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ABSTRACT

FREE VIBRATION ANALYSIS AND STRUCTURAL OPTIMIZATION OF
STIFFENED PANELS

ÇANLIOĞLU, Erman
M.Sc. in Civil Engineering

Supervisor: Prof. Dr. Mustafa ÖZAKÇA
June 2011, 83 pages

In this thesis, free vibration analysis and structural optimization of stiffened plates

was studied. Different types of straight stiffeners were used. Examined plate types

have common length, width and volume constraints. In each stiffener type, some

combinations of pad elements, sub stiffener elements were used. Vibration analyses

of plates were carried out using a Fortran computer code which is based on Finite

Strip method and developed by Özakça[1]. Optimization of plates was carried out

with same program, which uses SQP as optimization tool. By these applications the

effectiveness of four plate types using straight stiffener types were investigated.

Totally 168 runs were carried out for this purpose. The vibration optimization results

are fluctuating in a wide range due to used elements combinations listed above and

number of stiffeners. Improvements due to used element type and number of

stiffeners are listed and compared according to stiffener types.

Key Words: Stiffened plates, Free vibration analysis, Structural optimization, Finite

strip method.



iv

ÖZET

TAKVIYELI PANELLERIN SERBEST TITREŞIM ANALIZI VE YAPI
OPTIMIZASYONU

ÇANLIOĞLU, Erman
Yüksek Lisans Tezi, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mustafa ÖZAKÇA
Haziran 2011, 83 sayfa

Bu tezde takviyeli plakaların serbest titreşim analizi ve yapısal optimizasyonu

çalışılmıştır. Farklı düz takviyeli eleman çeşidi kullanılmıştır. İncelenen plaka

tiplerinin uzunluk, genişlik ve hacim ortak kısıtları vardır. Her çeşit takviyeli plaka

tipinde yastık, ara takviye gibi bazı kombinasyonlar kullanılmıştır. Plakaların titreşim

analizi Özakça[1] tarafından geliştirilen Sonlu Şeritler metodu tabanlı bir FORTRAN

yazılımıyla gerçekleştirilmiştir. Plakaların optimizasyon işlemi de aynı program

tarafından Ardışık Karesel Programlama algoritması kullanılarak gerçekleştirilmiştir.

Bu çerçevede düz takviye elemanları kullanılarak dört tip plakanın serbest titreşim

analizi incelenmiştir. Bu amaçla 168 tane plağın analizi ve optimizasyonu

yapılmıştır. İncelenen plakların titreşim optimizasyon sonuçları kullanılan eleman

kombinasyonuna ve takviye elemanları sayısına göre geniş bir aralık içerisinde

dalgalanmaktadır. Eleman tiplerine ve takviye elemanlarının sayısına göre serbest

titreşim analizindeki iyileşmeler gözlenip kullanılan eleman ve takviye eleman tipi

ile ilişkilendirilip karşılaştırmalar yapılmıştır.

Anahtar kelimeler: Takviyeli plakalar, Serbest titreşim analizi, Yapısal

optimizasyon, Sonlu şeritler yöntemi.
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CHAPTER 1

INTRODUCTION

1.1 General Information

In structural engineering, the crucial aim is weight saving for a structural element

without loss of any strength. Two dimensional behaviors of flat plates is strengthened

in third direction against vibration by adding longitudinal stiffeners to flat plate

surface. Characteristics of stiffened plates which are vibration, stability, strength and

deformation have been extensively studied since the applications of stiffened plates

have been widely used in engineering structures, such as ships, aircrafts and bridges.

This investigation has focused on optimization of stiffened plates under the free

vibration.

When straight plates are stiffened with longitudinal stiffeners their response against

free vibration become more complex. Analytical solutions for those types of

structures become insufficient and tedious. In this regard, numerical solutions are the

best approaches.

There are several numerical methods, which are applicable in structural analysis. The

most effective of them is the Finite Element (FE) method, which is developed in

1960’s. By the development of FE method, researchers attempt to apply this method

in all parts of structural analysis. Observations verified that FE method gives

excellent results compared with analytical solutions.

In the following years, Finite Strip (FS) method is developed by Cheung [2] and the

method has the capability of solving structural analysis problems that have prismatic

shape and simple supported boundary conditions. FS forges fewer equations to be
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solved than FE. As result of this reduction, FS method is faster than FE method. The

extensively comparison between FE and FS is introduced in following chapter.

Finite Element Finite Strip
Ap

pl
ic

ab
ili

ty
 to

 st
ru

ct
ur

es Applicable to any geometry, boundary
conditions and material variation.
Extremely versatile and powerful.

In static analysis, more often
used for structures with two
opposite simply supported ends
and with or without
intermediate elastic supports,
especially for bridges. In
dynamic analysis it is used for
structures with all boundary
conditions but without discrete
supports.

Re
qu

ir
ed

 e
qu

. t
o 

be
so

lv
ed

Usually large number of equations and
matrix with comparatively large
bandwith. Can be very expensive and at
times impossible to work out solution
because of limitation in computing
facilities.

Usually much smaller number
of equations and matrix with
narrow bandwidth, especially
true for problems with an
opposite pair of simply
supported ends. Consequently
much shorter computing time
for solution of comparable
accuracy.

In
pu

t d
at

a

Large quantities of input data and easier
to make mistakes. Requires automatic
mesh and load generating schemes.

Very small amount of input data
because of the small number of
mesh lines involved due to the
reduction in dimensional
analysis.

O
ut

pu
t d

at
a

Large quantities of output because as a
rule all nodal displacements and element
stresses are printed. Also many lower
order elements will not yield correct
stress at the nodes and stress averaging
or interpretation of results.

Easy to specify only those
locations at which
displacements and stresses are
required and then output
accordingly.

Re
qu

ir
ed

 c
om

pu
te

r e
ffo

rt

Requires a large amount of core and is
more difficult to program. Very often,
advanced techniques such as mass
condensation or subspace iteration have
to be resorted to for eigenvalue problems
in order to reduce core requirements.

Requires smaller amount of
core and easier to program.
Because only the lowest few
eigenvalues are required (for
most cases anyway), the first
two to three terms of the series
will normally yield sufficiently
accurate results matrix can
usually be solved by standard
eigenvalue subroutines.

Table 1.1 Comparison between FE and FS methods [2]
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1.2 Stiffened Plate Terminology

The structural elements of stiffened plates that examined in this thesis are shown in

Figure 1.1.

Figure 1.1 Structural Plate Elements

The structural plate elements are examined using the combinations of those elements.

Number of stiffeners is also changed in the range of two to eight, for instance, Figure

1.1 shows stiffened plate with three stiffeners.

1.3 Principle Objectives

The critical motivation of the thesis is structural shape and structural size

optimization of stiffened plates including some combinations of structural elements

shown above, using a computer code. The specific objective may be expressed as

follows:

 Maximizing the eigenvalue of considered stiffened plates.

 Investigating the performance of each structural element.

 Observing the change in element shape during optimization procedure to

remark the efficiency of each structural element.

 Receiving the best geometric shape and thickness variation for the considered

stiffened plate.

Plate skin Pad

Substiffener
Stiffener
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1.4 About Computer program

A free vibration analysis using FS method and shape optimization with (SQP)

programs for straight plan form folded plates and shells were developed by Özakça

[1] in FORTRAN programming language using double precision. The latest version

of program is used in FS analysis and structural optimization of stiffened plates.

1.5 Layout of Thesis

The contents of each chapter are expressed as:

 Chapter 2 contains literature survey about free vibration analysis and shape

optimization.

 Chapter 3 includes a condensed derivation of FS equations and examples.

 Optimization process, definition of elements and design variables, structural

optimization flowchart are presented in Chapter 4.

 Chapter 5 deals with results of analyses and remarks according to results.

 In Chapter 6, conclusions based on the present thesis are underlined and

suggestions for future work are discussed.
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CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

Stiffened panel are widely used in many engineering applications. A stiffened plate

has low mass and high bending stiffness. The use of welding made it possible to

produce different constructions. To increase the torsional rigidity, cellular plates

have been introduced. Stiffened plates can be applied as roof structures of

supermarkets, petrol stations, etc., orthotropic bridge decks, airplane wing structures,

ship wall and deck structures, roof structure of tanks. By reason of two-dimensional

actions of plates, they have widely use in engineering applications. Also two-

dimensional behaviour of plates has several advantages as a structural element. This

behaviour requires more complex analysis methods. Effectively methods such as FE

and FS method should be performed according to problem behaviour and structural

type.

2.2 Basics of Free-Vibration

Free vibration analysis of structures plays an important role in engineering

applications as plates are widely used as structural components. Due to limitations of

analytical methods for practical applications, numerical methods have become the

most widely used tool for designing plate structures. One of the most popular

numerical approaches for analysing vibration characteristics of plates is the Finite

Element Method (FEM). Although the FEM provides a general and systematic

technique for constructing basis functions, a number of difficulties still exist in the

development of plate elements based on shear deformation theories. One is the shear

locking phenomenon for low order displacement models based on Mindlin Reissner

theory [3] as the plate thickness decreases.
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2.3 Free Vibrational Analysis Methods

If the number of stiffeners is small, the stiffened plate can be divided into beam-like

grid structures (Figure 2.1). This calculation is based on force method. The torsional

stiffness can be neglected. The deflections at the nodes should be equal for the two

orthogonal beams. The unknown internal forces can be calculated from the deflection

equations. This is called grid calculation. [5]

Figure 2.1 Grid Calculation

In Calculation as an anisotropic continuum [5]; There are some assumptions which

are as follows: elastic stress and deformations, and deflections are small compared to

the thickness of the plate, and normal stresses orthogonal to the plate can be

neglected, and shear deformations can be neglected, and stresses from torsion can be

calculated from Saint-Venant theory [5], and number of stiffeners in both directions

is large enough to assume that the effective plate width is equal to the distance

between stiffeners.

At Solution Methods; At least four different procedures have been employed for

obtaining the structural behaviour of stiffened plate panels under normal (lateral)

loading, each embodying certain simplifying assumptions: Orthotropic plate theory,

Beam-on-elastic-foundation theory, Grillage theory, the FEM. [6]

Orthotropic plate theory [6] refers to the theory of bending of plates having different

flexural rigidities in the two orthogonal directions. In applying this theory to panels

having discrete stiffeners we idealize the structure by assuming that the structural

properties of the stiffeners may be approximated by their average values, which are

assumed to be distributed uniformly over the width or length of the plate. The
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deflections and stresses in the resulting continuum are then obtained from a solution

of orthotropic plate deflection equation. The orthotropic plate method is best suited

to a panel in which the stiffeners are uniform in size and spacing and closely spaced.

The beam-on-elastic-foundation [6] solution is suitable for a panel in which the

stiffeners are uniform and closely spaced in one direction and more sparse the other.

One of the latter members may be thought of as an individual beam having an elastic

support at its point of intersection with each of the closely-spaced orthogonal beams.

An average elastic modulus or spring constant per unit length may be determined by

dividing the force per unit constant per unit length may be determined by dividing

the force per unit deflection of one of these closely spaced members by the spacing.

Using the average spring constant per unit length, the effect of the closely spaced

members is then represented as an elastic support that is distributed evenly along the

length of the widely spaced members. Each of these members is then treated

individually as a beam on an elastic foundation.

In the grillage method [6] of Clarkson et al. (1959), each stiffener in the two

orthogonal sets of members is represented as a simple beam. The external loading

may be applied as a set of equivalent point forces at the intersections of the two beam

systems. At these points of intersection conditions of equilibrium of the unknown

reaction forces between the two beams, together with conditions of equal deflection,

are required to be satisfied. The result is a system of algebraic equations to be solved

for the deflections. From the solutions the forces in each set of beams and the

resulting stresses may be obtained.

The FEM [6], is a versatile technique, may model the structure in a number of

different ways. For example, each segment of stiffener between intersection points

may be represented by a short beam, and the plating may be represented as a

membrane capable of supporting in-plane stress as in the grillage technique.

Conditions of equality of deflections and equilibrium of internal and external forces

are then required to be satisfied at the points of intersection leading to the

formulation of a system of simultaneous algebraic equations relating external loads

to deflections. Machine computation is necessary in order to formulate and solve the

large number of equations that are necessary in a practical situation. This procedure
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is the most general of the four, being virtually unrestricted in the degree to which

complex structural geometry, variable member sizes, boundary conditions and load

distributions can be represented.

Figure 2.2 Stiffened plate nomenclatures

Z Canan Girgin; Konuralp Girgin [7] studied with A generalized numerical method

is proposed to derive the static and dynamic stiffness matrices and to handle the

nodal load vector for static analysis of non-uniform Timoshenko beam-columns

under several effects. This method presents a unified approach based on effective

utilization of the mohr method and focuses on the following arbitrarily variable

characteristics: geometrical properties, bending and shear deformations, transverse

and rotator inertia of mass, distributed and (or) concentrated axial and (or) transverse

loads, and winkler foundation modulus and shear foundation modulus. A successive

iterative algorithm is developed to comprise all these characteristics systematically.

The algorithm enables a non-uniform Timoshenko beam-column to be regarded as a

substructure.

L. Liu, G.R. Liu, V.B.C. Tan [8] investigated with both static deformation and free

vibration analyses are considered. The formulation of the discrete system equations

starts from the governing equations of stress resultant geometrically exact theory of

shear flexible shells. Moving least squares approximation is used in both the
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construction of shape functions based on arbitrarily distributed nodes as well as in

the surface approximation of general spatial shell geometry. Discrete system

equations are obtained by incorporating these interpolations into the Galerkin weak

form. The formulation is verified through numerical examples of static stress

analysis and frequency analysis of spatial thin shell structures. For static load

analysis, essential boundary conditions are enforced through penalty method and

Lagrange multipliers while boundary conditions for frequency analysis are imposed

through a weak form using orthogonal transformation techniques. The EFG results

compare favorably with closed-form solutions and that of FE analyses.

Yao Koutsawa, El Mostafa Daya [9] developed static behavior and free vibration

analysis of laminated glass beam on viscoelastic supports are performed. For the

static case, an analytical way is developed for analyzing and optimization of

laminated glass beam with general restraints at the boundaries. In the case of free

linear vibrations, the modal properties of the glass are determined using a finite

element method which is a powerful tool in the design of support damping treatment

of a sandwich glass for passive vibration control.

