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ABSTRACT 

CONSTRUCTION OF KLEIN-GORDON EQUATION (KG) WITH 

POSITION DEPENDENT MASS AND APPLICATION TO THE PHYSICAL 

SYSTEMS 

MUTAF, Haydar 

MSc Thesis, Engineering of Physics, University of Gaziantep 

Supervisor: Assoc.Prof. Dr. Eser OLĞAR 

August 2011, 45 pages 

In this study, Klein-Gordon equation with position dependent mass is formulated via 

Einstein’s theory of relativity. The relation between scalar and vector potentials is 

defined as                in order to be solved in the bound state solutions. 

Asymptotic iteration method, one of the most common methods to solve Klein-

Gordon type equations, is chosen and explained. 

The solutions of the equations are analyzed for both position-dependent and constant 

mass situations and their eigenvalues and eigenfunctions are derived. Before the 

solution of Klein-Gordon equations with position-dependent mass, the validity of 

asymptotic iteration method for Klein-Gordon equation with constant mass is 

examined. The spectrums are obtained by applying the method to Morse potential, 

Harmonic oscillator potential and Kratzer potential  for the Klein-Gordon equation 

with constant mass, and applied to Kratzer potential and exponential potentials for 

Klein-Gordon equation with position-dependent mass. 

Key Words: Position dependent mass Klein-Gordon equation, eigenvalue, 

eigenfunction, asymptotic iteration method, scalar potential, vector potential.  
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ÖZET 

POZİSYONA BAĞLI KÜTLE İÇEREN KLEIN-GORDON DENKLEMİNİN 

ÇIKARIMI VE FİZİKSEL SİSTEMLERE UYGULAMALARI 

MUTAF, Haydar 

Yüksek Lisans Tezi, Fizik Mühendisliği, Gaziantep Üniversitesi 

Danışman: Doç. Dr. Eser OLĞAR 

Ağustos 2011, 45 sayfa 

Bu çalışmada pozisyona bağlı kütle içeren Klein-Gordon (KG) denkleminin 

Einstein’ın temel izafiyet denkleminden yola çıkılarak çıkarımı yapıldı. Denklemdeki 

skalar ve vektör potansiyeli arasındaki ilişki bağlı durumdaki çözüm verebilmesi için 

                olarak tanımlandı. Klein-Gordon tipi denklemleri çözmek için 

en yaygın metotların arasından asimptotik iterasyon metodu seçilerek anlatıldı.  

Denklem çözümleri, pozisyona bağlı ve bağlı olmayan durumlar için ayrı ayrı ele 

alınarak enerji özdeğerleri ve öz fonksiyonları bulundu. Pozisyona bağlı kütle içeren 

Klein-Gordon denkleminin çözümünden önce sabit kütleli Klein-Gordon denklemi 

için asimptotik iterasyon metodunun geçerliliği incelendi. Metot, Klein Gordon 

denkleminde sabit kütle için Morse potansiyeline, Harmonik osilator potansiyeline 

ve Kratzer potansiyeline, pozisyona bağlı kütle için de Kratzer potansiyeli ve üssel 

tip potansiyellerine uygulanarak spektrumları elde edildi. 

Anahtar Kelimeler: Pozisyona bağlı kütle içeren Klein-Gordon Denklemi, Enerji 

özdeğerleri, özfonksiyon, Asimptotik Ġterasyon metodu, vektör potansiyel, skalar 

potansiyel.      
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                                                        CHAPTER 1 

INTRODUCTION 

Schrödinger Equation [1] is a function which is called wavefunction gives us all of 

the information about a quantum system like as probability, energy etc. At 1900 Max 

Planck’s quantum assumptions [2], at 1924 de Broglie’s hypothesis [3] and at 1927 

Heisenberg’s uncertainty principle [4] cause a stir in science world. After that years 

Max Planck’s quantum assumptions and Schrödinger’s wave mechanism merging 

and quantum mechanism theory was born. Schrödinger equation like as below in 

implicit form 

                                                                                                                     (1.1)        

where   is Hamiltonian operator and it gives total energy of the system  

                                                           
  

  
                                                      (1.2) 

First term is the kinetic energy operator and second one is the potential energy and   

is the momentum operator (   
 

  
) in Eq. (1.2).  

