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ABSTRACT

MESHFREE METHODS FOR 2D ELASTO-PLASTIC LARGE
DEFORMATION PROBLEMS

BOZKURT O. Yavuz
Ph.D. in Mechanical Eng.
Supervisor: Assoc. Prof. Dr. Bahattin KANBER
Jan 2011, 172 pages

In this work, PIM and RPIM are used in the solution of 2D geometrical
nonlinear and elasto-plastic problems. The effect of shape parameters are
investigated in the solutions. The optimum values of shape parameters are either
validated or proposed.

The singular moment matrix problem in the PIM is discussed in detail and
two new algorithms are proposed: A diagonal offset algorithm and Regular based
algorithm. They are numerically tested and applied in the solution of 2D elastic
problems. The regular basis algorithm gives excellent results with regular distributed
field nodes.

A number of programs are developed for the solution of 2D geometrically
nonlinear and elasto-plastic problems. Mathematica, Fortran 95 and Matlab are used
in the programming stages. The PIM and RPIM shape function are successfully

implemented in these programs.

Keywords: Meshfree Methods, PIM, RPIM, Radial basis functions, Polynomial
basis functions, Moment matrix, Geometrically nonlinear problems, Elasto-plastic
problems.



OZET

2B BUYUK DEFORMASYON PROBLEMLERI iCiN AGSIZ YONTEMLER

BOZKURT O. Yavuz
Doktora Tezi, Mak Miih. Bolimii
Tez Yoneticisi: Dog. Dr. Bahattin KANBER
Ocak 2011, 172 sayfa

Bu calismada PIM ve RPIM 2B geometrik nonlineer ve elasto-plastik
problemlerin ¢oziimiinde kullanilmistir. Sekil parametrelerinin  ¢oziimde etkisi
arastirilmistir. Sekil parameterelerinin optimum degerlerinin dogrulanmasi veya

Onerilmesi gerceklestirilmistir.

PIM’deki moment matris problemi detayli olarak tartigilmis ve iki yeni
algoritma Onerilmistir: Kdsegen Oteleme algoritmasi ve Diizgiin taban algoritmasi.
Algoritmalar numeric olarak test edilmis ve 2B lineer elastic problemlere
uygulanmistir. Diizgilin taban algoritmasi diizglin dagitilmis diiglim noktalar1 ile

miikemmel sonu¢ vermektedir.

2B geometric nonlineer ve elasto-plastik problemler icin programlar
yailmistir. Mathematica, Fortran 95 ve Matlab programlama asamasinda
kullanilmigtir.  PIM  ve RPIM sekil fonksiyonlar1 gelistirilen programlarda

uygulanmistir.

Keywords: Agsiz Yontemler, PIM, RPIM, Radyal temel fonksiyonu, Polinom temel
fonksiyonu, Moment matris, Geometrik nonlineer problemler, Elasto-plastik
problemler.
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CHAPTER 1
INTRODUCTION
1.1 General Introduction

The usage of numerical methods for the solution of a variety of problems
encountered in engineering makes the numerical methods an important tool for
engineering analysis and designs. The numerical methods become more effective and
more powerful by proposing new algorithms. Meshfree methods are the particular
class of numerical simulation techniques and developed to improve efficiency of
engineering analysis by eliminating short-comings in the popular numerical methods
such as finite element method (FEM), boundary element method (BEM) and finite
difference method (FDM).

The FEM and BEM are robust numerical methods. FEM is well established.
However, BEM still includes some problems such as singularity near to the
boundary. The mesh requirement, such as predefined element in FEM, BEM and
predefined grid in FDM, is common short-coming points of them. This causes the
following limitations [1]:

- An analyst spends most of his/her time to the creation of proper mesh
using predefined elements.

- The discontinuities of stress at the element interfaces are encountered.

- Distortion in elements causes accuracy loss.

- Crack growth and element boundary must coincide with each other to
eliminate discontinuity.

- Remeshing of the regions that have high stresses like crack tips, contact
points etc., is a difficult task and very complex mesh generation algorithm

is required to update predefined elements.

The Meshfree methods are proposed to eliminate predefined mesh
requirement which causes the above limitations. In Meshfree methods, a set of
scattered nodes is used to define the domain and its boundary without forming a
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predefined mesh. The field variables are interpolated according to the position of the
scattered nodes without using any element either using moving least square (MLS)
shape functions or point interpolation shape functions. Elimination of the mesh
requirement solves the problems mentioned above. The developing stage of meshfree
methods is very new and still continuing. Some issues, such as stability, accuracy,

convergency and efficiency, must be solved to get more useful methods.

1.2 Research Objectives and Tasks

In this study, the main objective is the investigation of meshfree methods to
analyze elasto-plastic problems using Meshfree methods and proposing an improved

or new Meshfree method. The research tasks can be summarized as follows,

l. Reviewing the Meshfree methods in the literature.

. Obtaining the Meshfree shape functions.

1. Implementing the Meshfree shape functions to Meshfree methods.

IV.  Using Meshfree methods for the solution of 2D linear elastic
problems.

V. Using Meshfree methods for the solution of 2D geometrically

nonlinear problems.

VI.  Using Meshfree methods for the solution of 2D elasto-plastic
problems.

VII.  Proposing new algorithms for Meshfree methods.

VIII.  Writing a general Meshfree method program to solve 2D elastic, 2D

geometrically non-linear and elasto-plastic problems.

1.3 Layout of Thesis

A literature review about Meshfree methods, implementation of Meshfree methods in
geometrically nonlinear problems and elasto-plastic problems has been summarized

in chapter two.

The Point Interpolation Method (PIM) is reviewed in chapter three. It starts with a
brief description of PIM procedure and explanation of some basic terms used in it.
Chapter three continues with construction of polynomial PIM and radial PIM (RPIM)
shape functions. PIM formulation for 2D linear elastic problems are defined. Some

2D linear elastic case studies are presented.
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Geometrically nonlinear analysis of 2D solids using RPIM is treated in chapter four.

The solution procedure used is briefly described. Some case studies are presented.

Elasto-plastic analysis of 2D solids using radial RPIM is studied in chapter five.
Some 2D elasto-plastic problems are solved and compared with FEM.

Chapter six is devoted to eliminate the singularity of the moment matrix in
polynomial PIM. To do this, a diagonal offset algorithm is proposed and several

patch tests are performed.

Chapter seven deals with the selection of polynomial terms for polynomial PIM. A
regular basis algorithm for the polynomial PIM is proposed and it is tested.



CHAPTER 2
LITERATURE REVIEW
2.1 Introduction

There are lots of Meshfree methods can be found in the literature. The
Smoothed Particle Hydrodynamics (SPH) method [3-6], the Diffuse Element Method
(DEM) [7,8], the Element Free Galerkin (EFG) method [9-62], the Meshless Local
Petrov-Galerkin (MLPG) method [63-85] and the Point Interpolation Method (PIM)
[86-] are some of the proposed Meshfree methods.

The short review of the SPH method, DEM, EFG method and MLPG method
are given in Section 2.2. The detailed literature review of PIM which is used during

the study is represented in Section 2.3.

2.2 General Review of Some Meshfree Methods
2.2.1 Smoothed Particle Hydrodynamics Method

SPH method was developed by Lucy [3] and Gingold and Monaghan [4].
They used it to model astrophysical problems. In this method, the state of a system is
represented by a set of moving particles and the governing partial differential
equations are transformed into selected finite integral form [1,5]. The moving
particles are used for interpolation though nodes. Since the proposition of method,
many studies have been done to improve the consistency and accuracy of the method
[5]. Application of method has been extended from astrophysical problems to wide
range of engineering problems such as computational fluid dynamics, heat
conduction, molecular dynamics, simulation of finite deformations, fracture, and
crack growth [1,5,6].

2.2.2 Diffuse Element Method

DEM is the first Meshfree method based on global weak form [5]. It was
proposed by Nayroles et al. [7]. The aim of the method is to eliminate discontinuity

problem found in some derivatives of approximate solution and mesh generation. In



order to accomplish this, an element and its shape functions in FEM is replaced by
local domains and the Moving Least Square (MLS) shape functions defined for local

domains [8].

2.2.3 Element Free Galerkin Method

EFG method is a meshfree method which was proposed by Belytschko et al.
[9]. In this method, the moving least square (MLS) shape functions are used for the
interpolations. The problem domain and its boundary are represented by arbitrary
distributed nodes. The MLS shape functions are obtained using the nodes in a local
domain which is generally called as support domain or influence domain. Some
predefined background cells must be defined for the integrations of Galerkin weak

form integrals.

Belytschko et al. show that EFG method converges more rapidly than the
FEM and the irregular distribution of nodes does not affect the accuracy of the
solution. However, MLS shape functions lack Kronecker delta function property and
Lagrange multipliers are used to enforce the essential boundary condition [9,10]. The
use of Lagrange multipliers increases the cost of solving the linear algebraic
equations. Therefore, a method has been developed to overcome this problem based
on a modified variational principle [11]. It was shown that the speed of the
computations in EFG method can be increased by smoothing the interpolants [12].
The shortcomings through the use of a set of MLS interpolants can also be alleviated
by redefining the discrete norm [13], employing singular weight functions [14],
modifying the collocation method using the actual nodal values of the trial function

[15] and using the moving kriging (MK) interpolation [16].

EFG method also complicates the application of point loads because of the
character of MLS. However, the concentrated forces should be transformed into
distributed forces by a Dirac function. After such a transformation, the contribution
of concentrated forces to the discrete equations can be evaluated in a way similar to
the calculation of distributed load's contribution [17].

Volumetric locking is a problem which is appeared when the Poisson’s ratio
approaches the incompressibility limit 0.5. Volumetric locking causes some

numerical problems and to solve these problems different EFG formulations have



been proposed [18-20]. It was shown that the problem can be avoided by considering

appropriate nodal arrangements and integration cells.

EFG method does not require predefined meshes and converges rapidly.
Therefore, the method has been used in the solution of many problems. It has been
used for the solution of 2D and 3D fracture mechanics and crack propagation
problems [21-29], the linear and nonlinear analysis of plates and shells [30-38],

thermal and vibration analysis of composite structures [39-41].

To improve the efficiency and to use the advantages of different methods in
the solutions of a specific problem, EFG method has been coupled with other
numerical methods such as FEM, BEM and PIM [42-47]. The method has been also
used for the elasto-plastic analysis of structures [48-50], the shape sensitivity

analysis and shape optimization [51,52] and the analysis of porous solids [53,54].

Because of element free property of the method, it is very suitable for
adaptive analyses. Therefore it is applied to error estimation and adaptive refinement
problems [55-59]. It has been also applied to the heat transfer analysis of composite
slabs [60], the structures with cyclic symmetry [61] and the structures with multi-
scale geometries [62].

2.2.4 Meshless Local Petrov-Galerkin Method

Because of the global weak forms, EFG method and PIM requires
background cells for the integration of Galerkin weak form integrals. Therefore,
these methods are not accepted as truly Meshfree method [63]. In order to carry the
numerical integration on a local domain, the weak forms should be defined on a local
domain. In case of it, the dependency to global background integration cells is also
eliminated. Therefore, the method can be called truly meshless method. To avoid the
use of global background integration cells, a meshless local Petrov-Galerkin method
(MLPG) was proposed by Atluri and Zhu [63]. In the MLPG method, the integration
is carried on a local quadrature domain defined for a node. As in the EFG method,
the MLS interpolation shape functions are used for the approximation of field

variables.

The different versions of the MLPG method have been proposed and their
performances have been investigated for the solution of 2D elasto-static and potential
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problems [64-72]. The method has been also used for the analysis of thin and thick
beams and plates under different boundary conditions [73-78]. It has been shown that
the method is very effective in the solution of heat transfer and fluid mechanic
problems [79-81].

The MLPG method has been also applied in the solution of free and forced
vibration of solids [82], 2D frictionless dynamic contacts of large deformable bodies
[83], semi-linear second-order hyperbolic problems [84] and the materials with

strain-gradient effects [85].

The MLPG method is accepted as truly meshless method. However, it is
computationally more expensive because of nodal numerical integrations and

solution of asymmetric stiffness matrix [1,2].

2.3 Detailed Review of Point Interpolation Method

In spite of the successful applications, meshless methods based on MLS have
two major gaps in applications [86-88]. First one is the difficulties in the
implementation of essential boundary conditions. The lack of Kronecker delta
function properties for its shape functions cause this problem. Complexity of
algorithms for the computations of shape functions and their derivatives is the second
one. This increases the computational cost. Several approaches have been proposed

to improve these points [89-92]. However, they cannot provide a full solution.

The solution to these gaps comes from another meshfree method named as
Point Interpolation Method (PIM). It was proposed by Liu and Gu [93,94]. The field
variables are interpolated using point interpolation shape functions. PIM shape
functions are formed from polynomials. The polynomials are selected symmetrically
from Pascal’s triangle [94]. This makes the computation algorithm simple and
straightforward for the shape function and its derivatives [95]. In contrast to MLS
shape functions, point interpolation shape functions posses the Kronecker delta
function property and they do not require an extra algorithm to compute nodal values
of field variables. Also, the accuracy of PIM is higher than MLS approximation,
especially for regular node distributions [95]. However, PIM is not perfect and it has
its own weakness. The main problem in the polynomial PIM is the singularity of the

moment matrix. Some algorithms are developed to overcome this problem.



Arbitrary scattered nodes in a local domain is one of the reasons of the
singularity of moment matrix in some situations [1,94,95]. To eliminate this,
changing the location of nodes in a local domain by a small amount [1,94] or the
coordinate transformation in a local domain [1] can be used. However these cannot

be guaranteed to eliminate singularity of moment matrix [1,95].

Improper selection of monomials in the basis is the another reason of the
singularity [95]. To solve this, Matrix Triangularization Algorithm (MTA) was
proposed by Liu and Gu [95]. In MTA, the nodes and the monomials, which cause
the singularity in the moment matrix, are determined and are excluded from the
influence domain, and monomials are excluded from moment matrix. PIM with the
MTA is very effective in constructing Meshfree shape functions. It seems that MTA
try to guarantee the proper construction of local domains and the proper selection of
monomials. However, it may be numerically unstable especially for the larger

influence domains [95].

Using the radial functions as the basis is also a solution of the singularity
problem [1,86,87,96]. PIM based on radial basis functions (RBF) was developed by
Wang and Liu [97]. RPIM shape functions also posses delta function property and
computations of shape functions and their derivatives are simpler than MLS. To
guarantee the solution of singularity problem, the polynomials are augmented to RBF
[87,95,97]. The use of RBF solves the singularity, but it has some drawbacks. The
accuracy of radial basis PIM is less than the polynomial basis PIM especially for
regular node distributions [87,95]. The determination of shape parameters used in
RPIM shape functions are required for the accuracy solution [1,95,98]. The
computational efficiency is extremely reduced when the radial functions are used as
the basis [86,87,96,99-101].

A simple and efficient algorithm to obtain an invertible moment matrix was
proposed by Kanber and Bozkurt [102]. The idea behind the proposed method comes
from changing the coordinates of a node in a local domain. Changing the value of
coordinates of a node causes the change in the relevant row of the moment matrix.
For example, if the coordinate of the n™ node in a local domain is changed, it results
a change in the n™ row of the moment matrix. In spite of changing the moment

matrix fully, change of the elements (except the first element) in the diagonal line of



the moment matrix is tried to avoid the singularity. It results a simple and effective
algorithm. Compared to other singularity elimination methods, it does not add any

extra calculations.

PIMs can be based on the Galerkin weak form [94]. This requires background
cells for the integration. PIMs can be based on local Petrov-Galerkin weak forms
[103-108]. These are truly Meshfree methods. PIMs can be used with boundary
integration equation (BIE) [109].

The easy implementation and high accuracy give wide range application areas
to polynomial PIM. It has been used for 2D and 3D elasticity problems [109-116],
beam and shells [103,117], thermoelastic problems [118], piezoelectric structures
[119] and microelectromechanical systems [120]. It can also be coupled with other

numerical methods [121].

Stability and flexibility of the radial PIM is higher than polynomial PIM.
Therefore, it is used in the solution of many structural problem solutions. It has been
used for 2D and 3D solid mechanics problems [122,123], smart materials [124],
beam, plates and shells [103,125-130], contact problems [131] and metal forming
simulations [132]. It is used in the vibration analysis of 2D solids and shells
[107,133], analysis of shell problems [134], geometrically nonlinear analysis of

plates and cylindrical shells [135].

As mentioned before, the radial basis functions include some shape
parameters which directly affect the shape function quality and solution accuracy.
The effect of these parameters for the solution of solid mechanics problems were
studied by Wang and Liu [86,136] and Liu et al. [122]. And the optimum range of
values for g and «., dimensionless shape parameters of multi-quadrics (MQ) type
RBF, were proposed in this studies. Although, traditional values of q are -0.5 and
0.5, its optimum value is used as g=1.03 in many studies [86, 106,107,122,128,133,
135,136]. Other values of g=0.999 [137] and gq=1.05 [131] are very near to 1.03. The
common result of many studies is that g cannot be an exact number, because it

causes a non-invertible moment matrix [86,122,136].

o is an another dimensionless shape parameter and generally used as greater

than 3 for most of the problems [2,122,130 ]. .= 3.5 and «.= 4.0 are proposed as
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it’s optimum values [122,130]. In addition, it is shown that when the polynomial
terms are increased in the usual MQ basis functions, the effect of «_. on the shape

function quality is reduced [130].

2.4 Meshfree Methods in the Solution of Geometric Nonlinear and Elasto-plastic
Problems

The finite element method (FEM) is a powerful technique and is widely used
for the solution of a variety of problems encountered in engineering and science.
However, the FEM has some defects such as low accuracy at large deformation
problems and the discontinuity of stresses at the element boundaries. The source of
these weaknesses comes from the mesh structure of the FEM which uses element
based shape functions. Meshfree methods are used to eliminate such problems.
Therefore, in this section, some Meshfree techniques for the solution of

geometrically nonlinear and elastoplastic problems are reviewed.

Kargamovin et al. [138] used the EFG method to elasto-plastic stress analysis
and applied for a crack problem. An enriched meshless method for fracture analysis
of 2D nonlinear elastic solids under mode-I loading was proposed by Rao and
Rahman [139]. The method comprises from an EFG method which enriched with
two new basis functions. Xu and Saigal [140,141] developed an EFG based
formulation for steady dynamic crack growth and quasi-static dynamic crack growth.
Crack growth was simulated using small scale yielding condition in this formulation.
EFG method was extended to elasto-plastic analysis of isotropic plates by Belinha
and Dinis [142]. Liu et al. [143] proposed an EFG-FE coupling method with linear
mathematical programming to solve elasto-plastic contact problems. Liu et al [144]
employed an adaptive FE-EFG coupling method to simulate bulk metal forming
process. It was examined with forging and extrusion examples. Barry and Saigal
[145] applied EFG method to 3D elasto-plastic problems.

Guo et al. [146] implemented a rigid-plastic point collocation method to
metal forming problem. Liu et al. [147] employed the Reproducing Kernel Particle
Method (RKPM) to solve large deformation problems for structural dynamics. Chen
et al. [148] used a Lagrangian RPKM for metal forming analysis. The large plastic
deformations can be handled easily by the proposed method. The RKPM were used
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in plane strain forging problem [149] and bulk forming problems [150]. The RPKM

was also used for analysis of nonlinear hyperelasticity [151,152].

A point interpolation meshfree method for solving in elastic problems based
Hencky’s deformation theory was proposed by Dai et al. [153]. Wang et al. [154]
developed parallel point interpolation method for simulation of 3D large deformation
metal forming analysis. It is based on Galerkin weak form and shape functions uses
radial basis functions. The large deformation analysis of elastic and elasto-plastic 3D
beams based on the Natural Neighbour RPIM (NNRPIM) was proposed by Dinish et
al. [155]. The NNRPIM is an improved version of RPIM.

2.5 Conclusions on Literature Survey

The following conclusions were obtained from the literature reviews;

1. The PIM has singularity problem and there isn’t an algorithm that fully solve
this problem. The complexities of the proposed algorithms in the literature
were another problem of the PIM. Also, it is seen that there is a gap for the
selection of polynomial terms. The solution of singularity problem and the
definition of a rule for the selection of polynomial terms may improve the
PIM.

2. The RPIM is robust and stable. The optimum values for the solution of 2D
and 3D elastic problems, plates, shells, smart materials and beams are already
proposed in the literature. However, the effects of RPIM shape parameters for
both geometrically nonlinear and elasto-plastic problems have not been

investigated.
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CHAPTER 3
POINT INTERPOLATION METHOD
3.1 Introduction

The Point Interpolation Method (PIM) is a Meshfree method. In the PIM, a
set of arbitrarily distributed points is used to represent the problem domain and shape
functions are constructed by using local groups of the arbitrarily distributed points.
The shape functions of PIM have Kronecker delta function property which allows
simple application of essential and natural boundary conditions [1]. In the literature,
two common basis function forms, polynomial basis functions (PBF) and radial basis

functions (RBF), are developed so far to form PIM shape functions.

In this chapter, application procedure of Meshfree methods in solid
mechanics are briefly explained in section 3.2. The construction of shape functions
using polynomial basis functions are detailed in section 3.3.1, and using radial basis
functions are described in section 3.3.2. Some case studies are solved using

polynomial PIM and radial PIM in section 3.4.

3.2 A Brief Review of Application Procedure for Meshfree methods

The application procedure of Meshfree methods can be summarized in four
steps. These are domain representation, field interpolation, formulation of system
equations and solution for field variables. In the first step, a set of nodes is used to
represent the problem domain and its boundary. This does not mean domain is
discreatized and there is not any relation found between the nodes. After the domain
respresentation, shape functions are constructed to compute field variables at any
point in the problem domain. Construction of Meshfree shape functions are done in a
local domain and using the nodes of that local domain. Shape functions and the
number of nodes used in the formation of them are not known before they are
constructed. These are opposed to FEM in which the shape functions and the number
of nodes used is not predefined. The system equations are formulated in the third

step. The equations of a Meshfree method can be formulated by a strong form system
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equation or a weak form system equation for a local domain. The system equations
of local domains are then combined to obtain global system equations for entire
problem domain. The procedures of forming system equations are slightly different
for different Meshfree methods. Last step comprises from the solution of global
system equations for field variables. Any equation solver according to the problem

type can be used.

3.3 Basic Definitions for Meshfree Methods

In the application procedure of Meshfree methods, one always encounter a
term named as local domain and a term called as background cell is sometimes

experienced. The description of these terms is given in below sections.

3.3.1 Local Domains (Support and Influence Domains)

In FEM and BEM, the field variable is approximated in an element. The
shape functions of elements are constructed before the usage of elements, and the
number of nodes in an element is predetermined. However, in Meshfree methods, the
field variable is interpolated using local domains and shape functions are constructed
after the determination of local domains. Local domain construction does not contain

any preliminary information about the number of nodes of the local domain.

Two types of local domains have been used to construct shape functions in
Meshfree methods: Support domain and Influence domain. Support domain and
Influence domain are often used for the same meaning. Support domain defines a
selected area for the Meshfree interpolation of a point of interest. Also, it indicates
the number of nodes that supported the approximation of field variable at the point of
interest. Influence domain is an area that represents the area of the influence of the
node. The influence domain works better than the support domain for irregularly
distributed nodes [1].

