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ABSTRACT 

A NEW SOLVABLE CLASS LINEAR TIME VARYING SYSTEM 

 

GÜNEYLĠ, Hasan 

M.SC. in Electrical and Electronics Engineering 

Superviser:Prof. Dr. Arif NACAROĞLU 

October 2011, 31 Pages 

 

 

In this thesis, a new definition of classification has been done, with regard to 

the time- varying linear systems can be solved and the solution method for the new 

proposed class has been described. There isn't a general analytical method of solution 

in time-varying linear systems and being solvable of these systems is related to their 

being able to turn into time-invariant systems, applying certain transformations. In 

the studies conducted to date, in general, it has been shown that two groups of the 

time-varying linear systems are solvable, in addition to this, some special systems 

that can be transformed into these groups, although not belonging to one of the these 

to groups, have been introduced. Determination of the system's being solvable is 

directly related to the structure of the system's eigenvalue and also, in this study, on 

the basis of eigenvalues, a new solvable group has been identified. 
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ÖZET 

ZAMANLA DEĞİŞEN DOĞRUSAL SİSTEMLERDE ÇÖZÜLEBİLİR YENİ 

BİR SINIF 

 

GÜNEYLĠ, Hasan 

Yüksek Lisans Tezi, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Arif NACAROĞLU 

Ekim 2011,  31 Sayfa 

 

 

Bu tez de, zamanla değiĢen doğrusal sistemlerin çözülebilir olmasına iliĢkin 

yeni bir sınıflandırma tanımı yapılmıĢ ve önerilen yeni sınıf için çözüm yöntemi 

açıklanmıĢtır. Zamanla değiĢen doğrusal sistemlerin genel bir analitik çözüm 

yöntemi yoktur ve bu sistemlerin çözülebilir olması belli dönüĢümler uygulanarak 

sistemlerin zamanla değiĢmeyen sistemlere dönüĢebiliyor olması ile iliĢkilidir. Bu 

güne kadar yapılan çalıĢmalarda genel olarak iki grup zamanla değiĢen doğrusal 

sistemlerin çözülebilir olduğu gösterilmiĢ, buna ek olarak bu iki gruptan birine ait 

olmadığı halde, bu gruplara dönüĢtürülebilen bazı özel sistemler tanıtılmıĢtır. 

Sistemin çözülebilir olmasının belirlenmesi sistemin öz değerlerinin yapısı ile 

doğrudan iliĢkilidir ve bu çalıĢmada da öz değerlerden yola çıkılarak yeni bir 

çözülebilir grup tanımlanmıĢtır. 

 

 

 

Anahtar Kelimeler: Zamanla DeğiĢen Doğrusal Sistemler, Çözülebilir Doğrusal 

Sistemler. 
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CHAPTER 1 

INTRODUCTION 

 

The solution of the dynamical systems in many diferent domains have been 

very important for the exact analysis of the physical events. The mathematical 

models under some assumption has result in differential equation forms with 

different structures in time domain. Depending on the complexity of the problem and 

the degree of the assumptions, differential equations are classified in higher or lower 

level of difficulties of the solution. 

 

Although, almost all physical dynamic events show non-linear behaviour, the 

linearization of the problem may be sufficient to understand the all phenomena. The 

complexity of natural phenomena have get difficult mathematical system of that 

modeling him. The degree of difficulty or ease of mathematical model is related with 

degree of derivative of the system. It can be said that, if the degree of derivative of 

mathematical model is higher then the problem can solve more difficult. Coefficients 

of the variables are constant, the solution is relatively easier, when the variables are 

connected to a domain then the solution is more difficult. Of course, when we tried to 

solve these problems, we're looking at the form of state space. We reverse the system 

of differential equations to state space form then we lower degree of derivative to 

one. The degree of the derivative reflected in the size of matrices in state space form. 

when we reverse high order differential aquation to first order state space form then 

we have created the nxn matrices with high value of n. 

 

The n-dimensional linear (time varying or constant) system is represented by 

     
( )

A t x t B t  u(t)
dx t

dt
 

     (1.1) 
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where x(t) is nx1vector of state variables, u(t) is 1x1 input vectors, A(t) is nxn time-

varying system matrix, B(t) is nx1 time-varying input matrix.  A(t) and B(t) are 

matrices with the elements directly related to the circuit elements and if the 

elements of circuit are time-dependent then all of the system is time-dependent. 

 

 If excitation u(t) is zero, the linear equations becomes 

   
( )

A t x t
dx t

dt
       (1.2) 

and it is called as homogeneous systems. 