G. Akhras, W. Li - Kingston, Ontario [10] studied with a spline FS method is

developed for static and free vibration analysis of composite plates using Reddy’s

higher-order shear deformation theory. This analysis does not require shear

correction coefficients, but yields improved accuracy for thick laminates. In this

method, a consistent interpolation scheme is achieved for transverse shear strains.

Thus, shear locking for thin plates is avoided. In addition, the selected shape

functions can accurately simulate a linear variation of transverse bending moment in

the transverse inplane direction for the laminates with bending and inplane coupling,

so that the convergence is enhanced.

Guanghui Qing, Jiajun Qiu, Yanhong Liu [11] based on the semi-analytical solution

of the state-vector equation theory, a novel mathematical model for free vibration

analysis of stiffened laminated plates is developed by separate consideration of plate

and stiffeners. The method accounts for the compatibility of displacements and

stresses on the interface between the plate and stiffeners, the transverse shear
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deformation, and naturally the rotary inertia of the plate and stiffeners. Meanwhile,

there is no restriction on the thickness of plate and the height of stiffeners.

Zhigang Yu, Xiaoli Guo, Fulei Chu [12] Formulations of a multivariable hierarchical

beam element for static and vibration analysis are presented based on the generalized

variational principle with two kinds of variables. Two forms of shifted Legendre

hierarchical polynomials are used as interpolating basis functions of displacement

and generalized force field functions for the beam element respectively, which will

simplify the computations of the relevant matrices. The multi variable hierarchical

beam element formulations, in which the displacement and generalized force field

functions are independently constructed, are derived by applying the generalized

variational principle with two kinds of variables. Since differential operations to

obtain stress fields in conventional displacement based FEMs are not required, the

present method has very high accuracy for the two kinds of independent variables

simultaneously, especially for the generalized forces. Static and vibration numerical

examples demonstrate the applicability of the proposed method. The proposed

method can be easily extended to deal with structural analysis of shells or plates.

Cheung [2] tabulated a general comparison between FE method and FS method to

detail applications, inputs and outputs of two methods that presented at Table 1.1

R.S. Srinivasan and V. Thiruvenkatachari [14] mention about a method for the static

and dynamic analysis of eccentrically stiffened annular sector plates is presented.

The plate is clamped on all the edges. The integral equation technique is adopted for

the solution. In the static analysis the deflection and stresses at centre and the stresses

at the edges are obtained and they are presented graphically. The results are

compared for particular cases with those of other investigators who have used

different analytical methods. The natural frequencies of stiffened clamped plates are

also obtained for plates with different sector angles.

2.4 Optimization methods

The role of engineers, however, is not only to solve problems of analysis but mainly

to provide designs, that is, to establish suitable solutions to physical problems,
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through proper choices of simplified models, structural schemes, materials to be

employed, geometries to be adopted, and so on, in order to fulfil requirements. In

common practice, this task is usually achieved by making use of the knowledge and

personal experience of the designer who, more or less explicitly taking into account

the environment (physical, economical, etc.) in which his work takes place, selects

among several possible solutions that design which, when compared with all others,

can be considered the best one with respect to parameters dictated by economy,

performance, or other topical features.

For instance, it could be possible to define a proper mathematical model for the

design problem, pointing out mathematical expressions for objectives, physical or

behavioural limitations, constraints, and costs, and look for the best solution(s) as

extreme values of functions (or functional). This is what in engineering is called

optimization. [15]

In the mathematical formulation of optimal design problems, four basic elements

must be taken into account: the objective function (or functional), design variables

(or control variables), state equations and constraints. A short description of possible

objective functions, design variables and constraints [15] will be given, in order to

complete the general introduction on structural optimization.

The objective function [15] is in optimization an objective is supposed to represent a

measure of the quality of a structure, but it is clear that the concept of quality is

extremely general and it can assume different meanings in different situations or

when different purposes are to be considered. For instance, the quality of a structure

could be regarded as its economical quality or, from another point of view, as its

mechanical quality or performance. More generally, in order to fulfil practical needs,

the objective could be defined as the global quality of the structure, where both

aspects, economy and performance, are taken into account. Starting from these

considerations, in structural optimization the most common objective function is

usually assumed to be the cost of the structure. The total cost of a structure can be

considered as the sum of three terms: the cost of materials, the cost of manufacturing

and the cost of the structure in service.
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Of course, many other objective functions can be assumed, usually having a given

total cost as the literature shows: structural compliance used to control the average

stiffness of the structure, collapse load, maximum stress or strain, buckling load,

fundamental frequency, and so on.

Design variables and constraints [15] are most cases variables are usually related to

the geometry of the structure. Such a geometry can be defined through topological

variables, which represent the number and spatial sequence of structural elements

and joint locations, as well as through configurational variables adopted to describe

the shape of centerlines (or midplanes) of structural elements. In the most general

case, the shape of the structure, seen as the spatial domain defined by the body, can

be assumed to be a design variable; in such a case the problem is usually called shape

optimization.

From a physical point of view constraints can be distinguished between behavioural

constraints and side (or technological) constraints. Behavioural constraints are

typically related to the mechanical response of the structure. From a mathematical

point of view, the constraints can be classified as equality constraints, expressed in

form of equations (algebraic, differential or integral), or in the form of inequalities.

The first class reduces the total number of independent variables and the number of

constraint equations cannot be greater than the number of design variables.

Inequality constraints, on the other hand, define the design space, i.e. the domain of

the feasible solutions.

Ravi Shankar Bellur Ramaswamy [16] studied with a design methodology for the

optimization of stiffened plates with frequency and buckling constraints is presented.

The basic idea of the methodology is to consider a plate with a fairly dense

distribution of stiffeners. Thickness of the plate and stiffeners, and the stiffener width

are the design variables. Design variable linking is accomplished by the use of

rational spline surfaces. The FEM is used for the analysis. The plate is modelled

using linear Mindlin plate elements and the stiffeners by linear Timoshenko beam

elements. Both the plate and beam elements are shear-locking free by formulation,

without requiring any special techniques such as reduced integration. Results for a

square stiffened plate with three different stiffener layout patterns and different
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stiffener density are presented. The best four stiffener configurations which give the

lowest mass are chosen and applied to 2:1 and 3:1 rectangular plates. It is concluded

that the present design methodology gives good results, and that the stiffener pattern

and stiffener density play an important role in reducing the mass of a stiffened plate.

David Bushnell, Charles Rankin [17] investigated The capability of the computer

program PANDA2 to generate minimum-weight designs of stiffened panels and

cylindrical shells is enhanced to permit the adding of sub stiffeners with rectangular

cross sections between adjacent major stringers and rings. As a result many new

buckling margins exist that govern buckling over various domains and sub domains

of the doubly stiffened panel or shell. These generally influence the evolution of the

design during optimization cycles. The sub stiffeners may be stringers and/or rings or

may form an isogrid pattern. The effects of local, inter-ring, and general buckling

modal imperfections can be accounted for during optimization. Perfect and imperfect

cylindrical shells with external T-shaped stringers and T-shaped rings and with and

without sub stringers and sub rings and under combined axial compression, external

pressure, and in-plane shear are optimized by multiple executions of a "global"

optimizer called SUPEROPT. It is found that from the point of view of minimum

weight there is little advantage of adding sub stiffeners. However, with sub stiffeners

present the major stringers and rings are spaced farther apart at the optimum design

than is so when there are no sub stiffeners. The weight of a cylindrical shell with sub

stiffeners is much less sensitive to the spacing of the major T-shaped stringers than is

the case for a cylindrical shell without sub stiffeners. The optimum designs obtained

by PANDA2 are evaluated by comparisons with buckling loads obtained from a

general-purpose FE program called STAGS. Predictions from STAGS agree well

with those from PANDA2.

Levy and Ganz [18] analyzed plates that optimized using variational calculus to

obtain the optimality condition which states the thickness is proportional to the strain

energy density and truncated fourier series solution was used to obtain an optimal

shape.

Hojjat and Kok [19] developed prototype knowledge based expert system for

optimum design of steel plate girders used in highway bridges. They developed a
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mathematical optimization algorithm for minimum weight design of plate girders

using generalized geometric programming technique.

Jarmai et al [20] investigated optimal design of cylindrical orthogonally stiffened

shell member of an offshore fixed platform truss, loaded by axial compression and

external pressure using various mathematical programming the methods. In

optimization and design they used ring stiffeners of welded box section and stringers

of halved rolled I-type sections.

Bedair [21] developed approaches for minimum weight design of stiffened plates. He

described an alternative energy based approach for stability analysis of multi-

stiffened plates under uniform compression and idealized the structure as assembled

plate and beam elements are rigidity connected at their junctions. Then he derived

strain energy components for the plate and the stiffener elements in terms of out of

and in plane displacement functions and used SQP to find the buckling load of the

structure for given plate/stiffener geometric proportions.

W. Akla, A. El-Sabbagha, A. Bazb,[22] arranged the orientation angles of stiffeners

arranged in the form of isogrid configuration over a flat plate are selected to optimize

the static and dynamic characteristics of these plates/stiffeners assemblies. The static

characteristics are optimized by maximizing the critical buckling loads of the isogrid

plate, while the dynamic characteristics are optimized by maximizing multiple

natural frequencies of the stiffened plate. A FE model is developed to describe the

statics and dynamics of Mindlin plates which are stiffened with arbitrarily oriented

stiffeners. The model is used as a basis for optimizing separately or simultaneously

the critical buckling loads and natural frequencies of the plates per unit volume of the

plates/stiffeners assemblies. Numerical examples are presented to demonstrate the

utility of the developed model and optimization procedures. The presented approach

can be invaluable in the design of plates with isogrid stiffeners for various vibration

and noise control applications.

Bisagni and Lanzi [23] investigated post buckling optimization procedure for the

design of composite stiffened panels subjected to compression loads using neutral

networks. To overcome too expensive analyses from a computational point of view,
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he developed an optimization procedure. It is based on a global approximation

strategy, where the structure response is given by a system of neural networks trained

by means of FE analyses, and on genetic algorithms that results particularly

profitable due to presence of integer variables.

Kang and Kim [24] studied minimum weight design of compressively loaded

composite plates and composite stiffened panels under constrained post buckling

strength. As an optimization technique, they used a modified genetic algorithm to

find optimum points.

There are lots of studies about stiffened plates, free vibration, buckling, static and

dynamic analyses and also optimization of plates. These studies are shown on this

chapter. Static and dynamic analyses of non- uniform beam-columns under several

effects, static behavior and free vibration analysis of laminated glass beam and

composite plates have been studied. In optimization methods, design methodology

for the optimization of stiffened plates with frequency and buckling constraints,

optimum design of stiffened steel plate girders and developed mathematical

optimization algorithm for minimum weight design of plate and post buckling

optimization at composite stiffened panels have been studied.

In this thesis, free vibration analysis and structural optimization of stiffened plates

was studied. The critical motivation of the thesis is structural shape and structural

size optimization of stiffened plates including some combinations of structural

elements, using a computer code. The specific objectives are investigating the

performance of each structural element, observing the change in element shape

during optimization procedure to remark the efficiency of each structural element

and receiving the best geometric shape and thickness variation for the considered

stiffened plate.
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CHAPTER 3

FREE VIBRATIONAL ANALYSIS OF PLATES

3.1 Introduction

Most of the structures are constructed using plates have regular geometric shapes

along longitudinal direction. Analyzing such structures with classical methods or FE

method is extravagant and the cost of the solutions can be very high as we discussed

in previous chapter. Also designating the geometric positions of FEs and element

connectivity properties of such structures to computer applications is time consuming

and tedious. If such structures also have simple supported boundary conditions it is

suitable that to apply FS method for free vibration analysis to simplify solution

procedure.

3.2 Structural Plate Theories

The plate theories are divided in two groups; Kirchoff-Love (thin) plate theory and

Mindlin-Reissner (thick) plate theory. The plate theories are also basis for shell,

plates and also stiffened plates.

Kirchoff-Love shell theories neglect transverse shear and rotary inertia effects and

consequently may yield incorrect results, especially for higher values of the ratio of

the thickness to minimum span and also for higher modes. In addition, many

structures may not be considered as a ‘thin plate’; in this regard transverse shear

strains in plates cannot be ignored. Therefore, the plate theory is more suitable in

general, and the elements developed based on the Mindlin-Reissner plate theory are

more practical and useful for real life problems.
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Mindlin-Reissner shell theory allows for transverse shear deformation effects. The

main assumptions are that:

 Displacements are small compared to shell thickness,

 Stress normal to the mid-surface is negligible,

 Normals to the mid-surface before deformation remain straight but not

necessarily normal to the mid-surface after deformation.

It is well known that displacement based Mindlin-Reissner finitestrips require only

C(0) continuity of the displacements and independent normal rotations between

adjacent elements. This provides an important advantage over FS based on classical

Kirchhoff-Love thin shell theory where C(1) continuity is strictly required. Thus, it is

simple to formulate Mindlin-Reissner shell elements. However, several difficulties

can be emerged when Mindlin-Reissner shell elements are used in thin shell

situations. The success of the Mindlin-Reissner formulation presented here for both

thick and thin shell analysis lays in the use of reduced integration techniques for the

numerical computation of stiffness matrix. This simply implies that the shear terms

contributing to the stiffness matrix are numerically integrated with a lower order

Gaussian quadrature than that needed for their exact computation, whereas the rest of

the stiffness matrix is exactly calculate. Care has been taken to avoid mechanism or

spurious zero-energy modes [25].

3.3 Finite Strip Formulation

In this section, the Mindlin-Reissner FS formulation for prismatic plates and shells in

right plan form will be discussed.

3.3.1 Strain Energy

If consider the Mindlin-Reissner shell strip shown in Figure 3.1, translations in the ℓ,

y and n directions can be represented by the displacement components uℓ, vℓ and wℓ.