Actually Schrödinger equation is about non-relativistic subatomic particles and 

Schrödinger studied about relativistic subatomic particles but he could not 

formalism. Relativistic subatomic particles cannot be solved with Schrödinger 

equation and we need a new viewpoint such as relativistic equations called Dirac 

equation [5] and Klein-Gordon [KG] equation. The Dirac equation is 

a relativistic quantum mechanical wave equation formulated by British physicist Paul 

Dirac in 1928. It is provided a description of elementary spin-½ particles, such 

as electrons, consistent with both the principles of quantum mechanics and the theory 

of special relativity, and was the first theory to fully account for relativity in the 

context of quantum mechanics. Similarly, the Klein–Gordon equation (Klein–Fock–

Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic version 

of the Schrödinger equation.  

http://en.wikipedia.org/wiki/Wave_equation
http://en.wikipedia.org/wiki/Electron
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The solution of relativistic equations has received a great consideration in recent 

years with constant mass [6-27]. Most of these studies are related with mixed scalar 

       and vector        potentials. The energy spectrum of correspondence 

potentials has been calculated by taking the scalar and vector potentials equal to each 

other in KG equation [8, 10, 28]. In this thesis, we define a new transformation 

which conforms the condition of having bound state solution,           [29]. In 

other words, it is not necessary to restrict ourselves for choosing the vector and scalar 

potentials.  

Position dependent mass (PDM) Hamiltonian has an important role in physics. If we 

have a quantum mechanical system, we can attain PDM. For example, in 

semiconductor physics, the fact that the carriers move is identified with the quantum 

mechanical system. In nuclear physics, designing theoretical models with effective 

interactions are other vital applications [30-37]. Therefore, the importance of PDM is 

undeniable [71]. The exact or approximate solutions of position dependent mass 

relativistic wave equation have received a great attention along the last few years. [8, 

11, 13, 19, 26, 38-45] 

For all types of problem considered above for relativistic or non relativistic wave 

equations, the energy spectra of physical potentials has been obtained by using 

different techniques. For example Lie algebraic methods [46], the supersymmetric 

quantum mechanics approach [47, 48], transformations method [49], series 

expansion method [50], Nikiforov-Uvarov method [51], Asymptotic Taylor 

Expansion method [52], and function analysis method [45]. In this thesis we use the 

Asymptotic Iteration Method (AIM) [53] that is proposed to solve second order 

homogeneous differential equations in the form of                                                                   

where       and       are arbitrary functions. When the differential equation is 

reduced to this form, it means that, it is amenable to apply AIM. This method has 

some advantages when it is comparable with other methods. For example, we have to 

use more complex mathematics in other methods, but AIM is less complex for 

energy eigenstates and wave eigenfunctions. 

The organization of thesis is as follows: We will explain Klein-Gordon equation 

formalism in the chapter 2 for constant mass and position dependent mass KG. The 
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correction of the Stark effect and the Zeeman effect are also taken into consideration 

during the formalism. 

In Chapter 3, the chosen method for solving the eigenvalues of KG equation is 

presented for second order differential equations and first order differential 

equations. Actually AIM for first order differential equation can be used solution of 

Dirac equations [19]. 

The applications of AIM for constant mass KG equation for harmonic oscillator 

potential, Morse potential and Kratzer potential are considered in the subsequent 

chapter. Additionally the eigenfunctions of PDMKG for Kratzer potential and 

exponential type potentials are obtained by the AIM of the hypergeometric functions 

using the wave generators of AIM. 

The final chapter deals with the discussion of the results obtained for different type 

potentials KG. 
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                                                       CHAPTER 2 

KLEIN-GORDON EQUATION 

One of the most important relativistic equations is the Klein-Gordon (KG) equation. 

Some knowledge about the wave mechanism and Klein-Gordon equation is outlined 

in this section. Also, we derive the final form of KG which used in this study by 

considering the relation between vector potentials and scalar potentials.  

2.1 Brief About Wave Mechanism and Klein-Gordon Equation 

Classical physics is successful but it cannot explain some physical events like as 

blackbody radiation, photo-electric effect. Because classical physics think that 

universe is constant.  But at 1900 Max Planck [55] presumed that energy cannot be 

constant, after that at 1905 Einstein [54] presumed that light be formed by packets 

namely it is not constant. Until that time scientist believe that electrons but well 

known atom model was Thomson’s – plum pudding - atom model [54] and at that 

years Rutherford [57] shown that atoms have a small nucleus and nucleus cannot 

contain electrons. In this case if electrons moving around of nucleus after a time it 

must fall into nucleus because from classical electromagnetic theory when electrons 

accelerated around the nucleus it loses its energy after a time and fall into the 

nucleus. This is a very important phenomenon at that years and Bohr [55] found a 

solution. From Bohr’s atom model electrons cannot radiate until have some energy 

values. So radiation energy is quantized but Bohr’s atom model is satisfied for only 

one electron atoms for more electrons system Bohr atom model could not satisfied. 

At 1900 when Max Planck tried to solve blackbody radiation (ultraviolet 

catastrophe), he used that      equation and this equation started that photon 

concept because Planck presumed that when an electron oscillated with   frequency, 

it emitted light but this light can have energy only    and its integer numbers. 

