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ABSTRACT 

 
 

MESHFREE METHODS FOR 2D ELASTO-PLASTIC LARGE 
DEFORMATION PROBLEMS 

 
 
 

BOZKURT Ö. Yavuz 
Ph.D. in Mechanical Eng. 

Supervisor: Assoc. Prof. Dr. Bahattin KANBER 
Jan 2011, 172 pages 

 
 
 

In this work, PIM and RPIM are used in the solution of 2D geometrical 

nonlinear and elasto-plastic problems. The effect of shape parameters are 

investigated in the solutions. The optimum values of shape parameters are either 

validated or proposed.  

The singular moment matrix problem in the PIM is discussed in detail and 

two new algorithms are proposed: A diagonal offset algorithm and Regular based 

algorithm. They are numerically tested and applied in the solution of 2D elastic 

problems. The regular basis algorithm gives excellent results with regular distributed 

field nodes. 

A number of programs are developed for the solution of 2D geometrically 

nonlinear and elasto-plastic problems. Mathematica, Fortran 95 and Matlab are used 

in the programming stages. The PIM and RPIM shape function are successfully 

implemented in these programs.  

 
 
 
 
 
 
 
Keywords: Meshfree Methods, PIM, RPIM, Radial basis functions, Polynomial 
basis functions, Moment matrix, Geometrically nonlinear problems, Elasto-plastic 
problems.  
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ÖZET 
 
 

2B BÜYÜK DEFORMASYON PROBLEMLERİ İÇİN AĞSIZ YÖNTEMLER 
 
 
 

BOZKURT Ö. Yavuz 
Doktora Tezi, Mak Müh. Bölümü 

Tez Yöneticisi: Doç. Dr. Bahattin KANBER 
Ocak 2011, 172 sayfa 

 
 
 
 
  Bu çalışmada PIM ve RPIM 2B geometrik nonlineer ve elasto-plastik 

problemlerin çözümünde kullanılmıştır. Şekil parametrelerinin çözümde etkisi 

araştırılmıştır. Şekil parameterelerinin optimum değerlerinin doğrulanması veya 

önerilmesi gerçekleştirilmiştir. 

 PIM’deki moment matris problemi detaylı olarak tartışılmış ve iki yeni 

algoritma önerilmiştir: Köşegen öteleme algoritması ve Düzgün taban algoritması. 

Algoritmalar numeric olarak test edilmiş ve 2B lineer elastic problemlere 

uygulanmıştır. Düzgün taban algoritması düzgün dağıtılmış düğüm noktaları ile 

mükemmel sonuç vermektedir. 

 2B geometric nonlineer ve elasto-plastik problemler için programlar 

yaılmıştır. Mathematica, Fortran 95 ve Matlab programlama aşamasında 

kullanılmıştır. PIM ve RPIM şekil fonksiyonları geliştirilen programlarda 

uygulanmıştır.  

 
 
 
 
Keywords: Ağsız Yöntemler, PIM, RPIM, Radyal temel fonksiyonu, Polinom temel 
fonksiyonu, Moment matris, Geometrik nonlineer problemler, Elasto-plastik 
problemler.  
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

  The usage of numerical methods for the solution of a variety of problems 

encountered in engineering makes the numerical methods an important tool for 

engineering analysis and designs. The numerical methods become more effective and 

more powerful by proposing new algorithms. Meshfree methods are the particular 

class of numerical simulation techniques and developed to improve efficiency of 

engineering analysis by eliminating short-comings in the popular numerical methods 

such as finite element method (FEM), boundary element method (BEM) and finite 

difference method (FDM). 

The FEM and BEM are robust numerical methods. FEM is well established. 

However, BEM still includes some problems such as singularity near to the 

boundary. The mesh requirement, such as predefined element in FEM, BEM and 

predefined grid in FDM, is common short-coming points of them. This causes the 

following limitations [1]: 

- An analyst spends most of his/her time to the creation of proper mesh 

using predefined elements. 

- The discontinuities of stress at the element interfaces are encountered. 

- Distortion in elements causes accuracy loss. 

- Crack growth and element boundary must coincide with each other to 

eliminate discontinuity. 

- Remeshing of the regions that have high stresses like crack tips, contact 

points etc., is a difficult task and very complex mesh generation algorithm 

is required to update predefined elements. 

The Meshfree methods are proposed to eliminate predefined mesh 

requirement which causes the above limitations. In Meshfree methods, a set of 

scattered nodes is used to define the domain and its boundary without forming a 
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predefined mesh. The field variables are interpolated according to the position of the 

scattered nodes without using any element either using moving least square (MLS) 

shape functions or point interpolation shape functions. Elimination of the mesh 

requirement solves the problems mentioned above. The developing stage of meshfree 

methods is very new and still continuing. Some issues, such as stability, accuracy, 

convergency and efficiency, must be solved to get more useful methods. 

1.2 Research Objectives and Tasks 

In this study, the main objective is the investigation of meshfree methods to 

analyze elasto-plastic problems using Meshfree methods and proposing an improved 

or new Meshfree method. The research tasks can be summarized as follows, 

I. Reviewing the Meshfree methods in the literature. 

II. Obtaining the Meshfree shape functions. 

III. Implementing the Meshfree shape functions to Meshfree methods. 

IV. Using Meshfree methods for the solution of 2D linear elastic 

problems. 

V. Using Meshfree methods for the solution of 2D geometrically 

nonlinear problems. 

VI. Using Meshfree methods for the solution of 2D elasto-plastic 

problems. 

VII. Proposing new algorithms for Meshfree methods. 

VIII. Writing a general Meshfree method program to solve 2D elastic, 2D 

geometrically non-linear and elasto-plastic problems. 

 
1.3 Layout of Thesis 

A literature review about Meshfree methods, implementation of Meshfree methods in 

geometrically nonlinear problems and elasto-plastic problems has been summarized 

in chapter two. 

The Point Interpolation Method (PIM) is reviewed in chapter three. It starts with a 

brief description of PIM procedure and explanation of some basic terms used in it. 

Chapter three continues with construction of polynomial PIM and radial PIM (RPIM) 

shape functions. PIM formulation for 2D linear elastic problems are defined. Some 

2D linear elastic case studies are presented. 
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Geometrically nonlinear analysis of 2D solids using RPIM is treated in chapter four. 

The solution procedure used is briefly described. Some case studies are presented. 

Elasto-plastic analysis of 2D solids using radial RPIM is studied in chapter five. 

Some 2D elasto-plastic problems are solved and compared with FEM. 

Chapter six is devoted to eliminate the singularity of the moment matrix in 

polynomial PIM. To do this, a diagonal offset algorithm is proposed and several 

patch tests are performed. 

Chapter seven deals with the selection of polynomial terms for polynomial PIM. A 

regular basis algorithm for the polynomial PIM is proposed and it is tested. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

There are lots of Meshfree methods can be found in the literature. The 

Smoothed Particle Hydrodynamics (SPH) method [3-6], the Diffuse Element Method 

(DEM) [7,8], the Element Free Galerkin (EFG) method [9-62], the Meshless Local 

Petrov-Galerkin (MLPG) method [63-85] and the Point Interpolation Method (PIM) 

[86-] are some of the proposed Meshfree methods. 

The short review of the SPH method, DEM, EFG method and MLPG method 

are given in Section 2.2. The detailed literature review of PIM which is used during 

the study is represented in Section 2.3. 

2.2 General Review of Some Meshfree Methods 

2.2.1 Smoothed Particle Hydrodynamics Method 

SPH method was developed by Lucy [3] and Gingold and Monaghan [4]. 

They used it to model astrophysical problems. In this method, the state of a system is 

represented by a set of moving particles and the governing partial differential 

equations are transformed into selected finite integral form [1,5]. The moving 

particles are used for interpolation though nodes. Since the proposition of method, 

many studies have been done to improve the consistency and accuracy of the method 

[5]. Application of method has been extended from astrophysical problems to wide 

range of engineering problems such as computational fluid dynamics, heat 

conduction, molecular dynamics, simulation of finite deformations, fracture, and 

crack growth [1,5,6]. 

2.2.2 Diffuse Element Method 

DEM is the first Meshfree method based on global weak form [5]. It was 

proposed by Nayroles et al. [7]. The aim of the method is to eliminate discontinuity 

problem found in some derivatives of approximate solution and mesh generation. In 
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order to accomplish this, an element and its shape functions in FEM is replaced by 

local domains and the Moving Least Square (MLS) shape functions defined for local 

domains [8]. 

2.2.3 Element Free Galerkin Method 

EFG method is a meshfree method which was proposed by Belytschko et al. 

[9]. In this method, the moving least square (MLS) shape functions are used for the 

interpolations. The problem domain and its boundary are represented by arbitrary 

distributed nodes. The MLS shape functions are obtained using the nodes in a local 

domain which is generally called as support domain or influence domain. Some 

predefined background cells must be defined for the integrations of Galerkin weak 

form integrals. 

Belytschko et al. show that EFG method converges more rapidly than the 

FEM and the irregular distribution of nodes does not affect the accuracy of the 

solution. However, MLS shape functions lack Kronecker delta function property and 

Lagrange multipliers are used to enforce the essential boundary condition [9,10]. The 

use of Lagrange multipliers increases the cost of solving the linear algebraic 

equations. Therefore, a method has been developed to overcome this problem based 

on a modified variational principle [11]. It was shown that the speed of the 

computations in EFG method can be increased by smoothing the interpolants [12]. 

The shortcomings through the use of a set of MLS interpolants can also be alleviated 

by redefining the discrete norm [13], employing singular weight functions [14], 

modifying the collocation method using the actual nodal values of the trial function 

[15] and using the moving kriging (MK) interpolation [16].  

EFG method also complicates the application of point loads because of the 

character of MLS. However, the concentrated forces should be transformed into 

distributed forces by a Dirac function. After such a transformation, the contribution 

of concentrated forces to the discrete equations can be evaluated in a way similar to 

the calculation of distributed load's contribution [17].  

Volumetric locking is a problem which is appeared when the Poisson’s ratio 

approaches the incompressibility limit 0.5. Volumetric locking causes some 

numerical problems and to solve these problems different EFG formulations have 
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been proposed [18-20]. It was shown that the problem can be avoided by considering 

appropriate nodal arrangements and integration cells.  

EFG method does not require predefined meshes and converges rapidly. 

Therefore, the method has been used in the solution of many problems. It has been 

used for the solution of 2D and 3D fracture mechanics and crack propagation 

problems [21-29], the linear and nonlinear analysis of plates and shells [30-38], 

thermal and vibration analysis of composite structures [39-41]. 

To improve the efficiency and to use the advantages of different methods in 

the solutions of a specific problem, EFG method has been coupled with other 

numerical methods such as FEM, BEM and PIM [42-47]. The method has been also 

used for the elasto-plastic analysis of structures [48-50], the shape sensitivity 

analysis and shape optimization [51,52] and the analysis of porous solids [53,54]. 

Because of element free property of the method, it is very suitable for 

adaptive analyses. Therefore it is applied to error estimation and adaptive refinement 

problems [55-59]. It has been also applied to the heat transfer analysis of composite 

slabs [60], the structures with cyclic symmetry [61] and the structures with multi-

scale geometries [62].   

2.2.4 Meshless Local Petrov-Galerkin Method 

Because of the global weak forms, EFG method and PIM requires 

background cells for the integration of Galerkin weak form integrals. Therefore, 

these methods are not accepted as truly Meshfree method [63]. In order to carry the 

numerical integration on a local domain, the weak forms should be defined on a local 

domain. In case of it, the dependency to global background integration cells is also 

eliminated. Therefore, the method can be called truly meshless method. To avoid the 

use of global background integration cells, a meshless local Petrov-Galerkin method 

(MLPG) was proposed by Atluri and Zhu [63]. In the MLPG method, the integration 

is carried on a local quadrature domain defined for a node. As in the EFG method, 

the MLS interpolation shape functions are used for the approximation of field 

variables.  

   The different versions of the MLPG method have been proposed and their 

performances have been investigated for the solution of 2D elasto-static and potential 
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problems [64-72]. The method has been also used for the analysis of thin and thick 

beams and plates under different boundary conditions [73-78]. It has been shown that 

the method is very effective in the solution of heat transfer and fluid mechanic 

problems [79-81].  

