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ABSTRACT 
 

 

GENETIC PROGRAMMING BASED MODELING OF TORSIONAL  

STRENGTH OF RC BEAMS 

 

 

KORKMAZ, Pınar 

M.Sc. in Civil Eng. 

Supervisor:  Assoc. Prof.Dr. Abdulkadir ÇEVİK 

August 2011,87 Pages 

 

 

 

This study presents the application of Genetic Programming (GP) for 

modeling torsional strength of RC beams. In the literature, experimental data of 76 

rectangular RC beams from an existing database were used to develop the GP model. 

The input parameters affecting the torsional strength were selected as cross-sectional 

area of beams, dimensions of closed stirrups, spacing of stirrups, cross-sectional area 

of one-leg of closed stirrup, yield strength of stirrup and longitudinal reinforcement, 

steel ratio of stirrups, steel ratio of longitudinal reinforcement and concrete 

compressive strength. Besides, the building codes in relation to the design of RC 

beams under pure torsion is presented. The accuracy of the codes in predicting the 

torsional strength of RC beams was also compared with the proposed GP model with 

comparable way by using same test data. The study concludes that the proposed GP 

model predicts the torsional strength of RC beams by far more accurate than building 

codes.  

 

 

Key Words: Reinforced concrete beam, Genetic Programming, Torsional strength, 

Building code.  
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ÖZET 

 

 

BETONARME K İRİŞLERİN BURULMA DAYANIMININ  

GENETİK PROGRAMLAMA İLE MODELLENMES İ 

 

 

KORKMAZ, Pınar 

Yüksek Lisans Tezi, İnş Müh. Bölümü 

Tez Yöneticisi: Doç. Dr. Abdulkadir ÇEVİK 

Ağustos 2011,87 sayfa 

 

 

 

Bu çalışmada betonarme kirişlerin burulma dayanımının Genetik 

Programlama (GP) ile modellenmesi sunulmuştur. Literatürden mevcut bir 

veritabanına ait 76 dikdörtgen betonarme kirişin deneysel verileri GP modeli 

geliştirmek için kullanılmıştır. Burulma dayanımını etkileyen girdi parametreleri 

kirişlerin kesit alanı, kapalı etriye boyutları, etriye aralığı, tek ayak kapalı etriye kesit 

alanı, etriye akma dayanımı ve boyuna donatı, etriye çelik oranı,  boyuna donatı çelik 

alanı ve beton basınç dayanımı olarak seçilmiştir. Ayrıca, burulma altındaki 

betonarme kirişlerin dizaynı ile ilgili olarak bina kodları sunulmuştur. Betonarme 

kirişlerin burulma dayanımını belirlemek için geliştirilmi ş kodların doğruluğu aynı 

test verilerinin kullanılması ile önerilen Genetik Programlama modelinden istifade 

edilerek karşılaştırılmıştır. Bu karşılaştırma sonucu göstermiştir ki; önerilen Genetik 

Programlama modeli, betonarme kirişlerin burulma dayanımını diğer  kodlara kıyasla 

çok daha doğru hassasiyet ile belirlemektedir. 

 

 

Anahtar Kelimeler:  Betonarme Kirişler, Genetik Programlama, Burulma dayanımı, 

Bina kodu. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 General Introduction 
 

The monolithic reinforced concrete constructions are subjected to significant 

torsional moments that affect their strength and deformation. In the literature, 

numerous analytical and experimental studies have been reported about torsional 

behavior of reinforced concrete (RC) members which subjected to pure tension or 

combination of tension with other effects as axial load, shear and bending.  

 

There are many variables affecting the torsional strength of RC beams such as 

cross-sectional area of beams, dimensions of closed stirrup, spacing of stirrups, 

cross-sectional area of one-leg of closed stirrup, yield strength of stirrup and 

longitudinal reinforcement and concrete compressive strength. The effect of these 

variables on the torsional strength of RC beams has been extensively studied and 

some empirical approach has been developed related to variables.   

 

Test data are often used for validation, calibration or even development of 

models. Even though the torsional strength of RC beams has been carefully 

examined experimentally, estimation of torsional strength is still difficult task 

because of complex behavior of RC beam under torsional action.  

 

The main aim of this study is to investigate the applicability of Genetic 

Programming (GP) to propose a new model for the torsional strength of RC beams 

based on experimental results collected from the literature and to evaluate the 

accuracy of the building codes in predicting the ultimate torsional strength of RC 

beams. In this sense, experimental data of 76 beams subjected to torsion were used 

from existing databases of Rasmussen and Baker (1995) , Koutchoukali and Belarbi 
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(2001), Fang & Shiau (2004), Hsu (1968). Furthermore, some building code’ 

approaches as ACI-318-2005 (ACI,2005) , Eurocode-2 (2002), TBC-500-2000 

(TBC,2000), CSA (1994), BS8110 (1985) and AS3600 (2001) are also examined by 

comparing their predictions with mentioned experimental studies results. The results 

obtained by the proposed GP model and building codes are compared with each 

other. (Çevik et al.,2009) 

 

1.2 Layout of the Thesis 
 

The layout of the thesis is described below: 

 

• Chapter 1 is a general introduction about the thesis. 

 

• Chapter 2 is the literature survey for torsional strength of reinforced concrete beams 

and is summarized genetic programming. 

 

• Chapter 3 is devoted to the torsional strength of RC beams. The basic theory and 

torsional strength formula of RC beams presented and several Building Codes 

examples are studied. 

 

• Chapter 4 is presents gene expression programming, its system, and solutions of GP 

are summarized. 

 

• Chapter 5 deals with statistical parameters of testing and training sets and overall 

results of GP models and experimental results of GP models. 

 

• Finally in Chapter 6 brief conclusions are presented together. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Engineering Analysis 

Engineering analysis involves the application of scientific analytic 

principles and processes to reveal the properties and state of the system, device or 

mechanism under study. The purpose of any engineering analysis is to predict the 

behavior of an engineering system under specified conditions. In other words: given 

the input to the system what is the output from the system? The engineering system 

under analysis could be, for example, a simple elastic beam, a complex nonlinear 

three-dimensional structure, mechanical equipment or a hydraulic network 

Engineering analysis is the process of taking given "input" information defining the 

physical situation at hand and, through an appropriate set of manipulations, 

converting that input into a different form of information, the “output,” which 

provides the answer to some questions of interest (Gallegher,1995).

 

2.2 RC Beams 

Experimental and theoretical studies on shear strength of large reinforced 

concrete beams are presented. In the literature various approaches are available for 

the determination of the ultimate torsional strength of reinforced concrete beams. 

The space truss theory (Rausch,1929) is overconservative specially for 

underreinforced sections (Hsu, 1968) whereas the skew bending model 

(Lessig,1953); (Yudin,1962) appears to better predict the observed results, but is 

cumbersome to use and sometimes can be overconservative. An interesting limit 

analysis method to find the ultimate torsional strength of reinforced concrete 

members was proposed by Wang and Hsu (1997), in which the work equation based 

upon the energy dissipation rate and the permissible failure mechanism at the 
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ultimate state was used. This method gives good estimates of the experimental results 

reported by Hsu(1968). Taking a clue from their earlier work Phatak and Dhonde 

(1999), the writers have formulated a general equation to determine the ultimate 

torsional strength of reinforced concrete beams using a unique method of 

dimensional analysis. The results predicted by dimensional analysis are then 

compared with the experimental results (Hsu, 1968) and the limit analysis method 

Wang and Hsu (1997). 

 

 
2.2.1 Advantages of Using High Strength Concrete 

High-strength concrete is one of the most significant new materials available 

to federal, state, and local highway agencies. With its improved impermeability, 

durability, and accelerated strength gain, an ideal material. There are many 

advantages of high strength concrete. The following list provides some of them. 

 

• Reduction in member size, resulting in (a) increase in rentable space and (b) 

reduction in the volume of produced concrete with the accompanying saving 

in construction time. 

• Reduction in the self-weight and superimposed dead load with the 

accompanying saving in smaller foundations. 

• Reduction in formwork area and cost with the accompanying reduction in 

shoring and stripping time due to high early-age gain in strength. 

• Construction of higher high-rise buildings with the accompanying saving in 

real estate costs in congested areas. 

• Longer spans and fewer beams of the same magnitude of loading. 

• Reduced axial shortening of compression supporting members. 

• Reduction in the number of supports and the supporting foundations due to 

the increase in spans. 

• Reduction in the thickness of floor slabs and supporting beam sections    

      (a major component of the weight and cost of the majority of structures). 

• Superior long-term service performance under static, dynamic, and fatigue 

loading. 

• Low creep and shrinkage. 
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• Greater stiffness as a result of a higher modulus, Ec. 

• Higher resistance to freezing and thawing, chemical attack, and significantly 

improved long-term durability and crack propagation 

. 

2.3 Genetic Programming 

Genetic programming (GP) is a systematic, domain-independent method for 

getting computers to solve problems automatically starting from a high-level 

statement of what needs to be done. Using ideas from natural evolution, GP starts 

from an ooze of random computer programs, and progressively refines them through 

processes of mutation and sexual recombination, until solutions emerge. All this 

without the user having to know or specify the form or structure of solutions in 

advance. GP has generated a plethora of human-competitive results and applications, 

including novel scientific discoveries and patentable inventions.(http://www.gp-

field-guide.org.uk/) 

 

2.3.1 Genetic Programming in Structural Mechanics 

The application of Genetic programming to civil engineering design problems 

in structural mechanics is relatively new. GP can be applied to structural design 

problems to produce solutions that offer significant improvements over traditional 

GA based methods.  

 

GPs automatically generate computer programs. The theory states that there is 

no need to know anything about the problem one is trying to solve, as long as there is 

a “black box” which evaluates the solutions proposed. However, in practice the use 

of these methods should not be a substitute for thought, since taking into account of 

problem specific knowledge can considerably improve the effectiveness of this 

methodology.  