The displacement components uℓ, wℓ may be written in terms of global displacements

u and win the x and z directions as

uℓ = u cos α + w sin α

wℓ = - u sin α + w cos α (3.1)
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Figure 3.1 Definition of Mindlin-Reissner FS

The strain energy for a typical curved Mindlin-Reissner strip e of length b shown in

Figure 3.1 is given in terms of the global displacements u, v, w and the rotations ø

and ψ of the mid-surface normal in the ℓn and yn planes respectively by the

expressions (3.1).

= ∫ ∫ ( + + ) (3.2)

The strain terms εm, εb and εs are in-plane strains, bending strains and transverse

shear strains respectively. These strain terms are given in global coordinate system in

Table 3.1.

Table 3.1 Strain terms and strain displacement matrices

Strain terms Derived Equations= [ , , ] [∂u∂l cosα+ ∂w∂l sinα, ∂v∂y , ∂u∂y cosα+ ∂w∂y sinα+ ∂v∂y]T
= [ , , ] − ∅ , − , −( ∅ + ) − +
= [ℓ , ] [− ℓ + ℓ − ∅, − + − ]
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Considering an isotropic material has modulus of elasticity E, Poisson’s ratio υ and

thickness t, the matrix of membrane rigidities, flexural rigidities and shear rigidities

are Dm, Db, Ds respectively and they are given in Table 3.2.

Table 3.2 Membrane, flexural and shear rigidities

Rigidities Derived Equations

Dm (1 − ) 1 01 00 0 (1 − )/2
Db 12(1 − ) 1 01 00 0 (1 − )/2
Ds 2(1 + ) 1 00 1

k2 is the shear modification factor and is usually taken as 5/6 for rectangular cross

section. Detail information about derivation of FS method can be found in [25].

3.3.2 Potential Energy of the Applied in plane Stress

In plane strain energy of a structure converted to energy by applied in plane loads.

The potential energy of the applied in plane σℓ
0, σy

0 and τ0
ℓy arises from the action of

the applied stresses on the corresponding second order strains εℓ
nl, εy

nl, γℓy
nl are taken

from Dawe and Peshkam [26]. The potential energy of the shell of volume Vg is

= ∫ ℓ ℓ + + ℓ ℓ (3.4)

Integrating though the thickness, this becomes

= ∫ ∫ ℓ ℓ + ℓ + ℓ + + + +ℓ
ℓ ∅ℓ + ℓ + ∅ + ℓ (3.5)
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3.3.3 Finite Strip Idealization

Using n-nodded, C(0) strips, the global displacements and rotations of strips may be

interpolated within each strip in terms of truncated Fourier series along direction y, in

which both the material and geometrical properties of the plate are taken to be

constant, i.e.

(ℓ, ) = ∑ (ℓ) ; (ℓ, ) = ∑ (ℓ)(ℓ, ) = ∑ (ℓ) ; ∅(ℓ, ) = ∑ ∅ (ℓ)(ℓ, ) = ∑ (ℓ) (3.7)

Where Cp = Cos(pπy/b) and Sp= Sin(pπy/b), up, vp, wp, øp and ψp are displacement

and rotation amplitudes for the pth harmonic term.

The next step is to discretize the displacement and rotation amplitudes (which are

functions of the ℓ- coordinate only) using an n-noded FE representation so that

within a strip e the amplitudes can be written as

(ℓ) = (ℓ) = (ℓ) =
∅ (ℓ) = ∅ (ℓ) =

= (3.7)

Where = [ , , , ∅, ]= [ , , , ∅ , ] (3.8)

and
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= 0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0 (3.9)

Ni(ξ) is the shape function associated with node i. These elements are essentially

isoperimetric so that

= = = (3.10)

Where xi and yi are typical coordinates of node i and ti is the thickness at node i. The

shape functions Ni used in this study is given in Table 3.3.

Table 3.3 Shape functions

Shape Functions

Linear
= 12 (1 − )
= 12 (1 + )

Quadratic

= 2 ( − 1)= 1 −= 12 (1 + )

Cubic

= 916 19 − ( − 1)
= 2716 (1 − ) 13 −
= 2716 (1 − ) 13 +

= − 916 19 − ( + 1)
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Note also that Jacobian is defined as;

= ℓ = + /
dℓ=Jdξ (3.11)

Where

= = (3.12)

Also, it is possible to write that= 1J = 1J (3.13)

and

ℓ = 1J (3.14)

3.3.4 Stiffness Matrix

Stiffness matrix Ke of strip elements can be evaluated considering the strain energy

of the Midlin-Reissner strip. The strain energy of a strip element can be expressed as

= 12 (3.15)

Where the typical submatrix of the stiffness Ke of strip e linking nodes i and j and

harmonics p and q has the form

= + + (3.16)

The membrane strains εm may then be expressed as

=
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The flexural strains or curvatures εb can be written as

=
The transverse shear strains εs are approximated as

=
Where Bmi, Bbi and Bsi are the membrane, bending and shear strain matrices

respectively and (strain displacement) matrices and given in Table 3.4.

Table 3.4 Strain displacement terms

Derived Equations( ℓ⁄ ) 0 ( ℓ⁄ ) 0 00 − ̅ 0 0 0̅ ( ℓ⁄ ) ̅ 0 00 0 0 −( / ℓ) 00 0 0 0 ̅̅ / 0 ̅ / − ̅ −( / ℓ)−( / ℓ) 0 ( / ℓ) − 0− ̅ 0 ̅ 0 −
where ̅ = / .

Using n-noded, C(0) strips, the global displacements and rotations may be

interpolated within each strip. The next step is to discretize the displacement and

rotations amplitudes using n-noded FE representation.

If we list the nodal displacements and accelerations in a vector d and
..
d respectively,

then we distritize FS idelizaiton into (2.1) for all the strips and assuming simple

harmonic motion we obtain the expression

  0dMKdd   (3.17)
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where K and M are the global stiffness and mass matrices respectively and contain

submatrices  contributed from each strip e linking nodes i and j and harmonics p and

q. These submatrices have the form

  dyJd
b q

sjs
Tp

si
q
bjb

Tp
bi

q
mjm

Tp
mi

pqe
ij   



0

1

1
}][][]{[ BDBBDBBDBK (3.18)
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where typically
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and p
bi

p
mi BB , and p

siB are the membrane, bending and shear strain displacement

matrices associated with harmonic p, node i and Jacobian J. pqe
ij ][K and 0M pqe

ij ][

if qp  because of the ortogonality conditions. The matrix ppe
ij ][M is independent

of the harmonic number p and therefore, the same matrix can be used for all the

different harmonic equations as







1

1
}]{[2/][ Jdb j

T
i

ppe
ij PNNM (3.21)

5IN ii N in which I5 is the 55 identity matrix. Similar to buckling analysis,

reduced integration is adopted to avoid locking behavior.

Since (2.3) must be true for any set of virtual displacements pd , (2.3) may be

written in uncoupled form for each harmonic p as

0dMdK  pppppp  (3.22)
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The general solution of (2.8) is written as

tipp pe dd  (3.23)

where )sin()cos( tite pp
ti p  and p and pd are pth natural frequency and

vibration mode (eigenvector). Thus (3.24) may be rewritten in the standard

eigenvalue form for each harmonic p as

0dMK  ppp2
p

pp )( (3.24)

In the present studies the eigenvalues are evaluated using the subspace iteration

algorithm.

3.4 Free Vibration Examples

Several examples for which solutions are available have been considered and results

are compared between design computer program.

3.4.1 Centrally Stiffened plate Example

In first example the simply supported stiffened plate in Figure 3.2 has been analysed

by proposed method [27] the results are represented in Table 3.5. The properties of

analized plate are Modulus of elasticity E = 2.07x105 N/mm2, mass density  =

7.83x106 kg/mm3, poisson’s ratio ν = 0.3, geometric properties of plate can be shown

on figure and also the stiffener is at the center of the plate. The analises model has

number of four key point and three segments.

Table 3.5 Natural frequencies (Hz) of a simply supported plate having a centrally

spaced stiffener

Mode Ref [27] Present Study % Difference

1 254.94 256.34 0.55

2 269.46 272.4 1.09

3 511.64 520.3 1.69
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Figure 3.2 Centrally Stiffened Plate

The differences between two results are not considerable, in first mode the result is

254.94 at [27], in present analysis it is 256.34 and the difference between results is %

0.54, in second mode the result is 269.46 at [27], in our analysis it is 272.4 and the

difference between results is % 1.08 and the third mode the result is 511.64 at [27],

in present analysis it is 520.3 and the difference between results is % 1.66.

3.4.2 Three Stiffened Plate Example

The second example volume of stiffened plate is 691480.0 mm3, width of all plate is

440 mm, length of plate is 590 mm, the following material properties are used;

modulus of elasticity E= 73000 KN/mm2, poison’s ratio ν is 0.33, mass density  8.0

x 106 kg/mm3 thickness of plate is 2.236 mm, and thickness of stiffener is 2.236 mm,

height of stiffener is 28.000 mm and number of stiffeners is three which is shown at

Figure 3.3.
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Figure 3.3 Geometry of three Stiffened Plate

Results of analysis and difference of Sap 2000 and present analysis are shown at

Table 3.6.

Table 3.6 Results of analysis and difference of Sap 2000 and .Present analysis

Mode Sap 2000 Present % Difference

1 104.57 104.34 0.22

2 171.38 169.42 1.15

3 203.60 216.42 5.92

4 262.46 275.27 4.65

3.4.3 Four stiffened Plate Example

In the third example thickness of plate is 2.123 mm, thickness of stiffener is 2.123

mm, volume of stiffened plate is 691480.0 mm3, material properties are used same

previous example, width of plate is 440 mm, length of plate is 590 mm, and height of

stiffener is 28.000 mm and number of stiffeners four which is shown at Figure 3.4.
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Figure 3.4 Geometry of four Stiffened Plate

Results of analysis and differences are tabulated in Table 3.7.

Table 3.7 Results of analysis and difference of Sap 2000 and .present analysis

Mode Sap 2000 Present % Difference

1 221.44 224.77 1.48

2 275.45 275.06 0.14

3 501.67 502.21 0.107

4 1174.20 1161.62 1.08

For the verification of computer code used in this thesis optimized plates also

analyzed with SAP 2000 finite element structural analysis and design computer

program. At Centrally stiffened plate example, results are compared with Chen [27]’s

study at Table 3.5. Results are nearly closed and they can be obtained. At three

stiffened plate example, results are compared with SAP 2000 at Table 3.6, results are

closed and they can be obtained. At four stiffened plate example, also analyzed with

SAP 2000 finite element structural analysis, they are closed and results can be

obtained.
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CHAPTER 4

OPTIMIZATION PROCEDURE

4.1 Introduction

The general principle by Maupertuis proclaims “If there occur some changes in

nature, the amount of action necessary for this change must be as small as possible”.

In this view, the main purpose of optimization is obtaining the best outcome of a

given problem while assuring some restrictions. In this regard to consume limited

resources that maximizes the objective. The objective varies depending on problem

types and desired functions of problem.

The importance of minimum weight design of structures was first recognized by the

aerospace industry where aircraft structural designs are often controlled more by

weight than by cost considerations. In other words, industries dealing with civil,

mechanical and automotive engineering systems, cost may be the primary

consideration although the weight of the system does affect its cost and performance.

A growing realization of the scarcity of raw materials and a rapid depletion of our

conventional energy sources is being translated into a demand for lightweight,

efficient and low cost structures [21].

Eigenvalue effects of stiffened plates can be decrease to very high values by using

properly dimensioned stiffened plate elements. In this point, it is necessary to

mention about the essentially of structural optimization procedure. This procedure

involves iterative solutions and requires reanalyzing of problem several times before

obtaining the optimum solution. In this study objective function is minimization of

the eigenvalue of stiffened plates while satisfying constant volume constraint.
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4.2 Structural Optimization Algorithm

The basic algorithm for structural shape optimization is given in Figure 4.1.

Figure 4.1 Structural Optimization Flowchart

Özakça et al [22] summarized the basic algorithm of structural optimization, using

FS as an analysis method and SQP as an optimization method, in following steps;

1. Problem definition: Consider the case of the structural optimization of a

plate structure in which we wish to maximize the eigenvalues subject to the

constraints that the total volume of the plate should remain constant.

2. Shape definition: The shape of the plate cross section is defined in some

convenient from that allows us to examine the sensitivities of the design to small

changes in shape. Here, we describe the geometry of the plate cross section using

parametric cubic spline segments with the coordinates specified at certain key points.
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3. Create FS model: the next step is to generate a mesh of suitable FSs. Here,

an unstructured mesh generator with mesh density specified at some key points and

then interpolated though the segments appropriately are used. In order to ensure the

accuracy of the FS model, it is necessary make sure refinement does not occur during

the analysis in each optimization iteration. This means that, the strip size distribution

(mesh density) remains unchanged during redesign. As the structural shape changes

during the optimization process, the re-meshing is based on predetermined mesh

density at all iteration. As with normal FS analysis also the boundary conditions and

material properties must be defined.

4. FS analysis: Next we carry out a FS analysis and in the present work the

structure is modeled using linear, variable thickness, Mindlin-Reissner, C(0) FSs.

5. Sensitivity analysis: The sensitivities of the eigenvalue and volume of the

current design to small changes in the design variables are then evaluated. These

design sensitivities are generally nonlinear implicit functions of the design variables

and are therefore difficult and expensive to calculate. The numerical accuracy of

sensitivity analysis affects the search directions that are used in optimization

algorithms.

6. Optimize parameters: Using the objective and constant functions and their

derivatives, SQP optimization algorithm is employed to optimize the parameters or

design variables. The new set of values will result in a modified design. Furthermore,

the constrains must be satisfied if the new design is to be demand acceptable. If a

convergence criterion for optimization algorithm is satisfied, then the optimum

solution has been found and the solution process is terminated.

7. Update optimization model: After the optimization, it is necessary to

update the geometric model, i.e. the coordinates and/or thickness of the primary

design variables in structural optimization. This is the only part of the original input

data which has to be updated with for all optimization iteration. If convergence has

not been achieved, the new geometry is sent to the mesh generator which
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automatically generates a new analysis model and the whole process is repeated from

step2.