The MLPG method has been also applied in the solution of free and forced 

vibration of solids [82], 2D frictionless dynamic contacts of large deformable bodies 

[83], semi-linear second-order hyperbolic problems [84] and the materials with 

strain-gradient effects [85].  

The MLPG method is accepted as truly meshless method. However, it is 

computationally more expensive because of nodal numerical integrations and 

solution of asymmetric stiffness matrix [1,2].  

2.3 Detailed Review of Point Interpolation Method 

In spite of the successful applications, meshless methods based on MLS have 

two major gaps in applications [86-88]. First one is the difficulties in the 

implementation of essential boundary conditions. The lack of Kronecker delta 

function properties for its shape functions cause this problem. Complexity of 

algorithms for the computations of shape functions and their derivatives is the second 

one. This increases the computational cost. Several approaches have been proposed 

to improve these points [89-92]. However, they cannot provide a full solution. 

The solution to these gaps comes from another meshfree method named as 

Point Interpolation Method (PIM). It was proposed by Liu and Gu [93,94]. The field 

variables are interpolated using point interpolation shape functions. PIM shape 

functions are formed from polynomials. The polynomials are selected symmetrically 

from Pascal’s triangle [94]. This makes the computation algorithm simple and 

straightforward for the shape function and its derivatives [95]. In contrast to MLS 

shape functions, point interpolation shape functions posses the Kronecker delta 

function property and they do not require an extra algorithm to compute nodal values 

of field variables. Also, the accuracy of PIM is higher than MLS approximation, 

especially for regular node distributions [95]. However, PIM is not perfect and it has 

its own weakness. The main problem in the polynomial PIM is the singularity of the 

moment matrix. Some algorithms are developed to overcome this problem. 
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Arbitrary scattered nodes in a local domain is one of the reasons of the 

singularity of moment matrix in some situations [1,94,95]. To eliminate this, 

changing the location of nodes in a local domain by a small amount [1,94] or the 

coordinate transformation in a local domain [1] can be used. However these cannot 

be guaranteed to eliminate singularity of moment matrix [1,95]. 

Improper selection of monomials in the basis is the another reason of the 

singularity [95]. To solve this, Matrix Triangularization Algorithm (MTA) was 

proposed by Liu and Gu [95]. In MTA, the nodes and the monomials, which cause 

the singularity in the moment matrix, are determined and are excluded from the 

influence domain, and monomials are excluded from moment matrix. PIM with the 

MTA is very effective in constructing Meshfree shape functions. It seems that MTA 

try to guarantee the proper construction of local domains and the proper selection of 

monomials. However, it may be numerically unstable especially for the larger 

influence domains [95]. 

Using the radial functions as the basis is also a solution of the singularity 

problem [1,86,87,96]. PIM based on radial basis functions (RBF) was developed by 

Wang and Liu [97]. RPIM shape functions also posses delta function property and 

computations of shape functions and their derivatives are simpler than MLS. To 

guarantee the solution of singularity problem, the polynomials are augmented to RBF 

[87,95,97]. The use of RBF solves the singularity, but it has some drawbacks. The 

accuracy of radial basis PIM is less than the polynomial basis PIM especially for 

regular node distributions [87,95]. The determination of shape parameters used in 

RPIM shape functions are required for the accuracy solution [1,95,98]. The 

computational efficiency is extremely reduced when the radial functions are used as 

the basis [86,87,96,99-101]. 

A simple and efficient algorithm to obtain an invertible moment matrix was 

proposed by Kanber and Bozkurt [102]. The idea behind the proposed method comes 

from changing the coordinates of a node in a local domain. Changing the value of 

coordinates of a node causes the change in the relevant row of the moment matrix. 

For example, if the coordinate of the nth node in a local domain is changed, it results 

a change in the nth row of the moment matrix. In spite of changing the moment 

matrix fully, change of the elements (except the first element) in the diagonal line of 
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the moment matrix is tried to avoid the singularity. It results a simple and effective 

algorithm. Compared to other singularity elimination methods, it does not add any 

extra calculations. 

PIMs can be based on the Galerkin weak form [94]. This requires background 

cells for the integration. PIMs can be based on local Petrov-Galerkin weak forms 

[103-108]. These are truly Meshfree methods. PIMs can be used with boundary 

integration equation (BIE) [109]. 

The easy implementation and high accuracy give wide range application areas 

to polynomial PIM. It has been used for 2D and 3D elasticity problems [109-116], 

beam and shells [103,117], thermoelastic problems [118], piezoelectric structures 

[119] and microelectromechanical systems [120]. It can also be coupled with other 

numerical methods [121]. 

Stability and flexibility of the radial PIM is higher than polynomial PIM. 

Therefore, it is used in the solution of many structural problem solutions. It has been 

used for 2D and 3D solid mechanics problems [122,123], smart materials [124], 

beam, plates and shells [103,125-130], contact problems [131] and metal forming 

simulations [132]. It is used in the vibration analysis of 2D solids and shells 

[107,133], analysis of shell problems [134], geometrically nonlinear analysis of 

plates and cylindrical shells [135]. 

As mentioned before, the radial basis functions include some shape 

parameters which directly affect the shape function quality and solution accuracy. 

The effect of these parameters for the solution of solid mechanics problems were 

studied by Wang and Liu [86,136] and Liu et al. [122]. And the optimum range of 

values for ݍ and ∝௖, dimensionless shape parameters of multi-quadrics (MQ) type 

RBF, were proposed in this studies. Although, traditional values of q are -0.5 and 

0.5, its optimum value is used as q=1.03 in many studies [86, 106,107,122,128,133, 

135,136]. Other values of q=0.999 [137] and q=1.05 [131] are very near to 1.03. The 

common result of many studies is that q cannot be an exact number, because it 

causes a non-invertible moment matrix [86,122,136]. 

∝௖  is an another dimensionless shape parameter and generally used as greater 

than 3 for most of the problems [2,122,130 ]. ∝௖ൌ 3.5 and ∝௖ൌ 4.0 are proposed as 
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it’s optimum values [122,130]. In addition, it is shown that when the polynomial 

terms are increased in the usual MQ basis functions, the effect of ∝௖ on the shape 

function quality is reduced [130].  

2.4 Meshfree Methods in the Solution of Geometric Nonlinear and Elasto-plastic 
Problems 

The finite element method (FEM) is a powerful technique and is widely used 

for the solution of a variety of problems encountered in engineering and science. 

However, the FEM has some defects such as low accuracy at large deformation 

problems and the discontinuity of stresses at the element boundaries. The source of 

these weaknesses comes from the mesh structure of the FEM which uses element 

based shape functions. Meshfree methods are used to eliminate such problems. 

Therefore, in this section, some Meshfree techniques for the solution of 

geometrically nonlinear and elastoplastic problems are reviewed. 

Kargamovin et al. [138] used the EFG method to elasto-plastic stress analysis 

and applied for a crack problem. An enriched meshless method for fracture analysis 

of 2D nonlinear elastic solids under mode-I loading was proposed by Rao and 

Rahman [139]. The method comprises from an EFG method which enriched with 

two new basis functions. Xu and Saigal [140,141] developed an EFG based 

formulation for steady dynamic crack growth and quasi-static dynamic crack growth. 

Crack growth was simulated using small scale yielding condition in this formulation. 

EFG method was extended to elasto-plastic analysis of isotropic plates by Belinha 

and Dinis [142]. Liu et al. [143] proposed an EFG-FE coupling method with linear 

mathematical programming to solve elasto-plastic contact problems. Liu et al [144] 

employed an adaptive FE-EFG coupling method to simulate bulk metal forming 

process. It was examined with forging and extrusion examples. Barry and Saigal 

[145] applied EFG method to 3D elasto-plastic problems. 

Guo et al. [146] implemented a rigid-plastic point collocation method to 

metal forming problem. Liu et al. [147] employed the Reproducing Kernel Particle 

Method (RKPM) to solve large deformation problems for structural dynamics. Chen 

et al. [148] used a Lagrangian RPKM for metal forming analysis. The large plastic 

deformations can be handled easily by the proposed method. The RKPM were used 
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in plane strain forging problem [149] and bulk forming problems [150]. The RPKM 

was also used for analysis of nonlinear hyperelasticity [151,152]. 

A point interpolation meshfree method for solving in elastic problems based 

Hencky’s deformation theory was proposed by Dai et al. [153]. Wang et al. [154] 

developed parallel point interpolation method for simulation of 3D large deformation 

metal forming analysis. It is based on Galerkin weak form and shape functions uses 

radial basis functions. The large deformation analysis of elastic and elasto-plastic 3D 

beams based on the Natural Neighbour RPIM (NNRPIM) was proposed by Dinish et 

al. [155]. The NNRPIM is an improved version of RPIM. 

2.5 Conclusions on Literature Survey 

The following conclusions were obtained from the literature reviews; 

1. The PIM has singularity problem and there isn’t an algorithm that fully solve 

this problem. The complexities of the proposed algorithms in the literature 

were another problem of the PIM. Also, it is seen that there is a gap for the 

selection of polynomial terms. The solution of singularity problem and the 

definition of a rule for the selection of polynomial terms may improve the 

PIM. 

2. The RPIM is robust and stable. The optimum values for the solution of 2D 

and 3D elastic problems, plates, shells, smart materials and beams are already 

proposed in the literature. However, the effects of RPIM shape parameters for 

both geometrically nonlinear and elasto-plastic problems have not been 

investigated.  
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CHAPTER 3 

POINT INTERPOLATION METHOD 

3.1 Introduction 

The Point Interpolation Method (PIM) is a Meshfree method. In the PIM, a 

set of arbitrarily distributed points is used to represent the problem domain and shape 

functions are constructed by using local groups of the arbitrarily distributed points. 

The shape functions of PIM have Kronecker delta function property which allows 

simple application of essential and natural boundary conditions [1]. In the literature, 

two common basis function forms, polynomial basis functions (PBF) and radial basis 

functions (RBF), are developed so far to form PIM shape functions. 

In this chapter, application procedure of Meshfree methods in solid 

mechanics are briefly explained in section 3.2. The construction of shape functions 

using polynomial basis functions are detailed in section 3.3.1, and using radial basis 

functions are described in section 3.3.2. Some case studies are solved using 

polynomial PIM and radial PIM in section 3.4. 

3.2 A Brief Review of Application Procedure for Meshfree methods 

The application procedure of Meshfree methods can be summarized in four 

steps. These are domain representation, field interpolation, formulation of system 

equations and solution for field variables. In the first step, a set of nodes is used to 

represent the problem domain and its boundary. This does not mean domain is 

discreatized and there is not any relation found between the nodes. After the domain 

respresentation, shape functions are constructed to compute field variables at any 

point in the problem domain. Construction of Meshfree shape functions are done in a 

local domain and using the nodes of that local domain. Shape functions and the 

number of nodes used in the formation of them are not known before they are 

constructed. These are opposed to FEM in which the shape functions and the number 

of nodes used is not predefined. The system equations are formulated in the third 

step. The equations of a Meshfree method can be formulated by a strong form system 
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equation or a weak form system equation for a local domain. The system equations 

of local domains are then combined to obtain global system equations for entire 

problem domain. The procedures of forming system equations are slightly different 

for different Meshfree methods. Last step comprises from the solution of global 

system equations for field variables. Any equation solver according to the problem 

type can be used. 

3.3 Basic Definitions for Meshfree Methods 

In the application procedure of Meshfree methods, one always encounter a 

term named as local domain and a term called as background cell is sometimes 

experienced. The description of these terms is given in below sections. 

3.3.1 Local Domains (Support and Influence Domains) 

In FEM and BEM, the field variable is approximated in an element. The 

shape functions of elements are constructed before the usage of elements, and the 

number of nodes in an element is predetermined. However, in Meshfree methods, the 

field variable is interpolated using local domains and shape functions are constructed 

after the determination of local domains. Local domain construction does not contain 

any preliminary information about the number of nodes of the local domain. 