 

The best computer program that appears in any generation (i.e. best so far 

individual) is designed as the result of GP. This result may be a solution or an 

approximate solution to the problem.(Yan W.,2003) 
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CHAPTER 3 

TORSIONAL STRENGTH OF  

REINFORCED CONCRETE BEAMS 

 

3.1 Torsional Strength 

3.1.1 Torsion – Combined Torsion, Shear and Flexure 

Due to the monolithic nature of concrete construction, a great many of the 

structural members are subjected to torsion. However in many cases these torsional 

moments are of negligible magnitude. Torsional moments are created either by 

geometry or due to the unsymmetrical arrangement of live loads. It is very difficult to 

calculate the torsional moments carried by reinforced concrete members due to 

inelastic behavior of concrete and due to complex boundary conditions. Torsional 

moments calculated using a linearly analysis are usually unrealistically high. (Ersoy 

et al.,2003) 

 

Torsional moments produce shear stresses. These shear stresses are in 

opposite directions on opposite faces of the member. If the member is subjected to 

flexural shear in addition to torsion, the torsional shear stresses are additive to 

flexural shear stresses on one face of the member. On the opposite face, these two 

types of shear stresses are in opposite directions. Torsional shear stresses, which are 

additive to the flexural shear stresses on one face of the member, obviously increase 

the principal tensile stresses. Since concrete is very weak in tension, principal tensile 

stresses are of great importance. Shear stresses produced by torsion and flexural 

shear and resulting principal tension are shown in Figure 3.1. (Ersoy et al.,2003) 
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Figure 3.1 Shear Stress (Ersoy et al.,2003) 

 
The presence of torsional moments in structural floor systems is illustrated in 

Figure 3.2. Such torsional moments exist even when the adjacent slabs have equal 

spans, due to checker board arrangement of live loads. However torsional moments 

created in such cases are usually very small. In this case distribution of torsional 

moments along the span will be as shown on the figure. (Ersoy et al.,2003) 

 

Figure 3.2 Torsional Moment(Ersoy et al.,2003) 

 

Torsional shear stresses calculated using torsional moments obtained from 

linearly elastic analyses were usually very high. In Figure 3.3(a), very high torsional 
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moments were produced at one end of girder. Diagonal cracks on opposite faces 

were almost orthogonal to each other. As is illustrated in Figure 3.2, this type of 

diagonal cracking is very typical when torsion is dominant. (Ersoy et al.,2003) 

 

In the second case, partial floor plan shown in Figure 3.3(b), severe flexural 

cracking was observed on the top of the slab, almost parallel to girder. An analysis of 

this floor system indicated that these slab cracks were caused by the torque applied 

by beams. The applied torque had to be shared by girder as torsional moments and by 

the slab as flexural moments. This is illustrated on the free body shown in Figure 

3.3(b). The difference in torque between the two faces of the girder (∆Τ) has to be 

equal to the moments created in the slab 

∆T = Σm     (3.1) 

 

Figure 3.3 Torque (Ersoy et al.,2003) 
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The extra negative moments created in the slab due to the applied torque 

pushed the point of inflection away from the girder as shown in Figure 3.3(b) Since 

the slab was designed without considering the influence of the applied torque (in 

accordance with the moment diagram shown by the dotted line), top steel was cut 

close to girder. Since the point of inflection moved away from the girder due the 

applied torque, negative moments were produced in regions where there was no top 

steel. Therefore openning of cracks could not be prevented.(Ersoy et al.,2003) 

 

3.1.2. Theories of Torsional Strength and Torsion in the Building Standards 

Several theories have been proposed for the computation of the torsional 

strength of reinforced concrete members with torsional reinforcement—notably the 

space-truss analogy and the skew bending theory. In this section, the two theories for 

torsional strength of reinforced concrete members are reviewed briefly. On the other 

hand, the ACI Building Code provisions for torsional design were selected and used 

in this study for comparison with the results from the RBFN models. Therefore, the 

ACI equations for torsional strength of RC beams are also outlined in the following. 

(Nawy,2003) 

 

In 1958, the skew-bending theory which considers in detail the internal 

deformational behavior of the series of transverse warped surfaces along the beam 

was proposed by Lessig (Lessig,1959). The model was further refined by Collins 

(Collins et al,.1965) in 1965 as well as Hsu and Zia (Hsu,1968, Zia and Hsu, 2004). 

Especially Hsu made a major contribution experimentally to the development of the 

skew-bending theory as it presently stands. The basic approach of the theory is that 

the failure of a rectangular section in torsion occurs by bending about an axis which 

is parallel to wider face of the section and inclined at about 45o to the longitudinal 

axis of the beam. In previous versions of ACI code (from 1971 to 1989) (ACI 

Committee), torsional strength of beams was calculated by using this theory. 

(Nawy,2003) 



 

10 
 

 

 

Figure 3.4 Skew-bending theory analogy (Tang, 2006) 

 

According to the codes, torsional strength Tn of beams was considered to be 

made up of two parts: one part is contributed by concrete Tc while the other part is 

contributed by web reinforcement Ts. Hsu on hollow and solid rectangular beams, it 

was observed that the concrete core does not contribute to the ultimate torsional 

strength. Later he concluded that the concrete contribution Tc was mainly due to the 

shear resistance of the diagonal concrete struts. (Hsu,1968). 

 

In the space truss model the torsion is resisted by compression diagonals that 

consist of the concrete between cracks that spiral around the beam at a constant 

angle. The theory has been extended later by many scholars in this field (Hsu,1968), 

(Elfegren et al.,1974). It is assumed in this theory that the concrete beam behaves in 

torsion similar to a thin-walled box with a constant shear flow in the wall cross-

section, producing a constant torsional moment (Nawy,2003). The absence of core 

does not affect the strength of such members in torsion; hence the acceptability of the 

space truss analogy approach based on hollow sections. Therefore, in the process of 



 

11 
 

torsion design of a RC beam, the beam can be considered to be equivalent tubular 

member (Çevik et al.,2010). 

 

Figure 3.5 Thin-walled tube and space-truss analogy (Tang, 2006) 

 

 ACI code was proposed a radically different design procedure based on the 

thin-walled tube, space truss analogy which is considerably simpler to understand 

and apply and is equally accurate. The torsion provisions in the ACI 318 have been 

revised using the thin walled tube analogy (ACI ,1995).  

 

According to the current torsion provision of ACI 318-2005 (ACI, 2005), 

meaningful additional torsional strength Tn of RC beams can be achieved only by 

using both closed stirrups and longitudinal steel bars while the torsion moment Tc 

resisted by the concrete compression struts is assumed as zero. Thus the concrete 

contribution is ignored; there is no advantage in using higher concrete strengths in 

resisting ultimate torsion. The torsional strength  Tn  is given as follows; 
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                                             θ= cot
s

fAA2
T yvtO

n                                     (3.2) 

 

In the Eq.3.2, cot θ can be assumed as 

 

                                          
hyvt

y

pfA

sfA
cot ll=θ                           (3.3) 

 

In the equation 3.2 and 3.3,  Ao is the gross area enclosed by the shear flow 

path that can be equal to 0.85 Ash, where Ash is the area enclosed by the centre of 

stirrups. θ angle of compression diagonals, fyℓ yield strength of longitudinal torsional 

reinforcement, fyv is yield strength of closed stirrups, Aℓ total area of longitudinal 

torsional reinforcement, ph perimeter of centerline of outmost closed transverse 

torsional reinforcement, s spacing of stirrups, At cross sectional area of one-leg of 

closed stirrup (Çevik et al.,2010). 

 

In Australian Standard AS3600 (2001) and Canadian Standard CSA,(1994) 

the design of RC beams subjected to pure torsion is based on the space truss model 

and the Tn value is given as the same equation with ACI-318-2005 (2002).  Different 

from ACI 318-2005 (1995), CSA (1994) and AS3600 (2001), The British Standards 

BS8110 (1985) for RC structures, the torsional strength shall be calculated from 

Equation 3.4 as; 

 

                                   
s

A)f87.0(yx8.0
T svys11

n =                                                  (3.4) 

 

where Asv is the area of the two legs of stirrups at a section and x1 and y1 are the 

center-to-center of the shorter and longer legs of stirrups given in Figure 3.5. The 
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torsional strength Tn is described as Equation 3.5 in Turkish Building Code TBC-

500-2000.  

 

                                                  )yx(2

fAA2
T

11

yve
n +

= l

                          (3.5) 

  

In the Equation 3.5, Ae is area enclosed by lines connecting the centroids of 

the reinforcing bars at the corner of the section as seen in Figure 3.6.  

 

 

Figure 3.6 The cross section of a rectangular reinforced concrete beam  

(Çevik et al.,2010). 

 

According to the European Standard Eurocode-2 (2002), torsional strength 

shall be calculated with three ways and the minimum result is chosen. 

 
 
 

                                         ( ) θ= cotA2s/AfT kswysn                                    (3.6) 

                                         ( ) θ= tanA2u/AfT kksyn                                               (3.7) 

                                 θθ−= cossintAf)250/f1(2.1T efkccn                                   (3.8) 
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Where Ak is the area enclosed by the centre-lines of the effective wall 

thickness. The effective wall thickness, tef can be calculated as A/u where A is the 

total area and u is the perimeter of the cross-section, fc is the compressive strength of 

concrete (Çevik et al.,2010). 

 

 

3.1.3 Pure Torsion 

In practice pure torsion is extremely rare. Due to the monolithic nature of 

concrete construction, flexural moments, shear and axial forces are present in 

addition to torsion (Ersoy et al.,2003).  

 

An introduction to the subject of torsional stress distribution has to start with 

the basic elastic behavior of simple sections, such as circular or rectangular sections. 

Most concrete beams subjected to twist are components of rectangles. They are 

usually flanged sections such as T beams and L beams. (Nawy,2005). 