4.2.1 Mathematical Definition of Optimization Problem

Problems of structural optimization are characterized by various objectives and

constraints, which are generally nonlinear functions of the design variables. These

functions can be discontinues and non-convex. Each objective and constraint choice

defines a different optimization problem, and solution can be found using several

mathematical programming methods.

In general the constraint functions are grouped in to these classes: equality

constraints hj, inequality constraints gi, and the geometric (regional) constraints

defined by upper and the lower bounds of the design variables.

However, all optimization problems can be expressed in standard mathematical terms

as: minimize (or maximize)

F(s) (4.1)

Subject to:

gi (s) ≤ 0 i= 1,….m

hj (s) = 0 j= 1,….l (4.2)

sk
l ≤ sk ≤sk

u k= 1,….ndv

The notion of improving or optimizing a structure implicitly presupposes some

freedom to change the structure. The potential for change is typically expressed in

terms of ranges of permissible changes of a group of parameters. Such parameters

are usually called design variables in structural optimization terminology. Design

variables can be cross-sectional dimensions or member sizes; they can be parameters

controlling the geometry of the structure and its material properties, etc. In which, s

is the design variables vector.
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The notation of optimization also implies that are some merit function F(s) or

functions F(s) = [F1(s), F2(s), F3(s),…..] that can be improved and can be used as a

measure of effectiveness of the design. The common terminology for such functions

is objective functions. For structural optimization problems, weight, displacements,

stresses, vibration frequencies, eigenvalues and cost or any combination of these can

be used as objective functions.

In optimization process of structures, there are limits about design variables.

Sometimes design constraints may be dimensions of structural elements, weight of

structure, vibration frequency and displacement of a point, gi(s) and hj(s) are the

constraint functions. Finally, sk
l and sk

u represent the lower and the upper bounds of

the design variables; m is the number of design variables used.

In this study objective function is minimizing the eigenvalue of stiffened plates.

Design variables are stiffened plate cross sectional elements dimensions that are

defined clearly in Chapter 5. When minimizing eigenvalue of stiffened plate first

constraint is an equality constant material volume constraint. Optimized plates

widths and lengths are constant. Also there are upper and lower limits inequality

constraints of design variables.

Eigenvalue constraint g(s) can be expressed asg (s) = 1 − ( (Eig. )i(Eig. )max) (4.2)

where (Eig.)max defines the upper limit on eigenvalue and (Eig.)i describing the

eigenvalue of the current design. Similarly

( ) = imax − 1 (4.3)

Defines the volume constraint Vi and Vmax are the current value and upper limit of the

volume respectively.
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4.2.2 Shape Definition

4.2.2.1 Structural Shape Definition

The designation of geometric model and control the parameters of optimization

procedure for an appropriate flow algorithm are complex and require attention. The

cross section of typical stiffened plate structure is shown in Figure 4.2.

To form cross section geometry of stiffened plates to introduce computer code the

segments must be generated one by one. Generating a straight segment can be done

by entering its two key points geometrical coordinates as input data.

Figure 4.2 Geometric Representation of Stiffened Plate

Defined number of key points to form the cross sectional shapes of the stiffened

plates which are important for computational algorithm. More key points mean more

design variables for computer code. So increasing the defined number of key points

cause increasing computational time.

For the applicability to real life, increasing the efficiency of computational effort and

symmetrical behavior of structural elements it is a necessary situation to link the

design variables at two or more key points. By linking of design variables, the length

of a considered segment can be assigned as a design variable and symmetry of shape

in an axis can be easily achieved. In this regard, the number of design variables for

optimization is considerably reduced.



35

4.2.2.2 Structural Thickness Definition

The thickness of the stiffened plate elements are specified at some or all of the key

points for the desired initial element shape of the structure and then interpolated by

program.

4.2.3 Mesh Generation for Finite Strip Analysis

After defining the geometry, the next step is to generate a proper FE mesh for the

cross section of stiffened plate. This meshing procedure can be carried out with an

automatic mesh generator for desired mesh density. Automatic mesh generator has

the capability of meshing the arbitrary complex geometry given no input other than

the geometric representation of the domain to be meshed and an associated mesh

density distribution. Mesh generation should be robust, versatile and efficient to

obtain more accurate results. Here, we use a mesh generator which allows refinement

of FE meshes. It also allows for significant variation in mesh spacing throughout the

region of interest. The mesh generator can generate meshes of two three and four

noded elements and strips.

It is very significant factor for obtaining more accurate results to mesh the cross

section properly. In this regard mesh operation should be carried out considering

critical points in cross section. Also meshes in segments should be compatible with

each other. Figure 4.3 shows a mesh example of three stiffened plates.

Figure 4.3 Mesh Representation of Plate

The mesh density is a piecewise linear function of the values of mesh size δ at some

points along the mid-surface of structure.
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4.2.4 Structural Finite Strip Analysis

It is the important factor for optimizing methods to reach optimum solution in

minimum computational time. So efficiency of the optimization methods are based

on the computational time required in the process. Most of the numerical

optimization methods have iterative procedures. So the number of structural analyses

required to complete the optimum solution is large. In this regard, to reduce the cost

of problem the efficient and inexpensive structural analysis method should be used.

In such case, FS method is the best approach to the problems. As discussed in

previous chapter the FS method has proven to be an inexpensive and useful tool in

analysis of structures having regular prismatic type geometries and simple supported

on diagrams at two opposite edges with the remaining edges arbitrarily restrained.

Theory and implement of FS method for vibration analyses are given in previous

chapter.

4.2.5 Sensitivity analysis

Sensitivity analysis is a crucial part of optimization procedure. After FS analysis

completed the sensitivities of the current design should be evaluated to small changes

in the design variables. We calculated the sensitivities of items such as vibration

analyses based on finite differences.

Sensitivity analysis is dependent up on the systematic calculation of the derivatives

of the response for the FS model with regards to parameters forming the model

geometry i.e. the design variables which may be shape, thickness or length. The

structural response quantities with respect to the shape (or other) variables at first

partial derivatives and these variables provide the essential information required to

couple mathematical programming methods and structural analysis procedures. The

sensitivities of responses provide the mathematical programming algorithm with

search directions for optimum solutions.

In the present study, PLATEV_1 code uses the finite difference to calculate

sensitivities. For the numerically approximation of derivatives the finite difference
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method uses a difference formula. The finite difference scheme is accurate and

computationally efficient.

4.2.6 Derivative of Volume

A forward finite difference approximation is used to evaluate the volume derivative

i ≈ ( i + ∆ i) − ( i)∆ i (4.4)

Where the volume V of the whole structure (or cross-sectional area of the structure

may also be used) can be calculated by adding the volumes of numerically integrated

FS.

4.3 Mathematical Programming

SQP is used as a mathematical programming to generate shapes with improved

objective function values using the information derived from the analysis and design

sensitivities. No effort has been made to study the mathematical programming

methods used for structural optimization procedures and the SQP algorithm is used

here essentially as a ‘black box’.
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CHAPTER 5

OPTIMIZATION OF PLATES

5.1 Introduction

FS analysis and SQP optimization is to be used to find an optimal stiffened plate

design using prismatic, rectangular sub stiffeners and pads. The starting point for

these designs is the baseline plate from which the initial values of parameters are

developed. A complete description of the baseline design is outlined in the following

sections.

The main interest of this study is minimizing the eigenvalue of stiffened plates by

optimizing the plate section dimensions under constant volume constraint.

Optimization is carried out for the following types of stiffened plates that are

expressed below and plate types are shown on four stiffened plate template and given

in Figure 5.1.

Types of stiffeners:

a) Straight stiffened plate

b) Straight stiffened plate with sub stiffeners

c) Straight stiffened plate and pads under main stiffeners

d) Straight stiffened plate with sub stiffeners and pads under stiffeners

5.1.1 Optimization Process

It is desired that two separate linear eigenvalue optimizations are run. The first

design is carried out for obtaining thickness of initial values by providing constant

cross sectional area. The second run will apply the design constraints associated with
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manufacturing process and other issues. Full details of the Design Variables (dv)s

and constraints are outlined in the preceding sections.

5.1.2 Baseline Design

The baseline panel is the foundation for the stiffened plate design. The plate cross

section is constant along its length. The baseline plate cross section has a total are of

1172 mm2 of skin material available for manipulation.
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Figure 5.1 Examined Stiffened Plate Types

5.1.3 Parameter Definition

Figure 5.2 below describes the cross section and geometric (design variables)

parameters associated with the prismatic blade sub stiffened panel.



40

Figure 5.2 Plate Variable Parameters (Design Variables)

tskin Skin thickness

hstiff Primary stiffener height

tstiff Primary stiffener thickness

wpad Width of pad under stiffeners

tpad Thickness of pad under stiffeners

hsub Sub stiffener height

tsub Sub stiffener thickness

dstiff Distance  between stiffeners

nstiff Number of stiffeners

5.1.4 Optimization Set up

This design has a number of sub stiffeners running parallel to primary stiffeners.

Only variable parameters can be changed during the optimization process.

5.1.5 Design Constraints

There are a number of design constrains based on either the general design strategy

or the manufacturing process as outlined below. All types of examined plates have

the common fixed constraints as shown in Table 5.1. The common constraints are

shown on a three dimensional aspect of five straight stiffened plate in Figure 5.3.
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Table 5.1 Common Constraints

Plate width 440 mm

Plate length 590 mm

Total plate volume 691480 mm3

Nevertheless, design variables have constrains (minimum and maximum limits) that

are expressed in relevant sections.

5.1.6 Material Properties and Boundary Conditions

In this study eigenvalue vibrational analysis is considered. This analysis only

requires elastic material properties. The used material properties are:

Modulus of elasticity (E): 73x109 N/m2

Poisson’s ratio (v): 0.33

Boundary conditions are shown in Figure 5.4.

Figure 5.3 A Sample Three Dimensional Aspect of Stiffened Plate (Straight

Stiffener with Seven Stiffeners)
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Figure 5.4 Boundary Conditions

5.2 Plate Types and Optimization Process

Straight stiffened plates defined in Section 5.1 are optimized. Optimization processes

are defined, results of optimizations are presented and discussions are made in this

section. All dimensions in tables are in mm in tables.

5.2.1 Straight Stiffeners

5.2.1.1 Straight Stiffened Plate

Figure 5.5 shows straight stiffened plate with three stiffeners

Figure 5.5 Straight Stiffened Plate



43

a) Optimization Process:

i) Size Optimization (Type1): Optimization is performed using thickness of

plate skin (tskin), thickness of stiffeners (tstiff). During this stage height of

stiffeners (hstiff) have constant value of 28.0 mm (see Figure 5.5)

ii) Shape Optimization: Optimization is performed using all variables;

thickness of plate skin (tskin), thickness of stiffeners (tstiff), and height of

stiffeners (hstiff) (see Figure 5.5).

iii) Shape Optimization (Type2): Optimization is performed using thickness

of plate skin (tskin), height of stiffeners (hstiff). During this stage

thicknesses of stiffeners (tstiff) have constant value of what calculated at

initial (see Figure 5.5).

Design constraints of three stages are specified in Table 5.2. Optimization process is

repeated from two to eight stiffeners.

Table 5.2 Lower and Upper limits of design variables for stiffened plates

Min (mm) Max (mm)

Thickness of Plate tskin 1.1 3.0

Thickness of Stiffener tstiff 0.5 6.0

Height of Stiffener hstiff 8.0 40.0

b) Discussion of Results

Three types of optimization are performed. These are size optimization (Type 1) with

two design variables (tskin, tstiff), shape optimization with three design variables (tskin,

tstiff, hstiff), and shape optimization (Type 2) with two design variables (tskin, hstiff).

Effect of number of stiffeners is also observed. Number of stiffeners from two to

eight is optimized. Optimizations are carried out for maximize of eigenvalue subject

to constant volume constraint.
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i) Size Optimization (Type 1): Thickness of plate and stiffeners are kept equal at

initial design. The height of stiffeners is constant and equal to 28.0 mm. The

optimum values of design variables and eigenvalues are given in Table 5.4. The

highest improvement is obtained for four stiffeners case and approximately equal to

16.92 %. The stiffened panel analyzed using cubic strips. In order to obtain more

accurate results the large number of degrees of freedom is taken an all analysis. The

smallest eigenvalue is obtained in eight stiffeners case and equal to -52.003. The

plate thickness is thinner than stiffeners in optimum results except two stiffeners case

and by the increasing of the number of stiffeners skin thickness is going to be thinner

and also stiffener thickness is going to be thinner except two stiffeners case.

Table 5.3 Size optimization (Type 1) of Straight Stiffened Plate

n hstiff tskin tstiff Initial Eig. Opt. Eig. %

2 28 2.447 1.698 -18.101 -18.230 0.71

3 28 1.518 6.000 -30.299 -34.721 14.59

4 28 1.270 5.472 -37.642 -44.011 16.92

5 28 1.356 4.107 -41.860 -47.972 14.60

6 28 1.409 3.284 -44.628 -50.092 12.24

7 28 1.382 2.875 -46.558 -51.282 10.14

8 28 1.350 2.579 -48.018 -52.003 8.29

Figure 5.6 Comparison of Eigenvalues at Size Optimization (Type 1)
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ii) Shape Optimization: Thickness of plate and stiffeners are kept equal at initial

design. The optimum values of design variables and eigenvalues are given in Table

5.3. The highest improvement is obtained for six stiffeners case and approximately

equal to 27.74 %. The stiffened panel analyzed using cubic strips. In order to obtain

more accurate results the large number of degrees of freedom is taken an all analysis.

The smallest eigenvalue is obtained in eight stiffeners case and equal to -60.209.

Moreover, it is important to note that in optimum results skin thickness is thinner

than stiffener thickness and the stiffener thicknesses are become less at two stiffeners

plate toward eight stiffeners plate also the height of stiffeners increase and after five

stiffener case thicknesses reach upper limits.

