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ABSTRACT 

METHODS FOR SOLUTION OF SCHRODINGER EQUATION WITH POSITION 

DEPENDENT MASS (PDM) 

SAYIN, SEDA                                                                                                                       

MSc Thesis, Engineering of Physics, University of Gaziantep                                  

Supervisor: Prof. Dr. Ramazan KOÇ                                                                                     

June 2011, 51 pages 

    In this study, construction of PDM Schrödinger equation has been examined starting from 

the kinetic energy operator approximations. In addition to this, the role and improvement of 

the Schrödinger type equations’ solutions have been discussed. 

    Some of the most common methods used in order to solve Schrödinger type equations 

have been explained by using important articles. The potentials and the mass functions used 

have been emphasized. Also, the opportunity of comparing the studies have been given. 

    To solve PDM Schrödinger equation which has been transformed in the form of the 

constant mass Schrödinger equation by changing coordinate and wave function is discussed 

for physical acceptability. Although it was expected to have different results from both of the 

experiments, the same eigenvalues have been found. This situation caused the improvement 

of a new method without transformation. The method improved by modifying Taylor 

Expansion Method is called Asymptotic Taylor Expansion Method. 

    PDM Schrödinger equation has been solved by using Asymptotic Taylor Expansion 

Method for harmonic oscillator potentials. Asymptotic analyze has been done for four 

different Hamitonians and highly accurate energy eigenvalues and wavefunctions have been 

obtained. As a result of this, Asymptotic Taylor Expansion Method has been proved very 

useful to determine  energy eigenvalues and wavefunctions in Schrödinger type equations. 

Key words: PDM Schrödinger equation, Transformations, Energy eigenvalues, 

Wavefunctions, Asymptotic Taylor Expansion Method.  
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ÖZET 

POZİSYONA BAĞLI KÜTLE İÇEREN SCHRÖDİNGER DENKLEMİNİN ÇÖZÜM 

METOTLARI 

SAYIN, SEDA                                                                                                                       

Yüksek Lisans Tezi, Fizik Mühendisliği, Gaziantep Üniversitesi                                         

Tez Yöneticisi: Prof. Dr. Ramazan KOÇ                                                                                     

Haziran 2011, 51 sayfa 

    Bu çalışmada pozisyona bağlı kütle içeren Schrödinger denkleminin oluşumu, geçmişten 

günümüze yapılan kinetik enerji operatörleri yaklaşımlarından başlanarak incelenmiştir. 

Buna ek olarak Schrödinger tipi denklemlerin çözümündeki rolü ve gelişimi irdelenmiştir. 

    Schrödinger tipi denklemleri çözmek için kullanılan en yaygın metotlardan bazıları önemli 

makaleler kullanılarak anlatılmış, kullanılan potansiyeller, kütle fonksiyonları belirtilip, 

yapılan çalışmaları karşılaştırma imkanı verilmiştir.  

    Pozisyona bağlı kütle içeren Schrödinger denklemini çözmek için sabit kütleli 

Schrödinger denklemine, koordinat ve dalga fonksiyonu değiştirerek çeviren dönüşüm 

metodu, fiziksel geçerliliği açısından değerlendirildi.  İki denklemde de farklı sonuç 

beklenmesine rağmen aynı özdeğerlerin bulunması dönüşüm içermeyen yeni bir metot 

gelişimine neden oldu. Taylor seri açılımı modifiye edilerek geliştirilen bu yaklaşım 

metodunun adı Asimtotik Taylor Açılım Metodudur.  

  Pozisyona bağlı kütle içeren Schrödinger denklemi Asimtotik Taylor Açılım metotu 

kullanılarak harmonik osilator potansiyeli için çözüldü. Dört farklı model için asimtotik 

analiz yapıldı ve oldukça hassas enerji özdeğerleri  ve dalga fonksiyonları bulundu. Bunun 

sonucunda Asimtotik Taylor Açılım Metodunun Schrödinger tipi denklemlerde enerji 

özdeğerleri ve dalga fonksiyonları tanımlamak için oldukça önemli olduğu ispatlandı. 

Anahtar Kelimeler: Pozisyona bağlı kütle içeren Schrödinger Denklemi, Dönüşümler, 

Enerji özdeğerleri, Dalga fonksiyonları, Asimtotik Taylor Açılım Metotu.    
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CHAPTER 1 

INTRODUCTION 

    Position dependent mass (PDM) Hamiltonian including physical potentials has a 

wide range of applications, takes a crucial role in physics. In different fields of 

physics and material sciences, we can encounter PDM Hamiltonians, such as, 

semiconductors, quantum dots, wells and wires, quantum liquids, semiconductor 

heterostructures, graded alloys, some nuclear structures etc. Therefore, the 

importance of PDM is inevitable and there are many discussions about the systems 

[1-30]. 

    In this thesis we review the articles about the PDM Hamiltonian. The articles can 

be categorized into two groups according to their topics: first group is about 

construction of a model Hamiltonian and second group is about development of the 

models to solve Schrödinger type equations. In quantum mechanics physical 

observables are represented in the form of the differential operators. Hamiltonian 

operator is the sum of kinetic energy operator and potential energy operator. It is well 

known that Hamiltonian gives real energy values and it should be, in general, 

hermitian. Unfortunately the kinetic energy operator: 

                                                                                                          (1) 

is non hermitian. And then, Gora and Williams [14] changed their derivation (1) to 

obtain correct kinetic energy operator: 

                                                                           (2) 

(2) is indeed and has also been adopted by Bastard et al [24]. van Vliet and Marshak 

[25] rederived (2) in addition, Zhu and Kroemer [6] postulated following kinetic 

energy operator: 
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                                                                            (3) 

    Gora and Williams, Zhu and Kroemer and other authors obtained useful kinetic 

energy operator for position dependent mass Hamiltonian. von Roos [1] generalized 

good approximations of kinetic energy operator for the movement of free carriers in 

semiconductors.                   

                                       (4) 

where  is momentum operator and is mass function,  are subject to 

the condition  Because of  the noncommutativity of the momentum 

and (position-dependent) mass operators, maintaining hermiticity of the kinetic 

energy operator is not trivial [5]. Hamiltonian was written with a potential  and 

effective potential was obtained.  