 

There is a general and easy solution of linear time-invariant systems. If A(t) is 

constant matrix A or it is commutative with it is functions, then the homogeneous 

solution of A(t) is[1-3] 

0

0 0

1 1

0

( )

0

( ) ( , ) ( )

[ ] ( ) (1.3)

( )
A t t

x t t t x t

L sI A x t

e x t



 





 


 

However A(t) is a function of time in homogeneous time 

varying systems defined in equation    ( ) / A t x tdx t dt  , a general solution method 

for these systems has not been defined yet. 

 

The solution of this system is possible with the transformation of time-

varying linear systems into the time-invariant systems. However, it is not shown yet 

that the general transformation matrix can be proposed for transformation of the 

system. Only for some limited time-varying linear systems, transformation matrices 

can be defined [4]. A general analytical solution for time-varying linear systems is 

not known yet. 

 

All the time-varying systems subject to time-invariant systems can be solved 

if the suitable transformation matrix is found. Until now, two broad classes of the 
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systems has been presented which are solvable time-varying linear systems (A1 and 

Ah). Among the solvable classes of linear time-varying systems, the commutative 

class is probably the best known class. The solution method of A1 class and Ah class 

is possible if the eigenvalue of the system matrix have some specific forms. The 

construction of the transformation matrix is then possible using the eigenvalues. In 

this case the transformation matrix must be invertible.  

 

For time invariant systems the solution is 

0 0 0

0

0

( ) ( ) ( )( ( ))

0 0

( )

0

( ) (
( ) ( ) ( ) ( ( )) ( )

( ( )) ( ) ( ) . . ( ) (1.4)

( ) . ( )

t

t

A t t C A t t A t tIn x t C

A t t

dx t dx t
A t x t Ax t In x t Adt A t t C

dt dt

In x t A t t C e e x t e e e x t

x t e x t

   



       

       





 

where t0 is initial time, x(t0) is initial state. If the system is not time-invariant linear 

system then it must checked for commutativity. If the system is commutative, the 

solution is 

0

( )

0( , )

t

t

A d

t t e

 





      (1.5)

 

where 0( , )t t  is the state transition function which carries the initial state x(t0) to 

x(t) at any time t. 

 

If the system is time-varying linear system and not commutative then an 

analytical solution is not known. For solving, we must checked the eigenvalues. If 

eigenvalues are constant ( 1 1 2 2, , ....., n nk k k     ) then the system belongs to 

A1 class. If eigenvalues are the multiple of the same time-varying function h(t)           

( 1 1 2 2( ), ( ), ....., ( )n nk h t k h t k h t     ), then the system belongs to Ah class [3]. 

Otherwise, if eigenvalues are neither constant nor multiple of a function then there is 

no general methodical solution. But it does not mean that they are unsolvable. 
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Our main aim in this report is to define a new solvable time-varying linear 

system class. The propose class will be call as HG class and if the system 

eigenvalues are
1 11 1k kt ve t      , for integer k, the transformation matrix 

which converts the system into time-invariant case is easily formed. 
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CHAPTER 2 

DYNAMIC SYSTEMS 

 

2.1 Introduction 

 

The Dynamic Systems are events of in the natural sciences that expressed in 

mathematical form. The dynamic system wins character according to the state of the 

event. These are very important and useful for analyzing events. A dynamic system 

may or may not be linear, or may not be time-dependent. Dynamic systems are 

available in all sciences. In Earth science, astronomy, energy science, biology, 

building science, control, economy and all other areas there are dynamic systems and 

these systems are mathematically modeled for the solution of these. In fact, all 

dynamic systems are nonlinear time-varying systems. However, in some places the 

system is made linear and modeled as a simple and understandable, after that it can 

be solved more easily. When we modeled as mathematically the system it is 

important to have a general idea and be able to offer a solution. The system is made 

linearization that is enough to get an idea about real system and to understand the 

real problem. For example, when we solve a problem about a car's location, speed, 

acceleration and time then the components of this problem is also solved with the 

car's mass is considered to be fixed. But in reality it varies the mass of the car. The 

fuel of car decreases with Car tries (the mass decreases) or moving mass of an object 

varies according to the theory of relativity. Ignored this and similar conditions which 

affect the mass. This is linearization for a system in order to facilitate. Problems 

solved in this way, the correct results are still 99.99%. 
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The general dynamic systems are as these four matrices completely specify 

the state-space model. 