Two types of local domains have been used to construct shape functions in 

Meshfree methods: Support domain and Influence domain. Support domain and 

Influence domain are often used for the same meaning. Support domain defines a 

selected area for the Meshfree interpolation of a point of interest. Also, it indicates 

the number of nodes that supported the approximation of field variable at the point of 

interest. Influence domain is an area that represents the area of the influence of the 

node. The influence domain works better than the support domain for irregularly 

distributed nodes [1]. 

The centre of a support domain can be a sampling point or a field node and usually a 

Gauss sampling point is used. However, the centre of an influence domain must be a 

field node. The illustration of support domain and influence are shown in Figure 3.1. 
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3.3.2 Background Cells 

To perform the numerical integrations in a Galerkin weak form formulation used 

Meshfree method, global problem domain is discretized into cells. These cells are 

called background cells and they can be rectangular or triangular for a two-

dimensional domain. The background cells can be appeared as a mesh, but they 

aren’t. In FEM, the mesh is used for both field approximation and integration, 

however, in the Meshfree methods, the background cells are used only for integration 

during the calculation of stiffness matrix. The background cells can be depicted as in 

Figure 3.1. 

 

Figure 3.1 Illustration of background cells for integrations, support domain and 
influence domain. 

a) Support Domain; the centre is a quadrature point. 
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b) Influence Domain; the centre is a field node. 
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3.4. Point Interpolation Method (PIM) Shape Functions 

3.4.1 Polynomial Point Interpolation Shape Functions 

The polynomial PIM approximates the displacement components using the 

nodes of local surrounding domain, support domain or influence domain, of the point 

of interest. This approximation is expressed as follows; 

,ܠ൫ݑ ொ൯ܠ ൌ෍݌௜ሺܠሻܽ௜ሺݔொሻ

௡

௜ୀଵ

ൌ  ொ൯                      ሺ3.1ሻݔ൫܉ሻܠሺ܂ܘ

where ݊ is the number of nodes in the local surrounding domain of point of interest, 

 ሻ is the polynomial basis functions defined in the Cartesian coordinates andܠ௜ሺ݌ ,ொܠ

ܽ௜ሺܠொሻ is the coefficient for the polynomial basis function ݌௜ሺܠሻ of the point ݔொ.  

The polynomial basis functions are constructed from Pascal’s triangle by 

selecting the terms symmetrically as shown in Figure 3.2. 

 

For one-dimensional domain, the polynomial basis functions have the 

following general form: 

ሻܠሺ܂ܘ ൌ ሼ1, ,ݔ ,ଶݔ ,ଷݔ ,ସݔ …… .  ௡ሽ                                   ሺ3.2ሻݔ

and the general form of polynomial basis functions in two-dimensional domain is 

expressed as; 

ሻܠሺ܂ܘ ൌ ሼ1, ,ݔ ,ݕ ,ݕݔ ,ଶݔ ,ଶݕ …… . ,௡ݔ  ௡ሽ                            ሺ3.3ሻݕ

Figure 3.2 The Pascal’s Triangle 

1 

x  y 

xy   ଶݔ ଶݕ

 ݕଶݔ  ଶݕݔ  ଷݔ ଷݕ

 ݕଷݔ  ଶݕଶݔ  ଷݕݔ  ସݔ ସݕ
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In a local surrounding domain Equation 3.1 must be satisfied for all nodes and this 
condition is defined as 

ଵݑ ൌ෍ܽ௜݌ሺܠ૚ሻ

௠

௜ୀଵ

ൌ ܽଵ ൅ ܽଶݔଵ ൅ ܽଷݕଵ ൅ ⋯൅ ܽ௠݌௠ሺܠ૚ሻ

ଶݑ ൌ෍ܽ௜݌ሺܠ૛ሻ

௠

௜ୀଵ

ൌ ܽଵ ൅ ܽଶݔଶ ൅ ܽଷݕଶ ൅ ⋯൅ ܽ௠݌௠ሺܠ૛ሻ

ଷݑ ൌ෍ܽ௜݌ሺܠ૜ሻ

௠

௜ୀଵ

ൌ ܽଵ ൅ ܽଶݔଷ ൅ ܽଷݕଷ ൅ ⋯൅ ܽ௠݌௠ሺܠ૜ሻ

⋮

௡ݑ ൌ෍ܽ௜݌ሺܖܠሻ

௠

௜ୀଵ

ൌ ܽଵ ൅ ܽଶݔ௡ ൅ ܽଷݕ௡ ൅ ⋯൅ ܽ௠݌௠ሺܖܠሻ

             ሺ3.4ሻ 

where ݌௠ሺܑܠሻ is the nodal value of last basis function term for node i, m is the 

number of trems of basis function. Equation (3.4) can be written in the following 

matrix form: 

ௌ܃ ൌ  ሺ3.5ሻ                                                             ܉ொ۾

where 

ௌ܃ ൌ ൦

ଵݑ
ଶݑ
⋮
௠ݑ

൪                                                             ሺ3.6ሻ 

is the nodal displacement vector of local domain, 

܉ ൌ ൦

ܽଵ
ܽଶ
⋮
ܽ௠

൪                                                             ሺ3.7ሻ 

is the coefficients vector, and 

ொ۾ ൌ

ۏ
ێ
ێ
ێ
ۍ
1 ଵݔ ଵݕ ଵݕଵݔ ⋯ ଵሻܠ௠ሺ݌

1 ଶݔ ଶݕ ଶݕଶݔ ⋯ ଶሻܠ௠ሺ݌

1
⋮
1

ଷݔ
⋮
௡ݔ

ଷݕ
⋮
௡ݕ

ଷݕଷݔ
⋮

௡ݕ௡ݔ

⋯
⋱
⋯

ଷሻܠ௠ሺ݌
⋮

ے௡ሻܠ௠ሺ݌
ۑ
ۑ
ۑ
ې

                             ሺ3.8ሻ 

is the moment matrix of local domain. The number of nodes in a local surrounding 

domain, ݊, always equals to the number of terms of basis functions, ݉, in 

polynomial PIM.  
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The solution of Equation 3.5 for coefficients, ܉, gives  

܉ ൌ ொ۾
ିଵ܃ௌ                                                      ሺ3.9ሻ 

The coefficients, ܉, are constants for the nodes of same local domain groups. 

Substitution of Equation 3.9  into Equation 3.1. yields 

ሻܠሺݑ ൌ ઴ሺܠሻ܃ௌ                                             ሺ3.10ሻ 

where ઴ሺܠሻ is the matrix of shape functions and is defined by [1] 

઴ሺܠሻ ൌ ୕۾ሻܠሺ்ܘ
ିଵ ൌ ሾ߶ଵሺܠሻ, ߶ଶሺܠሻ, ߶ଷሺݔሻ, … . , ߶௡ሺܠሻሿ                    ሺ3.11ሻ 

3.4.2 Radial Point Interpolation Shape Functions 

The radial basis function with polynomial terms approximates field variable 

using the nodes of local surrounding domain of the point ݔொ. This approximation can 

be expressed as [1] 

,ܠ௛൫ݑ ொ൯ܠ ൌ෍ܴ௜ሺܠሻܽ௜

௡

௜ୀଵ

൅෍݌௝ሺܠሻ ௝ܾ

௠

௝ୀଵ

ൌ R்ሺxሻ܉ ൅ p்ሺxሻ܊                     ሺ3.12ሻ 

where ݊ is the number of nodes in the local surrounding domain of point ܠொ , ܽ௜ is 

the coefficient for the radial basis ܴ௜ሺܠሻ, ݉ is the number of polynomial basis 

functions and ௝ܾ is the coefficient for the polynomial basis function ݌௝ሺܠሻ.  

The distance between the point of interest ܠொ and a node at ܠ௜ is the variable 

of the radial basis function ܴ௜ሺܠሻ. 

ݎ ൌ ඥሺݔொ െ ௜ሻݔ
ଶ ൅ ሺݕொ െ ௜ሻݕ

ଶ for 2-D problems                                ሺ3.13ሻ  

There are different types of radial basis functions. The two most often used 

forms and their dimensionless parameters are listed in Table 1. 

 Name Equation Shape Parameters 
1 Multi-quadrics ܴ௜ሺݔ, ሻݕ ൌ ሺݎ௜

ଶ ൅ ሺ∝௖ ݀௖ሻ
ଶሻ௤ ∝௖, ݍ 

2 Gaussian ܴ௜ሺݔ, ሻݕ ൌ ݁
ିఈ೎ ሺ

௥೔
ௗ೎
ሻమ ∝௖ 

Table 1: Radial basis functions and their dimensionless shape parameters. 

Enforcement of Equation 3.12 for all nodes within the local domain allows 

determining the coefficients ܽ௜ and ௝ܾ. It can be written in matrix form 
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Uௌ ൌ Rொa+P௠b                                                          ሺ3.14ሻ 

where Uௌ is the nodal displacement vector of local domain, 

ௌ܃ ൌ ൦

ଵݑ
ଶݑ
⋮
௡ݑ

൪                                                             ሺ3.15ሻ 

Rொ is the moment matrix of radial basis functions, 

ொ܀ ൌ ൦

ܴଵሺݎଵሻ ܴଶሺݎଵሻ ⋯ ܴ௡ሺݎଵሻ

ܴଵሺݎଶሻ ܴଶሺݎଶሻ ⋯ ܴ௡ሺݎଶሻ
⋮ ⋮ ⋱ ⋮

ܴଵሺݎ௡ሻ ܴଶሺ݊ሻ ⋯ ܴ௡ሺݎ௡ሻ

൪                             ሺ3.16ሻ 

P௠ is the polynomial moment matrix, 

௠۾
் ൌ

ۏ
ێ
ێ
ێ
ۍ

1 1 ⋯ 1
ଵݔ ଶݔ ⋯ ௡ݔ
ଵݕ ଶݕ ⋯ ௡ݕ
⋮ ⋮ ⋱ ⋮

ଵሻܠ௠ሺ݌ ଶሻܠ௠ሺ݌ ⋯ ے௡ሻܠ௠ሺ݌
ۑ
ۑ
ۑ
ې

                             ሺ3.17ሻ 

a is the coefficients vector of radial basis functions, 

்܉ ൌ ሼܽଵ ܽଶ ⋯ ܽ୬ሽ                                        ሺ3.18ሻ 

b is the coefficients vector of polynomial. 

்܊ ൌ ሼܾଵ ܾଶ ⋯ ܾ௠ሽ                                     ሺ3.19ሻ 

However, there are ݊ ൅݉ variables in Equation 3.14. The additional m 

equations can be added using the following ݉ constraint conditions. 

෍݌௝ሺx௜ሻܽ௜ ൌ P௠
୘

௡

௜ୀଵ

a ൌ 0          ݆ ൌ 1,2, … ,݉                               ሺ3.20ሻ 

Combining Equations 3.14 and 3.20 yields the following set of equations in the 

matrix form 

U෩ௌ ൌ ቂ
Uௌ

૙
ቃ ൌ ቈ

Rொ P௠
T

P௠
T 0

቉ ቄ
a
bቅ ൌ Ga଴                              ሺ3.21ሻ 

where 
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଴܉
் ൌ ሼܽଵ ܽଶ ⋯ ܽ௡ ܾଵ ܾଶ ⋯ ܾ௠ ሽ                                    ሺ3.22ሻ 

ௌ෪܃ ൌ ሼݑଵ ଶݑ ⋯ ௡ݑ 0 0 ⋯ 0 ሽ                                    ሺ3.23ሻ 

Because the matrix ࡽ܀ is symmetric, the matrix ۵ will also be symmetric. Solving 

Equation 3.21, we obtain 

a଴ ൌ ቄ
a
bቅ ൌ GିଵU෩ௌ                                                 ሺ3.24ሻ 

Equation 3.12 can be re-written as 

௛ሺxሻݑ ൌ R୘ሺxሻ܉ ൅ p୘ሺxሻ܊ ൌ ሼR୘ሺxሻ p୘ሺxሻሽ ቄ
a
bቅ                                ሺ3.25ሻ 

Using Equation 3.24 we can obtain 

௛ሺxሻݑ ൌ ሼR୘ሺxሻ p୘ሺxሻሽGି૚U෩ௌ                                 ሺ3.26ሻ 

where the RPIM shape functions can be expressed as [2] 

઴෩ Tሺxሻ ൌ ሼR୘ሺxሻ p୘ሺxሻሽGି૚                              ሺ3.27ሻ 

Finally, the RPIM shape functions corresponding to the nodal displacements vector 

Φ(x) can be obtained considering the n-terms of shape functions. 