Table 5.4 Shape Optimization of Straight Stiffened Plate

n hstiff tskin tstiff Initial Eig. Opt. Eig. %

2 30.439 1.833 6.000 -18.101 -20.460 13.02

3 28.806 1.485 6.000 -30.299 -34.737 14.64

4 32.717 1.154 5.074 -37.642 -45.620 21.19

5 40.000 1.731 2.051 -41.860 -51.296 22.54

6 40.000 1.584 1.978 -44.628 -57.008 27.74

7 40.000 1.502 1.824 -46.558 -58.648 25.96

8 40.000 1.430 1.695 -48.018 -60.209 25.38

Figure 5.7 Comparison of Eigenvalues for Shape Optimization
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iii) Shape Optimization (Type 2): Thickness of plate and stiffeners are kept equal at

initial design. The thickness of stiffeners is constant and equal to initial value. The

optimum values of design variables and eigenvalues are given in Table 5.5. The

highest improvement is obtained for six stiffeners case and approximately equal to

28.13 %. The stiffened panel analyzed using cubic strips. In order to obtain more

accurate results the large number of degrees of freedom is taken an all analysis. The

smallest eigenvalue is obtained in eight stiffeners case and equal to -60.074. The

plate thickness is thinner than stiffeners in optimum results except two stiffeners case

and by the increasing of the number of stiffeners skin thickness is going to be thinner

and also height of stiffener is going to be increase, the height of stiffeners reach

upper limits after four stiffeners case.

Table 5.5 Shape Optimization (Type 2) of Straight Stiffened Plate

n hstiff tskin tstiff Initial Eig. Opt. Eig. %

2 19.270 2.456 2.362 -18.101 -18.339 1.31

3 36.924 2.100 2.236 -30.299 -32.264 6.48

4 40.000 1.891 2.123 -37.642 -43.618 15.87

5 40.000 1.745 2.020 -41.860 -51.290 22.52

6 40.000 1.612 1.927 -44.628 -57.183 28.13

7 40.000 1.490 1.842 -46.558 -58.642 25.95

8 40.000 1.379 1.765 -48.018 -60.074 25.10

Figure 5.8 Comparison of Eigenvalues at Shape Optimization (Type 2)
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Shape optimizations slightly gave better results compared to size optimizations

(Type 1) and shape optimizations (Type 2) as shown Figure 5.9.For small number of

stiffeners both optimizations give similar results. However when the number of the

stiffeners increase shape optimization and shape optimization (Type 2) give better

results. In shape optimization and shape optimization (Type 2) height of the

stiffeners are increase; it is the fundamental causes of better eigenvalues. Shape

optimization a little better than the shape optimization (Type 2) because of thickness

of stiffeners.

Figure 5.9 Comparison of Case Optimizations

5.2.1.2 Straight stiffened plate with sub stiffeners

Figure 5.10 shows straight stiffened plate with sub stiffeners. Sub stiffeners are

attached between stiffeners, which divide the distance between two equal parts.

Figure 5.10 Straight Stiffened Plate with Sub stiffeners
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a) Optimization Process:

i) Size Optimization (Type 1): Optimization is performed using thickness of plate

skin (tskin), thickness of stiffeners (tstiff), thickness of sub stiffeners (tsub). During this

stage height of stiffeners (hstiff) has constant value of 28.0 mm and height of sub

stiffeners (hsub) has a constant value of 14 mm (see Figure 5.10).

ii) Shape Optimization: Optimization is performed using all variables; thickness

of plate skin (tskin), thickness of stiffeners (tstiff), thickness of sub stiffeners (tsub),

height of stiffeners (hstiff) and height of sub stiffeners (hsub) (see Figure 5.10).

iii) Shape Optimization (Type 2): Optimization is performed using thickness of

plate skin (tskin), thickness of stiffeners (tstiff), thickness of sub stiffeners (tsub) and

height of sub stiffeners (hsub). During this stage height of stiffeners (hstiff) has

constant value of 28.0 mm (see Figure 5.10).

iv) Shape Optimization (Type 3): Optimization is performed using thickness of

plate skin (tskin), height of stiffeners (hstiff), height of sub stiffeners (hsub). During this

stage thickness of stiffeners (tstiff) and thickness of sub stiffeners (tsub) have constant

value of what calculated at initial (see Figure 5.10).

v) Shape Optimization (Type 4): Optimization is performed using thickness of

plate skin (tskin), height of stiffeners (hstiff), thickness of stiffeners (tstiff). During this

stage height of sub stiffeners (hsub) has constant value of14 mm and thickness of sub

stiffeners (tsub) has constant value of what calculated at initial (see Figure 5.10).

Design constraints of five stages are specified in Table 5.6. Optimization process is

carried out for two to eight stiffeners.
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Table 5.6 Lower and Upper limits of design variables for stiffened plates with Sub stiffeners

Min (mm) Max (mm)

Thickness of Plate tskin 1.1 3.0

Thickness of Stiffener tstiff 0.5 6.0

Thickness of Sub stiffener tsub 1.0 3.0

Height of Stiffener hstiff 8.0 40.0

Height of Sub stiffener hsub 5.0 20.0

b) Discussion of Results

The effect of sub stiffeners between stiffeners to the effect of eigenvalues is

examined. Five types of optimization are performed. These are size optimization

(Type 1) with three design variables (tskin, tstiff, tsub), shape optimization with five

design variables (tskin, tstiff, tsub, hstiff, hsub), shape optimization (Type 2) with four

design variables (tskin, tstiff, tsub, hsub), shape optimization (Type 3) with three design

variables (tskin, hstiff, hsub), shape optimization (Type 4) with three design variables

(tskin, tstiff, hstiff). The effect of stiffeners is also observed similar to stiffened plate.

i) Size Optimization (Type 1): Thickness of plate and stiffeners are kept equal at

initial design. The height of stiffeners is constant equal to 28 mm and the height of

sub stiffeners is constant equal to 14 mm. The optimum values of design variables

and eigenvalues are given in Table 5.9. The highest improvement is obtained for four

stiffeners case and approximately equal to 17.63 %. The stiffened panel analyzed

using cubic strips. In order to obtain more accurate results the large number of

degrees of freedom is taken an all analysis. The smallest eigenvalue is obtained in

seven stiffeners case and equal to -50.775. The plate thickness is thinner than

stiffeners in optimum results and by the increasing of the number of stiffeners

thickness of stiffener is going to be thinner and also skin thickness is going to be

thinner except six stiffeners case, the thickness of stiffeners reach lower limits in all

cases except two and seven stiffeners case.
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Table 5.7 Size Optimization (Type 1) of Stiffened Plate with Stiffeners and Sub stiffeners

n H stiff H sub tskin tstiff tsub Initial Eig. Opt. Eig. %

2 28 14 1.835 6.000 2.014 -19.490 -21.125 8.38

3 28 14 1.454 6.000 1.000 -29.618 -34.273 15.71

4 28 14 1.198 5.381 1.000 -36.826 -43.321 17.63

5 28 14 1.220 4.134 1.000 -41.712 -47.389 13.60

6 28 14 1.317 3.109 1.000 -45.056 -49.631 10.15

7 28 14 1.202 2.580 1.633 -46.636 -50.775 8.87

8 28 14 1.294 2.251 1.000 -47.067 -49.598 5.37

Figure 5.11 Comparison of Eigenvalues at Size Optimization (Type 1)

ii) Shape Optimization: Thickness of plate, stiffeners and sub stiffeners are kept

equal at initial design. The optimum values of design variables and eigenvalues are

given in Table 5.7. The highest improvement is obtained for eight stiffeners case and

approximately equal to 26.7 %. The stiffened panel analyzed using cubic strips. In

order to obtain more accurate results the large number of degrees of freedom is taken

an all analysis. Also the smallest eigenvalue is obtained in eight stiffeners case and

equal to -59.636. Moreover, in optimum results skin thickness is thinner than

stiffener thickness, the stiffener thicknesses are become less at two stiffeners plate

toward eight stiffeners plate also the height of stiffeners increase and after five

stiffener case thicknesses reach upper limits, height of sub stiffeners are all decreases

to lower limit, thickness of sub stiffeners are also decreases to lower limit except two

stiffener case.
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Table 5.8 Shape Optimization of Stiffened Plate with Stiffeners and Sub stiffeners

n H stiff H sub tskin tstiff tsub Initial Eig. Opt. Eig. %

2 27.545 5 1.878 6.000 3 -19.490 -21.376 9.67

3 28.704 5 1.466 6.000 1 -29.618 -34.615 16.86

4 31.480 5 1.142 5.197 1 -36.826 -44.445 20.68

5 40.000 5 1.706 2.006 1 -41.712 -50.928 22.09

6 40.000 5 1.582 1.877 1 -45.056 -55.520 23.22

7 40.000 5 1.490 1.739 1 -46.636 -58.278 24.96

8 40.000 5 1.418 1.602 1 -47.067 -59.636 26.70

Figure 5.12 Comparison of Eigenvalues at Shape Optimization

iii) Shape Optimization (Type 2): Thickness of plate and stiffeners are kept equal at

initial design. The height of stiffeners is constant and equal to 28.0 mm. The

optimum values of design variables and eigenvalues are given in Table 5.8. The

highest improvement is obtained for four stiffeners case and approximately equal to

19.09 %. The stiffened panel analyzed using cubic strips. In order to obtain more

accurate results the large number of degrees of freedom is taken an all analysis. The

smallest eigenvalue is obtained in seven stiffeners case and equal to -52.783. The

plate thickness is thinner than stiffeners in optimum results and by the increasing of

the number of stiffeners stiffener thickness is going to be thinner and height of sub

stiffeners are all decreases to lower limit.
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Table 5.9 Shape Optimization (Type 2) of Stiffened Plate with Stiffeners and Sub stiffeners

n H stiff H sub tskin tstiff tsub Initial Eig. Opt. Eig. %

2 28 5 1.865 6.000 3.000 -19.490 -21.374 9.66

3 28 5 1.495 6.000 1.000 -29.618 -34.602 16.82

4 28 5 1.223 5.523 1.000 -36.826 -43.860 19.09

5 28 5 1.203 4.374 1.491 -41.712 -48.061 15.21

6 28 5 1.326 3.238 1.775 -45.056 -50.578 12.25

7 28 5 1.303 2.705 2.266 -46.636 -52.783 13.18

8 28 5 1.385 2.172 2.169 -47.0670 -52.140 10.77

Figure 5.13 Comparison of Eigenvalues at Shape Optimization (Type 2)

iv) Shape Optimization (Type 3): Thickness of plate and stiffeners are kept equal at

initial design. The thickness of stiffeners and sub stiffeners are constant and equal to

initial value. The optimum values of design variables and eigenvalues are given in

Table 5.10. The highest improvement is obtained for eight stiffeners case and

approximately equal to 26.35 %. The stiffened panel analyzed using cubic strips. In

order to obtain more accurate results the large number of degrees of freedom is taken

an all analysis. The smallest eigenvalue is obtained in eight stiffeners case and equal

to -59.469. The plate thickness is thinner than stiffeners in optimum results and by

the increasing of the number of stiffeners thickness of plate is going to be thinner, the

height of stiffeners become increase and after two stiffeners case reach upper limits,

the height of sub stiffeners become decreases and after two stiffeners case reach

lower limits.
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Table 5.10 Shape Optimization (Type 3) of Stiffened Plate with Stiffeners and Sub stiffeners

n H stiff H sub tskin tstiff tsub Initial Eig. Opt. Eig. %

2 39.13 13.08 2.186 2.298 2.298 -19.490 -19.925 2.23

3 40.00 5.00 2.036 2.123 2.123 -29.618 -33.047 11.57

4 40.00 5.00 1.878 1.973 1.973 -36.826 -43.349 17.71

5 40.00 5.00 1.742 1.842 1.842 -41.712 -50.500 21.06

6 40.00 5.00 1.622 1.728 1.728 -45.056 -55.103 22.29

7 40.00 5.00 1.516 1.627 1.627 -46.636 -58.023 24.41

8 40.00 5.00 1.422 1.538 1.538 -47.067 -59.469 26.35

Figure 5.14 Comparison of Eigenvalues at Shape Optimization (Type 3)

v) Shape Optimization (Type 4): Thickness of plate and stiffeners are kept equal at

initial design. The height of sub stiffeners is constant equal to 14 mm, the thickness

of sub stiffeners is constant and equal to initial value. The optimum values of design

variables and eigenvalues are given in Table 5.11. The highest improvement is

obtained for eight stiffeners case and approximately equal to 22.20 %. The stiffened

panel analyzed using cubic strips. In order to obtain more accurate results the large

number of degrees of freedom is taken an all analysis. The smallest eigenvalue is

obtained in eight stiffeners case and equal to -57.518. The plate thickness is thinner

than stiffeners in optimum results and by the increasing of the number of stiffeners

thickness of plate is going to be thinner except five stiffeners case, the height of

stiffeners become increase and after five stiffeners case reach upper limits, the

thickness of stiffeners become decreases
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Table 5.11 Shape Optimization (Type 4) of Stiffened Plate with Stiffeners and Sub stiffeners

n H stiff H sub tskin tstiff tsub Initial Eig. Opt. Eig. %

2 27.292 14 1.846 6.000 2.298 -19.490 -21.121 8.37

3 27.484 14 1.404 6.000 2.123 -29.618 -33.676 13.69

4 30.599 14 1.100 4.943 1.973 -36.826 -42.843 16.33

5 40.000 14 1.607 1.806 1.842 -41.712 -49.278 18.13

6 40.000 14 1.485 1.655 1.728 -45.056 -53.698 19.18

7 40.000 14 1.390 1.511 1.627 -46.636 -56.333 20.79

8 40.000 14 1.303 1.398 1.538 -47.067 -57.518 22.20

Figure 5.15 Comparison of Eigenvalues at Shape Optimization (Type 4)

Shape optimizations slightly gave better results compared to size optimizations as

shown figure 5.16. For small number of stiffeners both optimizations give similar

results. However when the number of the stiffeners increase shape optimization and

shape optimization (Type 3) give better results. In shape optimization and shape

optimization (Type 3) height of the stiffeners are not constant and can be increase; it

is the fundamental causes of better eigenvalues. Shape optimization a little better

than the shape optimization (Type 3) because of thickness of plate and thickness of

stiffeners.
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Figure 5.16 Comparison of Case Optimization

5.2.1.3 Straight stiffened plate and pads under main stiffeners

Pad elements are attached plate skin under straight stiffeners and Figure 5.17 shows

straight stiffened plate and pads under stiffeners.