    In 1988, some authors thought about the quantization of a particle liable to a 

velocity dependent force and Borges et al., summarized the classical and quantum 

canonical treatment and they used path integral quantization method. As a result they 

got the Hamiltonian [7]. Csavinszky and Elabsy [10] used von Roos kinetic energy 

operator and wrote effective mass Hamiltonian for an abrupt heterojunctions between 

two crystals. In terms of   parameters, they used  like Morrow 

and Browstein [19]. Galbraith and Duggan used von Roos Hamiltonian and 

determined that GaAs/(Al,Ga)As quantum wells [13]. Einevoll and Hemmer for 

inhomogenous material were obtained an effective mass Hamiltonian: 

 

where  and  is conduction band edge. They showed an exact 

model calculation for  [12]. Koc et al., used von roos kinetic energy 

operator and PDM Hamiltonian was written for . A square well potential with 

a position dependent mass barrier was studied and its novel properties were obtained 

[16]. Li and Kuhn [18] obtained that the permutation scheme produces Ben Danial 

and Duke Hamiltonian and the Bastard Hamiltonian, the Zhu and Kroemer 

Hamiltonian and a Hamiltonian termed the redistribution in their article. Morrow and 

Browstein used von Roos Hamiltonian for  and they found that the wave 
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function must vanish at the junction thus implying that the junctions acts as an 

impenetrable barrier [19]. Mustafa and Mazharimousavi studied free particles with 

position dependent mass d-dimensional Schrödinger equation and they used von 

Roos Hamiltonian for  [20]. Schmidt studied Schrödinger 

equation with position-dependent mass inside an infinite well and revival of wave-

packet was shown [22]. Tanaka generalized -fold supersymmetry in ordinary 

quantum systems with position-dependent mass and used von Roos Hamiltonian 

[23]. From Alhaidari articles; he used this model: 

                                                                                         (5) 

where  and  are real functions of the configuration space coordinates. 

Wavefunctions and energy spectrum were obtained for different mass functions and 

Morse and Coulomb potential [2-3]. Dong and Lozada-Cassou was used PDM 

Hamiltonian (5) and they obtained exact solutions of two dimensional Schrödinger 

equation with PDM for hard core potential [11]. 

    As we mentioned before second topic of this thesis is to review the manuscript 

about the methods of solutions of the PDM Hamiltonian. One of the most common 

method is coordinate transformation and it has been used so PDM Hamiltonian was 

transformed in the form of constant mass Hamiltonian. 

    Morales et al. obtained exactly solvable potentials for the one-dimensional 

Schrödinger equation with a position-dependent mass and a procedure to determine 

their isospectral potential partners were presented. They used point canonical 

transformation method to covert the Schrödinger equation with a position-dependent 

mass problem into a Standard Schrödinger-like equation with a position-independent 

mass. The procedure to obtain the partner isospectral potentials that fulfill with the 

Schrödinger equation with a position-dependent mass involved the Darboux 

transform applied to the standard Schrödinger-like equation with a position-

independent mass [31]. Kraenkel et al. studied exact solutions of the position-

dependent effective mass Schrödinger equation by considering the new solvable 

nonlinear oscillator that relates to the isotonic oscillator through the method of point 

canonical transformations. They used physically important position-dependent mass 

distributions and provided the energy spectrum of the bound states and the 
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wavefunctions of the solvable potentials [32]. Tezcan et al. PT-symmetric solutions 

of Schrödinger equation were obtained for the Scarf and generalized harmonic 

oscillator potentials with the position-dependent mass. They used point canonical 

transformation by using a free parameter and three different forms of mass 

distributions. In that article they obtained a set of the energy eigenvalues of the 

bound states and corresponding wave functions for target potentials as a function of 

the free parameter [33]. Jia et al. used the method of point canonical transformations 

and choosed the Rosen-Morse-type potential as the reference potential to study exact 

solutions of the position-dependent effective mass Schrödinger equations. They 

discussed the energy spectra of the bound states and corresponding wavefunctions 

for the PT-symmetric potentials and the isospectrality of different Schrödinger 

equations with the same mass distribution or different mass distributions for different 

PT-symmetric potentials [34]. Mustafa et al. the d-dimensional generalization of the 

point canonical transformation for a quantum particle endowed with a position-

dependent mass in the Schrödinger equation was described. They used the harmonic 

oscillator, Coulomb, spiked harmonic, Kratzer, Morse oscillator, Pöschl–Teller and 

Hulthen potentials to obtain exact energy eigenvalues and eigenfunctions at different 

position dependent mass settings [35]. Jiang et al. were studied the exact solutions of 

the PDM Schrödinger equation by using the method of point canonical 

transformations and they used Rosen-Morse-type potential and Scarf-type potential 

[15].  

    In literature, authors have obtained, exact solution of the Schrödinger equation 

with the different potentials  ( i.e. Rosen-Morse potential, Scarf potential, Pöschl-

Teller potential, Harmonic oscillator potential, Coulomb potential, well potentials 

etc.) for various mass functions. Exact solutions of the Schrödinger equation can be 

obtained by using various methods. Some of the most common methods are Series 

Expansion method [28,48,49]. Nikiforov-Uvarov method [27,60-65], Lie Algebraic 

Techniques [67-73], Super Symmetric Quantum Mechanics [23,78-90], Coordinate 

transformation [15,29-44]. 

    The Series Expansion method is useful for  dimensional PDM Schrödinger 

equation for finding wavefunctions, Nikiforov-Uvarov method is useful for PDM 

Dirac equation and Klein Gordon equation to determine energy spectrum 

corresponding wave functions, the Lie algebraic technique is suitable for studying 

the PDM Schrödinger equation, because it contains a first-derivative term. Super 
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Symmetric Quantum Mechanics are important for determining dynamics of quantum 

particle with PDM. These methods support us many useful results. On the other 

hand, we must find out whether these results depend on physical reality or not. 

    In most applications of such methods, PDM Schrödinger equation has been 

transformed in the form of the constant mass Schrödinger equation by changing 

coordinate and wave function. Obviously, this transformation generates isospectral 

potentials and exact solvability requirements result in constraints on the potential 

functions for the given mass distributions. In other words, a suitable transformation 

of coordinate and wave function becomes a bridge between constant mass and 

position dependent mass Schrödinger equation. As an example in a constant mass 

Schrödinger equation the choice of coordinate 

                                                                                                      (6) 

and wave function 

                                                                                           (7) 

provides its transformation in the form of the PDM Schrödinger equation. In this 

case the potential is mass dependent; i.e. harmonic oscillator potential can be 

expressed as 

                                                                    (8) 

and both constant and PDM Schrödinger equations have the same eigenvalues. The 

origin of such an isospectrality in the constant mass scenario has not yet been 

studied. It will be worthwhile to discuss physical acceptability of such an 

isospectrality in the position dependent mass background. 