The centre of a support domain can be a sampling point or a field node and usually a
Gauss sampling point is used. However, the centre of an influence domain must be a

field node. The illustration of support domain and influence are shown in Figure 3.1.
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3.3.2 Background Cells

To perform the numerical integrations in a Galerkin weak form formulation used
Meshfree method, global problem domain is discretized into cells. These cells are
called background cells and they can be rectangular or triangular for a two-
dimensional domain. The background cells can be appeared as a mesh, but they
aren’t. In FEM, the mesh is used for both field approximation and integration,
however, in the Meshfree methods, the background cells are used only for integration
during the calculation of stiffness matrix. The background cells can be depicted as in
Figure 3.1.

The support
domains of
sampling
points x,

Field nodes

Background cells
for quadrature

--—\-r---

Xn

X : quadrature point
o : field node

a) Support Domain; the centre is a quadrature point.

The
influence
domains of
the field
nodes

Field nodes

Background cells
for quadrature

X : quadrature point
o : field node

b) Influence Domain; the centre is a field node.

Figure 3.1 Illustration of background cells for integrations, support domain and
influence domain.
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3.4. Point Interpolation Method (PIM) Shape Functions
3.4.1 Polynomial Point Interpolation Shape Functions

The polynomial PIM approximates the displacement components using the
nodes of local surrounding domain, support domain or influence domain, of the point

of interest. This approximation is expressed as follows;

u(x, %) = ) pi®ai(xg) = PTA(xe) (3.1)

where n is the number of nodes in the local surrounding domain of point of interest,
Xo, pi(X) is the polynomial basis functions defined in the Cartesian coordinates and

a;(xo) is the coefficient for the polynomial basis function p;(x) of the point x,,.

The polynomial basis functions are constructed from Pascal’s triangle by

selecting the terms symmetrically as shown in Figure 3.2.

1 | 1
_____________ P ———— .

EDEHCD

Figure 3.2 The Pascal’s Triangle

For one-dimensional domain, the polynomial basis functions have the

following general form:

pT(x) = {1,x,x% x3, x4 .......x"} (3.2)

and the general form of polynomial basis functions in two-dimensional domain is

expressed as;

pTx) ={1,x,y,xy,x%,y% ......x™, y"} (3.3)
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In a local surrounding domain Equation 3.1 must be satisfied for all nodes and this
condition is defined as

m

U = Z a;ip(X1) = a; + azx; + azy; + -+ AP (Xq1)

i=1
m

Up = Z aip(Xz2) = a; + axx; + azy, + -+ + ampp (X2)
i=1

m (3.4)

Uz = Z a;p(X3) = a; + azxz + azys + - + ampm(X3)
i=1

m

ty = ) ap(Xn) = @y + Q¥ + By + -+ QP (%)
i=1

where p,,(x;) is the nodal value of last basis function term for node i, m is the

number of trems of basis function. Equation (3.4) can be written in the following

matrix form:
where
Uq
Uy
Us = : (3.6)
um

is the nodal displacement vector of local domain,

a,
a,
a=| . (3.7)
am
is the coefficients vector, and
1 x y x1  pm(Xy)
1 x y, x5, - Pm(X2)
PQ = 1 X:3 :)].3 x3.:y3 -... pm(x3) (3.8)
1 Xn Yn XVn 7 (X))

is the moment matrix of local domain. The number of nodes in a local surrounding
domain, n, always equals to the number of terms of basis functions, m, in

polynomial PIM.
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The solution of Equation 3.5 for coefficients, a, gives

a=P, 'Us (3.9)

The coefficients, a, are constants for the nodes of same local domain groups.

Substitution of Equation 3.9 into Equation 3.1. yields

ux) = ®(x)Ug (3.10)
where @ (x) is the matrix of shape functions and is defined by [1]
D(x) = p" ()P " = [1(X), P2 (%), p3(x), ..., P (X)] (3.11)
3.4.2 Radial Point Interpolation Shape Functions

The radial basis function with polynomial terms approximates field variable
using the nodes of local surrounding domain of the point x,. This approximation can

be expressed as [1]

ul(x,x,) = Z R,(X)a; + Z p;(x)b; = R"(x)a + p’ (x)b (3.12)
i=1 =1

where n is the number of nodes in the local surrounding domain of point x, , a; is
the coefficient for the radial basis R;(x), m is the number of polynomial basis

functions and b; is the coefficient for the polynomial basis function p; (x).

The distance between the point of interest x, and a node at x; is the variable

of the radial basis function R;(x).

r=./(xq — x)* + (¥ — ¥;)? for 2-D problems (3.13)

There are different types of radial basis functions. The two most often used
forms and their dimensionless parameters are listed in Table 1.

Name Equation Shape Parameters
1 Multi-quadrics Ri(x,y) = (r? + (. d.)*)? ., q

. _ Tiv2
2 Gaussian R,(x,y) = e “ @’ Ly

Table 1: Radial basis functions and their dimensionless shape parameters.

Enforcement of Equation 3.12 for all nodes within the local domain allows

determining the coefficients a; and b;. It can be written in matrix form
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where Uy is the nodal displacement vector of local domain,

Uq
U

=1 (3.15)
luj

R, is the moment matrix of radial basis functions,

Ri(r) Ry(r1) -+ Ru(ry)
R, = R1(:7”2) Rz(:rz) Rngrz) (3.16)
Rl (rn) RZ (Tl) Rn(rn)

P,,, is the polynomial moment matrix,

xl x2 cee xn
Pr.=| »n Y2 " I (3.17)
Pm (xl) Pm (Xz) “* Pm (xn)

a is the coefficients vector of radial basis functions,

al ={a, @ - @) (3.18)

b is the coefficients vector of polynomial.

T={by by - bp} (3.19)

However, there are n 4+ m variables in Equation 3.14. The additional m

equations can be added using the following m constraint conditions.

ij(xi)ai =P a=0 j=12,..,m (3.20)

Combining Equations 3.14 and 3.20 yields the following set of equations in the

matrix form

US=[U5] [RQ Pl ~ Ga, (3.21)

where
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ag={a; a; - an by by - by} (3.22)
Ug={w u,  u, 0 0 - 0} (3.23)

Because the matrix R is symmetric, the matrix G will also be symmetric. Solving

Equation 3.21, we obtain

ao={} = G7'T; (3.24)

Equation 3.12 can be re-written as

u"(x) =R"(a +p"Mb = {R"(x) p’(}{}} (3.25)

Using Equation 3.24 we can obtain

") = RT® p"®IG'Ts (3.26)

where the RPIM shape functions can be expressed as [2]

T ={R"(x) p'IG™ (3.27)
Finally, the RPIM shape functions corresponding to the nodal displacements vector
®(x) can be obtained considering the n-terms of shape functions.
3.5. Implementation of PIM Shape Functions to 2D Linear Elastic Problems

A two-dimensional linear solid mechanics problem defined in domain Q and
bounded by T is considered for the formulation of PIM. The equilibrium, strain-
displacement and constitutive equations can be used to describe the problem and they

can be given as

LTo + f,, = 0 Equilibrium equation in problem domain Q (3.28)
o -n =t Natural boundary condition on I} (3.29)
u =u Essential boundary condition on I}, (3.30)

where L is the differential operator and is given by
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-0
ax
2
L=10 (3.31)
a 0
9y ox.

T ={0xx Oyy Txy}is the stress vector, u’ = {u v} is the displacement vector,
be = {bx by} is the body force vector, t is the prescribed traction on the natural
boundaries, u is the prescribed displacement on the essential boundaries, and n is the

vector of unit outward normal at a point on the boundary.

The variational form of the equilibrium equation is expressed as [1]
J.(LcSu)T(DLu)dQ - fSqubdQ - fSqudF =0 (3.32)
Q Q

where D is the material matrix. Equation 3.32 is defined for the global problem
domain, Q, so that it requires the background cells to evaluate integrals [1]. The point

loads are defined in the traction force.

It should be remembered that the problem domain is represented by arbitrarily
distributed nodes in the PIM, and the nodes are used for approximation of field
variables by means of shape functions. The displacements at any point of interest can
be approximated using the nodes of local surrounding domain of the point and it may

be expressed as the follows [1];

Uug
v

oo o_uy_[d1 O - 0] )71 _

u(le)—{v}—[o b, - 0 ¢ u:n —¢(2x2n)u(2n><1) (3.33)
vn

where n is the number of nodes in the local surrounding domain, and u is the
displacement vector of nodes of local surrounding domain. Equation 3.33 can also be

expressed as

Uty = zn: 0 ¢l] z d;u; (3.34)
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where ®; is the matrix of shape functions of node i, u;is the nodal displacements and

u” is the approximated displacement of a point of interest. From Equation 3.34, we

can obtain
n
ou = P5on)0Unx1) = z P;6u; (3.35)
i
The approximated displacements are used to obtain strains.
€3x1) = Lu® = L3x2n) Pexzn)Ueznx1)
_a -
ox U
o [ O - ¢ 077
ay 0 ¢1 0 ¢n Un
o 0 vy
[dy Ox]
b, 0%
Ox " ox Up (3.36)
d 0 U1
o o %)
dy Wy | |u,
a¢1 a¢1 a¢n a¢n Un
[ dy ox T 9y 0x |
= Bsx2n)Uznx1)

n
= Z Biul-
i

where B is a matrix that includes the derivatives of the shape functions of the local
surrounding domain. B; is the matrix that includes the derivatives of shape functions

of node i. Using this, L6u™ can be expressed as

Léu" = L3x2) P 2x2n)0W(2nx1)

= B(sx2n)0U2nx1)

i (3.37)
= Z(Bi)(axz) (8u) 2x1)

Using the constitutive equations for the material at the point, the stress vector can be

expressed as
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6 = D& = D (343)B(3x2n)U(2nx1)

n
3.38
= Z D (3x3)(Bi) 3x2) (W) (2x1) ( )
i

After the substitution of Equations (3.36) and (3.37) into the first term of Equation
(3.32), we have

n

T/ n
j (L6w)T(DLu)dQ = f (Z Bl-c?ul-) ZDB,-u,- do
Q Q i j
n n
= j > sul[B,"DBJu;do
Q i

Up to the present, the index i and j are used only for the nodes of a local surrounding

(3.39)

domain. After this stage, they are changed from local surrounding domain to global
problem domain. Therefore, both i and j in Equation (3.39) can now vary from 1 to
N. N is the total number of nodes in the problem domain. With this modification, the
integral in Equation 3.39 works only if nodes i and j are in the same local domain.

Equation 3.39 can rewritten as

N N
f (L) (DLu)dQ = f Z Z su’[B,"DB;|u;dQ (3.40)
Q Q i

The integration is taken inside of the summations to arrive at

N N
f (Lsu)T(DLu)dQ = z Z sul( f B,"DB; dQ)u; (3.41)
Q iJ Q

Kij

where K;; is the nodal stiffness matrix. Itis a 2 X 2 matrix, and is defined as

K, = f (BT 55 D3 (B, )32 42 (342)
Q

Note that when node i and node j are not in the same local domain of the same

quadrature point of integration, K;; vanishes.

To obtain numerically the nodal stiffness matrix, Gauss quadrature method is used.
Gauss quadrature method is used in the same form as used in FEM, but this time
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integrations are performed over the background cells not over the elements. The

nodal stiffness matrix can be obtained using the Gauss quadrature method as follows

[1]:

ne Ng ne Mg
Ky = ) > wiBI(xo)DB;(xo)IEl = )" > K (3.43)
kE 1=1 k 1=1

where n is the number of background cells, n, is the number of gauss points used in
the background cell, w; is the gauss weighting factor for the Ith gauss point at x,,
JP. is the Jacobian matrix for the area integration of the background cell k, at which

the gauss point x,; located, and K¥ is defined as

K = wB{ (xq:)DB;(Xq1) 1] (3.44)

Equation (3.41) can be now expressed as

f (LSu)T(DLu)dQ = Z z Su; K u; (3.45)
Q i J

Note that the summation in the right-hand side of this equation is in fact an assembly

process. To view this, we perform the following operation [1].

N N
z Z 511?[(1]“] = 5u1TK11u1 + 5u1TK12u2 + -+ 5u1TK1NuN
i

+5u2TK21u1 + 5112TK12I12 + A + 5“2TK2NUN

+6u3TK31u1 + 5113TK32I12 + A + 5U3TK3NUN

(3.46)
+6uNTKN1u1 + 6uNTKN2u2 + + 6uNTKNNuN
= SUTKU
Finally, Equation (3.41) becomes
f (L6u)T(DLu)dQ = §UTKU (3.47)
Q

where K is the global stiffness matrix in the form of
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Kll K12 KlN

Konvem =| 7 2 . 3 (3.48)

KN1 KNZ KNN
The dimension of the matrix K should be (2N) x (2N), because nodal stiffness

matrix K;; is of 2 X 2, and the total number of nodes in the problem domain is N.

Because of the Kronecker delta function property the natural and essential boundary
conditions are applied as in FEM. This property eliminates the accuracy loss during
the enforcement of essential and natural boundary conditions and increase the

efficiency by eliminating the requirement of the supplementary operations.

3.6 Numerical Examples

An elasto-static cantilever beam problem is solved to implement the PIM shape
functions. The cantilever beam is loaded as shown in Figure 3.3 and the models used
for the PIM solution is shown in Figure 3.4. The material properties are as follows:
E =200 GPa and v = 0. The geometry of cantilever beam is modeled by regularly
distributed 63 nodes and by 51 irregularly distributed nodes. 10 background cells are
used for integration. The sizes of the formed support domains are 0.2 m x 0.1 m.
9 to15 nodes are used for interpolation in a local domain. The results are compared

with analytical solution results in Figure 3.5.

100 kN

7

'@
€

\ 4

Figure 3.4 The regular and irregular PIM model of cantilever beam problem.
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Figure 3.5 The transverse deflection along AB line of cantilever beam.
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Figure 3.6 The stress along AB line of cantilever beam.
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3.7 Results and Discussions

The results of the cantilever beam shows that both PIM and RPIM work for
irregular node distribution. However, the PIM has singularity problem for regularly

distributed nodes. The RPIM gives more accurate results for irregularly distributed
nodes.
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CHAPTER 4
ANALYSES OF 2D GEOMETRICALLY NONLINEAR PROBLEMS
4.1 Introduction

Most of the problems of solid mechanics in various branches of engineering
are solved using linear approximations. Because they are easy to compute, the
computational cost is small, and the solutions of linear approximations can be

superposed on each other.

However, the behavior of real structures is nonlinear and in some cases
approximation of linearity gives unrealistic results. When the displacements cause
changes in geometry that have a significant effect on the load deformation behavior
and/or strain is not proportional to the stress, the nonlinearities become very

important and the linear approximations cannot be used.
There are three types of nonlinear structural problems found in literature

1. Geometric nonlinearity
ii.  Material nonlinearity

iii.  Boundary nonlinearity

In geometric nonlinearity, the deflections of the structure are large compared
with the original dimensions of the structure and this caused to the changes in
stiffness and the effects of loads during the structure deformations. Because of these,
equilibrium equations must be written with respect to deformed structural geometry.

Geometric nonlinearity is characterized by large displacements and/or rotations.

Material nonlinearity occurs when the strain is not proportional to the stress
or material properties are functions of the state of stress. Nonlinear elastic, elasto-
plastic, visco-elastic and visco-plastic material models are examples of material

nonlinearities.
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In boundary nonlinearity, the gap between adjacent parts or the contact area
between parts change and so the force changes. The contact problems are the most
encountered type of the boundary nonlinearity. In crack problems, the displacements
are not continuous at the crack tip. Therefore, the crack problems are an another

boundary type nonlinearity problems.

In non-linear structural problems, stiffness becomes functions of
displacement and stiffness cannot be constructed without a knowledge of
displacements. Because of these, the structural equations, F = Ku, cannot been
immediately solved for u. An iterative solution procedure is needed to solve the
structural equations. The Newton-Raphson method is an iterative solution procedure
used to solve the non-linear algebraic equations. It has a simple and an effective

algorithm.

In this chapter, the strain-displacement relationship of the finite strain is
presented in section 4.2, the Newton-Raphson method is revised in section 4.3 and
the application of Newton-Raphson method for the solution of non-linear discrete
equations of the structure are revised in section 4.4. Some finite strain case studies

are solved using PIM in section 4.5.

4.2 The RPIM formulation for geometrically nonlinear problems

The well-known deformation gradient tensor has an important role in

characterising strains of large deformation problems and can be written as follows:

NP
0P,
Fij = Z IW d“l + 6ij (41)
=1t

The linearized weak form for geometrically nonlinear problems can be
written in terms of the second Piola-Kirchoff stresses and the Green-Lagrange strains

as follows [156]

f S 58dQ = j Sufy dl + f Su'fy, dQ (4.2)
Q T Q

where fj, is the body force, fq is the surface forces and € is the Green-Lagrange

strain,
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e=—(FTF-1) (4.3)

F is the matrix form of deformation gradient tensor.

F11 FlZ]
F= 4.4
For Fp (44)

S is the second Piola-Kirchoff stress and can be written for compressible Neo-

Hooken material as follows [156],

S = A(In(detF)c; "+ u(1—¢; ™) (4.5)

A and u are Lame’s constants. The matrix ¢; = FTF is known as right
Cauchy-Green tensor.

Equation 4.2 can be written explicitly,
f f [BSBT + BF DFB"|dA°Ad = - f f BF ' SdA°
A0 A0

+ j J ®f,°dA° + j J &f,, dA° (4.6)
A0 A0

D is the material matrix, ® is the shape function matrix and A° is the initial
domain. Equation 4.5 can be written in terms of stiffness matrices and load vectors as

follows:
(Ke+K)Ad=r;+r,+1, (4.7)
where K, is the current stiffness matrix,

K, = f B,F DFB] dQ (4.8)
Q

K is the geometric stiffness matrix,

K, = j B,SB; dQ (4.9)
)
S is the initial stress matrix,

Sex Sy 00

_ S S 0 0

S=|"72 "7 (4.10)
0 0 Sy Su
0 0 S, S,



r; is the equivalent nodal load vector due to stresses in the current known

configuration,

ri = _.ff BIFT SdAO
A0

S is the second Piola-Kirchoff stresses in a vector form,

S=1[Sxx Syy Sxyl

r, is the equivalent nodal load vector due to surface forces, and

r, = f f ®f,° dA®
A0

I, is the equivalent nodal load vector due to body forces.

r, = ﬂ &f,,° dA°
AO

The gradient matrices B] is expressed as

_a¢l -
— 0
dx,
09,
— 0
BT = 0x;
! 0 09,
dx,
09,
0 I
i dx,

Arranged deformation gradient matrix F,

F = 0 F12 O F22

Fii. 0 Fy 0]
Fi, Fi1 Fpp Fyn

Cauchy Stress can be written as follows [138],

. A u
g = mln(thF)l + m(cz - I)

where I is the unit matrix, ¢, is the left Cauchy-Green tensor (c; = FFT).
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4.3. Numerical Procedure

The solution procedure of Eq. 11 is started with the division of the total load
into load increments. At each load increments, the equation is solved iteratively. The
iterative procedure can be achieved by the Newton-Raphson method which starts
with an assumed solution and then tries to improve it until a specified convergence
criteria is satisfied. In this study, the displacement based convergence criteria is used
[138]. The algorithm of the procedure, which is used in each load increment and in

each iteration, can be given as follows:

1. Loop over integration cells
1.1. Loop over integration points
1.1.1. Determine the local surrounding domain
1.1.2. Compute the shape functions and derivatives of them (Equation 3.27)
1.1.3. Compute the deformation gradient (Eqaution 4.1)
1.1.4. Compute Green-Lagrange strain (Equation 4.3)
1.1.5. Compute second Piola-Kirchoff stresss(Equation 4.5)
1.1.6. Compute material matrix (for compressible Neo-Hookean material
[156])
1.1.7. Compute initial stress matrix (Equation4.10)
1.1.8. Loop over nodes, i
1.1.8.1.  Form gradient matrix, B;, (Equation 4.15)
1.1.8.2.  Form internal force vector (Equation 4.11)
1.1.8.3.  Loop over nodes, j
1.1.8.3.1.  Form gradient matrix, B; (Equation 4.15)
1.1.8.3.2. Form the current stiffness matrix (Equation 4.8)
1.1.8.3.3. Form the geometric stiffness matrix (Equation 4.9)
1.1.8.3.4. Assemble the current and geometric stiffness matrix in the
usual manner
1.1.8.4.  End of node loop, j
1.1.9. End of node loop, i
1.2. End of integration point loop
End of integration cell loop
Form the tangential stiffness matrix, K=K + KS

Solve KyAd=Af (Af = fé*t — fint)
Update displacements

A

Check the convergency. If it is not satisfied, go to next iteration. If the
convergence is achieved, calculate the Cauchy stresses. Because the nodal
displacements are known, the stresses can be calculated at nodes using the following

algorithm:
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1. Loop over nodes
1.1.1. Determine the local surrounding domain
1.1.2. Compute the shape functions and derivatives of them (Equation 3.27)
1.1.3. Compute the deformation gradient(Equation 4.1)
1.1.4. Compute Green-Lagrange strain(Equation 4.3)
1.1.5. Compute the Cauchy stress (Equation 4.17)
2. End of node loop

After calculating the Cauchy stresses, the next load step begins.

4.4 Numerical Examples

The developed RPIM program is tested using three different numerical examples. In
all solutions, the same compressible hyperelastic Neo-Hookean material is used
(A =3.3%103 u = 0.5%*10%). The numerical integrations are carried out using 4x4
integration points. Plane stress assumption is used in axially load plate, plate with
hole, cantilever beam cases and plane strain assumption is used for pressurized
cylinder case. All results are compared with finite element method (FEM) results

using displacement based 4 node rectangular elements [156].

4.4.1 Axially Loaded Plate

This case is usually used as a first case in the meshfree studies of geometric
nonlinear problems [157-159]. Therefore, a plate with dimensions of 10 cm x 2.5 cm
is loaded in tension as shown in Figure 4.1. RPIM models with regular and irregular
distributed nodes and FEM model are shown in Figure 4.2. The data used in the
RPIM and FEM models are compared in the Table 4.1. The displacements and

stresses are discussed for the points A and B respectively.

' 5cm !
R »
B | | A
200MPa ¢« | 25cm | B L35 200 MPa
<—] v —>
! 10 cm |
B e >

Figure 4.1 Axially loaded plate
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Figure 4.2 RPIM models with regular and irregular distributed nodes and FEM model of

axially loaded plate.

Table 4.1 Data used in the RPIM and FEM models of axially loaded plate

RPIM

FEM

Plane stress with unit

Plane stress with unit

Problem Type thickness thickness

Dimensions 10cm x 2.5 cm 10cm x 2.5 cm

External load 200 MPa (in 20 200 MPa (in 20
increments) increments)

Linear solution

E =120 MPa,v = 0.2

E =120 MPa,v = 0.2

Geometrically nonlinear

Neo-Hookean with

Neo-Hookean with

solution A =33.33 MPa 1 =33.33 MPa
p=50MPa p =50 MPa
Number of nodes in the 27 regular and irregular 297 nodes with

entire problem domain

distributed nodes with 16
background cells

256 rectangular elements

Number of nodes

in a local domain
Changes between 4 and 9

in an element
Constant, 4

Sampling points for
numerical integrations

4x4

2x2

Number of iteration in
each load increment

Changes between 2 and 4

Changes between 2 and 4

4.4.1.1 Convergency rate

The RPIM solutions are carried out with regular and irregular distributed
nodes and using q =1.03, ¢ =175, a, =4 and m =3. RPIM gives the
deformation steps of the plate as shown in Figure 4.3. Nonlinear displacement
solutions separate from linear solutions after the initial load increments as shown in
Figure 4.4. Although, the number of elements in the FEM model is 11 times of
number of nodes in the RPIM model, all RPIM and FEM displacement solutions are
in good agreements. However, RPIM stress solutions show some deviations from

FEM solutions when irregular nodes are used as shown in Figure 4.5. Both RPIM
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and FEM linear and nonlinear solutions provide an excellent convergency for the

displacements and stresses at the last load increment as shown in Figure 4.6 and 4.7.