 

 

In this work, only the linearly problems will be considered and they will be modeled 

as n dimensional problem for n-chosen state variables as    
( )

A t x t
dx t

dt


 
and 

there for the first order coupled differential equations representing the j-th state 

becomes 

     1 1 2 2

( )
x t x t ....... x t

j

j j jn n

dx t
a a a

dt
   

         (2.1)
 

 

In system representation, 

 

     [
              

   
              

]     (2.2) 

 

     [
     

 
     

]       (2.3) 

 

System Type 

     

  
         

TVNL(Time varying Non-linear System) 

     

  
        

TINL(Time-invariant Non-linear System) 

     

  
        

TVL(Time Varying Linear System) 

     

  
       

TIL(Time-invariant Linear System) 
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 [

      

  

 
      

  

]       (2.4) 

 So, 

[

      

  

 
      

  

]  [
              

   
              

] [
     

 
     

]    (2.5) 

 

2.2 Time-Invariant System(TI) 

 

Like everything else, systems can be classified in a variety of ways according to 

their different properties. However, the more important modes of classification in 

system theory are dichotomies in the sense that they involve but two categories, say 

linear time-invariant systems and linear time-varying systems. In fact all physical 

systems are time-varying. The launching of the dynamics of an object is moving, 

dynamic system of a moving car, Central Heating Boiler thermo-dynamic system of 

a building, an operating system of electronic circuit, any a base station's efficiency, 

etc. In short, no system is really time-invariant and linear. But the linearization of 

systems analysis is made easier. For example, sometimes a problem is being solved, 

the system is considered linear and time independent. Thinking about an event that 

gives same result at different times, the problem is solved as these. This method is a 

method of solving a system over time, assuming no change. 

 

A time-invariant (TI) system is one whose output does not depend explicitly on 

time. If the input signal u(t) produces an output y(t) then any time shifted input, 

u(t+δ), results in a time-shifted output y(t + δ). This property can be satisfied if the 

transfer function of the system is not a function of time except expressed by the input 

and output. This property can also be stated in another way in terms of a schematic If 

a system is time-invariant then the system block is commutative with an arbitrary 

delay. 
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     1 1 2 2

( )
x t x t ....... x t

j

j j jn n

dx t
a a a

dt
   

 
  (2.6) 

aj1(t), aj2(t),  . . . . . and ajn(t) are constant then that is Time-Invariant System, and it is 

represented as 

 

[

      

  

 
      

  

]  [

        

   
        

] [
     

 
     

]     (2.7) 

 

2.3 Time Varying System(TV) 

 

A time-varying system is a system that is not time invariant and take an 

important place in modern technology. They are widely used as in communication 

systems, power electronic circuits, electrical machinery and electronics. 

 

In communication system, the communication channels are time varying due to 

movement of the source, receiver or scatters. Therefore, the channel is acting like 

time varying filters. Besides that, parametric amplifiers, parametric converters, time 

varying filters, switched capacitor networks, mixers and RF circuits are also different 

types of time-varying systems.  

 

In power electronic circuits high power semiconductors devices such as thristors, 

diacs, triacs are used and these devices are either triggered externally or controlled 

by the response signals; in either case the controlling signal is periodic and these 

devices behave as periodically time-varying components. Because of time-varying 

nature of power systems, time-varying system analysis methods are used in the 3 

systems as, power system protection, power quality, power system transients, partial 

discharges, load forecasting, power system measurement [4]. 

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Time-invariant_system
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In integrated circuits (IC) area, due to the heat generated by IC, circuit 

parameters are changing. The parameter variations need to be quantified in order to 

ensure a robust circuit. 

 

The system approach is a widely used in modeling electronic and mechanical 

systems. Linear systems are highly popular models due to their simplicity and 

convenience for mathematical analysis. Thus, many systems can be modeled as 

linear time-varying systems at least for a limited range of operation. Figure 2.1 

describes the general notion of an input-output system in a block diagram. The input 

is u and the output is y to describe physical quantities and their relations. 

 

         u       y 

 

Figure 2.1 Input-Output System  

  

A system is linear if it satisfies the property of superposition, that is, for any couple 

of inputs and outputs y1=f(u1) and y2=f(u2),  the equation 

                      must be satisfied for any couple of scalars a and b. 

 

A system is time-varying, if a system parameters changes with time, 

otherwise it is called a time-invariant system. If a system satisfies linearity property 

and it has at least a time-varying component, it is called a linear time-varying system 

(LTVS), otherwise linear time-invariant system (LTIS). A small class of LTVS is 

called periodically time-varying system, whose components change periodically with 

time. 

 

The relation between the input and the output of a time-varying system can be 

expressed in a variety of ways. This forms “characterization” (representation) of the 

System 
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system. Basically, the input-output relation of a linear time-varying system may be 

expressed as 

1 0 1 0( ) ...... ( ) ( ) ( ) ( ) ...... ( ) ( ) ( ) (2.8)
n m

n mn m

d y dy d u du
a t a t a t y t b t b t b t u t

dt dt dt dt
        

where an(t) and bm(t) are known continuous functions of time. This equation is 

referred to as the fundamental equation of the system [5]. If there are more than one 

input and/or output in the system then, in general, we have more than one high order 

simultaneous differential equations containing multi-input, multi-output variables.  