    The solution of the PDM Schrödinger equation has been obtained without 

transforming the potential into mass space. In this case the energy spectrum of the 

PDM Hamiltonians are not isospectral with the constant mass Hamiltonians. 

Therefore, it is reasonable to develop a method for solving PDM Hamiltonian 

without transforming the potential into the mass space. However, the fundamental 

question remains open: how the potential is affected when it is expressed in the mass 

space? To answer this question, one has to obtain a solution for the Schrödinger 
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equation without transforming the potential to the mass space. In this thesis, we will 

obtain an approximate solution of the Schrödinger equation without transforming the 

potential to the mass space. This is another reason, to build a realistic model for 

solving PDM Hamiltonian. 

    In the second chapter, the history of Schrödinger equation will be explained briefly 

and Schrödinger equation will be solved in spherical coordinate to determine 

quantum numbers. Kinetic energy operator for PDM will be reviewed, so useful 

models will be analyzed in the other part.  

    In the third chapter, some of the most common methods called Series Expansion 

method, Nikiforov-Uvarov method, Lie Algebraic Techniques, Super Symmetric 

Quantum Mechanics, Coordinate transformation will be determined and analyzed 

whether the method transforms the potential into mass space. 

    In the forth chapter , we will develop an approximate method Asymptotic Taylor 

Expansion Method (ATEM) without transforming so its formalism is determined in 

the first section of this chapter and by using harmonic oscillator potential PDM 

Hamiltonian will be solved for four different Hamiltonian and in other section 

asymptotic analysis will be done.  

    As a result, in the last chapter, what the thesis consists of will be explained briefly. 

Models and methods will be discussed for physical acceptability from past to the 

present and difference between ATEM and other methods will be analyzed about 

their advantages for exact solvable Hamiltonians. 
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CHAPTER 2 

PDM SCHRÖDINGER EQUATION 

     In this chapter, we will introduce the importance of the Schrödinger equation and 

PDM Schrödinger equation in quantum physics and briefly review these equations. 

    The Schrödinger equation which was formulated by Erwin Schrödinger in 1927 is 

the most fundamental equation in non-relativistic quantum mechanics. It is well 

known that de Broglie showed that electron has a wave property. Schrödinger 

suggested a model to describe motion of electron by developing both de Broglie 

hypothesis and electromagnetic wave equation. This mathematical model is used to 

determine wave functions and quantum states of the physical systems. 

    Schrödinger equation explains where electrons may be present in orbital. 

However, we mention here that this model does not give exact information about the 

position or exact momentum of electrons. Accompanied by a moving particle in 

quantum mechanics the wave function is shown as . Wave function contains 

all the information about the quantum physical properties of the system. It is 

customary to define  whose interpretation is that the probability of finding 

a particle in volume element  at time . Probability of wave function 

tells us where electrons might be mostly in orbital at a given time. Solution of the 

Schrödinger equation leads to the quantum numbers. For instance three quantum 

numbers appears in the solution of the three dimensional Schrödinger equation. 

These three quantum numbers are, principle , orbital  and magnetic  quantum 

numbers define state of electrons. Observables are associated with operators in 

quantum mechanics. Hamiltonian  is the hermitian operator and equal to sum of 

kinetic and potential energy.  this equation is the key of quantum 

mechanics where  is the eigenvalue of energy. Time-dependent Schrödinger 

equation can be written as: 
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and time-independent Schrödinger equation can be written as: 

  

 

2.1. Schrödinger Equation in Spherical Coordinate 

    Schrödinger equation of an electron moving in a central potential can be solved by 

using the method of separation of variable. For spherically symmetrical potentials 

(i.e Coulomb potential, Lennard-Jones potential, Yukawa potential) Schrödinger 

equation can be solved exactly in spherical coordinate by using separation of 

variables. Thus, Schrödinger equation can be written as in spherical coordinate; 

 

                                                                                                        (2.1) 

using the separable wave function:   where  is angular and 

 is radial part of the wave function, Schrödinger equation , (2.1) therefore can be 

written as, 

  

                                                       (2.2) 

Thus, radial equation is, 

                                              (2.3) 

and angular equation is 

 

                                                                                             (2.4) 

where  and solution of the (2.4) gives spherical harmonics .  
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                                                                 (2.5) 

where   is square of the angular momentum. If (2.5) is put into (2.4); 

 

Thus 

                                                                               (2.6) 

(2.6) is the eigenfunction operator of the square of angular momentum. 

    Variables are separated in the angular equation as following; 

 

                                  (2.7) 

                                                (2.8) 

                                                                                                        (2.9) 

The wave functions are equal to  where  is 

determined by Legendre function. 

     If the the function R in (2.3) is arranged by  

;  

it takes the form; 

                                                        (2.10) 

where  is given by   and the wavefunction of radial part is;  

                                                              (2.11) 
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where   is called as Laguerre polynomials with the relation  for integer 

values of  and . Here  is Bohr radius and N is normalization constant.  

From the radial part solution for hydrogen atom energy can be written as 

. 

    Angular wave functions  are known as spherical harmonics and its 

normalized form is given by: 

                                                      (2.12) 

where  . 

    Generally, the principle quantum number , orbital quantum number , and the 

magnetic quantum number  arise from the solution of the radial part , angular 

part  and azimuthal angular part , respectively.  

 

2.2. PDM Schrödinger Equation 

    Importance of position dependent effective mass quantum physical structures 

arising because of technological development which we have referred introduction 

part. The motion of free carries (electrons and holes) in semiconductors of non-

uniform chemical composition is sometimes described by means of a Hamiltonian 

possessing a position dependent effective mass [1]. The first studies of position 

dependent effective mass was performed by von Roos and others to get better kinetic 

energy operator approximation. 

    Radial part of Schrödinger equation for homogeneous semiconductor of a uniform 

chemical composition, effective mass Schrödinger equation generally can be written 

as; 

                                                       (2.13)                                     

    An extension of the Schrödinger equation to non uniform semiconductors,  

material possessing a position dependent varying chemical composition.  

we shall concentrate only on the kinetic energy term of Schrödinger equation for the 

envelope function  Here we briefly summarize historical process about the 

developments of the PDM Schrödinger equation. 
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In literature, some of physicist attended for finding good kinetic energy operator 

approximation. According to Gora and Williams [14], with the one electron 

approximation of many body Hamiltonian for a binary alloy of a position dependent 

composition [1]. The kinetic energy operator; 

                                                                                                      (2.14) 

which is manifestly non-Hermitian. And then, Gora and Williams changed their 

derivation of the suitable Schrödinger equation for the envelope function Ψ and 

postulated; 

                                                                   (2.15) 

 

    Zhu and Kroemer [6], introduced another form of PDM Kinetic energy operator; 

                                                                      (2.16) 

This is also hermitian. However, solution of Schrödinger equations with these kinetic 

energy operators are unphysical. 