Figure 4.3 RPIM solution steps of large deformation of the plate with regular
distributed nodes
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Figure 4.4 Displacement variations against load steps for RPIM 27 regular and 27
irregular distributed nodes with a.=4, m=3 and FEM (297 nodes) at the point A on
the axially loaded plate.
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Figure 4.5 Stress variations against load steps for RPIM 27 regular and 27 irregular
distributed nodes with a.=4, m=3 and FEM (297 nodes) at the point B on the axially
loaded plate.
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Figure 4.6 The convergence rate of displacements at the last load increment at the
point A on the axial plate by increasing number of nodes with a.=4, m=3 used in the
models.
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Figure 4.7 The convergence rate of stresses at the last load increment at point B on
the axial plate by increasing number of nodes with o.=4, m=3 used in the models.

4.4.1.2 Effect of o,
The effect of a, on the displacements and stresses are investigated for
q = 1.03 and m = 3. The results show that changing a, values does not affect the

displacement and stress increments as shown in Figure 4.8 and 4.9.
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Figure 4.8 Displacement variations at the point A on the plate against load steps for
27 nodes with ¢ = 1.03, m = 3 and various a..
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Figure 4.9 Stress variations at the point B on the plate against load steps for 27
nodes with ¢ = 1.03, m = 3 and various «a..

4.4.1.3 Effect of q

In this investigation, a. and m are kept constant (&, = 4 and m = 3) while q
is changed. Figure 4.10 and 4.11 show that changing the value of q do not have an

important effect on the displacement and stress results similar to a..
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Figure 4.10 Displacement variations at the point A on the plate against load steps for
27 nodes with o, =4, m = 3 and various q.
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Figure 4.11 Stress variations at the point B on the plate against load steps for 27
nodes with @, = 4, m = 3 and various q.

4.4.1.4 Effect of number of monomials

The number of monomials is taken as 0, 3, 4 and 6 while the . and q are

kept constant. The RPIM gives exactly same displacements with FEM results when

m is used 3 and 4. However when it is used as 0 and 6, RPIM shows slightly

different displacement results as shown in Figure 4.12. The RPIM stress results also

give same stress results with FEM when m = 3 and 4. When m is used as 0, stresses

show some minor differences. However, when it is used as 6, stress increments
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shows significant differences between RPIM and FEM results as shown in Figure

4.13.
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Figure 4.12 Displacement variations at the point A on the plate against load steps for
27 nodes with a, = 4, g = 1.03 and various m.
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Figure 4.13 Stress variations at the point B on the plate against load steps for 27
nodes with @, = 4, ¢ = 1.03 and various m.

4.4.2 Plate with Hole

This case is the common benchmark test in the mesh dependent solutions of
linear elastic problems. It is also used in the mesh-free solutions of linear-elastic
problems [86]. Therefore, it can be a good measure of the performance of RPIM in

the geometric nonlinear solutions. A plate with a hole of radius 1 c¢m is loaded in
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tension as shown in Figure 4.14. The dimensions of the plate and the data used in the
models are given in the Table 2. The node distributions in the models are shown in
Figure 4.15. The displacement at point A is discussed in the solutions. The stress at
point B is well known and it is equal to 3 times of applied tractions in linear elastic
solutions [1]. Therefore, it is compared with the stresses obtained in the RPIM and

FEM solutions.

<
Rt
<

R EEEEE =

1
1
, dm ) T,=10 MPa
< i > >
1 1
< I > | —>
< ! > Sem >
<« : —> ' >IB >
1
< —> 1
I = SO i VU = S
<« > !
< —> o
< —> 1 cm
H _)

Figure 4.14 A plate with hole.

Figure 4.15 RPIM models with regular and irregular distributed nodes and FEM
model of plate-hole problem.
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Table 4.2 Data used in the RPIM and FEM models of the plate with hole.

RPIM FEM

Problem type Plgne stress with unit Plgne stress with unit

thickness thickness
Dimensions Scmx5cm Scmx 5 cm
External load 10 MPa (in 20 increments) 10 MPa (in 20 increments)
Linear solution E=1kPa,v=0.3 E=1kPa,v=0.3
Geometrically nonlinear Neo-Hookean with Neo-Hookean with
solution A =.576923 kPa A =.576923 kPa

u = .384615 kPa u = .384615 kPa

Coarse Model

91 regular and 98 irregular

distributed nodes with 72
Number of nodes in the background cells 1271 nodes with
entire problem domain Fine Model 1200 rectangular elements

1271 regular distributed
nodes with 1200 background

cells
Number of nodes in a local domain in an element
Constant, 4 Constant, 4
Sampll.ng Ifomts fo.r 3x3 %2
numerical integrations
Number of iteration in Changes between 3 and 5 Changes between 3 and 5

each load increment

4.4.2.1 Convergency rate

In the RPIM solutions, two different models are used. The deformed shape of
the plate in the final load step is shown in Figure 4.16. Because of the errors in the
traction line, the RPIM solution is repeated with higher number of nodes as shown in
Figure 4.17. The errors in the traction line are removed with higher number of nodes.
In these solutions, the shape parameters are used as q = 1.03, a, =4 and the
number of polynomial is m = 3. In order to see the effect of shape parameters
remarkably, all remaining solutions are carried out using coarse node model.
Displacement variations against the load increments are shown in Figure 4.18. RPIM
linear elastic solutions give radial stresses (at point B) three times of applied load as
in the analytical solutions. When g is used as 1.03 the regular and irregular node
RPIM models give nearly same results. The best FEM agreement is obtained with
irregular node RPIM (q = 1.75). However, in stress variations, the worst FEM
agreement is obtained with RPIM-regular (¢ = 1.75) as shown in Figure 4.19. The
regular and irregular RPIM models gives same results with g = 1.03. The best FEM
agreement in stress solutions is again obtained with irregular node RPIM (q = 1.75).

In all solutions, the displacement at the point A converges for number of nodes
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greater than 400 as shown in Figure 4.20. The traction is applied as 10 MPa in these
solutions. The linear RPIM stress solution at the point B converges better than the

linear FEM stress solution as shown in Figure 4.21.

Figure 4.16 Initial coarse node distribution of RPIM model and its deformed shape
in the last load increment.
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Figure 4.17 Initial fine node distribution of RPIM model and its deformed shape in
the last load increment.
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Figure 4.18 Displacement variations against load steps for RPIM 91 regular and 98

irregular distributed nodes with @, = 4, m = 3 and FEM (1271 nodes) at the point
A on the plate-hole problem.
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Figure 4.19 Stress variations against load steps for RPIM 91 regular and 98 irregular
distributed nodes with @, = 4, m = 3 and FEM (1271 nodes) at the point B on the
plate-hole problem.
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Figure 4.20 The convergence rate of displacements at the last load increment at the
point A on the plate with hole by increasing number of nodes with ¢, =4, m = 3
used in the models.
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Figure 4.21 The convergence rate of stresses at the last load increment at the point A
on the plate with hole by increasing number of nodes with ¢, = 4, m = 3 used in the
models.

4.4.2.2 Effect of o,

The displacements at the point A are generally in a good agreement for all
values as shown in Figure 4.22. The largest displacement deviation from FEM results
is obtained when «, is used as 6. The best agreement with FEM is obtained when «a,
is used as 3. The stresses are seriously affected from a. values as shown in Figure
4.23. The best agreement between FEM and RPIM results are obtained when «a. is

used as 3.
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Figure 4.22 Displacement variations at the point A on the plate with hole against
load steps for 91 nodes with g = 1.03, m = 3 and various «a,.
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Figure 4.23 Stress variations at the point B on the plate with hole against load steps

for 91 nodes with g = 1.03, m = 3 and various «.

4.4.2.3 Effect of q

The displacements at point A are almost not affected from the g values as
shown in Figure 4.24. However, the stresses at point B are drastically affected as
shown in Figure 4.25. Best agreements between RPIM and FEM solutions are
obtained when q is used between 0.999 and 1.05.
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Figure 4.24 Displacement variations at the point A on the plate with hole against

load steps for 91 nodes with a, = 4, m = 3 and various q.
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Figure 4.25 Stress variations at the point B on the plate with hole against load steps
for 91 nodes with a, = 4, m = 3 and various q.

4.4.2.4 Effect of number of monomials

The displacements are not affected by the change of values of m as shown in
Figure 4.26. However, changing values of m affects the stresses at the point B as
shown in Figure 4.27. The best agreement between RPIM and FEM is obtained when

m is used as 3. Increasing the number of monomials causes diverging the stresses

from FEM results.
3.5
£ 3
«
E 25
(=
=%
s 2
=
[}
g 15 FEM
E —=—m=0
1
3 ; —&—m=3
£ 05 o ——m=4
< ' —¥—m=6
0
0 2 4 6 8 10 12
Load (MPa)

Figure 4.26 Displacement variations at the point A on the plate with hole against
load steps for 91 nodes with a. = 4, ¢ = 1.03 and various m.
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Figure 4.27 Stress variations at the point B on the plate with hole against load steps
for 91 nodes with @, = 4, ¢ = 1.03 and various m.

4.4.3 Cantilever beam

The cantilever beam is an example which is used for verifications of meshfree
methods in the solution of large deformation problems [2,157]. Therefore, a
cantilever beam is solved with an initial dimension of 10 cm x 2 cm as shown in
Figure 4.28. The regular and irregular RPIM models and FEM model are shown in
Figure 4.29. The data used in the cantilever beam is compared for FEM and RPIM as
shown in the Table 3. The stresses and displacements are plotted at point A and B

respectively.
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Figure 4.28 Cantilever beam
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Figure 4.29 RPIM models with regular and irregular distributed nodes and FEM
model of cantilever beam.

Table 4.3 Data used in the RPIM and FEM models of cantilever beam

RPIM FEM
Problem type Plfme stress with unit Plgne stress with unit
thickness thickness
Dimensions 10cmx 2 cm 10cm x 2 cm
External load 320 N (in 20 increments) .320 N (in 20
increments)

Linear solution

E =120 MPa,v = 0.2

E =120 MPa,v = 0.2

Geometrically nonlinear
solution

Neo-Hookean with
A =33.33 MPa
u =50 MPa

Neo-Hookean with
A =33.33 MPa
u =50MPa

Number of nodes in the
entire problem domain

33 regular and 36 irregular
distributed nodes with 20

561 nodes with
500 rectangular

numerical integrations

background cells elements

in a local domain in an element
Number of nodes Constant, 7 Constant, 4
Sampling points for Axd 2%2

Number of iteration in
each load increment

Changes between 2 and 4

Changes between 3 and
6

4.4.3.1 Convergency rate

The large deformation of the cantilever beam is obtained using RPIM model
with regular distributed nodes in the various load steps (Figure 4.30). In these
solutions, g = 1.03, a. =4 and m =3 are used. The linearity between the

displacements and load increments disappear as the load increases and beam
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becomes more stiff (Figure 4.31). There is a perfect agreement in the RPIM and
FEM displacement solutions. There are also good agreements between stress
solutions (Figure 4.32). To see the convergence rate of displacements and stresses,
Figure 4.33 and Figure 4.34 are plotted. The RPIM and FEM displacements show
nearly same convergence behaviour as shown in Figure 4.34. RPIM stresses

convergence more rapidly than FEM as shown in Figure 4.35.

Figure 4.30 RPIM solution steps of large deformation of the cantilever beam with
regular distributed nodes.
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Figure 4.31 Displacement variations against load steps for RPIM 33 regular and 36
irregular distributed nodes with a. = 4, m = 3 and FEM (561 nodes) at the point B
on the cantilever beam.
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Figure 4.32 Stress variations against load steps for RPIM 33 regular and 36 irregular
distributed nodes with a, = 4, m = 3 and FEM (561 nodes) at the point A on the
cantilever beam.
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Figure 4.33 The convergence rate of displacements at the last load increment at the
point B on the cantilever beam by increasing number of nodes with a, = 4, m = 3
used in the models.
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Figure 4.34 The convergence rate of stresses at the last load increment at the point A
on the cantilever beam by increasing number of nodes with a, = 4, m = 3 used in
the models.

4.4.3.2 Effect of o,

The displacement and stress variations are investigated for ¢ = 1.03, m = 3
and various a.. The same displacement distributions are obtained for all values of a,
(Figure 4.35). However, there are some slight differences in stresses between FEM

and RPIM as shown in Figure 4.36.
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Figure 4.35 Displacement variations at the point B on the cantilever beam against
load steps for 33 nodes with g = 1.03, m = 3 and various «,.
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Figure 4.36 Stress variations at the point A on the cantilever beam against load steps
for 33 nodes with ¢ = 1.03, m = 3 and various «,.

4.4.3.3 Effect of q

The displacements and stresses are plotted for @, = 4, m = 3 and various q.
There are good agreements between the RPIM and FEM displacement and stress
results for all values of g as shown in Figure 4.37 and 4.38. The worst displacement

and stress distribution are obtained when g = —0.5.
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Figure 4.37 Displacement variations at the point B on the cantilever beam against
load steps for 33 nodes with o, =4, m=3 and various q.
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Figure 4.38 Stress variations at the point A on the cantilever beam against load steps
for 33 nodes with &, = 4, m = 3 and various q.

4.4.3.4 Effect of number of monomials

Because of the number of nodes included in the support domains, the radial
shape functions for m = 6 cannot be obtained. The FEM displacement results are
same with RPIM displacements for all m except m = 0. The displacements show a
slight difference when m is equal to zero (Figure 4.39). There are good agreements

between FEM and RPIM stresses for all values of m as shown in Figure 4.40.
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Figure 4.39 Displacement variations at the point B on the cantilever beam against
load steps for 33 nodes with a. =4, ¢ = 1.03 and various m.
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Figure 4.40 Stress variations at the point B on the cantilever beam against load steps

for 33 nodes with o,

=4, ¢ = 1.03 and various m.

4.4.4 Pressurized thick-walled cylinder

The pressurized cylinder is another case which is used for validation of

Meshfree solution of geometrical nonlinear problems [160]. The data of the model,

shown in Figure 4.41, is given in the Table 4.4. The irregular and regular RPIM

models are shown in Figure 4.42. The stresses and displacements are discussed for

the point A in the model.

________

Figure 4.41 Thick-walled pressurized cylinder
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Figure 4.42 RPIM models with regular and irregular distributed nodes and FEM
model of thick-walled pressurized cylinder.

Table 4.4 Data used in the RPIM and FEM models of pressurized thick-walled
cylinder

RPIM FEM

Problem type Plane strain Plane strain
Dimensions Ri=6 cm and R,= 8 cm Ri=6 cm and R,= 8 cm
External load Pi=1.8 kPa (in 30 Pi=1.8 kPa (in 30

increments) increments)
Linear solution E =120 MPa,v = 0.2 E =120 MPa,v = 0.2
Geometrically nonlinear Neo-Hookean with Neo-Hookean with
solution A =33.33 MPa A =33.33 MPa

u =50 MPa u =50 MPa

561 regular and 561 2121 nodes with

Number of nodes in the

entire problem domain irregular distributed nodes | 2000 rectangular

with 500 background cells | elements
in a local domain in an element
Changes between 4 and 9 | Constant, 4

Number of nodes

Sampling points for

numerical integrations

Number of iteration in Changes between 2 and
. Constant, 3

each load increment 3

4x4 2x2

4.4.4.1 Convergency rate

RPIM with regular distributed nodes gives the deformation steps as shown in
Figure 4.43. In this solution, q =1.03, a, = 4 and m =3 are used. The
displacement variations against load increments are shown in Figure 4.44. Nonlinear
solutions diverge from linear elastic solutions at the initial load increments. In
contrast to the cantilever beam problem, the cylinder is softened as the load
increases. A good agreement is achieved in RPIM and FEM tangential stress

solutions as shown in Figure 4.45. However, there are some differences in the radial
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stress solutions as shown in Figure 4.46. The RPIM and FEM stress solutions show a
small curve near to the last load step. The amount of curvature can be decreased by
increasing the number nodes in the models. In addition, the irregular RPIM models
are in good agreements with FEM for ¢ = 1.03 and 1.75. The results are seriously
affected by number of nodes in the models. In order to check this, the number of
nodes used in the regular RPIM models is increased and radial stress distribution is
redrawn as shown in Figure 4.47. The convergency rate of both displacements and
Cauchy stresses are drawn as shown in Figure 4.48, 4.49 and 4.50. The displacement

and stress covergency rate of RPIM and FEM are very close to each others.

Figure 4.43 RPIM solution steps of large deformation of the thick-walled
pressurized cylinder with regular distributed nodes.
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Figure 4.44 Radial displacement variations against load steps for RPIM 561 regular
and 561 irregular distributed nodes a.=4, m=3 and FEM (2121 nodes) at the point A
on the thick-walled pressurized cylinder.
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Figure 4.45 Tangential stress variations against load steps for RPIM 561 regular and
561 irregular distributed nodes a.=4, m=3 and FEM (2121 nodes) at the point A on
the thick-walled pressurized cylinder.
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Figure 4.46 Radial stress variations against load steps for RPIM 561 regular and 561
irregular distributed nodes a.=4, m=3 and FEM (2121 nodes) at the point A on the
thick-walled pressurized cylinder.
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Figure 4.47 Radial stress variations against load steps for different RPIM 561
regular distributed nodes with a.=4, m=3 and FEM (2121 nodes) at the point A on
the thick-walled pressurized cylinder.
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Figure 4.48 The convergence rate of radial displacements at the last load increment
at the point A on the thick-walled pressurized cylinder by increasing number of
nodes used in the models with a.=4, m=3.
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Figure 4.49 The convergence rate of radial stresses at the last load increment at the
point A on the thick-walled pressurized cylinder by increasing number of nodes used
in the models with a.=4, m=3.

0 100 200 300 400 500 600

140.0
E:i 120.0 N @
< 1000 —@/
g m/
S 800
; ——FEM
5]
g 600 —B— RPIM(q=1.03)
=
% 40.0 ——RPIM(q=1.75)
%D 20.0 —>—RPIM-linear
H

0.0

Number of nodes

Figure 4.50 The convergence rate of tangential stresses at the last load increment at
the point A on the thick-walled pressurized cylinder by increasing number of nodes
used in the models with o.=4, m=3.

4.4.4.2 Effect of a,

In order to see the effect of shape parameters, the RPIM model with 561
nodes is used. The displacements and stresses are plotted against load increments for

gq=1.03, m=3 and various o, as shown in Figure 4.51 and 4.52. It is shown that the
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values of o, do not affect the behaviour of displacement and radial stress

distributions.
40
——FEM
35 | —8—0c=3.0 f
30 — —A—ac=3.5
—>—ac=4.0 %
25 — _
—¥—qc=5.0 J
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Figure 4.51 Radial displacement variations at the point A against load steps for 561
nodes with g=1.03, m=3 and various o..
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Figure 4.52 Radial stress variations at the point A on the thick-walled pressurized
cylinder against load steps for 561 nodes with q=1.03, m=3 and various 0.

4.4.4.3 Effect of q

The variations of displacements and stresses against load increments are

plotted for constant o, =4 and m=3 and various q as shown in Figure 4.53 and 4.54.
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Once again, values of q do not have an important effect in displacement and stress

distributions.
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Figure 4.53 Radial displacement variations at the point A on the thick-walled
pressurized cylinder against load steps for 561 nodes with o, =4, m=3 and various q.
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Figure 4.54 Radial stress variations at the point A on the thick-walled pressurized
cylinder against load steps for 561 nodes with o, =4, m=3 and various q.

4.4.4.4 Effect of number of monomials

Because of the number of nodes used in the support domains, the radial shape
functions is not obtained for m=4 and 6. The FEM radial displacement distribution is

in good agreement with RPIM for m=3. However, RPIM radial stresses with m=0
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shows some deviations (Figure 4.55). The RPIM and FEM radial stresses are in good

agreement except RPIM with m=0 as shown in Figure 4.56.
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Figure 4.55 Radial displacement variations at the point A on the thick-walled
pressurized cylinder against load steps for 561 nodes with o, =4, ¢ = 1.03 and
various m.
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Figure 4.56 Radial stress variations at the point A on the thick-walled pressurized
cylinder against load steps for 561 nodes with o, =4, ¢ = 1.03 and various m.
4.5. Results and Discussions

It was observed that the node distribution characteristic is more effective than
the shape parameters in the displacement and stress solutions. It was also shown that

RPIM shape parameters usually affect the stresses more than displacements. The

61



values of shape parameters are generally problem dependent. However, more stable

results are obtained with shape parameters, ¢ = 1.03 and a, = 3 and m = 3.

q = 1.03 is used as optimum value in many studies, however, in some cases,
the stress results for g = 1.75 can be accurate as much as for ¢ = 1.03. For example,
when irregular nodes are used in the plate with hole and pressurized cylinder
examples, they give better stresses with g = 1.75. This study agrees that the best
stress solutions are obtained for the values of a, between 3 and 4. It is also shown
that when the same increase in the number of nodes is considered, improvements in

the RPIM results are better than FEM with suggested values of shape parameters.

It was also shown that increasing number of polynomials does not always
improve the results. Depending on the number of nodes used in the support domains,

increasing number of polynomial basis may cause shape function construction errors.
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CHAPTER 5
ANALYSIS OF 2D ELASTO-PLASTIC PROBLEMS USING RPIM
5.1 Introduction

In this chapter, the basics of 2D elasto-plastic analysis are summarized and
formulations used for them are reviewed. The essential elements of elasto-plastic
analysis are shortly presented in section 5.2. The RPIM formulation for an elasto-
plastic analysis is reviewed in section 5.3. The solution procedure used in the elasto-
plastic analysis is summarized in section 5.4. To investigate the performance of
RPIM in elasto-plastic analyses, some sample problems are solved in section 5.5.

They are also compared with analytic results.

5.2 The Essential Elements of Elasto-Plastic Analysis

The theory of plasticity has some fundamental concepts that it cannot be
considered without the usage of them. These are the yield criterion, the flow rule and
the hardening rule. The yield criterion defines the limit at which the material
becomes plastic. The flow rule describes the relationship between stresses and strains
once the material has become plastic. The consistency condition which prevents
stresses from exceeding the yield limit. The hardening rule describes how the yield

criterion is modified by straining beyond initial yield [160].