 

Although circular sections are rarely a consideration in normal concrete 

construction, a brief discussion of torsion in circular sections serves as a good 

introduction to the torsional behavior of other types of sections. Shear stress is equal 

to shear strain times the shear modulus at the elastic level in circular sections. As in 

the case of flexure, the stress is proportional to its distance from the neutral axis and 

is maximum at the extreme fibers.  When deformation takes place in the circular 

shall, the axis of the circular cylinder is assumed to remain straight. All radii in a 

cross-section also remain straight  and rotate through the same angle about the axis. 

As the circular element starts to behave plastically, the stress in the plastic outer ring 

becomes constant while the stress in the inner core remains elastic, as shown in 

Figure 3.7. (Nawy,2005). 
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Figure 3.7 Torsional stress distribution through circular section (Nawy,2005). 

 

 

Figure 3.8 Pure torsion stress distribution in a rectangular section (Nawy,2005). 

 

 In rectangular sections, the torsional problem is considerably more 

complicated. The originally plane cross sections undergo warping due to the applied 

torsional moment. This moment produces axial as well as circumferential shear 

stresses with zero values at the corners of the section and the centroid of the 
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rectangle and maximum values on the periphery at the middle of the sides, as seen in 

Figure 3.8. The maximum torsional shearing stress would occur at midpoints A and 

B of the larger dimension of the cross-section. These complications plus the fact that 

reinforced concrete sections are neither homogeneous nor isotropic make it difficult 

to develop exact mathematical formulations based on physical models (Nawy,2005). 

 

A plain concrete beam, having convex cross-sections, (such as rectangular 

section) subjected to pure torsion fails upon the formation of the first inclined crack. 

The failure is sudden and brittle. Tlie failure crack is approximately orthogonal to the 

direction of principal tensile stresses on three faces of the beam as would be 

predicted by the theory of elasticity. However on the forth face (longer side of the 

rectangle), the crack direction is oppoiute to expected direction. If carefully 

examined, it will be observed that this is not really a crack,but a line along which 

concrete has crushed. The crack pattern is shown in Figure 3.9. (Ersoy et al.,2003) 

 

 

Figure 3.9 Plain Concrete Beam (Ersoy et al.,2003) 

 

Plain concrete beams with concave sections (like T and L shapes) behave 

similar to beams with convex sections up to the first cracking. First cracks are 

usually observed on the web almost orthogonal to the direction of principal tensile 

stresses. Cracks on opposite faces are orthogonal to each other as would be predicted 

by the theory of elasticity. Beams with concave cross-sections do not fail upon the 
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formation of the first crack, but continue to carry the increasing torque. The ratio of 

the ultimate torque to the cracking torque depends mainly on the relative width of 

flanges. (Ersoy et al.,2003). 

 

Beams having only longitudinal bars and beams having only hoops (or 

stirrups) behave similar to plain concrete beams. It seems that the presence of either 

longitudinal or transverse bars do not change the behavior significantly. However if 

these two type of reinforcement, i.e longitudinal bars and transverse reinforcement 

(spirals, stirrups or hoops) are used together, then the behavior changes significantly. 

After the initial cracking the reinforcement starts to be effective and the beam can 

carry torques much higher than the cracking torque. Instead of the single diagonal 

cracks observed in plain specimens, many cracks are formed as shown in Figure 

3.10.(Ersoy et al.,2003). 

 

 

 

Figure 3.10 Reinforced Beams (Ersoy et al.,2003) 

 

For over sixty years, the torsional analysis of concrete members has been 

based on either (1) the classical theory of elasticity developed through mathematical 

formulations coupled with membrane analogy verifications (St. Venant's) or (2) the 

theory of plasticity represented by the sand-heap analogy (Nadai's). Both theories 

were applied essentially to the state of pure torsion. But experiments revealed that 

the elastic theory is not entirely satisfactory for the accurate prediction of the state of 

stress in concrete in pure torsion. The behavior of concrete was found to be better   

represented   by   the plastic approach. Consequently, almost all developments in 

torsion as applied to concrete and reinforced concrete have been in the latter 

direction (Nawy,2005). 
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3.1.4 Torsion in Elastic Materials 

In classical mechanics, torsional stresses can be computed by idealizing the 

properties of the material used. In the past, stresses in reinforced concrete members 

were calculated using the theory of elasticity. It was assumed that reinforced concrete 

is a homogeneous and linearly elastic material. The stress distribution obtained for 

rectangular sections using theory of elasticity. The stress distribution gets very 

complicated for flanged sections. In practice, theory of elasticity equations were 

simplified for such sections by dividing the cross-section into rectangles.(Ersoy et 

al.,2003) 

 

St. Venant presented in 1853 his solution to the elastic torsional problem with 

warping due to pure torsion that develops in noncircular sections. Prandil in 1903 

demonstrated the physical significance of the mathematical formulations by his 

membrane analogy model. The model establishes particular relationships between 

the deflected surface of the loaded membrane and the distribution of torsional 

stresses in a bar subjected to twisting moments. Figure 3.11 shows the membrane 

analogy behavior for rectangular as well as L-shaped forms. For small deformations, 

it can be proved that the differential equation of the deflected membrane surface has 

the same form as the equation that determines the stress distribution over the cross-

section of the bar subjected to twisting moments. Similarly, it can be demonstrated 

that (1) the tangent to a contour line at any point of a deflected membrane gives the 

direction of the shearing stress at the corresponding cross-section of the actual 

member subjected to twist; (2) the maximum slope of the membrane at any point is 

proportional to the magnitude of shear stress  at the corresponding point in the actual 

member; (3) the twisting moment to which the actual member is subjected is 

proportional to twice the volume under the deflected membrane. It can be seen from 

Figure 3.11 that the torsional shearing stress is inversely proportional to the distance 

between the contour lines. The closer the lines are, the higher the stress, leading to 

the previously stated conclusion that the maximum torsional shearing stress occurs: it 

the middle of the longer side of the rectangle. From the membrane analogy, this 

maximum stress has to be proportional to the steepest slope of the tangents at points 

A and B (Zhang,2002). 
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(a) membrane under pressure           (b)contours in a real beam or in a membrane 

 

 

 

(c) L-section                                      (d) rectangular section 

Figure 3.11 Membrane analogy in elastic pure torsion (Nawy,2005). 

 

If δ = maximum displacement of the membrane from the tangent at point A, 

then from  basic principles of mechanics and St. Venant's theory, (Nawy,2005). 

 

 

2b Gδ θ= (3.9)  
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where G is the shear modulus and θ  is the angle of twist. But Vt(max) is proportional 

to the slope of tangent;  hence (Nawy,2005). 

 

                                                 (max) 1tV k bGθ=                                                   (3.10) 

where the k's are constants. The corresponding torsional moment Tl  is proportional 

to twice the volume under the membrane (Nawy,2005), or 

 

                                          2

2
2

3
T bh k bhα δ δ  = 

 
l                                              (3.11) 

or; 

                                               3
3T k b hGθ=

l
                                                      (3.12) 

 

3.1.5 Torsion in Plastic Materials 

As indicated earlier, the plastic sand-heap analogy provides a better 

representation of the behavior of brittle elements such as concrete beams subjected to 

pure torsion. The torsional moment is also proportional to twice the volume under 

the heap, and the maxi-mum torsional shearing stress is proportional to the slope of 

the sand heap  Figure 3.12 is a two- and three-dimensional illustration of the sand 

heap. The torsional moment Tp in Figure 3.12 d  is proportional to twice the volume 

of the rectangular heap shown in parts (b) and (c). It can also be recognized that the 

slope of the sand-heap sides as a measure of the torsional .shearing stress is constant 

in the sand-heap analogy approach, whereas it is continuously variable in the 

membrane analogy approach. This characteristic of the sand heap considerably 

simplifies the solutions (Zhang,2002). 

 

3.1.6  Sand-heap Analogy Applied to L Beams 

Most concrete elements subjected to torsion are flanged sections, most 

commonly L beams comprising the external wall beams of a structural floor. The L 

beam in Figure 3.12 is chosen in applying the plastic sand-heap approach lo evaluate 
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its torsional moment capacity and shear stresses to which it is subjucted 

(Nawy,2005). 

 

 

 

(a) sand-heap L-section                            (b) sand-heap rectangular section 

 

 

 

 

(b) plan of rectangular section                         (d) torsional shear stress 

Figure 3.12 Sand-heap analogy in plastic pure torsion (Nawy,2005) 
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The sand heap is broken into three volumes: 

'
1V =  pyramid representing a square cross-sectional shape = 

2
1 / 3wy b  

2V = tent portion of the web representing a rectangular cross-sectional shape = 

1 ( ) / 2w wy b h b−  

3V = tent representing the flange of the beam, transferring part PDI to NQM = 

2 ( ) / 2f wy h b b−  

 

Torsional moment is proportional to twice the volume of the sand heaps; hence 

 

                          
2

21 1
( ) / 2( )

2
3 2 2

f ww w w
p

y h b by b y b h b
T

− −= + + 
 

                           (3.13) 

 

Also, torsional shear tress is proportional to the slope of the sand heaps; hence 

 

                                                      1 2
t wv b

y =                                                        (3.13a) 

                                                      2 2
t fv h

y =                                                        (3.13b) 

Substituting 1y  and 2y  from Eqn. 3.13a and 3.13b into Eqn.3.13 gives us 
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Figure 3.13 Sand-heap analogy of flanged section:  

(a)sand heap on L-shaped cross section;  (b)composite pyramid from web V1;  

(c) tent segment from web V2; (d) transformed tent of beam flange V3 (Nawy,2005). 

 

                              (max) 2 2( / 6)(3 ) ( / 2)( )
p

t
w w f w

T
V

b h b h b b
=

− + −                               (3.14)  
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If both the numerator and denominator of Eqn.3.14 are divided by (��ℎ)� 

and the terms rearranged, we have ; 

 

                       

2

(max)

/ ( )

1 1
(3 / ) ( / )2( / / )

6 2

p w
t

w f w w

T h b h
V

b h h b b h b h
=
   − + −      

                  (3.15a) 

 

 

If one assumes that �� is the denominator in Eqn.3.15(a) and 	
 = ��(��ℎ)� 

Eqn.3.15(a) becomes     

 

                                                  (max)
p

t
E

T h
V

J
=                                                        (3.15b) 

 

where 	
 is the equivalent polar moment of inertia and a function of the shape of the 

beam cross section. Note that Eqn.3.15(b) is similar in format to from the membrane 

analogy except for the different values of the denominator J and  JE. Eqn 3.15(a) can 

be readily applied to rectangular section by setting h=0 (Nawy,2005).  