    In the PDM Schrödinger equation the mass and momentum operator no longer 

commute. The general expression for the kinetic energy operator have been 

introduced by von Roos [1]; 

                                                              (2.17) 

where  is a constraint. 

    Gora and William's operator is retrieved from von Roos operator by putting 

 and for Zhu and Kroemer's  Ben Danial and 

Duke  Li and Kuhn  [45]. Thus, von Roos  

kinetic energy operator is more adequate than other we always use this operator in 

our PDM Schrödinger equation solutions. We can write PDM Hamiltonian generally; 

                                                        (2.18) 
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where  is potential. There are many debates for the choice of the parameters, 

most of the authors have been obtained solution of the PDM Schrödinger equation 

for the following Hamiltonians: 

                                         (2.18a) 

                          (2.18b) 

                           (2.18c) 

        (2.18d) 

Next chapter we will summarize the methods of solutions of the following 

Eigenvalue problems: 

                                   .                                       (2.19) 
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CHAPTER 3 

PDM SCHRODINGER,KLEIN-GORDON AND DIRAC EQUATIONS and 

THEIR SOLUTIONS 

    In this chapter, we review the methods developed for solving PDM Schrödinger, 

Klein-Gordon and Dirac equations. We have analyzed almost all of the articles about the 

corresponding title. Our detailed analyzes shows that the following five methods come 

forward in order to solve concerned equations. 

 

3.1. Series Expansion Method 

    It is well known that the series expansion method is one of the most common method 

to solve Schrödinger type equation including constant mass. This method can also be 

applied to solve PDM Schrödinger equation for some particular potentials and mass 

functions. Before reviewing solution of the PDM Schrödinger equation by power series 

method, we briefly summarize fundamentals of the Series Expansion Method. 

Consider second order, linear, homogeneous differential equation of the form: 

                                                                    (3.1) 

where the functions  are analytic at  , then every 

solution,  , is analytic at    and it can be represented by a power series in 

powers of   . Therefore, we have a power series solution of the form given by, 

                                                                                    (3.2) 

This is referred to as an extended power series with chosen such that . A second 

independent solution may contain a logarithmic term if the roots are repeated or if they 

differ by an integer. A function written in the form of a power series can be 

differentiated term by term. In the derivatives of expression (3.2), has are given by 

                                                                   (3.3)   

 

                                  (3.4)
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Substitute (3.2), (3.3) and (3.4) in to (3.1) we obtain: 

                                         (3.5) 

Then, using the standard procedure given in any differential equation text book [47], 

one can obtain a solution for the differential equation (3.1). 

    In literature, approximate solution of the N-dimensional PDM Schrödinger 

equation can be obtained by using series method [48,49]. 

    The model Hamiltonian of N-dimensional position-dependent mass Schrödinger 

equation is given by 

                                    

where  is the N-dimensional gradient operator. For N-dimensional 

spherical symmetry, the wave functions given an angular momentum  are given by 

[50-57] 

                                                               (3.6)   

Thus, 

                                                             (3.7) 

and (3.6) we can obtain the following N-dimensional radial position-dependent mass 

Schrödinger equation 

–           (3.8) 

where  . It is obvious that, for , (3.8) turns into the 

one-dimensional position-dependent mass Schrödinger equation [58] 

                                    .                         (3.9) 

It is convenient to change the function  in the (3.8), such that: 

                                    .              (3.10) 

Substitute  into the (3.8) we obtain: 

                            (3.11)                
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In (3.11) if three functions  are given in the power 

series form, then method of series solution can be applied to solve the PDM 

Schrödinger equation. Let us consider the following potential, and mass functions: 

                                                                                               (3.12) 

                                                             (3.13) 

In principle,    can be written as             

                                                                                                     (3.14) 

for simplicity   and the standard series  is: 

                                                                        (3.15) 

if use Eq.(3.10) into Eq. (3.8) 

 

                                                                                                                             (3.16)  

Assuming the coefficients of the power of  to zero, one 

yields the following recursion relation of energy spectrum [48]: 

               (3.17) 

where  

                                 ,  , 

                                 ,       .  

The final wave functions can be written: 

                                                        (3.18) 
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It has been shown that only if the potential and mass can be expanded about the 

origin the series form for example Morse potential and  this type mass 

functions, the series solutions of the N-dimensional position-dependent mass 

Schrödinger equation with physical potentials would be obtained [48]. In addition, 

Chen et al.,[28] studied N-dimensional Schrödinger equation with position-

dependent effective mass for the position dependent mass by series expansion 

method. The special cases of the Coulomb potential and the harmonic oscillator were 

discussed. Series expansion  method do not include any transformations of 

coordinate and wavefunction. 

 

3.2 Nikiforov-Uvarov Method 

    The Nikiforov-Uvarov (NU) Method [59] have been  applied to solve PDM Klein 

Gordon equation and Dirac equation besides PDM Schrödinger equation. Arda et.al., 

solved by using the Nikiforov-Uvarov method the effective mass Klein-Gordon 

equation for the Woods-Saxon potential. Energy eigenvalues and the corresponding 

eigenfunctions were computed. Results were also given for the constant mass case 

[60]. Arda et.al., solved analytically the Klein Gordon equation for the  parameter 

Pöschl-Teller potential in one-dimension in the case of mass dependent formalism 

(they used an exponentially mass distribution function). They obtained an energy 

eigenvalue and studied the energy spectra for the case that mass is constant and 

potential vanishes [61]. Ikhdair [27] obtained the analytic solutions of the spatially-

dependent mass Schrödinger equation of diatomic molecules by using NU method. 

In that article, mass function was  where  and 

 are the range of the potential and the equilibrium position of the nuclei. The 

energy eigenvalues and the corresponding normalized radial wave functions were 

calculated. 

