
UNIVERSITY OF GAZİANTEP
GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

REMOTE HUMAN SENSING AND
CONDITIONING OF DATA

M. Sc. THESIS
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

BY
TALİP ESKİKALE

AUGUST 2011

Remote Human Sensing and Conditioning of Data

M.Sc. Thesis
in

Electrical and Electronics Engineering
University of Gaziantep

Supervisor:

 Asst. Prof. Dr. Tolgay KARA

by

Talip ESKİKALE
August 2011

ABSTRACT

REMOTE HUMAN SENSING and CONDITIONING OF DATA

Talip ESKİKALE

M.Sc. in Electrical & Electronics Eng.

Supervisor: Asst. Prof. Dr. Tolgay KARA

August 2011, (pages 80)

A disturbance is transmitted in a medium from one point to another by particle

motion. The particles of the medium vibrate to transmit this energy from one particle

to another. Persons moving over ground can be detected from vibrations induced to

soil in the form of seismic waves, which are measured by geophones or

accelerometers. Walking styles (standard, soft, or stealthy) and the background noise

floor limit the detection range of footsteps. Walking style changes the dynamic

footstep force on the ground and influences the footstep detection range.

Seismic sensors are capable of measuring pedestrian activity and are often employed

for this task for a number of reasons. Such sensor systems are inexpensive, passive

(do not dissipate energy), and potentially easily installed. In this thesis a system has

been developed to alarm only when a pedestrian is present. Processing of the seismic

signals should make it possible for the system to discriminate footsteps from other

seismic sources such as animals, railroads, operating machinery, which is a

challenging problem.

In this study, an algorithm has been developed to detect footsteps for security

applications.

Key words: footstep detection, seismic signals, intrusion detection, perimeter

security

iii

ÖZET

UZAKTAN İNSAN ALGILAMA VE VERİLERİN İŞLENMESİ

Talip ESKİKALE

Yüksek Lisans Tezi, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Yr.Doç. Dr. Tolgay KARA

Ağustos 2011 (80 sayfa)

Sismik etkiler bir ortamdan diğerine parçacık hareketi ile iletilir. Ortama ait bu

parçacıklar enerjiyi birbirine iletmek için titreşirler. Zemin üzerinde yürüyen kişiler

jeofon ve ivme ölçerler ile sismik dalga olarak ürettikleri bu titreşimlerden tespit

edilebilirler. Yürüme biçimleri (standart, yavaş ve gizli) ve dış etkenler adımların

algılanmasını sınırlar. Yürüme biçimleri zemin üzerindeki dinamik adım kuvvetlerini

değiştirir ve algılamayı zorlaştırır.

Sismik sensörler yaya hareketlerini ölçebilir. Bu tip sensörler ucuz, pasif (enerji

tüketmezler) ve kolay kurulurlar. Bu tezde belirli bir alanda herhangi bir yaya

aktivitesi tespit edildiğinde sistemin alarm vermesi amaçlanmaktadır. Fakat bu

sistem hayvanlar, demir yolları ve iş makinelerinin yaydığı sismik aktivitelerden

insan adımlarını ayırt edebilmelidir.

Bu çalışmada insan adımlarını tespit için bir algoritma geliştirilmiştir. Geliştirilen bu

algoritma güvenlik uygulamalarında kullanılacaktır.

Anahtar Kelimeler: Adım tespiti, sismik işaretler, izinsiz giriş tespiti, çevre

güvenliği

iv

ACKNOWLEDGEMENTS

I would like to express my thanks to my supervisor, Asst.Prof. Dr. Tolgay KARA for

his advice and guidance in the preparation of this thesis.

Also, I would like to thank my wife Sibel for her grand support and patience.

Finally, I want to thank my parents.

v

TABLE OF CONTENTS

ABSTRACT….. iii

ÖZET... iv

ACKNOWLEDGEMENTS...…........................... v

CONTENTS.. vi

LIST OF FIGURES..….ix

LIST OF TABLES...xi

LIST OF SYMBOLS..xii

CHAPTER 1

INTRODUCTION

1.1. Introduction... 1

1.2. History of Footstep Detection ... 1

1.3. Organization of The Thesis... 4

CHAPTER 2

SEISMIC WAVES, SENSORS AND TOOLS

2.1. Seismic Waves .. 5

2.2. Geophone .. 8

2.3. Windowing Technique .. 9

2.4. Short Time Fourier Transform.. 13

2.5. Digital Filtering... 16

CHAPTER 3

FOOTSTEP DETECTION METHODS

3.1. Kurtosis .. 17

3.2. Spectrum Analysis ... 18

3.3. Envelope.. 19

 3.3.1. Envelope of a Signal .. 19

 3.3.2. FIR Decimation.. 19

 3.3.3. Block Diagram of The System... 20

 vi

CHAPTER 4
HUMAN DETECTION SYSTEM DESIGN AND CONSTRUCTION

4.1. System Built-up... 22

4.2. Seismic Data Acquisition.. 22

 4.2.1. Data Acquisition with NI Signal Express ... 23

 4.2.2. Transformation of Data into Matlab Platform .. 24

 4.2.3. Generation of Disturbance Signals.. 26

4.3. Simulink Model... 28

4.4. Footstep Detection Algorithms ... 29

 4.4.1. Spectrogram .. 29

 4.4.2. Proposed Detection Algorithm.. 32

CHAPTER 5

EXPERIMENTS AND TEST RESULTS

5.1. Experiment Design ... 36

5.2. Experiments ... 36

 5.2.1. Application 1... 37

 5.2.2. Application 2... 38

 5.2.3. Application 3... 40

 5.2.4. Application 4... 41

 5.2.5. Application 5... 43

5.3. Results .. 44

CHAPTER 6

CONCLUSION.. 46

REFERENCES...47

APPENDICES

APPENDIX A

SEISMIC SENSOR GEOPHONE GS-20DX ……………………...…….……...50

APPENDIX B

DAQ CARD NI-9234…………………………...52

 vii

APPENDIX C

MATLAB CODES USED IN CHAPTER-3..55

APPENDIX D

MATLAB CODES of ConvertTDMS.m FUNCTION...58

APPENDIX E

MATLAB CODES of FSdetection.m FUNCTION..77

 viii

LIST OF FIGURES

Figure 1.1 Kurtosis value is 0.019 for the samples of distribution 2

Figure 1.2 Kurtosis value is 1.66 for the samples of distribution 2

Figure 1.3 Kurtosis value is 3.5 for the samples of distribution 3

Figure 1.4 Kurtosis value is 13.2 for the samples of distribution 3

Figure 2.1 Propagation of the surface and body waves ... 5

Figure 2.2 Vertical displacement of the medium particles on the surface 6

Figure 2.3 FFT of a periodic signal... 10

Figure 2.4 FFT of a non-periodic signal ... 10

Figure 2.5 A Hanning Window.. 11

Figure 2.6 Windowed Sine wave ... 12

Figure 2.7 Frequency spectrum ... 12

Figure 2.8 No Overlap between blocks.. 13

Figure 2.9 R/4 Overlap between blocks... 13

Figure 2.10 R/2 Overlap between blocks... 14

Figure 2.11 The Parameter L ... 14

Figure 3.1 Positive and negative kurtosis .. 18

Figure 3.2 Positive and negative kurtosis with normal distributions 18

Figure 3.3 Simulink model of the system for envelope detection............................ 20

Figure 3.4 Block diagram of the system .. 21

Figure 4.1 The test layout used to collect Human Seismic Data 22

Figure 4.2 NI Signal Express signal setup ... 23

Figure 4.3 Seismic Data ... 24

Figure 4.4 The selection of data to be converted ... 25

Figure 4.5 Data Conversion tdms-file to mat-file .. 26

Figure 4.6 Simulink Model .. 28

Figure 4.7 Simulink model inputs and outputs .. 29

Figure 4.8 Spectrogram of the raw seismic signal ... 30

Figure 4.9 Spectrogram of the raw seismic signal with disturbances 32

Figure 4.10 Flowchart of the detection algorithm... 33

 ix

Figure 4.11 Variables of algorithm ... 34

Figure 4.12 Outputs of the FSdetection algorithm.. 35

Figure 5.1 Raw seismic data ... 37

Figure 5.2 Application of the algorithm on the real seismic data 38

Figure 5.3 Raw seismic data. .. 39

Figure 5.4 Application of the algorithm on the real seismic data 39

Figure 5.5 Raw seismic data. .. 40

Figure 5.6 Application of the algorithm on the real seismic data 41

Figure 5.7 Raw seismic data. .. 42

Figure 5.8 Fourth application results .. 42

Figure 5.9 Raw seismic data. .. 43

Figure 5.10 Fifth application results ... 44

Figure A.1 Geophone GS-20DX Response Curve... 50

 x

LIST OF TABLES

Table 4.1 Algorithm for obtaining a structure type data.. 25

Table 4.2 Algorithm for obtaining a 500 Hz sinusoid signal................................... 26

Table 4.3 Algorithm for obtaining a 1000 Hz sinusoid signal................................. 27

Table 4.4 Algorithm for obtaining a 2000 Hz and 4000 Hz sinusoid signal 27

Table 4.5 Algorithm for obtaining the spectrogram of the footstep signals 30

Table 4.6 Algorithm for obtaining the spectrogram of the combined signals. 31

Table A.1 Geophone GS-20DX Characteristics ... 50

Table B.1 NI-9234 DAQ Card Characteristics ... 52

 xi

LIST OF SYMBOLS

The following nomenclature defines the principal symbols used in the thesis.

Symbols Description

FFT Fast Fourier Transform

STFT Short Time Fourier Transform

FT Fourier Transform

DFT Discrete Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

DAQ Data Acquisition

TDMS Technical Data Management - Streaming

MAT Binary data container format used by MATLAB

 xii

To my wife Sibel, my son Bahadır and my parents,

CHAPTER 1

INTRODUCTION

1.1 Introduction

A footstep signature is caused by the impact on the ground. The ground is an elastic

half space that supports waves that travel away from the point of impact. Each

footstep has a characteristic shape that can be used to distinguish it from other noise.

One way to detect footsteps is to look for the periodic impact. The most striking

feature of the footstep when comparing time series data for footsteps to other seismic

signatures is the series of sharp "spikes" generated by each impact. This differs from

the random noise.

The seismic background noise floor is much higher in urban areas and in buildings

than in rural areas, dramatically influencing detection range. The average frequency

of footstep impacts from a person walking or running is about 2 Hz [1]. The dynamic

forces from footsteps that are normal to the ground/floor are the primary cause of the

low-frequency component in these signals.

The aim of this thesis is to design and construct a system to detect human activity in

some area. Probably the most obvious application is the detection of intruders in a

secure region. It is often the case that a system capable of detecting pedestrians is

desired. Any system to accomplish this task obviously needs a way to sense the

pedestrian. Seismic sensors are capable of doing this task.

1.2 History of Footstep Detection

Methods of human detection utilizing low-frequency seismic signals (typically below

a few hundred Hertz) from footsteps are well known in the literature and in practice.

It is used for security systems designed to guard against intrusion of unauthorized

personnel into a protected area.

1

One widely accepted method of footstep detection is based on the computation of

kurtosis by Succi, which is a measure of statistical distribution used to detect extreme

deviations from the mean (such seismic impulses due to footsteps)[2]. The kurtosis

value is much higher in the presence of impulsive events than the presence of

Gaussian or sinusoidal signatures. So it is much more sensitive to the signal

generated by person footsteps than other signals generated by vehicles, noise,etc.

Kurtosis values are calculated for various distributions in Figure1.1, Figure1.2,

Figure 1.3 and Figure 1.4. If there are more and more x-values far from the mean,

Kurtosis increases. Kurtosis is then a measure of how big the “tails” are.