   

It must also be recognized that concrete is not a perfectly plastic material; 

hence the actual torsional strength of the plain concrete section has a value lying 

between the membrane analogy and the sand-hcap analogy values. Eqn 3.15(b) can 

be rewritten designating � = �� as the nominal torsional resistance of the plain 

concrete and ��(���) = ���  using ACI terminology, so that 

                                                
2

2c tcT k b hV=                                                   (3.16a) 

                                                
2

2c tcT k x yV=                                                   (3.16b)    

where x is the smaller dimension of the rectangular section (Nawy,2005).  
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Extensive work by Hsu. confirmed by others, has established that k2, can be 

taken as 
1

3
. This value originated from research in the skew-bending theory of plain 

concrete. It was also established that 
'6 cf  can be considered as a limiting value of 

the pure torsional strength of a member without torsional reinforcement 

(Nawy,2005). 

 

Using a reduction factor of 2.5 for the first cracking torsional load 

'2.4tc cV f= and using 2

1

3
k =  in Eqn.3.16 results in 

                                             
' 20.8c cT f x y=                                                 (3.17a) 

 

where x is the shorter side of the rectangular section. The high reduction factor of  

2.5 is used to offset any effect of shear and bending moments that might be present. 

 

If the cross section is a T or L section, the area can be broken into component 

rectangles as in Figure 3.14, (Nawy,2005) such that 

 

                                                  
' 20.8c cT f x y= ∑                                             (3.17b) 

 

3.1.7 Skew-Bending Theory 

This theory considers in detail the internal deformation behavior of a series of 

transverse warped surfaces along the beam. Initially presented by Lessig in 1958, it 

had subsequent contributions from several researchers in this field (Nawy,1985). 

Studies by Hsu have led to the conclusion that failure of a rectangular section in 
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torsion occurs by bending about an axis parallel to the wider face of the section, and 

inclined at about 45° to the longitudinal axis of the beam (Hsu,1984).  

 

In previous versions of ACI code (from 1971 to 1989) (ACI,1971 and 

ACI,1989), torsional strength of beams was calculated by using this theory. 

According to the codes, torsional strength Tn of beams was considered to be made up 

of two parts: one part is contributed by concrete Tc while the other part is contributed 

by web reinforcement Ts. Hsu on hollow and solid rectangular beams, it was 

observed that the concrete core does not contribute to the ultimate torsional strength 

(Hsu,1968). Later he concluded that the concrete contribution Tc was mainly due to 

the shear resistance of the diagonal concrete struts (Çevik et al.,2009).  

 

The post-cracking behaviour of reinforced concrete members may be 

alternatively studied on the basis of the mechanism of failure  rather than on the basis 

of stresses. In the consideration of the failure mechanism, the combined action of 

torsion with flexure and shear has to be taken into account. (Nawy,2005). 

 

The failure surface of the normal beam cross section subjected to bending 

moment Mu remains plane after bending, as in Figure 3.14(a). If a twisting moment 

Tu Tu is also applied exceeding the capacity of the section, cracks develop on three 

sides of the beam cross-section and compressive stresses on portions of the fourth 

side along the beam. As torsional loading proceeds to the limit state at failure, a 

skewed failure surface results due to the combined torsional moment Tu and bending 

moment Mu. The neutral axis of the skewed surface and the shaded area in Figure 

3.14(b) denoting the compression zone would no longer be straight but subtend a 

varying angle θ with the original plane cross-sections (Nawy,2005). 
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Figure 3.14 Skew bending due to torsion: (a) bending before twist; (b) bending and 

torsion (Nawy,2005). 

 

Prior to cracking, neither the longitudinal bars nor the closed stirrups make 

any appreciable contribution to the torsional stiffness of the section. At the post-

cracking stage of loading, the stiffness of the section is reduced, but its torsional 

resistance is considerably increased, depending on the amount and distribution of 

both the longitudinal bars and the transverse closed ties. It has to be emphasized that 

little additional torsional strength can be achieved beyond the capacity of the plain 

concrete in the beam unless both longitudinal torsion bars and transverse ties are 

used. (Nawy,2005). 

 

The skew-bending theory idealizes the compression zone by considering it to 

be of uniform depth. It assumes the cracks on the remaining three faces of the cross 

section to be uniformly spread, with the steel ties (stirrups) at those faces carrying the 

tensile forces all the cracks and the longitudinal bars resisting shear through dowel 

action with the concrete Figure 3.15(a) shows the forces acting on the skewlv bent 

plane (Nawy,2005).  

(a) (b) 
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The polygon in Figure 3.15(b) gives the shear resistance Fc of the concrete, 

the force Tt of the active longitudinal steel bars in the compression zone, and the 

normal compressive block force Cu. 

 

 

 

Figure 3.15. Forces on the skewly bent planes: (a) all forces acting on skew plane 

at failure; (b) vector forces on compression zone Nilson and Winter,(1991). 

 

(a) 

(b) 
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The torsional moment Tc of the resisting shearing force Fc generated by the 

shaded compressive block area in Figure 3.15 a is thus 

                           
cos45

c
c o

F
T =  x ( its arm about forces vF  )                      in  Fig 3.15 a 

            or               

                           2 (0.8 )c cT F x=                                                                       (3.18a) 

 

where x is the shorter side of the beam. Extensive tests to evaluate Fc in terms of 

internal stress in concrete 
'

1 ck f  and the geometrical torsional constants of the 

section 
2

2k x y  led to the expression (Nawy,2005). 

 

                               
2 '2.4

c cT x y f
x

=                                                                   (3.18b) 

 

3.1.8 Torsion in Reinforced Concrete Elements  

Torsion rarely occurs in concrete structures without being accompanied by 

bending and shear. The foregoing should give a sufficient background on the 

contribution of the plain concrete in the section toward resisting part of the combined 

stresses resulting from torsional, axial, shear, or flexurat forces. The capacity of the 

plain concrete to resist torsion when in combination with other loads could, in many 

cases, be lower than when it resists the same laclored external twisting moments 

alone. Consequently, torsional reinforcement has to be provided to resist the excess 

torque (Nawy,2005). 

Inclusion of longitudinal and transverse reinforcement to resist part of the 

torsional moments introduces a new element in the set oí forces and moments in the 

section. 
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nT = required total nominal torsional resistance of the section including the 

reinforcement 

cT = nominal torsional resistance of the plain concrete 

xT = torsional resistance of the reinforcement  

 

Then; 

                                                    n c xT T T= +                                                         (3.19) 

 

Tc is assumed equal to zero for desiga simplification, and all the torsion is 

assumed to be borne by the longitudinal steel bars and the closed transverse stirrups. 

To study the contribution of the longitudinal steel bars and the closed stirrups, one 

has to analyze the system of forces acting on the warped cross-sections of the 

structural element at the limit state of failure. A modified space truss analogy is 

presented comparable to the plane truss analogy used for the design of shear stirrups. 

In this theory, both the longitudinal reinforcement and the transverse stirrups (ties) 

are utilized as components of the space truss (Nawy,2000). 

 

3.1.9 Space Truss Analogy Theory 

Torsional capacity of a concrete member reinforced both longitudinally and 

transversely can be obtained by forming a space truss model. Truss analogy for 

torsion was first developed by Rausch in 1929. Similar to the assumption made in the 

truss model for shear, it was assumed that after cracking concrete can not carry any 

tension. In the analogous space truss, concrete compressive struts between the 

diagonal cracks were taken as diagonals, longitudinal steel as tension chords and 

transverse steel bars were taken as tension members. The space truss nodel used is 

illustrated in Figure 3.15. .(Ersoy et al.,2003) 
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Figure 3.16 Space Truss Model (Ersoy et al.,2003). 
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In Figure 3.16 section cut perpendicular to the axis (x-ax1s) of the member is 

shown. For illustrative reasons the concrete is shown as a tubular section rather than 

a solid section. This doesn't create any serious error, since as would be recalled from 

elementary theories on torsion, internal fibers are not very effective in resisting the 

torque. (Nawy,2005). 

 

The section shown cuts the concrete compressive struts all around the 

periphery. The compressive forces acting on the struts cut by the section taken are 

marked on the figure. The inclined compressive forces acting along the periphery 

have to be resisted mainly by the transverse and longitudinal reinforcement. 

(Nawy,2005). 

 

In Figure 3.16 struts A and B, included between two diagonal cracks, are 

taken as free bodies. It is assumed that there is no transfer of stresses at the crack 

face. The only force on the strut is AC which is the uniaxial force per unit length of 

the perimeter. (Nawy,2005).  

 

It is assumed in this theory that the concrete beam behaves in torsion similar 

to a thin-walled box with a constant shear flow in the wall cross-section, producing a 

constant torsional moment. The use of hollow-walled sections rather than solid 

sections proved to give essentially the same ultimate torsional moment, provided that 

the walls are not too thin. Such a conclusion is borne out by tests, which have shown 

that the torsional strength of the solid sections is composed of the resistance of the 

closed stirrup cage, consisting of the longitudinal bars and transverse stirrups, and 

the idealized concrete inclined compression struts in the plane of the cage wall. The 

compression struts are the inclined concrete strips between the cracks in Figure 3.17. 

(Hassoun,1985). 