 

The classical differential equation solution techniques can be applied 

successfully to a small class of systems and corresponding basis functions can be 

found in. This small class contains the systems, which are characterized by the 

following equations: Bessel equations, Weber equations, Hypergeometric equations, 

Airy equations and others [5]. 

 

The equation (2.8) defines a periodically time-varying linear system if the 

coefficients of functions an(t) and bm(t) are periodic with the system’s fundamental 

period T0. For periodically time-varying systems, the periodicity makes it possible to 

apply some special techniques such as Floquet theory and spectral analysis [5]. In  

spectral analysis fundamental differential equation of linear LTV system is expressed 

in terms of algebraic matrix-vector relation by defining operational matrices for 

derivative, integral, and any time-varying component behavior. The system equations 

are transferred to spectral domain. Thus, solution of the system equation can be 

easily obtained by using the matrix operations. The solution is computed in spectral 

domain in term of Fourier coefficients. Then it is carried to the time domain by 

applying inverse Fourier Transform. This method gives the steady-state analysis of 

periodically time-varying system. However the general analysis methods of LTV 

systems are still continuing to investigate.  
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Due to above mentioned difficulties of system representation by a single high 

order differential equation; state-space representation, has been developed. In 

modern system theory, it is preferred and found very convenient methods especially 

for computer simulations to use a set of N first order linear differential equations of 

the form Eq. (2.9) together with the expression Eq. (2.10) for the output.   

( ) ( ) ( ) ( )
dx

A t x t B t u t
dt

        (2.9) 

( ) ( ) ( ) ( ) ( )y t C t x t D t u t        (2.10) 

 

In  these equations x(t)ϵR
n
, x(t)ϵR

n
 , u(t)ϵR

n
, y(t)ϵR

m
 are the state, input and output 

respectively, at time tϵR
n
; A(t), B(t), C(t), D(t) are matrices of order compatible with 

x(t), u(t) and y(t), and their elements are known and they are piece-wise continues 

functions defined on R
+
. It is well known that the state solution of Eq. 

0

0 0( ) ( , ) ( ) ( , ) ( ) ( )

t

t

x t t t x t t B u d            (2.11) 

where 0( , )t t  is called the state transition matrix [3,5]. The 0( , )t t  is the key to the 

solution of  Eq.(2.10). Some solution techniques are given in [3] for different classes 

of linear system equations. The common one is commutative class. State-space 

representation of LTV system can be transformed into time-invariant representation 

through the commutative class by using transformation as, 

( ) ( ) ( )x t T t z t       (2.12) 

 

Here, T(t) is the transformation matrix, which transforms the system 

representation into commutative or even a linear time-invariant system 

representation. 

 

Although, It is concluded in [3], [6] that, the commutative property is not an 

inherent property of a dynamic system, but rather is just a system representation 

property it is difficult to find transformation matrix T(t) Eq. (2.12). Therefore it is not 
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easy to get the solution of system if it is not in commutative class. Spectral analysis 

method [5] can be applied efficiently for this representation, if A(t), B(t), C(t), D(t) 

matrices are periodically time varying. 

 

A LTV system is excited by an impulse function, that is the delta function, 

δ(t) and the system’s  response to the  impulse function is called “impulse  response” 

and denoted as h(t,t0). The system response y(t) to the input u(t) applied at the t=t0 is 

given by the superposition integral  

0

( ) ( , ) ( )

t

t

y t h t u d          (2.13) 

This superposition is expressed as convolution of input-output, that is  

0( ) ( , )* ( )y t h t t u t       (2.14) 

However, a method for analytic expression of h(t,t0) is generally unknown 

and same difficulties mentioned in differential equation are valid for this 

representation. 

 

Frequency domain approach for analysis of LTV is first developed by L.A. 

Zadeh, Zadeh’s approach is essentially an extension of the frequency analysis 

techniques commonly used in LTI systems. He defines a time-variable system 

function H(s,t), for a variable linear network. This function possesses most of the 

fundamental properties of the transfer function of a fixed network. For this reason it 

is conveniently used to interpret the frequency domain behavior of systems and to 

realize the given frequency domain requirements in design problem. Further, once 

H(s,t) has been determined, the response to any given input can be obtained by 

treating H(s,t) as if it were the transfer function of a fixed network. 

 

For a single-input, single-output time-varying linear system, which is 

initially, relaxed, the time-varying system function is defined by the relation 
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( )( , ) ( , ) s tH s t h t e d 


 



       (2.15) 

The response of linear system to any input u(t), t≥t0 ≥ 0, can be derived by 

1
( ) ( , ) ( )

2

sty t H s t U s e ds
j







      (2.16) 

where U(s) is the Laplace transform of u(t) 

 

However, there are similar difficulties to determine H(s,t) involved in solving 

the fundamental equation or the state equations of the system. To overcome some of 

difficulties the system equations transformed to spectral domain to use the spectral 

analysis techniques. The spectral analysis method basically uses Fourier series 

expansion of variables in linear periodically time-varying systems. 

