow can also be defined 

as; 

                                                  ( )sin cosDq f t θ θ=               (3.19c)      

 

 If the reinforcement in both directions is assumed to have yielded. Eqn. 19a  and b 

give 

                                                   tan ty

y

F

F
θ =

l

                         (3.20a)  

and                                            y y tyq F F=
l                         (3.20b) 

 

where the subscript y denotes the yielding of reinforcement. 

 

 

 

 

 

 

 

 

 

 a) Shear element (thickness h)                                 b) Truss model 

                          

                    Fig3.13 Equilibrium forces in element shear (Nawy,2000). 

Direction D 
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3.1.10  Equilibrium in Element Torsion 

 

The case of a hollow tube of any shape and variable thickness is considered Figure 

3.14.It is subjected to pure torsion. St. Venant's theory stipulates that the cross-

sectional shape remains unchanged in elastic small deformations, and the warping 

deformation perpendicular to the cross-section would be the same along the 

member's axis. Hence it can be assumed that only shear stresses develop in the tube 

wall in the form of shear flow q in Figure3.14a and that the in-plane normal stresses 

in the wall vanish (Nawy,2005). If an infinitesimal wall element ABCD is isolated as 

in Figure3.14b  the shear flow in the l  direction has to be equal to the shear flow in 

the t  direction or 

 

                                                              1 1 2 2t tτ τ=                (3.21) 

 

 

 

 

 

 

 

Fig3.14 Hollow tube equilibrium torsion forces: (a) section of tube subjected to 

torsion T; (b) unit shear element from tube wall of varying thickness h, Note: l   and 

t  denote the longitudinal and transverse directions, respectively (Nawy,2005). 

 

 

 

(a) 
(b) 
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3.1.11 Shear-Torsion-Bending Interaction 

 

Consider the rectangular boxes in Figures 3.13. The shear flow q will not be the same 

on the four walls of the box when subjected to combined shear and torsion.Failure 

can precipitate in two distinct modes: 

(a) Yielding of the longitudinal bottom tension steel and the transverse stirrups 

(b) Yielding of the longitudinal top compression steel and the transverse stirrups 

 

(a) Bottom tension steel yielding. If the failure mode is caused by yielding of the 

longitudinal bottom stringer (tensile steel) and the transverse stirrups due to 

combined shear and torsion, the following expression can be derived from 

equilibrium (Nawy,2000). 

 

                                
2 2

0 0 0

0 0 0

1
2 2B B yt B yt

y y xM V s T s

F y y F Af A F Af

    ++ + =   
   

         (3.22)  

If 0M , 0V  and 0T  are the moments and forces acting alone they can be defined as 

follows: 

 

                                0 0BM F y=                             (3.23a)  

 

                                 0 0
0

2 T vF Af
V y

y s
=                  (3.23b)        for a two web box. 

 

 

                                 0 0
0

2
2 T vF Af

T A
p s

=                (3.23c)   

 

where  0 0 02( )p y x= +  

                                             T

B

F
R

F
=                     (3.23d)  
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Fig3.15 Shear-torsion interaction diagram (Nawy,2005). 

 

A nondimensional interaction surface relationship can be obtained by introducing 

Eqn3.23 into Eqn3.22 such that 

 

                                                    
2 2

0 0 0

1
M V T

R R
M V T

     
+ + =     

     
        (3.24a)   

 

(b) Top compression steel yielding. If the failure mode is caused by yielding of the 

longitudinal top chord (compression steel) and the transverse stirrups, Eqn. 24a  

becomes 

                                                 
2 2

0 0 0

1
1

M V T

M R V T

     
− + + =     
     

            (3.24b)  

 

From both Eqn 24a and b the interaction of V and T is circular for a constant bending 

moment M for both failure surfaces. The intersection of the two failure surfaces for 

these two failure modes forms a peak interaction curve between V and T such that 

Eqn 24a and b give 

                                                   

                                             
2 2

0 0

1

2

V T R

V T R

    ++ =   
   

                           (3.25a)  
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Equation 25a for R = 0.25,0.5 and 1.0 on the peak planes gives the circular plots 

shown in Figure3.15.A third mode of failure is caused by yielding in the top bar, in 

the bottom bar, and in the transverse reinforcement, all on the side where shear flows 

due to shear and torsion are additive, that is the left wall (Nawy,2000). A modified 

form of Eqn 25a results as follows: 

                                                 
2 2

0 0 0 0

1
2

2

V T VT R

V T V T R

      ++ + =     
     

        (3.25b) 

 

3.2 Aci Design Of Reinforced Concrete Beams Subjected To Combined  Torsion 

Bending And Shear 

3.2.1 Torsional Behavior of Structures 

 

The torsional moment acting on a particular structural component such as a spandrel 

beam can be calculated using normal structural analysis procedures. Design of the 

particular component needs to be based on the limit state at failure. Therefore, the 

nonlinear behavior of a structural system after torsional cracking must be identified 

in one of the following two conditions: (1) no redistribution of torsional stresses to 

other members after cracking and (2) redistribution of torsional stresses and moments 

after cracking to effect deformation compatibility between intersecting members 

(Nawy,2005). 

 

Stress resultants due to torsion in statically determinate beams can be evaluated from 

equilibrium conditions alone. Such conditions require a design for the full-factored 

external torsional moment, because no redistribution of torsional stresses is 

possible.This state is often termed equilibrium torsion. An edge beam supporting a 

cantilever canopy (Nawy,2005). 

 

The edge beam has to be designed to resist the total external factored twisting moment 

due to the cantilever slab; otherwise, the structure will collapse. Failure would be 

caused by the beam not satisfying conditions of equilibrium of forces and moments 

resulting from the large external torque (Nawy,2005). 
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In statically indeterminate systems, stiffness assumptions, compatibility of strains at 

the joints, and redistribution of stresses may affect the stress resultants, leading to a 

reduction in the resulting torsional shearing stresses. A reduction is permitted in the 

value of the factored moment used in the design of the member if part of this moment 

can be redistributed to the intersecting members. The ACI Code permits a maximum 

factored torsional moment at the critical section d from the lace of the supports for 

reinforced concrete members as follows(Nawy,2005) : 

 

                                                          
2

'4 cp
a c

cp

A
T f

p
φ=                        (3.26)   

where 

cpA  = area enclosed by outside perimeter of concrete cross section 

       = 0 0x y  

 cpp =outside perimeter of concreic cross scclion cpA  in. 