Kurtosis= 0.019

0

10

20

30

40

50

60

70

80

0 10 20 30 40

Figure 1.1 Kurtosis value is 0.019 for the samples of distribution

Kurtosis= 1.66

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

Figure 1.2 Kurtosis value is 1.66 for the samples of distribution

2

Kurtosis= 3.5

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

Figure 1.3 Kurtosis value is 3.5 for the samples of distribution

Kurtosis= 13.2

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

Figure 1.4 Kurtosis value is 13.2 for the samples of distribution

Another approach used by some investigators is to detect footsteps in the frequency

domain by looking for the regular cadence of a typical human gait by Houston.

Spectrum analysis approach is used in this approach[3]. Both of these methods are

block-wise processing algorithms that look for a collection of footsteps prior to

issuing an alert.

The baseline of the signal and the adaptive threshold levels above noise is defined by

Mazarakis to detect footsteps[4]. In this approach, the adaptive and fixed threshold

3

methods are used. Dibazar and Park proposed a dynamic synapse neural network on

Footstep and Vehicle Recognition[5].

Both adaptive digital filtering and adaptive Kalman filtering methods are developed

for Seismic Detection of Personnel by Chen. This study indicates that the self-

adaptive noise-cancelling nonrecursive digital filter appears to enhance the impulsive

nature of the footstep signals[6].

1.3 Organization of The Thesis

The rest of the thesis is organized as follows:

In chapter two, The fundamental information about seismic waves, sensors and

signal processing is given. In chapter three, Footstep detection methods are

explained. In chapter four, Programming of footstep detection is given with

emphasis on the written program.. In chapter five, Experiments and test results are

given. In the final chapter of the thesis, Conclusions of the study are presented.

4

CHAPTER 2

SEISMIC WAVES, SENSORS AND TOOLS

2.1 Seismic Waves

Seismic wave generated under the action of the short pulse is a complex wave that

consists of the following components [7]:

• Longitudinal - compressive P-wave,

• Transverse S-wave,

• Rayleigh - Surface R-wave

Longitudinal P-waves and transverse S-waves are known as the body waves. Body

waves are propagating through the medium by means of the hemispherical wavefront

(Fig. 2.1).

Figure 2.1 Propagation of the surface and body waves

The type of the component being considered depends on the source of vibrations.

Rayleigh wave, which is propagated radially and has the cylinder-like wavefront,

appears simultaneously with the body waves. Displacement of the ground in the

vertical direction at the certain distance from the excitation point is illustrated in

Figure 2.2.

 5

Figure 2.2 Vertical displacement of the medium particles on the surface

During the propagation through an elastic medium, components of the complex

seismic wave have different velocities. Since the P-waves are faster than the other

types of seismic waves, they can at first be detected by the sensors. P-waves are

followed by the S-waves and Rayleigh - waves, respectively. As illustrated in Fig.

2.2, the vertical distance of the ground caused by the Rayleigh waves is greater than

the distance caused by the remaining P and S-waves. The amplitude of the waves is

considerably reduced with the increase of the distance from the source. The energy

of the body waves is distributed through the medium according to the following

expression[7]:

2

1
r

E ≈ (2.1)

where E is the energy of surface density, and r is the radius of the sphere. The

amplitude of the seismic wave is proportional to the square root of the energy surface

density:

EAmplitude ≈ (2.2)

r
Amplitude ≈

1 (2.3)

Since the body waves are propagated through the semi-sphere only, the amplitude of

the body waves is proportional to:

 6

2

1
r

Amplitude ≈ (2.4)

The amplitude of the Rayleigh waves is proportional to:

r
Amplitude 1

≈ (2.5)

where r is the radius of the cylinder. The attenuation of the Rayleigh waves is

significantly less than that of the body waves. Rayleigh wave appears in the case of

two adjacent elastic media with different elastic properties. This wave is similar to

the wave generated by a stone thrown into the water. The velocity of the surface

Rayleigh waves is given by[7]:

SR VV 9.0= (2.6)

where Vs is the velocity of transverse waves in the same medium. Longitudinal

waves propagate more slowly then direct transverse S-waves along the same trace,

and even more slowly than direct longitudinal P-waves, so the following relation

holds:

RSP VVV >> (2.7)

By the pulse excitation in the point A(x,y), Fig. 2.1, a surface seismic wave, moving

at a constant velocity in the form of concentric circles, is generated. Geophones

placed at different distances from the source point induce the presence of the

wavefront. The medium vibrations take place in all three dimensions, but only the

vibration of the medium particles in vertical direction is used for measurement of the

seismic wave velocity. By detecting the vertical displacement of the medium

particles in time, the vibration curves are obtained[7].

Vehicles and personnels can be detected using a three-component seismic velocity

transducer. Persons or vehicles moving on the ground generate a succession of

impacts; these soil disturbances propagate away from the source as seismic waves.

Because the soil is an elastic medium, both vertical and longitudinal waves

propagate, diminishing in intensity as R-2. Furthermore, because the surface of the

 7

soil is the boundary of an elastic space, a Rayleigh surface wave is also generated,

diminishing in intensity as R-1. This surface wave is a vector wave that can be used to

track the source.

2.2 Geophone

A geophone is a single axis seismometer that measures motion in the direction of its

cylindrical axis[8]. In typical near-surface deployments, a geophone is packaged with

a conical spike and buried a few inches underground to ensure good coupling to the

motion of the Earth. Ground motion causes the hollow cylinder of a geophone to

move with respect to the geophone housing. The motion of this cylinder inside the

geophone is described by Equation 2.8. It is the transfer function of a second-order

mechanical system. Equation 2.8 expresses the relative position of the proof mass,

Xr, for the acceleration applied to a geophone, , as a function of frequency, with

mass m[kg], spring constant k[N/m], and damping constant b[N/(m/s)].

hX
••

hr X

m
ks

m
bs

X
••

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++

−
= .1

2
 (2.8)

The cylinder's motion is measured by the interaction of the coil on the cylinder with

the magnetic field of the permanent magnet inside the geophone. Faraday's Law,

expressed in Equation 2.9 in time and frequency domains, states that the voltage

across a coil is equal to the change in flux through the coil with respect to time. In

the case of a geophone, the change in flux through the coil versus coil displacement,

x∂
∂φ , is constant for small displacements. Therefore, the voltage across the coil is

directly proportional to the velocity of the coil. Geophone manufacturers typically

report the constant of proportionality, G[V/(m/s) = N/A], known as the transduction

constant or generator constant[8]. It is shown that G varies by less than 0.05% as a

function of position for displacements on the order of 10% of the maximum

displacement[8].

rro GsXXG
t
x

xt
V −=−=

∂
∂

∂
∂

−=
∂
∂

−=
•φφ (2.9)

 8

The transfer function relating output voltage to input acceleration, given in Equation

2.10, can be determined by combining Equation 2.8 and Equation 2,9.

ho X

m
ks

m
bs

GsV
•

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++
= .

2
 (2.10)

In the present work, GS-20DX Geophone is used for collecting signals from

intruders. One of the important characteristics of this geophone is bandwidth (8-1500

Hz). Its characteristic information is given in Appendix A.

2.3 Windowing Technique

FFT based measurements are subject to errors from an effect known as leakage. This

effect occurs when the FFT is computed from a block of data, which is not periodic.

To correct this problem appropriate windowing functions must be applied. The user

must choose the appropriate window function for the specific application. When

windowing is not applied correctly, then errors may be introduced in the FFT

amplitude, frequency or overall shape of the spectrum[9].

The FFT computation assumes that a signal is periodic in each data block, that is, it

repeats over and over again and it is identical every time. Figure 2.3 illustrates the

FFT of a periodic signal. The matlab codes are given in Appendix C. When the FFT

of a non-periodic signal is computed, the resulting frequency spectrum suffers from

leakage. Leakage results in the signal energy smearing out over a wide frequency

range in the FFT when it should be in a narrow frequency range. Figure 2.4

illustrates the effect of leakage. If the frequency spectrums of the two sample waves

are compared, they will be differed greatly. The extra energy around 15 Hz is refered

to the spectral leakage.

Figure 2.3 shows a 15 Hz sine wave with amplitude 4 that is periodic in the time

frame. The resulting FFT (bottom) shows a narrow peak at 15 Hz in the frequency

axis with a height of 2 as expected. Note the dB scale is used to highlight the shape

of the FFT at low levels. Figure 2.4 shows a sine wave that is not periodic in the time

frame resulting in leakage in the FFT (bottom). The amplitude is less than the

 9

expected 2 value and the signal energy is more dispersed. The dispersed shape of the

FFT makes it more difficult to identify the frequency content of the measured signal.

Figure 2.3 FFT of a periodic signal

Figure 2.4 FFT of a non-periodic signal

 10

Since most signals are not periodic in the predefined data block time periods, a

window must be applied to correct the leakage. A window is shaped so that it is

exactly zero at the beginning and end of the data block and has some special shape.

This function is then multiplied with the time data block forcing the signal to be

periodic. A Hanning window in Figure 2.5 can be used for this purpose. A special

weighting factor must also be applied so that the correct FFT signal amplitude level

is recovered after the windowing.

Figure 2.5 A Hanning Window

The 15 Hz sine signal in Figure 2.3 is multiplied by a Hanning window, then the

result signal is represented in Figure 2.6. Frequency spectrums of windowed and

non-windowed sine signals are represented in Figure 2.7. The Matlab codes are given

in Appendix C.

 11

Figure 2.6 Windowed Sine wave

Figure 2.7 Frequency spectrum

 12

2.4 Short Time Fourier Transform

The Fourier transforms (FT,DFT, etc) do not clearly indicate how the frequency

content of a signal changes over time [10]. That information is hidden in the phase.

It is not revealed by the plot of the magnitude of the spectrum. To see how the

frequency content of a signal changes over time, we can cut the signal into blocks

and compute the spectrum of each block.

To improve the results,

- blocks are overlapped

- each block is multiplied by a window that is tapered at its endpoints.

Several parameters must be chosen:

- Block length, R

- The type of window

- Amount of overlap between blocks.

Figure 2.8 shows no overlap between blocks. Figure 2.9 shows R/4 overlap between

blocks and finally Figure 2.10 shows R/2 overlap between blocks.

Figure 2.8 No Overlap between blocks

Figure 2.9 R/4 Overlap between blocks

 13

Figure 2.10 R/2 Overlap between blocks

L is the number of samples between adjacent blocks. It can be seen from Figure 2.11.

Also L does not affect the time resolution or the frequency resolution.

Figure 2.11 Parameter L

 The short time Fourier transform is defined as

)()((:))(((),(nwmnxDTFTnxSTFTmwX −==

 ()∑
∞

−∞=

−−=
n

iwnenwmnx)()()(

 (2.11) ()∑
−

=

−−=
1

0

)()()(
R

n

iwnenwmnx

where w(n) is the window function of length R[10]. The STFT of a signal x(n) is a

function of two variables: time and frequency. The block length is determined by the

support of the window function w(n). A graphical display of the magnitude of the

STFT, │X(w,m)│, is called the spectrogram of the signal. The STFT of a signal is

invertible.

 14

One can choose the block length. A long block length will provide higher frequency

resolution because the main-lobe of the window function will be narrow. A short

block length will provide higher time resolution because less averaging across

samples is performed for each STFT value. A narrow-band spectrogram is one

computed using a relatively long block length R, (long window function). A wide-

band spectrogram is one computed using a relatively short block R, (short window

function).

To numerically evaluate the STFT, the frequency axis w is sampled in N equally

spaced samples from w=0 to w=2π.

⎟
⎠
⎞

⎜
⎝
⎛ =−≤≤∀ k

N
wNkk k

2:10, π (2.12)

The discrete STFT is given by,

()∑
−

=

−−=⎟
⎠
⎞

⎜
⎝
⎛ =

1

0

)()()(),2(:),(
R

n

iwnd enwmnxmk
N

XmkX π

 ()∑
−

=

−−=
1

0

)()()(
R

n

kn
NWnwmnx

 ()0,...0,)()(1
0
−
=−= R

nN nwmnxDFT (2.13)

where 0,…0 is N-R.