 

The CFB-FIP code is based on the space truss model. In this code, the 

effective wall thickness of the hollow beam is taken as 
1

6 aD  where aD   is the 

diameter of the circle inscribed in the rectangle connecting the corner longitudinal 

bars; that is �� = ��  in Figure 3.17. (Nawy,2005). 
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A rational method to derive the effective wall thickness was given by Hsu 

(Nawy,2000). This nonlinear analysis takes into account the warping compatibility 

condition ofthe wall. In summary, the absence of the core does not affect the strength 

of such members in torsion: hence the acceptability of the space truss analogy 

approach based on hollow box. (Nawy,2005)  

 

 z

 

 

Figure 3.17  Forces on hollow box concrete surface by truss analogy (Nawy,2005). 

 

3.1.10  Equilibrium in Element Shear 

A unit square membrane element of thickness h is subjected to shear flow q 

due to pure shear as in Figure 3.18 (Nawy,2000). Reinforcement in both the 

longitudinal (E-W) direction l  and transverse (N-S) direction t is subjected to a unit 

stres / tf s
l  and /vf s  respectively  such that the shear flow q can be defined by the 

equilibrium equations  

                                                         tanq F θ=
l                                              (3.20a) 

 

F =tensile force in each 
longitudinal bar                                                                                                                            

xC =inclined compressive force 
on horizontal side 

yC =inclined compressive force 

on vertical side 
tτ  =shear flow force per unit 

length of wall = q 
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where unit / tF A f s=
l l l   and ; 

                                                        cottq F θ=                                               (3.20b)  

where unit /tF A f s=
l l , A  is the cross-sectional area of the reinforcement,s

l  and 

s  are the spacings in the  t  and  ldirections, respectively. 

From the geometry of the triangles in Figure 3.18, the shear flow can also be 

defined as; 

                                                ( ) sin cosDq f t θ θ=                                          (3.20c) 

If the reinforcement in both directions is assumed to have yielded. 

Eqn.3.20(a)  and (b) give 

                                                   tan ty

y

F

F
θ =

l

                                                 (3.21a)  

and                                             y y tyq F F=
l                                                 (3.21b) 

where the subscript y denotes the yielding of reinforcement. 

 

 

 

 

 

 

(a) Shear element (thickness h)                    (b) Truss model         

Figure 3.18 Equilibrium forces in element shear (Nawy,2000). 

 

Direction D 
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3.1.11 Equilibrium in Element Torsion 

The case of a hollow tube of any shape and variable thickness is considered 

Figure 3.19. It is subjected to pure torsion. St. Venant's theory stipulates that the 

cross-sectional shape remains unchanged in elastic small deformations, and the 

warping deformation perpendicular to the cross-section would be the same along the 

member's axis. Hence it can be assumed that only shear stresses develop in the tube 

wall in the form of shear flow q in Figure 3.19(a) and that the in-plane normal 

stresses in the wall vanish (Nawy,2005). If an infinitesimal wall element ABCD is 

isolated as in Figure 3.19(b) the shear flow in the l  direction has to be equal to the 

shear flow in the t  direction or 

 

                                                           1 1 2 2t tτ τ=                                              (3.22) 

 

 

 

 

Figure 3.19 Hollow tube equilibrium torsion forces: 

(a) section of tube subjected to torsion T; (b) unit shear element from tube wall of 

varying thickness h, Note:l  and t denote the longitudinal and transverse directions, 

respectively (Nawy,2005). 

 

(b) 

 

(a) 
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3.1.12 Shear-Torsion-Bending Interaction 

Consider the rectangular boxes in Figures 3.19. The shear flow q will not be 

the same on the four walls of the box when subjected to combined shear and 

torsion.Failure can precipitate in two distinct modes: 

(a) Yielding of the longitudinal bottom tension steel and the transverse stirrups 

(b) Yielding of the longitudinal top compression steel and the transverse stirrups 

 

(a) Bottom tension steel yielding. If the failure mode is caused by yielding of 

the longitudinal bottom stringer (tensile steel) and the transverse stirrups due to 

combined shear and torsion, the following expression can be derived from 

equilibrium (Nawy,2000). 

 

                              
2 2

0 0 0

0 0 0

1
2 2B B yt B yt

y y xM V s T s

F y y F Af A F Af

    ++ + =   
   

                  (3.23)  

If 0M , 0V  and 0T  are the moments and forces acting alone they can be defined as 

follows: 

                                                          0 0BM F y=                                                  (3.24a)  

 

                                                 0 0
0

2 T vF Af
V y

y s
=                                                 (3.24b) 

for a two web box. 

                                                0 0
0

2
2 T vF Af

T A
p s

=                                                (3.24c)   

where  0 0 02( )p y x= +  

                                                          T

B

F
R

F
=                                                      (3.24d)  
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Figure 3.20 Shear-torsion interaction diagram (Nawy,2005). 

 

A nondimensional interaction surface relationship can be obtained by 

introducing Eqn 3.24 into Eqn 3.23 such that 

 

                                            
2 2

0 0 0

1
M V T

R R
M V T

     
+ + =     

     
                                (3.25a) 

 

(b) Top compression steel yielding. If the failure mode is caused by yielding 

of the longitudinal top chord (compression steel) and the transverse stirrups, Eqn. 

3.25(a) becomes 

                                           
2 2

0 0 0

1
1

M V T

M R V T

     
− + + =     
     

                                 (3.25b)  

 

From both Eqn 3.25(a) and (b) the interaction of V and T is circular for a 

constant bending moment M for both failure surfaces. The intersection of the two 
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failure surfaces for these two failure modes forms a peak interaction curve between 

V and T such that Eqn 3.25(a) and (b) give 

                                                    
2 2

0 0

1

2

V T R

V T R

    ++ =   
   

                                     (3.26a)  

 

Equation 3.26(a) for R = 0.25,0.5 and 1.0 on the peak planes gives the 

circular plots shown in Figure 3.20. A third mode of failure is caused by yielding in 

the top bar, in the bottom bar, and in the transverse reinforcement, all on the side 

where shear flows due to shear and torsion are additive, that is the left wall 

(Nawy,2000). A modified form of Eqn 3.26(a) results as follows: 

                                           
2 2

0 0 0 0

1
2

2

V T VT R

V T V T R

      ++ + =     
     

                         (3.26b) 

 

 3.2 Aci Design Of Reinforced Concrete Beams Subjected To Combined  

Torsion Bending And Shear 

 

3.2.1 Torsional Behavior of Structures 

The torsional moment acting on a particular structural component such as a 

spandrel beam can be calculated using normal structural analysis procedures. Design 

of the particular component needs to be based on the limit state at failure. Therefore, 

the nonlinear behavior of a structural system after torsional cracking must be 

identified in one of the following two conditions: (1) no redistribution of torsional 

stresses to other members after cracking and (2) redistribution of torsional stresses 

and moments after cracking to effect deformation compatibility between intersecting 

members (Nawy,2005). 

 

Stress resultants due to torsion in statically determinate beams can be 

evaluated from equilibrium conditions alone. Such conditions require a design for the 

full-factored external torsional moment, because no redistribution of torsional stresses 
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is possible.This state is often termed equilibrium torsion. An edge beam supporting a 

cantilever canopy (Nawy,2005). 

 

The edge beam has to be designed to resist the total external factored 

twisting moment due to the cantilever slab; otherwise, the structure will collapse. 

Failure would be caused by the beam not satisfying conditions of equilibrium of 

forces and moments resulting from the large external torque (Nawy,2005). 

 

In statically indeterminate systems, stiffness assumptions, compatibility of 

strains at the joints, and redistribution of stresses may affect the stress resultants, 

leading to a reduction in the resulting torsional shearing stresses. A reduction is 

permitted in the value of the factored moment used in the design of the member if 

part of this moment can be redistributed to the intersecting members. The ACI Code 

permits a maximum factored torsional moment at the critical section d from the lace 

of the supports for reinforced concrete members as follows(Nawy,2005) : 

 

                                                      
2

'4 cp
a c

cp

A
T f

p
φ=                                                (3.27)   

where 

cpA  = area enclosed by outside perimeter of concrete cross section 

= 0 0x y  

 cpp = outside perimeter of concreic cross scclion cpA  in. 

= 0 02( )x y+  
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3.2.2 Torsional Moment Strength 

The size of a cross-scclion is chosen on (he basis of reducing unsightly 

cracking and preventing the crushing of the surface concrete caused by the inclined 

compressive stresses due to shear and torsion defined by the left-hand side of the 

expressions in Eqn.3.28(a) and (b). The geometrical dimensions for torsional 

moment strength in both reinforced and prestressed members are limited by the 

following expressions (Nawy,2005). 

 

(a) Solid sections 
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(b) Hollow section   
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CHAPTER 4 

GENETIC PROGRAMMING 

 

4.1 Genetic Programming Systems 

4.1.1 Genetic Programming 

Genetic algorithm (GA) is an optimization and search technique based on the 

principles of genetics and natural selection. A GA allows a population composed of 

many individuals to evolve under specified selection rules to a state that maximizes 

the “fitness” (i.e., minimizes the cost function). The method was developed by John 

Holland  (Holland, J. H. ,1975)  and finally popularized by one of his students, David 

Goldberg  (Goldberg,D. E.,1989), solved a difficult problem involving the control of 

gas-pipeline transmission for his dissertation (Haupt RL and Haupt SE,2004).  The 

fitness of each individual in a genetic algorithm is the measure the individual has 

been adapted to the problem that is solved employing this individual. It means that 

fitness is the measure of optimality of the solution offered, as represented by an 

individual from the genetic algorithm. The basis of genetic algorithms is the selection 

of individuals in accordance with their fitness; thus, fitness is obviously a critical 

criterion for optimization (Chambers,L.,2001). 

 

Genetic Programming is an extension to Genetic Algorithms proposed by 

Koza (Koza,1992).  The early pioneer defines GP as a domain-independent problem-

solving approach in which computer programs are evolved to solve, or 

approximately solve, problems based on the Darwinian principle of reproduction and 

survival of the fittest and analogs of naturally occurring genetic operations such as 

crossover (sexual recombination) and mutation.  GP reproduces computer programs 

to solve problems by executing the following steps which involves:
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 1) Generation of an initial population of functions and terminals of the 

problem (computer programs).  

2) Execution of each program in the population and assigning fitness, 

respectively. 