 = 0 02( )x y+  

 

3.2.2 Torsional Moment Strength 

 

The size of a cross-scclion is chosen on (he basis of reducing unsightly cracking and 

preventing the crushing of the surface concrete caused by the inclined compressive 

stresses due to shear and torsion defined by the left-hand side of the expressions in 

Eqn. 27a and b. The geometrical dimensions for torsional moment strength in both 

reinforced and prestressed members are limited by the following expressions 

(Nawy,2005). 

 

(a) Solid sections 

                                
2 2

'
2
0

8
1.7

u u h c
c

w h w

V T p V
f

b d A b d
φ

     
+ ≤ +     

     
                  (3.27a)  

 

(b) Hollow section   

                                   '
2
0

8
1.7

u u h c
c

w h w

V T p V
f

b d A b d
φ

     
+ ≤ +     

     
                     (3.27b)  
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CHAPTER 4 

 
NEURAL NETWORKS 

 
4.1 Neural Networks Systems 

4.1.1 Neural Networks 

 
NN is a computational tool, which attempts to simulate the architecture and internal 

operational features of the human brain and nervous system. NN architectures are 

formed by three or more layers, which includes an input layer, an output layer and a 

number of hidden layers in which neurons are connected to each other with 

modifiable weighted interconnections Pala et al.(2008). Each neuron has an 

associated transfer function, which describes how the weighted sum of its inputs is 

converted to the results into an output value. Each hidden or output neuron receives a 

number of weighted input signals from each of the units of the preceding layer and 

generates only one output value. This NN architecture is commonly referred to as a 

fully interconnected feedforward multi-layer perceptron. In addition, there is also a 

bias, which is only connected to neurons in the hidden and output layers with 

modifiable weighted connections. The number of neurons in each layer may vary 

depending on the problem (Moiler,1993). 

 

Artificial Intelligence (AI) comprises methods, tools, and systems for solving 

problems that normally require the intelligence of humans. The term intelligence is 

always defined as the ability to learn effectively, to react adaptively, to make proper 

decisions, to communicate in language or images in a sophisticated way, and to 

understand. The main objectives of AI are to develop methods and systems for 

solving problems, usually solved by the intellectual activity of humans, for example, 

image recognition, language and speech processing, planning, and prediction, thus 

enhancing computer information systems; and to develop models which simulate 

living organisms and the human brain in particular, thus improving our 

understanding of how the human brain works (Kasabov,1996). 
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The main AI directions of development are to develop methods and systems for 

solving AI problems without following the way humans do so, but providing similar 

results, for example, expert systems; and to develop methods and systems for solving 

AI problems by modeling the human way of thinking or the way the brain works 

physically, for example, artificial neural networks (Kasabov,1996). 

 

Artificial Neural Networks (ANN) can be defined as computer models that mimic the 

biological nervous system in general.  There are many definitions of NNs in 

literature which can be summarized as follows: 

 

A Neural Network is a ‘machine’ that is designed to  model the way in which the 

brain performs a particular task or function of interest, the network is usually 

implemented using electronic components or simulated in software on  a digital 

computer (Hecht-Neilsen,1990). 

 

(Haykin,1994) defines a neural network as a massively parallel distributed processor 

that has a natural propensity for storing experiential knowledge and making it 

available for use. It resembles the brain in two respects:  

 

• Knowledge is acquired by the network through a learning process.  

• Interneuron connection strengths known as synaptic weights are 

used to store the knowledge.  

On the other hand according to (Nigrin,1993); a neural network is a circuit composed 

of a very large number of simple processing elements that are neural based. Each 

element operates only on local information. Furthermore each element operates 

asynchronously; thus there is no overall system clock. Another widely accepted 

definition of NNs is given by to (Zurada,1992) as follows: Artificial neural systems, 

or neural networks, are physical cellular systems which can acquire, store, and utilize 

experiential knowledge. 
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4.1.2 History of Neural Networks 

 

The first step toward artificial neural networks came in 1943 when Warren 

McCulloch, a neurophysiologist, and a young mathematician, Walter Pitts, wrote a 

paper on how neurons might work. They modeled a simple neural network with 

electrical circuits. In 1949, Donald Hebb proposed `Hebb rule' which states that nets 

can learn from their experience in a training environment. `Hebb rule' has always 

played a striking role in the field of ANN studies (Hebb,1949).  Throughout 1950s 

scientists implemented models called perceptrons based on the work of McCulloch 

and Pits. In 1957, Rosenblatt invented the Perceptron which has been a milestone in 

ANN studies. Widrow and Hoff developed the models called ADALINE and 

MADALINE in 1959 which was the first neural network to be applied to a real world 

problem. In 1968, Marvin Minsky published some intrinsic limitations of neural 

Networks which slowed down the implementations of ANN drastically Minsky and 

Pappert, (1969). The studies in the field ANN almost stopped for more than a decade 

until Hopfield invented The Hopfield network in 1982 whose dynamics were 

guaranteed to converge. After this novel invention, ANN studies have raised again. 

Backpropagation was invented in 1986 by Rumelhart, Hinton and Williams which 

opened a new era in ANN applications Rumelhart et al.(1986). 

 

4.1.3 Elements of Neural Networks 

 

The basic element of a neural network is the artificial neuron which is actually the 

mathematical models of biological neuron model shown in Figure 4.1. A biological 

neuron is made up of four main parts: dendrites, synapses, axon and the cell body. 

The dendrites receive signals from other neurons. The axon of a single neuron serves 

to form synaptic connections with other neurons. The cell body of a neuron sums the 

incoming signals from dendrites (Çevik,2006).  

 

If input signals are sufficient to stimulate the neuron to its threshold level, the neuron 

sends an impulse to its axon. On the other hand, if the inputs do not reach the 

required level, no impulse will occur. The analogy between a biological neuron 

model and an artificial neuron model is shown in Figure 4.1 and Figure 4.2. 

(Çevik,2006). 
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Fig4.1 A biological neuron (Wasserman,1989). 

 

 

                      

Fig 4.2 Artificial neuron model (Çevik,2006). 