5.2.1 The Yield Criterion

To determine the stress level at which the plastic deformation begins a scalar

yield function is defined and the general form of it can be written as [156,160]

fy(o,wP,a) =0 (5.1)

where o is the stress vector, wP is the plastic work done, and a is a vector denoting
the translation of the yield surface. According to the hardening model defined yield

function gets its specific form. For isotropic hardening model, it is

fy(e,wP) =0 (5.2)
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For kinematic hardening model, it is written as

fy(o,a) =0 (5.3)

Without hardening, it is expressed as

fy(e) =0 (5.4)
The yield function defines a surface in stress space. The two-dimensional case is
illustrated in Figure 5.1. The stress level is in the elastic region when fy < 0. The
boundary fy = 0 defines the yield surface. The stresses for fy > 0 is not possible.
The incremental change in yield function due to an incremental stress change has two

possibilities for stress state on yielding surface:

e dfy < 0 unloading occurs and the stress point moves inside the yield surface
e dfy = 0 loading, accumulation of plastic strain continues and stress point
remains on the yield surface

e dfy > 0 not possible (the stress point always remains on the yield surface)

02
A
fy >0 — impossible
> 04
fy <0 — elastic fy =0 — plastic

Figure 5.1. Yield surface in two dimensional case

The definition of a yield criterion must be independent from the orientation of
the coordinate system used [162]. To ensure this, it could be defined in terms of
certain invariants, like principal stresses. In many cases, invariants of the stress
tensor (I,I, and I3) or invariants of the deviatoric stress tensor (J;,/, and J3) are

also convenient to use.
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There are various yield criterions like the Tresca yield criterion, the von
Mises yield criterion, the Mohr-Coulomb yield criterion, the Drucker-Prager yield
criterion, etc. in the literature. Every yield criterion defines the beginning of plastic
deformation using different properties and each yield criterion is suggested for

different materials.

5.2.1.1 The Tresca Yield Criterion

Tresca yield criteria states that yielding occurs when the maximum shear

stress reaches a certain value. This can be written as

1
Tinax = Max (Elo_l - O'zl,ilo'z - 0'3|;§|0'3 - 0'1|) (5.5.a)

= maX(le, T23, T31) s k (S.S.b)
where k is material parameter and it can be determined from simple tension test as
1
k= 500 (5.6)

g, is the yield stress value in the uniaxial tension test. In plane stress (o3 = 0), the

yield surface can be plotted in a; — g, space as shown in Figure 5.2.

%)
A
C
B
D A > 01
E F

Figure 5.2. Tresca yield criteria in plane stress

5.2.1.2 The von Mises criterion

The von Mises yield criterion states that yielding takes place when the
effective or von Mises stress reaches the yield stress of the material in uniaxial

tension. It is given by
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fy(e) = g, — g (5.7)

where

0o =3 (5.8)

and o, is named as the effective stress or the equivalent stress. The equation of yield

surface for a plane stress problem is obtained as follows,

fy(@) =0 (5.9.a)

1
\/3 <§ (of + 07 — 0102)> —0,=0 (5.9.h)
02 + 0} — 0,0, = 0 (5.9.¢)

Equation 9.c is an equation of ellipse and it can be plotted as in Figure 5.3.

03
A

/ > 0y

Figure 5.3. The von Mises yield criteria in plane stress

5.2.2 Hardening

The hardening rule describes how the yield criterion is modified by straining
beyond initial yield [161]. Simply, it defines the change in size, shape and position of
yield surface during a plastic loading. The isotropic hardening rule and the kinematic
hardening rule are two common hardening rules. The isotropic hardening rule, shown
in Figure 5.4.(a), states that yield surface can expand without translation under
loading, however, the yield surface can move as a rigid body in kinematic hardening

rule as shown in Figure 5.4.(b).
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initial yield 0
surface

current yield
surface

(a)

Figure 5.4.(a). Mathematical model for representation of isotropic strain hardening
behaviour.

initial yield loading

surface N . ———

current yield
surface

N

(b)

Figure 5.4.(b). Mathematical models for representation of kinematic strain
hardening behaviour.

In isotropic hardening, the value of w? is different from zero and o must be equal to
zero. The translation of the yield surface, a, must be different from zero in kinematic

hardening so that a must be different from zero and w? must be equal to zero.

wP = fonsp (5.10)
o= .fDdsp (5.11)
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5.2.3 Elasto-Plastic Stress-Strain Relation

In an elastic analysis, the stresses can be evaluated using elastic constants and strains,
however, in an elasto-plastic analysis it is not simple as the elastic analysis. The load,
deformation and stresses are nonlinearly related and they are also history dependent
in an elasto-plastic analysis. In the plastic region strain increments are regarded as

composed of elastic and plastic components,

de = dg, + dg, (5.12)

where subscripts e and p denote elastic and plastic, respectively. To define the
relationship between the plastic strain and stress increment another assumption about
material behavior is used. It is supposed that the plastic strain increment is
proportional to the rate of change of some function of stress increment. This function
is called as plastic potential, Q.

aQ

=i (5.13)

de, 7o

where dA is the constant of proportionality and named as the plastic multiplier.
Equation 5.13 is called as flow rule. The plastic potential function is generally
considered equal to the yield function. The flow rule is named as associated if two
functions are the same, and non-associated otherwise. The stress increments are

associated with only the elastic component. Therefore,

do = Dde, = D(de — de,,) (5.14)

where D is the elastic constitutive matrix. To obtain the incremental constitutive
equation, the constant of proportionality must be established. During an increment of

plastic straining,
dfy =0 (5.15)
Substitution of Equation 5.1 into Equation 5.15

afy\" ofy\" . ofy . . _
<%) do + (a) da +mdw =0 (516)

Substitution of Equations 5.10, 5.11, 5.13 into Equation 5.16 and the resulting

equation solved for plastic multiplier dA.
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dA = Pyde (5.17)

where P, is
afy\"
TN a(z?{> Dao 0y o7 (20 -
(a—év> D(55) - (6_02]> D (5e) ~gwr " (3s)

Although both work hardening and strain hardening are included in Equation 5.18,
practical applications will probably use one or the other, or perhaps a fraction of

each. Using this, the incremental stress-strain equation can be written as

aQ aqQ
do = D (ds _ %dl) -D (ds _ Pl%ds) = Dgyde (5.19)
where
aQ
Dep = D - DPA% (520)

D, is the generalized form tangent modulus.

5.3 The RPIM Formulation For Elasto-Plastic Problems

The formulations used for the analysis are based on virtual work principle. If
a body is subjected to a set of body forces r;, and a set of traction loads then the

Virtual Work Principle can be written as [162]
f(SSTO' —ou’fy)dq — (Sdeq =0 (5.21)
Q

where o is the vector of internal stresses, f}, is the body load, f; is the external

applied forces comprises from both point loads and surface loads, dd is the vector of
virtual displacements, J€ is the vector of associated virtual strains, du is the internal

displacements, () is the domain of interest.

In the RPIM representation, the displacements and strains within any local domain

may be expressed by the relationships [1,2]
éu = Nod (5.22)
and
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5e = Bod (5.23)

where, N is the matrix of shape functions and B is the matrix derivatives of the nodal

shape functions . Substitution of these into virtual work expression gives
f 8d"(B"o — N"f,)d0 — 6d"f, = 0 (5.24)
Q

This equation must be true for any arbitrary set of virtual displacements §d

fBTGdQ —f, - fNTf,,dQ =0 (5.25)
Q QO

The solution of Equation 5.25 will not be generally satisfied at any stage of the

computation, and

P = fBTadQ — (fq + f NbedQ> # 0 (5.26)

Q Q

where { is the residual force vector. To evaluate the tangential stiffness matrix
incremental form of Equation 5.26 must be employed. For a load increment the

following equation is obtained as

A = f BT AcdQ — (qu + f NTAfbdQ> (5.27)

Q Q

Substitution of Equation 5.19 into Equation 5.27 gives

AP =K;d - (qu + f NTAfbdQ> (5.28)
Q
where
K = fBTDedeQ (5.29)
Q

5.4. Summary Of Solution Procedures

The summary of equation solving technique is as follows [162]

1. Begin new load increment, f = f + Af.

2. Set Af equal to the current load increment vector.
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3. Set d° equal to 0 for the first increment or equal to the total displacement

vector at the end of the last load increment.

4. Set PP equal to the residual force vector at the end of the last increment or

equal to O for the first load increment.
5. Set ¢° = ¢ + Af.
6. Solve Ad® = —K7'y°. Use old or updated value K.
7. Set d* = d° + Ad°.
8. Evaluate y(db).
9. If solution has converged go to 11; otherwise continue.
10. Iterate until solution has converged.

11. If this is not the last increment go to 1; otherwise stop.
The iteration loop for elasto-plastic 2D problems is as follows [162]

1. Set iteration number i = 1.
2. Solve Ad‘ = —K7;'{'. Use old or updated K.
3. Set dit! = d! + Ad'.

4. For each Gauss point, evaluate the increments in stain resultants Ag’ = BAd!

5. Assuming the elastic behaviour compute the increments in stress resultants
and hence the total stress resultants at each Gauss point Ac' = DAg! hence
¢'t! = ¢' + Ac'.

i+1 i+1

6. At each Gauss point, 6'*? is adjusted depending on the states of ¢’ and, &

to satisfy the yield criterion and preserve the normality condition.

7. Evaluate the residual force vector Y'** = [ BT6dA — f

8. Check the convergency. If it is not satisfied, set i = i + 1 and go to 2.

9. Go to next load increment.
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5.5 Numerical Examples

The effects of RPIM shape parameters on the solution of accuracy of 2D elasto-
plastic problems are investigated. The multi-quadric radial basis functions are used in
the RPIM algorithm. A number of case studies with regular and irregular node
distributions are solved. The convergence rates of RPIM solutions after yielding are
investigated for various a, and q. Both regular and irregular node distributions are
used in the RPIM models. It is shown that the solutions after yielding can be
improved using appropriate shape parameter values. The propagation of plastic

region is also represented against load increments.

5.5.1 End Loaded Cantilever Beam

The solution of an end loaded elastic-perfectly plastic cantilever beam is
derived in detail in Section 4.2.2 of Lubliner [163]. Therefore, it is a good measure to
observe RPIM shape parameter effects on the elasto-plastic solution accuracy of it.
A cantilever beam is solved with dimensions of 40 cm x 4 cm as shown in Figure

5.5. The regular and irregular RPIM models and FEM model are shown in Fig. 5.6.
The material is assumed as perfectly plastic with % =2%1073 as in [163]. The

propagation of plastic region as the load increases is given in Figure 5.7. The plastic
region starts at the high stress point then is spread out toward to neutral axis as the
load increases. It is in good agreement with the analytical solution where given in the
elementary textbook of mechanics of materials. Figures 5.8, 5.9 and 5.10 show that
RPIM gives higher displacements for regular and irregular distributed nodes as the
number of nodes in the models is increased. In contrast to RPIM, ANSYS gives
lesser displacements in the plastic region. Displacement variations against load steps
for RPIM regular and irregular distributed nodes are given in Fig. 5. 11-14 for

various values of a, and q. RPIM nearly gives same results for all values of . and

q.

- i
4 mm |

v__ B

Figure 5.5 Cantilever beam with an end load of 320 N.
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Figure 5.6 RPIM models with regular and irregular distributed nodes and FEM
model of cantilever beam.
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Figure 5.7 The propagation of the plastic region and deformed shape as the load
increases ( e shows the nodes in the plastic region. )
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Figure 5.8 Displacement variations against load steps for RPIM regular distributed
nodes with ., = 2 and g = 1.03 at the free end of cantilever beam.
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Figure 5.9 Displacement variations against load steps for RPIM irregular distributed
nodes with a.=2 and q=1.03 at the free end of cantilever beam.
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Figure 5.10 Displacement variations against load steps for ANSYS with different
number of nodes at the free end of cantilever beam.
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Figure 5.11 Displacement variations against load steps for RPIM regular distributed
nodes with ¢ = 1.03 and different o, at the free end of cantilever beam.
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Figure 5.12 Displacement variations against load steps for RPIM irregular
distributed nodes with ¢ = 1.03 and different o, at the free end of cantilever beam.
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Figure 5.13 Displacement variations against load steps for RPIM regular distributed
nodes with o, =7.0 and different q at the free end of cantilever beam.
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Figure 5.14 Displacement variations against load steps for RPIM irregular
distributed nodes with o, =7.0 and different q at the free end of cantilever beam.

5.5.2 Thick Walled Internally Pressurized Cylinder

The elasto-plastic solution of this case is given in Section 7.5.1 of Owen
[162,164]. Therefore, the same model is obtained with axi-symmetric assumption
(Figure 5.15). The inner and outer radii are 100 mm and 200 mm respectively. The

material is again elastic-perfectly plastic with E = 210 GPa, v =10.1 and o, =

0.24 GPa. The RPIM models with regular and irregular nodes and FEM model are
given in Figure 5. 16. The propagation of plastic region against pressure increments
is shown in Figure 5.17. When the pressure reaches the limit load of 0.91209 GPa
[164], all nodes enter the plastic region except the nodes at the outer region. For
RPIM and FEM solutions, when numbers of nodes in the models are increased, the
amount of displacement in the plastic region is also increased as shown in Figures
5.18, 5.19 and 5. 20. However, same amount of large displacements in the plastic
region can be obtained without increasing nodes, but with increasing the values of o,

and q as shown in Figures 5.20, 5.21, 5.22, 5.23 and 5.24.
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Figure 5.15 Thick-walled pressurized cylinder and its axisymmetric model
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Figure 5.16 RPIM models with regular and irregular distributed nodes and FEM
model of thick-walled pressurized cylinder
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Figure 5.17 The propagation of the plastic region and deformed shape of thick
walled cylinder as the load increases ( e shows the nodes in the plastic region. )
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Figure 5.18 Displacement variations against load steps for RPIM regular distributed
nodes with a.=4 and q=1.03 at the outer surface of thick walled pressurized cylinder.
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Figure 5.19 Displacement variations against load steps for RPIM irregular
distributed nodes with a.=4 and q=1.03 at the outer surface of thick walled
pressurized cylinder.
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Figure 5.20 Displacement variations against load steps for ANSYS with different
number of nodes at the outer surface of thick walled pressurized cylinder.

02 —o— Analytical
—&—RPIM ac=1.0
—A—RPIM ac=2.0

015 7 —RPIM ac=3.0
—%—RPIM oac=4.0
0.1 —+—RPIM ac=7.0

0.05

Radial displacement at outer face (mm)

0 0.05 0.1 0.15 0.2 0.25

Internal pressure, P (GPa)

Figure 5.21 Displacement variations against load steps for RPIM regular distributed
nodes with ¢ = 1.03 and different a, at the outer surface of thick walled pressurized
cylinder.

80



—&— Analytical

—8—RPIM oc=1.0

—A—RPIM 0c=2.0
0.15 |~

—>—RPIM 0c=3.0
—*—RPIM o0c=4.0

0.1 = ——RPIM ac=7.0

0.05

Radial displacement at outer face (mm)

0 0.05 0.1 0.15 0.2 0.25

Internal pressure, P (GPa)

Figure 5.22 Displacement variations against load steps for RPIM irregular
distributed nodes with ¢ = 1.03 and different o, at the outer surface of thick walled
pressurized cylinder.
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Figure 5.23 Displacement variations against load steps for RPIM regular distributed
nodes with o, =7.0 and different q at the free end of cantilever beam.

81



—o— Analytical

02 ——
—8—RPIM q=-0.5

—A—RPIM g=0.5
015 " s RPIM q=0.98
—%—RPIM g=1.03
0.1 —— ——RPIM q=130

0.05

Radial displacement at outer face (mm)

0 0.05 0.1 0.15 0.2 0.25

Internal pressure, P (GPa)

Figure 5.24 Displacement variations against load steps for RPIM irregular
distributed nodes with o, =7.0 and different q at the free end of cantilever beam.

5.5.3 Simply Supported Circular Plate

It is well known problem and solved with perfectly plastic material in
[162,164]. RPIM and FEM results are compared with the analytical limit pressure of
260.8. The radius and height of the plate are taken as R = 10 and h = 1. It is simply
supported on its edge and exposed to uniform limit pressure of P = 260.8 on its top
surface. The axisymmetric model and its dimensions are shown in Figure 5.25. The
material constants are E = 107, v = 0.24 and o, = 16000. RPIM models with
regular and irregular distributed nodes and FEM model are given in Figure 5.26. The
propagation of the plastic region and deformed shapes against the pressure
increments are given in Figure 5.27. The nodes along upper and lower edges are
completely plastic at the load increment of 18. After that point, the plastic region
completely propagates towards to neutral axis. Central deflections of the plate are
obtained using RPIM regular and irregular distributed nodes and ANSYS as shown
in Figure 5.28-5.30. RPIM with regular distributed nodes gives higher displacements
than RPIM with irregular distributed nodes after yielding. The results of ANSYS can
be seriously improved by increasing number of nodes in the model. Increasing values

of a. and q improves the results after yielding as shown in Figures 5.31-5.34.
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Figure 5.25 Axi-symmetric model and its dimensions of uniform pressurized simply

supported circular plate.
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Figure 5.26 RPIM models with regular and irregular distributed nodes and FEM
model of uniform pressurized simply supported circular plate.
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Figure 5.27 The propagation of the plastic region and deformed shape of uniform
pressurized simply supported circular plate as the pressure increases ( e shows the

nodes in the plastic region. )
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Figure 5.28 Central deflections of uniform pressurized simply supported circular
plate against load steps for RPIM regular distributed nodes with a.=1 and q=1.03.
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Figure 5.29 Central deflections of uniform pressurized simply supported circular
plate against load steps for RPIM irregular distributed nodes with a.=1 and q=1.03.
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Figure 5.30 Central deflections of uniform pressurized simply supported circular
plate against load steps for ANSYS with different number of nodes.
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Figure 5.31 Central deflections of uniform pressurized simply supported circular
plate against load steps for RPIM regular distributed nodes with q=1.03 and different
ac.
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Figure 5.32 Central deflections of uniform pressurized simply supported circular
plate against load steps for RPIM irregular distributed nodes with q=1.03 and
different a..
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Figure 5.33 Central deflections of uniform pressurized simply supported circular
plate against load steps for RPIM regular distributed nodes with o, =7.0 and different

qg.
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Figure 5.34 Central deflections of uniform pressurized simply supported circular
plate against load steps for RPIM irregular distributed nodes with o, =7.0 and
different q.

5.6. Results and Discussions

The RPIM shape parameters are investigated in the solution of 2D elasto-
plastic problems. It has been shown that FEM have convergence problems after
yielding. However, In the RPIM solutions, the convergence can be improved using
appropriate shape parameters. Increasing o, and g values after yielding can improve

the convergency.

If large deformations are required after yielding as in the metal forming, the

shape parameters can be used as a,=7 and ¢ = 1.3.
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CHAPTER 6

A DIAGONAL OFFSET ALGORITHM FOR THE POLYNOMIAL POINT
INTERPOLATION METHOD

6.1 Introduction

Point interpolation method (PIM) is a simple and useful Meshfree technique
and originally proposed by Liu and Gu [94]. In the PIM, the field variables are
interpolated using point interpolation shape functions. In contrast to MLS shape
functions, the point interpolation shape functions posses the Kronecker delta function
property and they do not require an extra algorithm to compute nodal values of field
variables. Although the background cells are used for the integration in the Gakerin

weak formulation, the field variable interpolation is carried on a local domain.

The main problem in the PIM is the singularity of the moment matrix.

Because of arbitrary scattered nodes in the influence domain, the moment matrix
becomes singular in some situations. Some algorithms are developed to overcome
this problem. Moving or shifting the nodes in the local domain by a small distance is
the simplest method to avoid singularity [1,94]. However, it is not a complete
solution and the moment matrix can still be singular even if the nodes are shifted.
Using the radial functions as the basis is a robust solution of this problem
[86,87,96,100,101]. However, when the radial basis functions are used in the PIM,
the computational efficiency is extremely reduced. Therefore, the matrix
triangularization algorithm (MTA) was proposed to avoid singular moment matrix
[95]. In MTA, the nodes, which cause the singularity in the moment matrix, are
determined and excluded from the influence domain. PIM with the MTA is very
effective in constructing Meshfree shape functions. However, it may be numerical

unstable especially for the big influence domains [95].

6.2. Singularity in the Moment Matrix

The moment matrix given in Equation 3.8 must be invertible to obtain the
PIM shape functions given in the Equation 3.11. It includes the nodal coordinate
values of arbitrary distributed nodes in the local domain. Therefore the distribution of
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the nodes directly affects the moment matrix. There are some situations where the
moment matrix is not invertible. For example, the node configuration in a local
domain shown in Figure 6.1 causes the singularity in the moment matrix. The nodes
in the local domain sit in the lines parallel to the x-axis and y axis. As a general rule,
the terms in the basis functions should be selected symmetrically from the Pascal
triangle [1]. So, the basis function terms for the local domain shown in Figure 6.1

can be selected as follows:

p'(x) = {1,x,y,xy,x%y%}
It also satisfies the completeness requirements. However, the nodes in the
local domain have only two distinct y-coordinate and cannot be represented by
second order polynomial in the y-direction. Consequently, the moment matrix is

singular.
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Figure 6.1 A local domain causes singularity in the moment matrix

6.3. A Diagonal Offset Algorithm to Avoid Singularity

Several algorithms are proposed to overcome the singularity in the moment
matrix. However, each method has some disadvantages. For example, the
computational efficiency is extremely reduced when the radial functions are used as
the basis [86,87,96,100,101]. The MTA algorithm may be numerical unstable
especially for the big influence domains [95]. Moving or shifting the nodes is the
simplest way to avoid singularity [1,2]. However, it is not a complete solution.
Changing the coordinates of a node in a local domain causes changing the value of
elements in the relevant row of the moment matrix. For example, if the coordinate of
the 2™ node in a local domain, it results changing the second row of the moment
matrix of this local domain. However, the elements in the diagonal line of the

moment matrix may be also changed to avoid the singularity. A simple and effective
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algorithm can be proposed using this idea. The diagonal elements of the moment
matrix of a local domain (except the first element) can be changed with an offset

value as follows:

1 X1 Y1 X1Yy1 v Pm (X1)
1 x; —off V2 X2Y2 Pm(X2)
Py = 1 9{3 V3 - of f x3-y3 Pm(-x3)
1 Xn Yn XnYn pm(xn) - Off

Where of f = Ade: and Mde is the minimum value in the diagonal line of the

moment matrix. It must be different from zero. k is an integer number which
determines the amount of the offset value. The first term in the first row is always
equal to 1. It is the first term of the basis function and not affected by the nodal

coordinates. So, it must be kept as 1.

The PIM shape functions have the Kronecker Delta function and the partition
of unity properties. A detailed numerical investigation is presented in the following
section to show the effect of using diagonal offset algorithm on the Kronecker delta
and partition of unity properties. Its effect on the displacements and stresses are also

presented.