    Before the review the solved these equations we briefly summarize the NU 

Method. This technique depends on solving the second-order linear differential 

equations. In this method, for a given potential, the Schrödinger equation in one 

dimension is reduced to a generalized equation of hypergeometric type with an 

appropriate coordinate transformation and it can be written in the following form 

[62]: 

                                                                   (3.19) 
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where  and  are polynomials, at most second-degree, and  is a first-

degree polynomial. Hence, from the (3.19) the Schrödinger equation and the 

Schrödinger-like equations can be solved by means of the special potentials or some 

quantum mechanics problems. To find particular solution of (3.19) by separation of 

variables, if one deals with the transformation: 

                                                                                                  (3.20) 

it reduces to an equation of hypergeometric type: 

                                                                                   (3.21) 

and  is defined as a logarithmic derivative: 

                                                                                                             (3.22) 

The other part  is the hypergeometric type function whose polynomial solutions 

are given by Rodrigues relation: 

                                                                                 (3.23) 

where  is a normalizing constant and the weight function  must satisfy the 

condition: 

                                                                                       (3.24) 

The function  and   the parameter required for this method are defined as follows; 

                                                               (3.25) 

                                                                                                             (3.26) 

On the other hand, in order to find the value of , the expression inside the square 

root must be square of polynomial. Thus, a new eigenvalue equation for the 

Schrödinger equation becomes: 

                                                                                  (3.27) 

where 

                                                                                             (3.28) 

and its derivative is negative. To obtain the energy eigenvalues, (3.26) and (3.27) are 

compared. 

    In the relativistic quantum mechanics, for a spinless particle, the time-independent 

Klein-Gordon equation with position-dependent mass in one dimension is written as 

follows [65]: 
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                                 (3.29) 

where  denotes the energy of the particle, and  and   are vector and scalar 

potentials, respectively. From equation (3.29), we have 

                                                   (3.30) 

Dai et.al.[64] consider the case when the scalar potential is equal to the vector 

potential, which is inversely proportional to the absolute value of the coordinate: 

                                                                                            (3.31) 

where the coupling constant  is a dimensionless real parameter and the following 

mass distribution was taken 

                                                                                            (3.32) 

where  and are the rest mass of a spinless particle and the Compton-like 

wavelength, respectively;  is a dimensionless real parameter. Defining the quantity 

  and letting 

                                      (3.33) 

and substituting these expressions in (3.30), one obtains: 

                                                                                 (3.34) 

If the NU method is applied in the present case by comparing  (3.33) and (3.19), the 

following expressions are obtained: 

                                                                 (3.35) 

Substituting the above expression into (3.25), the function 

                                                                  (3.36) 

According to the NU method, the expression in the square root must be the square of 

the polynomial. Then the solution of  (3.36) gives two roots of  individually 

                                                                                         (3.37) 

Then the function  for each  can be expressed as: 

                             (3.38) 

                             (3.39) 

where  is determined by the polynomial  and has a negative derivative. 
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The most suitable form of  is selected as: 

                       (3.40) 

Thus, 

                                         (3.41) 

According to (3.26) and (3.27) 

                                                                (3.42) 

Letting  the relation of the values and the constant  can be obtained as: 

                                                                                                  (3.43) 

Substituting the (3.30) into the (3.43), the exact energy eigenvalues of the Klein-

Gordon equation for this system are derived as: 

 

Therefore we have shown that (3.19) can exactly be solved. Thus, Nikiforov-Uvarov 

Method is useful for solving PDM Klein-Gordon Equation. In literature, beside PDM 

Klein-Gordon equation, Dirac equation Schrödinger equation have been also solved 

by using Nikiforov-Uvarov Method [60-65]. 

 

3.3 Lie Algebraic Technique 

    Exact solvability of the partial differential equations depends on its symmetry 

properties. Continuous group theory, Lie algebras and differential geometry are used 

to understand the structure of linear and nonlinear partial differential equations for 

generating integrable equations [66]. Kerimov, suggested a generalized procedure to 

obtain exactly solvable position dependent mass Hamiltonians in one dimension. The 

second-order Casimir invariant of the regular representation of a non-compact semi-

simple Lie group G, the spectral properties of which are well known, was used to 

introduce exactly solvable Hamiltonians [67]. Roy et.al., used the  algebra, 

both  as a spectrum generating algebra and as a potential algebra, to obtain exact 

solutions of effective mass Schrödinger equations corresponding to a number of 

potentials [68].  

    This method can also be applied to solve PDM   Schrödinger equation this algebra 

with three operators are used  for solving PDM Schrödinger 

equation. 
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    The Lie algebraic technique is suitable for studying the PDM Schrödinger 

equation, because it contains a first-derivative term. The  Lie algebra is 

described by the commutation relations, 

                                                                              (3.44)           

The Casimir operator of this structure is given by, 

                                                                                            (3.45) 

The eigenstate of   and   can be denoted by   where 

                                                    (3.46)       

while the allowed values of  are 

                                                                  (3.47) 

where  is a positive integer. We consider the most general form of the generators of 

the algebra which was introduced by Sukumar [69] 

                 (3.48) 

The commutation relations (3.44) are satisfied when the functions  and 

 take the forms 

                                                      (3.49) 

where    and  and  are constants. The differential realization (3.48) can be 

used to derive the second order differential equations of the orthogonal polynomials. 

The differential equations of these polynomials can be expressed in terms of Casimir 

operator : 

                                                                (3.50) 

Let us consider the basis function, 

                                                                                               (3.51)   

In terms of the realizations (3.48) and with the basis (3.51), the Hamiltonian (3.50) 

takes the form 

         

                                                                                                                     (3.52) 

Let us now turn our attention to the PDM Schrödinger equation which can be written 

as 

                                                  (3.53) 

where  is the potential of the physical system and  and  are eigenstates 
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and eigenvalues of the PDM Schrödinger equation. Introducing the eigenfunction 

and momentum operator , 

                                                            (3.54) 

respectively, the position dependent mass Hamiltonian takes the form 

 

(3.55) 

    This PDM Hamiltonian can be solved for different potentials i.e (Coulomb, 

harmonic oscillator and Morse family potentials) [70]. Therefore, in literature, PDM 

Schrödinger equation, Klein Gordon, Dirac equation have been also solved with 

using Lie Algebraic Technique [67-73]. 

 

3.4 Supersymmetric Quantum Mechanics (SUSYQM) 

    Supersymmetric Quantum Mechanics (SUSYQM) [74,75] includes pairs of 

Hamiltonians which share a particular mathematical relationship, which are called 

partner Hamiltonians. (The potential energy terms which occur in the Hamiltonians 

are then called partner potentials.) SUSYQM explain that, to every eigenstate of one 

Hamiltonian, its partner Hamiltonian has a suitable eigenstate with the same energy. 