 

Shortly, time-varying system is that the same system in different times and 

for different results. If the input signal u(t) produces an output y(t) then any time 

shifted input, u(t + δ1), results in a time-shifted output y(t + δ2), 

where δ1≠δ2 

 

Consider the nth-order time-linear state-space description 

 

     

  
                       (2.17) 

 

The system matrix A(t) is not constant(A(t) ≠A). It is changing with time. 

 

[

      

  

 
      

  

]  [
              

   
              

] [
     

 
     

]    (2.18) 
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2.4 Commutativity 

 

In mathematics an operation is commutative if changing the order of the 

operands does not change the end result. It is a fundamental property of many binary 

operations, and many mathematical proofs depend on it. The commutativity of 

simple operations, such as multiplication and addition of numbers, was for many 

years implicitly assumed and the property was not named until the 19th century when 

mathematics started to become formalized. By contrast, division and subtraction are 

not commutative. The commutative property (or commutative law) is a property 

associated with binary operations and functions. Similarly, if the commutative 

property holds for a pair of elements under a certain binary operation then it is said 

that the two elements commute under that operation. In group and set theory, many 

algebraic structures are called commutative when certain operands satisfy the 

commutative property. In higher branches of mathematics, such as analysis and 

linear algebra the commutativity of well known operations (such as addition and 

multiplication on real and complex numbers) is often used (or implicitly assumed) in 

proofs.  

 

Records of the implicit use of the commutative property go back to ancient times. 

The Egyptians used the commutative property of multiplication to simplify 

computing products. Euclid is known to have assumed the commutative property of 

multiplication in his book Elements. Formal uses of the commutative property arose 

in the late 18th and early 19th centuries, when mathematicians began to work on a 

theory of functions. Today the commutative property is a well known and basic 

property used in most branches of mathematics. 

 

The first recorded use of the term commutative was in a memoir by François 

Servois in 1814, which used the word commutatives when describing functions that 

have what is now called the commutative property. The word is a combination of the 

French word commuter meaning "to substitute or switch" and the suffix -ative 

meaning "tending to" so the word literally means "tending to substitute or switch." 
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Mathematical Definitions 

 

The term "commutative" is used in several related senses.  

A binary operation ∗ on a set S is said to be commutative if: 

( , ) :x y S x y y x           (2.19) 

An operation that does not satisfy the above property is called noncommutative. 

One says that x commutes with y under ∗ if: 

 ∗    ∗           (2.20) 

A binary function :f A A B   is said to be commutative if: 

( , ) : ( , ) ( , )x y A f x y f y x        (2.21) 

 

Commutative and Noncommutative operantions in Mathmetics 

Two well-known examples of commutative binary operations are:  

The addition of real numbers, which is commutative since 

( , ) :y z R y z z y            (2.22) 

For example 4 + 5 = 5 + 4, since both expressions equal 9 

The multiplication of real numbers, which is commutative since 

( , ) :y z R yz zy          (2.23) 

For example, 3 × 5 = 5 × 3, since both expressions equal 15 

Further examples of commutative binary operations include addition and 

multiplication of complex numbers, addition and scalar multiplication of vectors, 

and intersection and union of sets. 

 

 

http://en.wikipedia.org/wiki/Binary_operation
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Binary_function
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Expression_(mathematics)
http://en.wikipedia.org/wiki/Multiplication
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Scalar_product
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Intersection_(set_theory)
http://en.wikipedia.org/wiki/Union_(set_theory)
http://en.wikipedia.org/wiki/Set_(mathematics)
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Some noncommutative binary operations are: 

Subtraction is noncommutative since 0 1 1 0             (2.24) 

Division is noncommutative since 1/ 2 2 /1     (2.25) 

 

Matrix multiplication is sometimes noncommutative since 

0 2 1 1 0 1 0 1 1 1 0 1
. .

0 1 0 1 0 1 0 1 0 1 0 1

           
             

           
    (2.26) 

The vector product (or cross product) of two vectors in three dimensions is anti-

commutative, i.e.,  

b × a = -(a × b)      (2.27) 

 

Commutativity at Linear Systems 

 

The meaning of that described above as size of large has mean at dynamic 

systems. Linear time-invariant systems and time-varying linear systems is important 

whether or not commutative. The solution of commutative systems is easy. First of 

all we must note that all time-invariant linear systems are commutative. But the 

situation changes for time-varying linear systems. Some of the time-varying linear 

systems are commutative, some of them are not commutative. When two linear time-

varying single input single output dynamical systems A and B are connected in 

cascade (or series), the input-output relation of the combined system depends on the 

parameters of both systems and on which appears first. If both of the connections AB 

and BA have the same input-output pairs irrespective of the applied input, then we 

say that these systems are commutative systems; in this case AB and BA are 

equivalent, i.e., AB=BA.[7] For the solution of noncommutative time varying linear 

systems, noncommutative situation must be transferred to a commutative situation. 