Figure 5.17 Straight stiffened plate and pads under stiffeners

a) Optimization Process:

i) Size Optimization (Type 1): Optimization is performed using thickness of plate

skin (tskin), thickness of stiffeners (tstiff), thickness of pad (tpad). During this stage

width of pad (wpad) has constant value of dstiff/2 and height of stiffeners (hstiff) has

constant value of 28 mm (see Figure 5.17).
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ii) Shape Optimization: Optimization is performed using all variables; thickness

of plate skin (tskin), thickness of stiffeners (tstiff), thickness of pad (tpad), height of

stiffeners (hstiff) and width of pad (wpad) (see Figure 5.17).

iii) Shape Optimization (Type 1): Optimization is performed using thickness of

plate skin (tskin), thickness of stiffeners (tstiff), thickness of pad (tpad) and height of

stiffeners (hstiff). During this stage width of pad (wpad) has constant value of

dstiff/2(see Figure 5.17).

iv) Shape Optimization (Type 2): Optimization: Optimization is performed using

thickness of plate skin (tskin), thickness of stiffeners (tstiff), thickness of pad (tpad),

width of pad (wpad). During this stageheight of stiffeners (hstiff) has constant value of

28 mm (see Figure 5.17).

v) Shape Optimization (Type 3): Optimization is performed using thickness of

pad (tpad),width of pad (wpad),height of stiffeners (hstiff).During this stage thickness of

plate skin (tskin) and thickness of stiffeners (tstiff) have constant values of initial values

(see Figure 5.17).

Design constraints of five stages are specified in Table 5.12. Optimization process is

carried out for two to eight stiffeners.

Table 5.12 Lower and Upper limits of design variables for Straight Stiffened Plate

and Pads under Stiffeners

Min (mm) Max (mm)

Thickness of Plate tskin 1.1 3.0

Thickness of Stiffener tstiff 0.5 6.0

Height of Stiffener hstiff 8.0 40.0

Thickness of Pad tpad 2.0 6.0

Width of Pad wpad dstiff/10 dstiff/2
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b) Discussion of Results

In this type the effect of pad elements under stiffeners to the effect of eigenvalues is

investigated. Five types of optimization are performed. The first one is size

optimization (Type 1) with three design variables (tskin, tstiff, tpad), the second one is

shape optimization with five design variables (tskin, tstiff, tpad, hstiff, wpad), the third one

is shape optimization (Type 1) with four design variables (tskin, tstiff, tpad, hstiff),the

fourth one is shape optimization (Type 2) with four design variables (tskin, tstiff, tpad,

wpad), the fifth one is shape optimization (Type 3) with three design variables (tpad,

hstiff, wpad). The effect of stiffeners is also observed similar to stiffened plate.

i) Size Optimization (Type 1): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The width of pads is constant equal to dstiff/2, the height

of stiffeners is constant equal to 28 mm. The optimum values of design variables and

eigenvalues are given in Table 5.15. The highest improvement is obtained for five

stiffeners case and approximately equal to 38.52 %. The stiffened panel analyzed

using cubic strips. In order to obtain more accurate results the large number of

degrees of freedom is taken an all analysis. Also the smallest eigenvalue is obtained

in seven stiffeners case and equal to -54.033. Moreover, in optimum results skin

thickness is thinner than stiffener thickness and skin thickness reach lower limits

except four stiffeners case, thickness of pads are also become less and after six

stiffeners case reach lower limits.

Table 5.13 Size Optimization (Type 1) of Stiffened Plate and Pads under Stiffeners

n hstiff tskin tpad tstiff W pad Initial Eig. Opt. Eig %

2 28 1.100 3.854 1.464 110 -19.747 -22.811 15.51

3 28 1.100 3.412 2.135 73.32 -29.813 -33.836 13.49

4 28 1.148 2.651 3.000 55 -34.256 -45.052 31.51

5 28 1.100 2.318 3.000 44 -37.362 -51.755 38.52

6 28 1.100 2.000 2.915 36.66 -39.638 -53.725 35.54

7 28 1.100 2.000 2.500 31.42 -41.457 -54.033 30.33

8 28 1.100 2.000 2.187 27.5 -43.034 -53.931 25.31
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Figure 5.18 Comparison of Eigenvalues at Size Optimization (Type 1)

ii) Shape Optimization: Thickness of plate, stiffeners and sub stiffeners are kept

equal at initial design. The optimum values of design variables and eigenvalues are

given in Table 5.13. The highest improvement is obtained for six stiffeners case and

approximately equal to 48.24 %. The stiffened panel analyzed using cubic strips. In

order to obtain more accurate results the large number of degrees of freedom is taken

an all analysis. Also the smallest eigenvalue is obtained in eight stiffeners case and

equal to -61.498. Moreover, in optimum results skin thickness is thinner than

stiffener thickness, the height of stiffeners increase except six stiffeners case , width

of pads are become less except four stiffeners case, thickness of pads are also

become less toward lower limits.

Table 5.14 Shape Optimization of Stiffened Plate and Pads under Stiffeners

n hstiff tskin tpad tstiff W pad Initial Eig. Opt. Eig %

2 29.799 1.100 4.956 1.827 75.098 -19.747 -25.214 27.68

3 23.297 1.100 4.586 3.000 45.730 -29.813 -38.915 30.52

4 32.526 1.363 2.189 3.000 55.000 -34.256 -45.466 32.72

5 40.000 1.452 2.108 2.022 39.111 -37.362 -53.048 41.98

6 35.044 1.163 2.000 2.364 32.600 -39.647 -58.777 48.24

7 40.000 1.301 2.000 1.781 20.581 -41.457 -59.880 44.43

8 40.000 1.345 2.462 1.658 5.500 -43.032 -61.498 42.91
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Figure 5.19 Comparison of Eigenvalues at Shape Optimization

iii) Shape Optimization (Type 1): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The width of pads is constant equal to dstiff/2. The

optimum values of design variables and eigenvalues are given in Table 5.14. The

highest improvement is obtained for six stiffeners case and approximately equal to

46.12 %. The stiffened panel analyzed using cubic strips. In order to obtain more

accurate results the large number of degrees of freedom is taken an all analysis. Also

the smallest eigenvalue is obtained in eight stiffeners case and equal to -60.338.

Moreover, in optimum results skin thickness is thinner than stiffener thickness, the

height of stiffeners increase and after six stiffeners case reach upper limits, thickness

of pads are also become less and after five stiffeners case reach lower limits.

Table 5.15 Shape Optimization (Type 1) of Stiffened Plate and Pads under Stiffeners

n hstiff tskin tpad tstiff W pad Initial Eig. Opt. Eig %

2 36.029 1.100 3.899 1.000 110 -19.747 -23.032 16.63

3 17.882 1.100 3.496 3.000 73.32 -29.813 -34.807 16.75

4 32.538 1.372 2.180 3.000 55 -34.256 -45.458 32.69

5 33.582 1.125 2.000 2.884 44 -37.362 -54.291 45.30

6 40.000 1.289 2.000 1.867 36.66 -39.638 -57.922 46.12

7 40.000 1.179 2.000 1.688 31.42 -41.457 -59.344 43.14

8 40.000 1.100 2.000 1.530 27.5 -43.014 -60.338 40.27
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Figure 5.20 Comparison of eigenvalues at Shape optimization (Type 1)

iv) Shape Optimization (Type 2): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The height of stiffeners is constant equal to 28 mm. The

optimum values of design variables and eigenvalues are given in Table 5.16. The

highest improvement is obtained for seven stiffeners case and approximately equal to

50.50 %. The stiffened panel analyzed using cubic strips. In order to obtain more

accurate results the large number of degrees of freedom is taken an all analysis. Also

the smallest eigenvalue is obtained in eight stiffeners case and equal to -62.490.

Moreover, in optimum results skin thickness is thinner than stiffener thickness and

skin thickness reach lower limits in all stiffener case, thickness of stiffeners are

increase toward near upper limit, width of pads become less.

Table 5.16 Shape Optimization (Type 2) of Stiffened Plate and Pads under Stiffeners

n hstiff tskin tpad tstiff W pad Initial Eig. Opt. Eig %

2 28 1.1 3.855 1.525 109.420 -19.747 -22.868 15.80

3 28 1.1 5.886 2.925 30.797 -29.813 -39.571 32.73

4 28 1.1 2.636 3.000 55.000 -34.256 -45.065 31.55

5 28 1.1 2.318 3.000 44.000 -37.362 -51.755 38.52

6 28 1.1 3.053 3.000 15.678 -39.638 -58.428 47.40

7 28 1.1 3.804 2.903 6.284 -41.457 -62.396 50.50

8 28 1.1 3.474 2.604 5.500 -43.014 -62.490 45.27
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Figure 5.21 Comparison of Eigenvalues at Shape Optimization (Type 2)

v) Shape Optimization (Type 3): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The thickness of stiffeners and the thickness of plate are

constant equal initial values. The optimum values of design variables and

eigenvalues are given in Table 5.17. The highest improvement is obtained for six

stiffeners case and approximately equal to 40.59 %. The stiffened panel analyzed

using cubic strips. In order to obtain more accurate results the large number of

degrees of freedom is taken an all analysis. Also the smallest eigenvalue is obtained

in eight stiffeners case and equal to -58.908. Moreover, in optimum results height of

stiffeners increase and after three stiffeners case reach upper limits, width of pads

become less.

Table 5.17 Shape Optimization (Type 3) of Stiffened Plate and Pads under Stiffeners

n hstiff tskin tpad tstiff W pad Initial Eig. Opt. Eig %

2 26.31 1.636 3.994 1.636 83.556 -19.747 -21.752 10.15

3 40.00 1.575 6.000 1.575 21.808 -29.813 -36.893 23.74

4 40.00 1.518 2.847 1.518 50.876 -34.256 -44.441 29.72

5 40.00 1.465 6.000 1.465 9.374 -37.362 -50.746 35.82

6 40.00 1.415 4.035 1.415 10.762 -39.647 -55.742 40.59

7 40.00 1.369 3.307 1.369 8.891 -41.457 -56.989 37.46

8 40.00 1.325 2.284 1.325 11.209 -43.034 -58.908 36.88
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Figure 5.22 Comparison of Eigenvalues at Shape Optimization (Type 3)

Shape optimization (Type 2) and Shape optimizations slightly gave better results

compared to other size optimizations as shown figure 5.23. For small number of

stiffeners optimizations give similar results. However when the number of the

stiffeners increase shape optimization and shape optimization (Type 2) give better

results. At shape optimization (Type 2) height of the stiffeners is constant but results

are nearly same. Shape optimization (Type 2) a little better than the shape

optimization, at shape optimization (Type 2) case the thickness of stiffener and

thickness of pad are bigger than the shape optimization case. The width of pad is

constant at Size optimization (Type 1) this is only difference between shape

optimization (Type 2) and it shows the common factor of optimization because the

shape optimization (Type 2) gives the best solution, the size optimization (Type 1)

gives the worst solution at this stage.
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Figure 5.23 Comparison of Case Optimization

5.2.1.4 Straight Stiffened Plate with Sub stiffeners and Pads under Main

Stiffeners

Sub stiffeners are added between stiffeners and pad elements are attached under

stiffeners and Figure 5.24 shows straight stiffened plate with sub stiffeners and pads

under stiffeners.

Figure 5.24 Straight Stiffened Plate with Sub Stiffeners and Pads under Stiffeners
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a) Optimization Process:

i) Size Optimization (Type 1): Optimization is performed using thickness of plate

skin (tskin), thickness of stiffeners (tstiff), thickness of sub stiffeners (tsub) and thickness

of pad (tpad). During this stage height of stiffeners (hstiff) has constant value of 28 mm

and height of sub stiffeners (hsub) has a constant value of 14 mm andwidth of pad

(wpad) has a constant value of dstiff/2 (see Figure 5.24).

ii) Shape Optimization: Optimization is performed using all variables; thickness

of plate skin (tskin), thickness of stiffeners (tstiff),thickness of sub stiffeners (tsub),

thickness of pad (tpad), height of stiffeners (hstiff),height of sub stiffeners (hsub) and

width of pad (wpad) (see Figure 5.24).

iii) Shape Optimization (Type 1): Optimization is performed using thickness of

plate skin (tskin), thickness of stiffeners (tstiff),thickness of sub stiffeners (tsub),

thickness of pad (tpad), height of sub stiffeners (hsub) and width of pad (wpad). During

this stage height of stiffeners (hstiff) has constant value of 28 mm (see Figure 5.24).

iv) Shape Optimization (Type 2): Optimization is performed using thickness of

plate skin (tskin), thickness of stiffeners (tstiff),thickness of sub stiffeners (tsub),

thickness of pad (tpad), height of sub stiffeners (hsub) and height of stiffeners (hstiff).

During this stage width of pad (wpad) has constant value of dstiff/2 (see Figure 5.24).

v) Shape Optimization (Type 3): Optimization is performed using thickness of

plate skin (tskin), thickness of stiffeners (tstiff),thickness of sub stiffeners (tsub),

thickness of pad (tpad), and width of pad (wpad). During this stage height of stiffeners

(hstiff) has constant value of 28 mm and height of sub stiffeners (hsub) has a constant

value of 14 mm (see Figure 5.24).

vi) Shape Optimization (Type 4): Optimization is performed using, thickness of

pad (tpad), and width of pad (wpad), height of stiffeners (hstiff), height of sub stiffeners

(hsub). During this stage thickness of plate skin (tskin), thickness of stiffeners

(tstiff),thickness of sub stiffeners (tsub) have constant values of what is calculated at

initial(see Figure 5.24).
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vii) Shape Optimization (Type 5): Optimization is performed using, thickness of

stiffeners (tstiff), thickness of sub stiffeners (tsub), width of pad (wpad),height of

stiffeners (hstiff) and height of sub stiffeners (hsub). During this stage thickness of

plate skin (tskin) and thickness of pad (tpad) have constant values of what is calculated

at initial (see Figure 5.24).

iix) Shape Optimization (Type 6): Optimization is performed using, thickness of

stiffeners (tstiff), thickness of sub stiffeners (tsub), thickness of plate skin (tskin), height

of stiffeners (hstiff) and height of sub stiffeners (hsub). During this stage and thickness

of pad (tpad) has a constant value of what is calculated at initial, width of pad (wpad)

has a constant value of dstiff/2 (see Figure 5.24).