 3) Repeating step 2 for new computer programs. 

 4) Selecting the best existing program which is presented as the result of 

genetic programming (Koza,1992). 

 

In this study GEP (gene expression Programming) is used which is an 

extension to GP. Genetic programming is a domain-independent method that 

genetically breeds a population of computer programs to solve a problem. 

Specifically, genetic programming  iteratively transforms a population of computer 

programs into a new generation of programs by applying analogs of naturally 

occurring genetic operations. The genetic operations include crossover (sexual 

recombination), mutation, reproduction, gene duplication and gene deletion. Analogs 

of developmental processes that transform an embryo into a fully developed entity 

are also employed. Genetic programming is an extension of the genetic algorithm. 

(Koza JR et al.,2003). 

 

Gene expression programming belongs to a wider group of genetic algorithms 

as it uses populations of individuals, selects individuals according to fitness, and 

introduces genetic variation using one or more genetic operators.(Cevik,A.,2008) 

 

The phenotype of GEP individuals consists of the same kind of diagram 

representations used by GP. However, these complex entities are encoded in simpler, 

linear structures of fixed length - the chromosomes. Thus, the main players in GEP 

are two entities: the chromosomes and the ramified structures or expression trees 

(ETs), being the latter the expression of the genetic information encoded in the 

former. The process of information decoding (from the chromosomes to the ETs) is 
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called translation. And this translation implies obviously a kind of code and a set of 

rules. The genetic code is very simple: a one-to-one relationship between the 

symbols of the chromosome and the functions or terminals they represent. The rules 

are also very simple: they determine the spatial organization of the functions and 

terminals in the ETs and the type of interaction between sub-ETs in multigenic 

systems (Ferreira C.,2001-Ireland JC,2002-Candida F.,2001). 

 

In GEP there are therefore two languages: the language of the genes and the 

language of ETs and, in this simple replicator/phenotype system, knowing the 

sequence or structure of one, are knowing the other. In nature, although the inference 

of the sequence of proteins given the sequence of genes and vice versa is possible, 

practically nothing is known about the rules that determine the three-dimensional 

structure of proteins. But in GEP thanks to the simple rules that determine the 

structure of ETs and their interactions, it is possible to infer exactly the phenotype 

given the sequence of a gene, and vice versa. This bilingual and unequivocal system 

is called Karva language (Ferreira C.,2001-Ireland JC,2002-Candida F.,2001). 

 

4.1.2 Solving a Simple Problem with GEP 

For each problem, the type of linking function, as well as the number of genes 

and the length of each gene, are a priori chosen for each problem. While attempting 

to solve a problem, one can always start by using a single-gene chromosome and 

then proceed by increasing the length of the head. If it becomes very large, one can 

increase the number of genes and obviously choose a function to link the sub-ETs. 

One can start with addition for algebraic expressions or  for Boolean expressions, but 

in some cases another linking function might be more appropriate (like multiplication 

or IF, for instance). The idea, of course, is to find a good solution, and GEP provides 

the means of finding one very efficiently.(www.gepsoft.com) 

 

As an illustrative example consider the following case where the objective is 

to show how GEP can be used to model complex realities with high accuracy.  So, 

suppose one is given a sampling of the numerical values from the curve (remember, 

however, that in real-world problems the function is obviously unknown) 

: 
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                                          y = 3a2 + 2a + 1           (4.1) 

over 10 randomly chosen points in the real interval [-10, +10] and the aim is to find a 

function fitting those values within a certain error. In this case, a sample of data in 

the form of 10 pairs (ai, yi) is given   where ai is the value of the independent variable 

in the given interval and yi is the respective value of the dependent variable (ai 

values: -4.2605, -2.0437, -9.8317, -8.6491, 0.7328, -3.6101, 2.7429, -1.8999, -

4.8852, 7.3998; the corresponding yi values can be easily evaluated). These 10 pairs 

are the fitness cases (the input) that will be used as the adaptation environment. The 

fitness of a particular program will depend on how well it performs in this 

environment (Ferreira C.,2001) 

. 

There are five major steps in preparing to use gene expression programming. 

The first is to choose the fitness function. For this problem one could measure the 

fitness fi of an individual program i by the following expression: 

 

( , )
1

( )
tC

i i j j
j

f M C T
=

= − −∑
    (4.2) 

where M is the range of selection, C(i,j) the value returned by the individual 

chromosome i for fitness case j (out of Ct fitness cases) and Tj is the target value for 

fitness case j. If, for all j, |C(i,j) - Tj| (the precision) less than or equal to 0.01, then the 

precision is equal to zero, and fi = fmax = Ct*M . For this problem,  use an M = 100 

and, therefore, fmax = 1000. The advantage of this kind of fitness function is that the 

system can find the optimal solution for itself. However there are other fitness 

functions available which can be appropriate for different problem types (Ferreira 

C.,2001). 

 

The second step is choosing the set of terminals T and the set of functions F 

to create the chromosomes. In this problem, the terminal set consists obviously of the 

independent variable, i.e., T = {a}. The choice of the appropriate function set is not 

so obvious, but a good guess can always be done in order to include all the necessary 

functions. In this case, to make things simple, use the four basic arithmetic operators. 
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Thus, F = {+, - , *, /}. It should be noted that there many other functions that can be 

used.  

 

The third step is to choose the chromosomal architecture, i.e., the length of 

the head and the number of genes. 

 

 The fourth major step in preparing to use gene expression programming is to 

choose the linking function. In this case we will link the sub-ETs by addition. Other 

linking functions are also available such as subtraction, multiplication and division. 

 

And finally, the fifth step is to choose the set of genetic operators that cause 

variation and their rates. In this case one can use a combination of all genetic 

operators (mutation at pm = 0.051; IS and RIS transposition at rates of 0.1 and three 

transposons of length 1, 2, and 3; one-point and two-point recombination at rates of 

0.3; gene transposition and gene recombination both at rates of 0.1). To solve this 

problem, lets choose an evolutionary time of 50 generations and a small population 

of 20 individuals in order to simplify the analysis of the evolutionary process and not 

fill this text with pages of encoded individuals. However, one of the advantages of 

GEP is that it is capable of solving relatively complex problems using small 

population sizes and, thanks to the compact Karva notation; it is possible to fully 

analyze the evolutionary history of a run.A perfect solution can be found in 

generation 3 which has the maximum value 1000 of fitness. The sub-ETs codified by 

each gene are given in Figure 1. Note that it corresponds exactly to the same test 

fuction given above in Eqn 4.1 (Ferreira C.,2001). 
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Thus expressions for each corresponding Sub-ET can be given as follows: 

 

          y = ( a2 + a ) + ( a + 1 ) + ( 2a2 ) =  3a2 + 2a + 1              (4.3) 

 

 

Figure 4.1. ET for the problem of Equation 4.1 (Ferreira C.,2001). 
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The whole flowchart of GEP process in general can be seen in Figure 4.2.  

 

Figure 4.2 Gene Expression Programming Flowchart (www.gepsoft.com)
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CHAPTER 5 

NUMERICAL APPLICATION 

 

5.1 Numerical application  

 In this study, GeneXproTools 4.0 (www.gepsoft.com) software package is 

used for GP modeling of torsional strength of RC beams. Among the experimental 

database, 17 tests were used as testing set and the remaining 59 test as training set for 

GP training. The proposed GP formula is an empirical equation based on the 

experimental database given here. In the proposed GP model, input parameters were 

selected based on previously published studies by Fang and Shiau (2004), Hsu 

(1968), Koutchoukali and Belarbi (2001) and Rasmussen and Baker (1995) which 

are area (Ac = x.y), perimeter (Pc = 2(x+y)), concrete compressive strength (fc), total 

area of longitudinal torsional reinforcement x yield strength of longitudinal torsional 

reinforcement (A l.fyl), cross-sectional area of one leg of closed stirrup x yield strength 

of  torsional reinforcement/ spacing of stirrups, (Atfyt/s), steel ratio of stirrups (ρt) and 

steel ratio of longitudinal reinforcement (ρl). the ranges of variables in the 

experimental database where the proposed GP model will be valid for are given in 

Table 5.1. (Cevik et al.,2010) 

 
The experimental database considered here (Table A.1) was collected from 

various studies Rasmussen and Baker (1995), Koutchoukali and Belarbi (2001), Fang 

and Shiau (2004), Hsu(1968), Tang(2006), Zang(2002). Test specimens of the 

database were of solid rectangular beams subjected to pure tension and where none 

of them was deep beam. The compressive strength of concrete ranged from 25.58 

MPa to 109.8 MPa, stirrup percentage ranged from 0.40 % to 2.56 %, the yielding 

stress of longitudinal reinforcement ranged from 314 MPa to 560 MPa, the yielding 

stress of stirrups ranged from 320 MPa to 672 MPa. The experimental database 

consists of a total of 76 tests given in details in the Table A.1. Beams are identified
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 using the notations in the first row, with the first letter of researchers’ name. The 

same series of test was used before by several authors. Tang (2006) developed a 

radial basis function neural networks to predict the ultimate torsional strength of RC 

beams, Zhang (2002) and Hossain et al. (2006) improved analytical methods for 

predicting the nonlinear response of RC beams by using the same database. (Cevik et 

al.,2010) 

 

Table 5.1 Ranges of variables of the database 

 Minimum Maximum Increment 
x (mm) 160 350 Variable 
y (mm) 275 508 Variable 
x1 (mm) 130 300 Variable 
y1 (mm) 216 469 Variable 
fc (MPa) 26 110 Variable 
s (mm) 50 215 Variable 

At (mm2) 71 127 Variable 
fyv (MPa) 319 672 Variable 
A l (mm2) 381 3438 Variable 
fyl (MPa) 310 638 Variable 

ρt (%) 0.22 2.56 Variable 
ρl (%) 0.30 3.51 Variable 

 

Related parameters of the GP training are presented in Table 5.2. Statistical 

parameters of the proposed GP models with the formulations are given in Table 5.3. 