In this definition, the overlap between adjacent blocks is R-1. The signal is shifted

along the window one sample at a time. That generates more points than is usually

needed, so the STFT is also sampled along the time direction. That means

),(LmkX d

is evaluated, where L is the time-skip. The relation between the time-skip, the

number of overlapping samples, and the block length is

Overlap=R-L (2.14)

Consequently, the Short Time Fourier transform is used to determine the sinusoidal

frequency and phase content of local sections of a signal as it changes over time. The

Short Time Fourier transform tells the order of the frequencies used in the signal.

 15

2.5 Digital Filtering

The purpose of a filter is to accept certain type of signals and reject others. A filter

can be characterized by its frequency response as low pass, high pass, band stop, and

band pass. Both the FIR and IIR difference equations can be utilized to implement

digital filters. This is achieved by choosing the appropriate coefficients. From

implementation perspective, the IIR filter is more appropriate since the filter size is

smaller compared to the FIR filter to achieve similar frequency response. Unlike the

IIR, the FIR has linear phase that is necessary to prevent phase distortion.

 16

CHAPTER 3

FOOTSTEP DETECTION METHODS

3.1 Kurtosis

Pearson introduced kurtosis in 1905 as a measure of how flat the top of a symmetric

distribution is when compared to a normal distribution of the same variance. Kurtosis

is more influenced by scores in the tails of the distribution than scores in the center

of a distribution [11].

Kurtosis can be defined as the standardized fourth population moment about mean,

()
() 4

4
22

4

2
)(σ

µ

µ

µβ =
−

−
=

XE
XE (3.1)

where E is the expectation operator, µ is the mean, µ4 is the fourth moment about the

mean, and σ is the standard deviation. The normal distribution has a kurtosis of 3,

and β2-3 is often used so that the reference normal distribution has a kurtosis of

zero(β2-3 is sometimes denoted as γ2). A sample counterpart to β2 can be obtained by

replacing the population moments with the sample moments, which gives

()22

4

2
/)(

/)(

∑
∑

−

−
=

nXX

nXX
b

i

i (3.2)

where b2 is the sample kurtosis, X is the sample mean, and n is the number of

observations [12]. The kurtosis value compared for a sample sequence is much

higher in the presence of impulsive events than it is in the presence of Gaussian or

Sinusoidal signatures. The method depends only on the shape of the signature and

not the amplitude. Figure 3.1 shows positive and negative kurtosis, if β2-3 is greater

than zero then it is positive kurtosis (leptokurtic). , if β2-3 is less than zero then it is

negative kurtosis (platykurtic) [13].

17

Figure 3.1 Positive and negative kurtosis

The dotted lines show normal distributions in Figure 3.2, the solid lines show

distributions with positive kurtosis (left) and negative kurtosis (right). As can be seen

from the Figure 3.1, Positive kurtosis has heavier tails and higher peak than the

normal, whereas negative kurtosis has lighter tails and flatter peak.

Figure 3.2 Positive and negative kurtosis with normal distributions

Kurtosis is used for footstep detection and is a statistical measure of the amplitude of

the seismic signature [14].

3.2 Spectrum Analysis

A spectrogram is a time-varying spectral representation that shows how the spectral

density of a signal varies with time. The purpose of the spectrogram is to analyze the

18

http://en.wikipedia.org/wiki/Spectral_density
http://en.wikipedia.org/wiki/Spectral_density

signal using a sliding window. The window length is chosen so that the signal may

be considered to be almost stationary inside [15]. In this case, its spectral energy

density can be evaluated using the Fourier transform over each time interval obtained

by shifting the sliding window. The Short time Fourier transform or its square

magnitude (spectrogram) consider therefore a non-stationary signal as a

concatenation of stationary signals within the sliding window. Thus the time

resolution of this analysis is given by the window size, while the spectral resolution

is proportional to its inverse. This means that it is not possible to increase the two

resolutions simultaneously.

For highly non-stationary signals a fine time resolution is required, thus, window

should be short in this case and the spectral resolution will be low. If a fine spectral

resolution is required, window should be large, which reduces the time resolution.

The spectrogram is used to detect the Footsteps[3].

3.3 Envelope

The envelope of a signal is the outline of the signal. Envelope detection has

numerous applications in Signal Processing and Communications, including

amplitude modulation (AM) detection[16].

3.3.1 Envelope of a Signal

The used method for envelope of a signal works by squaring the input signal and

sending it through a low-pass filter. Squaring the signal effectively demodulates the

input by using itself as the carrier wave. This means that half the energy of the signal

is pushed up to higher frequencies and half is shifted towards DC. The envelope can

then be extracted by keeping all the DC low-frequency energy and eliminating the

high-frequency energy.

3.3.2 FIR Decimation

The FIR Decimation block resamples the discrete-time input at a rate K times slower

than the input sample rate, where the integer K is specified by the Decimation factor

parameter[17]. This process consists of two steps:

19

• The block filters the input data using a direct-form FIR filter.

• The block downsamples the filtered data to a lower rate by discarding K-1

consecutive samples following every sample retained.

The FIR Decimation block implements the above FIR filtering and downsampling

steps together using a polyphase filter structure, which is more efficient than

straightforward filter-then-decimate algorithms. In Figure 3.3, Seismic data is

imported to simulink from Matlab workspace. It is filtered, then applied to Envelope

detector by squaring the signal and low pass filtering. Finally output signal exported

to Matlab workspace.

Figure 3.3 Simulink model of the system for envelope detection

3.3.3 Block Diagram of The System

The designed footstep detection system consists of two parts, hardware and software

The hardware of the system is made up of geophone, data acquisition card and

cabling. The software of the system is data acquisition, data conversion, filtering,

envelope of the signal and the detection algorithm.

The block diagram of the designed system can be seen in Figure 3.4.

20

Figure 3.4 Block diagram of the system

21

CHAPTER 4

HUMAN DETECTION SYSTEM DESIGN AND CONSTRUCTION

4.1 System Built up

Vertical axis Geospace GS-20DX geophone is buried in the ground. It is connected

to the National Instruments NI-9234 data acquisition card. This card has USB

connection to a PC. After hardware installation, as a person walked along the path,

seismic data was recorded via PC from geophone sensor. The system is shown in

Figure 4.1

Figure 4.1 The test layout used to collect Human Seismic Data

4.2 Seismic Data Acquisition

NI Signal express program is used for data acquisition. It saves the collected data in

the format of a tdms file extension. In this thesis, Matlab program is used for all

22

calculations. Normally, a tdms file is not recognized by Matlab. A special m-file is

used for converting a tdms file to mat file, which is given in Appendix D

4.2.1. Data Acquisition with NI Signal Express

Before data acquisition, setup settings must be adjusted. First of all, an “add step” is

created, then the configuration parameters of NI-9234 DAQ card is adjusted in the

opened window in Figure 4.2.

Figure 4.2 NI Signal Express signal setup

Adjusted parameters are

• Channel is selected Analog input 0, (ai0)

• Signal range is “-5 volt to +5 volt” .

• Acquisition mode is “continuous samples” and

• Sample rate is adjusted 25.6 kS/sec.

After the configuration is completed, the seismic data is collected from geophone.

Now, the run button is used to start acquisition, In Figure 4.3, the seismic signal that

generated by geophone can be seen. Each peaks are footsteps of a person. When a

person comes close to the geophone, the peak amplitude is increased.

23

Figure 4.3 Seismic Data

4.2.2. Transformation of Data into Matlab Platform

In this thesis, Matlab R2006a with data acquisition toolbox 2.8.1 is used. It is not

compatible with NI-9234 card. This DAQ card is compatible with Matlab 2009a with

Data acquisition toolbox 2.14. Therefore a convertion is necessary from tdms-file to

mat-file.

To convert a tdms-file, convertTDMS.m file is copied to the folder C:\Program

Files\MATLAB\R2006a\work. Then the command “convertTDMS(0)” in the

Matlab command window is used as can be seen from the Figure 4.4

>> convertTDMS(0)

After applied “convertTDMS(0)” command, tdms file is converted to mat-file by

Matlab. A variable that named as ans is created in the structure format. It is

represented in Figure 4.5

24

Figure 4.4 The selection of data to be converted

Finally The codes in Table 4.1 are used to obtain the data as a structure.

Table 4.1 Algorithm for obtaining a structure type data

B=ans.Data.MeasuredData(1,1);

sis=B.Data(:,1);

data1.signals.values=sis;

data1.time=[];

25

Figure 4.5 Data Conversion tdms-file to mat-file

4.2.3. Generation of Disturbance Signals

The sources of disturbances in seismic sensors are external noises and measurement

noises. To simulate noise, sine functions that have different frequencies and

different time values are created.

data1 is raw seismic signal at previous section, here disturbances as data2, data3 and

data4 are created. data2 is 500 Hz sinusoid signal. The codes in Table 4.2 are given

for obtaining a 500 Hz sinusoid signal.

Table 4.2 Algorithm for obtaining a 500 Hz sinusoid signal.

Fs1=25600;
t1 =0:1/Fs1:16-1/Fs1;
x1=6e-4*sin(2*pi*500*t1);
x1= x1';
data2.signals.values=x1;
data2.time=[];

26

data3 is 1000 Hz sinusoid signal. The codes are given in Table 4.3

Table 4.3 Algorithm for obtaining a 1000 Hz sinusoid signal.

Fs2=25600;
t2 =0:1/Fs2:16-1/Fs2;
x2=6e-4*sin(2*pi*1000*t2);
x2= x2';
data3.signals.values=x2;
data3.time=[];

data4 is 2000 Hz sinusoid signal for first 4 seconds and 4000 Hz sinusoid signal for

remaining 12 seconds. The codes are given in Table 4.4

Table 4.4 Algorithm for obtaining a 2000 Hz and 4000 Hz sinusoid signal.

Fs3=25600; %102400=4 sec
Fs4=25600; %307200=12 sec
t3 =0:1/Fs3:4-1/Fs3;
t4 =0:1/Fs4:12-1/Fs4;
x3=6e-4*sin(2*pi*2000*t3);
x4=6e-4*sin(2*pi*4000*t4);
x34=[x3 x4];
x34= x34';
data4.signals.values=x34;
data4.time=[];

Finally, all data are combined as one signal “xTotal” and the code is

xTotal=sis+x1+x2+x34;

27

4.3 Simulink Model

A simulink model is designed to eliminate frequencies out of 2-100 Hz and to

generate the envelope of the signal. Then output of the model is recorded and sent to

the workspace. The developed model is shown in the Figure 4.6

Figure 4.6 Simulink Model

In the model, first a raw data and disturbances are generated in Matlab. Then they are

combined to see the performance of the model in the Simulink. It sent to a band-pass

filter between 2 and 100 hz. Here low and high frequencies eliminated. Finally

envelope of the signal is obtained by squaring the input signal and sending it through

a low-pass filter. Squaring the signal effectively demodulates the input by using itself

as the carrier wave. This means that half the energy of the signal is pushed up to

higher frequencies and half is shifted towards DC. The envelope can then be

extracted by keeping all the DC low-frequency energy and eliminating the high-

frequency energy. A simple minimum-phase low-pass filter is used to get rid of the

high-frequency energy [16].

The inputs and output of the model are shown in Figure 4.7. Highly disturbed signals

are filtered and an envelope signal is generated. As can be seen from the Figure 4.7

each footstep seems as a peak and time between footsteps are nearly same (periodic).

28

When intruder comes close to the geophone sensor, the amplitude of the signal will

be increased.

Figure 4.7 Simulink model inputs and outputs

4.4 Footstep Detection Algorithms

Two method are used to examine footsteps. First is spectrogram, other our detection

algorithm based on filtering and envelope.

4.4.1 Spectrogram

A spectrogram is a time-varying spectral representation that shows how the spectral

density of a signal varies with time. The spectrogram of a signal can be estimated by

computing the squared magnitude of the STFT of the signal[15]. Figure 4.8 shows

the spectrogram of the raw seismic signal. Here footsteps can be seen as time and

frequency.