This method can be applied to solve PDM Schrödinger, Dirac equation. For example, 

Jia et.al., consider a case for which the mass distribution combines linear and 

inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped 

into the exactly solvable Schrödinger-like equation problem with the isotonic 

oscillator by using the local scaling of the wavefunction and they took a mass 

distribution with smooth step shape, the Dirac problem with a non-PT-symmetric 

imaginary potential was mapped into the exactly solvable Schrödinger-like equation 

problem with the Rosen–Morse potential. The real relativistic energy levels and 

corresponding wavefunctions for the bound states were obtained in terms of the 

supersymmetric quantum mechanics approach and the function analysis method [76]. 

    Using the restricted Hamiltonian from the  constraint, we can write, 
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                                                                           (3.56) 

Before going further we derive a general effective Hamiltonian for the case of 

position-dependent mass. Let us turn our attention to the Hamiltonian (2.18). Using 

the commutation relation;                         

one can put the momenta to the right, the Hamiltonian (2.18) takes the form 

                                                                                                  (3.57) 

The effective Hamiltonian  is given by, 

                                                                                  (3.58) 

where 

               .            (3.59) 

Note that the effective potential term  can be eliminated by imposing the 

constraints over the parameters such that  and . In this case the 

Schrödinger equation will not depend on the parameters. The solution of the 

Hamiltonian (3.56) in the framework of SUSYQM. Let us take a look at the 

SUSYQM for the standard Schrödinger equation. The algebra of SUSYQM satisfies 

the following commutation relations: 

                                                    (3.60) 

The supercharges   are defined as 

                                                              (3.61) 

where  are Pauli matrices and  is a superpotential. We may construct a 

supersymmetric quantum mechanical system by defining the Hamiltonians such that 

the relations in (3.60) holds, 

                                                                            (3.62) 

The partner potentials  are related to the superpotential   by 

                                                                                 (3.63) 

The Hamiltonian   and   possess the same eigenvalues except for the zero 

energy ground state. The zero-energy eigenstate belongs to the  ,and 

supersymmetry of quantum system is said to be good SUSY if the ground state 

energy of   (or ) vanishes. In the other case SUSY is said to be broken. For 

good SUSY the ground state of   is given by 

                                                                                (3.64) 
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where    is normalization constant. The potentials are shape invariant [77], that is 

  has the same functional form as  but different parameters except for an 

additive constant: 

                                                                            (3.65) 

where  and  stand for the potential parameters in the supersymmetric partner 

potentials, and  is a constant. This property permits an immediate analytical 

determination of eigenvalues and eigenfunctions. The eigenvalues and 

eigenfunctions of the Hamiltonians    and    are related by 

                                 (3.66) 

                                 (3.67) 

In the following we shall modify the standard SUSY technique to the systems with 

position-dependent mass. Since the mass is a function of the position, the 

supersymmetric operators include mass term. It will be shown that the following 

form of the operators are appropriate to study the Hamiltonian (3.56), 

                                                                   (3.68) 

                                                                       (3.69) 

where   is the superpotential and  depends on the position. It can be checked 

that the supersymmetry relations in (3.60) and (3.61) are satisfied when   are 

replaced by . Note that the operator    read as follows: 

                                                                                 (3.70) 

We assume that, for good SUSY the ground state wave function belongs to   and 

is given by 

                                                                 (3.71) 

One can easily check that . The Hamiltonians of quantum systems with 

position-dependent mass take the form 

                             (3.72) 

                 .                               (3.73) 

where the partner potentials are given by 

                                                    (3.74) 
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.    (3.75)    

It is obvious that the kinetic energy terms of the effective mass Hamiltonian (3.56) 

and  are not identical. Therefore the shape-invariance condition (3.60) does not 

satisfy for the position-dependent mass system. If mass is constant it is easy to check 

that the physical quantities of the position-dependent mass system reduce to the 

physical quantities of the standard system. 

    If mass function is and suitable potentials [78] (i.e. harmonic 

oscillator, Coulomb and Morse potential) is used PDM Schrödinger equation can be 

solved. In literature, beside PDM Schrödinger equation, Klein Gordon equation, 

Dirac equation have been also solved with using SUSYQM [23,78-90]. 

 

3.5 Transformations 

   Solution of the differential equations go easy by a suitable transformations. In 

literature, PDM Schrödinger Equations have been solved by using Coordinate 

transformation, Point Canonical transformation, Darboux transform, Liouville--

Green transformation, Form-Preserving transformation. In most applications of such 

methods, PDM Schrödinger equation has been transformed in the form of the 

constant mass Schrödinger equation by changing coordinate and wave function. 

There is an example about Coordinate transformation from CAI Chang-Ying, REN 

Zhong-Zhou, and JU Guo-Xing article [91] in this part. 

    Now we analyse solution of the PDM Schrödinger Equations by using coordinate 

transformation. Consider Levy-Leblod [92] kinetic energy operator, for PDM 

Hamiltonian: 

                             (3.76) 

We know that in 3-dimensions Schrödinger equation    and   are dependent 

on radial coordianate in the spherical coordinate system. Where units of    

so we can write the radial part of the Schrödinger equation for the (3.76), 

                                      (3.77) 

where   which is radial wavefunction,  is eigenvalue of energy and  is 

angular momentum quantum number. The radial part of the Schrödinger equation 

with constant mass and angular momentum  can be written as; 



25 
 

                                                            (3.78) 

where  is the potential function and  is eigenvalue of energy. Thus, the 

following transformation is made [91] to (3.78), 

                                                                          (3.79) 

If (3.79) into (3.78) are substituted. Therefore; 

                     

–
                   (3.80) 

If we compare (3.80) and (3.77), 

                                                                                                     (3.81) 

 

                                                                                            (3.82) 

 where   The linear relation between the quantum numbers  and  

can be written as; 

                                                                                                             (3.83) 

Thus,  

                                                                                     (3.84) 

where   and   are real constants. Mass function is taken, 

                                                                                                         (3.85) 

where  and Coulomb potential has the following potential function, energy 

spectra, and wave functions, respectively [93] 

                                                                                                            (3.86) 

                                                                                                   (3.87) 

 

                                           (3.88) 

where  denotes the radial quantum number and  and  are 

the normalization coefficient ,the particle's charge number, and the confluent 

hypergeometric function. The transformation function is;  

                                                                                                          (3.90) 
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where  and  is nonzero real parameter. Adding (3.85), (3.87) and (3.90) into 

(3.82), and (3.81) and (3.88) into (3.79). Therefore, there are two solutions for   and  

 the first one is; 

When  and , the potential function, energy eigenvalues 

and eigenfunctions are; 

                                                              (3.91) 

                                            (3.92) 

                                 (3.93) 

where  is the normalization coefficient, and   is defined by 

(3.83) 

The second solution is; When    and  so the potential function, 

energy eigenvalues and eigenfunctions are; 

                                                         (3.94) 

                                                                                                  (3.95) 

             (3.96) 

where         

    The exact solution of the three-dimensional Schrödinger equation by using 

coordinate transformation method has been studied for an exponentially position-

dependent mass with Coulomb potential. Exact results of energy eigenvalues and 

eigenfunctions have been obtained. We can see that in this example transformation 

function must be satisfy some conditions to obtain explicit results. 