Between the years 1925-1926 Werner Heisenberg, Wolfgang Pauli and Pascal Jordan 

studied about quantum mechanism but they did not interest in wave mechanism 

because their dialectic was positivist. At 1926 Schrödinger [56] regenerated wave 
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mechanism with some equations. Finally he derived the Heisenberg’s matrix 

mechanism and showed that two formalisms equal each other mathematical and he 

found a new attitude which called Schrödinger equation, about non-relativistic 

particles. He published an article about relativistic particles wave mechanism but 

relativistic wave equation was taken its final form by Oskar Klein and Walter 

Gordon and this equation called Klein-Gordon equation. 

 

2.2 Formalism of Klein-Gordon Equation  

 

Klein-Gordon relation [56-60] is an equation about relativistic subatomic particles 

which has no spin like as bosons, for example π mesons [55]. There are more than 

one ways for derive the Klein-Gordon expression. Actually the starting point of all 

derivation’s is the fundamental energy relation used in special relations. 

                                                

                                                                                                             (2.1) 

 

where   is the momentum,   is the speed of light   is the mass of the particle and   

is the energy. At this point Quantum Mechanics can help us. In Quantum Theory, 

observables have to turn into mathematical operators for solution. Hence following 

substitutions are made for energy. Energy operator in quantum mechanics is defined 

as 

                                                      

                                                             
 

  
                                                         (2.2) 

 

Similarly, the momentum operator expression is in the form of  

                                                    

                                                            
 

  
                                                        (2.3) 

 

Taking the squares of both sides of equations Eq.(2) and Eq.(3), we get 

                                                  

                                                             

   
                                                      (2.4) 

                                                             

                                                          (2.5) 
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After these substitutions, Einstein relation between energy, mass and momentum can 

be written like as below with operators. 

                                     

                                            

   
        

                                                  (2.6)                                

 

It cannot make any sense unless wave function of space and time          is 

applied. 

 

                                      

   
              

                                          (2.7)                                                       

 

When       (natural units) [45] is taken Klein-Gordon equation becomes in 

cartesian coordinate system as 

                                            

                                              
    

   
 

   

                                                       (2.8) 

 

On the other hand there is a second way for derive the Klein-Gordon equation. The 

starting point of second way’s is the Einstein’s relation Eq. (2.1) 

 

                                                                

 

This relation can be complex factorization like as below. 

                                             

                                                                                                   (2.9)                            

 

After this step when each term multiplied, the equation becomes 

                                     

                                                                                       (2.10)                    

 

When the momentum and energy operators with squares are substituted into Eq. 

(2.10), we get  

                    

                            

   
      

        
 

  
            

 

  
               (2.11)                     
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It is known that operators operate least significant term and if   value is not position 

dependent –constant- the relation takes form 

                       

                            

   
       

         

  
     

 

  
                         (2.12)                             

 

Applying the wave function space and time          to this equation yields to 

                  

   
             

               

  
     

       

  
             (2.13) 

Clearly, the third term (            

  
) and the fourth term (    

       

  
) are 

canceled each other. Taking the        , the one dimensional KG equation is 

reduced to 

                                                

                                                    
   

   
 

   

                                                (2.14)                         

 

The (1+1) dimensional KG can be extended to (1+3) dimensional coordinated by 

defining nabla     operator like as below 

                                                    

                                                       
 

  
 

 

  
 

 

  
                                               (2.15) 

and KG equation is take form for (1+3) dimensional coordinates 

                                          

                                             
   

   
                                                    (2.16) 

 

KG equation has some potential corrections due to the Stark effect and the Zeeman 

effect. Shortly, the Stark Effect is the shifting and splitting of spectral lines of atoms 

and molecules due to the presence of an external static electric field. The Zeeman 

Effect is the splitting of a spectral line into several components in the presence of a 

static magnetic field. As a result from these effects, the momentum operator and the 

energy operator are written in the form of  

                                                      

                                                                  

                                                        
 

  
  

 

  
                                                (2.17) 
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where   is the vector potentials. The other correction is an additional coupling to the 

space-time scalar potential        which is introduced by the substitution  

                                                     

                                                                                                             (2.18) 

 

The term “four-vector” and “scalar” refers to the corresponding unitary irreducible 

representation of the Poincare space-time symmetry group Gauge invariance of the 

vector coupling allows for the freedom to fix the gauge (eliminate the nonphysical 

gauge modes) without altering the physical content of the problem. There are many 

choices of gauge fixing that one could impose [8]. The Lorentz gauge,       and 

the Coulomb gauge,       are two of the most commonly used conditions. If we 

adapt this later choice and write the time component of the four-vector potential as 

           , where   is a quantity related to the magnetic moment of an electron, 

nucleus or other particle, then we end up with two independent potential functions in 

the KG equations. These are vector potential         and the scalar potential        . 