29

http://en.wikipedia.org/wiki/Spectral_density
http://en.wikipedia.org/wiki/Spectral_density
http://en.wikipedia.org/wiki/Magnitude_%28mathematics%29

Figure 4.8 Spectrogram of the raw seismic signal

Spectrogram is applied to the raw seismic signal. Block length,R is set to 1024.

Frequency discretization, N is set to 2048. Time lapse between blocks, L is 512 and

Sampling frequency, fs is 25600. The Matlab codes are given in Table 4.5.

Table 4.5 Algorithm for obtaining the spectrogram of the footstep signals

R = 1024;
window = hamming(R);
N =2048;
L = 512;
fs = 25600;
overlap = R - L;
[B,f,t] = specgram(sis,N,fs,window,overlap);
% MAKE PLOT
figure('Name','University of Gaziantep','NumberTitle','off'), clf
imagesc(t,f,log10(abs(B)));
colormap('jet')
axis xy
xlabel('time')
ylabel('frequency')
title('SPECTROGRAM, Raw Seismic signal, R=1024 , N=2048 , L=512 ')

30

Now lets apply some noise to the raw seismic signal and see how spectrogram will

change. Disturbance signals that generated before are used. Raw signal and those

disturbance signals are combined as one signal. Then Spectrogram is applied to the

signal. Block length,R is set to 1024. Frequency discretization,N is set to 2048. Time

lapse between blocks,L is 512 and Sampling frequency, fs is 25600. The Matlab

codes are given in Table 4.6.

Table 4.6 Algorithm for obtaining the spectrogram of the combined signals

R = 1024;
window = hamming(R);
N =2048;
L = 512;
fs = 25600;
overlap = R - L;
[B,f,t] = specgram(xTotal,N,fs,window,overlap);
% MAKE PLOT
figure('Name','University of Gaziantep','NumberTitle','off'), clf
imagesc(t,f,log10(abs(B)));
colormap('jet')
axis xy
xlabel('time')
ylabel('frequency')
title('SPECTROGRAM, Total signal=Raw+500Hz+1000+2000Hz+4000Hz sine ')

Figure 4.9 shows the spectrogram of the raw seismic and disturbance signal.

Footsteps and disturbances can be seen as time and frequency.

Spectrogram is very useful for examining the frequency contents of the signal as

time. From the spectrogram, Footsteps have low frequency (10-50 Hz) and periodic

peaks. These peaks in amplitudes change as distance between the sensor and the

pedestrian.

31

Figure 4.9 Spectrogram of the raw seismic signal with disturbances

4.4.2 Proposed Detection Algorithm

In this section, an algorithm is proposed for footstep detection. The function

FSdetection(N,A,T,NRaw) is written to detect the footsteps. It is a Matlab m-file,

where N is the number of simout samples, A is the amplitude values of simout

variable, T is the time values of simout variable and NRaw is the number of samples

of the raw data. FSdetection m-file code is given in Appendix E.

Remember that the outputs of the model is saved as a variable “simout” on the

matlab workspace in section 4.3. Now The FSdetection m-file is applied for the

simout variable. The function has five stages. The first stage calculates the peaks in

the defined limits. The second stage selects the footstep peaks at the defined width.

The third stage calculates the footsteps peaks and real time. The forth stage finds the

footstep. The final stage is the graphical representation.

32

The block diagram of the proposed detection algorithm is below;

Figure 4.10 Flowchart of the detection algorithm

33

Variables that used in the algorithm are represented in Figure 4.11. FSdetection

function produces a graphical representation to show footsteps in the real-time. In

Figure 4.12, Top graph shows peaks as sample points. Middle is peaks as real time.

Bottom graph is detected footsteps.

Figure 4.11 Variables of algorithm

34

Figure 4.12 Outputs of the FSdetection algorithm

35

CHAPTER 5

EXPERIMENTS AND TEST RESULTS

5.1 Experiment Design

Seismic signals from human footsteps were observed experimentally at the campus

of the University of Gaziantep. Footsteps were detected at ranges up to 10 m.

Seismic footstep signal levels were good at short distances from the sensor. However

the level of the signals decreased rapidly with increasing distance between a moving

person and the sensor. Intruder trials at the campus were conducted along a gravel

road in an open area. Weather was sunny.

Test equipments are below,

Computer :Fujitsu-Siemens Esprimo Mobile V5535

 Intel Pentium Dual CPU T2370 1.73 GHz, 3MB Ram, Windows-XP

DAQ :NI-9234 USB

Sensor :Geospace GS20-DX

Software :NI Labview Signal Express 2009, Matlab R2006a

5.2 Experiments

Many real-time measurements were done to test the algorithm. In these tests, raw

data is firstly plotted, it is located in the first figure. Then the peaks that considered

in calculations are plotted, it is located at the top of second figure. These peaks can

be a footstep or not. They will be tested by algorithm in the next step. Finally the

peaks that are footsteps are plotted, it is located at the bottom of the second figure. If

peaks are not footsteps, these peaks will be rejected by the algorithm.

36

5.2.1 Application 1

Collected raw seismic data is plotted in Figure 5.1. As can be seen from the Figure

5.1, first there are two peaks, then five peaks and finally two peaks.

The number of total raw samples = 793600

The number of output samples of the Simulink model = 52907

Sample Rate = 25600

X-axis Detected Peak Locations= [9.08 14.73 15.43 16.01 16.74 21.44]

Y-axis Detected Peak Values = [0.23 0.35 2.34 5.42 0.18 0.13]

FS_LocationRealX = [14.73 15.43 16.01 16.74]

FS_LocationRealY = [0.35 2.34 5.42 0.18]

Figure 5.1 Raw seismic data.

37

After the raw signal is obtained, then detection algorithm is applied on it. As can be

seen from the Figure 5.2, first peak are not a footstep, because three or more peaks

are necessary for footstep. So next four footsteps are detected, others are rejected.

Figure 5.2 Application of the algorithm on the real seismic data.

5.2.2 Application 2

Raw seismic data is plotted in Figure 5.3.

The number of total raw samples = 742400

The number of output samples of the Simulink model = 49494

Sample Rate = 25600

X-axis Detected Peak Locations= [12.55 13.20 13.85 14.51 17.98 23.29]

Y-axis Detected Peak Values = [0.09 0.15 0.24 0.08 0.20 0.11]

FS_LocationRealX = [13.20 13.85 14.51]

FS_LocationRealY = [0.15 0.24 0.08]

38

Figure 5.3 Raw seismic data.

After the raw signal is obtained, then detection algorithm is applied on it. As can be

seen from the Figure 5.4, three footsteps are detected, others are rejected.

Figure 5.4 Application of the algorithm on the real seismic data.

39

5.2.3 Application 3

Raw seismic data is plotted in Figure 5.5.

The number of total raw samples = 972800

The number of output samples of the Simulink model = 64854

Sample Rate = 25600

X-axis Detected Peak Locations= [8.71 14.01 18.02 23.45 29.39 30.00 30.71 31.25]

Y-axis Detected Peak Values = [0.08 1.52 0.60 1.19 0.75 7.76 0.96 0.07]

FS_LocationRealX = [29.39 30.00 30.71]

FS_LocationRealY = [0.75 7.76 0.96]

Figure 5.5 Raw seismic data.

Three footsteps are detected, others are rejected in Figure 5.6

40

Figure 5.6 Application of the algorithm on the real seismic data.

5.2.4 Application 4

Raw seismic data is plotted in Figure 5.7.

The number of total raw samples = 409600

The number of output samples of the Simulink model = 27307

Sample Rate = 25600

X-axis Detected Peak Locations= [5.79 8.15 8.69 9.31 9.84 9.93 12.33]

Y-axis Detected Peak Values = [0.09 0.15 3.27 0.47 0.07 0.17 0.10]

FS_LocationRealX = [8.15 8.69 9.31]

FS_LocationRealY = [0.15 3.27 0.47]

41

Figure 5.7 Raw seismic data.

Three footsteps are detected, others are rejected in Figure 5.8

Figure 5.8 Fourth application results

42

5.2.5 Application 5

Raw seismic data is plotted in Figure 5.9.

The number of total raw samples = 844800

The number of output samples of the Simulink model = 56321

Sample Rate = 25600

X-axis Detected Peak Locations= [0 5.75 12.08 12.69 13.28 13.85 15.01

15.54 16.09 16.35 16.63 17.18 18.28 18.64 18.80 19.40 20.48 21.03]

Y-axis Detected Peak Values = [0 0.53 0.15 0.30 0.38 0.42 0.58 0.26

3.51 0.08 12.02 42.78 1.41 0.08 0.65 0.19 0.32 0.15]

FS_LocationRealX = [0 5.75 12.08 12.69 13.28 13.85 15.01 15.54 16.09

16.35 16.63 17.18 18.28 18.64 18.80 19.40 20.48 21.03]

FS_LocationRealY = [0.15 0.30 0.38 0.42 0.58 0.26 3.51 0.65 0.19

0.32 0.15]

Figure 5.9 Raw seismic data.

43

Seven footsteps are detected, others are rejected in Figure 5.10

Figure 5.10 Fifth application results

5.3 Results

It is known from the applications that the distance between intruder and sensor is

very important. If distance is increased, detection will be decreased. Also noise will

be effective for detection. The system has always a noise that comes from sensors,

daq card and other equipments. Detection is decreased by increased threshold level

of noise. Detection algorithm has five stages. Peaks in defined limits are determined

at the first stage. Width of each peaks is controlled at second stage. Magnitude and

location of each peaks are determined in third stage. The time between two adjacent

peaks is calculated and if it is in limits and if number of adjacent peaks is three or

more then they will be defined as footstep in forth stage. Graphical representation is

done in the fifth stage.

In application one, time between first two peaks and other four peaks is out of limits.

Limits between peaks is defined as footsteps of a walking person.

44

In application two, four footsteps are detected instead of five footsteps. Because

other peaks have low amplitude levels.

In application three, first four peaks are not footstep, because time between them is

too big. Footsteps of a walking person is less than these peaks.

In application four, three footsteps are detected, because other peaks have low

amplitude levels.

In application five, seven footsteps are detected, because other peaks have low

amplitude levels.

45

CHAPTER 6

CONCLUSION

There are many methods to detect the footsteps. Footstep detection with seismic

sensors is considered in this thesis. A new algorithm is developed for detection. In

this algorithm, first a raw signal is filtered, then envelope method is applied. Also

time between two adjacent peaks are considered, because it is known that footsteps

are periodic. Finally footstep peaks are obtained and other peaks are rejected.

Proposed method is applied to real footstep signals with disturbance effects via real

time experiments conducted in outdoor conditions. The results obtained reveal the

performance of the method in detecting human existence in restricted areas. However

the results also show that human detection success significantly depends on external

uncontrollable effects such as distance from the sensor and ground characteristics.

In the present work, only one seismic geophone sensor is used. It is not enough to

get all seismic activities around the protected area. At least three or more seismic

geophone sensors are needed for this. High frequency sine signals 500, 1000, 2000

and 4000 Hz respectively are generated to simulate noise as disturbance.

Also there are some limitations for detection. First of all, distance effects results.

When the pedestrian is far from the sensor, the signal level is very low. The second is

ground type. If ground is soft, seismic waves will not propagate properly. Therefore

the geophone sensor does not detect intruder activities.

In the future works, the use of a three-component geophone will be investigated to

detect and track persons and vehicles. The method depends on the analysis of

Rayleigh surface waves. Rayleigh surface waves diminish in intensity as R-1. This

surface wave is a vector wave that can be used to track the source.

46

REFERENCES

[1] Richman M.S., Deadrick D.S. (2001) Personnel Tracking Using Seismic Sensors,

Proceedings of SPIE, Vol.4393, pp. 14-21

[2] Succi G., Clapp D., Gambert R.(2001) Footstep Detection and Tracking,

Proceedings of SPIE, Vol.4393, pp. 22-29

[3] Houston K.M., McGaffigan D.P.(2003) Spectrum Analysis Techniques for

Personnel Detection Using Seismic Sensors, Proceedings of SPIE, Vol.5090, pp.