3.5. Implementation of PIM Shape Functions to 2D Linear Elastic Problems 

A two-dimensional linear solid mechanics problem defined in domain Ω and 

bounded by Γ is considered for the formulation of PIM. The equilibrium, strain-

displacement and constitutive equations can be used to describe the problem and they 

can be given as 

ߪ܂ۺ ൅ ܊܎ ൌ 0   Equilibrium equation in problem domain Ω         ሺ3.28ሻ 

ߪ ∙ ܖ ൌ  Natural boundary condition on Γ୲                            ሺ3.29ሻ  ̅ ܜ

ܝ ൌ  ഥ   Essential boundary condition on Γ୳                        ሺ3.30ሻܝ

where ۺ is the differential operator and is given by 
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ۺ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲

ݔ߲
0

0
߲

ݕ߲
߲

ݕ߲

߲

ےݔ߲
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                                                         ሺ3.31ሻ 

ો୘ ൌ ሼߪ௫௫ ௬௬ߪ ߬௫௬ሽ is the stress vector, ܝ୘ ൌ ሼݑ  ,ሽ is the displacement vectorݒ

܊܎
୘ ൌ ሼܾ௫ ܾ௬ሽ is the body force vector, ܜ ̅ is the prescribed traction on the natural 

boundaries, ܝഥ is the prescribed displacement on the essential boundaries, and ܖ is the 

vector of unit outward normal at a point on the boundary. 

The variational form of the equilibrium equation is expressed as [1] 

නሺܝߜۺሻ୘ሺ۲ܝۺሻdΩ

 

ஐ

െ නܝߜ୘܊܎dΩ

 

ஐ

െ නܝߜ୘ܜd̅Γ

 

୻೟

ൌ 0                    ሺ3.32ሻ 

where D is the material matrix. Equation 3.32 is defined for the global problem 

domain, Ω, so that it requires the background cells to evaluate integrals [1]. The point 

loads are defined in the traction force. 

It should be remembered that the problem domain is represented by arbitrarily 

distributed nodes in the PIM, and the nodes are used for approximation of field 

variables by means of shape functions. The displacements at any point of interest can 

be approximated using the nodes of local surrounding domain of the point and it may 

be expressed as the follows [1]; 

ሺଶൈଵሻܝ
௛ ൌ ቄ

ݑ
ݒ
ቅ ൌ ൤

߶ଵ 0 ⋯ ߶௡ 0

0 ߶ଵ ⋯ 0 ߶௡
൨

ە
۔

ۓ
ଵݑ
ଵݒ
⋮
௡ݑ
௡ۙݒ
ۘ

ۗ

ൌ ઴ሺଶൈଶ௡ሻܝሺଶ௡ൈଵሻ           ሺ3.33ሻ 

where ݊ is the number of nodes in the local surrounding domain, and ܝ is the 

displacement vector of nodes of local surrounding domain. Equation 3.33 can also be 

expressed as 

ሺଶൈଵሻܝ
௛ ൌ෍൤

߶௜ 0
0 ߶௜

൨

௡

௜

ቄ
௜ݑ
௜ݒ
ቅ ൌ෍઴௜ܝ௜

௡

௜

                      ሺ3.34ሻ 
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where ઴௜ is the matrix of shape functions of node i, ܝ௜is the nodal displacements and 

 ௛ is the approximated displacement of a point of interest. From Equation 3.34, weܝ

can obtain 

ܝߜ ൌ ઴ሺଶൈଶ௡ሻܝߜሺଶ௡ൈଵሻ ൌ෍઴௜ܝߜ௜

௡

௜

                          ሺ3.35ሻ 

The approximated displacements are used to obtain strains. 

ઽሺଷൈଵሻ ൌ ௛ܝۺ ൌ              ሺଶ௡ൈଵሻܝሺଷൈଶ௡ሻ઴ሺଶൈଶ௡ሻۺ

                 ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲

ݔ߲
0

0
߲

ݕ߲
߲

ݕ߲

߲

ےݔ߲
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൤
߶ଵ 0 … ߶௡ 0

0 ߶ଵ … 0 ߶௡
൨

ە
۔

ۓ
ଵݑ
ଵݒ
⋮
௡ݑ
௡ۙݒ
ۘ

ۗ

           ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲߶ଵ
ݔ߲

0 …

0
߲߶ଵ
ݕ߲

…

߲߶ଵ
ݕ߲

߲߶ଵ
ݔ߲

…

   
߲߶௡
ݔ߲

0

0
߲߶௡
ݕ߲

    
߲߶௡
ݕ߲

߲߶௡
ݔ߲ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ە
۔

ۓ
ଵݑ
ଵݒ
⋮
௡ݑ
௡ۙݒ
ۘ

ۗ

ൌ ۰ሺଷൈଶ௡ሻܝሺଶ௡ൈଵሻ                             

ൌ ෍۰௜ܝ௜

࢔

࢏

                                          

                    ሺ3.36ሻ 

where ۰ is a matrix that includes the derivatives of the shape functions of the local 

surrounding domain. ۰௜ is the matrix that includes the derivatives of shape functions 

of node i. Using this, ܝߜۺ௛ can be expressed as 

௛ܝߜۺ ൌ ሺଶ௡ൈଵሻܝߜሺଷൈଶሻ઴ሺଶൈଶ௡ሻۺ
ൌ ۰ሺଷൈଶ௡ሻܝߜሺଶ௡ൈଵሻ

            ൌ ෍ሺ۰௜ሻሺଷൈଶሻሺ઼ܝ௜ሻሺଶൈଵሻ

௡

௜

                                          ሺ3.37ሻ 

Using the constitutive equations for the material at the point, the stress vector can be 

expressed as 
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ો ൌ ۲ઽ ൌ ۲ሺଷ௫ଷሻ۰ሺଷൈଶ௡ሻܝሺଶ௡ൈଵሻ

     ൌ ෍۲ሺଷ௫ଷሻሺ۰௜ሻሺଷൈଶሻሺܝ௜ሻሺଶൈଵሻ

ܖ

௜

                                       ሺ3.38ሻ 

After the substitution of Equations (3.36) and (3.37) into the first term of Equation 

(3.32), we have 

නሺܝߜۺሻ୘ሺ۲ܝۺሻdΩ

 

ஐ

ൌ න൭෍۰௜ܝߜ௜

௡

௜

൱

୘ 

ஐ

ቌ෍۲۰௝ܝ௝

௡

௝

ቍdΩ

                          ൌ න෍෍ܝߜ௜
୘ൣ۰௜

୘۲۰௝൧ܝ௝dΩ

௡

௝

௡

௜

 

ஐ

                     ሺ3.39ሻ 

Up to the present, the index ݅ and ݆ are used only for the nodes of a local surrounding 

domain. After this stage, they are changed from local surrounding domain to global 

problem domain. Therefore, both ݅ and ݆ in Equation (3.39) can now vary from 1 to 

ܰ. ܰ is the total number of nodes in the problem domain. With this modification, the 

integral in Equation 3.39 works only if nodes ݅ and ݆ are in the same local domain. 

Equation 3.39 can rewritten as 

නሺܝߜۺሻ୘ሺ۲ܝۺሻdΩ

 

ஐ

ൌ න෍෍ܝߜ௜
୘ൣ۰௜

୘۲۰௝൧ܝ௝dΩ

ே

௝

ே

௜

 

ஐ

            ሺ3.40ሻ 

The integration is taken inside of the summations to arrive at 

නሺܝߜۺሻ୘ሺ۲ܝۺሻdΩ

 

ஐ

ൌ෍෍ܝߜ௜
୘ሺන۰௜

୘۲۰௝

 

ஐ

dΩ

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
۹೔ೕ

ሻܝ௝

ࡺ

௝

ே

௜

          ሺ3.41ሻ 

where ۹௜௝ is the nodal stiffness matrix. It is a 2 ൈ 2 matrix, and is defined as 

۹௜௝ ൌ නሺ۰௜
୘ሻଶൈଷ۲ଷൈଷሺ۰௝ሻଷൈଶ

 

ஐ

dΩ                            ሺ3.42ሻ 

Note that when node i and node j are not in the same local domain of the same 

quadrature point of integration, ۹௜௝ vanishes. 

To obtain numerically the nodal stiffness matrix, Gauss quadrature method is used. 

Gauss quadrature method is used in the same form as used in FEM, but this time 
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integrations are performed over the background cells not over the elements. The 

nodal stiffness matrix can be obtained using the Gauss quadrature method as follows 

[1]: 

۹௜௝ ൌ෍෍ݓ௟

௡೒

௟ୀଵ

۰୧
୘൫ܠொ௟൯D۰௝൫ܠொ௟൯|۸௟௞

஽ | ൌ෍෍ሺ۹௜௝
௟௞ሻሺ૛ൈ૛ሻ

௡೒

௟ୀଵ

௡೎

௞

௡೎

௞

               ሺ3.43ሻ 

where ݊௖ is the number of background cells, ݊௚ is the number of gauss points used in 

the background cell, ݓ௟ is the gauss weighting factor for the lth gauss point at ܠொ௟, 

۸௟௞
஽  is the Jacobian matrix for the area integration of the background cell k, at which 

the gauss point ܠொ௟ located, and ۹௜௝
௟௞ is defined as 

۹௜௝
௟௞ ൌ ௟۰୧ݓ

୘൫ܠொ௟൯D۰௝൫ܠொ௟൯|۸௟௞
஽ |                                 ሺ3.44ሻ 

Equation (3.41) can be now expressed as 

නሺܝߜۺሻ୘ሺ۲ܝۺሻdΩ

 

ஐ

ൌ෍෍ܝߜ௜
୘۹௜௝ܝ௝

ே

௝

ே

௜

                ሺ3.45ሻ 

Note that the summation in the right-hand side of this equation is in fact an assembly 

process. To view this, we perform the following operation [1]. 

෍෍ܝߜ௜
୘۹௜௝ܝ௝

ே

௝

ே

௜

ൌ ଵܝߜ
୘۹ଵଵܝଵ ൅ ଵܝߜ

୘۹ଵଶܝଶ ൅ ⋯൅ ଵܝߜ
୘۹ଵேܝே                     

                               ൅ܝߜଶ
୘۹ଶଵܝଵ ൅ ଶܝߜ

୘۹ଵଶܝଶ ൅ ⋯൅ ଶܝߜ
୘۹ଶேܝே                     

                               ൅ܝߜଷ
୘۹ଷଵܝଵ ൅ ଷܝߜ

୘۹ଷଶܝଶ ൅ ⋯൅ ଷܝߜ
୘۹ଷேܝே                     

                      ⋮                                                                               ሺ3.46ሻ   

                                  ൅ܝߜே
୘۹ேଵܝଵ ൅ ேܝߜ

୘۹ேଶܝଶ ൅⋯൅ ேܝߜ
୘۹ேேܝே                         

ൌ                                                                                             ܃୘۹܃ߜ

Finally, Equation (3.41) becomes 

නሺܝߜۺሻ୘ሺ۲ܝۺሻdΩ

 

ஐ

ൌ  ሺ3.47ሻ                                 ܃୘۹܃ߜ

where K is the global stiffness matrix in the form of 
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۹ሺଶே௫ଶேሻ ൌ ൦

۹ଵଵ ۹ଵଶ

۹ଶଵ ۹ଶଶ

⋯ ۹ଵே

⋯ ۹ଶே

⋮       ⋮
۹ேଵ ۹ேଶ

⋱     ⋮  
⋯ ۹ேே

൪                                 ሺ3.48ሻ 

The dimension of the matrix K should be ሺ2ܰሻ ൈ ሺ2ܰሻ, because nodal stiffness 

matrix ۹௜௝ is of 2 ൈ 2, and the total number of nodes in the problem domain is N. 