    In literature, there are good examples about transformations. Some of articles have 

been discussed in introduction part. In addition of these, Quesne’s article [29] is very 

important. Constant-mass Schrödinger equation was transformed into a PDM 

Schrödinger equation by using point canonical transformation. Wavefunctions were 

obtained for Pöschl–Teller potential and Morse potential. The changes of variable, 

potentials, PDM wavefunctions were listed in that article. Tezcan et al. [30], Exact 

solutions of the Schrödinger equation were obtained for the Rosen–Morse and Scarf 

potentials with the position-dependent effective mass by applying a general point 

canonical transformation. Different types of mass functions were used: 
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As result, energy eigenvalues and wavefunctions were obtained in that article. 
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CHAPTER 4 

ASYMPTOTIC TAYLOR EXPANSION METHOD (ATEM) 

    In this chapter, we suggested a new method to solving PDM Hamiltonian, it is 

named Asymptotic Taylor Expansion Method (ATEM) [26]. This chapter is planned 

as follows. In the first section Taylor series expansion of a function is reformulated 

for solving second order differential equations. Section 2 is devoted to the 

application of the main result for solving Schrödinger equation including various 

potentials. With using harmonic oscillator potential PDM Hamiltonian is solved for 

four different Hamiltonian and asymptotic analyze is done. 

4.1 Formalism of ATEM 

    In this section, we show the solution of the Schrödinger type equation for a quite 

ample class of potentials, by modifying Taylor series expansion by means of a finite 

sequence instead of an infinite sequence and its termination possessing the property 

of quantum mechanical wave function. Let us consider Taylor series expansion [94] 

of a function  about the point  : 

 

                                                                                                  (4.1) 

where    is the   derivative of the function at   . Taylor series specifies the 

value of a function at one point, in terms of the value of the function and its 

derivatives at a reference point . Expansion of the function  about the origin 

), is known as Maclaurin's series and it is given by, 

 

                                                                                                       (4.2) 

Here we develop a method to solve a second order linear differential equation of the 

form:  

                                                                          (4.3) 

It is obvious that the higher order derivatives of the  can be obtained in terms 
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of the  and  by differentiating (4.3). Then, higher order derivatives of   

are given by     

                                                                    (4.4) 

where 

 

                                                                        (4.5) 

 

Of course, the last result shows there are a formal relation between asymptotic 

iteration method (AIM) [95] and ATEM. We have observed that eigenfunction of the  

Schrödinger type equations can efficiently be determined by using ATEM. It is clear 

that the recurrence relations (4.5) allow us algebraic exact or approximate analytical 

expression for the solution of (4.3) under some certain conditions. Let us substitute 

(4.5) into the (4.1) to obtain 

 

                  (4.6) 

 

After all, we have obtained useful formalism of the Taylor expansion method. In the 

solution of the eigenvalue problems, truncation of the asymptotic expansion to a 

finite number of terms is useful. If the series optimally truncated at the smallest term 

then the asymptotic expansion of series is known as superasymptotic [96], and it 

leads to the determination of eigenvalues with minimum error. Then boundary 

conditions can be applied as follows. When only odd or even power of  collected as 

coefficients of  or  and vice verse, the series is truncated at  then an 

immediate  practical consequence of these condition for   or  

. In this way, one of the parameter in the  and/or  

belongs to the spectrum of the Schrödinger equation. Therefore eigenfunction of the 

equation becomes a polynomial of degree . Otherwise the spectrum of the system 

can be obtained as follows: In a quantum mechanical system eigenfunction of the 

system is discrete. Therefore in order to terminate the eigenfunction  we can 

concisely write that 

 

                                                                        (4.7) 
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eliminating   and   we obtain 

                                                                   (4.8) 

 

again one of the parameter in the equation related to the eigenvalues of the problem. 

    In quantum mechanics bound state energy of the atom is quantized and 

eigenvalues are discrete and for each eigenvalues there exist one or more 

eigenfunctions. When we are dealing with the solution of the Schrödinger equation, 

we are mainly interested in the discrete eigenvalues of the problem. The first main 

result of this conclusion gives necessary and sufficient conditions for the termination 

of the Taylor series expansion of the wave function. 

    The process presented here is iterative and number of iteration is given by . The 

results are obtained as follows: in our Mathematica program, we use an iteration 

number, say , then we obtain another result for  , so on, then we 

compare values of the parameter (eigenvalue) in each case till  digits. If values of 

the parameter reach its asymptotic value then we use these values and omit the 

others. For instance, if one can obtain values of the parameters for  , first few 

of them will be reached its asymptotic values, say first  values. The following 

comment for the function is considerable: for such a solution it is suitable to take 

sum of first   term in the (4.6). 

    It will be shown that ATEM gives accurate results for PDM Schrödinger 

equations. In the following sections, it is shown that this approach opens the way to 

the treatment of  PDM Schrödinger equation including large class of potentials of 

practical interest. 

 

4.2 Solution of the PDM Schrödinger equation by using ATEM 

    In the PDM Schrödinger equation the mass and momentum operator no longer 

commute, so there are several ways to define kinetic energy operator. The general 

expression for the Hamiltonian with the kinetic energy operator introduced by von 

Roos [1] and potential energy  , can be written as (2.18):  

 

where  is a constraint and is position dependent mass. There are 

many debates for the choice of the parameters  and , in our approach, we will 

obtain the solution of the PDM Schrödinger equation for the Hamiltonians of  
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(2.18a), (2.18b), (2.18c) and (2.18d) [1,46,97]. 

    Here we take a new look at the solution of the PDM Schrödinger equation by 

using the method of ATEM developed in the previous section. 

    Before going further we share one of our significant observation during our 

calculations. If the mass distribution is not appropriate for a given potential, the 

eigenvalues do not reach their asymptotic values and resultant eigenfunction cannot 

be terminated when . In order to illustrate semi analytical solution of the 

eigenvalue equations (2.19): 

 

including harmonic oscillator potential: 

, 

we use the mass distributions  

 

where  is arbitrary positive constant. By the way, we emphasize that the wave 

function of harmonic oscillator potential is well defined in the region of    and 

satisfy that   In this limit the mass distributions to be continuous. 