162-173

[4] Mazarakis G.P., Avaritsiotis J.N.(February 2005) A Prototype Sensor Node for

Footstep Detection, Proceedings of the Second European Workshop on Wireless

Sensor Networks, IEEE pp.415-418

[5] Dibazar A.A., Park H.O., Berger T.W., (August 2007) The Application of

Dynamic Synapse Neural Networks on Footstep and Vehicle Recognition, IEEE

International Joint Conference on Neural Networks, pp.1842-1846

[6] Chen C.H., (March 1982) Adaptive and Learning Algorithms for Seismic

Detection of Personnel, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 4 No.2, pp.129-132

[7] Pavlovic V.D., Velickovic Z.S. (1998) Measurement of The Seismic Waves

Propagation Velocity in The Real Medium, Facta Universitatis The Scientific

Journal of Series Physics, Chemistry and Technology Vol.1, No. 5, pp.63-73

47

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9875
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4370890
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34

[8] Barzilai A., Vanzandt T., Kenny T. Improving The Performance of a Geophone

through Capacitive Position Sensing and Feedback. ASME International Congress

Winter, 1998

[9] Antoniou A. (2006) Digital Signal Processing, (2nd ed.), McGraw Hill Companies

Inc.

[10] http://cnx.org/content/m10570/latest/

[11] http://core.ecu.edu/psyc/wuenschk/docs30/Skew-Kurt.doc

[12] Decarlo L.T. On The Meaning and Use of Kurtosis, (1997) Psychological

Methods, Vol.2, No.3, pp.292-307

[13] Press W.H., Teukolsky S.A. (1992) Numerical Recipes in C, (2nd ed.),

Cambridge University Press

[14] Pakhomov A., Sicignano A., Sandy M., Goldburt T. (2003) Seismic Footstep

Signal Characterization, Proceedings of SPIE, Vol.5071, pp. 297-305

[15] Quinquis A. (2008) Digital Signal Processing using Matlab, (2nd ed.), ISTE Ltd

and John Wiley & Sons Inc.

[16] http://www.mathworks.com/help/toolbox/dspblks/ref/firdecimation.html

[17] http://www.mathworks.com/products/sigprocblockset/demos.html?file=/
products/ demos/shipping/ dspblks/dspenvdet.html#1

48

http://cnx.org/content/m10570/latest/
http://www.mathworks.com/help/toolbox/dspblks/ref/firdecimation.html
http://www.mathworks.com/products/sigprocblockset/demos.html?file=/ products/
http://www.mathworks.com/products/sigprocblockset/demos.html?file=/ products/

APPENDIX A

SEISMIC SENSOR GEOPHONE GS-20DX

49

Table A.1 Geophone GS-20DX Characteristics

No Characteristics Values

1 Natural Frequency 10 Hz

2 Frequency Tolerance ± 5 %

3 Maintains Fn Specifications to Tilt Angle of 200

4 Typical Spurious Frequency > 250 Hz

5 Harmonic Distortion with Driving Velocity of
0.7 in/sec (1.8 cm/sec)P-P < .2 %

6 Distortion Measured at 12 Hz

7 Open Circuit Damping (Bo) (for all coil resistances) 0.30 ± 10%

8 Standard Coil Resistance (Rc) ± 5% 395 Ohms

9 Intrinsic Voltage Sensitivity ± 10% ,V/cm/sec 0.28

10 Damping Constant at Fn (Rt Bc Fn) 5500 for 395 Ohms

11 Normalized Transduction Constant 0.0138 (sq.root Rc)V/cm/sec

12 Moving Mass ± .5g 11g

13 Case to Coil Motion P-P Min =0,8mm, Max=1.5mm

14 Operating Temperature Range (°C) -45° to +100°

15 Dimensions (less terminals*) Height=3.3 cm, Diameter=2,54cm, Weight=87.3 g

Figure A.1 Geophone GS-20DX Response Curve

 50

APPENDIX B

DAQ CARD NI-9234

51

Table B.1 NI-9234 DAQ Card Characteristics

No Characteristics Values

1 PC Bağlantı Portu USB

2 ADC Resolution (bits) 24

3 Type of ADC Delta-sigma with analog prefiltering

4 Dynamic Range (dB) 102

5 Sampling rate per channel 51.2 kS/s

6 Analog inputs 4

7 Input range ± 5 volt

8 TEDS Support Yes, IEEE 1451.4 TEDS Class I

9 Master timebase (internal frequency) 13.1 Mhz

10 Master timebase (accuracy) ± 50 ppm max

11 Input coupling Software selectable AC/DC

-3 dB 0.5 Hz typ
12 AC cutoff frequency

-0.1 dB 4.6 Hz max

Typical 5.1 Vpk

Minimum 5 Vpk 13 AC voltage full scale range

Maximum 5.2 Vpk

14 Common mode voltage Al- to earth ground ± 2V

Minimum 2 mA
15 IEPE excitation current

Typical 2.1 mA

16 IEPE compliance voltage 19 V max

For an IEPE sensor connected to AI+
and AI-

± 30 V
17 Overvoltage protection

(with respect to chassis ground) For a low-impedance source
connected to AI+ and AI- -6 to 30 V

Frequency 13.1072 MHz
18 Internal master timebase (fM)

Accuracy ±50 ppm max

Minimum 1.652 kS/s
19

Data rate range (fs) using internal
master timebase
 Maximum 51.2 kS/s

20 Power-on glitch 90 µA for 10 µs

21 Input delay 38.4/ fs + 3.2 µs

Typical 0.14 mdB/°C (16 ppm/°C)
22 Gain drift

Maximum 0.45 mdB/°C (52 ppm/°C)

 52

No Characteristics Values

Typical 19.2 µV/°C
23 Offset drift

Maximum 118 µV/°C

Typical 0.01 dB
Gain

Maximum 0.04 dB 24 Channel-to-channel matching

Phase (fin in kHz) fin · 0.045° + 0.04 max

Frequency 0.45 · fs
25 Passband

Flatness (fs = 51.2 kS/s) ±40 mdB (pk-to-pk max)

26 Phase nonlinearity, (fs = 51.2 kS/s) ±0.45° max

Frequency 0.55 · fs
27 Stopband

Rejection 100 dB

28 Alias-free bandwidth 0.45 · fs

29 Oversample rate 64 · fs

30 Crosstalk (1 kHz) -110 dB

Minimum 40 dB
31 CMRR (fin δ 1 kHz)

Typical 47 dB

32 SFDR (fin = 1 kHz, –60 dBFS) 120 dB

Differential 305 kΩ
33 Input impedance AI– (shield) to chassis

ground

50 Ω

34 Safety Standards IEC 61010-1, EN 61010-1
UL 61010-1, CSA 61010-1

35 Electromagnetic Compatibility

EN 61326 (IEC 61326): Class A emissions; Basic
immunity
EN 55011 (CISPR 11): Group 1, Class A emissions
AS/NZS CISPR 11: Group 1, Class A emissions
FCC 47 CFR Part 15B: Class A emissions
ICES-001: Class A emissions

36 Operating vibration Random (IEC 60068-2-64).........5 grms, 10 to 500 Hz
Sinusoidal (IEC 60068-2-6)5 g, 10 to 500 Hz

Idle Channel 51.2 kS/s 25.6 kS/s 2.048 kS/s

97 dBFS 99 dBFS 103 dBFS
Noise

50 µVrms 40 µVrms 25 µVrms
37 Idle channel noise and noise density

Noise density 310 nV/√Hz 350 nV/√Hz 780 nV/√Hz

Measurement
Conditions

Percent of
Reading

(Gain Error)

Percent of
Range (5.1 Vpk)
(Offset Error)

Calibrated max
(–40 to 70 °C)

0.34%,
±0.03 dB

±0.14%,
7.1 mV

38 Accuracy

Uncalibrated max
(–40 to 70 °C)

1.9%,
±0.16 dB

±0.27%,
13.9 mV

 53

APPENDIX C

MATLAB CODES USED IN CHAPTER-2

54

The Function “positiveFFT”

function [X,freq]=positiveFFT(x,Fs)

N=length(x); %get the number of points

k=0:N-1; %create a vector from 0 to N-1

T=N/Fs; %get the frequency interval

freq=k/T; %create the frequency range

X=fft(x)/N; % normalize the data

%only want the first half of the FFT, since it is redundant

cutOff = ceil(N/2);

%take only the first half of the spectrum

X = X(1:cutOff);

freq = freq(1:cutOff);

Figure 2.3

fo = 15; %frequency of the sine wave

Fs = 200; %sampling rate

Ts = 1/Fs; %sampling period

t1 = 0:Ts:1 - Ts; %time vector

n1 = length(t1); %number of samples

y1 = 4*sin(2*pi*fo*t1);

%plot the curve in the time domain

subplot(2,1,1)

plot(t1,y1) %plot the sine wave

 [Y1,freq1] = positiveFFT(y1,Fs); %compute the frequency spectrum

%positiveFFT is a custom function that is included in the source file

subplot(2,1,2);

stem(freq1,abs(Y1)) %plot the frequency spectrum

 55

Figure 2.4

fo = 15; %frequency of the sine wave

Fs = 200; %sampling rate

Ts = 1/Fs; %sampling periodl

t2 = 0:Ts:0.95 -Ts; %time vector(notice the difference here!)

n2 = length(t2); %number of samples

y2 =4*sin(2*pi*fo*t2);

subplot(2,1,1) %plot the curve in the time domain

plot(t2,y2)

[Y2,freq2] = positiveFFT(y2,Fs); %compute the frequency spectrum

subplot(2,1,2);

stem(freq2,abs(Y2)) %plot the frequency spectrum

Figure 2.5

windowHanning = window(@hann,n2).'; %create a hanning window vector, n2=190

hanningWindowFigure = figure;

plot(windowHanning); %plot the hanning window

Figure 2.6

windowedSignal = windowHanning.*y2; %multiply the inputsignal with this

window

windowedSignalPlot = figure;

plot(t2,windowedSignal) %plot the windowed signal

Figure 2.7

[a,b] = positiveFFT(y2,Fs); %calculate positive fft for non-windowed signal

[c,d] = positiveFFT(windowedSignal,Fs); %calculate positive fft for windowed

signal

c = c * 2; %multiply by the coherence factor

fftWindowedSignalLinear = figure;

plot(b,abs(a),d,abs(c),'r')

legend('Non-windowed signal' ,'Windowed signal')

%plot the windowed signal in log scale

fftWindowedSignalLog = figure; plot(b,20*log10(abs(a)),d,20*log10(abs(c)),'r')

 56

APPENDIX D

 MATLAB CODES of ConvertTDMS.m FUNCTION

57

function [ConvertedData,ConvertVer]=convertTDMS(SaveConvertedFile,filename)

%Function to load LabView TDMS data file(s) into variables in the MATLAB
workspace.
%An *.MAT file can also be created. If called with one input, the user
selects
%a data file. This function was submitted to MATLAB Central's File
Exchange by
%Robert Seltzer on 1 SEP 10.
%
% TDMS format is based on information provided by National Instruments
% at: http://zone.ni.com/devzone/cda/tut/p/id/5696
%
% [ConvertedData,Index,ConvertVer]=convertTDMS(SaveConvertedFile,filename);
%
% Inputs:
% SaveConvertedFile (required) - Logical flag (true/false)
that
% determines whether a MAT file is created. The MAT file's
name
% is the same as 'filename' except that the 'TDMS' file
extension is
% replaced with 'MAT'. The MAT file is saved in the same
folder
% and will overwrite an existing file without warning. The
% MAT file contains all the output variables.
%
% filename (optional) - Filename (fully defined) to be
converted.
% If not supplied, the user is provided dialog box to open
file.
% Can be a cell array of files for bulk conversion.
%
% Outputs:
% ConvertedData (required) - Structure with all of the data
objects.
% ConvertVer (required) - the version number of this
function.
%