 

The artificial neuron consists of three main components namely as weights, bias, and 

an activation function Fig 4.3. Each neuron receives inputs nxxx ,...,, 21 , attached 

with a weight wi which shows the connection strength for that input for each 

connection. Each input is then multiplied by the corresponding weight of the neuron 

connection. A bias ib  can be defined as a type of connection weight with a constant 

nonzero value added to the summation of inputs Fig 4.3 and corresponding weights 

u, given in Eqn4.1 (Çevik,2006). 
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The summation iu  is transformed using a scalar-to-scalar function called an 

"activation or transfer function", )( iuF  yielding a value called the unit's "activation", 

given in Eqn4.2.  

                                              )( ii ufY =            (4.2) 

 

 

 

 

 

                                  Fig4.3 Basic elements of an artificial neuron (Çevik,2006). 

 

 

 

 

 

Activation functions serve to introduce nonlinearity into neural networks which 

makes NNs so powerful. The activation function is also referred to as a squashing 

function. There are a number of different types of activation function and some 

common examples are provided below (Çevik,2006): 
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Fig4.4 Threshold activation function. 

 

Fig4.5 Piecewise-linear function 

 

 

Fig4.6 Sigmoid (logistic) function. 

 

 

Fig4.7 Hyperbolic tangent function. 

 

        

Guzelbey et al.(2006) have proposed an alternative approach for the prediction of 

web crippling strength of cold-formed steel sheeting using NNs. They have presented 

the proposed NN model in a closed form solution with a very high correlation (R = 

0.995) compared with experimental results from the literature. The well trained NN 

model has also been used to conduct parametric studies. 

 

4.1.4 Classification of Neural Networks 

 

Neural Network models can be classified in a number of ways. Using the network 

architecture as basis, there are three major types of neural networks:  
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Recurrent networks - the units are usually laid out in a two-dimensional array and are 

regularly connected. Typically, each unit sends its output to every other unit of the 

network and receives input from these same units. Recurrent networks are also called 

feedback networks. Such networks are "clamped" to some initial configuration by 

setting the activation values of each of the units. The network then goes through a 

stabilization process where the network units change their activation values and 

slowly evolve and converge toward a final configuration of "low energy". The final 

configuration of the network after stabilization constitutes the output or response of 

the network. This is the architecture of the Hopfield Model  (www.comp.nus.edu.sg)  

 

Feed forward networks – these networks distinguish between three types of units: 

input units, hidden units, and output units. The activity of this type of network 

propagates forward from one layer to the next, starting from the input layer up to the 

output layer. Sometimes called multilayered networks, feed forward networks are 

very popular because this is the inherent architecture of the Backpropagation Model. 

(Çevik,2006). 

 

Competitive networks– these networks are characterized by lateral inhibitory 

connections between units within a layer such that the competition process between 

units causes the initially most active unit to be the only unit to remain active, while 

all the other units in the cluster will slowly be deactivated. This is referred to as a 

"winner-takes-all" mechanism. Self-Organizing Maps, Adaptive Resonance Theory, 

and Rumelhart & Zipser's Competitive Learning Model are the best examples for 

these types of networks. (www.comp.nus.edu.sg)  

The network architecture can be further subdivided into whether the network 

structure is fixed or not. There are two broad categories (Çevik,2006) :  

• Static architecture – most of the seminal work on neural networks were based 

on static network structures, whose interconnectivity patterns are fixed a 

priori , although the connection weights themselves are still subject to 

training. Perceptrons, multi-layered perceptrons, self-organizing maps, and 

Hopfield networks all have static architecture.  
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• Dynamic architecture – some neural networks do not constrain the network to 

a fixed structure but instead allow nodes and connections to be added and 

removed as needed during the learning process as adaptivity. Some examples 

are Grossberg’s Adaptive Resonance Theory and Fritzke’s “Neural Gas”. 

Some adding-pruning approaches to Multi-Layered Perceptron networks have 

also been widely studied.  

 

Yet another basis for classifying neural network models is according to the mode of 

learning adapted. In this case, there are two major categories.(www.comp.nus.edu.sg)  

 

• Supervised learning – these are generally the learn-by-example methods 

where user-supplied information are provided with each training pattern. 

These guide the neural network in adjusting its parameters. The perceptrons 

and backpropagation networks are classic examples of supervised learning 

models.  

• Unsupervised learning – some neural network models do not need category 

information to accompany each training pattern, although such information 

would still be required in the interpretation and labeling of the resultant 

networks. Classical examples of these are Kohonen’s self-organizing maps 

and Grossberg’s Adaptive Resonance Theory.  

 

It also makes sense to classify neural network models on the basis of their over-all 

task(Çevik,2006):  

• Pattern association – the neural network serves as an associative memory by 

retrieving an associated output pattern given some input pattern. The 

association can be auto-associative or hetero-associative, depending on 

whether or not the input and output patterns belong to the same set of 

patterns.  
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• Classification – the network seeks to divide the set of training patterns into a 

pre-specified number of categories. Binary-valued output values are generally 

used for classification, although continuous-valued outputs (coupled with a 

labeling procedure) can do classification just as well.  

• Function approximation – the network is supposed to compute some 

mathematical function. The network's output represents the approximated 

value of the function given the input pattern as parameters. In certain areas, 

regression may be the more natural term.  

 

There are other bases for classifying neural network models, but these are less 

fundamental than those mentioned earlier. Some of these include the type of input 

patterns that can be admitted (binary, discrete valued, real values), or the type of 

output values that are produced. ( www.comp.nus.edu.sg)  

 

4.1.5 Back propagation Algorithm   

 

Back propagation algorithm is one of the most widely used supervised training 

methods for training multilayer neural networks due to its simplicity and 

applicability. It is based on the generalized delta rule and was popularized by 

Rumelhart and coworkers Rumelhart et al.(1986). As it is a supervised learning 

algorithm, there is a pair of inputs and corresponding output. The algorithm is simply 

based on a weight correction procedure shown schematically in Fig4.8 .It consists of 

two passes: a forward pass and a backward pass. In the forward pass, first, the 

weights of the network are randomly initialized and an output set is obtained for a 

given input set where weights are kept as fixed.  The  error between the output of the 

network and the target value is propagated  backward during the backward pass and  

used  to  update  the  weights  of  the  previous  layers as shown in Fig4.9 

(Zupan,1993). 