    It is well known that asymptotic behavior of constant mass Schrödinger equation 

including harmonic oscillator potential is given by 

, 

for simplicity we set . Thus, this change of wave function 

guaranties   After this transformation, we present an iteration 

algorithm to calculate both eigenvalues and eigenfunctions of the eigenvalue 

equation (2.19). Using this algorithm, we develop a Mathematica program in 

appendix part, which demonstrates that it is easier to be implemented into a computer 

program, and produces a highly accurate solution with analytical expression 

efficiently. 

 

4.2.1 Asymptotic Analysis 

    The term asymptotic means the function approaching to a given value as the 

iteration number tends to infinity. By the aid of a Mathematica program we calculate 

eigenvalues and eigenfunction of  for  using number of iterations 

. The function  for  state is given in (4.9) and 
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eigenvalues are presented in Table 4.1. 

 

    

                            

 

                                   

 

                              

                                                                                                                     (4.9)            

 

Table 4.1 Eigenvalues of the PDM  for different iteration numbers  and . 

              

20 0.468 89047 1.433 41211 2.357 65542 3.283 97486 4.213 60362 4.353 99596 

30 0.468 89665    1.433 48058 2.356 42259 3.246 60834 4.120 86916 4.983 21327 

40 0.468 89650  1.433 48582 2.356 55507 3.245 85555 4.105 43833 4.957 55341 

50 0.468 89651    1.433 48553 2.356 54885 3.245 99291 4.107 03835 4.941 14551 

60 0.468 89651  1.433 48555 2.356 54908 3.245 98255 4.106 94346 4.943 37909 

 

Our calculation [26] gives an accurate result for first  eigenvalues and 

eigenfunctions after  iterations. Here we have used  iterations. Figure 4.1, 4.2, 

4.3, 4.4, 4.5, 4.6 shows the plot of normalized wave functions for first   state. 

 

Figure 4.1 Plot of the normalized wavefunction of the PDM Hamiltonian (2.18a) for 
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Figure 4.2 Plot of the normalized wavefunction of the PDM Hamiltonian (2.18a) for 

 

 

 

 

Figure 4.3 Plot of the normalized wavefunction of the PDM Hamiltonian (2.18a) for 
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Figure 4.4 Plot of the normalized wavefunction of the PDM Hamiltonian (2.18a) for 

 

 

 

 

Figure 4.5 Plot of the normalized wavefunction of the PDM Hamiltonian (2.18a) for 
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Figure 4.6 Plot of the normalized wavefunction of the PDM Hamiltonian (2.18a) for 

 

 

4.2.2 Solution of the Hamiltonians   and   

    In the previous section we have illustrated applicability of our method by solving 

Hamiltonian . In this section we apply the same procedure to solve the 

Hamiltonians  and . Again we have used  iterations for each 

Hamiltonians and checked stability of the eigenvalues. Here we calculated 

eigenvalues for  iterations and they are listed in Table 4.2. We have also checked 

that for the given eigenvalues, the wave functions are normalizable and it tends to 

zero when . 

 

Table 4.2 The eigenvalue Hamiltonians  and , for . The result is 

obtained after  iterations. 

    

0 0.507 732 26  0.488 333 47 0.509 493 36 

1 1.455 513 69   1.444 518 56 1.459 729 23 

2 2.369 412 82  2.362 868 81 2.374 618 96 

3 3.255 441 87   3.251 372 13 3.261 064 59 

4 4.132 353 79   4.128 826 19 4.138 052 87 

5 4.959 975 06   4.963 053 56 4.964 789 01 

 

The results given in Table 4.2 shows that eigenvalues and eigenfunctions are also 

depends on the choices of the parameters,  and  of Hamiltonian (2.18).                                
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CHAPTER 5 

CONCLUSION 

    In this thesis, we have reviewed the articles about (1) construction of the PDM 

Hamiltonians, (2) methods of solutions of the PDM Hamiltonians including physical 

potentials and various mass functions. We have also suggested a method for solving 

PDM Schrödinger equation. 

    The history of Schrödinger equation has been studied and solved for spherical 

coordinate to obtain quantum numbers. Approximations of kinetic energy operators 

which are used in calculations for PDM Hamiltonian, have been discussed. We have 

seen better kinetic energy operator approximations like the one used by von Roos. 

    We have introduced some of methods to solve PDM Schrödinger, Klein-Gordon 

and Dirac equations. We benefit from some of the articles [48, 64, 70, 78, 91,98] 

which use different methods, potentials and masses for solving PDM equations. For 

example, Series Expansion Method gives information about the solution of N-

dimensional Schrödinger equation which is a method without mapping potential into 

mass space or vice versa. If we discuss the methods about transformations, we can 

say NU method, Lie algebraic technique and SUSYQM method have 

transformations. Certainly, these methods which include transformations have lots of 

good results (wavefunctions, energy eigenvalues). 

    We have suggested a new method to solve PDM Hamiltonian, it is called 

Asymptotic Taylor Expansion Method. The importance of this method is that it does 

not transform potential into mass space. We have solved PDM Schrödinger equation 

for four different kinetic energy operators including harmonic oscillator potential 

with the variable mass function of the form . It is shown that 

energy levels of the PDM Schrödinger equation depends on the mass distributions. It 

is important to remark that the results presented here, shows that eigenvalues also 

depends on the ordering parameters of the PDM Schrödinger equation [99]. 

Normalized wave functions for first six state and eigenvalues of PDM Hamiltonians 
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 have been shown in Figure 4.1, Table 4.1 and 4.2. The results are 

highly accurate. ATEM is useful for obtaining both eigenvalues and eigenfunctions 

of the Schrödinger type equations. Therefore, the results have been obtained here, 

allowing further comparisons between the models. 

    As a further work the method presented here can be used to built more realistic 

models for the PDM physical systems. Before ending this work a remark is in order. 

When the potential mapped to the mass space, the both constant and PDM 

Hamiltonian has the same eigenvalues. It will be worthwhile to discuss physical 

acceptability of such an isospectrality in the position dependent mass background. 

Therefore we have to develop methods for solving PDM Schrödinger equation 

without connecting mass to potential or vice versa [26]. 
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APPENDIX 

A Mathematica Program for Solving PDM Schrödinger Equation within the 

framework of ATEM 
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