%---
%Brad Humphreys - v1.0 2008-04-23
%ZIN Technologies
%---

%---
%Brad Humphreys - v1.1 2008-07-03
%ZIN Technologies
%-Added abilty for timestamp to be a raw data type, not just meta data.
%-Addressed an issue with having a default nsmaples entry for new objects.
%-Added Error trap if file name not found.
%-Corrected significant problem where it was assumed that once an object
% existsed, it would in in every subsequent segement. This is not true.
%---

%---
%Grant Lohsen - v1.2 2009-11-15
%Georgia Tech Research Institute
%-Converts TDMS v2 files
%Folks, it's not pretty but I don't have time to make it pretty. Enjoy.
%---

 58

%---
%Jeff Sitterle - v1.3 2010-01-10
%Georgia Tech Research Institute
%Modified to return all information stored in the TDMS file to inlcude
%name, start time, start time offset, samples per read, total samples, unit
%description, and unit string. Also provides event time and event
%description in text form
%Vast speed improvement as save was the previous longest task
%---

%---
%Grant Lohsen - v1.4 2009-04-15
%Georgia Tech Research Institute
%Reads file header info and stores in the Root Structure.
%---

%---
%Robert Seltzer - v1.5 2010-07-14
%BorgWarner Morse TEC
%-Tested in MATLAB 2007b and 2010a.
%-APPEARS to now be compatible with TDMS version 1.1 (a.k.a 4712) files;
% although, this has not been extensively tested. For some unknown
% reason, the version 1.2 (4713) files process noticeably faster. I think
% that it may be related to the 'TDSm' tag.
%-"Time Stamp" data type was not tested.
%-"Waveform" fields was not tested.
%-Fixed an error in the 'LV2MatlabDataType' function where LabView data
type
% 'tdsTypeSingleFloat' was defined as MATLAB data type 'float64' .
Changed
% to 'float32'.
%-Added error trapping.
%-Added feature to count the number of segments for pre-allocation as
% opposed to estimating the number of segments.
%-Added option to save the data in a MAT file.
%-Fixed "invalid field name" error caused by excessive string lengths.
%---

%---
%Robert Seltzer - v1.6 2010-09-01
%BorgWarner Morse TEC
%-Tested in MATLAB 2010a.
%-Fixed the "Coversion to cell from char is not possible" error found
% by Francisco Botero in version 1.5.
%-Added capability to process both fragmented or defragmented data.
%-Fixed the "field" error found by Lawrence.
%---

%---
%Christian Buxel - V1.7 2010-09-17
%RWTH Aachen
%-Tested in Matlab2007b.
%-Added support for german umlauts (Ä,ä,Ö,ö,Ü,ü,ß) in 'propsName'
%---

%---
%André Rüegg - V1.7 2010-09-29
%Supercomputing Systems AG
%-Tested in MATLAB 2006a & 2010b

 59

%-Make sure that data can be loaded correctly independently of character
% encoding set in matlab.
%-Fixed error if object consists of several segments with identical segment
% information (if rawdataindex==0, not all segments were loaded)
%---

%Initialize outputs
ConvertVer='1.7'; %Version number of this conversion function
ConvertedData=[];

switch nargin
 case 0
 e=errordlg('The function requires at least 1 input
argument','Insufficient Input Arguments');
 uiwait(e)
 return

 case 1

 if ~islogical(SaveConvertedFile)
 if ~ismember(SaveConvertedFile,[0,1])
 e=errordlg('The function''s input argument must be ''True''
or ''False''','Invalid Input Argument');
 uiwait(e)
 return
 end
 end

 %Prompt the user for the file
 [filename,pathname,filterindex]=uigetfile({'*.tdms','All Files
(*.tdms)'},'Choose a TDMS File');
 if filename==0
 return
 end
 filename=fullfile(pathname,filename);
 infilename=cellstr(filename);

 case 2

 if ~islogical(SaveConvertedFile)
 if ~ismember(SaveConvertedFile,[0,1])
 e=errordlg('The function''s first input argument must be
''True'' or ''False''','Invalid Input Argument');
 uiwait(e)
 return
 end
 end

 if ~ischar(filename) && ~iscell(filename)
 e=errordlg(['The function''s second input argument (file list)
must be either a character string for 1 file '...
 'or a cell array of 1 or more files'],'Invalid Input
Argument');
 uiwait(e)
 return
 end

 if iscell(filename)
 %For a list of files
 infilename=filename;

 60

 else
 infilename=cellstr(filename);
 end

 otherwise
 e=errordlg('The function requires 1 or 2 input arguments','Too Many
Input Arguments');
 uiwait(e)
 return

end

for fnum=1:numel(infilename)

 if ~exist(infilename{fnum},'file')
 e=errordlg(sprintf('File ''%s'' not found.',infilename{fnum}),'File
Not Found');
 uiwait(e)
 return
 end

 FileNameLong=infilename{fnum};
 [pathstr,name,ext]=fileparts(FileNameLong);
 FileNameShort=sprintf('%s%s',name,ext);
 FileNameNoExt=name;
 FileFolder=pathstr;

 if fnum==1
 fprintf('\n\n')
 end
 fprintf('Converting ''%s''...',FileNameShort)

 fid=fopen(FileNameLong);

 if fid==-1
 e=errordlg(sprintf('Could not open ''%s''.',FileNameLong),'File
Cannot Be Opened');
 uiwait(e)
 fprintf('\n\n')
 return
 end

%**
**
 %Count the number of segments. While doing the count, also include
error trapping.
 %Find the end of the file
 fseek(fid,0,'eof');
 eoff=ftell(fid);
 frewind(fid);

 segCnt=0;
 CurrPosn=0;
 LeadInByteCount=28; %From the National Instruments web page
(http://zone.ni.com/devzone/cda/tut/p/id/5696) under
 %the 'Lead In' description on page 2: Counted the bytes shown in the
table.
 while (ftell(fid) ~= eoff)

 61

 Ttag=fread(fid,1,'uint8');
 Dtag=fread(fid,1,'uint8');
 Stag=fread(fid,1,'uint8');
 mtag=fread(fid,1,'uint8');

 if Ttag==84 && Dtag==68 && Stag==83 && mtag==109
 %Apparently, this sequence of numbers identifies the start of a
new segment.

 segCnt=segCnt+1;

 if segCnt==1
 StartPosn=0;
 else
 StartPosn=CurrPosn;
 end

 %ToC Field
 ToC=fread(fid,1,'uint32');
 kTocMetaData=bitget(ToC,2);
 kTocNewObject=bitget(ToC,3);
 kTocRawData=bitget(ToC,4);
 kTocInterleavedData=bitget(ToC,6);
 kTocBigEndian=bitget(ToC,7);

 if kTocInterleavedData
 e=errordlg(sprintf(['Seqment %.0f within ''%s'' has
interleaved data which is not supported with this '...
 'function
(%s.m).'],segCnt,TDMSFileNameShort,mfilename),'Interleaved Data Not
Supported');
 fclose(fid);
 uiwait(e)
 uiwait
 end

 if kTocBigEndian
 e=errordlg(sprintf(['Seqment %.0f within ''%s'' uses the
big-endian data format which is not supported '...
 'with this function
(%s.m).'],segCnt,TDMSFileNameShort,mfilename),'Big-Endian Data Format Not
Supported');
 fclose(fid);
 uiwait(e)
 uiwait
 end

 %TDMS format version number
 vernum=fread(fid,1,'uint32');
 if ~ismember(vernum,[4712,4713])
 e=errordlg(sprintf(['Seqment %.0f within ''%s'' used
LabView TDMS file format version %.0f which is not '...
 'supported with this function
(%s.m).'],segCnt,TDMSFileNameShort,vernum,mfilename),...
 'TDMS File Format Not Supported');
 fclose(fid);
 uiwait(e)
 uiwait
 end

 62

 %From the National Instruments web page
(http://zone.ni.com/devzone/cda/tut/p/id/5696) under the
 %'Lead In' description on page 2:
 %The next eight bytes (64-bit unsigned integer) describe the
length of the remaining segment (overall length
 %of the segment minus length of the lead in). If further
segments are appended to the file, this number can be
 %used to locate the starting point of the following segment. If
an application encountered a severe problem
 %while writing to a TDMS file (crash, power outage), all bytes
of this integer can be 0xFF. This can only
 %happen to the last segment in a file.
 segLength=fread(fid,1,'uint64');
 metaLength=fread(fid,1,'uint64');
 TotalLength=segLength+LeadInByteCount;
 CurrPosn=CurrPosn+TotalLength;

 SegInfo(segCnt).SegStartPosn=StartPosn;
 SegInfo(segCnt).MetaStartPosn=StartPosn+LeadInByteCount;

SegInfo(segCnt).DataStartPosn=SegInfo(segCnt).MetaStartPosn+metaLength;

 fseek(fid,CurrPosn,'bof'); %Move to the beginning position
of the next segment
 end

 end
 NumOfSeg=segCnt;

%**
**

 %Initialize variables for the file conversion
 ob=[];
 lastIndex=[];
 for segCnt=1:NumOfSeg

 fseek(fid,SegInfo(segCnt).SegStartPosn,'bof');

 Ttag=fread(fid,1,'uint8');
 Dtag=fread(fid,1,'uint8');
 Stag=fread(fid,1,'uint8');
 mtag=fread(fid,1,'uint8');

 %ToC Field
 ToC=fread(fid,1,'uint32');
 kTocMetaData=bitget(ToC,2);
 kTocNewObject=bitget(ToC,3);
 kTocRawData=bitget(ToC,4);
 kTocInterleavedData=bitget(ToC,6);
 kTocBigEndian=bitget(ToC,7);

 vernum=fread(fid,1,'uint32'); %TDMS
format version number

 segLength=fread(fid,1,'uint64');

 metaLength=fread(fid,1,'uint64');

 63

 %Process Meta Data
 if kTocMetaData
 clear index

 numObjInSeg=fread(fid,1,'uint32');

 for q=1:numObjInSeg

 obLength=fread(fid,1,'uint32'); %Get the
length of the objects name
 obname=convertToText(fread(fid,obLength,'uint8'))'; %Get
the objects name

 %Fix Object Name
 if strcmp(obname,'/')
 obname='Root';
 else

[obname,TruncFieldName,ValidFieldName]=fixcharformatlab(obname);

 if ~ValidFieldName
 e=errordlg(sprintf('A valid field name could not be
created for ''%s''.',obname),...
 'Cannot Create Valid Field Name');
 uiwait(e)
 fclose(fid);
 fprintf('\n\n')
 return
 end

 NameUsed=false;
 if exist('index','var')
 if any(strcmpi({index.name},obname))
 NameUsed=true;
 end
 end

 if NameUsed
 %The name has already been used. Add numbers to
the end until the name is unique.
 MaxNameLen=namelengthmax;
 if TruncFieldName
 BaseName=obname(1:MaxNameLen);
 else
 BaseName=obname;
 end
 HaveValidName=false;
 NameCount=1;
 while ~HaveValidName

 CountStr=sprintf('_%.0f',NameCount);

 if TruncFieldName
 NewName=sprintf('%s%s',BaseName(1:(end-
numel(CountStr))),CountStr);
 else
 NewName=sprintf('%s%s',BaseName,CountStr);
 end

 64

 if numel(NewName)>MaxNameLen
 e=errordlg(sprintf('A unique, valid field
name could not be created for ''%s''.',...
 obname),'Cannot Create Valid Field
Name');
 uiwait(e)
 fclose(fid);
 fprintf('\n\n')
 return
 end

 if all(~strcmpi({index.name},NewName))
 HaveValidName=true;
 if TruncFieldName
 fprintf('\n\n\tField name ''%s'' is too
long and\n\t\thas been truncated to ''%s''.\n',...
 obname,NewName)
 else
 fprintf('\n\n\tField name ''%s''
already exits so\n\t\tit has been changed to ''%s''.\n',...
 obname,NewName)
 end
 obname=NewName;
 else
 NameCount=NameCount+1;
 end
 end
 end
 end