Because of the Kronecker delta function property the natural and essential boundary 

conditions are applied as in FEM. This property eliminates the accuracy loss during 

the enforcement of essential and natural boundary conditions and increase the 

efficiency by eliminating the requirement of the supplementary operations. 

3.6 Numerical Examples 

An elasto-static cantilever beam problem is solved to implement the PIM shape 

functions. The cantilever beam is loaded as shown in Figure 3.3 and the models used 

for the PIM solution is shown in Figure 3.4. The material properties are as follows: 

ܧ ൌ 200 GPa and ߭ ൌ 0. The geometry of cantilever beam is modeled by regularly 

distributed 63 nodes and by 51 irregularly distributed nodes. 10 background cells are 

used for integration. The sizes of the formed support domains are 0.2 m 0.1 ݔ m. 

9 to15 nodes are used for interpolation in a local domain. The results are compared 

with analytical solution results in Figure 3.5. 

 

 

 

Figure 3.4 The regular and irregular PIM model of cantilever beam problem. 

Figure 3.3 The cantilever beam problem. 
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Figure 3.5 The transverse deflection along AB line of cantilever beam. 

 

 

Figure 3.6 The stress  along AB line of cantilever beam. 
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3.7 Results and Discussions 

The results of the cantilever beam shows that both PIM and RPIM work for 

irregular node distribution. However, the PIM has singularity problem for regularly 

distributed nodes. The RPIM gives more accurate results for irregularly distributed 

nodes. 
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CHAPTER 4 

ANALYSES OF 2D GEOMETRICALLY NONLINEAR PROBLEMS 

4.1 Introduction 

Most of the problems of solid mechanics in various branches of engineering 

are solved using linear approximations. Because they are easy to compute, the 

computational cost is small, and the solutions of linear approximations can be 

superposed on each other. 

However, the behavior of real structures is nonlinear and in some cases 

approximation of linearity gives unrealistic results. When the displacements cause 

changes in geometry that have a significant effect on the load deformation behavior 

and/or strain is not proportional to the stress, the nonlinearities become very 

important and the linear approximations cannot be used. 

There are three types of nonlinear structural problems found in literature 

i. Geometric nonlinearity 

ii. Material nonlinearity 

iii. Boundary nonlinearity 

In geometric nonlinearity, the deflections of the structure are large compared 

with the original dimensions of the structure and this caused to the changes in 

stiffness and the effects of loads during the structure deformations. Because of these, 

equilibrium equations must be written with respect to deformed structural geometry. 

Geometric nonlinearity is characterized by large displacements and/or rotations. 

Material nonlinearity occurs when the strain is not proportional to the stress 

or material properties are functions of the state of stress. Nonlinear elastic, elasto-

plastic, visco-elastic and visco-plastic material models are examples of material 

nonlinearities. 
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In boundary nonlinearity, the gap between adjacent parts or the contact area 

between parts change and so the force changes. The contact problems are the most 

encountered type of the boundary nonlinearity. In crack problems, the displacements 

are not continuous at the crack tip. Therefore, the crack problems are an another 

boundary type nonlinearity problems. 

In non-linear structural problems, stiffness becomes functions of 

displacement and stiffness cannot be constructed without a knowledge of 

displacements. Because of these, the structural equations, ۴ ൌ  cannot been ,ܝ۹

immediately solved for ܝ. An iterative solution procedure is needed to solve the 

structural equations. The Newton-Raphson method is an iterative solution procedure 

used to solve the non-linear algebraic equations. It has a simple and an effective 

algorithm. 

In this chapter, the strain-displacement relationship of the finite strain is 

presented in section 4.2, the Newton-Raphson method is revised in section 4.3 and 

the application of Newton-Raphson method for the solution of non-linear discrete 

equations of the structure are revised in section 4.4. Some finite strain case studies 

are solved using PIM in section 4.5. 

4.2 The RPIM formulation for geometrically nonlinear problems 

The well-known deformation gradient tensor has an important role in 

characterising strains of large deformation problems and can be written as follows:  

௜௝ܨ ൌ෍ቈ
ூߔ߲
௝ݔ߲

݀௜ூ቉ ൅ ௜௝                                                 ሺ4.1ሻߜ

ே௉

ூୀଵ

 

The linearized weak form for geometrically nonlinear problems can be 

written in terms of the second Piola-Kirchoff stresses and the Green-Lagrange strains 

as follows [156] 

නS෠ ߜεො݀Ω

 

Ω

ൌ නߜuTܙ܎

 

Γ

݀Γ൅ නߜuT܊܎

 

Ω

݀Ω                                        ሺ4.2ሻ 

where ܊܎ is the body force, ܙ܎ is the surface forces and εො is the Green-Lagrange 

strain, 
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ϵො ൌ
ଵ

ଶ
ሺ۴்۴ െ ۷ሻ                                                           ሺ4.3ሻ  

۴ is the matrix form of deformation gradient tensor. 

۴ ൌ ൤
ଵଵܨ ଵଶܨ
ଶଵܨ ଶଶܨ

൨                                                          ሺ4.4ሻ 

S෠ is the second Piola-Kirchoff stress and can be written for compressible Neo-

Hooken material as follows [156], 

 S෠ ൌ ૚܋۴ሻݐ൫݈݊ሺ݀݁ߣ
ିଵ ൅ ሺ۷ߤ െ ૚܋

ି૚ሻ൯                                         ሺ4.5ሻ  

૚܋ are Lame’s constants. The matrix  ߤ and ߣ  ൌ ۴்۴ is known as right 

Cauchy-Green tensor. 

Equation 4.2 can be written explicitly,  

ඵቂBSതBT ൅ BFഥ
T
DFഥBTቃ ଴Δdܣ݀

 

஺బ

ൌ െඵBFഥ
T
S݀ܣ଴

 

஺బ

                                           

൅ඵ઴ܙ܎
଴݀ܣ଴

 

஺బ

൅ඵ઴܊܎
଴ܣ0݀

 

஺బ

           ሺ4.6ሻ 

 D is the material matrix, Φ is the shape function matrix and  ܣ଴ is the initial 

domain. Equation 4.5 can be written in terms of stiffness matrices and load vectors as 

follows: 

൫K௖ ൅ K
௦
൯Δd ൌ r௜ ൅ r௤ ൅ r௕                                                 ሺ4.7ሻ 

where K௖ is the current stiffness matrix, 

K௖ ൌ නBூFഥ
T
DFഥB௃

T

 

Ω

݀Ω                                                     ሺ4.8ሻ 

Kௌ is the geometric stiffness matrix, 

K௦ ൌ නBூSതB௃
T

 

Ω

݀Ω                                                         ሺ4.9ሻ 

Sത is the initial stress matrix, 

Sത ൌ

ۏ
ێ
ێ
ێ
ۍ
ܵ௫௫ ܵ௫௬ 0 0

ܵ௫௬ ܵ௬௬ 0 0

0 0 ܵ௫௫ ܵ௫௬
0 0 ܵ௫௬ ܵ௬௬ے

ۑ
ۑ
ۑ
ې

                                                 ሺ4.10ሻ 
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 ௜ is the  equivalent nodal load vector due to stresses in the current knownܚ

configuration, 

௜ܚ ൌ െඵBூ۴ത
୘

 

୅బ

 A଴                                                    ሺ4.11ሻ݀܁

 ,is the second Piola-Kirchoff stresses in a vector form ܁

܁ ൌ ሾܵ௫௫ ܵ௬௬ ܵ௫௬ሿ                                                    ሺ4.12ሻ 

 ௤ is the  equivalent nodal load vector due to surface forces, andܚ

௤ܚ ൌ ඵ઴ܙ܎
଴

 

୅బ

݀A଴                                                         ሺ4.13ሻ 

 .௕ is the  equivalent nodal load vector due to body forcesܚ

௕ܚ ൌ ඵ઴܊܎
଴

 

୅బ

݀A଴                                                         ሺ4.14ሻ 

The gradient matrices Bூ
T is expressed as 

Bூ
T ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ூߔ߲
ଵݔ߲

0

ூߔ߲
ଶݔ߲

0

0
ூߔ߲
ଵݔ߲

0
ூߔ߲
ےଶݔ߲

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                                                          ሺ4.15ሻ 

Arranged deformation gradient matrix Fഥ,  

Fഥ ൌ ൥
ଵଵܨ 0 ଶଵܨ 0
0 ଵଶܨ 0 ଶଶܨ
ଵଶܨ ଵଵܨ ଶଶܨ ଶଵܨ

൩                                                      ሺ4.16ሻ 

Cauchy Stress can be written as follows [138], 

ොߪ ൌ
ߣ

۴ݐ݁݀
݈݊ሺ݀݁۴ݐሻ۷ ൅

ߤ

۴ݐ݁݀
ሺ܋૛ െ ۷ሻ                                      ሺ4.17ሻ 

where ۷ is the unit matrix, ܋૛ is the left Cauchy-Green tensor (܋૛ ൌ   .(ࢀ۴۴
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4.3. Numerical Procedure 

The solution procedure of Eq. 11 is started with the division of the total load 

into load increments. At each load increments, the equation is solved iteratively. The 

iterative procedure can be achieved by the Newton-Raphson method which starts 

with an assumed solution and then tries to improve it until a specified convergence 

criteria is satisfied. In this study, the displacement based convergence criteria is used 

[138]. The algorithm of the procedure, which is used in each load increment and in 

each iteration, can be given as follows: 

1. Loop over integration cells 
1.1. Loop over integration points 

1.1.1. Determine the local surrounding domain 
1.1.2. Compute the shape functions and derivatives of them (Equation 3.27) 
1.1.3. Compute the deformation gradient (Eqaution 4.1) 
1.1.4. Compute Green-Lagrange strain (Equation 4.3) 
1.1.5. Compute second Piola-Kirchoff stresss(Equation 4.5) 
1.1.6. Compute material matrix (for compressible Neo-Hookean material 

[156]) 
1.1.7. Compute initial stress matrix (Equation4.10) 
1.1.8. Loop over nodes, i  

1.1.8.1. Form gradient matrix, ܤ௜, (Equation 4.15) 
1.1.8.2. Form internal force vector (Equation 4.11) 
1.1.8.3. Loop over nodes, j 

1.1.8.3.1. Form gradient matrix, ܤ௝ (Equation 4.15) 

1.1.8.3.2. Form the current stiffness matrix (Equation 4.8) 
1.1.8.3.3. Form the geometric stiffness matrix (Equation 4.9) 
1.1.8.3.4. Assemble the current and geometric stiffness matrix in the 

usual manner 
1.1.8.4. End of node loop, j 

1.1.9. End of node loop, i 
1.2. End of integration point loop 

2. End of integration cell loop 
3. Form the tangential stiffness matrix, KTൌK

௖
൅ K

௦
 

4. Solve KT∆d=∆f (∆܎ ൌ ௘௫௧܎ െ  (௜௡௧܎
5. Update displacements  

Check the convergency. If it is not satisfied, go to next iteration. If the 

convergence is achieved, calculate the Cauchy stresses. Because the nodal 

displacements are known, the stresses can be calculated at nodes using the following 

algorithm:   
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1. Loop over nodes 
1.1.1. Determine the local surrounding domain 
1.1.2. Compute the shape functions and derivatives of them (Equation 3.27) 
1.1.3. Compute the deformation gradient(Equation 4.1) 
1.1.4. Compute Green-Lagrange strain(Equation 4.3) 
1.1.5. Compute the Cauchy stress (Equation 4.17) 

2. End of node loop 

After calculating the Cauchy stresses, the next load step begins. 

4.4 Numerical Examples 

The developed RPIM program is tested using three different numerical examples. In 

all solutions, the same compressible hyperelastic Neo-Hookean material is used 

ߣ) ൌ 3.3 ∗ 10ଷ, ߤ ൌ 0.5 ∗ 10ସ). The numerical integrations are carried out using 4x4 

integration points. Plane stress assumption is used in axially load plate, plate with 

hole, cantilever beam cases and plane strain assumption is used for pressurized 

cylinder case. All results are compared with finite element method (FEM) results 

using displacement based 4 node rectangular elements [156].   