 

In the relativistic units, the free KG equation are written as  

 

                                                                                                      (2.19)  

               

The vector and scalar couplings mentioned above introduce potential interactions by 

mapping the free KG equations above into following  

 

                             
 

  
      

 

 
  

                                       (2.20) 

 

when we simplify the equation, it turns most common using form in this thesis 

 

                                 
   

                                                (2.21)                           

 

When the Eq.(2.21) is rearranged  

                                             

                                             
      

                                                        (2.22) 
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where  

                                                                           (2.23) 

 

The last equation is reducing form of KG equation with energy dependent effective 

potential.
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CHAPTER 3 

THE ASYMPTOTIC ITERATION METHOD 

In general, the second-order differential equations play an important role in many 

branches of physics, especially in quantum physics and mathematical physics. As a 

result of this importance, lots of techniques are developed in the literature that can be 

used to solve second order homogeneous linear differential equations with boundary 

conditions.  One of these methods is AIM. It has algorithm suitable for computer 

programming to get results directly and rapidly. 

 

In this chapter we focus on the Asymptotic Iteration Method for obtaining the 

corresponding eigenvalue values and eigenfunctions for PDMKG. In addition to the 

formalism of AIM for second order differential equations, we also derive the method 

to the first order differential equations. 

 

3.1 Asymptotic Iteration Method 

The (AIM) is proposed [53] to solve the second-order homogeneous linear 

differential equations of the form 

                                                          
                                                   (3.1)               

 

where       and       are functions defined in          and they have sufficiently 

many continuous derivatives. 

In order to find a general solution to this equation, we rely on the symmetric 

structure of the right hand side of Eq. (3.1). Actually, if we differentiate Eq. (3.1) 

with respect to  , we find that  

                                                                                                             (3.2) 

where the function are in the form of 
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       and         
                     

 

By taking the second derivative of Eq. (3.2), we get 

                                                                                                              (3.3) 

with 

                                              
                        

and  

                                                     
               . 

With application of similar procedure, for         and         derivative 

(           ), we reach to the forms   

                                                                                                     (3.4) 

and 

                                                                                                         (3.5) 

where the coefficients       and       are  

                                           
                                             (3.6a)                             

                                                 
                                                  (3.6b)            

From the ratio of the         and         derivatives, we get  

                                 
 

  
           

      

       
         

     

     
  

           
       

       
  

                         (3.7)                         

We now introduce the “asymptotic” aspect of the method. If we have, for sufficiently 

large  ,  

                                                            
     

     
 

       

       
                                     (3.8)                            

then Eq. (3.8) simplifies to  



12 
 

                                                           
 

  
         

     

       
                                   (3.9)                                    

which yields 

                                   
     

    
                                   (3.10) 

where    is integration constant, and the right hand equation follows from Eq. (3.7) 

and the definition of  . If we substitute Eq. (3.10) into Eq. (3.4), we get a first order 

differential equation 

                                                                                                 (3.11)  

which gives the general solution to Eq. (3.1) likes as below 

                                                                    (3.12)  

At this stage, the corresponding second order homogeneous differential equation 

should be transformed in the form of Eq. (3.1) for the reason of obtaining the energy 

eigenvalues and the eigenfunctions. Subsequently, the parameters        and       

are determined by comparing the equations and       and       are calculated by 

the recurrence relations defined in the Eq.(3.7).  At the beginning of the procedure, in 

calculating the parameters for    , the initial conditions are taken as         , 

         [61] and the iterations should be terminated by imposing the quantization 

condition in Eq. (3.9)          for 

                                       

                                                                                             (3.13) 

 

where k is the iteration number. 

 

At the final step of AIM, the energy eigenvalues of corresponding equation are 

obtained from the roots of the quantization condition, given by the termination 

condition of the method if the system is exactly solvable. If the problem is not 

exactly solvable, the authors [31, 53, 61, 62, 63] proposed that for a special n 

quantum number, a suitable    point is chosen, then generally as the maximum value 

of the asymptotic wave function or the minimum value of the potential is calculated. 
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And finally, for sufficiently large values of iteration, the approximate energy 

eigenvalues are obtained from the roots of this equation. 