 %Create the 'index' structure
 if exist('index','var')
 index(end+1).name=obname;
 else
 index.name=obname;
 end

 %Validate the object
 if isfield(ob,obname)
 index(end).newob=false;
 else
 ob.(obname)=[]; %Create a blank version of the
object
 index(end).newob=true;
 end

 %Get the raw data Index
 rawdataindex=fread(fid,1,'uint32');
 if rawdataindex==0
 % Use index information of the last segement of this
object
 fields=fieldnames(lastIndex.(obname));
 for i=1:numel(fields)

index(end).(fields{i})=lastIndex.(obname).(fields{i});
 end
 elseif rawdataindex+1==2^32
 %Objects raw data index matches previous index - no
changes. The root object will always have an

 65

 %FFFFFFFF entry
 if strcmpi(index(end).name,'Root')
 index(end).rawdataindex=0;
 index(end).rawDataInThisSeg=false;
 else
 %Need to account for the case where an object
(besides the 'root') is added that has no data but
 %reports using previous.
 if index(end).newob
 index(end).rawdataindex=0;
 index(end).rawDataInThisSeg=false;
 else
 if kTocRawData
 index(end).rawdataindex=index(end-
1).rawdataindex;
 index(end).rawDataInThisSeg=true;
 else
 index(end).rawdataindex=0;
 index(end).rawDataInThisSeg=false;
 end
 end
 end
 else
 %Get new object information
 index(end).rawdataindex=rawdataindex;
 index(end).dataType=fread(fid,1,'uint32');
 index(end).arrayDim=fread(fid,1,'uint32') ;
 index(end).nValues=fread(fid,1,'uint64');
 if index(end).dataType==32
 %Datatype is a string
 index(end).byteSize=fread(fid,1,'uint64');
 else
 index(end).byteSize=0;
 end
 index(end).rawDataInThisSeg=true;
 end

 %Save index information of this segment of this object
 lastIndex.(obname)=index(end);

 %Get the properties
 index(end).numProps=fread(fid,1,'uint32');
 for p=1:index(end).numProps
 propNameLength=fread(fid,1,'uint32');
 propsName=fread(fid,propNameLength,'*uint8')';
 propsName=native2unicode(propsName,'UTF-8');
 propsName=fixcharformatlab(propsName);
 propsDataType=fread(fid,1,'uint32');
 propExists=isfield(ob.(obname),propsName);
 dataExists=isfield(ob.(obname),'data');

 if dataExists
 %Get number of data samples for the object in this
segment
 nsamps=ob.(obname).nsamples+1;
 else
 nsamps=0;
 end

 if propsDataType==32
 %String data type

 66

 propsValueLength=fread(fid,1,'uint32');

propsValue=convertToText(fread(fid,propsValueLength,'uint8=>char'))';
 if propExists
 if isfield(ob.(obname).(propsName),'cnt')
 cnt=ob.(obname).(propsName).cnt+1;
 else
 cnt=1;
 end
 ob.(obname).(propsName).cnt=cnt;
 ob.(obname).(propsName).value{cnt}=propsValue;
 ob.(obname).(propsName).samples(cnt)=nsamps;
 else
 if strcmp(obname,'Root')
 %Header data
 ob.(obname).(propsName)=propsValue;
 else
 ob.(obname).(propsName).cnt=1;

ob.(obname).(propsName).value=cell(nsamps,1); %Pre-allocation

ob.(obname).(propsName).samples=zeros(nsamps,1); %Pre-allocation
 if iscell(propsValue)

ob.(obname).(propsName).value(1)=propsValue;
 else

ob.(obname).(propsName).value(1)={propsValue};
 end
 ob.(obname).(propsName).samples(1)=nsamps;
 end
 end
 else
 %Numeric data type
 if propsDataType==68
 %Timestamp data type

tsec=fread(fid,1,'uint64')/2^64+fread(fid,1,'uint64'); %time since Jan-1-
1904 in seconds
 propsValue=tsec/86400+695422-5/24; %/864000
convert to days; +695422 days from Jan-0-0000 to Jan-1-1904
 else
 matType=LV2MatlabDataType(propsDataType);
 if strcmp(matType,'Undefined')
 e=errordlg(sprintf('No MATLAB data type
defined for a ''Property Data Type'' value of ''%.0f''.',...
 propsDataType),'Undefined Property Data
Type');
 uiwait(e)
 fclose(fid);
 return
 end
 if strcmp(matType,'uint8=>char')

propsValue=convertToText(fread(fid,1,'uint8'));
 else
 propsValue=fread(fid,1,matType);
 end
 end
 if propExists
 cnt=ob.(obname).(propsName).cnt+1;

 67

 ob.(obname).(propsName).cnt=cnt;
 ob.(obname).(propsName).value(cnt)=propsValue;
 ob.(obname).(propsName).samples(cnt)=nsamps;
 else
 ob.(obname).(propsName).cnt=1;
 ob.(obname).(propsName).value=NaN(nsamps,1);
%Pre-allocation

ob.(obname).(propsName).samples=zeros(nsamps,1); %Pre-allocation
 ob.(obname).(propsName).value(1)=propsValue;
 ob.(obname).(propsName).samples(1)=nsamps;
 end
 end

 end %'end' for the 'Property' loop
 end %'end' for the 'Objects' loop

 end

 %Process Raw Data
 if kTocRawData

 %Loop through each of the groups/channels and read the raw data
 fseek(fid,SegInfo(segCnt).DataStartPosn,'bof');
 for r=1:numel(index)

 cname=index(r).name;

 if index(r).newob && index(r).rawDataInThisSeg
 index(r).newob=false;
 ob.(cname).nsamples=0;
 end

 if index(r).rawDataInThisSeg

 nvals=index(r).nValues;

 if nvals>0

 switch index(r).dataType

 case 32 %String
 %From the National Instruments web page
(http://zone.ni.com/devzone/cda/tut/p/id/5696) under the
 %'Raw Data' description on page 4:
 %String type channels are preprocessed for
fast random access. All strings are concatenated to a
 %contiguous piece of memory. The offset of
the first character of each string in this contiguous
 %piece of memory is stored to an array of
unsigned 32-bit integers. This array of offset values is
 %stored first, followed by the concatenated
string values. This layout allows client applications to
 %access any string value from anywhere in
the file by repositioning the file pointer a maximum of
 %three times and without reading any data
that is not needed by the client.

 StrOffsetArray=fread(fid,nvals,'uint32');

 68

 data=cell(1,nvals); %Pre-allocation
 for dcnt=1:nvals
 if dcnt==1
 StrLength=StrOffsetArray(dcnt);
 else
 StrLength=StrOffsetArray(dcnt)-
StrOffsetArray(dcnt-1);
 end

data{1,dcnt}=char(convertToText(fread(fid,StrLength,'uint8=>char'))');
 end
 cnt=nvals;

 case 68 %Timestamp
 data=NaN(1,nvals); %Pre-allocation
 for dcnt=1:nvals

tsec=fread(fid,1,'uint64')/2^64+fread(fid,1,'uint64'); %time since Jan-1-
1904 in seconds
 data(1,dcnt)=tsec/86400+695422-5/24;
%/864000 convert to days; +695422 days from Jan-0-0000 to Jan-1-1904
 end
 cnt=nvals;

 otherwise %Numeric

matType=LV2MatlabDataType(index(r).dataType);
 if strcmp(matType,'Undefined')
 e=errordlg(sprintf('No MATLAB data type
defined for a ''Raw Data Type'' value of ''%.0f''.',...
 index.dataType(r)),'Undefined Raw
Data Type');
 uiwait(e)
 fclose(fid);
 return
 end

 if strcmp(matType,'uint8=>char')
 [data,cnt]=fread(fid,nvals,'uint8');
 data=convertToText(data);
 else
 [data,cnt]=fread(fid,nvals,matType);
 end
 end

 if isfield(ob.(cname),'nsamples')
 ssamples=ob.(cname).nsamples;
 else
 ssamples=0;
 end

 ob.(cname).data(ssamples+1:ssamples+cnt,1)=data;
 ob.(cname).nsamples=ssamples+cnt;
 end
 end

 end %'end' for the 'index' loop

 end

 69

 %% Clean up preallocated arrays (preallocation required for
speed)
 for y=1:numel(index)

 cname=index(y).name;

 if isfield(ob.(cname),'nsamples')

 nsamples=ob.(cname).nsamples;
 %Remove any excess from preallocation of data
 if nsamples>0
 if numel(ob.(cname).data)>nsamples
 ob.(cname).data(nsamples+1:end)=[];
 end

 %Remove any excess from preallocation of properties
 proplist=fieldnames(ob.(cname));
 for isaac=1:numel(proplist)
 if isfield(ob.(cname).(proplist{isaac}),'cnt')
 cnt=ob.(cname).(proplist{isaac}).cnt;
 if
numel(ob.(cname).(proplist{isaac}).value)>cnt

ob.(cname).(proplist{isaac}).value(cnt+1:end)=[];

ob.(cname).(proplist{isaac}).samples(cnt+1:end)=[];

ob.(cname).(proplist{isaac})=rmfield(ob.(cname).(proplist{isaac}),'cnt');
 end
 end
 end

 end
 end
 end %'end' for the 'groups/channels' loop

 end %'end' for the 'Segment' loop

 fclose(fid);

 %% Assign the outputs
 ConvertedData(fnum).FileNameShort=FileNameShort;
 ConvertedData(fnum).FileFolder=FileFolder ;
 ConvertedData(fnum).Data=postProcess(ob);

 Index(fnum).FileNameShort=FileNameShort;
 Index(fnum).FileFolder=FileFolder;
 Index(fnum).Data=index;

 %% Save the MAT file
 if SaveConvertedFile
 MATFileNameShort=sprintf('%s.mat',FileNameNoExt);
 MATFileNameLong=fullfile(FileFolder,MATFileNameShort);
 try
 save(MATFileNameLong,'ConvertedData','Index','ConvertVer')
 fprintf('\n\nConversion complete (saved in
''%s'').\n\n',MATFileNameShort)
 catch exception

 70

 fprintf('\n\nConversion complete (could not save
''%s'').\n\t%s: %s\n\n',MATFileNameShort,exception.identifier,...
 exception.message)
 end
 else
 fprintf('\n\nConversion complete.\n\n')
 end

end %'end' for the 'Number of Files' loop

end

function DataStructure=postProcess(ob)

%Modified to return all information stored in the TDMS file to include
name, start time, start time offset, samples
%per read, total samples, unit description, and unit string. Also provides
event time and event description in
%text form

DataStructure.Root=[];
DataStructure.MeasuredData.Name=[];
DataStructure.MeasuredData.Data=[];
DataStructure.Events.Name=[];
DataStructure.Events.Data=[];

varNameMask='';
cntData=1;
cntEvent=1;

GroupNames=fieldnames(ob);

for i=1:numel(GroupNames)
 cname=GroupNames{i};
 if strcmp(cname, 'Root')
 DataStructure.Root=ob.(cname);
 end
 if isfield(ob.(cname),'data')
 if strcmp(varNameMask,'Events')
 DataStructure.Events(cntEvent).Name=cname;

 if strcmp(DataStructure.Events(cntEvent).Name,'Description')
 event_string=char(ob.(cname).data');
 seperator=event_string(1:4);
 locations=findstr(seperator, event_string);
 num_events=max(size(locations));
 for j=1:num_events
 if j<num_events

DataStructure.Events(cntEvent).Data(j,:)=cellstr(event_string(locations(j)+
4:locations(j+1)-1));
 else

DataStructure.Events(cntEvent).Data(j,:)=cellstr(event_string(locations(j)+
4:max(size(event_string))));
 end
 end
 else