6.4. Numerical Results and Discussions
6.4.1 Patch tests

Four different patches are tested. They include 3x3 and 4x3 regular distributed
nodes and 9 and 12 irregular distributed nodes as shown in Figure 6.2. The moment
matrix in the original PIM is singular for 4x3 regular and 12 irregular distributed
nodes. Therefore, they have no results. The node numbers of Patches are shown in
the Figure 6.2. Their coordinates are given in the Tables 6.1-6.4. A single
background cell with 4x4 integration points is used for integrations. The dimensions
of influence domains are 2x2 m?2. The displacements are prescribed on all outside
boundaries by a linear function, u, = 0.6x and u,, = 0.6y [1,2,94]. The material
parameters are taken as £ = 1.0, and v = 0.3. The patches pass the tests if the
displacements on the interior nodes are equal to the displacements given by linear
functions. The test also requires constant stresses and strains in the entire solution

domain. Although, the Patches that include the 3x3 regular and 9 irregular
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distributed nodes are not singular, the offset algorithm is used on them to see what

happens if it is used in non-singular moment matrices.
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Figure 6.2 Patch tests with a) 3x3 regular nodes, b) 4x3 regular nodes, c) 9 irregular
nodes, d)12 irregular nodes

Table 6.1 PIM
regular nodes).

shape functions

( @ ) for Node 5 for different values of k (3x3

PIM shape functions for Node 5 (@)

Node | x y Without Offset k=4 k=5 k=6

1 0.0 | 2.0 | 0.00000000E+00 | 5.48453833E-20 | -9.41511449E-20 | 6.27788887E-21
2 0.0 | 1.0 | 0.00000000E+00 | -4.99937473E-09 | -4.99993750E-11 | -4.99999376E-13
3 0.0 | 0.0 | 0.00000000E+00 | -9.99724987E-13 | -9.99972500E-16 | -9.99997252E-19
4 1.0 | 2.0 | 0.00000000E+00 | 3.99982501E-04 | 3.99998250E-05 | 3.99999825E-06
5 1.0 | 1.0 | 1.00000000E+00 | 1.00000000E+00 | 1.00000000E+00 | 1.00000000E+00
6 1.0 | 0.0 | 0.00000000E+00 | 4.99964274E-13 | 1.22047368E-15 | 2.21044577E-16
7 2.0 | 2.0 | 0.00000000E+00 | -2.00002498E-04 | -2.00000250E-05 | -2.00000025E-06
8 2.0 | 1.0 | 0.00000000E+00 | -1.99967502E-04 | -1.99996750E-05 | -1.99999675E-06
9 2.0 | 0.0 | 0.00000000E+00 | 9.99874996E-05 | 9.99987500E-06 | 9.99998752E-07

>D 1.00000000E+00 | 1.00010000E+00 | 1.00001000E+00 | 1.00000100E-+00

Table 6.2 PIM
regular nodes).

shape functions

( @ ) for Node 5 for different values of k (4x3

PIM shape functions for Node 5 (D)

y Without Offset

k=4

k=5

k=6

2.0000 -

1.45519152E-11

-1.16415322E-10

4.65661287E-10

1.0000 -

3.16602600E-04

3.16653168E-05

3.16696241E-06

0.0000 -

-7.49823323E-01

-7.49980541E-01

-7.49996261E-01

2.0000 -

-3.56184530E-04

-3.56237288E-05

-3.56277451E-06

1.0000 -

9.99929171E-01

9.99992917E-01

9.99999291E-01

0.0000 -

1.12479333E+00

1.12497664E+00

1.12499498E+00

2.0000 -

1.03107377E-04

1.03119528E-05

1.03050843E-06

1.0000 -

7.91684579E-05

7.91647471E-06

7.91391358E-07

0.0000 -

-4.58393600E-05

-4.58328733E-06

-4.57909652E-07

2.0000 -

-3.74936669E-01

-3.74992770E-01

-3.74998380E-01

1.0000 -

-2.81287357E-05

-2.81253597E-06

-2.80793756E-07

0.0000 -

2.70879329E-05

2.70831564E-06

2.71039045E-07

Node X
1 0.0000
2 0.0000
3 0.0000
4 0.6667
5 0.6667
6 0.6667
7 1.3333
8 1.3333
9 1.3333
10 | 2.0000
11 2.0000
12 | 2.0000
>d

1.00005832E+00

1.00000583E+00

1.00000058E+00
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Table 6.1 shows the shape functions of 3x3 regular local domain for the node
5. Using the diagonal offset algorithm does not affect the Kronecker delta function
property for k = 4,5 and 6. However, it causes 1E-6 error in the partition of unity
property for k = 6. The shape functions of 4x3 regular local domain for node 5 are
shown in the Table 6.2. The diagonal offset algorithm causes 7.09E-7 error in the
Kronecker Delta function property and 5.8E — 7 error in the partition of unity
property for k = 6. For 3x3 regular local domain, these errors do not result any
important effects in the stresses and displacements as shown in Figure 6.3 and 6.4.
PIM with diagonal offset algorithm gives the same results with original PIM and
analytical solutions for k > 3. For 4x3 regular local domain, similar conclusions can
be drawn as shown in Figure 6.5 and 6.6. However, the axial stress starts to deviate

from exact results for k > 8 as shown in Figure 6.6.
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Q —E&— PIM with offset
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0.61 x"

0.6 & ;\§‘~ £y
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Figure 6.3 The axial displacements (Ux) at node 5 for different values of k (The
patch of 3x3 regular distributed nodes)
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Figure 6.5 The axial displacements (Uy) at node 5 for different values of k (The

patch of 4x3 regular distributed nodes)
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Figure 6.6 The axial stress (ox) at node 5 for different values of k (The patch of 4x3
regular distributed nodes)

Table 6.3 and 6.4 show the shape functions of 9 and 12 irregular local

domains for the nodes 5. The Kronecker Delta property is not affected and partition

of unity property is affected from offsets in an average error of 2E — 7 for k = 6.

However, this amount of error does not affect the displacements and stresses as

shown in Figure 6.7, 6.8, 6.9 and 6.10 for k = 6.

Table 6.3 PIM shape functions ( @ ) for Node 5 for different values of k (3x3
regular nodes).

PIM shape functions for Node 5 (@)
Node | x y Without Offset k=4 k=5 k=6

1 0.0 | 2.0 | 0.00000000E+00 | 3.33814940E-20 | 2.08709398E-20 | 1.87116734E-21
2 0.0 | 1.0 | 0.00000000E+00 | -4.44431974E-10 | -4.44443197E-12 | -4.44444311E-14
3 0.0 | 0.0 | 0.00000000E+00 | -2.22207654E-14 | -2.22220766E-17 | -2.22222075E-20
4 1.0 | 2.0 | 0.00000000E+00 | 1.42221121E-04 | 1.42222112E-05 | 1.42222211E-06
5 0.4 | 0.75 | 1.00000000E+00 | 1.00000000E+00 | 1.00000000E-+00 | 1.00000000E+00
6 1.0 | 0.0 | 0.00000000E+00 | 1.18843296E-14 | -1.91699755E-15 | -6.31615899E-16
7 2.0 | 2.0 | 0.00000000E+00 | -7.11115605E-05 | -7.11111560E-06 | -7.11111159E-07
8 2.0 | 1.0 | 0.00000000E+00 | -7.11084494E-05 | -7.11108449E-06 | -7.11110845E-07
9 2.0 | 0.0 | 0.00000000E+00 | 3.55545580E-05 | 3.55554558E-06 | 3.55555455E-07

> 1.00000000E+00 | 1.00003556E+00 | 1.00000356E+00 | 1.00000036E+00
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Table 6.4 PIM shape functions ( @ ) for Node 5 for different values of k (4x3

regular nodes).

PIM shape functions for Node 5 (® )

Without . _ _
Node X y Offset k=4 k=5 k=6
1 0.0000 | 2.0000 - -2.37587727E-14 | -3.55271368E-15 | -1.99840144E-15
2 0.0000 | 1.0000 - 9.86420520E-05 | 9.86669347E-06 | 9.86694226E-07
3 0.0000 | 0.0000 - 3.12422305E-05 | 3.12465735E-06 | 3.12470076E-07
4 0.6667 | 2.0000 - -2.71367749E-04 | -2.71345778E-05 | -2.71343582E-06
5 0.5000 | 1.2800 - 9.99999988E-01 | 1.00000000E+00 | 1.00000000E+00
6 0.6667 | 0.0000 - -3.05431214E-04 | -3.05390101E-05 | -3.05385990E-06
7 1.3333 | 2.0000 - 2.22072415E-04 | 2.22015379E-05 | 2.22009677E-06
8 1.6500 | 0.3300 - 3.06733783E-09 | 3.06741854E-11 3.17967874E-13
9 1.3333 | 0.0000 - 6.12525319E-09 | 6.12452311E-11 6.13731288E-13
10 | 2.0000 | 2.0000 - 4.03479082E-04 | 4.03404264E-05 | 4.03396784E-06
11 2.0000 | 1.0000 - -5.55249728E-05 | -5.55046566E-06 | -5.55026252E-07
12 | 2.0000 | 0.0000 - -1.29287103E-04 | -1.29260437E-05 | -1.29257772E-06
> - 9.99993822E-01 | 9.99999383E-01 | 9.99999938E-01
0.256
0254 —B— PIM with offset
Q —A— PIM without offset
0.252 \ —O—Exact
0.25 \

0.248
" \

0.246 \

0.244 \

0.242 M

0.24 O O 0 ® @, @ @ @)
0.238
0 1 2 3 4 5 6 7 8
k

Figure 6.7 The axial displacements (Uy) at node 5 for different values of k (The
patch of 9 irregular distributed nodes)

95




0.863 - - - - mm oo e e
—B— PIM with offset

0.862 —A— PIM without offset
—6—Exact
0.861 | --= == ===\ mm oo
0.86 === === == o\ m oo
[l
©
0.859 F----mmmmm b o
0.858 F--mmmmmm o
0.857 88— 2 m— a
0.856
0 1 2 3 4 5 6 7 8 9
k

Figure 6.8 The axial stress (ox) at node 5 for different values of k (The patch of 9
irregular distributed nodes)
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Figure 6.9 The axial displacements (Uy) at node 5 for different values of k (The
patch of 12 irregular distributed nodes)
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Figure 6.10 The axial stress (oy) at node 5 for different values of k (The patch of 12
irregular distributed nodes)

6.4.2 Axially loaded plate
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Figure 6.11 Axially loaded plate and its PIM model

It is a plane stress problem. A rectangular plate with dimensions of
12 mm x 48 mm is loaded as shown in Figure 6.11. Rectangular influence domains
are used with dimensions of 24 mm x 24 mm. The material parameters are taken as
E =200GPa and v =0. 12Zmmx 12 mm background cells are used with 3x3

gauss integration points.

The original PIM method does not give any solution because of singular
moment matrices in the influence domain of nodes 1, 2, 3, 13, 14 and 15. k is taken
as 6 for all influence domains without considering it has singular moment matrix or
not. The displacements, which are obtained from PIM with diagonal offset algorithm,

are same as the exact solutions as shown in Figure 6.12. Although, there are some
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differences between the PIM stresses and exact stresses as shown in Figure 6.13, they

can be reduced by increasing the number of nodes in the solution domain.

0.006

0.005

0.004 /Z//E
0.003
/Z/—EI— PIM with offset
0.002
/ —A—PIM without offset(no solution)
0.001

—O6—Exact

Ux (m)

0 10 20 30 40 50 60

X (mm)

Figure 6.12 Axial displacement distributions of rectangular plate with k=6.
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Figure 6.13 Axial stress distributions of rectangular plate with k=6.
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6.4.3 Cantilever beam
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Figure 6.14 Cantilever beam and its PIM model

A cantilever beam which is a classical benchmark test is solved as a plane

stress problem. Its boundary conditions are shown in Figure 6.14. The material

constants are as follows: E = 200 GPa and v = 0. Its PIM model is obtained using

33 nodes, 10 background cells with 3x3 gauss integration points and influence

domains with dimensions of 0.1m x 0.1m.

The PIM without diagonal offset algorithm includes singular moment matrix

at all nodes. Therefore, it does not give any solution. However, if the diagonal offset

algorithm is used in the PIM with k = 6, the displacement and stress solutions shows

a good agreement with exact solutions as shown in Figure 6.15 and 6.16.
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Figure 6.15 Vertical displacement distributions along the neutral line of cantilever

beam with k=6.
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Figure 6.16 Axial stress distributions along the upper line of cantilever beam with
k=6.

6.5. Results and Discussions

It has been shown that the diagonal offset algorithm overcomes the singular
moment matrix problem in the polynomial PIM and it eliminates the extra
calculations caused from complex algorithms. Also, it doesn’t decrease the efficiency

of the PIM as other methods.

The results of the studies show that the Kronecker Delta function and
partition of unity properties are affected from the diagonal offset algorithm. The
amount of the error is directly related with the amount of offset. It is shown that PIM
with the proposed algorithm gives nearly same results with the exact results for

4 < k < 7. The solutions deviate from exact results fork < 4 and k > 7.
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CHAPTER 7

A REGULAR BASIS ALGORITHM FOR THE POLYNOMIAL POINT
INTERPOLATION METHOD

7.1 Introduction

As already specified before, Point Interpolation Method (PIM) has inherent
properties that give advantages over the Mesh-free methods based on Moving Least
Square (MLS) shape functions. These properties are the Kronecker delta function
property of its shape functions and the simplicity of its computation algorithm. But
inspite of its positives it has two negativities during its application. Detailed study of
the first one, the singularity problem, was presented in the previous chapter. The
second one is selection of the polynomial terms.

The selection of the polynomial terms and the relation between the selection
process and the singularity are discussed in detail in the section 7.2. A general rule
for the selection of polynomial terms are proposed in section 7.3 and the test of the

proposed rule is done in section 7.4.

7.2 A detailed view to the selection of the polynomial terms

The basis function is constructed by selecting the terms from the Pascal’s
triangle. However, there isn’t any definite general rule or rules for the selection of
the terms. Two properties are pointed in the literature for the construction of the basis
function. One is the symmetrically selection of the terms from Pascal’s triangle [1],
and the other is the completeness of the basis function [2,87,94,95,115-117,119,125].
The p;(x) was built utilizing the Pascal’s triangle with complete basis, but the basis
was provided with different terms [87,94,95,115-117]. Liew and Chen [125] were
mentioned that the basis is chosen as a complete polynomial basis for computational
accuracy. Liu et al. [119] were presented that basis should satisfy the completeness
or quasi-completeness. The complete basis is a preference according to Liu and Gu
[2]. Liu [1] and Liu et al. [119] were emphasized that the addition of higher order

terms to the basis can be possible.
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In addition to those, the reason of the singularity is based on the improper
selection of polynomial terms and the singularity problem is eliminated with the
appropriate selection of the polynomial terms [1,95]. It is shown that there is a gap in
the selection of polynomial terms for the basis.

7.3 A regular basis algorithm for the polynomial point interpolation method

In this part of the study, it is tried to eliminate the singularity problem by
proposing an algorithm about the selection of the polynomial terms for basis
functions. All the proposed singularity elimination algorithms are put into use when a
singularity encountered. However, up to this step, most of the calculations including
taking the inverse of moment matrix are generally completed. Therefore, an
algorithm before all of these calculations can have important advantageous over
existing algorithms. The purpose of regular basis algorithm is to eliminate singularity
at the initial stage of shape function computation. Employment of it without losing

any advantages of PIM is planned.

In this algorithm, terms of the basis functions are selected from the Pascal’s
triangle according to the position of the nodes. This is different from the original
polynomial PIM. In the original polynomial PIM, there is not any relation shown
between polynomial terms and their positions at the formulation. However, the
source of singularity was explained with the positions of the nodes by Liu [1] and
Liu and Gu [95]. Also, Wang and Liu [86] were emphasized that the node
distribution in polynomial PIM is structured. But the structure is not defined. The
idea behind the selection of polynomial terms according to the position of the nodes
comes not only for elimination of singularity but also find a physical relation
between the local domain and the terms.

The general form of the algorithm can be illustrated in the Figure 7.1.
Selection of tip points in the local domains is starting point of the algorithm. Two tip
points, one for x-direction and one for y-direction, are selected for a two-dimensional
local domains. Tip points must be the last node of the support domain on the x- or y-
directions for a two-dimensional domain. It is not important which side of the
coordinate axes, left or right and up or down, is selected as long as it is consistent
with the other local domains. The distances between the nodes of local domain are
determined after the selection of tip points. The order of x-terms are increased for
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every distance in x-direction between two adjacent nodes starting from the tip point

and the order of y-terms are increased for each distance in y-direction. The order of

the terms for the tip points is zero in the related direction.
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Selected tip point for Y- axis

Selected tip point for X- axis

Figure 7.1 A regular basis algorithm for selection of the basis function terms

The algorithm can also be used for the irregular distributed nodes. For example,

consider a node configuration of a rectangular support domain as shown in Figure

7.2. The nodes, denoted by 1, 2, 9 and 10, are the last nodes on both x- and y-
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Figure 7.2 A rectangular support domain with irregular distributed nodes

If node 1 is selected. The order of x and y terms of the nodes are obtained as shown

in Figure 7.3. And the polynomial basis function is expressed as follows

pT — {1, y6' Xy, x2y2’ x3y3' X4y5, xSy' x5y4—, x6' x6y6}

OO ©

A A

O,
.
Soon

. R E N E
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4 --------- S S A

4---]--

Figure 7.3 Illustration of selection of the basis function terms for a rectangular
support domain

For an arbitrary shape support domain, shown in Figure 7.4, the last nodes of support
domain in x- and y-direction are different nodes. They aren’t coincide. Two tip
points, one for x-direction and one for y-direction, are selected. Any of the nodes
numbered with 1 or 13 can be the tip point for x-direction and node 7 or node 10 can

be the tip point for y-direction. The node 1 for x-direction and the node 10 for the y-

direction are the selected tip points of each directions. The selected terms of each
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nodes in x-, and y-directions are shown in Figure 7.5. The PBF with these terms has

the following form:

p" = {3 xy, xy7, x2y®, x3y?, 13y, xtyB, x5yt x6y°,

X6y2, x7y7’ x7y' x8y5}

5
3

&~
P NN
A L A AL A i
' ' | [ [ ' 1
' ' | [ [ ' 1
' ' ' [ [ ' 1
' ' ' L [ ' |
[} 1 [} 0 (] ! |
1 1 1 Ll [ 1 | ®
...... e A N %
1 ' [ [ ' 1
| ] [ [ ' 1
~ ' ] [ [ ' 1
SRR UL S D 0 WL
1 ' [ [ [
' ' [ [ 1
[ ' (I a9
—l O
........ ST Lk
] [ [ |
' [ "o |
o
_bx <---- ||r||"|||"|m_v.|"||"|||"|||| =___.
~D ' [T [ 1 <
..... R I I H B g
. RIS PO
R ----HN--+--r-4- HR AL EEEEE EE
' ' ' o
| ' ' (| ~
...... TR N il e R
' ™), [
R 4----1--Q - a-Aa--r a-------
' [ 1
' [ |
' [ |
|||||| .ull J-4-0O lllnnnullllv i
1 '
'
'

yie

Figure 7.5 Illustration of selection of the basis function terms for an ellipse

support domain
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7.4 Numerical Tests
7.4.1 Patch Tests

Four patch tests are prepared to verify the proposed algorithm. First patch is not a
standard patch test. It is a problem found in the literature that polynomial PIM has
singular moment matrix. The other three patches are the standard patch tests and also
they are the situations that polynomial PIM have singularity problem potential.

The first patch is shown in Figure 7.6, and it includes six nodes in a support domain.
These six nodes sit in two lines parallel to the x axis and in three lines parallel to the

y axis.

Figure 7.6 A patch test causes singularity in original PIM

Figure 7.7.a, shows the second patch comprised form nine nodes in 3x3 regular
distribution. It has one interior node. Figure 7.7.b, shows the third patch with 25
nodes in 5x5 format. This patch includes 9 interior nodes. Figure 7.7.c, shows the
fourth patch that constructed using 49 regularly distributed nodes. 25 nodes of the
fourth patch are interior nodes. The dimensions of second, third and fourth patches
are 2x2. The material properties are taken as E = 1.0 and v = 0.3. Prescribed
displacements are applied to the boundary nodes. The prescribed displacements are
linear and the value of them are u, = 0.6x and u, = 0.6y. A 2x2 rectangular
background cell and different gauss configuration are used for integration in these

patch tests.
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Figure 7.7 Patch tests with regular node distributions

The results of the patch tests are shown in Table 1. The table shows that original
polynomial PIM has singular moment matrix problem in all configuration of the first
patch test and it fails in the first patch test. However, the proposed algorithm passes
the patch test without having any singularity problem and giving good accuracy.

In the second patch test, the original polynomial PIM and the proposed algorithm are
passed the patch test. In this patch, they are same because both of them use the same

polynomial basis function.

The original polynomial PIM method fails in the third and fourth patch tests. In these
tests it doesn’t have any singularity problem but it doesn’t give the accurate results.
The proposed algorithm doesn’t have any singularity problem in the third and fourth
patch tests. However, the result obtained using 2x2 or 3x3 gauss point integrations
aren’t accurate in the third patch test. It passes the third patch with 4x4, 6x6 and 8x8

gauss point configurations.
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Table 7.1. Singularity and accuracy results of the patch tests.

r———.———-' '————.———-1 '——‘——O—-‘—-’ ?—.-.—.—&0-'
| Cola S B BCECHCRE B B
: : + L] + + L] . L] + + o o 0 0 0 +
[} ] ] 1 d e o o & CRCRC R A )
l-———‘———JI l-———.———-i L—.—+-.—-i 1:-:—:—1:-:
3x2nodes | 3x3nodes [ 5x5nodes | 7x7nodes
Original | Singularity: [ FAILED PASSED PASSED PASSED = =
PIM | Accuracy: - PASSED FAILED FAILED
Regular Singularity: | PASSED PASSED PASSED PASSED - x
PIM Accuracy: PASSED PASSED FAILED FAILED |2 x 2 gauss points
Original | Singularity: FAILED PASSED PASSED PASSED R R A
PIM | Accuracy: - PASSED FAILED FAILED L S
Regular Singularity: | PASSED PASSED PASSED PASSED x x =
PIM | Accuracy: PASSED PASSED FAILED FAILED |3 x3 gauss points
Original | Singularity: | FAILED PASSED PASSED PASSED Tl
pPIM | Accuracy: - PASSED FAILED FAILED A
N N NN
Regular | Singularity: | PASSED PASSED PASSED PASSED e % % %
PIM | Accuracy: PASSED PASSED PASSED FAILED |4 x4 gauss points
Original Singularity: | FAILED PASSED PASSED PASSED AR
N N N T
piMm | Accuracy: - PASSED FAILED FAILED nnox o
N N NN
Regular | Singularity: | PASSED | PASSED | PASSED | PASSED o
pPIM | Accuracy: PASSED PASSED PASSED PASSED | 6 x 6 gauss points
Original | Singularity: | FAILED PASSED PASSED PASSED RARARRR
Ranany
PIM Accuracy: - PASSED FAILED FAILED Lt
A aNaNaNa)
Regular | Singularity: | PASSED | PASSED | PASSED | PASSED | [RERRRRR
PIM Accuracy: PASSED PASSED PASSED PASSED | 8 x 8 gauss points

7.4.2 Case Studies

7.4.2.1 Axially Loaded Bar

In the first case study, an axially loaded bar is solved. One side of the bar is clamped

and 83. kN/mm is applied to the other side as shown in Figure 7.8. The material

properties are E = 200 GPa and v = 0. The problem domain is represented by 15

nodes. The rectangular support domains are used for interpolation. The size of them

are 0.12 m x 0.12 m. Therefore, 6-9 nodes are found in the support domains. Four

background cells are used for integration.
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Figure 7.8 Axially loaded bar and the PIM model.
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Figure 7.9 The axial displacements of the bar.
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Figure 7.10 The axial stress distributions of the bar.

The displacement and stress values in axial direction of the bar are computed using
different support domain sizes. They are compared in Table 7.2. As seen in this
Table, PIM with the regular basis gives an excellent accuracy even for small support

domain sizes.
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Table 7.2 The displacement and stress values in axial direction of the bar for
different sizes of the domains. (Original PIM has singularity problem. Only PIM
with regular basis results listed.)