 

The wavefunction in AIM is calculated by the wave function generator which can be 

obtained by taking the parameter      in equation (3.12) 

                                                   

                                                                                                       (3.14) 

 

2.2 Derivation of AIM to the First Order Linear Differential Equations 

To start to derive the AIM equations for the first order linear differential equation 

[64], we consider two different first order differential equations in the form 

                                                 
 
                                                     (3.15)  

                                                 
 
                                                      (3.16)  

where             are differentiable functions depend on     

If we take derivative Eq. (3.15) and Eq. (3.16), we get  

                                                 
 
                                                     (3.17)     

                                                 
 
                                                    (3.18)  

where 

                                              
       

                                         (3.19)                              

                                            
                                              (3.20)                    

                                         
                                            (3.21)                                

                                               
 
      

                                       (3.22)             

With same way, if we take         derivatives, we obtain 

                                         
     

                                                   (3.23) 

                                         
     

                                                  (3.24) 
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where 

                                        
                                              (3.25)                            

                                         
                                              (3.26)                            

                                       
                                            (3.27)                     

                                        
 
                                            (3.28)           

From the ratio of          and         derivatives, we get 

                         
 

  
     

       
  

     

  
      

            
       

            

       
     

  
        

             (3.29)        

Applying the same procedure for   
  yields to similar expression. When   goes 

infinity we can obtain 

                                                   
       

       
 

     

     
                                  (3.30)                       

Using this relation, Eq. (3.30) takes form            
               and the 

function   
         is obtained as 

                 
                

       

     
  

 

 
                     

 

 
      (3.31) 

Substituting Eq. (3.31) into   
     

                 relation, we obtain 

                                                       
 

 
                                (3.32) 

Using Eq. (3.18) and Eq. (3.32), the general solution of       is obtained in the 

following form [19] 

                     
 

 
                              

 

 
    

 

 
        

                                                                                                                               (3.33)              

This expression is the wavefunction generator for the first order differential 

equations. 
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CHAPTER 4 

APPLICATION OF AIM FOR KLEIN-GORDON EQUATION 

In this chapter, the solution of KG equation with constant mass for Harmonic 

oscillator potential, Morse potential and Kratzer potential and PDMKG with different 

masses for linear potential and exponential potential is outlined. 

4.1 Application of AIM for Constant Mass Klein-Gordon Equation 

4.1.1 Harmonic Oscillator Potential 

Generally, Klein-Gordon equation with scalar and vector potential can be written as 

like as Eq.(4.1) in [65] 

                                   
  

                                                   (4.1) 

When          , this means that KG equations has a real bound state solutions, 

when          , KG equations reduces to the Schrödinger type equations. In this 

part, we consider that the case of           for the KG equations. When we 

rearrange the Eq. (4.1), we can get 

                                  
  

                                                         (4.2) 

where 

                                                               . 

We choose the potential like as below [21] 

                                                                ,
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where    and   are arbitrary constants. At this point, in order to have the conditions 

           we have to take the arbitrary constant   is less than 1, if     . So we 

define the relationship between potentials as 

                                                                                                       (4.3) 

When the last two expressions are substituted in KG equation 

          
  

                 
 
                                  

                                                                                                                  (4.4) 

Expand the parameters in equation yields to  

             
  

                                                   

                                                                                                  (4.5) 

Rearranging the Eq. (4.5) gives 

                                          
  

                                                     (4.6) 

where        ,          and               When we do some 

algebraic simplifications Eq.(4.6) is transformed to  

                                           
  

            
 

  
 
 

                                  (4.7) 

where            . 

Let us consider the linear potential form of vector potential like as 

                                                                       

Substituting the potential in Eq. (4.7), KG becomes 

                                           
  

         
 

  
 
 

                                       (4.8) 

After changing of variables      
 

  
  the second order differential Eq. (4.8) 

yields 
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                                                         (4.9) 

This equation is the KG harmonic oscillator potential and actually Eq.(4.9) is a 

Schrödinger equation with an energy dependent potential. 

For applying AIM, Eq. (4.9) should be transformed to the form of differential 

equation of the form Eq. (3.1). Therefore it should has a solution in the form of 

normalized wavefunction which is found by means of the iteration procedure 

                                                          
  

 
                                            (4.10) 

Substituting Eq. (4.10) into Eq. (4.9) yields 

                                                                                                  (4.11) 

which is now amenable to apply AIM for solution. When we compare the Eq.(4.11) 

with Eq.(3.1), we can write       and       values and by means Eq.(3.6a) and 

Eq.(3.6b), we can calculate       and      . First third functions are 

      

         

           

          

                          

                         

………….. 

Combining these results with the quantization condition, we get the energy 

eigenvalues 
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…… 

When we generalize the expression, we can get 

                                                                    

If we use parameters which defined       and, we obtain 

                                                      
              

        
                                     (4.12) 

which is exactly the same as the eigenvalue equation obtained in [65]. From 

Eq.(4.12), one can find that 

                                                      
           

          
                                           (4.13) 

where 

                                                          

As seen from Eq. (4.13), we can see that, the energy eigenvalues have two types of 

energy. Non relativistic Schrödinger type equations do not have negative energy 

values but a relativistic type equation has negative energy states. This means that 

positive part is particle energy and negative part is anti-particle’s energy. 