Design constraints of eight stages are specified in Table 5.18. Optimization process

is carried out for two to eight stiffeners.

Table 5.18 Lower and Upper Limits of Design Variables Straight Stiffened Plate

with Sub stiffeners and Pads under Stiffeners

Min (mm) Max (mm)

Thickness of Plate tskin 1.1 3.0

Thickness of Stiffener tstiff 0.5 6.0

Thickness of Sub stiffener tsub 1.0 3.0

Height of Stiffener hstiff 8.0 40.0

Height of Sub stiffener hsub 5.0 20.0

Thickness of Pad tpad 2.0 6.0

Width of Pad wpad dstiff/10 dstiff/2

b) Discussion of Results

The effect of sub stiffeners and pads are examined together in this type of plates.

Eight types of optimization are performed. The first one is size optimization (Type 1)

with four design variables (tskin, tstiff, tsub, tpad), the second one is shape optimization

with seven design variables (tskin, tstiff, tsub, tpad, hstiff, hsub, wpad), the third one is shape

optimization (Type 1) with six design variables (tskin, tstiff, tsub, tpad, hsub, wpad), the
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fourth one is shape optimization (Type 2) with six design variables (tskin, tstiff, tsub,

tpad, hstiff, hsub), the fifth one is shape optimization (Type 3) with five design variables

(tskin, tstiff, tsub, tpad, wpad), the sixth one is shape optimization (Type 4) with four

design variables (tpad, hstiff, hsub, wpad), the seventh one is shape optimization (Type 5)

with five design variables (tstiff, tsub, hstiff, hsub, wpad), the eighth one is shape

optimization (Type 6) with five design variables (tskin, tstiff, tsub, hstiff, hsub) The effect

of stiffeners is also observed similar to stiffened plate.

i) Size Optimization (Type 1): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The height of stiffener has a constant value equal to 28

mm, the height of sub stiffener has a constant value equal to 14 mm, The width of

pad has a constant value equal to dstiff/2. The optimum values of design variables and

eigenvalues are given in Table 5.23. The highest improvement is obtained for five

stiffeners case and approximately equal to 33.78 %. The stiffened panel analyzed

using cubic strips. In order to obtain more accurate results the large number of

degrees of freedom is taken an all analysis. Also the smallest eigenvalue is obtained

in six stiffeners case and equal to -51.898. Moreover, in optimum results skin

thickness is thinner than stiffener thickness, the thickness of plate reach lower limits

in all cases and the thickness of pad and the thickness of stiffeners decreases.

Table 5.19 Size Optimization (Type 1) of stiffened plate and pads under stiffeners

n hstiff hsub tskin tpad tstiff tsub W pad Initial Eig. Opt. Eig %

2 28 14 1.1 3.272 3.000 3.000 110 -21.692 -25.859 19.20

3 28 14 1.1 2.773 3.000 2.424 73.32 -29.212 -36.800 25.97

4 28 14 1.1 2.485 3.000 1.121 55 -34.202 -44.963 31.46

5 28 14 1.1 2.063 3.000 1.000 44 -37.832 -50.614 33.78

6 28 14 1.1 2.000 2.499 1.000 36.66 -40.498 -51.898 28.14

7 28 14 1.1 2.000 2.071 1.000 31.42 -42.551 -51.708 21.52

8 28 14 1.1 2.000 1.748 1.000 27.5 -44.152 -51.006 15.52
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Figure 5.25 Comparison of eigenvalues at Size optimization (Type 1)

ii) Shape Optimization: Thickness of plate, stiffeners and sub stiffeners are kept

equal at initial design. The optimum values of design variables and eigenvalues are

given in Table 5.19. The highest improvement is obtained for four stiffeners case and

approximately equal to 44.55 %. The stiffened panel analyzed using cubic strips. In

order to obtain more accurate results the large number of degrees of freedom is taken

an all analysis. Also the smallest eigenvalue is obtained in eight stiffeners case and

equal to -60.511. Moreover, in optimum results skin thickness is thinner than

stiffener thickness, the height of stiffeners increase except three stiffeners case and

reach upper limits after five stiffeners case, height of sub stiffener decrease and reach

lower limits after two stiffeners case, width of pads are become less except five and

seven stiffeners case, thickness of pads are also become less, thickness of sub

stiffener become less except eight stiffener case and reach lower limits after two

stiffener case.
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Table 5.20 Shape Optimization of Stiffened Plate and Pads under Stiffeners

Figure 5.26 Comparison of Eigenvalues at Shape Optimization

iii) Shape Optimization (Type 1): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The height of stiffener is constant equal to 28 mm. The

optimum values of design variables and eigenvalues are given in Table 5.20. The

highest improvement is obtained for four stiffeners case and approximately equal to

46.37 %. The stiffened panel analyzed using cubic strips. In order to obtain more

accurate results the large number of degrees of freedom is taken an all analysis. Also

the smallest eigenvalue is obtained in seven stiffeners case and equal to -61.462.

Moreover, in optimum results skin thickness is thinner than stiffener thickness, the

height of sub stiffeners decrease and after two stiffeners case reach lower limits,

width of pads are also become less and the thickness of sub stiffener become less and

after two stiffener case reach lower value.

n hstiff hsub tskin tpad tstiff tsub W pad Initial Eig. Opt. Eig %

2 31.88 20 1.10 3.132 3.000 3.000 107.431 -21.692 -26.509 22.20

3 25.73 5 1.10 5.606 3.000 1.000 33.016 -29.212 -39.551 35.39

4 35.24 5 1.10 6.000 2.306 1.000 17.727 -34.202 -49.441 44.55

5 40.00 5 1.41 2.738 1.905 1.000 22.379 -37.832 -52.668 39.21

6 40.00 5 1.47 2.713 1.849 1.000 7.332 -40.498 -56.811 40.28

7 40.00 5 1.33 2.057 1.722 1.000 14.239 -42.551 -59.417 39.63

8 40.00 5 1.24 2.386 1.653 1.003 6.368 -44.152 -60.511 37.05
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Table 5.21 Shape Optimization (Type 1) of Stiffened Plate and Pads under Stiffeners

n hstiff hsub tskin tpad tstiff tsub W pad Initial Eig. Opt. Eig %

2 28 20 1.100 3.323 3.000 2.95 103.65 -21.692 -26.475 22.04

3 28 5 1.100 5.444 2.994 1.00 32.710 -29.212 -39.455 35.06

4 28 5 1.100 6.000 3.000 1.00 17.190 -34.202 -50.064 46.37

5 28 5 1.369 4.313 3.000 1.00 8.800 -37.832 -53.864 42.37

6 28 5 1.305 3.418 2.852 1.00 7.332 -40.498 -57.590 42.20

7 28 5 1.100 3.639 2.787 1.00 6.284 -42.551 -61.462 44.44

8 28 5 1.193 3.070 2.362 1.00 5.500 -44.152 -60.172 36.28

Figure 5.27 Comparison of Eigenvalues at Shape Optimization (Type 1)

iv) Shape Optimization (Type 2): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The width of pad is constant equal to dstiff/2. The

optimum values of design variables and eigenvalues are given in Table 5.21. The

highest improvement is obtained for six stiffeners case and approximately equal to

41.17 %. The stiffened panel analyzed using cubic strips. In order to obtain more

accurate results the large number of degrees of freedom is taken an all analysis. Also

the smallest eigenvalue is obtained in seven stiffeners case and equal to -58.721.

Moreover, in optimum results skin thickness is thinner than stiffener thickness except

eight stiffener case, the thickness of sub stiffeners decrease and after five stiffeners

case reach lower limits and the thickness of stiffener become less, the height of sub

stiffener become less and reach lower limits.
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Table 5.22 Shape Optimization (Type 2) of stiffened plate and pads under stiffeners

n hstiff hsub tskin tpad tstiff tsub W pad Initial Eig. Opt. Eig %

2 32.10 20 1.100 3.078 3 3.000 110 -21.692 -26.487 22.10

3 31.30 5 1.123 2.787 3 3.000 73.32 -29.212 -37.503 28.38

4 33.84 5 1.144 2.167 3 2.474 55 -34.202 -46.582 36.19

5 40.00 5 1.369 2.738 1.241 1.000 44 -37.832 -50.763 34.17

6 40.00 5 1.213 2.000 1.831 1.001 36.66 -40.496 -57.168 41.17

7 40.00 5 1.154 2.000 1.599 1.000 31.42 -42.551 -58.721 38.00

8 40.00 5 1.193 2.386 1.090 1.000 27.5 -44.125 -55.361 25.46

Figure 5.28 Comparison of eigenvalues at Shape optimization (Type 2)

v) Shape Optimization (Type 3): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The height of stiffener is constant equal to 28 mm, the

height of stiffener is constant equal to 14 mm. The optimum values of design

variables and eigenvalues are given in Table 5.21. The highest improvement is

obtained for six stiffeners case and approximately equal to 44.44 %. The stiffened

panel analyzed using cubic strips. In order to obtain more accurate results the large

number of degrees of freedom is taken an all analysis. Also the smallest eigenvalue is

obtained in seven stiffeners case and equal to -59.489. Moreover, in optimum results

skin thickness is thinner than stiffener thickness, the thickness of sub stiffeners

decrease and after three stiffeners case reach lower limits and the thickness of

stiffeners almost near three, the width of pad become less.
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Table 5.23 Shape Optimization (Type 3) of stiffened plate and pads under stiffeners

n hstiff hsub tskin tpad tstiff tsub W pad Initial Eig. Opt. Eig %

2 28 14 1.10 3.682 3.000 2.93 92.854 -21.692 -26.162 20.60

3 28 14 1.10 5.710 2.955 1.00 29.779 -29.212 -38.957 33.35

4 28 14 1.10 6.000 3.000 1.00 15.804 -34.202 -49.364 44.32

5 28 14 1.36 3.495 3.000 1.00 8.800 -37.832 -52.635 39.12

6 28 14 1.10 3.943 2.934 1.00 7.332 -40.498 -58.497 44.44

7 28 14 1.10 3.309 2.585 1.00 6.284 -42.551 -59.489 39.80

8 28 14 1.19 2.749 2.144 1.00 5.500 -44.152 -57.426 30.06

Figure 5.29 Comparison of eigenvalues at Shape optimization (Type 3)

vi) Shape Optimization (Type 4): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The thickness of plate, the thickness of stiffener and the

thickness of sub stiffener has constant equal to what is calculated initial. The

optimum values of design variables and eigenvalues are given in Table 5.22. The

highest improvement is obtained for five stiffeners case and approximately equal to

35.34 %. The stiffened panel analyzed using cubic strips. In order to obtain more

accurate results the large number of degrees of freedom is taken an all analysis. Also

the smallest eigenvalue is obtained in eight stiffeners case and equal to -57.875.

Moreover, in optimum results the height of sub stiffeners decrease and after three

stiffeners case reach lower limits and the height of stiffeners reach lower limit at all

cases, the width of pad become less.
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Table 5.24 Shape Optimization (Type 4) of stiffened plate and pads under stiffeners

n hstiff hsub tskin tpad tstiff tsub W pad Initial Eig. Opt. Eig %

2 40 20 1.605 3.028 1.605 1.605 107.25 -21.692 -23.530 8.47

3 40 5 1.518 6.000 1.518 1.518 22.804 -29.212 -37.106 27.02

4 40 5 1.439 6.000 1.439 1.439 15.707 -34.202 -45.760 33.79

5 40 5 1.369 6.000 1.369 1.369 11.589 -37.832 -51.204 35.34

6 40 5 1.305 6.000 1.305 1.305 8.9204 -40.498 -53.809 32.86

7 40 5 1.246 5.282 1.246 1.246 8.4182 -42.551 -56.123 31.89

8 40 5 1.193 4.823 1.193 1.193 7.4525 -44.152 -57.817 30.95

Figure 5.30 Comparison of eigenvalues at Shape optimization (Type 4)

vii) Shape Optimization (Type 5): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The thickness of plate, the and the thickness of pad has

constant equal to what is calculated initial. The optimum values of design variables

and eigenvalues are given in Table 5.24. The highest improvement is obtained for six

stiffeners case and approximately equal to 40.44 %. The stiffened panel analyzed

using cubic strips. In order to obtain more accurate results the large number of

degrees of freedom is taken an all analysis. Also the smallest eigenvalue is obtained

in eight stiffeners case and equal to -59.743. Moreover, in optimum results the height

of sub stiffeners decrease to lower limits in all cases, and the width of pads and the

thickness of sub stiffeners become less.
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Table 5.25 Shape Optimization (Type 5) of stiffened plate and pads under stiffeners

n hstiff hsub tskin tpad tstiff tsub W pad Initial Eig. Opt. Eig %

2 35.03 5 1.160 3.210 2.328 3.000 89.348 -21.692 -24.342 12.21

3 40.00 5 1.518 3.036 1.920 3.000 53.478 -29.212 -37.110 27.03

4 40.00 5 1.439 2.879 1.986 2.211 32.562 -34.202 -46.362 35.55

5 40.00 5 1.369 2.738 1.898 1.010 24.793 -37.832 -52.628 39.10

6 31.62 5 1.305 2.610 2.712 1.000 7.332 -40.498 -56.877 40.44

7 36.78 5 1.246 2.493 2.036 1.000 7.977 -42.551 -59.187 39.09

8 22.26 5 1.193 2.386 3.000 1.713 5.500 -44.152 -59.743 35.31

Figure 5.31 Comparison of eigenvalues at Shape optimization (Type 5)

iix) Shape Optimization (Type 6): Thickness of plate, stiffeners and sub stiffeners are

kept equal at initial design. The thickness of pad has constant value equal to what is

calculated initial and the width of pad has constant value equal to dstiff/2. The

optimum values of design variables and eigenvalues are given in Table 5.25. The

highest improvement is obtained for four stiffeners case and approximately equal to

32.29 %. The stiffened panel analyzed using cubic strips. In order to obtain more

accurate results the large number of degrees of freedom is taken an all analysis. Also

the smallest eigenvalue is obtained in eight stiffeners case and equal to -55.361.