 

http://en.wikipedia.org/wiki/Subtraction
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Cross_product
http://en.wikipedia.org/wiki/Anticommutativity
http://en.wikipedia.org/wiki/Anticommutativity
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For example we have two matrices A1 and A2. If             then 

matrices A1 and A2 are commutative [8]. Always a variable(or matrix) is commute 

with its own function, Txf(T)=f(T)xT. The all time-invariant systems and some time-

varying systems are commutative. The linear time-varying system is said to be a 

commutative linear time-varying system if A(t) commutes with its integral, i.e. 

 

    [∫       
 

  
]  [∫       

 

  
]         (2.28) 

 

It is well known that the commutative class of linear time-varying systems is 

a solvable class and its state transition matrix         can be computed by [3] 

 

           [∫       
 

  
]      (2.29) 
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CHAPTER 3 

SOLVABLE CLASS LTV SYSTEMS 

 

3.1 Introduction 

 

The numerical solution of all kind of differential equation is possible by using 

many different technique under some acceptable deviations. But in some specific 

cases, because of some limit problems, analytical solutions become much more 

important. Depending on the chosen mathematical model analytical solutions are 

some times easy but in general requires some tests of solvability. For n dimensional 

dynamical systems, an eigenvalues of the systems give enough information about 

solvability of the system. Therefore either in n’th order differential equation form or 

n dimensional state space form the characteristic equation plays important role in the 

termination of solvability. 

 

The functions structures of the eigenvalues determines the solvability of the 

system and the system are classified with their eigenvalues. In this chapter we will 

introduce some solvable classes of the systems. For example, we will introduce the 

well-known two broad classes that are solvable. 

3.2. A1 Class 

3.2.1 Formulation 

As it is mention above, one of solvable linear time-varying system is A1 class. 

The eigenvalues of A1 class systems must be constant. In this case it is always 

possible to define any constant nxn matrix A1 which satisfies 
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       (3.1) 

The linear time-varying system considered is governed by 

 

     

  
                                            (3.2) 

 

that the solution of (3.2) is given by 

 

                ∫                 
 

  
           (3.3) 

 

For example, system is 
     

  
          and A(t) has  

     

  
 and if there exists a 

constant matrix A1 that satisfies [3] 

 

              
     

  
         (3.4) 

 

then the system is in A1 class. 

 

Considering nxn matrix A(t), ( ) det( ( ))Af I A t   is a polynomial of degree n of 

the form 

( ) 0I A t          (3.5) 

11 11 1

1

.. 0 ( ) .. ( )

: : : . : 0

0 .. ( ) .. ( )

n

ij

nn n nn

a t a t

a t a t







   
   

 
   
      

    (3.6) 
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11 11 1

1

( ) .. ( )

: . : 0

( ) .. ( )

n

n nn nn

a t a t

a t a t





 



 

     (3.7) 

 

1( ) ( ( )) ...... ( 1) det( ( ))n n n

Af tr A t A t           (3.8) 

 

( )Af   is called the characteristic polynomial of A(t). 

 

For A1 class system, the system matrix must have constant eigenvalues. 

                              (3.9) 

If the system matrix is 

  
11 1

1

( ) .. ( )

A t : . :

( ) .. ( )

n

n nn

a t a t

a t a t

 
 


 
  

      (3.10) 

the eigenvalues are found equating the determinant of  ( )I A t   to zero.  

 

 The transformation matrix 

                     (3.11) 

is used to transform 

     

  
                (3.12) 

 

into 

     

  
  ̅              (3.13) 
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In new state representation, 

 ̅                       
     

  
     (3.14) 

and 

                    (3.15) 

 

3.2.2. Solution 

 

In the section above it has been shown that any time-varying system with 

constant eigenvalues can be transformed into time-invariant form by means of 

transformation matrix T(t). In the new domain the state transition matrix can be 

found as  

 ̅             ̅             (3.16) 

This transition matrix takes the initial condition x(t0) to z(t) at any time t and the 

homogeneous solution may be represented to be 

      ̅                 (3.17) 

 

This solution is the analytical solution of the new state and the state may be 

retransformed into in original spaces as 

                   ̅       
              (3.18) 

 

In this back transformation state and initial values are transformed. 
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3.2.3 Example 

 

Consider the system (3.2) with A(t) being 

2

2

1 cos 1 sin cos
( )

1 sin cos 1 sin

t t t
A t

t t t

 

 

   
  

    
    (3.19) 

where   is constant.[3] 