[

\ 4

Domain Size Domain Size Domain Size Domain Size
12x12 24x12 36x12 48x12
(6-9 nodes) (9-12 nodes) (12-15 nodes) (15 nodes)
Cocln\lrc()j?ﬁate regular basis PIM regular basis PIM regular basis PIM regular basis PIM
X Y Ux Sx Ux Sx Ux Sx Ux Sx
0 6 |5.82E-16 | 8.33E+01 | 4.29E-16 | 8.33E+01 | 3.50E-16 | 8.33E+01 | 2.77E-16 | 8.33E+01
0 0 |2.33E-15|8.33E+01 | 1.72E-15 | 8.33E+01 | 1.40E-15 | 8.33E+01 | 1.11E-15| 8.33E+01
0 -6 |5.82E-16 | 8.33E+01 | 4.29E-16 | 8.33E+01 | 3.50E-16 | 8.33E+01 | 2.77E-16 | 8.33E+01
12 6 |1.43E-05|8.33E+01 | 1.43E-05 | 8.33E+01 | 1.43E-05 | 8.33E+01 | 1.43E-05 | 8.33E+01
12 0 |1.43E-05|8.33E+01 | 1.43E-05 | 8.33E+01 | 1.43E-05 | 8.33E+01 | 1.43E-05 | 8.33E+01
12 | -6 |1.43E-05 |8.33E+01 | 1.43E-05 | 8.33E+01 | 1.43E-05 | 8.33E+01 | 1.43E-05 | 8.33E+01
24 6 |2.86E-05|8.33E+01 | 2.86E-05 | 8.33E+01 | 2.86E-05 | 8.33E+01 | 2.86E-05 | 8.33E+01
24 0 |2.86E-05 | 8.33E+01 | 2.86E-05 | 8.33E+01 | 2.86E-05 | 8.33E+01 | 2.86E-05 | 8.33E+01
24 | -6 |2.86E-05 |8.33E+01 | 2.86E-05 | 8.33E+01 | 2.86E-05 | 8.33E+01 | 2.86E-05 | 8.33E+01
36 6 |4.29E-05 | 8.33E+01 | 4.29E-05 | 8.33E+01 | 4.29E-05 | 8.33E+01 | 4.29E-05 | 8.33E+01
36 0 |[4.29E-05|8.33E+01 | 4.29E-05 | 8.33E+01 | 4.29E-05 | 8.33E+01 | 4.29E-05 | 8.33E+01
36 | -6 |4.29E-05 | 8.33E+01 | 4.29E-05 | 8.33E+01 | 4.29E-05 | 8.33E+01 | 4.29E-05 | 8.33E+01
48 6 |5.71E-05 | 8.33E+01 | 5.71E-05 | 8.33E+01 | 5.71E-05 | 8.33E+01 | 5.71E-05 | 8.33E+01
48 0 |[5.71E-05|8.33E+01 | 5.71E-05 | 8.33E+01 | 5.71E-05 | 8.33E+01 | 5.71E-05 | 8.33E+01
48 | -6 |5.71E-05 | 8.33E+01 | 5.71E-05 | 8.33E+01 | 5.71E-05 | 8.33E+01 | 5.71E-05 | 8.33E+01
7.4.2.2 Cantilever Beam
100 kN
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=
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§. 1m i
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Figure 7.11 The cantilever beam problem.

Figure 7.12 The PIM model of cantilever beam problem.
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In the second case study, an elasto-static cantilever beam problem is solved with the
proposed algorithm. The cantilever beam is loaded as shown in Figure 7.11 and the
model used for original PIM and regular basis PIM is shown in Figure 7.12. The
material properties are as follows: E = 200 GPa and v = 0. 63 nodes are used to
represent the cantilever beam geometry. 10 background cells are used to evaluate the
integrals. The size of the formed support domains are 0.1 m x 0.1 m. 9 — 15 nodes
are used for interpolation in a local domain. The results are compared with analytical
solution results in Figure 7.13 and Figure 7.14. The transverse displacement and
stress values in x — direction of the bar along AB line are computed using different

support domain sizes. They are shown in Table 7.3.

0 0.2 0.4 0.6 0.8 1 1.2

10,0005 |- - - - NG

20001 o N

Uy (m)

20,0015 [mm=mmmmmmmmmm e N e
=@==Regular based PIM

===0Original PIM(no solution)
“0.002 F--mmmm e e Wy

== Analytic

100025 L---- oo iLiiii.iii.

Figure 7.13 The lateral displacements along the mid-point of the cantilever beam.
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Stress (MPa)

0 0.2 0.4 0.6 0.8 1 1.2

x (m)

Figure 7.14 The axial stress distributions along the top surface of the cantilever
beam.

To investigate the effect of number of nodes in a local domain, the displacement and
stress values along AB line of the cantilever beam are computed using different
support domain sizes. They are compared in Table 7.3.
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Table 7.3 The transverse displacements and Sy along AB line using different domain
sizes. (Original PIM has singularity problem. Only PIM with regular basis results
listed.)

Domain Size 0.05x0.05 | Domain Size 0.05x0.1 | Domain Size 0.1x0.1

Node Coordinate | regular basis PIM regular basis PIM regular basis PIM
X Y Uy SX Uy SX Uy SX
0 0.05 | -3.74E-27 | 5.83E+07 | 6.08E-27 | 5.83E+07 | 3.55E-27 | 5.96E+07

0.05 0.05 | -6.91E-06 | 5.70E+07 | -6.83E-06 | 5.70E+07 |-7.94E-06 | 5.75E+07

0.1 0.05 | -2.94E-05 | 5.40E+07 | -2.95E-05 | 5.40E+07 |-2.99E-05 | 5.39E+07

0.15 0.05 | -6.50E-05 | 5.10E+07 | -6.48E-05 | 5.10E+07 |-6.61E-05 | 5.10E+07

0.2 0.05 | -1.13E-04 | 4.80E+07 | -1.13E-04 | 4.80E+07 |-1.14E-04 | 4.80E+07

0.25 0.05 | -1.74E-04 | 4.50E+07 | -1.74E-04 | 4.50E+07 |-1.75E-04 | 4.50E+07

0.3 0.05 | -2.44E-04 | 4.20E+07 | -2.45E-04 | 4.20E+07 |-2.46E-04 | 4.20E+07

0.35 0.05 | -3.28E-04 | 3.90E+07 | -3.28E-04 | 3.90E+07 |-3.29E-04 | 3.90E+07

0.4 0.05 | -4.18E-04 | 3.60E+07 | -4.18E-04 | 3.60E+07 |-4.19E-04 | 3.60E+07

0.45 0.05 | -5.21E-04 | 3.30E+07 | -5.21E-04 | 3.30E+07 |-5.23E-04 | 3.30E+07

0.5 0.05 | -6.27E-04 | 3.00E+07 | -6.28E-04 | 3.00E+07 |-6.29E-04 | 3.00E+07

0.55 0.05 | -7.48E-04 | 2.70E+07 | -7.47E-04 | 2.70E+07 |-7.49E-04 | 2.70E+07

0.6 0.05 | -8.66E-04 | 2.40E+07 | -8.67E-04 | 2.40E+07 |-8.69E-04 | 2.40E+07

0.65 0.05 | -1.00E-03 | 2.10E+07 | -1.00E-03 | 2.10E+07 |-1.00E-03 | 2.10E+07

0.7 0.05 | -1.13E-03 | 1.80E+07 | -1.13E-03 | 1.80E+07 |-1.13E-03 | 1.80E+07

0.75 0.05 | -1.27E-03 | 1.50E+07 | -1.27E-03 | 1.50E+07 |-1.28E-03 | 1.50E+07

0.8 0.05 | -1.41E-03 | 1.20E+07 | -1.41E-03 | 1.20E+07 |-1.41E-03 | 1.20E+07

0.85 0.05 | -1.56E-03 | 9.00E+06 | -1.56E-03 | 9.00E+06 |-1.57E-03 | 8.99E+06

0.9 0.05 | -1.70E-03 | 6.00E+06 | -1.71E-03 | 6.00E+06 |-1.71E-03 | 6.10E+06

0.95 0.05 | -1.86E-03 | 3.00E+06 | -1.86E-03 | 3.00E+06 |-1.86E-03 | 2.53E+06

1 0.05 | -2.00E-03 | 1.73E+06 | -2.01E-03 | 1.73E+06 |-2.01E-03 | 3.85E+05

7.4.2.3 Simply Supported Circular Plate

WL, .
L : : _______ =1.0cm

v

Figure 7.15 Simply supported circular plate.
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Figure 7.16 The PIM model of simply supported circular plate.

In the third case study, the simply supported circular plate, shown in Figure 7.15, is
analyzed. The plate is modeled by 33 nodes as illustrated in Figure 7.16. The
material properties are as follows: E = 105 GPa and v = 0.24. In the cantilever
beam, 63 nodes are used to represent the cantilever beam geometry. The integration
is done using 20 background cells. The size of the support domains are
1.0cmx 1.0 cm. 6 —9 nodes are used for interpolation in a local domain. The
deflection profile of problem is shown in Figure 7.17. The displacement values are

computed using different support domain sizes. They are shown in Table 7.4.
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Figure 7.17 The deflection profile of simply supported circular plate.
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Table 7.4 The deflection profile of simply supported circular plate for different
domain sizes. (Original PIM has singularity problem. Only PIM with regular based

results listed.)

Domain Size 1.0x1.0
(6-9 nodes)

Domain Size 2.0x1.0
(9-15 nodes)

Domain Size 3.0x1.0
(12-21 nodes)

Node Coordinate

Regular basis PIM

Regular basis PIM

Regular basis PIM

R Z uUr Uz Ur Uz Ur Uz

0.00 0 1.39E-07 | -1.78E-04 | -2.22E-09 | -1.87E-04 | -1.06E-09 | -1.87E-04
0.01 0 2.75E-06 | -1.74E-04 | 2.30E-06 |-1.84E-04 | 2.30E-06 |-1.84E-04
0.02 0 4.85E-06 | -1.66E-04 | 4.53E-06 |-1.77E-04 | 4,53E-06 |-1.78E-04
0.03 0 6.72E-06 | -1.55E-04 | 6.66E-06 |-1.66E-04 | 6.66E-06 |-1.66E-04
0.04 0 8.39E-06 | -1.39E-04 | 8.63E-06 |-1.51E-04 | 8.62E-06 |-1.51E-04
0.05 0 9.83E-06 | -1.21E-04 | 1.04E-05 |-1.32E-04 | 1.04E-05 |-1.32E-04
0.06 0 1.10E-05 | -9.99E-05 | 1.19E-05 |-1.09E-04 | 1.19E-05 |-1.09E-04
0.07 0 1.20E-05 | -7.67E-05 | 1.30E-05 |-8.41E-05 | 1.30E-05 |-8.42E-05
0.08 0 1.26E-05 | -5.19E-05 | 1.39E-05 |-5.70E-05 | 1.39E-05 |-5.71E-05
0.09 0 1.29E-05 | -2.62E-05 | 1.42E-05 |-2.88E-05 | 1.42E-05 |-2.89E-05
0.10 0 1.30E-05 | -2.99E-17 | 1.42E-05 |-2.17E-17 | 1.42E-05 |-1.87E-17
0.00 0.5 |1.57E-12|-1.78E-04 | 1.07E-09 |-1.87E-04 | 8.45E-10 |-1.87E-04
0.01 0.5 |4.06E-09 |-1.74E-04 | 4.90E-09 |-1.85E-04 | 4.88E-09 |-1.85E-04
0.02 0.5 |8.11E-09 | -1.67E-04 | 8.19E-09 |-1.78E-04 | 8.25E-09 |-1.78E-04
0.03 0.5 |1.22E-08 |-1.55E-04 | 1.25E-08 |-1.67E-04 | 1.23E-08 |-1.67E-04
0.04 0.5 |1.62E-08 |-1.40E-04 | 1.66E-08 |-1.51E-04|1.70E-08 |-1.51E-04
0.05 0.5 |2.03E-08 |-1.21E-04 | 2.04E-08 |-1.32E-04 | 1.95E-08 |-1.32E-04
0.06 0.5 |2.44E-08 |-1.00E-04 | 2.58E-08 |-1.10E-04 | 2.71E-08 |-1.10E-04
0.07 0.5 |2.78E-08 | -7.69E-05 | 2.61E-08 |-8.44E-05|2.38E-08 |-8.45E-05
0.08 0.5 |3.52E-08 | -5.21E-05 | 3.96E-08 |-5.72E-05|4.18E-08 |-5.73E-05
0.09 0.5 |2.78E-08 | -2.63E-05 | 2.38E-08 |-2.89E-05 | 2.45E-08 |-2.90E-05
0.10 0.5 |4.82E-08 | -2.39E-07 | 3.98E-08 |-2.87E-07 | 3.13E-08 |-3.26E-07
0.00 1 1.39E-07 | -1.78E-04 | 2.82E-10 |-1.87E-04 | -9.41E-10|-1.87E-04
0.01 1 2.74E-06 | -1.74E-04 | -2.29E-06 | -1.84E-04 | -2.29E-06 | -1.84E-04
0.02 1 4.84E-06 | -1.66E-04 | -4.51E-06 | -1.77E-04 | -4.51E-06 | -1.78E-04
0.03 1 6.70E-06 | -1.55E-04 | -6.63E-06 | -1.66E-04 | -6.63E-06 | -1.66E-04
0.04 1 8.35E-06 | -1.39E-04 | -8.59E-06 | -1.51E-04 | -8.59E-06 | -1.51E-04
0.05 1 9.79E-06 | -1.21E-04 | -1.03E-05 | -1.32E-04 | -1.03E-05 | -1.32E-04
0.06 1 1.10E-05 | -9.99E-05 | -1.18E-05 | -1.09E-04 | -1.18E-05 | -1.09E-04
0.07 1 1.19E-05 | -7.67E-05 | -1.30E-05 | -8.42E-05 | -1.30E-05 | -8.43E-05
0.08 1 1.26E-05 | -5.20E-05 | -1.38E-05 | -5.71E-05 | -1.38E-05 | -5.72E-05
0.09 1 1.29E-05 | -2.62E-05 | -1.41E-05 | -2.87E-05 | -1.41E-05 | -2.88E-05
0.10 1 1.28E-05 | -2.03E-07 | -1.40E-05 | -2.75E-07 | -1.40E-05 | -3.38E-07
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7.5 Results and Discussions

The regular basis PIM algorithm is proposed to define a rule for the selection
of basis function terms. It is a simple and practical algorithm. It can be easily
implemented in the PIM solutions, only the polynomial terms are changed in PIM
solution procedure. It is stable and accurate even for small local domains. And also it
eliminates the singularity problem without requiring extra any operations. However,
it has a major drawback that it does not work for other than a regular node
configuration in a local domain. The reason of this can be the requirement of
completeness. The regular basis algorithm is far away to satisfy completeness for
irregular node configurations. But the results of case studies show that the PIM
with regular basis algorithm gives excellent results for regular distributed
nodes. Therefore, the original PIM can be improved using proposed algorithm for

the regular distributed nodes.
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CHAPTER 8
CONCLUSIONS

The original PIM method is improved using two different algorithms. The
diagonal offset method is a simple and practical method and makes the moment
matrix invertible. Regular basis algorithm is used for appropriate selection of

polynomial terms and it gives excellent results for regularly distributed nodes.

It has been shown that the diagonal offset algorithm overcomes the singular
moment matrix problem in the polynomial PIM. It has significant advantages over

the other singularity elimination algorithms

eliminates the extra calculations,

simple and practical algorithm,

doesn’t decrease the computation efficiency of the PIM,

e preserves accuracy of the PIM.

It is shown that PIM with the proposed algorithm gives nearly same results
with the exact results for 4 < k < 7. The solutions deviate from exact results for

k<4andk >7.

The proposed regular basis algorithm is stable and accurate even for small
local domains. And it also eliminates the singularity problem without requiring extra
any operations. However, it has a major drawback that it does not work for other than
a regular node configuration in a local domain. But the results of case studies show
that the PIM with regular basis algorithm gives excellent results for regularly
distributed nodes. Therefore, the original PIM can be improved using proposed
algorithm for the regularly distributed nodes.

The RPIM method is also used for the solution of 2D elasticity problems. The
effect of radial basis shape parameters are investigated in the solution of

geometrically nonlinear and elasto-plastic problems.
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It is observed that the node distribution characteristics is more effective than
the shape parameters in the displacement and stress solutions. It is also shown that
RPIM shape parameters usually affect the stresses more than displacements. The
values of shape parameters are generally problem dependent. However, more stable

results are obtained with shape parameters, g=1.03 and a.=3 and m=3.

It is also shown that when the same increase in the number of nodes is
considered, improvements in the RPIM results are better than FEM with suggested

values of shape parameters.
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FUTURE WORKS

The application of PIM to geometric nonlinear problems and elasto-plastic
problems are planned. Also, the implementation of Moving-Least Square methods to

these problems can be studied.
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APPENDIX

A SAMPLE SOLUTION OF 2D GEOMETRICALLY NONLINEAR
PROBLEMS USING RPIM

Taking large displacements into consideration, deflections and stresses in the
axially loaded thin plate, shown in Figure A.l, are solved using RPIM. The
material parameters are considered as E = 1000, v = 0.25 and thickness is
h = 0.1. For simplicity, 4 nodes and single background cell are used. Load is

applied in one step and the computations for the first two iterations are given.

4 3
$—> 7f§

% > 25
1 2
Figure A.1 Thin plate

The coordinates of field nodes and background points are as follows:

Field Node | X-coordinate | Y-coordinate
1 0 0
2 1 0
3 1 1
4 0 1
Background Point | X-coordinate | Y-coordinate
1 0 0
2 1 0
3 1 1
4 0 1
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Specified nodal loads:

Node | DOF | Value

Gauss quadrature points and weights of the background cell:

Point Weight Jacobian
X .21132487
' Y 8.211224278?22 1 0.25
X 788675129414
’ Y 8.2??222873586 1 0.25
X 0.211324870586
’ Y 0.788675129414 1 0.25
X 0.788675129414
) Y 0.788675129414 1 0.25
E=1000 v=0.25 ‘ Initial thickness=0.1 ‘ Plane stress analysis |

Lame’s constants:

A= Ev = 400
ST @A+v)a-2v)
- =400
K=2a+v)
2p
=~ 06667
NN

Computation for stiffness matrix of support domain at
{0.211324870586,0.211324870586 } with weight = 1;

Dimensions of the support domain:

dy=1and d, = 1;

Support domain of gauss point X




Nodes of support domain are; node 1,node 2,node 3 and node 4.

Interpolation functions and their derivatives:

D(x) = [p1, P2, 3, P4l

Node 1 2 3 4
) 0.622825041123 | 0.165850088290 | 4.547478229618E-02 | 0.165850088290
g_¢ -0.790075558664 | 0.790075558664 0.209924441336 -0.209924441336
X
d
% -0.790075558664 | -0.209924441336 0.209924441336 0.790075558664

Deformation gradient is calculated using the Equation 4.1

NP
0P,
Fiy = ). |, da + 8
=1t

where NP = 4 and the displacement vector

Deformation gradient, F = [(1) (1)]

d=[0 0 0 0 0 0 0 0]

and arranged deformation gradient (Equation 4.16);

L 000
F=[0001]

01 10

Right Cauchy-Green tensor, ¢; = [é (1)

Left Cauchy-Green tensor, ¢, = [(1) (1)

Second PK stresses, S =

Initial stress matrix, S =

o

cocooco oo
o

(e)
S O OO
o O OO

The matrix for derivatives of shape functions of support domain,

B = |

0.790075558664
0

—0.790075558664

0

Internal force vector,r; = [0 0]

0

0

—0.790075558664 —0.790075558664

The matrix for derivatives of shape functions of support domain,
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—0.790075558664 —0.790075558664 0 0
0 0 —0.790075558664 —0.790075558664

1200 400 0 ]

BI=[

Material matrix, D =400 1200 0

0 0 400

2496 12.48
12.48 24.96

0 0
0 0

Current stiffness matrix, k., = [

Geometric stiffness matrix, kg = [

Assembled current stiffness matrix,

12496 1248 0 0 0 O O O
1248 2496 0 0 0 O O O
0 0 0 00 0 0O
K = 0 0 0 0 0 0 0O
¢ 0 0 0 0 0 0 0O
0 0 0 0 0 0 0O
0 0 0 0 0 0 0O
0 0 0 00 0 0O
Assembled geometric stiffness matrix,
0O 0 0 0 0 0 0 O
0O 00 0 0 0 0O
0O 00 0 0 0 0O
K. — 0O 0 0 0 0 0 0O
s 0O 00 0 0 0 0O
0O 0000 O 0O
0O 0 0 0 0 0 0O
L0 0 0 0 0 0 0 O

The matrix for derivatives of shape functions of support domain,

BT=[0.790075558664 —0.209924441336 0 0
2 0 0 0.790075558664 —0.209924441336
. . —17.06 —4.58
Current stiffness matrix, k. = [
¢ —458 —-1.26
0 0

Geometric stiffness matrix, k; = [0 0

Assembled current stiffness matrix,

12496 1248 -—-1706 —458 0 0 0 O
1248 2496 —-458 -126 0 0 0 O

0 0 0 0 0 0 0 O

K. = 0 0 0 0 0 0 0 O
¢ 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O

0 0 0 0 0 0 0 O

0 0 0 0 0 0 0 O
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0 0 0 0 0 0 0 O

0O 0 0 0O O OO

0O 0 00O O OO

Assembled geometric stiffness matrix, Ky = 8 8 8 8 8 8 8 8
0O 0 0 00O O OO

0O 0000 0O 0O

L0 0 0 0 0 0 0 o

The matrix for derivatives of shape functions of support domain,

BT — [0.209924441336 0.209924441336 0 0
3 0 0 0.209924441336 0.209924441336
—-6.63 —-3.31

Current stiffness matrix, k., = 331 —663

Geometric stiffness matrix, kg = [8 8

Assembled current stiffness matrix,

12496 1248 -17.06 —458 —-6.63 —3.31 0 O
1248 2496 —458 —-126 -331 —-663 0 O
0 0 0 0 0 0 0 0
K. = 0 0 0 0 0 0 0 0
¢ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 o
0 0 0 0 0 0 0 O
0O 0 0 00O O OO
0O 0 00O O OO
L . |0 0 0 0 0 0 0 O
Assembled geometric stiffness matrix, K¢ = 0 000000 0
0O 0 0 0OOO OO
0O 0 00O O OO
L0 0 0 0 0 0 0 O
The matrix for derivatives of shape functions of support domain,
BT = [0:209924441336  0.790075558664 0 0
47 0 0 —0.209924441336 0.790075558664
. : _[-1.26 —4.58
Current stiffness matrix, k. = [—4.58 _17.06

0 0

Geometric stiffness matrix, kg = [ 0 0

Assembled current stiffness matrix,
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12496 1248 -17.06 —4.58 —-6.63 —-331 -—-1.26 —4.581
12.48 2496 —-458 -—-1.26 -3.31 -—-6.63 —4.58 —-17.06
0 0 0 0 0 0 0 0
K. = 0 0 0 0 0 0 0 0
¢ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 O
0O 0 0 0 0 0 0 o0
0O 0 0 00O 0 0O
e . 0O 000OOO OO
Assembled geometric stiffness matrix, Ky = 0 000000 0
0O 0 0 00O 0 0 O
0O 0 00OOO OO
L0 0 0 0 0 0 0 o

The matrix for derivatives of shape functions of support domain,

BT = [0.790075558664 —0.209924441336 0 0
2 0 0 0.790075558664 —0.209924441336

Internal force vector, r, = [0 0]