4.1.2 Morse Potential 

In this subsection, we deal with the exponential form of scalar potential. We take 

                and because of the relationship between scalar and vector 

potentials                      Substituting these equations into Eq. (4.6), 

we obtain 

                                   
  

                                             (4.14) 

where       
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This equation is the KG Morse potential. We note that, this equation is also called 

Schrödinger equation with an energy dependent potential. We have to change of 

variables with 

                                                                       

and we obtain 

                                       
  

    
 

 

 

  
  

 

   
 

 

   
 

    
                            (4.15) 

Actually, we reach a position that the differential equation is suitable for applying 

AIM. Therefore Eq. (4.15) should have a solution in the form of the normalized 

wavefunctions, 

                                                               
 

 
                                  (4.16) 

Substituting Eq. (4.16) into Eq. (4.15), one gets 

                                           
          

  
        

          

                   (4.17) 

which is now amenable to apply AIM for solution. Comparing the Eq. (4.17) and Eq. 

(3.1), the functions       ,      ,       and       are listed as follows by means of  

Eq.(3.6a) and Eq.(3.6b),  

   
          

  
 

   
          

    
 

   
 

    
                                   

    
 

    
                      

….. 

Applying the quantization condition yields 
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From these expressions we can write general formula for   

       
 

 
   

 

  
 

 

         
 

  
 

 

 
  

Substituting the parameters   and  , it gives 

                                                
          

 

 
   

 

  
 
 

                            (4.18) 

and 

                                                        
 

 
   

 

  
 
 

                         (4.19) 

which is exactly the same as the eigenvalue equation in [66] through a proper choice 

of parameters. 

4.1.3 Kratzer Potential 

In this subsection, we deal Kratzer potential that has a very important role in 

quantum mechanics. In order to obtain the required potential form in the KG 

equation, we choose 

     
 

 
 

And then relationship between scalar and vector potentials, scalar potential takes 

form 
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Substituting them into Eq. (4.6), we obtain the differential equation 

                                               
  

      
  

   
 

 
                                       (4.20) 

where     , and Eq.(20) is the form of the KG Kratzer potential. At this point, to 

obtain the form of differential Eq.(3.1), and apply AIM, we propose the 

wavefunction like as below 

                                                                     
 

                               (4.21) 

Substituting this proposed wavefunction into Eq.(4.20),  we get 

                                                
     

 
        

           

                   (4.22) 

which is now amenable to apply AIM for solution. Comparing the second order 

differential equation with Eq. (3.1) and applying procedure that of other applications, 

we get the function in the form of 

     
     

 
  

    
           

  
  

   
 

  
                         

   
 

  
                                        

….. 

And combining these results with the quantization condition yields 
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From these expressions we can write general formula of   

                                                
 

      
 
 

                 

where the relation of n is obtained by comparing our parameters with that of in [69]. 

Substituting the parameters   and  , one can obtain 

                                                       
      

 

      
 
 

                                       (4.23) 

and 

                                                         
 

      
 
 

                                      (4.24) 

4.1.3.1 Obtaining Wavefunctions 

In this subsection we find that wavefunctions with AIM [53], but first time we 

illustrate Hypergeometric functions. Starting with definition of Hypergeometric 

functions [70] and let us start define      , 

                          

 
      

    
  

where   is a positive integer and 

        

The general hypergeometric function is defined as 
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In series form, it is defined as 

                                     
                      

 

                       

 

   

  

We shall show that many of the special functions encountered up to now may be 

expressed in terms of hypergeometric functions. 

We have to consider convergence of the series in last equation. 

(i)The confluent hypergeometric series is convergent for all values of  . 

(ii)If      , hypergeometric series is convergent and if      , it is divergent. For 

    the series converges if        , while for     , it converges if 

           

The following equations show the intimate relationship which exist between the 

hypergeometric functions and the special functions already considered. 
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After reminder some properties of hypergeometric functions. Let sees how we can 

use in obtaining the eigenfunctions of the corresponding potentials form using 

eigenfunction generator [53]  

             
  

  

 

 

     

where   represents the radial quantum number. By this procedure, the first few      

functions are 

       

                            

                                    

                             

                                     

                                  

                              

                                                     

     

                                       

                                           

                                

After analyzing these results, we can see that the   
     functions can be written in 

series expansion by hypergeometric functions with constant                

and                
     
     Generalizing these expansions, we get 
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4.2 Applications of AIM with Position Dependent Mass Klein-Gordon Equation 

4.2.1 AIM for Energies of Inversely Linear Potential with Spatially Dependent 

Mass 

There have been many studies considered the KG equation with mixed linearly 

inversely potentials within the framework of different methods. [20, 41, 43]. 