It can be checked that A(t) in (3.19) belongs to the A1 class because the eigenvalues 

of the system matrix A(t) are 

2

1

2

1

( 2) 4

2

( 2) 4

2

 


 


  


  


      (3.20) 

As shown in (3.20), eigenvalues are constant. One simple constant matrix A1 that 

satisfies (3.4) is 

1

0 1

1 0
A

 
  

 
       (3.21) 

At this point, we have to point out that the solution of 

1 1

( )
( ) ( )

dA t
A A t A t A

dt
        (3.22) 

has many possible A1 and it is logical to chose the one which makes the solution of 

new state easier. The solution of (3.4) for the given example is shown as 

2 2
11 12 11 12

2 2
21 22 21 22

2 2

2 2

1

1 cos 1 sin cos 1 cos 1 sin cos

1 sin cos 1 sin 1 sin cos 1 sin

2 cos sin (cos sin )
(3.23)

(cos sin ) 2 sin cos

0 1

a a a at t t t t t

a a a at t t t t t

t t t t

t t t t

A

   

   

 

 

           
      

             

   
  

  


1 0

 
 
 

 

and related transformation matrix and state space matrix are found as 
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1
cos sin ( 1) 0

sin cos 0 1

A t
t t

T e A
t t

    
      

    
   (3.24)

 

The solution of the system A  becomes 

( 1)

0 0

0
( ) ( ) ( )

0

t

At

t

e
z t e z t z t

e





 
   

 
      (3.25)

 

Hence the transformation of the solution into the system A results as  

( 1)

0( 1)

cos sin
( ) ( )

sin cos

t t

t t

e t e t
x t x t

e t e t





 

 

 
  

 
      (3.26) 

  

3.3. Ah Class 

3.3.1 Formulation 

 

The Ah class is a large group of linear time-varying systems as A1 class. The 

solution of Ah class is similar to the A1 class. The only difference is to find 

transformation matrix. To classify the class of the system if it belongs to Ah class or 

not, the eigenvalues of the system A(t) must be found and checked if they are the 

multiple of some differentiable function or not. Let us this function is h(t) and 
     

  
 

exists. The solution of 

              
     

  

    
 

     

  

     
     (3.27) 

gives us many possible A1 and then the best A1 which makes the solution of the 

system A  easier is chosen. 

 Since the eigenvalues of system A is multiple of function as 

                                     (3.28) 
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and since 

     ∫       
 

  
       (3.29) 

is satisfied then the transformation matrix is written as 

                    (3.30) 

 

3.3.2 Solution 

 

 After the new system 
2

( )
( ) ( )

dz t
A h t z t

dt


 
is formulated where 

2 0 1( )hA A t A         (3.31) 

          
    

    

    
        (3.32) 

 

the solution for system A can be easily performed as 

 

1 01 2

0 0

( )( ) ( )

0

( ) ( ) ( ) ( , ) ( )

( )
A g tA g t A g t

x t T t z t t t x t

e e e x t





 



      (3.33)

 

 

3.3.3 Example 

 

Consider the system with A(t) being 

2

5 2

3 0
( )

3 6

t
A t

t t

 
  

 
       (3.34) 
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The eigenvalues of the system are 2

1 3t    and 2

2 6t   . As it can be seen 

easily both eigenvalues are the multiple of 
2( ) 3h t t  and it means the system 

belongs to Ah class where 

1

1 0

1 1
A

 
  

 
       (3.35) 

satisfies equation (3.27) and the transformation matrix is written as 

3

3 33

0
( )

t

t t

e
T t

t e e



 

 
  
    

     (3.36) 

which transforms the system into time-invariant form and the solution of the system 

is found to be 

3
0

3 3 3
0 0 0

( )

0 0 0
( ) 2( ) ( )3

0

0
( ) ( , ) ( ) ( )

(( ) 1)

t t

t t t t t t

e
x t t t x t x t

t t e e e


 

     

 
   

    

  (3.37) 
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CHAPTER 4 

A NEW SOLVABLE CLASS LTV SYSTEM (HG Class) 

 

4.1 Definition 

 

In this section, we define a new solvable class of linear time-varying systems. 

It is known that A1 class and Ah class are solvable by using suitable transformation 

operation. Noting that the eigenvalues play an important rule on the solution of the 

dynamic system, to find a new set of solvable class equations it must be focused on 

the eigenvalues. In the new solvable class of system presented in this work (HG 

class) is second order time-varying system with eigenvalues in the form of 

1 11 1k kt and t      . Here, k is any integer and therefore eigenvalues are any 

order of t polynomials with conjugates. Some dynamical systems may result with 

these kinds of eigenvalues and it has been shown in this chapter that the 

transformation of the system into time-invariant case is possible. The mathematical 

model of the linear time-varying system are generally given by 

   
( )

A t x t
dx t

dt
           (4.1) 

In this representation A(t) can be put in to the different forms using different 

definition of the state variables in canonic representation but the characteristic 

equation of the system and the eigenvalues remain unchanged. 