4.4.1 Axially Loaded Plate 

 This case is usually used as a first case in the meshfree studies of geometric 

nonlinear problems [157-159]. Therefore, a plate with dimensions of 10 cm 2.5 ݔ cm 

is loaded in tension as shown in Figure 4.1. RPIM models with regular and irregular 

distributed nodes and FEM model are shown in Figure 4.2. The data used in the 

RPIM and FEM models are compared in the Table 4.1. The displacements and 

stresses are discussed for the points A and B respectively. 

 

A 

B 200 MPa 200 MPa 

10 cm 

2.5 cm 

5 cm 

Figure 4.1 Axially loaded plate 



33 
 

 

Table 4.1 Data used in the RPIM and FEM models of axially loaded plate 

 RPIM FEM 

Problem Type 
Plane stress with unit 
thickness 

Plane stress with unit 
thickness 

Dimensions 10 cm x 2.5 cm 10 cm x 2.5 cm 

External load 
200 MPa (in 20 
increments) 

200 MPa (in 20 
increments) 

Linear solution ܧ ൌ 120 ߭ ,ܽܲܯ ൌ ܧ 0.2 ൌ ߭ ,ܽܲܯ 120 ൌ 0.2 

Geometrically nonlinear 
solution 

Neo-Hookean with 
ߣ ൌ 33.33  ܽܲܯ
ߤ ൌ 50  ܽܲܯ

Neo-Hookean with 
ߣ ൌ  ܽܲܯ 33.33
ߤ ൌ  ܽܲܯ 50

Number of nodes in the 
entire problem domain 

27 regular and irregular 
distributed nodes with 16 
background cells 

297 nodes with 
256 rectangular elements 

Number of nodes 
in a local domain 
Changes between 4 and 9 

in an element 
Constant, 4 

Sampling points for 
numerical integrations 

4x4 2x2 

Number of iteration in 
each load increment 

Changes between 2 and 4  Changes between 2 and 4 

 

4.4.1.1 Convergency rate  

The RPIM solutions are carried out with regular and irregular distributed 

nodes and using ݍ ൌ ݍ ,1.03 ൌ ௖ߙ ,1.75 ൌ 4 and ݉ ൌ 3. RPIM gives the 

deformation steps of the plate as shown in Figure 4.3. Nonlinear displacement 

solutions separate from linear solutions after the initial load increments as shown in 

Figure 4.4. Although, the number of elements in the FEM model is 11 times of 

number of nodes in the RPIM model, all RPIM and FEM displacement solutions are 

in good agreements. However, RPIM stress solutions show some deviations from 

FEM solutions when irregular nodes are used as shown in Figure 4.5. Both RPIM 

Figure 4.2 RPIM models with regular and irregular distributed nodes and FEM model of 
axially loaded plate. 
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and FEM linear and nonlinear solutions provide an excellent convergency for the 

displacements and stresses at the last load increment as shown in Figure 4.6 and 4.7. 

 

Figure 4.3 RPIM solution steps of large deformation of the plate with regular 
distributed nodes 

 

Figure 4.4 Displacement variations against load steps for RPIM 27 regular and 27 
irregular distributed nodes with αc=4, m=3 and FEM (297 nodes) at the point A on 
the axially loaded plate. 

 

Figure 4.5 Stress variations against load steps for RPIM 27 regular and 27 irregular 
distributed nodes with αc=4, m=3 and FEM (297 nodes) at the point B on the axially 
loaded plate. 
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Figure 4.6 The convergence rate of displacements at the last load increment at the 
point A on the axial plate by increasing number of nodes with αc=4, m=3 used in the 
models. 

 

Figure 4.7 The convergence rate of stresses at the last load increment at point B on 
the axial plate by increasing number of nodes with αc=4, m=3 used in the models. 

 
4.4.1.2 Effect of αc 

 The effect of ߙ௖ on the displacements and stresses are investigated for 

ݍ ൌ 1.03 and  ݉ ൌ 3. The results show that changing ߙ௖ values does not affect the 

displacement and stress increments as shown in Figure 4.8 and 4.9. 
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Figure 4.8 Displacement variations at the point A on the plate against load steps for 
27 nodes with ݍ ൌ 1.03, ݉ ൌ 3 and various ߙ௖. 

 

Figure 4.9 Stress variations at the point B on the plate against load steps for 27 
nodes with ݍ ൌ 1.03, ݉ ൌ 3 and various ߙ௖. 

 
4.4.1.3 Effect of q 

 In this investigation, ߙ௖ and ݉ are kept constant (ߙ௖ ൌ 4 and ݉ ൌ 3) while q 

is changed.  Figure 4.10 and 4.11 show that changing the value of q do not have an 

important effect on the displacement and stress results similar to ߙ௖. 
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Figure 4.10 Displacement variations at the point A on the plate against load steps for 
27 nodes with αc =4, ݉ ൌ 3 and various q. 

 

Figure 4.11 Stress variations at the point B on the plate against load steps for 27 
nodes with ߙ௖ ൌ 4, ݉ ൌ 3 and various ݍ. 

 
4.4.1.4 Effect of number of monomials 

 The number of monomials is taken as 0, 3, 4 and 6 while the ߙ௖ and ݍ are 

kept constant. The RPIM gives exactly same displacements with FEM results when 

݉ is used 3 and 4. However when it is used as 0 and 6, RPIM shows slightly 

different displacement results as shown in Figure 4.12. The RPIM stress results also 

give same stress results with FEM when ݉ ൌ 3 and 4. When m is used as 0, stresses 

show some minor differences. However, when it is used as 6, stress increments 

0

2

4

6

8

10

12

0 50 100 150 200 250

A
xi

al
 d

is
p

la
ce

m
en

t 
at

 p
oi

n
t 

A
 (

cm
)

Load (MPa)

FEM

q=-0.5

q=0.5

q=0.999

q=1.03

q=1.05

q=1.75

0

50

100

150

200

250

300

0 50 100 150 200 250

σ x
x

at
 p

oi
n

t 
A

 (
M

P
a)

Load (MPa)

FEM

q=-0.5

q=0.5

q=0.999

q=1.03

q=1.05

q=1.75



38 
 

shows significant differences between RPIM and FEM results as shown in Figure 

4.13. 

 

Figure 4.12 Displacement variations at the point A on the plate against load steps for 
27 nodes with ߙ௖ ൌ ݍ ,4 ൌ 1.03 and various ݉. 

 

 

Figure 4.13 Stress variations at the point B on the plate against load steps for 27 
nodes with ߙ௖ ൌ ݍ ,4 ൌ 1.03 and various ݉. 
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tension as shown in Figure 4.14. The dimensions of the plate and the data used in the 

models are given in the Table 2. The node distributions in the models are shown in 

Figure 4.15. The displacement at point A is discussed in the solutions. The stress at 

point B is well known and it is equal to 3 times of applied tractions in linear elastic 

solutions [1]. Therefore, it is compared with the stresses obtained in the RPIM and 

FEM solutions. 

 

Figure 4.14 A plate with hole. 

 

Figure 4.15 RPIM models with regular and irregular distributed nodes and FEM 
model of plate-hole problem. 
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Table 4.2 Data used in the RPIM and FEM models of the plate with hole. 

 RPIM FEM 

Problem type 
Plane stress with unit 
thickness 

Plane stress with unit 
thickness 

Dimensions 5 cm x 5 cm 5 cm x 5 cm 
External load 10 MPa  (in 20 increments) 10 MPa (in 20 increments) 
Linear solution ܧ ൌ 1 ݇ܲܽ, ߭ ൌ ܧ 0.3 ൌ 1 ݇ܲܽ, ߭ ൌ 0.3 

Geometrically nonlinear 
solution 

Neo-Hookean with 
ߣ ൌ .576923 ݇ܲܽ 
ߤ ൌ .384615 ݇ܲܽ 

Neo-Hookean with 
ߣ ൌ .576923 ݇ܲܽ 
ߤ ൌ .384615 ݇ܲܽ  

Number of nodes in the 
entire problem domain 

Coarse Model 
91 regular and 98 irregular 
distributed nodes with 72 
background cells 

Fine Model 
1271 regular distributed 
nodes with 1200 background 
cells 

1271 nodes with 
1200 rectangular elements 

Number of nodes 
in a local domain 
Constant, 4 

in an element 
Constant, 4 

Sampling points for 
numerical integrations 

3x3 2x2 

Number of iteration in 
each load increment 

Changes between 3 and 5 Changes between 3 and 5 

 
4.4.2.1 Convergency rate 

In the RPIM solutions, two different models are used. The deformed shape of 

the plate in the final load step is shown in Figure 4.16. Because of the errors in the 

traction line, the RPIM solution is repeated with higher number of nodes as shown in 

Figure 4.17. The errors in the traction line are removed with higher number of nodes. 

In these solutions, the shape parameters are used as ݍ ൌ ௖ߙ ,1.03 ൌ 4 and the 

number of polynomial is ݉ ൌ 3. In order to see the effect of shape parameters 

remarkably, all remaining solutions are carried out using coarse node model. 

Displacement variations against the load increments are shown in Figure 4.18. RPIM 

linear elastic solutions give radial stresses (at point B) three times of applied load as 

in the analytical solutions. When ݍ is used as 1.03 the regular and irregular node 

RPIM models give nearly same results. The best FEM agreement is obtained with 

irregular node RPIM (ݍ ൌ 1.75). However, in stress variations, the worst FEM 

agreement is obtained with RPIM-regular (ݍ ൌ 1.75) as shown in Figure 4.19. The 

regular and irregular RPIM models gives same results with ݍ ൌ 1.03. The best FEM 

agreement in stress solutions is again obtained with irregular node RPIM (ݍ ൌ 1.75). 

In all solutions, the displacement at the point A converges for number of nodes 
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greater than 400 as shown in Figure 4.20. The traction is applied as 10 MPa in these 

solutions. The linear RPIM stress solution at the point B converges better than the 

linear FEM stress solution as shown in Figure 4.21. 

Figure 4.16 Initial coarse node distribution of RPIM model and its deformed shape 
in the last load increment. 
 

Figure 4.17 Initial fine node distribution of RPIM model and its deformed shape in 
the last load increment. 

 

Figure 4.18 Displacement variations against load steps for RPIM 91 regular and 98 
irregular distributed nodes with ࢉࢻ ൌ ૝, ࢓ ൌ ૜ and FEM (1271 nodes) at the point 
A on the plate-hole problem. 
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Figure 4.19 Stress variations against load steps for RPIM 91 regular and 98 irregular 
distributed nodes with ߙ௖ ൌ 4, ݉ ൌ 3 and FEM (1271 nodes) at the point B on the 
plate-hole problem. 

 

Figure 4.20 The convergence rate of displacements at the last load increment at the 
point A on the plate with hole by increasing number of nodes with ߙ௖ ൌ 4, ݉ ൌ 3  
used in the models. 
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Figure 4.21 The convergence rate of stresses at the last load increment at the point A 
on the plate with hole by increasing number of nodes with ߙ௖ ൌ 4, ݉ ൌ 3 used in the 
models. 
 
4.4.2.2 Effect of αc 

 The displacements at the point A are generally in a good agreement for all ߙ௖ 

values as shown in Figure 4.22. The largest displacement deviation from FEM results 

is obtained when ߙ௖ is used as 6.  The best agreement with FEM is obtained when ߙ௖ 

is used as 3. The stresses are seriously affected from ߙ௖ values as shown in Figure 

4.23. The best agreement between FEM and RPIM results are obtained when ߙ௖  is 

used as 3. 

 

Figure 4.22 Displacement variations at the point A on the plate with hole against 
load steps for 91 nodes with ݍ ൌ 1.03, ݉ ൌ 3 and various ߙ௖. 
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Figure 4.23 Stress variations at the point B on the plate with hole against load steps 
for 91 nodes with  ݍ ൌ 1.03, ݉ ൌ 3 and various ߙ௖. 

 
4.4.2.3 Effect of q 

 The displacements at point A are almost not affected from the ݍ values as 
shown in Figure 4.24. However, the stresses at point B are drastically affected as 
shown in Figure 4.25. Best agreements between RPIM and FEM solutions are 
obtained when ݍ is used between 0.999 and 1.05. 