 71

 DataStructure.Events(cntEvent).Data=ob.(cname).data;
 end
 cntEvent=cntEvent+1;

 else
 DataStructure.MeasuredData(cntData).Name=cname;
 DataStructure.MeasuredData(cntData).Data=ob.(cname).data;

DataStructure.MeasuredData(cntData).Total_Samples=ob.(cname).nsamples;
 if isfield(ob.(cname),'wf_start_time')

DataStructure.MeasuredData(cntData).Start_Time=ob.(cname).wf_start_time.val
ue;

DataStructure.MeasuredData(cntData).Start_Time_Offset=ob.(cname).wf_start_o
ffset.value;

DataStructure.MeasuredData(cntData).Sample_Rate=ob.(cname).wf_increment.val
ue;

DataStructure.MeasuredData(cntData).Samples_Per_Read=ob.(cname).wf_samples.
value;
 end
 if isfield(ob.(cname),'NI_UnitDescription')

DataStructure.MeasuredData(cntData).Units_Decription=char(ob.(cname).NI_Uni
tDescription.value)';
 else

DataStructure.MeasuredData(cntData).Units_Decription='Unknown';
 end
 if isfield(ob.(cname),'unit_string')

DataStructure.MeasuredData(cntData).Unit_String=char(ob.(cname).unit_string
.value)';
 else
 DataStructure.MeasuredData(cntData).Unit_String='Unknown';
 end
 cntData = cntData + 1;
 end
 end

end %'end' for the 'groups/channels' loop

end

function
[FixedText,TruncFieldName,ValidFieldName]=fixcharformatlab(textin)
 %Private Function to remove all text that is not MATLAB variable name
compatible

 OrigText=textin;

 %First character cannot be a space. If it is, replace with 'x'.
 if isspace(textin(1))
 textin(1)='x';
 end

 textin=strrep(textin,'_0''/''','_0_');

 72

 textin=strrep(textin,'''','');
 textin=strrep(textin,'\','');
 textin=strrep(textin,'/Untitled/','');
 textin=strrep(textin,'/','.');
 textin=strrep(textin,'-','');
 textin=strrep(textin,'?','');
 textin=strrep(textin,' ','_');
 textin=strrep(textin,'.','');
 textin=strrep(textin,'[','_');
 textin=strrep(textin,']','');
 textin=strrep(textin,'%','');
 textin=strrep(textin,'#','');
 textin=strrep(textin,'(','');
 textin=strrep(textin,')','');
 textin=strrep(textin,':','');
 textin=strrep(textin,'^','_');
 textin=strrep(textin,'Ä','Ae');
 textin=strrep(textin,'ä','ae');
 textin=strrep(textin,'Ö','Oe');
 textin=strrep(textin,'ö','oe');
 textin=strrep(textin,'Ü','Ue');
 textin=strrep(textin,'ü','ue');
 textin=strrep(textin,'ß','ss');
 textin=strrep(textin,'é','e');
 textin=strrep(textin,'°','deg');

 %Check for a case that is not explicitly listed above
 InvalidCharIndices=regexp(textin,'[^A-Za-z_0-9]'); %NOT A thru Z,
a thru z, underscore or 0 thru 9
 if ~isempty(InvalidCharIndices)
 fprintf('\n')

 InvalidChar=unique(cellstr(textin(InvalidCharIndices)'));

 if numel(InvalidChar)==1
 fprintf(['\nA valid replacement character has not been defined
in the ''fixcharformatlab'' private function\n\t'...
 '(within %s.m) for the invalid character ''%s'' contained
within the\n\t''%s'' Group/Channel name.\n\t'...
 'It has been replaced with an
''_''.\n'],mfilename,char(InvalidChar),OrigText)
 else
 for i=1:numel(InvalidChar)
 switch i
 case 1
 MyString=sprintf('''%s''',InvalidChar{i});
 case numel(InvalidChar)
 MyString=sprintf('%s &
''%s''',MyString,InvalidChar{i});
 otherwise
 MyString=sprintf('%s,
''%s''',MyString,InvalidChar{i});
 end
 end
 fprintf(['\nValid replacement characters have not been defined
in the ''fixcharformatlab'' private function\n\t'...
 '(within %s.m) for the invalid characters %s contained
within the\n\t''%s'' Group/Channel name.\n\t'...
 'They have been replaced with an
''_''.\n'],mfilename,MyString,OrigText)
 end

 73

 textin(InvalidCharIndices)='_';
 end

 %Ensure that the name isn't too long
 maxid=namelengthmax;
 if numel(textin)<=maxid
 FixedText=textin;
 TruncFieldName=false;
 else
 FixedText=textin(1:maxid);
 TruncFieldName=true;
 end

 %Check for a valid fieldname
 ValidFieldName=isvarname(FixedText);
 if ~ValidFieldName
 %Check to see if maybe the issue is the first character is not a
letter. If it is, then add an 'a' to the front
 %of the string.
 if ~isletter(FixedText(1))
 if TruncFieldName || numel(FixedText)>=(maxid-1)
 FixedText=sprintf('a%s',FixedText(1:end-1));
 else
 FixedText=sprintf('a%s',FixedText);
 end
 end
 end
 %Confirm whether or not the issue has been fixed.
 ValidFieldName=isvarname(FixedText);

end

function matType=LV2MatlabDataType(LVType)
%Cross Refernce Labview TDMS Data type to MATLAB

 switch LVType
 case 0 %tdsTypeVoid
 matType='';
 case 1 %tdsTypeI8
 matType='int8';
 case 2 %tdsTypeI16
 matType='int32';
 case 3 %tdsTypeI32
 matType='int32';
 case 4 %tdsTypeI64
 matType='int64';
 case 5 %tdsTypeU8
 matType='uint8';
 case 6 %tdsTypeU16
 matType='uint16';
 case 7 %tdsTypeU32
 matType='uint32';
 case 8 %tdsTypeU64
 matType='uint64';
 case 9 %tdsTypeSingleFloat
 matType='float32';
 case 10 %tdsTypeDoubleFloat
 matType='float64';

 74

 case 11 %tdsTypeExtendedFloat
 matType='';
 case 32 %tdsTypeString
 matType='uint8=>char';
 case 33 %tdsTypeBoolean
 matType='bit1';
 case 68 %tdsTypeTimeStamp
 matType='bit224';
 otherwise
 matType='Undefined';
 end

end

function text=convertToText(bytes)
%Convert numeric bytes to the character encoding localy set in MATLAB (TDMS
uses UTF-8)

 text=native2unicode(bytes,'UTF-8');
end

 75

APPENDIX E

MATLAB CODES of FSdetection.m FUNCTION

76

function[FS_Location,F,FS_LocationRealY,PeakY,RealTime,Number_of_Footsteps]=FS
detection(N,A,T,NRaw,FS,AA)
% //
% --------University of Gaziantep------------
% Control and Command Systems
% Master Thesis
% Footstep Detection Algorithm
% ///
%
%
% N is the number of simout samples
% A is the y-axis of simout samples
% T is the x-axis of simout samples
% NRaw is the number of samples of the Raw data
%
p=0;
m=1;
n=1;
k=0;
SNR=0.07;
FSwidth_min=70;
FSwidth_max=800;
c1=100; %min distance between two peaks
c2=1500; %max distance between two peaks
TotalNumbers_of_Peak=0;
Peak_start=0;
Peak_end=0;
Flat_start=0;
Flat_end=0;
j=0;

for i=1:N %First stage: This loop calculates peaks as the defined limits.
 if A(i)>SNR
 j=j+1;
 p=p+1;
 k=0;
 if p==1
 m=m+1;
 n=i;
 PA(j)=A(i);
 PT(j)=T(i);
 WT(m)=1;

 elseif p==2
 PA(j)=A(i);
 PT(j)=T(i);
 WT(m)=WT(m)+1;
 Peak_start(m)=n;
 Peak_end(m)=i;
 p=1;

 els e
 end
 else
 p=0;
 j=i;

77

 PA(j)=0;
 PT(j)=T(i);
 k=k+1;
 w0(m)=k;
 Flat_start(m)=i-k+1;
 Flat_end(m)=i
 end
end
%
% Second stage: This loop calculates the Footpeaks
% Above amplitude is okey, here width of peak considered. Both of them is
% ok,then you can use them at detection calculations as footstep peak in
% stage fourth.
%
s=1;
for s=1:m
 if WT(s)>FSwidth_min
 if WT(s)<FSwidth_max
 F(s)=1;
 TotalNumbers_of_Peak=TotalNumbers_of_Peak+1;
 else
 F(s)=0;
 end
 else
 F(s)=0;
 end
en d
%
% Third stage: This loop calculates the max peak values for each footstep
%
fy=1;
for fy=2:m
 P1=Peak_start(fy);
 P2=Peak_end(fy);
 PeakY(fy)=max(PA(P1:P2)); % Y-axis (Amplitude)
 for fx=P1:P2
 ValX=fx;
 if PA(ValX)==PeakY(fy)
 PeakX(fy)=ValX; % X-axis (Time)
 RealTime(fy)=(PeakX(fy)/FS)*(NRaw/N);
 end
 end

end
%
% Forth stage: This loop calculates the Footsteps,
% Here we look the time between two peaks.CadencyFrequency 1.5-2.5 Hz
%
b=0;
for b=1:m
 FS_Location(b)=0;
end
ADIM=0;
g=0;
z=0;

78

for f=1:m-1
 if (F(f)==1)&(F(f+1)==1)
 if w0(f)>c1
 if w0(f)<c2
 ADIM=ADIM+1;
 FS_Location(f)=f;
 FS_Location(f+1)=f+1;
 if ADIM==1
 z=z+1;
 else
 if ADIM>=2
 Number_of_Footsteps(z)=ADIM+1;
 end
 end
 else
 if ADIM==1
 FS_Location(f)=0;
 FS_Location(f-1)=0;
 ADIM=0;
 else
 ADIM=0;
 end

 end

 else
 if ADIM==1
 FS_Location(f)=0;
 FS_Location(f-1)=0;
 ADIM=0;
 else
 ADIM=0;
 end
 end
 else
 if ADIM==1
 FS_Location(f)=0;
 FS_Location(f-1)=0;
 ADIM=0;
 else
 ADIM=0;
 end
 end
end
%
% Final stage: Graphical Representation
%
c=0;
for c=1:m
 if FS_Location(c)==0;
 FS_LocationRealX(c)=RealTime(c);
 FS_LocationRealY(c)=0;
 else
 FS_LocationRealX(c)=RealTime(c);
 FS_LocationRealY(c)=PeakY(c);
 end
end

79

figure('Name','University of Gaziantep','NumberTitle','off'), clf
subplot(2,1,1)
bar(RealTime,PeakY,0.6,'b')
set(gca,'xlim',[1 NRaw/FS])
title('Total Detected Peaks')
xlabel('Time [seconds]')
ylabel('Amplitude')
hold on
subplot(2,1,2)
bar(FS_LocationRealX,FS_LocationRealY,0.6,'r')
set(gca,'xlim',[1 NRaw/FS])
title(['The Number of Footsteps: ',int2str(
Number_of_Footsteps)],'Color','r')
xlabel('Time [seconds]')
ylabel('Amplitude')
end

80

	
	August 2011

	003_Onay_Sayfası.pdf
	Supervisor

	004_Abstract.pdf
	ABSTRACT
	Talip ESKİKALE

	005_Ozet.pdf
	ÖZET

	007_CONTENTS.pdf
	TABLE OF CONTENTS
	LIST OF TABLES..
	LIST OF SYMBOLS...
	INTRODUCTION
	CHAPTER 6 CONCLUSION......................................
	REFERENCES..
	APPENDIX A
	DAQ CARD NI-9234…………………………..................................
	MATLAB CODES USED IN CHAPTER-3..............................
	MATLAB CODES of ConvertTDMS.m FUNCTION......................
	MATLAB CODES of FSdetection.m FUNCTION......................

	008_LIST_OF_FIGURES.pdf
	LIST OF FIGURES