 



 

 

 

43

 

Fig4.8 Schematic presentation of weight correction in BPNN(Çevik,2006). 

 

 

Fig4.9 Back propagation algorithm(Çevik,2006). 
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The main goal of BPNN is mapping of input, i.e. vector x into output, i.e. vector y.: 

This can be written in short: 

 

                                    i
BPNN

i YX  →                                       (4.3)  

 

For the output layer the error last
jδ  can be given as the difference between the target 

value iY  and the network output last
jout : 

 

                                      )1()( last
j

last
j

last
ji

last
j outoutoutY −−=δ          (4.4) 

The weight correction is given as 

 

                      )()( oldl
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l
ji www −=∆            (4.5) 

 

Combining Eqn4.4 and 4.5 the weight correction in a hidden layer can be generalized 

as follows: 
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where η  is the learning rate and µ  is the momentum constant . 

 

Eqn4.5 can be also be expressed in condensed form as: 

         1−=∆ l
i

l
j

l
ji outw ηδ  +   )( previousl

jiw∆µ                         (4.7) 

 

 

4.1.6  Matlab NN Toolbox 

 

In this thesis, Matlab NN toolbox is used for NN modeling. Matlab NN toolbox is 

preferred due to its flexibility. As a result, an optimal NN selection algorithm 

program has been developed which is almost impossible for other NN software 

available in market. 
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The toolbox consists of a set of functions and structures that handle neural networks, 

so the user does not need to write code for all activation functions, training 

algorithms. The toolbox is based on the network object. This object contains 

information about everything that concern the neural network, e.g. the number and 

structure of its layers, the connectivity between the layers, etc. Matlab provides high-

level network creation functions, like newlin (create a linear layer), newp (create a 

perceptron) or newff (create a feed-forward backpropagation network) to allow an 

easy construction (Çevik,2006). 

 

A graphical user interface has been added to the toolbox. This interface allows you 

to: 

• Create networks 

• Enter data into the GUI 

• Initialize, train, and simulate networks 

• Export the training results from the GUI to the command line workspace 

• Import data from the command line workspace to the GUI 

  

The User can handle almost all main parameters related with NN model and obtain 

them very easily. Architecture parameters and the subobject structures given by the 

Toolbox are as follows: 

inputs: {1x1 cell} of inputs 

layers: {1x1 cell} of layers 

outputs: {1x1 cell} containing 1 output 

targets: {1x1 cell} containing 1 target 

biases: {1x1 cell} containing 1 bias 

inputWeights: {1x1 cell} containing 1 input weight 

layerWeights: {1x1 cell} containing no layer weights 

 

In this thesis, by the aid of these NN parameters, closed form solutions of the 

proposed NN models are also derived and presented. This will open the black box as 

NNs are often referred to as. The analytical form of the NN models will enable them 

to be used for further practical applications(Çevik,2006). 
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4.1.7 Optimal NN Model Selection 

 

The performance of a NN model mainly depends on the network architecture and 

parameter settings.  One of the most difficult tasks in NN studies is to find this 

optimal Network architecture which is based on determination of numbers of optimal 

layers and neurons in the hidden layers by trial and error approach. The assignment 

of initial weights and other related parameters may also influence the performance of 

the NN in a great extent. However there is no well defined rule or procedure to have 

optimal network architecture and parameter settings where trial and error method still 

remains valid. This process is very time consuming Çevik and Güzelbey,(2008). 

 

Various Backpropagation Training Algorithms are used in this thesis given in 

Table4.1. Matlab NN toolbox randomly assigns the initial weights for each run each 

time which considerably changes the performance of the trained NN even all 

parameters and NN architecture are kept constant. This leads to extra difficulties in 

the selection of optimal Network architecture and parameter settings. To overcome 

this difficulty, a program has been developed in Matlab which handles the trial and 

error process automatically (Çevik,2006). 

 

The program tries various number of layers and neurons in the hidden layers both for 

first and second hidden layers for a constant epoch for several times and selects the 

best NN architecture with the minimum MAPE (Mean Absolute % Error) or RMSE 

(Root Mean Squared Error) of the testing set, as the training of the testing set is more 

critical. For instance, NN architecture with 1 hidden layer with 7 nodes is tested 10 

times and the best NN is stored where in the second cycle the number of hidden 

nodes is increased up to 8 and the process is repeated. The best NN for cycle 8 is 

compared with cycle 7 and the best one is stored as best NN. Tapkın et al.(2010). 

This process is repeated N times where N denotes the number of hidden nodes for the 

first hidden layer. This whole process is repeated for changing number of nodes in 

the second hidden layer. Moreover, this selection process is performed for different 

back propagation training algorithms such as trainlm, trainscg and trainbfg given in 

Table4.1. The program begins with simplest NN architecture i.e. NN with 1 hidden 

node for the first and second hidden layers and ends up with optimal NN architecture 

as shown in Figure4.10.The whole process is shown in Figure4.11(Çevik,2006). 
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Table4.1.  Back propagation training algorithms used in NN training Çevik et 

al.(2008). 

MATLAB 

Function name  
Algorithm  

trainbfg  BFGS quasi-Newton back propagation  

traincgf Fletcher-Powell conjugate gradient back propagation  

traincgp  Polak-Ribiere conjugate gradient back propagation  

traingd  Gradient descent back propagation  

traingda  Gradient descent with adaptive lr back propagation  

traingdx  Gradient descent w/momentum & adaptive linear back propagation  

trainlm  Levenberg-Marquardt back propagation  

trainoss  One step secant back propagation  

trainrp  Resilient back propagation (Rprop)  

trainscg  Scaled conjugate gradient back propagation  

 

 

 

 

 

Fig4.10 Optimal NN selection process Çevik and Güzelbey,(2008). 