 

Figure 4.24 Displacement variations at the point A on the plate with hole against 
load steps for 91 nodes with ߙ௖ ൌ 4, ݉ ൌ 3 and various ݍ. 
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Figure 4.25 Stress variations at the point B on the plate with hole against load steps 
for 91 nodes with ߙ௖ ൌ 4, ݉ ൌ 3 and various ݍ. 

4.4.2.4 Effect of number of monomials 

 The displacements are not affected by the change of values of m as shown in 

Figure 4.26. However, changing values of m affects the stresses at the point B as 

shown in Figure 4.27. The best agreement between RPIM and FEM is obtained when 

m is used as 3. Increasing the number of monomials causes diverging the stresses 

from FEM results. 

 

Figure 4.26 Displacement variations at the point A on the plate with hole against 
load steps for 91 nodes with ߙ௖ ൌ ݍ ,4 ൌ 1.03 and various ݉. 
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Figure 4.27 Stress variations at the point B on the plate with hole against load steps 
for 91 nodes with ߙ௖ ൌ ݍ ,4 ൌ 1.03 and various ݉. 

 
4.4.3 Cantilever beam 

 The cantilever beam is an example which is used for verifications of meshfree 

methods in the solution of large deformation problems [2,157]. Therefore, a 

cantilever beam is solved with an initial dimension of 10 ܿ݉ 2 ݔ ܿ݉ as shown in 

Figure 4.28. The regular and irregular RPIM models and FEM model are shown in 

Figure 4.29. The data used in the cantilever beam is compared for FEM and RPIM as 

shown in the Table 3. The stresses and displacements are plotted at point A and B 

respectively. 

 

Figure 4.28 Cantilever beam 
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Figure 4.29 RPIM models with regular and irregular distributed nodes and FEM 
model of cantilever beam. 

 
Table 4.3 Data used in the RPIM and FEM models of cantilever beam 

 RPIM FEM 

Problem type 
Plane stress with unit 
thickness 

Plane stress with unit 
thickness 

Dimensions 10 cm x 2 cm 10 cm x 2 cm 

External load 320 N (in 20 increments) 
 320 N (in 20 
increments) 

Linear solution ܧ ൌ 120 ߭ ,ܽܲܯ ൌ ܧ 0.2 ൌ ߭ ,ܽܲܯ 120 ൌ 0.2 

Geometrically nonlinear 
solution 

Neo-Hookean with 
ߣ ൌ 33.33  ܽܲܯ
ߤ ൌ 50 ܽܲܯ

Neo-Hookean with 
ߣ ൌ  ܽܲܯ 33.33
ߤ ൌ  ܽܲܯ 50

Number of nodes in the 
entire problem domain 

33 regular and 36 irregular 
distributed nodes with 20 
background cells 

561 nodes with 
500 rectangular 
elements 

Number of nodes 
in a local domain 
Constant, 7 

in an element 
Constant, 4 

Sampling points for 
numerical integrations 

4x4 2x2 

Number of iteration in 
each load increment 

Changes between 2 and 4 
Changes between 3 and 
6 

 

4.4.3.1 Convergency rate  

 The large deformation of the cantilever beam is obtained using RPIM model 

with regular distributed nodes in the various load steps (Figure 4.30). In these 

solutions, ݍ ൌ ௖ߙ ,1.03 ൌ 4 and ݉ ൌ 3 are used. The linearity between the 

displacements and load increments disappear as the load increases and beam 
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becomes more stiff (Figure 4.31). There is a perfect agreement in the RPIM and 

FEM displacement solutions. There are also good agreements between stress 

solutions (Figure 4.32). To see the convergence rate of displacements and stresses, 

Figure 4.33 and Figure 4.34 are plotted. The RPIM and FEM displacements show 

nearly same convergence behaviour as shown in Figure 4.34. RPIM stresses 

convergence more rapidly than FEM as shown in Figure 4.35. 

 

Figure 4.30 RPIM solution steps of large deformation of the cantilever beam with 
regular distributed nodes. 

 

 

Figure 4.31 Displacement variations against load steps for RPIM 33 regular and 36 
irregular distributed nodes with ߙ௖ ൌ 4, ݉ ൌ 3 and FEM (561 nodes) at the point B 
on the cantilever beam. 
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Figure 4.32 Stress variations against load steps for RPIM 33 regular and 36 irregular 
distributed nodes with ߙ௖ ൌ 4, ݉ ൌ 3 and FEM (561 nodes) at the point A on the 
cantilever beam. 

 

 

Figure 4.33 The convergence rate of displacements at the last load increment at the 
point B on the cantilever beam by increasing number of nodes with ߙ௖ ൌ 4, ݉ ൌ 3 
used in the models. 
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Figure 4.34 The convergence rate of stresses at the last load increment at the point A 
on the cantilever beam by increasing number of nodes with ߙ௖ ൌ 4, ݉ ൌ 3  used in 
the models.  

4.4.3.2 Effect of αc 

 The displacement and stress variations are investigated for ݍ ൌ 1.03,  ݉ ൌ 3 

and various ߙ௖. The same displacement distributions are obtained for all values of ߙ௖  

(Figure 4.35). However, there are some slight differences in stresses between FEM 

and RPIM as shown in Figure 4.36. 

 

Figure 4.35 Displacement variations at the point B on the cantilever beam against 
load steps for 33 nodes with ݍ ൌ 1.03, ݉ ൌ 3 and various ߙ௖. 
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Figure 4.36 Stress variations at the point A on the cantilever beam against load steps 
for 33 nodes with ݍ ൌ 1.03, ݉ ൌ 3 and various ߙ௖. 

4.4.3.3 Effect of q 

 The displacements and stresses are plotted for ߙ௖ ൌ  4, ݉ ൌ  3 and various ݍ. 

There are good agreements between the RPIM and FEM displacement and stress 

results for all values of ݍ as shown in Figure 4.37 and 4.38. The worst displacement 

and stress distribution are obtained when ݍ ൌ െ0.5. 

 

Figure 4.37 Displacement variations at the point B on the cantilever beam against 
load steps for 33 nodes with αc =4, m=3 and various q. 
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Figure 4.38 Stress variations at the point A on the cantilever beam against load steps 
for 33 nodes with ߙ௖  ൌ 4, ݉ ൌ 3 and various ݍ. 

4.4.3.4 Effect of number of monomials 

 Because of the number of nodes included in the support domains, the radial 

shape functions for ݉ ൌ 6 cannot be obtained. The FEM displacement results are 

same with RPIM displacements for all m except ݉ ൌ 0. The displacements show a 

slight difference when ݉ is equal to zero (Figure 4.39). There are good agreements 

between FEM and RPIM stresses for all values of ݉ as shown in Figure 4.40.  

 

Figure 4.39 Displacement variations at the point B on the cantilever beam against 
load steps for 33 nodes with αc =4, ݍ ൌ 1.03 and various ݉. 
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Figure 4.40 Stress variations at the point B on the cantilever beam against load steps 
for 33 nodes with αc =4, ݍ ൌ 1.03 and various ݉. 

 
4.4.4 Pressurized thick-walled cylinder 

The pressurized cylinder is another case which is used for validation of 

Meshfree solution of geometrical nonlinear problems [160]. The data of the model, 

shown in Figure 4.41, is given in the Table 4.4. The irregular and regular RPIM 

models are shown in Figure 4.42. The stresses and displacements are discussed for 

the point A in the model. 

 
Figure 4.41 Thick-walled pressurized cylinder 
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Figure 4.42 RPIM models with regular and irregular distributed nodes and FEM 
model of thick-walled pressurized cylinder. 

 
Table 4.4 Data used in the RPIM and FEM models of pressurized thick-walled 
cylinder 

 RPIM FEM 
Problem type Plane strain Plane strain 
Dimensions R1=6 cm and R2= 8 cm R1=6 cm and R2= 8 cm 

External load 
Pi=1.8 kPa (in 30 
increments)

Pi=1.8 kPa (in 30 
increments) 

Linear solution ܧ ൌ 120 ߭ ,ܽܲܯ ൌ ܧ 0.2 ൌ ߭ ,ܽܲܯ 120 ൌ 0.2 

Geometrically nonlinear 
solution 

Neo-Hookean with 
ߣ ൌ 33.33  ܽܲܯ
ߤ ൌ 50 ܽܲܯ

Neo-Hookean with 
ߣ ൌ  ܽܲܯ 33.33
ߤ ൌ  ܽܲܯ 50

Number of nodes in the 
entire problem domain 

561 regular and 561 
irregular distributed nodes 
with 500 background cells 

2121 nodes with 
2000 rectangular 
elements 

Number of nodes 
in a local domain 
Changes between 4 and 9 

in an element 
Constant, 4 

Sampling points for 
numerical integrations 

4x4 2x2 

Number of iteration in 
each load increment 

Constant, 3 
Changes between 2 and 
3 

 

4.4.4.1 Convergency rate  

 RPIM with regular distributed nodes gives the deformation steps as shown in 

Figure 4.43. In this solution, ݍ ൌ ௖ߙ ,1.03 ൌ  4 and ݉ ൌ 3 are used. The 

displacement variations against load increments are shown in Figure 4.44. Nonlinear 

solutions diverge from linear elastic solutions at the initial load increments. In 

contrast to the cantilever beam problem, the cylinder is softened as the load 

increases. A good agreement is achieved in RPIM and FEM tangential stress 

solutions as shown in Figure 4.45. However, there are some differences in the radial 
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stress solutions as shown in Figure 4.46. The RPIM and FEM stress solutions show a 

small curve near to the last load step. The amount of curvature can be decreased by 

increasing the number nodes in the models. In addition, the irregular RPIM models 

are in good agreements with FEM for ݍ ൌ 1.03 and 1.75. The results are seriously 

affected by number of nodes in the models. In order to check this, the number of 

nodes used in the regular RPIM models is increased and radial stress distribution is 

redrawn as shown in Figure 4.47. The convergency rate of both displacements and 

Cauchy stresses are drawn as shown in Figure 4.48, 4.49 and 4.50.  The displacement 

and stress covergency rate of RPIM and FEM are very close to each others. 

 

Figure 4.43 RPIM solution steps of large deformation of the thick-walled 
pressurized cylinder with regular distributed nodes. 

 

Figure 4.44 Radial displacement variations against load steps for RPIM 561 regular 
and 561 irregular distributed nodes αc=4, m=3 and FEM (2121 nodes) at the point A 
on the thick-walled pressurized cylinder. 

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2

In
n

er
 r

ad
ia

l d
is

p
la

ce
m

en
t 

(c
m

)

Internal pressure in each step (kPa)

FEM

RPIM-regular(q=1.03)

RPIM-regular(q=1.75)

RPIM-irregular(q=1.03)

RPIM-irregular(q=1.75)

RPIM-linear



56 
 

 

Figure 4.45 Tangential stress variations against load steps for RPIM 561 regular and 
561 irregular distributed nodes αc=4, m=3 and FEM (2121 nodes) at the point A on 
the thick-walled pressurized cylinder. 

 

 

Figure 4.46 Radial stress variations against load steps for RPIM 561 regular and 561 
irregular distributed nodes αc=4, m=3 and FEM (2121 nodes) at the point A on the 
thick-walled pressurized cylinder. 
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Figure 4.47 Radial stress variations against load steps for different RPIM 561 
regular distributed nodes with αc=4, m=3 and FEM (2121 nodes) at the point A on 
the thick-walled pressurized cylinder. 

 

 

Figure 4.48 The convergence rate of radial displacements at the last load increment 
at the point A on the thick-walled pressurized cylinder by increasing number of 
nodes used in the models with αc=4, m=3. 
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Figure 4.49 The convergence rate of radial stresses at the last load increment at the 
point A on the thick-walled pressurized cylinder by increasing number of nodes used 
in the models with αc=4, m=3.  

 

 

Figure 4.50 The convergence rate of tangential stresses at the last load increment at 
the point A on the thick-walled pressurized cylinder by increasing number of nodes 
used in the models with αc=4, m=3. 
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values of αc do not affect the behaviour of displacement and radial stress 

distributions. 