The performance of GP model vs. test results is shown in Figure 5.1. As seen from 

Table 5.3 the best formulation was Equation 5.1. Afterwards,  The entire database 

with corresponding experimental and GP Results of Equation 5.1 are given in Table 

A.1. The expression tree of the GP models is presented in Figure 5.2(a) the final 

formulation for the best torsional strength formulation of RC beams is obtained as 

follows:  

Tu=(������ − ��� ).(������ �⁄ /��/ !�� ).(���� − 8.26).��� 0.085⁄(
.)������*(      (5.1) 
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Table 5.2 Parameters of GP model 

P1 Function Set   + , - , * , / , , ln 

P2 Chromosomes 30-200 

P3 Head Size:  2-6 

P4 Number of Genes:   1-4 

P5 Linking Function:  Addition, Multiplication 

P6 Fitness Function Error Type:   MAE, RMSE, Custom Function 

P7 Mutation Rate:   0,044 

P8 Inversion Rate:   0,1 

P9 One-Point Recombination Rate:  0,3 

P10 Two-Point Recombination Rate:  0,3 

P11 Gene Recombination Rate:   0,1 

P12 Gene Transposition Rate:   0,1 
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Table 5.3 Statistical parameters of the proposed GP models with the formulations 

  Testing Set Training Set Total Set 

Model GP Formulation  R2 Mean COV R2 Mean COV R2 Mean COV 

1 
Tu=(������ − ��� ).(������ �⁄ /��/ !�� ).(���� −

8.26).��� 0.085⁄( .)������*(
    (5.1) 

0.969 0.942 0.18 0.961 0.99 0.21 0.958 0.99 0.20 

2 

Tu=(3.36�10-.). /���* + ��1. ������ − ��*  . (2.55�10-.) 

/(−3.22����) + ��1          (5.2) 
0.942 1.28 0.66 0.940 1.03 026 0.922 1.08 0.44 

3 

Tu=(3.31�10-2) .3)������((4
 . /(����� �⁄ ) + (!�/

1.82))./�� − (2� ����� �⁄ )1.)/�����/9.98/!�1, !�(
      (5.3) 

if �����/9.98/!� <= !� result=�����/9.98/!� else result=!�
  

0.962 0.99 0.21 0.941 1.02 028 0.945 1.01 0.26 
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In order to investigate the accuracy of standards for torsional strength, the test 

results given in Table 5.4 were compared with the approaches of mentioned building 

codes. The predicting capability of codes related to torsional strength of the beams 

for mentioned tested 76 specimens are presented in Table 5.4. (Cevik et al.,2010) 

 

Table 5.4. Prediction Accuracy of existing building codes 

Building Standards Expression for torsional strength  
R2 

(%) 

ACI-318-2005 θ= cot
s

fAA2
T yvtO

n  85.93 

BS8110 
s

A)f87.0(yx8.0
T svys11

n =  81.76 

TBC-500-2000 
)yx(2

fAA2
T

11

yve
n +

= l

 71.07 

AS3600 θ= cot
s

fAA2
T yvtO

n  85.93 

Eurocode-2-01 ( ) θ= cotA2s/AfT kswysn  73.44 

Eurocode-2-02 ( ) θ= tanA2u/AfT kksyn  85.93 

Eurocode-2-03 θθ−= cossintAf)250/f1(2.1T efkckckn  61.88 

CSA θ= cot
s

fAA2
T yvtO

n  85.93 

GP Model-1        96 
___________________________________________________________ 

GP Model-2        92 
___________________________________________________________ 

GP Model-3        95 
___________________________________________________________ 
 

The performance of the proposed GP models vs.  experimental results are 

given in Figure 5.1.  
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R² = 0,958
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Figure 5.1(a),(b) and (c). Performance of Test and GP Results 
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Figure 5.2(a),(b) and (c) Expression Tree for Torsional Strength of RC beams 

Model–3 

(c) 
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5.2 Discussions 

5.2.1 Code Approaches 

The prediction accuracy of various standards of building codes related to 

torsional strength of the beams for mentioned tested 76 specimens are presented in 

Table 4. As seen from Table 4, ACI-318-2005 (2005), AS3600 (2005) and CSA 

(1994) torsional strength expressions have the most powerful estimating capacity. 

The differences between the codes and test results are based on some reasons such 

as; 

• In all codes except for Eurocode-2-03 approaches given in Equation 

θθ−= cossintAf)250/f1(2.1T efkccn , the concrete contribution is ignored 

after torsional cracking that makes no distinction between the behavior of 

normal and high strength concretes. Therefore, there is no advantage in using 

higher concrete strength in resisting ultimate torsion. However, the test series 

have shown that the ultimate torsional strength of RC beams increases with 

the increase of concrete quality.  

 

• In the calculation of torsional strength, the main parameter is the shear flow 

area determined differently in the building codes. Taking the centers of 

longitudinal bars or centre-to-centre of stirrups for this calculation create a 

considerable difference in the total result. 

 

• The building codes assume the longitudinal bars and stirrups to be yielded. 

But in the experiment that represents the real conditions more realist than 

analytical approaches, neither longitudinal bars nor stirrups yielded or either 

longitudinal bars or stirrups yielded. Especially high values of yield stresses, 

larger sizes of reinforcement and weaker concrete gives way the dominance 

of the neither longitudinal bars nor stirrups yielded.  

 

• In the TBC-500-2000 (2000) and BS8110 (1985), the angle of cracks are 

neglected (or assumed 45
o). This assumption induces the important 

differences between the code approaches and test results.  
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• The theoretical values computed by using code formulations are generally 

higher than the experimental torsional strength. This can be explained 

probably by the fact that the thin-walled tube and space truss analogy deviate 

in the particular and isolated case of overreinforced beams with low concrete 

strength. 

 

• The comparison suggests that the most equations overestimate the strength, 

especially in the case of beams with low concrete strength. This is expected 

since most of the methods do not taking account the concrete strength in 

calculating the torsional strength. (Cevik et al.,2010) 

 

5.2.2 Genetic Programming (GP) 

Based on the findings of the GP the following comparisons can be drawn; 

 

• The results of the proposed GP formulation performed better than building 

code’s results.  

 

• The error between the test and GP model is quite small for mentioned 

parameters. However, in the comparison of the code and test data, especially 

for over reinforced concrete, the predicting capability of code has become 

less.  

 

• According to the final formulation for torsional strength, the ultimate 

torsional strength Tu of  RC beams under pure torsion can be fairly accurately 

estimated using only five input  variables x1, y1,fc,Al and ρt   (i.e. short 

dimension of the closed stirrup, long dimension of the closed stirrup, concrete 

compressive strength, longitudinal torsional reinforcement and steel ratio of 

stirrups). 

 

• The outcomes of GP offer original contributions beside its high estimation 

capacity. (Cevik et al.,2010) 
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5.3  Main Effects of Variables on Torsional Strength 

The main effect plot is an important graphical tool to visualize the 

independent impact of each variable on torsional strength. This graphical tool 

enables a better and simple picture of the overall importance of variable effectson the 

output which is the torsional strength. The slope of the line for each variable the 

degree of its effect on the output. To obtain the main effect plot a wide range of 

parametric study has been performed by using the proposed GP model. From main 

effect plot in Figure 5.3 it can be concluded that all variables used for GP modeling 

given in the experimental database have significant effects on torsional strength. 

(Cevik et al.,2010) Variables that are observed to be directly proportional from 

Figure 5.2 are Ac , Pc , fc , Al.fyl , Atfyt/s , ρt and ρl. The evaluation of seperate 

interaction effects plot between  any two variables  is also performed shown in 

details in Figure 5.4 also the intercation graphs in 3D format are presented in Figures 

5.5-5.14.  
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Figure 5.3 Main Effect Plot for Tu 
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Figure 5.4 Interaction Plot for Tu 
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Figure 5.5 Surface Plot of Tu vs Ac, ALfyL 
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Figure 5.6 Surface Plot of Tu vs Ac, Atfyt/s 
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Figure 5.7 Surface Plot of Tu vs Ac, fc 
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Figure 5.8 Surface Plot of Tu vs Ac, Pc 
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Figure 5.9 Surface Plot of Tu vs ALfyL,Pc 
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Figure 5.10 Surface Plot of Tu vs ALfyL,fc 
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Figure 5.11 Surface Plot of Tu vs ALfyL, Atfyt/s  
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Figure 5.12 Surface Plot of Tu vs, Atfyt/s,fc  
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Figure 5.13 Surface Plot of Tu vs, Atfyt/s,Pc 
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Figure 5.14 Surface Plot of Tu vs fc, Pc 
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CHAPTER 6 

CONCLUSION 

 

6.1 Conclusion 

This study is a pioneer work that addresses the feasibility of GP as an 

alternative approach for the empirical formulation of torsional strength of RC beams 

fort he first time. The use of ANN provides an alternative way to estimate torsional 

strength of RC beams. The proposed GP model is based on a wide range 

experimental database collected from the literature. The results of the proposed GP 

model are seen to be by far more accurate than current design codes and existing 

equations available in literature. Most of the design codes and equations available in 

literature are based on the regression analysis of predefined functions. However in 

the case of  GP approach presented in this study, there is no predefined function to be 

considered. The  GP approach generates various formulations and optimizes the best 

one that fits the experimental database best. The outcomes of this study are quite 

satisfactory which may serve GP approaches to widely used in further applications in 

the field of reinforced concrete structures. 
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APPENDIX  

Table A1. Experimental Database (Rasmussen,1995),( Koutchoukali,2001),( Fang,2004),( Hsu,1968) 

 

            Tu Tu Tu(GP)/ 

No Ac Pc fc ALfyL Atfyt/s (Test) (GP) Tu(Test) 