 



 

 

 

48

 

 

                    Fig4.11 Flowchart of optimal NN selection. Çabalar and Çevik,(2009).  
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CHAPTER 5 

 
NUMERICAL APPLICATION 

 

 

5.1 Selection of Database (Description of data) 

 

The experimental data considered here was obtained from different papers: 

Rasmussen and Baker (1995), Koutchoukali and Belarbi (2001), Fang and Shiau 

(2004), Hsu(1968), Tang(2006), Zang(2002) . The test specimens were of solid 

rectangular beams which were subjected in pure tension and none of them were deep 

beams. The compressive strength of concrete ranged from 25.58 MPa to 109.8 MPa, 

stirrup percentage ranged from 0.40 % to 2.56 %, the yielding stress of longitudinal 

reinforcement ranged from 314 MPa to 560 MPa, the yielding stress of stirrups 

ranged from 320 MPa to 672 MPa. The complete list of the data is given in the 

Appendix section. As it is seen from the Table appendix, a total of 76 tests satisfying 

the variables mentioned above. Beams are identified using the notations in the first 

row, with the first letter of researchers’ name. The same series of test was used before 

by several authors. Tang (2006), developed a radial basis function neural networks to 

predict the ultimate torsional strength of RC beams, Zhang (2002), and Hossain et al. 

(2006) improved analytical methods for predicting the nonlinear response of RC 

beams by using the test. 

 
5.2 Numerical Application of  NN 

 
In this study, MATLAB neural network toolbox  was used to estimate the torsional 

strength of RC beams. The feed–forward multilayer network with error-back 

propagation model consists of twelve input nodes and one output node.They tested 

numerous RC beams under pure torsion to measure cracking (Tcr) and ultimate 

torque (Tu).  
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A total of 76 RC beams having different geometric parameters such as dimension of 

the cross section (x, y), dimension of the closed stirrup (x1, y1), concrete compressive 

strength (fc), spacing of stirrups (s), cross-sectional area of one leg of closed stirrup 

(At), yield strength of closed stirrup (fyv), total area of longitudinal torsional 

reinforcement (At), yield strength of longitudinal torsional reinforcement (fyl), steel 

ratio of stirrups (ρt) and steel ratio of longitudinal reinforcement (ρl). The range of 

datasets is listed in Table 5.1. (M.H Arslan  ,2010) 

 
Table 5.1 Data Range 

 
 Minimum Maximum Increment 

x (mm) 160 350 Variable 
y (mm) 275 508 Variable 
x1 (mm) 130 300 Variable 
y1 (mm) 216 469 Variable 
fc (MPa) 26 110 Variable 
s (mm) 50 215 Variable 

At (mm2) 71 127 Variable 
fyv (MPa) 319 672 Variable 
A l (mm2) 381 3438 Variable 
fyl (MPa) 310 638 Variable 

ρt (%) 0.22 2.56 Variable 
ρl (%) 0.30 3.51 Variable 

 
 

From the set of 76 total data, %80 of data sets were selected for training set for 

neural network training and the others are for testing.   

 

Among 12 input nodes (as  x, y, x1, y1, fc, s, At, fyv, At, fyl, ρt and ρl ),  2 different NN 

models were constructed. The first model consists of 5 input parameters namely as 

Ac, At fyt/s, ALfyL, f'c, Pc where as the other consists of 7 input parameters namely 

as rt, rl, Ac, Pc, f'c, AL fyL, At fyt/s. 

 

The optimal NN architecture in this part was found to be 5-3-1 (5 inputs- 3 hidden 

neurons- 1 output) NN architecture with logistic sigmoid transfer function (logsig) 

for the first NN model. The optimal NN architecture in this part was found to be 7-3-

1 (7 inputs- 3 hidden neurons- 1 output) NN architecture with logistic sigmoid 

transfer function (logsig) for the second NN model. 



 

 

 

51

The training algorithm was quasi-Newton back propagation (BFGS). The statistical 

parameters of the NN models are given in Tables 5.2 and 5.3. 

 

COV (Coeff. Of  Variation) is derived from standart deviation divided by means of  

data (data is experimental torsional data divided by NN model torsional data) and R2 

(Coeff. Of Correlation) is the graphic of  experimantel torsional date and NN model 

torsional data.According to COV and R2 , it is seen that the NN models gives more 

accurate results.  

 

 

Table 5.2  Statistical parameters of testing and training sets and overall results of NN 

model 1 

 

  Mean Std. Dev. COV R2 

Testing Set 1.017 0.307 0.302 0.85 

Training Set 1.033 0.229 0.222 0.95 

Total Set 1.029 0.244 0.237 0.94 

 

 

 

Table 5.3  Statistical parameters of testing and training sets and overall results of NN 

model 2 

 

  Mean Std. Dev. COV R2 

Testing Set 1.009 0.129 0.128 0.98 

Training Set 1.019 0.137 0.134 0.98 

Total Set 1.017 0.134 0.132 0.98 
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The performance of the proposed NN models vs.  experimental results are given in 

Figure 5.1 and 5.2. The accuracy of the formulation is observed to be quite good, it 

should be noted that the proposed NF model presented is valid only for the ranges of 

variables of the experimental database. 

 

 

 

 

 

 

 

Fig 5.1 Experimental results graphic of NN model 1 
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Fig5.2 Experimental results graphic of NN model 2 

 

5.3 Explicit Formulation of NN Model  

 

NN applications are treated as black-box applications in general. However this study 

opens this black box and introduces the NN application in a closed form solution. 

NN model 1 and 2 can be computed as follows: 

NN model 1; 

IN_0 = Ac*6.10687e-06 - 0.168702        

IN_1 = Pc*0.000963855 - 0.738554        

IN_2 = f'c*0.00949893 - 0.142983        

IN_3 = "AL fyL"*4.45621e-07 + 0.0420553        

IN_4 = "At fyt/s"*0.000888057 - 0.000134556       

HL_0 = sigmoid( -1.46315*IN_0 - 0.180801*IN_1 - 2.26827*IN_2 - 1.28312*IN_3 - 0.684621*IN_4  

             + 4.75584 )  

HL_1 = sigmoid( -2.67591*IN_0 - 2.50177*IN_1 + 1.37961*IN_2 + 0.887238*IN_3 - 0.182111*IN_4 

              - 0.808109 ) 

HL_2 = sigmoid( -1.4407*IN_0 + 0.146792*IN_1 - 0.464883*IN_2 - 1.85803*IN_3 - 1.81356*IN_4  

              + 2.37321 )  

OUT = ( sigmoid( -3.59922*HL_0 - 2.29963*HL_1 - 2.32142*HL_2 + 3.73206 ) - 0.0602986 ) / 0.00351339  