Moreover, in optimum results the height of stiffeners increase to upper limits in all

cases except three stiffeners case, the height of sub stiffeners decrease to lower limits

in all cases except two stiffeners case and the thickness of stiffeners and the

thickness of sub stiffeners become less.
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Table 5.26 Shape Optimization (Type 6) of stiffened plate and pads under stiffeners

N hstiff hsub tskin tpad tstiff tsub W pad Initial Eig. Opt. Eig %

2 40.000 20 1.100 3.210 2.044 3.00 110 -21.692 -26.466 22.00

3 35.786 5 1.100 3.036 2.161 3.00 73.32 -29.212 -36.936 26.44

4 40.000 5 1.100 2.879 1.671 1.94 55 -34.202 -45.247 32.29

5 40.000 5 1.369 2.738 1.241 1.00 44 -37.832 -47.707 26.10

6 40.000 5 1.305 2.610 1.188 1.00 36.66 -40.498 -50.984 25.89

7 40.000 5 1.100 2.493 1.255 1.00 31.42 -42.551 -55.221 29.77

8 40.000 5 1.193 2.386 1.090 1.00 27.5 -44.152 -55.361 25.38

Figure 5.32 Comparison of eigenvalues at Shape optimization (Type 6)

Shape, shape optimization (Type 1) and shape optimizations (Type 5) slightly gave

better results compared to other optimizations as shown figure 5.33. For small

number of stiffeners optimizations give similar results. However when the number of

the stiffeners increase shape optimization shape optimization (Type 1) and shape

optimization (Type 5) optimizations give better results. At shape optimization (Type

1) height of the stiffeners is constant but results are nearly same with shape. Shape

optimization a little better than the shape optimization (Type 1) and shape

optimization (Type 5), at shape optimization (Type 5) case the thickness of plate is

bigger than the shape optimization case. The width of pad and thickness of stiffeners

and sub stiffeners are constant at Size optimization (Type 1) and the difference

between shape optimization (Type 3) is only width of pads, it shows the common
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factor of optimization because the shape optimization (Type 3) gives the better

solution than the size optimization (Type 1) which is the worst solution at this stage.

Figure 5.33 Comparison of Case Optimization
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CHAPTER 6

CONCLUSION AND FURTHER WORK

6.1 Introduction

Structural optimization procedures are performed to obtain optimum sizes and shapes

of stiffened plate types to gain min eigenvalue under constant volume constraint. For

this purpose, totally 168 runs are carried out for considered plate types. The optimum

results are obtained and detailed discussion of the efficiencies of plate types by

interesting results that are presented in Chapter 5.

6.2 Achievements

During this thesis, PLATEV_1 (FS structural analysis and shape optimization

program), which was developed by Özakça [27] was used. During the thesis, the

following purposes were achieved.

1. Geometric modeling of plate cross section: The plate cross section is modeled

by using coordinates of key points as defined in Chapter 4. The stiffener

positions governed cross section modeling procedure. To satisfy initial

baseline design values, thicknesses of elements and stiffener heights were

arranged according to constant volume constraints.

2. Mesh generation of cross section: Mesh generation of stiffened plate sections

were carried out by PLATEV_1 by an automatic FS mesh generator which

was adapted to program.
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3. Static and free vibration analysis: Eigen value free vibration analyses were

carried out using FS analysis for all investigated plates. FS method was

preferred in order to suitability of analyzing simply supported prismatic

structures easily.

4. Verify the accuracy of Free vibration analysis: To prove the accuracy of

computer code and formulation used in this study, results of three examples

are compared with SAP2000 structural analysis and design computer package

program’s results. The SAP2000 program and PLATEV_1 gave very close

eigenvalue results.

5. Optimization: SQP based algorithm was used as optimization method.

a) Shape optimization: Shape optimizations were carried out to obtain

maximum eigenvalues of plate under constraints. During this procedure

only height, width and volume were kept constant, thicknesses and height of

stiffener and height of sub stiffeners are used.

b) Size optimization: In addition to some properties at used categories in

constant categories to aim is developed the eigenvalues.

6. Results and effectiveness of stiffened plate types: By the steps mentioned

above 168 runs were performed for considered plate types with desired

element combinations. The obtained min eigenvalue of plate types fluctuate

in a wide interval due to the used elements that forges plate cross section. The

maximum eigenvalue for the desired combinations illustrate the effectiveness

of element types on free vibration. These consequences orientated the

comments on elements effectiveness and the suggestions about

manufacturing of stiffened plates in conclusion section.
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6.3 Conclusion

The effect of elements of plate cross section according to optimization results is

discussed in previous chapter. This section deals with some suggestions about

manufacturing and use of investigated plates.

The effect of sub stiffeners was examined in Chapter 5. According to optimization

results in with sub stiffener plate gives a little better solution than without sub

stiffener. Sub stiffener with pads under stiffeners plate gives better solutions than

without pads under stiffener plate. Instead of sub stiffeners, plate skin and pads

should be strengthened.

The effect of free vibration on pad elements is mentioned. However, including pad

elements to plate cross section is difficult in practice; plates should be produced with

pad elements if maximum eigenvalues are desired.

According to results at straight stiffened plate case, shape optimizations slightly gave

better results compared to size optimizations. For small number of stiffeners both

optimizations give similar results and when the number of the stiffeners increases

shape optimization and shape optimization (Type 2) give better results. In shape

optimization and shape optimization (Type 2) height of the stiffeners are increase; it

is the fundamental causes of better eigenvalues. Shape optimization a little better

than the shape optimization (Type 2) because of thickness of stiffeners.

At straight stiffened plate with sub stiffeners case, even so shape optimizations

slightly gave better results compared to size optimizations. For small number of

stiffeners both optimizations give similar results. However when the number of the

stiffeners increase shape optimization and shape optimization (Type 3) give better

results. In shape optimization and shape optimization (Type 3) height of the

stiffeners are not constant and can be increase; it is the fundamental causes of better

eigenvalues. Shape optimization a little better than the shape optimization (Type 3)

because of thickness of plate and thickness of stiffeners.
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At straight stiffened plate and pads under main stiffeners case, shape optimization

(Type 2) and Shape optimizations slightly gave better results compared to other size

optimizations. For small number of stiffeners optimizations give similar results.

However when the number of the stiffeners increase shape optimization and shape

optimization (Type 2) give better results. Shape optimization (Type 2) a little better

than the shape optimization, at shape optimization (Type 2) case the thickness of

stiffener and thickness of pad are bigger than the shape optimization case. . The

width of pad is constant at Size optimization (Type 1) this is only difference between

shape optimization (Type 2) and it shows the common factor of optimization because

the shape optimization (Type 2) gives the best solution, the size optimization (Type

1) gives the worst solution at this stage.

According to results straight stiffened plate with sub stiffeners and pads under main

stiffeners case, Shape, shape optimization (Type 1) and shape optimizations (Type 5)

slightly gave better results compared to other optimizations. For small number of

stiffeners optimizations give similar results. However when the number of the

stiffeners increase shape optimization shape optimization (Type 1) and shape

optimization (Type 5) optimizations give better results. At shape optimization (Type

1) height of the stiffeners is constant but results are nearly same with shape. Shape

optimization a little better than the shape optimization (Type 1) and shape

optimization (Type 5), at shape optimization (Type 5) case the thickness of plate is

bigger than the shape optimization case. The width of pad and thickness of stiffeners

and sub stiffeners are constant at Size optimization (Type 1) and the difference

between shape optimization (Type 3) is only width of pads, it shows the common

factor of optimization because the shape optimization (Type 3) gives the better

solution than the size optimization (Type 1) which is the worst solution at this stage.
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6.4 Furtherwork

In this thesis straight stiffened plates are investigated. It is necessary to examine this

type of stiffened plate to possess general behaviors of free vibration and design

structures that include axially compressive stiffened plates.

Investigated components of plate types also could be analyzed by different

combinations. For instance in sub stiffened plate types only one sub stiffener

considered between main stiffeners. Number of equally spaced sub stiffeners

between main stiffeners may be increased.

Like the applicability of increasing number of sub stiffeners, number of pads

between stiffeners may be increased too. Another case should be, investigated that

the positions of main stiffeners. In this study, the distance between stiffeners is

considered as dstiff according to this, the distance between stiffeners and plate edge is

taken dstiff/2. What would be the effect of changing the positions of these distances

symmetrically to plate axis?

In FS method, two opposite edges are simply supported and other two sides can be

defined in any boundary condition. Some modifications can be made to apply any

boundary conditions.

To possess general behavior of stiffened plates a wide search space like listed above

should be investigated.



81

REFERENCES

[1] Özakça, M. (1993). Analysis and Optimal Design Of Structures With Adaptivity.
Ph. D. thesis, Department of Civil Engineering University College of Swansea, U.K.

[2] Cheung, Y.K. (1976). The Finite Strip Method In Structural Analysis, Pergamon
International Library of Science.

[3] Nguyen, N., Rabczuk, T. and Bordas, S.P.A. (2008). A Smoothed Finite Element
Method for the Static and Free Vibration Analysis of Shells, Department of Civil
Engineering, University of Technology, Viet Nam, pp. 14-20.

[4] Raji, S. A. (2006) Static Analysis of Free-Form Shells Using an Improved Nine-
Node Lagrangian Shell Element Department of  Civil Engineering, University of
Ilorin, Nigeria pp. 22-32.

[5] Jarmai, K. (1999, August 4) Optimum Design of Stiffened Plates Department of
Materials Handling and Logistics, Hungary, pp.49-69.

[6] Strength of Stiffened Plates Bending of Stiffened Plates: secondary structural
response, 5, 255-260.

[7] Girgin, Z. C. and K.(2006). A numerical method for static and free-vibration
analysis of non-uniform Timoshenko beam-columns Canadian Journal of Civil
Engineering, 33, 3.

[8] Liu, L., and et al.. (2001). Element free method for static and free vibration
analysis of spatial thin shell structures, Department of Mechanical Engineering,
National University of Singapore, Singapore pp.2-18.

[9] Koutsawa, Y. and Daya, El M. (2007). Static and free vibration analysis of
laminated glass beam on viscoelastic supports, Laboratoire de Physique et
Mecanique des Materiaux, Universite Paul Verlaine-Metz. France pp. 7.

[10] Akhras, G. and Li, W. (2004). Static and free vibration analysis of composite
plates using spline finite strips with higher-order shear deformation, Department of
Civil Engineering, Royal Military College of Canada pp. 496-503.

[11] Qing, G., and et al (2004). Free vibration analysis of stiffened laminated plates,
Aeronautical Mechanics and Avionics Engineering College, Civil Aviation
University of China, Republic of China pp. 1357-1363.

[12] Yu, Z., and et al. (2008) A multivariable hierarchical finite element for static
and vibration analysis of beams, Department of Precision Instruments, Tsinghua
University, China pp. 628-630.



82

[13] Haftka, R.T, and Gürdal, Z., (2003) Design of stiffened composite panels with a
fracture constraint, Department of Aerospace and Ocean Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, U.S.A.

[14] R.S. Srinivasan and V. Thiruvenkatachari (1983) Free vibration analysis of
laminated annular sector plates Department of Applied Mechanics, Indian Institute
of Technology, India pp. 89-96.

[15] Cinquini, C. and Rovati, M. (1995). Optimization Methods in (Structural)
Engineering, European Journal of Mechanics, A/Solids, 14, 3, pp. 413-437

[16] Ravi Shankar Bellur Ramaswamy (1999) Optimal Design of Stiffened Plates,
Graduate Department of Aerospace Science and Engineering, University of Toronto
Press.

[17] Bushnell, D. Optimum Design Of Stiffened Panels With Substiffeners, 46 th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials
Conference 18 - 21 April 2005, Austin, Texas.

[18] Levy, R. And Ganz, A.(1991). Analysis of optimized plates for buckling.
Computers and structures, Faculty of Civil Engineering, Israel Institute of
Technology, Israel, 41, pp. 1371-1385.

[19] Hojjat, A. and Kok, Y.M. (1988). Architecture of couped expert system for
optimum design of plate girder bridges. Engineering Applications of Artifical
Intelligence, 1, 277-285.

[20] Jarmai, K., Snyman, J.A. and Farkas, J. (2006). Minimum cost design of welded
orthogonally stiffened cylindrical shell Computers and structures, 84, 787-797.

[21] Osama, K.B. (1998). A contribution to the stability of stiffened plates under
uniform compression. Computers and structures, 66, 535-570.

[22] Akl, W., and et al. (2007) Optimization of the static and dynamic characteristics
of plates with isogrid stiffeners, Design and Production Engineering Department,
Faculty of Engineering, Ain Shams University, Egypt pp. 515-518.

[23] Bisagni, C. and Lanzi, L. (2002) Post-buckling optimization of composite
stiffened panels using neutral networks. Composite structures, 58.237-247.

[24] Kang, J.H. and Kim, C.G. (2005) Minimum weight design of compressively
loaded composite plates and stiffened panels for post-buckling strength by Genetic
Algorithm Composite Structures, 69, 239-246.



83

[25] Kolcu, F. (2000) Buckling Analysis and Shape Optimization of Variable
Thickness Prismatic and Axisymmetric Plates and Shells. Ms. Thesis, Department of
Civil Engineering University of Gaziantep.

[26] Sridharan S. and Zeggane Matjid Z. (2001). Stiffened plates and cylindrical
shells under inactive buckling. Finite element in analysis and design, 38, 155-178.

[27] Chen C., and et al.. (1992) Vibration analysis of stiffened plates, Department of
Civil Engineering, Chung Cheng Institute of Technology, Taiwan, R.O.C, 50, pp.
475-477.

[28] Özakça, M., Tayşi, N. And Kolcu, F. (2003). Buckling optimization of variable
thickness prismatic folded plates. Thin Walled Structures, 41, 711-730.