The matrix for derivatives of shape functions of support domain,

BT — [—0.790075558664 —0.790075558664 0 0
1 0 0 —0.790075558664 —0.790075558664
1200 400 0
Material matrix, D = | 400 1200 0
0 0 400
. : _[-17.06 —4.58
Current stiffness matrix, k. = _458 126
. . _ [0 0
Geometric stiffness matrix, kg = [ 0 0
Assembled current stiffness matrix,
r 2496 1248 -—-17.06 —4.58 —-6.63 —-331 —-1.26 —4.581
1248 2496 —458 -126 -3.31 -6.63 —458 -17.06
—17.06 —4.58 0 0 0 0 0 0
K. = —458 -—-1.26 0 0 0 0 0 0
¢ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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Assembled geometric stiffness matrix, Ky =

SO OO O OO
O O O OO OO

SO OO OO OO
(=2 e R e B e B e B e B @ M @)
(el el e e e Mo Mo N o)
SO OO OO OO
(=2 e R e B eo B @ B eo i @ B @)
oo 0000 oo

L0 0

The matrix for derivatives of shape functions of support domain,

BT = [0.790075558664 —0.209924441336 0 0
2 0 0 0.790075558664 —0.209924441336
19.16 —-3.31

Current stiffness matrix, k, = 331 756

Geometric stiffness matrix, kg = [8 0]

Assembled current stiffness matrix,

- 24.96 1248 —-17.06 —4.58 —-6.63 —-3.31 —-1.26 —4.581
12.48 2496 —458 -—-1.26 -—-331 —-6.63 —4.58 -17.06
—-17.06 —4.58 19.16 -—-3.31 0 0 0 0
K. = —-458 -1.26 -3.31 7.56 0 0 0 0
¢ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
r0 0 0 0 0 O 0 O
0O 0 00O O OO
O 0 0 0 0 0 0 O
o , o o 0o 0 o0 o0 0 o0
Assembled geometric stiffness matrix, Ky = 0 000000 0
O 00 0 0 0 0 O
O 00 0 0 O 0 O
L0 0 0 0 0 0 0 o
The matrix for derivatives of shape functions of support domain,
BT — [0.209924441336 0.209924441336 0 0
8 0 0 0.209924441336 0.209924441336
. . _ 1453 1.21
Current stiffness matrix, k. = 121 033

0 0

Geometric stiffness matrix, kg = [ 0 0

Assembled current stiffness matrix,
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 24.96

12.48
—17.06

—4.58

o O OO

12.48
24.96
—4.58
—-1.26

o O O

—17.06
—4.58
19.16
—3.31

o O OO

—4.58

—-1.26

—-3.31
7.56

o O O

Assembled geometric stiffness matrix, Ky =

The matrix for derivatives of shape functions of support domain,

BT — [—0.209924441336 0.790075558664
4=

0

Current stiffness matrix, k, =

0

—6.63
6.68

6.68

T 1
(el el e e e Ble M e N )

—6.63

—-3.31
4,53
1.21

o

o O O

OO OO OO OO

SO OO OO OO

0

—3.31
—6.63
1.21
0.33
0

o O O

(=2 e R e B e B e B e B @ M @)
(el el e e e Mo Mo Ne)

—-1.26
—4.58

0
0
0
0
0
0

SO OO OO OO
(=2 e B e B eo B e B eo i @ B @)

0

—4.58 7
—17.06
0

S O O OO

O 000000

—0.209924441336 0.790075558664

—6.63

Geometric stiffness matrix, kg = [8 8]

Assembled current stiffness matrix,

 24.96

12.48
—17.06

—4.58

o O OO

12.48

24.96

—4.58

-1.26
0

0
0
0

—17.06
—4.58
19.16
—3.31

o O OO

—4.58
—-1.26
—-3.31
7.56
0

0
0
0

Assembled geometric stiffness matrix, Ky =

The matrix for derivatives of shape functions of support domain,

1
S OO OO OO

BT — [0.209924441336 0.209924441336
3 =

0

0
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L0

—6.63
-3.31
4.53
1.21
0

o O O

OO OO OO OO

0

SO OO O OO

0

—3.31
—6.63
1.21
0.33
0

o O O

[e> 2 e B e B e B e B e B @ M @)
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—-1.26
—4.58
—6.63
6.68
0

0
0
0

SO OO OO OO
(=2 e B e B eo B @ B ao i @ B @)

0

—4.58 7
—17.06
6.68
—6.63
0

0
0
0

O 000000

0.209924441336 0.209924441336



Internal force vector, r; = [0 0]

The matrix for derivatives of shape functions of support domain,

—0.790075558664 —0.790075558664 0 0
0 0 —0.790075558664 —0.790075558664

1200 400 0 ]

BI=[

Material matrix, D =400 1200 0

0 0 400

Current stiffness matrix, k, = [:g? gf :22]
Geometric stiffness matrix, kg = [8 8]

Assembled current stiffness matrix,
- 24.96 1248 —-17.06 —4.58 —-6.63 —-3.31 —-1.26 —4.581

1248 2496 —458 -1.26 -331 -6.63 —4.58 -17.06
—17.06 —4.58 19.16 -—331 4.53 1.21 —-6.63 6.68
—458 -1.26 -331 7.56 1.21 0.33 6.68 —6.63

Ke = —6.63 —3.31 0 0 0 0 0 0
—-331 —6.63 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 O
0 000 0 0 OO0
0 000 0 O0O0O
" . 0 000 0 0 O0 O
Assembled geometric stiffness matrix, Ky = 0 000000 0
0 000 0O 0O
0 000 0 0O 0O
L0 0 00O O 0 O

The matrix for derivatives of shape functions of support domain,

BT — [0.790075558664 —0.209924441336 0 0
z 0 0 0.790075558664 —0.209924441336
453 1.21

Current stiffness matrix, k, = 121 033

Geometric stiffness matrix, kg = [8 8]

Assembled current stiffness matrix,
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- 2496 1248 -17.06 —458 —-6.63 —-331 -1.26 —4.581
1248 2496 —458 —-126 -—-3.31 —-6.63 —458 -—-17.06
—-17.06 —4.58 19.16 —-3.31 453 1.21 —-6.63 6.68
K. = —458 -—-1.26 -—-3.31 7.56 1.21 0.33 6.68 —6.63
¢ —-6.63 —3.31 4.53 1.21 0 0 0 0
—-3.31 -6.63 1.21 0.33 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 O
0O 0 00O O OO
0O 0 0 0OO O OO
L . |0 0 0 0 0 0 0 O
Assembled geometric stiffness matrix, Ky = 0 000000 0
0O 0 0 0OOO OO0
0O 0 00O O OO
L0 0 0 0 0 0 0 O
The matrix for derivatives of shape functions of support domain,
BT — [0.209924441336 0.209924441336 0 0
3~ 0 0 0.209924441336 0.209924441336
. : _11.76 0.88
Current stiffness matrix, k. = [0.88 176
.. . [0 0
Geometric stiffness matrix, kg = [0 0]
Assembled current stiffness matrix,
- 2496 1248 -17.06 —458 —-6.63 —-331 -1.26 —4.581
1248 2496 —458 —-126 -—-3.31 —-6.63 —458 -—-17.06
—-17.06 —4.58 19.16 —-3.31 453 1.21 —-6.63 6.68
K. = —458 -—-1.26 -—-3.31 7.56 1.21 0.33 6.68 —6.63
¢ —-6.63 —3.31 453 1.21 1.76 0.88 0 0
-3.31 -6.63 1.21 0.33 0.88 1.76 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 O
0O 0 00O O OO
0O 0 0 0OOO OO
L . |0 0 0 0 0 0 0 O
Assembled geometric stiffness matrix, Ky = 0 000000 0
0O 0 0 0OOO OO0
0O 0 00O O OO
L0 0 0 0 0 0 0 O

The matrix for derivatives of shape functions of support domain,

] = [~02099

24441336 0.790075558664 0
0

0

—0.209924441336 0.790075558664
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Current stiffness matrix, k. = [2;? iéé

Geometric stiffness matrix, kg = [8 8]

Assembled current stiffness matrix,
r 24.96 1248 —-17.06 —4.58 —-6.63 —3.31 —-1.26 —4.581

1248 2496 —458 -126 -331 -6.63 —4.58 -17.06
—17.06 —4.58 19.16 —-331 453 1.21 —-6.63 6.68
—4.58 -1.26 -—-331 7.56 1.21 0.33 6.68 —6.63
—-6.63 —331 4.53 1.21 1.76 0.88 0.33 1.21
-331 -6.63 121 0.33 0.88 1.76 1.21 4.53

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 O
0O 0 00O 0 0O
0O 0 00O O 0O
o : o o 0o 0 o0 o0 0 o0
Assembled geometric stiffness matrix, K, = 0 000000 0
0O 0 0 00O 0O 0O
O 0 0 00O 0 0O
L0 0 0 0 0 0 0 o

The matrix for derivatives of shape functions of support domain,

BT=[—0.209924441336 0.790075558664 0 0
* 0 0 —0.209924441336 0.790075558664

Internal force vector,r, = [0 0]

The matrix for derivatives of shape functions of support domain,

—0.790075558664 —0.790075558664 0 0
0 0 —0.790075558664 —0.790075558664

1200 400 0 ]

BI=[

Material matrix, D =400 1200 0

0 0 400

1.26 —4.58

Current stiffness matrix, k., = [:4 58 —17.06

Geometric stiffness matrix, kg = [8 8

Assembled current stiffness matrix,
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[ 24.96
12.48
—17.06
—4.58
—6.63
—-3.31
—1.26
L —4.58

Assembled geometric stiffness matrix, Ky =

12.48
24.96
—4.58
-1.26
—-3.31
—6.63
—4.58
—17.06

—17.06
—4.58
19.16
-3.31

4.53
1.21
0
0

—4.58
-1.26
—-3.31
7.56
1.21
0.33
0
0

1
S OO OO OO

L0

—6.63
-3.31
4,53
1.21
1.76
0.88
0

OO OO OO OO

SO OO O OO

0

—3.31
—6.63
1.21
0.33
0.88
1.76
0
0

(=2 e R e B e B e B e B @ M @)
(el el e e e Mo Mo Ne)

The matrix for derivatives of shape functions of support domain,

BT — [0.790075558664 —0.209924441336 0
2T 0 0
. . _ [-6.63 6.68
Current stiffness matrix, k. = 6.68 —6.63
. . _[0 0
Geometric stiffness matrix, kg = [0 0
Assembled current stiffness matrix,
12496 1248 —-17.06 —4.58 —-6.63 -—-3.31
1248 2496 —458 -1.26 —-331 —6.63
—17.06 —4.58 19.16 —3.31 4.53 1.21
K. = -458 -126 -331 756 121 033
¢ —6.63 —3.31 4.53 1.21 176  0.88
—3.31 —6.63 1.21 033 088 1.76
—-1.26 —458 —6.63 6.68 0 0
L —458 —-17.06 6.68 —6.63 0
0 0 0 0 O
0 0 0 0 O
0O 0 0 0 O
— i 10 0 0 0 O
Assembled geometric stiffness matrix, K = 0 00 0 0
0 0 0 0 O
0 0 0 0 O
L0 0 0 0 O

The matrix for derivatives of shape functions of support domain,

BT _ [0-209924441336 0.209924441336 0
3~ [ 0 0
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0
0.790075558664 —0.209924441336

—1.26
—4.58
—6.63
6.68
0.33
1.21
0
0
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0

O 000000

o 000000

—4.58 7
—17.06
6.68
—6.63
1.21
4,53
0
0

—4.58 1
—17.06
6.68
—6.63
1.21
4.53
0
0

0.209924441336 0.209924441336



0.33
1.21

1.21

Current stiffness matrix, k. = [ 453

Geometric stiffness matrix, kg = [8 8]

Assembled current stiffness matrix,

r 24.96 1248 —-17.06 —4.58 -6.63 -—3.31
12.48 24.96 —458 -1.26 -3.31 —-6.63
—-17.06 —4.58 19.16 —3.31 4.3 1.21

K. = —-458 -1.26 —-3.31 7.56 1.21 0.33
¢ —-6.63 —3.31 4.53 1.21 1.76 0.88
—-3.31 —6.63 1.21 0.33 0.88 1.76
—-1.26 —458 —6.63 6.68 0.33 1.21

L —4.58 —17.06 6.68 —-6.63 1.21 4.53

0 0 0 0 O

0O 0 0 0 O

0O 0 0 0O

— . 0O 0 0 0 O

Assembled geometric stiffness matrix, K, = 0 00 0 0
0O 0 0 0 O

0O 0 0 0 O

L0 0 0 0 O

The matrix for derivatives of shape functions of support domain,

BT — [—0.209924441336 0.790075558664 0
T 0 0
. . _[756 =331
Current stiffness matrix, k., = 331 19.16]
. . [0 0
Geometric stiffness matrix, kg = [0 0
Assembled current stiffness matrix,
1 24.96 1248 —-17.06 —458 -6.63 —-3.31
12.48 2496 —458 —-1.26 -3.31 -6.63
—-17.06 —-4.58 19.16 —-3.31 4.3 1.21
K. = —458 —-126 -—-3.31 7.56 1.21 0.33
¢ —-6.63 —3.31 4.53 1.21 1.76 0.88
—-331 —-6.63 1.21 0.33 0.88 1.76
—-1.26 —458 —-6.63 6.68 0.33 1.21
L —458 —-17.06 6.68 —6.63 1.21 4.53
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—-1.26

—4.58

—6.63
6.68

—4.58 7
—17.06
6.68
—6.63

0.33 1.21
1.21 4,53
0 0
0 0

SO OO OO OO
SO OO OO OO
SO 000000

0

—0.209924441336 0.790075558664

—1.26 —4.587
—4.58 —17.06
—6.63  6.68
6.68 —6.63
0.33 1.21
1.21 4,53
756  —3.31
—-3.31 19.16 -




Assembled geometric stiffness matrix, Ky =

Tangential stiffness matrix,

r 53.46 1999 —33.46 0
19.99  53.46 0 6.53
—33.46 0 53.46 —20.00
K.=| 0 6.53 —20.00 53.46
T~1-2653 —20.00 6.53 0
—20.00 —26.53 0 —33.46
6.53 0 —26.53  20.00
0 —33.46 20.00 —26.53

External force vector,

Internal force vector,

Residual force vector,

System of equations
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—26.53
—20.00
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53.46
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—20.00
—26.53
0
—33.46
20.00
53.46
0
6.53
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6.53

—26.53
20.00
—33.46

53.46
—20.00

oo 0000 oo

—33.46
20.00
—26.53

6.53
—20.00
53.46




Essential boundary conditions:

AUyl 10
Av, 0
Au, 50
Avy[ 10
Kr Aus |~ |25
Av, 0
Auy, 0
Ay, LOA
Node | DOF | Value

Au, 0

1
Avy 0
Auy 0

4
Av, 0

Solution of system equations, we get

Node

u

v

1

0

0

2 0.451276683714

0.103830051137

3 0.451276683710

—0.103830051133

4

0

0

Current configuration 11:

Field Node | X-coordinate | Y-coordinate

1 0 0

2 1 0

3 1 1

4 0 1

Updated coordinates
Field Node X-coordinate Y-coordinate

1 0 0
2 1.451276683714 | 0.103830051137
3 1.451276683710 0.896169949
4 0 1

Computation for Cauchy stressesat{ 0,0 };
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Dimensions of the support domain:

dy =1+ 0.451276683714 and d,, = 1+ 0.103830051137;

/ Support domain of field node 1

| 4 3
| 1 2.
Nodes of support domain are; 1,2,3 and 4.
Interpolation functions and their derivatives:
D(x) = [¢1, b2, @3, P4l
Node 1 2 3 4
[0) 1.00000000000 0.00000000000 0.00000000000 0.00000000000
a
a—¢ -0.978933935835 | 0.978933935835 | 0.02106606416451 | -0.0210660641645
X
a
8_(311) -0.978933935835 | -0.0210660641645 | 0.02106606416451 | 0.978933935835
Deformation gradient is calculated using the Equation 4.1
NP
F, Z lacp, d l +6
ij = 3. dir ij
£ 0x;

where NP = 4 and the displacement vector
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Deformation gradient,

_ [ 1.45127668371
9.945547009832E — 02

Right Cauchy-Green tensor,
2.11609540322

~ 19.902039408452E — 02

€1

Left Cauchy-Green tensor, ¢, =

Cauchy stresses, 6 =

422.996380278

0.00

0.00
0.451276683714
0.103830051137
0.451276683714

—0.103830051133
0.00
0.00

0.144337404821

—7.097621101959F — 14
0.995625418961

9.902039408452E — 02
0.991269974882

2.10620401269

0.144337404821
1.00116136541

45.1725653200

45.1725653200 77.1566360536
Computation for Cauchy stressesat { 1,0 };
Nodes of support domain are; 1,2,3 and 4.
Interpolation functions and their derivatives:
Node 1 2 3 4
¢ 0.00000000000 1.00000000000 0.00000000000 0.00000000000
?3_¢ -0.978933935836 0.978933935836 | 0.02106606416446 | -0.0210660641644
X
a
% -0.0210660641645 | -0.97893393583 0.978933935836 | 0.02106606416450

Deformation gradient,
F=|

Right Cauchy-Green tensor,
_ 2.11609540322
7.923761301526E — 02

1

Left Cauchy-Green tensor, ¢, =

Cauchy stresses, &

145127668371
9.945547009833E — 02

_ [436.805509354
52.4087255264

7.923761301526E — 02
0.634753960679

2.10620401269
0.144337404819

52.4087255264
—93.8845555425

Computation for Cauchy stressesat{1,1};

Nodes of support domain are; 1,2,3 and 4.
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Interpolation functions and their derivatives:

Node 1 2 3 4

¢ 0.00000000000 0.00000000000 1.00000000000 0.00000000000

a

6_¢ -0.02106606416450 | 0.02106606416450 | 0.978933935835 | -0.978933935835
X

d

% -0.02106606416451 | -0.978933935835 | 0.978933935835 | 0.02106606416451

Deformation gradient,

|

1.45127668371
—9.945547009458E — 02

Right Cauchy-Green tensor,

a=|

Left Cauchy-Green tensor, ¢, = [_

2.11609540321
7.923761302184E — 02

—3.299804873791E — 127.
0.796714478768 ’

—7.923761302184E — 02]
0.634753960679

2.10620401268
0.144337404818

—0.144337404818]
0.644645351211

~ 436.805509350 —52.4087255264
Cauchy stresses, 6 =
y o —52.4087255264 —93.8845555436
Computation for Cauchy stressesat { 0,1 };
Nodes of support domain are; 1,2,3 and 4.
Interpolation functions and their derivatives:
Node 1 2 3 4
o) 0.00000000000 0.00000000000 0.00000000000 1.00000000000
3—(1) -0.0210660641645 | 0.0210660641645 0.978933935836 | -0.978933935836
X
0
% -0.978933935836 | -0.02106606416446 | 0.02106606416446 | 0.978933935836
Deformation gradient,
1.45127668371 —7.103692634125E — 147.

|

—9.945547009458E — 02

Right Cauchy-Green tensor,

‘= [—9.9

Left Cauchy-Green tensor, ¢, =

Cauchy stresses, 6 =

2.11609540321
02039408100E — 02

422.996380276
—45.1725653183

0.995625418961 ’

—9.902039408100E — 02
0.991269974882

2.10620401268
—0.144337404816

—45.1725653183
77.1566360530

For the difference between successive solutions we check
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convergence parameter =

Iteration 2:

||ur+1 - ur”Z

[, 4

1l

< tolerance or

\/(ur+1 - ur) ' (ur+1 - ur)

VUrsr " Urgq

e

A

/ = ™2

w4, = 0.428862649561

lu,.; —u,|l, = 0.428862649561

”ur+1 - “r“2

ol

Computation for stiffness matrix of support domain at
{0.211324870586,0.211324870586 } with weight = 1;

Nodes of support domain are; node 1,node 2,node 3 and node 4.

Interpolation functions and their derivatives:

< tolerance

< tolerance or

= 1.00000000000

Node 1 2 3 4
¢ 0.622825041123 | 0.165850088290 | 4.547478229618E-02 | 0.165850088290
g_¢ -0.790075558664 | 0.790075558664 0.209924441336 -0.209924441336
X
0
a_¢ -0.790075558664 | -0.209924441336 0.209924441336 0.790075558664
y

Deformation gradient is calculated using the Equation 4.1

NP
0P,
Fiy = ). |, da| + 8
=1t

where NP = 4 and the displacement vector

0.00 1

0.00
0.451276683714
0.103830051137
0.451276683714
—0.103830051133

0.00

0.00 .
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Deformation gradient,
_ [ 1.45127668371 —7.076839114717E — 13]

6.023712018033E — 02 0.956407069043

and arranged deformation gradient (Equation 4.16);

_ [1.45127668371 0 0.06023712018 0
F= 0 0.00 0 0.956407069
0 145127668371  0.956407069 0.06023712018

Right Cauchy-Green tensor,
2.10983252334 5.761120755824E — 02

‘= [5.76112075582413' - 02 0.914714481716

Left Cauchy-Green tensor,
2.10620401269 8.742072801104E — 02

~ 18.742072801104E — 02 0.918342992363

51.596774166 9.34683905931
34683905931 57.7008906161

&)

Second PK stresses, S = [(2)

Initial stress matrix,
251.596774166 9.34683905931 0 0
9.34683905931 57.7008906161 0 0
0 0 251.596774166 9.34683905931
0 0 9.34683905931 57.7008906161

5 —

The matrix for derivatives of shape functions of support domain,

—0.790075558664 —0.790075558664 0 0

T_
By = [ 0 0 —0.790075558664 —0.790075558664

Internal force vector, r; = [—-7.48006764162 —1.57705825624]

The matrix for derivatives of shape functions of support domain,

BT = [—0.790075558664 —0.790075558664 0 0
0 0 —0.790075558664 —0.790075558664
Material matrix,
231.089474011 208.538992457 —14.5546440096
D = 208.538992457 1229.43343515 —33.5709797001
—14.5546440096 —33.5709797001 163.156634593

Current stiffness matrix, k, = 1725000 125502
5.11

Geometric stiffness matrix, k, = [ . 521]

Assembled current stiffness matrix,
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1200 750 0 0 0 0 O O
750 1952 0 0 0 0O O O
0 0 0 0 0 0 0 O
K. = 0 0 0 00 0 0O
¢ 0 0 0 0 0 0 0O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0O
0 0 0 0 0 0 0 O
Assembled geometric stiffness matrix,
r5.11 0 0 0 0 0 0 O
0 511 0 0 0 0 0 O
0 0 0 0 00 0 O
K. = 0 0 0 0 00 0 O
s 0 0O 0 0 0 0 0 O
0 0 0 0 00 0 O
0 0 0 0 00 0 O
0 0O 0 0 0 0 0 O

The matrix for derivatives of shape functions of support domain,

BT — [0.790075558664 —0.209924441336 0 0
z 0 0 0.790075558664 —0.209924441336
. . —-5.81 -2.45
Current stiffness matrix, k., = ]
¢ —3.69 244

Geometric stiffness matrix, ks = [_3679 _3079]

Assembled current stiffness matrix,

r12.00 750 -581 -245 0 0 0 O
750 1952 -369 244 0 0 0 O
0 0 0 0 0 0 0 O
K. = 0 0 0 0 0 0 0 O
¢ 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
Assembled geometric stiffness matrix,
r5.11 0 -3.79 0 0 0 0 O
0 5.11 0 -379 0 0 0 O
0 0 0 0 0 0 0 O
K. = 0 0 0 0 0 0 0 O
s 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O

The matrix for derivatives of shape functions of support domain,
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BT — [0.209924441336 0.209924441336 0 0
3=

0 0 0.209924441336 0.209924441336
Current stiffness matrix, k. = [:iég :é?g]
Geometric stiffness matrix, k, = [_1635 B 1035]