 

 Let us consider the eigenvalues of the second order dynamical system are as 

1 1

1 21 1k kt and t                 (4.2) 

As it is obvious, these eigenvalues are neither constant nor multiple of any 

differentiable function, these system does not belong to A1 and Ah class. 
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 The dynamical system represented by these eigenvalues can be represented in 

the state space form as 

1

2 1

( )
( ) ( )

1
( )

( 1)

k

k

dx t
A t x t

dt

t t
x t

t t t







 
  

   

        (4.3) 

In this system the entries of A(t) are the k’th order polynomials or the time t. The 

transformation matrix which transforms the system into the time invariant form is in 

the form of 

1 0
( )

1

kt

kT t e
t

 
  

 
       (4.4) 

The transformation matrix T(t) convert the system A(t) into A  for any k as 

0 1

0 0
A

 
  
 

        (4.5) 

Hence the solution of the new system 

( ) / ( )dz t dt Az t         (4.6) 

becomes 

0

02

0 0

1 ( )
( ) ( )

( ) ( ) 1

kt

k
t t

z t e z t
t t t t

 
  

   
     (4.7) 

 

Applying the invers transformation to that solution including initial conditions, the 

solution of the system is found as 

1

0 0 0( ) ( ) ( , ) ( ) ( )x t T t t t T t x t        (4.8) 

 

 

 



 

28 
 

4.3 Example 

 

Second order TVL mathematical equation is as 

2
2 4

2

( ) ( )
(2 ) ( 1) ( ) ( )

d y t dy t
t t y t f t

dt dt
            (4.9) 

State-space form for homogeneous system is [f(t) = 0] 

1

2

2
1

2 2
2

( ) /
( ) ( )

( ) /

( )1

( )( 1)

dx t dt
A t x t

dx t dt

x tt t

x tt t t

 
 

 

   
    

     

         (4.10) 

 

The eigenvalues of the system are 2 2

1 21 1t and t      As it can be seen 

easily these eigenvalues are not similar to eigenvalues or A1 or eigenvalues of Ah. 

 

 We use the following transformation matrix 

3

3
1 0

( )
1

t

T t e
t

 
  

 
         (4.11) 

and convert a new time-invariant system is 

( )
( )

0 1
( )

0 0

dz t
Az t

dt

z t



 
  
 

          (4.12) 

As it is seen easily A  is 

0 1

0 0
A

 
  
 

       (4.13) 
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 The solution of the new time-invariant system is 

0( )

0( ) ( )
A t t

z t e z t


            (4.14) 

After we find z(t), it must be transformed in original domain with transformation 

matrix T(t) and finally the result is obtained as 

3

1

0 0

0 13
0 02

0 0

( ) ( ) ( ) ( ) ( )

1 ( )
( ) ( )

( ) ( ) 1

t

x t T t z t T t x t

t t
e T t x t

t t t t







 
  

   

       (4.15) 

 

3 3
0 0( )

03 3
02

0 0 0

1 ( ) 1 0
( ) ( )

( ) ( ) 1 1

t t tt t
x t e e x t

t t t t t


   

    
        

 (4.16) 

 

If the initial time is t0=0, then the homogeneous solution becomes 

3

3
2

1
( ) (0)

1

t t
x t e x

t t

 
  

 
     (4.17) 

For excitation u(t), the general solution is 

 

0

0 0( ) ( , ) ( ) ( , ) ( ) ( )

t

t

x t t t x t t B u d            (4.18) 
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CHAPTER 5 

RESULT AND CONCLUSION 

 

 In this thesis, we have defined a new solvable class (HG class) of linearly 

time varying system. Unlikely to time-invariant system, unfortunately not all time 

varying systems are solvable. To classify the systems as solvable or not the basic 

parameter is the characteristic equation and hence the eigenvalues. The mathematical 

model of the dynamical system may be in differential equation form of state space 

form. In other cases the characteristics equations and eigenvalues are same. In the 

literature the possible transformation technics and solution methods are presented for 

the systems with constant eigenvalues and some specific functional eigenvalues. Our 

main purpose in this work is to extend the solvable class dynamic systems and to 

classify a new group of differential equations which are analytical solvable. Since all 

dynamical problems can be modeled as the second order system or the multiple of 

second order system. Although it is possible to model the dynamical system in 

different state space forms using different realization technics, here we have 

preferred the canonical form. So, the transformation matrix which transforms time 

varying systems into time-invariant case is constructed in methodical form and the 

transformed system is easily solvable.  The solvable classes are well defined but it is 

not known that the system the solvable or not if it does not belong to solvable class. 

Therefore the works on the determination on solvability of some systems are still the 

work of future. 
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