FS-1 175000 1700 78,5 526504 313,852 92 113,52 1,23 

F2-2 175000 1700 78,5 831152 313,852 115,1 138,78 1,21 

FS-3 175000 1700 78,5 831152 627,704 155,3 159,42 1,03 

FS-4 175000 1700 78,5 1489800 627,704 196 201,91 1,03 

FS-5 175000 1700 78,5 1925280 1013,600 239 245,58 1,03 

FS-6 175000 1700 68,4 859500 332,873 126,7 132,94 1,05 

FS-7 175000 1700 68,4 859500 570,150 135,2 148,04 1,09 

FS-8 175000 1700 68,4 1432500 348,724 144,5 165 1,14 

FS-9 175000 1700 35,5 524304 313,852 79,7 76,19 0,96 

FS-10 175000 1700 35,5 831152 313,852 95,2 93,33 0,98 

FS-11 175000 1700 35,5 831152 627,704 116,8 107,21 0,92 

FS-12 175000 1700 35,5 1489800 627,704 138 135,78 0,98 

FS-13 175000 1700 35,5 1925280 1013,600 158 165,15 1,05 

FS-14 175000 1700 35,5 859500 332,873 111,7 95,77 0,86 

FS-15 175000 1700 35,5 859500 570,150 125 106,65 0,85 
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FS-16 175000 1700 35,5 1432500 332,873 117,3 117,77 1 

KB-1 61915 1016 39,6 195624,8 246,353 19,4 20,68 1,07 

KB-2 61915 1016 64,6 195624,8 263,525 18,9 26,77 1,42 

KB-3 61915 1016 75 195624,8 246,353 21,1 28,46 1,35 

KB-4 61915 1016 80,6 195624,8 263,525 19,4 29,9 1,54 

KB-5 61915 1016 93,9 195624,8 254,939 21 32,06 1,53 

KB-6 61915 1016 76,2 195624,8 269,935 18,4 29,22 1,59 

KB-7 61915 1016 72,9 242248,58 289,825 22,5 31,89 1,42 

KB-8 61915 1016 75,9 283554,6 305,926 23,7 35,19 1,48 

KB-9 61915 1016 76,7 301872 393,334 24 38,19 1,59 

RB-1 44000 870 41,7 957218 580,323 16,6 14,55 0,88 

RB-2 44000 870 38,2 985008,2 583,814 15,3 14,09 0,92 

RB-3 44000 870 36,3 934059,5 586,432 15,3 13,47 0,88 

RB-4 44000 870 61,8 944866,8 580,323 20 17,62 0,88 

RB-5 44000 870 57,1 947954,6 580,323 18,5 16,96 0,92 

RB-6 44000 870 61,7 944866,8 580,323 19,1 17,61 0,92 

RB-7 44000 870 77,3 952586,3 574,215 20,1 19,73 0,98 

RB-8 44000 870 76,9 947954,6 572,469 20,7 19,63 0,95 

RB-9 44000 870 76,2 952586,3 578,578 21 19,61 0,93 

 RB-10 44000 870 109,8 943562,4 571,597 24,7 23,4 0,95 

 RB-11 44000 870 105 967991,2 575,960 23,6 23,14 0,98 

 RB-12 44000 870 105,1 971113,1 571,597 24,8 23,15 0,93 
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HS-1 96774 1270 27,58 159364,68 159,739 22,3 23,31 1,05 

HS-2 96774 1270 28,61 200958,45 223,820 29,3 29,23 1 

HS-3 96774 1270 28,06 249555 319,164 37,5 34,79 0,93 

HS-4 96774 1270 30,54 284408,88 444,632 47,3 41,3 0,87 

HS-5 96774 1270 29,03 337647,28 582,385 56,2 45,97 0,82 

HS-6 96774 1270 28,82 379064,52 714,725 61,7 50,21 0,81 

HS-7 96774 1270 25,99 162519,36 317,788 26,9 26,31 0,98 

HS-8 96774 1270 26,75 163570,92 708,634 32,5 31,47 0,97 

HS-9 96774 1270 28,82 243253,26 284,884 29,8 34,03 1,14 

 HS-10 96774 1270 26,48 382219,2 284,310 34,4 40,17 1,17 

 HS-11 96774 1270 26,61 169174,16 158,124 22,4 23,76 1,06 

 HS-12 96774 1270 25,58 204895,45 231,537 27,7 28,13 1,02 

 HS-13 96774 1270 28,41 260352,54 332,233 40,2 36,02 0,9 

 HS-14 96774 1270 30,61 293601,14 457,632 47,9 42,2 0,88 

 HS-15 96774 1270 29,85 207086,2 168,542 30,4 28,68 0,94 

 HS-16 96774 1270 30,54 250606,56 242,855 40,6 34,43 0,85 

 HS-17 96774 1270 26,75 286249,11 295,772 43,8 35,73 0,82 

 HS-18 96774 1270 26,54 323636,64 394,727 49,6 39,89 0,8 

 HS-19 96774 1270 27,99 383007,87 507,644 55,7 46,42 0,83 

 HS-20 96774 1270 29,37 727240,8 617,368 60,1 64,44 1,07 

 HS-21 96774 1270 45,23 206648,05 252,382 36 38,23 1,06 

 HS-22 96774 1270 44,75 261640,32 332,922 45,6 45,34 0,99 
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HS-23 96774 1270 44,95 280115,01 448,150 58,1 49,82 0,86 

HS-24 96774 1270 45,02 315224,16 589,871 70,7 55,63 0,79 

HS-25 96774 1270 45,78 371966,49 728,481 76,7 63 0,82 

HS-26 129032 1524 29,79 163570,92 129,048 26,8 25,47 0,95 

HS-27 129032 1524 30,89 204895,45 197,212 40,3 34,3 0,85 

HS-28 129032 1524 26,82 257959,86 266,501 49,6 39,22 0,79 

HS-29 129032 1524 28,27 289307,27 379,080 64,9 46 0,71 

HS-30 129032 1524 26,89 336245,2 483,053 72 50,83 0,71 

HS-31 129032 1524 29,92 382553,6 348,734 39,1 53,44 1,37 

HS-32 129032 1524 30,96 456498,9 279,824 52,7 56,39 1,07 

HS-33 129032 1524 28,34 552534,84 397,227 63,3 62,89 0,99 

HS-34 129032 1524 27,03 130031,49 112,757 11,3 11,19 0,99 

HS-35 129032 1524 26,54 169875,2 209,101 15,3 27,55 1,8 

HS-36 129032 1524 26,89 210153,25 298,901 20 35,4 1,77 

HS-37 129032 1524 27,17 256382,52 420,834 25,3 43,1 1,7 

HS-38 129032 1524 27,23 291760,91 569,250 29,7 49,19 1,66 

HS-39 129032 1524 27,58 320832,48 766,992 34,2 55,17 1,61 

FS : Fang(2004) 

KB : Koutchoukali(2001) 

RB : Rasmussen(1995) 

HS : Hsu(1968) 
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Table A2. Training and Testing Results 

TRAINING RESULTS 
Target Model Residual 
155,3 159,4204926 4,120492607 
196 201,9093576 5,90935762 
239 245,5779351 6,577935134 

126,7 132,9362921 6,236292135 
79,7 76,19171847 3,508281534 
95,2 93,32918982 1,87081018 
116,8 107,2070868 9,592913181 
138 135,7799972 2,220002849 
158 165,1462405 7,1462405 

111,7 95,77004399 15,92995601 
125 106,6526649 18,34733507 
21,1 28,4599833 7,359983298 
19,4 29,90365977 10,50365977 
21 32,06361609 11,06361609 

18,4 29,21607738 10,81607738 
22,5 31,8888648 9,388864797 
15,3 14,08941762 1,210582377 
15,3 13,4748585 1,825141499 
20 17,62124526 2,378754744 

18,5 16,95874766 1,541252343 
19,1 17,60698281 1,493017187 
20,1 19,72618184 0,373818156 
20,7 19,62706373 1,072936272 
21 19,61499935 1,385000654 

29,3 29,23231646 6,77E-02 
37,5 34,7857233 2,714276703 
47,3 41,29530005 6,004699952 
56,2 45,96704481 10,23295519 
61,7 50,21256076 11,48743924 
26,9 26,30876639 0,591233615 
32,5 31,467436 1,032563997 
29,8 34,02710275 4,227102747 
34,4 40,1716983 5,7716983 
22,4 23,76138646 1,361386457 
27,7 28,12709652 0,427096519 
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40,2 36,02267222 4,177327777 
47,9 42,20438585 5,695614146 
30,4 28,67982932 1,720170679 
40,6 34,4317016 6,168298404 
43,8 35,73007914 8,069920859 
49,6 39,89496248 9,705037515 
55,7 46,41996686 9,280033142 
60,1 64,4395312 4,339531199 
36 38,22863207 2,228632071 

45,6 45,33721888 0,262781125 
58,1 49,81998124 8,280018755 
70,7 55,63831538 15,06168462 
49,6 39,22190644 10,37809356 
64,9 46,00168344 18,89831656 
72 50,83372388 21,16627612 

39,1 53,44365718 14,34365718 
52,7 56,39176039 3,691760389 
63,3 62,89318551 0,406814493 
11,3 11,18957281 0,110427186 
15,3 27,5485534 12,2485534 
20 35,39826669 15,39826669 

25,3 43,10357655 17,80357655 
29,7 49,19035481 19,49035481 
34,2 55,17000146 20,97000146 

 

 

 

 

 

 

 

 

 



 

80 
 

TESTING RESULTS 
Target Model Residual 

92 113,5211671 21,52116708 
115,1 138,7835996 23,68359964 
135,2 148,042219 12,84221896 
144,5 165,0007576 20,50075761 
117,3 117,7691083 0,469108301 
19,4 20,68005084 1,280050842 
18,9 26,77152316 7,871523158 
23,7 35,18863839 11,48863839 
24 38,18883289 14,18883289 

16,6 14,54565245 2,054347546 
24,7 23,40462074 1,295379263 
23,6 23,14371396 0,456286039 
24,8 23,14756319 1,652436815 
22,3 23,31091604 1,010916043 
76,7 63,00556173 13,69443827 
26,8 25,46614689 1,333853113 
40,3 34,30223625 5,997763754 
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