Assembled current stiffness matrix,

r12.00 7.50 -581 —-245 -3.18 —-199 0 O
750 19.52 —-3.69 244 -—-199 -518 0 0
0 0 0 0 0 0 0 0
kK =| O 0 0 0 0 0 0 0
¢ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Assembled geometric stiffness matrix,
r5.11 0 -—-3.79 0 -1.35 0 0 0
0 5.11 0 -3.79 0 -135 0 O
0 0 0 0 0 0 0 0
kK =| 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 O
The matrix for derivatives of shape functions of support domain,
BT = [—0.209924441336 0.790075558664 0 0
0 0 —0.209924441336 0.790075558664
. : —2.99 -3.05
Current stiffness matrix, k. = [—1.81 _16.77
.. . 0.03 0
Geometric stiffness matrix, kg = [ 0 0.03]

Assembled current stiffness matrix,

r12.00 7.50 -581 -245 -3.18 -199 -299 -3.057

750 1952 -3.69 244 -199 -518 -181 -16.77
0 0 0 0 0 0 0 0
K. = 0 0 0 0 0 0 0 0
¢ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Assembled geometric stiffness matrix,
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r 5.11 0 -3.79 0 -1.35 0 0.03 0 7
0 5.11 0 -3.79 0 —1.35 0 0.03
0 0 0 0 0 0 0 0
K. = 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -
The matrix for derivatives of shape functions of support domain,
BT — [0.790075558664 —0.209924441336 0 0
z 0 0 0.790075558664 —0.209924441336
Internal force vector, r, = [7.14094640179 0.183344097664]
The matrix for derivatives of shape functions of support domain,
BT = [—0.790075558664 —0.790075558664 0 0
! 0 0 —0.790075558664  —0.790075558664

Material matrix,
231.089474011 208.538992457 —14.5546440096
D = 208.538992457 1229.43343515 —33.5709797001
—14.5546440096 —33.5709797001 163.156634593

, , _[-5.81 =3.69

Current stiffness matrix, kK, = 245 244
I : _[-3.79 0

Geometric stiffness matrix, ky = [ 0 _3_79]

Assembled current stiffness matrix,

(12.00 750 =581 -245 -3.18 —-199 -299 —-3.057
7.50 19.52 -3.69 244 -199 -518 -181 -16.77
—5.81 -3.69 0 0 0 0 0 0
K = —245 244 0 0 0 0 0 0
¢ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Assembled geometric stiffness matrix,
r 5.11 0 -3.79 0 —1.35 0 0.03 0 7
0 5.11 0 —-3.79 0 —1.35 0 0.03
-3.79 0 0 0 0 0 0 0
K — 0 —3.79 0 0 0 0 0 0
$ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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The matrix for derivatives of shape functions of support domain,

BT — [0.790075558664 —0.209924441336 0 0
2 0 0 0.790075558664 —0.209924441336
; . 8.22 —=2.16
Current stiffness matrix, k. = ]
¢ —-2.16 3.62

3.91

Geometric stiffness matrix, ky = [ . 3%1]

Assembled current stiffness matrix,

r12.00 7.50 -581 -—-245 -3.18 -199 -299 -—-3.057
750 1952 -3.69 244 -199 -518 -1.81 -16.77
—-581 -3.69 822 -2.16 0 0 0 0
K. = —245 244 =216 3.62 0 0 0 0
¢ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Assembled geometric stiffness matrix,
r 5.11 0 -3.79 0 —1.35 0 0.03 0 7
0 5.11 0 -3.79 0 -135 0 0.03
-3.79 0 3.91 0 0 0 0 0
K =| © —3.79 0 3.91 0 0 0 0
s 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -
The matrix for derivatives of shape functions of support domain,
BT = [0.209924441336 0.209924441336 0 0
0 0 0.209924441336 0.209924441336
. : 1.54 098
Current stiffness matrix, k. = 0.65 —064

1.00

Geometric stiffness matrix, k, = [ ; 1%0]

Assembled current stiffness matrix,

r12.00 7.50 =581 -245 -3.18 -199 -299 -—-3.057

750 1952 -3.69 244 -199 -518 -181 -16.77
-581 -3.69 822 -216 154 098 0 0
K = —-245 244 -2.16 3.62 0.65 —0.64 0 0
¢ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Assembled geometric stiffness matrix,
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r 5.11 0 -3.79 0 —1.35 0 0.03 0 7
0 5.11 0 -3.79 0 -135 0 0.03
-3.79 0 3.91 0 1.00 0 0 0
K. — 0 —3.79 0 3.91 0 1.00 0 0
§ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -
The matrix for derivatives of shape functions of support domain,
g7 = [0:209924441336  0.790075558664 0 0
*T 0 0 —0.209924441336 0.790075558664
. : _[-395 4.87
Current stiffness matrix, k., = [ 306 _547
. . _[—1.12 0
Geometric stiffness matrix, kg = [ 0 =y 12]

Assembled current stiffness matrix,
r12.00 750 -581 -245 -3.18 —-199 -299 —-3.051
7.50 19.52 -369 244 -199 -5.18 -181 -16.77
—-581 -369 822 -2.16 1.54 098 —-3.95 4.87
—2.45 244 —-2.16 3.62 0.65 —-0.64 3.96 —5.42

Ke=1 o 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Assembled geometric stiffness matrix,
r 5.11 0 —3.79 0 -1.35 0 0.03 0 1
0 5.11 0 -3.79 0 —1.35 0 0.03
-3.79 0 3.91 0 1.00 0 —-1.12 0
K. = 0 -3.79 0 3.91 0 1.00 0 1.12
s 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -
The matrix for derivatives of shape functions of support domain,
BT — [0.209924441336 0.209924441336 0 0
3 0 0 0.209924441336 0.209924441336
Internal force vector, r; = [1.98746689933 0.419027104135]
The gradient matrix,
BT = [—0.790075558664 —0.790075558664 0 0
! 0 0 —0.790075558664  —0.790075558664
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Material matrix,
231.089474011 208.538992457 —14.5546440096
D = 208.538992457 1229.43343515 —33.5709797001
—14.5546440096 —33.5709797001 163.156634593

Current stiffness matrix, k., = [:f;g :éiz]
Geometric stiffness matrix, kg = [_1635 _1035]

Assembled current stiffness matrix,
r12.00 750 -581 —-245 -3.18 —-199 -299 —-3.051
7.50 19.52 -3.69 244 -199 -518 -1.81 -16.77
—-5.81 -—-3.69 8.22 -—-2.16 1.54 098 —3.95 4.87
—2.45 244 =216 3.62 0.65 —0.64 396 —5.42

Ke=1_318 —199 0 0 0 0 0 0
-199 -5.18 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Assembled geometric stiffness matrix,
r 5.11 0 -3.79 0 —1.35 0 0.03 0 7
0 5.11 0 -3.79 0 —1.35 0 0.03
-3.79 0 3.91 0 1.00 0 —-1.12 0
K. = 0 -3.79 0 3.91 0 1.00 0 1.12
$ 1-1.35 0 —1.35 0 0 0 0 0
0 —1.35 0 —1.35 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -
The matrix for derivatives of shape functions of support domain,
BT = [0.790075558664 —0.209924441336 0 0
2 0 0 0.790075558664 —0.209924441336
. . _[154 0.65
Current stiffness matrix, k, = 098 —0.64

1.00

Geometric stiffness matrix, ky = [ ; 1%0]

Assembled current stiffness matrix,
r12.00 750 —-581 —-245 -3.18 —-199 -299 —3.051
7.50 19.52 -369 244 -—-199 -518 -181 -16.77
—-581 -369 822 -2.16 1.54 098 —-3.95 4.87
—2.45 244 —-2.16 3.62 0.65 —-0.64 396 —5.42

K. = -3.18 -199 154 0.65 0 0 0 0
-199 =518 098 -0.64 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Assembled geometric stiffness matrix,
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5.11 0 —3.79 0 -1.35 0 0.03 0 7
0 5.11 0 -3.79 0 —1.35 0 0.03
-3.79 0 391 0 1.00 0 -1.12 0
K. = 0 -3.79 0 3.91 0 1.00 0 1.12
$ 1-1.35 0 1.00 0 0 0 0 0
0 -1.35 0 1.00 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
The matrix for derivatives of shape functions of support domain,
BT — [0.209924441336 0.209924441336 0 0
3 0 0 0.209924441336 0.209924441336
. : _ [0.84 0.52
Current stiffness matrix, k., = 052 137

0.36

Geometric stiffness matrix, k, = [ : 0036]

Assembled current stiffness matrix,
r12.00 750 —-581 -245 -3.18 —-199 -299 —-3.051
7.50 19.52 -369 244 -199 -518 -181 -16.77
—-581 -369 822 -2.16 1.54 098 —-3.95 4.87
—2.45 244 —-2.16 3.62 0.65 —-0.64 3.96 —5.42

Ke=|_318 —199 154 o065 084 052 0 0
-199 -518 098 -0.64 0.52 1.37 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Assembled geometric stiffness matrix,
r 5.11 0 —3.79 0 -1.35 0 0.03 0 1
0 5.11 0 -3.79 0 —1.35 0 0.03
-3.79 0 3.91 0 1.00 0 —-1.12 0
K. = 0 -3.79 0 3.91 0 1.00 0 1.12
s —1.35 0 1.00 0 0.36 0 0 0
0 —-1.35 0 1.00 0 0.36 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -
The matrix for derivatives of shape functions of support domain,
BT — [~0.209924441336  0.790075558664 0 0
* 0 0 —0.209924441336 0.790075558664
. : _10.79 0.81
Current stiffness matrix, k. = 048 445
. . _ [—-0.009 0
Geometric stiffness matrix, kg = [ 0 —0.00 9]

Assembled current stiffness matrix,
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r12.00 7.50 -581 -—-245 -3.18 —-199 -299 —-3.057
7.50 19.52 -3.69 244 -199 -518 -181 -16.77
-581 -3.69 822 =216 1.54 098 —3.95 4.87
K. = —245 244 =216 3.62 0.65 —-0.64 396 —5.42
¢ -3.18 —-199 154 0.65 0.84 0.52 0.79 0.81
-199 -518 098 —-0.64 0.52 1.37 0.48 4.45
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Assembled geometric stiffness matrix,
r 5.11 0 -3.79 0 —1.35 0 0.03 0
0 5.11 0 -3.79 0 —-1.35 0 0.03
-3.79 0 3.91 0 1.00 0 —-1.12 0
K. = 0 -3.79 0 3.91 0 1.00 0 1.12
$ 1-1.35 0 1.00 0 0.36 0 —0.009 0
0 —-1.35 0 1.00 0 0.36 0 —0.009
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
The matrix for derivatives of shape functions of support domain,
BT = [—0.209924441336 0.790075558664 0 0
0 0 —0.209924441336 0.790075558664

Internal force vector, r, = [—1.64834565951 0.974687054442]

The matrix for derivatives of shape functions of support domain,

—0.790075558664 0 0
—0.790075558664 —0.790075558664

BT — [—0.790075558664
. 0 0
Material matrix,

231.089474011 —14.5546440096

208.538992457

D = 208.538992457 1229.43343515 —33.5709797001
—14.5546440096 —33.5709797001 163.156634593
. : 299 -1.81
Current stiffness matrix, k, = [_3.05 _16.77
. . 1003 0
Geometric stiffness matrix, kg = [ 0 0.03]
Assembled current stiffness matrix,
1 12.00 7.50 -581 —-245 -3.18 —-199 -299 —3.05"
7.50 19.52 -3.69 244 -199 -518 -181 -16.77
—-581 —-3.69 8.22 -—-2.16 1.54 098 —3.95 4.87
K. = —2.45 2.44 —-2.16 3.62 0.65 —-0.64 3.96 —5.42
¢ -3.18 —-1.99 1.54 0.65 0.84 0.52 0.79 0.81
-199 -518 098 -0.64 052 137 048 4.45
—-299 -1.81 0 0 0 0 0 0
L—-3.05 -—-16.77 0 0 0 0 0 0

Assembled geometric stiffness matrix,
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r 5.11 0 -3.79 0 —1.35 0 0.03 0
0 5.11 0 -3.79 0 —1.35 0 0.03
-3.79 0 391 0 1.00 0 —-1.12 0
K. = 0 -3.79 0 3.91 0 1.00 0 1.12
$ [-135 0 1.00 0 0.36 0 —0.009 0
0 —1.35 0 1.00 0 0.36 0 —0.009
0.03 0 0 0 0 0 0 0
0 0.03 0 0 0 0 0 0

The matrix for derivatives of shape functions of support domain,

BT — [0.790075558664 —0.209924441336 0
, =

0

0 0 0.790075558664 —0.209924441336
: . _[-395 3.96
Current stiffness matrix, k. = [ 487 _G47
o : _-112 0
Geometric stiffness matrix, kg = [ 0 =y 12]
Assembled current stiffness matrix,
1 12.00 7.50 -581 —-245 -3.18 —-199 -299 —-3.057
7.50 19.52 -3.69 244 -199 -518 -1.81 -16.77
-581 —-3.69 822 —-2.16 1.54 098 —3.95 4.87
K. = —2.45 2.44 —-2.16 3.62 0.65 —-0.64 3.96 —5.42
¢ -3.18 —-1.99 1.54 0.65 0.84 0.52 0.79 0.81
-199 -5.18 098 —-0.64 0.52 1.37 0.48 4.45
-299 —-181 -395 396 0 0 0 0
L—3.05 -—-16.77 4.87 —5.42 0 0 0 0
Assembled geometric stiffness matrix,
r 5.11 0 -3.79 0 —1.35 0 0.03 0
0 5.11 0 -3.79 0 —1.35 0 0.03
-3.79 0 391 0 1.00 0 —-1.12 0
K. = 0 -3.79 0 3.91 0 1.00 0 1.12
s —1.35 0 1.00 0 0.36 0 —0.009 0
0 —1.35 0 1.00 0 0.36 0 —0.009
0.03 0 —-1.12 0 0 0 0 0
0 0.03 0 —-1.12 0 0 0 0
The matrix for derivatives of shape functions of support domain,
4441336 0.209924441336 0 0

0.20992
B = [

0 0 0.209924441336 0.209924441336
Current stiffness matrix, k. = [8;2 gig
Geometric stiffness matrix, kg = [_0'(?09 _0%09]

Assembled current stiffness matrix,
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1 12.00 7.50 —-5.81 -—-2.45
7.50 19.52 -—3.69 244
—-5.81 -3.69 8.22 -—2.16
K —|—245 244 -216 362
¢ -3.18 —-1.99 1.54 0.65
-1.99 -5.18 098 —-0.64
-299 -181 -395 396
L—3.05 -16.77 4.87 —5.42
Assembled geometric stiffness matrix,
r 5.11 0 -3.79 0
0 5.11 0 -3.79
-3.79 0 3.91 0
K. = 0 -3.79 0 3.91
$ 1-1.35 0 1.00 0
0 —1.35 0 1.00
0.03 0 —-1.12 0
0 0.03 0 —-1.12

-3.18
-1.99
1.54
0.65
0.84
0.52
0.79
0.81

—1.35
0
1.00
0
0.36
0

—0.009

0

—-1.99
—5.18
0.98
—0.64
0.52
1.37
0.48
4.45

0
—-1.35
0
1.00
0
0.36
0
—0.009

—2.99
—1.81
—3.95
3.96
0.79
0.48
0
0

0.03
0
—-1.12
0
—0.009
0
0
0

The matrix for derivatives of shape functions of support domain,

BT — [—0.209924441336 0.790075558664 0 0
4=

0 0

. : 6.15 —2.63
Current stiffness matrix, k. = 263 17'73]
. . 0 0
Geometric stiffness matrix, kg = [0 0]
Assembled current stiffness matrix,
r12.00 750 —-581 -245 -3.18 —-199 -2.99
7.50 19.52 —-3.69 244 -199 -518 -1.81
—-581 -—-3.69 822 -216 154 098 —-3.95
K. = —2.45 244 -216 3.62 065 —-0.64 3.96
¢ -3.18 -—-199 154 065 084 052 0.79
-199 -518 098 -0.64 0.52 137 048
—299 —-181 -395 396 079 048 6.15
L—-3.05 -16.77 487 —542 081 445 -—-2.63
Assembled geometric stiffness matrix,
r 5.11 0 —3.79 0 —1.35 0 0.03
0 5.11 0 -3.79 0 -1.35 0
-3.79 0 391 0 1.00 0 —-1.12
K. = 0 -3.79 0 3.91 0 1.00 0
$ 1-1.35 0 1.00 0 0.36 0 —0.009
0 -1.35 0 1.00 0 0.36 0
0.03 0 -1.12 0 —0.009 0 3.64
0 0.03 0 —-1.12 0 —0.009 0

Tangential stiffness matrix,
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—3.05 7
—-16.77
4.87
—5.42
0.81
4.45

0
0.03
0
1.12
0
—0.009
0
0

—0.209924441336 0.790075558664

—3.05 7
—-16.77
4.87
—5.42
0.81
4.45
—2.63
17.73 -

0.03
1.12
—0.009

0
3.64




[ 37.72
13.37
—18.33
2.06
—-19.01
—13.98
—0.38
- —1.46

External force vector,

Internal force vector,

Residual force vector,

System of equations

13.37 —18.33 2.06 —19.01 -13.98
53.40 —0.56 8.61 —14.27 —-28.61
—0.56 39.09 -14.88 -175 116
8.61 —14.88 61.87 —-1.16 —41.87
—14.27 -1.75 —1.16 39.09 14.88
—28.61 1.16 —41.87 14.88 61.87
1.46 —19.01 1398 —-18.33 -2.06
—33.40 14.27 -28.61 0.56 8.61
0 -
0
50
0
Rp = 25
0
0
L
—17.63835797171
—2.03537002612
17.6383579717
R, — | 3:37248101854
! 17.6383579717
—3.37248101852
—17.6383579717
L 2.03537002610 -
- 17.6383579717 1
2.03537002612
7.36164202831
—3.37248101854
R=Rp—R; = 7.36164202833
3.37248101852
17.6383579717
[—2.03537002610-
‘Auil 1 17.6383579717 1
Av, 2.03537002612
Au, 7.36164202831
K. |Avz| _|—3.37248101854
T Aus 7.36164202833
Av, 3.37248101852
Au, 17.6383579717
[Av,] L1—2.03537002610-
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-0.38
1.46
—19.01
13.98
—18.33
—2.06
37.72
—13.37

—1.46 7
—33.40
14.27
—28.61
0.56
8.61
—13.37
53.40




Essential boundary conditions:

Node | DOF | Value
Au, 0
1
Avy 0
Auy 0
4
Av, 0
Solution of system equations, we get
Node u %
1 0 0

2 0.196215871018 | —2.151724744991F — 03

3 0.196215871019 | 2.151724742667E — 03

4 0 0

Total nodal values:

Node u v

1 0 0

2 0.647492554732 | 0.101678326392

3 0.647492554729 | —0.101678326391

4 0 0

Current configuration II:

Field Node | X-coordinate | Y-coordinate

1 0 0

2 1 0

3 1 1

4 0 1

Updated coordinates
Field Node X-coordinate Y-coordinate

1 0 0
2 1.647492554732 | 0.101678326392
3 1.647492554732 0.898321674
4 0 1
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Computation for Cauchy stressesat { 0,0 };

Dimensions of the support domain:

dy =1+ 0.647492554732 and d,, = 1+ 0.101678326392;

/ Support domain of field node 1

4

3

Nodes of support domain are; 1,2,3 and 4.

Interpolation functions and their derivatives:

Node 1 2 3 4
[0) 1.00000000000 | 0.00000000000 0.00000000000 0.00000000000
g—d) -0.98261272217 | 0.982612722173 | 0.01738727782706 | -0.017387277827
X
0
£ -0.98261272217 | -0.017387277827 | 0.01738727782707 | 0.982612722173

Deformation gradient,

_ 1.64749255473
9.814250777226E — 02

0.00
0.00
0.647492554732
0.101678326392
0.647492554732
—0.101678326391
0.00

0.00

—4.445402379538E — 14].

0.996464181380
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Right Cauchy-Green tensor,

o = 2.72386366973 9.779549366580E — 02
17 19.779549366580E — 02 0.992940864773

0.161689050857
1.00257281661

Left Cauchy-Green tensor, ¢, =

Cauchy stresses, &

Computation for Cauchy stressesat{1,0 };
Nodes of support domain are; 1,2,3 and 4.

Interpolation functions and their derivatives:

2.71423171790
0.161689050857

_ [587.716066780  46.4747612840
46.4747612840 95.7288950128

Node 1 2 3 4
¢ 0.00000000000 1.00000000000 0.00000000000 0.00000000000

Z_(P -0.98261272217 0.98261272217 0.0173872778269 | -0.0173872778269
X

0

a_¢ -0.0173872778269 -0.98261272217 0.98261272217 0.01738727782693
y

Deformation gradient,

F= [ 1.64749255473 —2.508215857233E — 12
9.814250777228E — 02 0.800179165837
Right Cauchy-Green tensor,
o = 2.72386366973 7.853158999824F — 02
1 7.853158999824F — 02 0.640286697440

Left Cauchy-Green tensor, ¢, =

Cauchy stresses, &

Computation for Cauchy stressesat{1,1};
Nodes of support domain are; 1,2,3 and 4.

Interpolation functions and their derivatives:

2.71423171790
0.161689050856

_ [631.616045025  53.7939542833
53.7939542833 —55.1810030893

0.161689050856
0.649918649271

Node 1 2 3 4
o) 0.00000000000 0.00000000000 1.00000000000 0.00000000000

g—(p -1.738727782693E-02 | 0.0173872778269 | 0.982612722173 | -0.982612722173
X

0

a—¢ -0.0173872778269 -0.982612722173 | 0.982612722173 | 0.0173872778269
y

154




Deformation gradient,

r=|

1.64749255473
—9.814250777086E — 02

Right Cauchy-Green tensor,

Cl_

Left Cauchy-Green tensor, ¢, =

Cauchy stresses, 6 =

_ 2.72386366972
—7.853159000536E — 02

_ [ 631.616045023
—53.7939542838

Computation for Cauchy stressesat{ 0,1 };

Nodes of support domain are; 1,2,3 and 4.

Interpolation functions and their derivatives:

2.71423171789
—0.161689050857

—53.7939542838
—55.1810030899

—2.508215857233E — 12].
0.800179165837 '

—7.853159000536E — 02]
0.640286697440

—0.161689050857]
0.649918649271

Node 1 2 3 4
) 0.00000000000 0.00000000000 0.00000000000 1.00000000000
2—¢ -0.017387277826 | 0.01738727782693 0.982612722173 -0.98261272217
X
d
% -0.982612722173 | -0.01738727782696 | 0.01738727782696 | 0.982612722173

Deformation gradient,

r=|

1.64749255473
—9.814250777086E — 02

Right Cauchy-Green tensor,

‘= [—9.7

Left Cauchy-Green tensor, ¢, =

Cauchy stresses, 6 =

2.72386366972
79549366455E — 02

_ [ 587.716066778
—46.4747612833

2.71423171789
—0.161689050855

—4.436208345115E — 14].
0.996464181380 '

—9.779549366455E — 02]
0.992940864774

—0.161689050855]
1.00257281661

—46.4747612833
95.7288950126

lu,y; —u,ll, = 7.701059591799E — 02

convergence parame ter =

lu,.4ll, = 0.859170180978

| L Sy Pt
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”ur+1 - “r”2

= 0.299388865239




[10]

[11]
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