Similarly, the solution of KG with any mixed vector and scalar potentials has 

received considerable attention in the literature. Actually in these studies scalar 

       and vector        potentials equal the each other. But here we consider the 

transformation described in [29] to conform the condition of having bound state 

solution,            

For inversely linear potential, we consider the mass distribution function in the form 

of           
 

  
 

   
  as in [41]. 

The time-independent Klein-Gordon equation for a spatially dependent bosonic mass 

in       dimensions for is considered [45] 

                                     
   

            
 
                                 (4.25) 

where      is the position dependent mass of the particle. When we rearrange the 

Eq. (4.25), we obtain 

                    
   

                                            (4.26) 

If we collect the terms, we obtain 

                   
   

                                             (4.27) 

Let define the terms without differential as effective potential,      as 
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                                                                      (4.28) 

Then we get 

                                             
      

                                                         (4.29) 

Recently in [65], the relationship between the corresponding potentials was proposed 

to 

                                                                                                     (4.30) 

where    is an arbitrary constant. In this general description of scalar potential, by 

choosing   parameter 0, 1 and 2 the scalar potential leads to case           , 

       (purely vector potential), and           respectively. The other choices 

of    leads to the required condition for bound state solutions that correspond to the 

case of          . Substituting the expression into Eq. (4.26), we obtain 

                            
      

                                    

           
 
         

After a simple algebra we can take 

            
      

                                            

                     

Rearranging this equation, the effective potential transforms to 

                                                                 (4.31) 

After this formalism of KG equation using the relation in Eq. (4.30), our task is only 

to choose the potential form and to apply the AIM. 

Let choose the linear vector potential proportional to the absolute value of the 

coordinate as [41] 

                                                                 
     

   
                                             (4.32) 

where   is a dimensionless real parameter. With this choose of potential,        is 

reduced to 
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                                (4.33) 

We found that final type of       in Eq.[4.32] and substitute the vector potential into 

Eq. (4.29),      becomes 

                               
 

   
                  

 

   
                (4.34) 

and after rearranging, it is reduced to 

                                          
   

   
 

    

   
 

   

   
 

    

   
    

  .          (4.35) 

At this point, we have to define our position dependent mass and consider the bound-

state solution PDMKG. For this application, we choose the form of the effective 

mass distribution as [41] 

                                                                
 

  
 

   
                                     (4.36) 

where    is a dimensionless real parameter. With this spatially dependent mass, 

effective potential takes form 

                             
 

  
 

   
     

   

   
 

        
 

   

   
 

   
 

       
 

   

   
 

   
 

    

   
    

                                                                                                              (4.37)                                                                                                                                               

When we simplify the Eq. (4.35), we take 

            
     

 

   
 

  

   
   

   
 

     

   
 

    

   
    

   
 

   

   
    

   
    

    

With this      and changing variable        the corresponding KG equation takes 

form like as below; 

              
  

    
                      

   
                     

 
    

  
                                                                                                    (4.38)     
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One can see easily that Eq.(4.38) seems a special potential family and rearranging the 

equation, finally we get 

                                             
  

    
      

   
 

 
                                      (4.39) 

where 

                              

                        

and we can find   and it has two values 

   
 

 
                                

   
 

 
                                

Eq. (4.39) is the similar equation form of the Klein-Gordon Kratzer potential [67]. 

Interestingly, we note that Eq. (4.38) is, in fact a Schrödinger equation with an 

energy dependent potential. At this position, we have to propose a wavefunction like 

as below to apply the AIM 

                                                                                                    (4.40) 

with substituting this wavefunction into Eq.(4.38), we get 

                                          
      

 
        

         

 
                    (4.41) 

Eq.(4.41) is the second order differential equation and is suitable for apply AIM like 

as Eq.(3.1).  We can write the       and       values from Eq.(3.1) and we may 

calculate       and       from Eq.(3.6a) and Eq.(3.6b). The first fourth terms are 
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…………. 

Similarly, from the quantization condition, we get 
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The general formula of   for   values can be written as 

                                                 
 

        
                                                (4.42) 

The eigenvalues in Eq.(4.41) is transformed into the form of    by the definition of 

the parameter  , the energy definition can be obtained as [68] 

                                                       
    

    
 

        
                                   (4.43) 

We can find that   , after a simple algebra 

                                                          
   

 

        
                                  (4.44) 

4.2.1.1 Obtaining Wavefunctions 

Properties of hypergeometric functions are defined in the last subsection. In order to 

find corresponding the energy eigenfunctions, we may use the following energy 

eigenfunction generator 

                                                                   
  

  

 

 
     

By applying the function generator, the first few      functions can be seen 
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One can see that the   
     functions can be written in series expansion by 

hypergeometric functions with constant          and         
     
     

Generalizing these expansions, we get 

                        

   

   

                      

4.2.2 AIM for Energies of Exponential Mass and Potential with Spatially 

Dependent Mass 

Now, let consider the bound state solutions of PDMKG with mass distribution of 

     
   . The time independent KG equation for spatially dependent mass can 

be written as like Eq. (4.25). After rearranging this equation we obtain Eq. (4.26), 

Eq. (4.29) and Eq. (4.28). The relationship between the corresponding potentials is 

proposed to in Eq. (4.33) and after same steps like as in  part 4.1 we obtain Eq. 