Where sigmoid(x)=1/(1+exp(x)) 
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NN model 2; 

IN_0 = rt*0.34188 + 0.0247863        
   

IN_1 = rl*0.249221 + 0.0252336        
   

IN_2 = Ac*6.10687e-06 - 0.168702       
   

IN_3 = Pc*0.000963855 - 0.738554       
   

IN_4 = f'c*0.00949893 - 0.142983       
   

IN_5 = "AL fyL"*4.45621e-07 + 0.0420553       
   

IN_6 = "At fyt/s"*0.000888057 - 0.000134556      
   

HL_0 = sigmoid( -0.0141111*IN_0 - 1.44714*IN_1 - 2.55339*IN_2 - 0.788241*IN_3 - 4.18833*IN_4  

             – 0.60156*IN_5 +  3.44565*IN_6 - 0.784084 ) 

HL_1 = sigmoid( 3.7208*IN_0 - 1.82187*IN_1 + 4.02579*IN_2 - 3.01756*IN_3 - 1.06721*IN_4 

             +2.82985*IN_5 – 1.48013*IN_6 - 0.185655 ) 

HL_2 = sigmoid( 1.32497*IN_0 + 0.845099*IN_1 - 2.21704*IN_2 + 0.993666*IN_3 - 3.79075*IN_4  

            – 1.39997*IN_5 – 2.25887*IN_6 + 5.92047 ) 

OUT = ( sigmoid( -4.43372*HL_0 + 5.07986*HL_1 - 5.90746*HL_2 + 1.12334 ) - 0.0602986 ) / 0.00351339 
   

 
Where sigmoid(x) =1/(1+exp(-x)) 

 

 

 

 

In order to investigate the accuracy of standards for torsional strength, the test results 

given in Table5.4 were compared with the approaches of mentioned building codes. 

The predicting capability of codes related to torsional strength of the beams for 

mentioned tested 76 specimens are presented in Table5.4. 
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Table 5.4 Predicting capability of building code approaches 
 

Building Standards Expression for torsional strength  
R2 

(%) 

ACI-318-2005 θ= cot
s

fAA2
T yvtO

n  85.93 

BS8110 
s

A)f87.0(yx8.0
T svys11

n =  81.76 

TBC-500-2000 
)yx(2

fAA2
T

11

yve
n +

= l  71.07 

AS3600 θ= cot
s

fAA2
T yvtO

n  85.93 

Eurocode-2-01 ( ) θ= cotA2s/AfT kswysn  73.44 

Eurocode-2-02 ( ) θ= tanA2u/AfT kksyn  85.93 

Eurocode-2-03 θθ−= cossintAf)250/f1(2.1T efkckckn  61.88 

CSA θ= cot
s

fAA2
T yvtO

n  85.93 

NN model1   94 
NN model2    98 

 

5.4 Main Effects of Variables  

 

The “Main Effect Plot” is an important graphical tool to visualize the independent 

impact of each variable on output. This graphical tool enables a better and simple 

picture of the overall importance of variable effects on the output and will provide a 

general snapshot. 

 

Moreover, parametric studies have also been presented as 2D and 3D surface 

interaction diagrams shown in Figures 5.5 - 5.8. The main effects plot will also help 

further researchers willing to perform experimental studies in the phase of design of 

experiments. 

 

The main effects plot will also help further researchers willing to perform 

experimental studies in the phase of design of experiments.2D and 3D surface 

interaction diagrams will be very helpful for the people who want to use proposed 

NN models because they show combination of the interaction of two variables. 
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When there is a need of NN models in one application, different combination of 

models with different model parameters can be selected which satisfy the 

requirements of the application. Using the 2D and 3D surface interaction diagrams, it 

is possible to select the most reliable NN model out of the possible NN models since 

the effect of each parameter for a prescribed another parameter can be determined.   

 

 

Fig5.3 Main Effects Plot for NN model 1 
 

 

 
 

Fig5.4 Main Effects Plot for NN model 2 
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Fig5.5 2D Parametric Study for NN model 1 
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Fig5.6 2D Parametric Study for NN model 2 
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Fig5.7 3D Parametric Study for NN model 1 
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                                           Fig5.8 3D Parametric Study for NN model 2 
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CHAPTER 6 

 

CONCLUSION 

6.1 Conclusion 

 Analysis of torsional strength can be roughly known as classified into two main 

categories: the skew-bending and the space-truss analogy theory. The two theories 

for torsional strength of reinforced concrete members are reviewed briefly. On the 

other hand, the ACI Building Code provisions for torsional design were selected and 

used in this study for comparison with the results from the NN models. Torsion 

rarely occurs in concrete structures without being accompanied by bending and 

shear. The foregoing should give a sufficient background on the contribution of the 

plain concrete in the section toward resisting part of the combined stresses resulting 

from torsional, axial, shear, or flexurat forces. 

 

         Artificial Neural Networks (ANN) can be defined as computer models that 

mimic the biological nervous system in general.  There are many definitions of NNs 

in literature which can be summarized. NN architectures are formed by three or more 

layers, which includes an input layer, an output layer and a number of hidden layers 

in which neurons are connected to each other with modifiable weighted 

interconnections. Each hidden or output neuron receives a number of weighted input 

signals from each of the units of the preceding layer and generates only one output 

value. This NN architecture is commonly referred to as a fully interconnected 

feedforward multi-layer perceptron.The number of neurons in each layer may vary 

depending on the problem. 

 

This study presents the application of Neural Networks (NN) for modeling torsion of 

RC beams. The proposed soft computing models are actually empirical based on a 

wide range of experimental database collected from the literature. For comparative 

analysis, numerical results of the same database are obtained by an existing model 

available in the literature. The proposed NN models are found to be more accurate. 
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To verify the generalization capability of the proposed NN model a wide range of 

parametric studies are performed in 2D and 3D form. Verification with the 

experimental results showed that the proposed NN models can be effectively used for 

the torsional strength prediction of  RC beams. 