(4.34). 

Let choose the vector potential function in exponential type as [16] 

                                                            
                                                     (4.44) 

Using the relationship between scalar and vector potentials, we get 

                                                             
                           (4.45) 

By substituting these potentials into effective potential equation, we obtain      as 
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                                                                                                             (4.46) 

After defining the scalar and vector potential, let consider the effective mass 

distribution is also in exponential form as 

                                                         
                                                      (4.47) 

With spatially dependent mass, effective potential takes form 

                      
          

      
  

     
    

             
  

    
     

       
. 

By rearranging the effective potential equation, it takes form of 

                             
    

      
  

     
    

         
     

     
         

When we define 

    
    

      
  

     
    

            

 and the effective potential takes form 

                                                           
      

Then the PDMKG equation is reduced to 

                                              
                                     (4.48) 

This is not a known potential type and we change functions and change variables at 

the same time like as below 

                           

          

             

Dividing both sides with terms      and we obtain 

                                      
                   

     
             

 
                              (4.49) 
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Take the wavefunction as 

                                                        
 

  
                                         (4.50) 

and substitute into Eq. (4.49), one gets 

                      
        

    
              

      
                 

                          (4.51) 

By collecting the terms, KG equation takes form 

                                     
 

 
 

  

  

   
  

   
    

                                             (4.52) 

Let define the constant 

 

 
 

  

  
    

  

  
     

    

  
   

          

to final form of KG equation as 

                                          
  

        
 

 
                                    (4.53) 

Eq. (4.52) is the similar equation form of the KG Kratzer potential [67]. Let propose 

a wave function as  

                                                                                 (4.54) 

with substituting this wavefunction into Eq.(4.52), we obtain 

                                         
 

   
       

 
            

 

 
                (4.55) 

The last term is the expected form of the second order differential equation. By 

applying the steps of AIM, the functions can be obtained as 
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Using the quantization conditions, the energy eigenvalues are obtained as 
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Generalizing for energy eigenvalues 

                                               
  

         
                                              (4.56) 

After substituting the parameters   and  , we get 

 
  

  
 

     

  

        
  

  

   

  

    
    

               
 
  

  

   
 
  

  

  

 

so 

                             
  

                  
 

 
 

  

   
 

 
 

  

               (4.57) 

The roots of this equation gives the energy values. 

 

4.2.2.1 Obtaining Wavefunctions 

The exponential potential equation is reduced to Kratzer type potential after changing 

variables and functions. Therefore, using the similar procedure for eigenfunction 

generator, the functions of       are obtained as 
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When results are analyzed, one can see that the   
     functions can be written in 

series expansion by hypergeometric functions with constant                

and                
     
     Generalizing these expansions, we obtain. 

                                    

   

   

 

                               

where   
 

 
 

  

     and  
    

       

It seen easily   
     a function for exponential type potential is same for Kratzer 

potential KG with constant mass with different coefficients   and  . 
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CHAPTER 5 

CONCLUSION 

In this thesis, in order to solve the Klein-Gordon equation for both constant mass and 

variable mass, we applied asymptotic iteration method. The corresponding 

differential equations for some physical potential are solved by transformed into 

Schrödinger-like equations. And this transformation results in solving the energy 

spectrum of corresponding potential using AIM. 

The method firstly applied the constant mass. The energy spectrum and 

wavefunction of Morse oscillator, Harmonic oscillator and Kratzer potentials is 

obtained for constant mass. The results clearly show that AIM produces the exact 

analytic more simpler than the other methods. 

Secondly, AIM is applied to the position dependent mass Klein-Gordon equation for 

inversely linear potential and exponential type potentials. After making some 

transformation the corresponding potentials are reduced the Kratzer type. Then using 

the function generator, the wavefunction are obtained in terms of hypergeometric 

functions. 

Generally, in literature most studies on AIM is only deal with obtaining the energy 

eigenvalues because of difficulties in obtaining the wavefunctions. 

Besides given the exact analytic results, AIM also gives the numerical results for 

non-solvable potentials.  

In this thesis, we only applied this method for exactly solvable potentials are 

calculated analytically. 
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