 

 

6.2 Recommendations for Further Work 

            The problem consireded in the thesis can be studied using other soft 

computing techniques such as Neuro-fuzzy, Genetic programming and  Stepwise 

Regression. 
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APPENDİX  A 
 
1. NN Model 1 Data 
 

No Ac Pc fc Alfyl AtFyt/s Tu Tu(NN) 

1 175000 1700 78,5 526504 313,852 92 106,128 

2 175000 1700 78,5 831152 313,852 115,1 123,664 

3 175000 1700 78,5 831152 627,704 155,3 151,688 

4 175000 1700 78,5 1,49E+06 627,704 196 184,704 

5 175000 1700 78,5 1,93E+06 1013,6 239 218,427 

6 175000 1700 68,4 859500 332,873 126,7 116,049 

7 175000 1700 68,4 859500 570,15 135,2 136,908 

8 175000 1700 68,4 1,43E+06 348,724 144,5 149,41 

9 175000 1700 35,5 524304 313,852 79,7 72,8473 

10 175000 1700 35,5 831152 313,852 95,2 85,7032 

11 175000 1700 35,5 831152 627,704 116,8 109,763 

12 175000 1700 35,5 1,49E+06 627,704 138 139,819 

13 175000 1700 35,5 1,93E+06 1013,6 158 179,069 

14 175000 1700 35,5 859500 332,873 111,7 88,3921 

15 175000 1700 35,5 859500 570,15 125 106,656 

16 175000 1700 35,5 1,43E+06 332,873 117,3 115,167 

17 61915 1016 39,6 195625 246,353 19,4 16,4548 

18 61915 1016 64,6 195625 263,525 18,9 16,6253 

19 61915 1016 75 195625 246,353 21,1 16,2652 

20 61915 1016 80,6 195625 263,525 19,4 16,8037 

21 61915 1016 93,9 195625 254,939 21 17,031 

22 61915 1016 76,2 195625 269,935 18,4 16,8859 

23 61915 1016 72,9 242249 289,825 22,5 17,7812 

24 61915 1016 75,9 283555 305,926 23,7 18,6995 

25 61915 1016 76,7 301872 393,334 24 21,639 

26 44000 870 41,7 957218 580,323 16,6 21,9054 

27 44000 870 38,2 985008 583,814 15,3 22,4858 

28 44000 870 36,3 934060 586,432 15,3 22,052 

29 44000 870 61,8 944867 580,323 20 21,4247 

30 44000 870 57,1 947955 580,323 18,5 21,4715 

31 44000 870 61,7 944867 580,323 19,1 21,4244 

32 44000 870 77,3 952586 574,215 20,1 21,6811 

33 44000 870 76,9 947955 572,469 20,7 21,5264 

34 44000 870 76,2 952586 578,578 21 21,8038 

35 44000 870 109,8 943562 571,597 24,7 25,4105 

36 44000 870 105 967991 575,96 23,6 25,1233 

37 44000 870 105,1 971113 571,597 24,8 24,995 
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38 96774 1270 27,58 159365 159,739 22,3 26,3058 

39 96774 1270 28,61 200958 223,82 29,3 28,7115 

40 96774 1270 28,06 249555 319,164 37,5 32,3958 

41 96774 1270 30,54 284409 444,632 47,3 38,0639 

42 96774 1270 29,03 337647 582,385 56,2 45,0876 

43 96774 1270 28,82 379065 714,725 61,7 52,9097 

44 96774 1270 25,99 162519 317,788 26,9 30,7265 

45 96774 1270 26,75 163571 708,634 32,5 46,5652 

46 96774 1270 28,82 243253 284,884 29,8 31,2459 

47 96774 1270 26,48 382219 284,31 34,4 33,2118 

48 96774 1270 26,61 169174 158,124 22,4 26,3001 

49 96774 1270 25,58 204895 231,537 27,7 28,6852 

50 96774 1270 28,41 260353 332,233 40,2 33,0693 

51 96774 1270 30,61 293601 457,632 47,9 38,7972 

52 96774 1270 29,85 207086 168,542 30,4 27,3514 

53 96774 1270 30,54 250607 242,855 40,6 30,2151 

54 96774 1270 26,75 286249 295,772 43,8 32,046 

55 96774 1270 26,54 323637 394,727 49,6 36,2417 

56 96774 1270 27,99 383008 507,644 55,7 42,4474 

57 96774 1270 29,37 727241 617,368 60,1 57,3776 

58 96774 1270 45,23 206648 252,382 36 31,6788 

59 96774 1270 44,75 261640 332,922 45,6 35,4747 

60 96774 1270 44,95 280115 448,15 58,1 40,6636 

61 96774 1270 45,02 315224 589,871 70,7 48,3724 

62 96774 1270 45,78 371966 728,481 76,7 57,9623 

63 129032 1524 29,79 163571 129,048 26,8 34,5129 

64 129032 1524 30,89 204895 197,212 40,3 37,9426 

65 129032 1524 26,82 257960 266,501 49,6 40,9118 

66 129032 1524 28,27 289307 379,08 64,9 47,027 

67 129032 1524 26,89 336245 483,053 72 53,1872 

68 129032 1524 29,92 382554 348,734 39,1 48,4511 

69 129032 1524 30,96 456499 279,824 52,7 47,3299 

70 129032 1524 28,34 552535 397,227 63,3 55,3459 

71 129032 1524 27,03 130031 112,757 11,3 32,9148 

72 129032 1524 26,54 169875 209,101 15,3 36,8022 

73 129032 1524 26,89 210153 298,901 20 41,2071 

74 129032 1524 27,17 256383 420,834 25,3 47,8892 

75 129032 1524 27,23 291761 569,25 29,7 56,7056 

76 129032 1524 27,58 320832 766,992 34,2 69,762 
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APPENDİX  B 
 
1. NN Model 2 Data 
 

No rt rl Ac Pc f'c Al fyl At fyt/s Tu Tu(NN) 

1 0,61 0,68 175000 1700 78,5 526504 313,852 92 96,2325 

2 0,61 1,16 175000 1700 78,5 831152 313,852 115,1 111,722 

3 1,22 1,16 175000 1700 78,5 831152 627,704 155,3 151,254 

4 1,22 1,64 175000 1700 78,5 1,49E+06 627,704 196 193,74 

5 1,97 1,96 175000 1700 78,5 1,93E+06 1013,6 239 236,072 

6 0,68 0,98 175000 1700 68,4 859500 332,873 126,7 115,964 

7 1,36 0,98 175000 1700 68,4 859500 570,15 135,2 147,601 

8 0,68 1,64 175000 1700 68,4 1,43E+06 348,724 144,5 146,69 

9 0,61 0,68 175000 1700 35,5 524304 313,852 79,7 82,4712 

10 0,61 1,16 175000 1700 35,5 831152 313,852 95,2 93,1348 

11 1,22 1,16 175000 1700 35,5 831152 627,704 116,8 108,292 

12 1,22 1,64 175000 1700 35,5 1,49E+06 627,704 138 136,837 

13 1,97 1,96 175000 1700 35,5 1,93E+06 1013,6 158 159,498 

14 0,68 0,98 175000 1700 35,5 859500 332,873 111,7 101,94 

15 1,36 0,98 175000 1700 35,5 859500 570,15 125 120,243 

16 0,68 1,64 175000 1700 35,5 1,43E+06 332,873 117,3 123,004 

17 0,92 0,82 61915 1016 39,6 195625 246,353 19,4 18,1043 

18 0,92 0,82 61915 1016 64,6 195625 263,525 18,9 18,443 

19 0,92 0,82 61915 1016 75 195625 246,353 21,1 18,9141 

20 0,92 0,82 61915 1016 80,6 195625 263,525 19,4 17,7642 

21 0,92 0,82 61915 1016 93,9 195625 254,939 21 17,978 

22 0,98 0,82 61915 1016 76,2 195625 269,935 18,4 20,5048 

23 1,05 1,05 61915 1016 72,9 242249 289,825 22,5 21,469 

24 1,11 1,23 61915 1016 75,9 283555 305,926 23,7 22,4442 

25 1,42 1,28 61915 1016 76,7 301872 393,334 24 34,3973 

26 1,49 3,51 44000 870 41,7 957218 580,323 16,6 16,1633 

27 1,49 3,51 44000 870 38,2 985008 583,814 15,3 16,1722 

28 1,49 3,51 44000 870 36,3 934060 586,432 15,3 12,9608 

29 1,49 3,51 44000 870 61,8 944867 580,323 20 18,4958 

30 1,49 3,51 44000 870 57,1 947955 580,323 18,5 18,3223 

31 1,49 3,51 44000 870 61,7 944867 580,323 19,1 18,4903 

32 1,49 3,51 44000 870 77,3 952586 574,215 20,1 19,6692 

33 1,49 3,51 44000 870 76,9 947955 572,469 20,7 19,4946 

34 1,49 3,51 44000 870 76,2 952586 578,578 21 19,4217 

35 1,49 3,51 44000 870 109,8 943562 571,597 24,7 23,458 

36 1,49 3,51 44000 870 105 967991 575,96 23,6 23,5211 

37 1,49 3,51 44000 870 105,1 971113 571,597 24,8 23,876 
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38 0,54 0,52 96774 1270 27,58 159365 159,739 22,3 20,9669 

39 0,81 0,66 96774 1270 28,61 200958 223,82 29,3 29,8102 

40 1,15 0,79 96774 1270 28,06 249555 319,164 37,5 39,7968 

41 1,59 0,92 96774 1270 30,54 284409 444,632 47,3 50,382 

42 2,09 1,05 96774 1270 29,03 337647 582,385 56,2 55,2601 

43 2,56 1,18 96774 1270 28,82 379065 714,725 61,7 52,8632 

44 1,15 0,52 96774 1270 25,99 162519 317,788 26,9 37,3512 

45 2,56 0,52 96774 1270 26,75 163571 708,634 32,5 38,6756 

46 0,96 0,79 96774 1270 28,82 243253 284,884 29,8 32,7455 

47 0,96 1,18 96774 1270 26,48 382219 284,31 34,4 34,8361 

48 0,54 0,52 96774 1270 26,61 169174 158,124 22,4 21,5674 

49 0,81 0,66 96774 1270 25,58 204895 231,537 27,7 28,8474 

50 1,15 0,79 96774 1270 28,41 260353 332,233 40,2 39,1589 

51 1,59 0,92 96774 1270 30,61 293601 457,632 47,9 49,3728 

52 0,55 0,66 96774 1270 29,85 207086 168,542 30,4 21,2939 

53 0,79 0,79 96774 1270 30,54 250607 242,855 40,6 28,1115 

54 1,05 0,92 96774 1270 26,75 286249 295,772 43,8 36,785 

55 1,39 1,05 96774 1270 26,54 323637 394,727 49,6 44,6591 

56 1,77 1,18 96774 1270 27,99 383008 507,644 55,7 52,6466 

57 2,09 2,36 96774 1270 29,37 727241 617,368 60,1 64,9097 

58 0,84 0,66 96774 1270 45,23 206648 252,382 36 29,9316 

59 1,15 0,79 96774 1270 44,75 261640 332,922 45,6 42,5723 

60 1,59 0,92 96774 1270 44,95 280115 448,15 58,1 56,7423 

61 2,09 1,05 96774 1270 45,02 315224 589,871 70,7 68,4014 

62 2,56 1,18 96774 1270 45,78 371966 728,481 76,7 74,1265 

63 0,4 0,39 129032 1524 29,79 163571 129,048 26,8 25,8526 

64 0,63 0,49 129032 1524 30,89 204895 197,212 40,3 34,4545 

65 0,87 0,59 129032 1524 26,82 257960 266,501 49,6 45,0331 

66 1,18 0,69 129032 1524 28,27 289307 379,08 64,9 53,6164 

67 1,57 0,79 129032 1524 26,89 336245 483,053 72 65,8144 

68 1,06 0,89 129032 1524 29,92 382554 348,734 39,1 51,939 

69 0,92 1,11 129032 1524 30,96 456499 279,824 52,7 49,7232 

70 1,28 1,33 129032 1524 28,34 552535 397,227 63,3 63,9434 

71 0,22 0,3 129032 1524 27,03 130031 112,757 11,3 17,8361 

72 0,41 0,39 129032 1524 26,54 169875 209,101 15,3 21,5712 

73 0,61 0,49 129032 1524 26,89 210153 298,901 20 25,9331 

74 0,86 0,59 129032 1524 27,17 256383 420,834 25,3 30,3319 

75 1,16 0,69 129032 1524 27,23 291761 569,25 29,7 32,7694 

76 1,57 0,79 129032 1524 27,58 320832 766,992 34,2 31,5672 
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