 

Figure 4.51 Radial displacement variations at the point A against load steps for 561 
nodes with q=1.03, m=3 and various αc. 

 

 

Figure 4.52 Radial stress variations at the point A on the thick-walled pressurized 
cylinder against load steps for 561 nodes with q=1.03, m=3 and various αc. 
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Once again, values of q do not have an important effect in displacement and stress 

distributions. 

 

Figure 4.53 Radial displacement variations at the point A on the thick-walled 
pressurized cylinder against load steps for 561 nodes with αc =4, m=3 and various q. 

 

Figure 4.54 Radial stress variations at the point A on the thick-walled pressurized 
cylinder against load steps for 561 nodes with αc =4, m=3 and various q. 
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 Because of the number of nodes used in the support domains, the radial shape 

functions is not obtained for m=4 and 6. The FEM radial displacement distribution is 
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shows some deviations (Figure 4.55). The RPIM and FEM radial stresses are in good 

agreement except RPIM with m=0 as shown in Figure 4.56. 

 

Figure 4.55 Radial displacement variations at the point A on the thick-walled 
pressurized cylinder against load steps for 561 nodes with αc =4, ݍ ൌ 1.03 and 
various ݉. 

 

Figure 4.56 Radial stress variations at the point A on the thick-walled pressurized 
cylinder against load steps for 561 nodes with αc =4, ݍ ൌ 1.03 and various ݉. 

 

4.5. Results and Discussions 
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values of shape parameters are generally problem dependent. However, more stable 

results are obtained with shape parameters, ݍ ൌ 1.03 and ߙ௖ ൌ 3 and ݉ ൌ 3.  

ݍ ൌ 1.03 is used as optimum value in many studies, however, in some cases, 

the stress results for ݍ ൌ 1.75 can be accurate as much as for ݍ ൌ 1.03. For example, 

when irregular nodes are used in the plate with hole and pressurized cylinder 

examples, they give better stresses with ݍ ൌ 1.75. This study agrees that the best 

stress solutions are obtained for the values of ߙ௖ between 3 and 4. It is also shown 

that when the same increase in the number of nodes is considered, improvements in 

the RPIM results are better than FEM with suggested values of shape parameters. 

It was also shown that increasing number of polynomials does not always 

improve the results. Depending on the number of nodes used in the support domains, 

increasing number of polynomial basis may cause shape function construction errors. 
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CHAPTER 5 

ANALYSIS OF 2D ELASTO-PLASTIC PROBLEMS USING RPIM 

5.1 Introduction 

In this chapter, the basics of 2D elasto-plastic analysis are summarized and 

formulations used for them are reviewed. The essential elements of elasto-plastic 

analysis are shortly presented in section 5.2. The RPIM formulation for an elasto-

plastic analysis is reviewed in section 5.3. The solution procedure used in the elasto-

plastic analysis is summarized in section 5.4. To investigate the performance of 

RPIM in elasto-plastic analyses, some sample problems are solved in section 5.5. 

They are also compared with analytic results. 

5.2 The Essential Elements of Elasto-Plastic Analysis 

The theory of plasticity has some fundamental concepts that it cannot be 

considered without the usage of them. These are the yield criterion, the flow rule and 

the hardening rule. The yield criterion defines the limit at which the material 

becomes plastic. The flow rule describes the relationship between stresses and strains 

once the material has become plastic. The consistency condition which prevents 

stresses from exceeding the yield limit. The hardening rule describes how the yield 

criterion is modified by straining beyond initial yield [160]. 

5.2.1 The Yield Criterion 

To determine the stress level at which the plastic deformation begins a scalar 

yield function is defined and the general form of it can be written as [156,160] 

,௣ݓ,ሺોݕ݂ હሻ ൌ 0                                                                  ሺ5.1ሻ 

where ો is the stress vector, ݓ௣ is the plastic work done, and હ is a vector denoting 

the translation of the yield surface. According to the hardening model defined yield 

function gets its specific form. For isotropic hardening model, it is 

௣ሻݓ,ሺોݕ݂ ൌ 0                                                                 ሺ5.2ሻ 
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For kinematic hardening model, it is written as 

,ሺોݕ݂ હሻ ൌ 0                                                                 ሺ5.3ሻ 

Without hardening, it is expressed as 

ሺોሻݕ݂ ൌ 0                                                                   ሺ5.4ሻ 

The yield function defines a surface in stress space. The two-dimensional case is 

illustrated in Figure 5.1. The stress level is in the elastic region when ݂ݕ ൏ 0. The 

boundary ݂ݕ ൌ 0 defines the yield surface. The stresses for ݂ݕ ൐ 0 is not possible. 

The incremental change in yield function due to an incremental stress change has two 

possibilities for stress state on yielding surface: 

 ݂݀ݕ ൏ 0  unloading occurs and the stress point moves inside the yield surface 

 ݂݀ݕ ൌ 0 loading, accumulation of plastic strain continues and stress point 

remains on the yield surface 

 ݂݀ݕ ൐ 0  not possible (the stress point always remains on the yield surface) 

 

 

 

 

 

 

Figure 5.1. Yield surface in two dimensional case 

The definition of a yield criterion must be independent from the orientation of 

the coordinate system used [162]. To ensure this, it could be defined in terms of 

certain invariants, like principal stresses. In many cases, invariants of the stress 

tensor ሺܫଵ, ,ଵܬଷሻ or invariants of the deviatoric stress tensor ሺܫ ଶ andܫ  ଷሻ areܬ ଶ andܬ

also convenient to use. 

 ଵߪ

 ଶߪ

ݕ݂ ൏ 0  െ elastic 

ݕ݂ ൐ 0 െ impossible 

ݕ݂ ൌ 0 െ plastic 
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There are various yield criterions like the Tresca yield criterion, the von 

Mises yield criterion, the Mohr-Coulomb yield criterion, the Drucker-Prager yield 

criterion, etc. in the literature. Every yield criterion defines the beginning of plastic 

deformation using different properties and each yield criterion is suggested for 

different materials. 

5.2.1.1 The Tresca Yield Criterion 

Tresca yield criteria states that yielding occurs when the maximum shear 

stress reaches a certain value. This can be written as 

߬௠௔௫ ൌ max ൬
1

2
ଵߪ| െ ,|ଶߪ

1

2
ଶߪ| െ ,|ଷߪ

1

2
ଷߪ| െ .ଵ|൰                            ሺ5.5ߪ ܽሻ 

ൌ maxሺ߬ଵଶ, ߬ଶଷ, ߬ଷଵሻ ൌ ݇                                                                 ሺ5.5. ܾሻ 

where ݇ is material parameter and it can be determined from simple tension test as 

݇ ൌ
1

2
 ଴                                                                  ሺ5.6ሻߪ

ଷߪ଴ is the yield stress value in the uniaxial tension test. In plane stress ሺߪ ൌ 0ሻ, the 

yield surface can be plotted in ߪଵ െ   .ଶ space as shown in Figure 5.2ߪ

 

Figure 5.2. Tresca yield criteria in plane stress 

5.2.1.2 The von Mises criterion 

The von Mises yield criterion states that yielding takes place when the 

effective or von Mises stress reaches the yield stress of the material in uniaxial 

tension. It is given by 

 ଵߪ

 ଶߪ

A

B
C

D

E F
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ሺોሻݕ݂ ൌ ௘ߪ െ  ଴                                                       ሺ5.7ሻߪ

where 

௘ߪ ൌ ඥ3ܬଶ                                                                 ሺ5.8ሻ 

and ߪ௘ is named as the effective stress or the equivalent stress. The equation of yield 

surface for a plane stress problem is obtained as follows, 

ሺોሻݕ݂ ൌ 0                                                ሺ5.9. ܽሻ 

ඨ3ቆ
1

3
ሺߪଵ

ଶ ൅ ଶߪ
ଶ െ ଶሻቇߪଵߪ െ ଴ߪ ൌ 0                                                ሺ5.9. ܾሻ 

ଵߪ
ଶ ൅ ଶߪ

ଶ െ ଶߪଵߪ ൌ ଴ߪ
ଶ                                              ሺ5.9. ܿሻ 

Equation 9.c is an equation of ellipse and it can be plotted as in Figure 5.3. 

 

Figure 5.3. The von Mises yield criteria in plane stress 

5.2.2 Hardening 

The hardening rule describes how the yield criterion is modified by straining 

beyond initial yield [161]. Simply, it defines the change in size, shape and position of 

yield surface during a plastic loading. The isotropic hardening rule and the kinematic 

hardening rule are two common hardening rules. The isotropic hardening rule, shown 

in Figure 5.4.(a), states that yield surface can expand without translation under 

loading, however, the yield surface can move as a rigid body in kinematic hardening 

rule as shown in Figure 5.4.(b). 

 ଵߪ

 ଶߪ
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Figure 5.4.(a).  Mathematical model for representation of isotropic strain hardening 
behaviour. 

 

 
 

Figure 5.4.(b). Mathematical models for representation of kinematic strain 
hardening behaviour. 

In isotropic hardening, the value of ݓ௣ is different from zero and હ must be equal to 

zero. The translation of the yield surface, હ, must be different from zero in kinematic 

hardening so that હ must be different from zero and ݓ௣ must be equal to zero. 

௣ݓ ൌ නો்݀ઽ௣                                                              ሺ5.10ሻ 

હ ൌ න۲݀ઽ௣                                                                 ሺ5.11ሻ 

( b ) 




initial yield 
surface 

loading 

current yield 
surface 

loading 





initial yield 
surface 

current yield
surface 

( a ) 



68 
 

5.2.3 Elasto-Plastic Stress-Strain Relation 

In an elastic analysis, the stresses can be evaluated using elastic constants and strains, 

however, in an elasto-plastic analysis it is not simple as the elastic analysis. The load, 

deformation and stresses are nonlinearly related and they are also history dependent 

in an elasto-plastic analysis. In the plastic region strain increments are regarded as 

composed of elastic and plastic components, 

݀ઽ ൌ ݀ઽ௘ ൅ ݀ઽ௣                                                 ሺ5.12ሻ 

where subscripts ݁ and ݌ denote elastic and plastic, respectively. To define the 

relationship between the plastic strain and stress increment another assumption about 

material behavior is used. It is supposed that the plastic strain increment is 

proportional to the rate of change of some function of stress increment. This function 

is called as plastic potential, ܳ. 

݀ઽ௣ ൌ
߲ܳ

߲ો
 ሺ5.13ሻ                                                          ߣ݀

where  ݀ߣ is the constant of proportionality and named as the plastic multiplier. 

Equation 5.13 is called as flow rule. The plastic potential function is generally 

considered equal to the yield function. The flow rule is named as associated if two 

functions are the same, and non-associated otherwise. The stress increments are 

associated with only the elastic component. Therefore, 

݀ો ൌ ۲݀ઽ௘ ൌ ۲൫݀ઽ െ ݀ઽ௣൯                                           ሺ5.14ሻ 

where ۲ is the elastic constitutive matrix. To obtain the incremental constitutive 

equation, the constant of proportionality must be established. During an increment of 

plastic straining, 

ݕ݂݀ ൌ 0                                                         ሺ5.15ሻ 

Substitution of Equation 5.1 into Equation 5.15 

൬
ݕ݂߲

߲ો
൰
்

݀ો ൅ ൬
ݕ݂߲

߲હ
൰
்

݀હ ൅
ݕ݂߲

௣ݓ߲
௣ݓ݀ ൌ 0                          ሺ5.16ሻ 

Substitution of Equations 5.10, 5.11, 5.13 into Equation 5.16 and the resulting 

equation solved for plastic multiplier ݀ߣ. 
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ߣ݀ ൌ ఒܲ݀ઽ                                                              ሺ5.17ሻ 

where ఒܲ is 

ఒܲ ൌ
൬
ݕ݂߲
߲ો

൰
்

۲

൬
ݕ݂߲
߲ો

൰
்

۲ ቀ
ۿ߲
߲ો
ቁ െ ൬

ݕ݂߲
߲હ

൰
்

۲ ቀ
߲ܳ
߲હ
ቁ െ

ݕ݂߲
௣ݓ߲ ો

் ቀ
߲ܳ
߲ો
ቁ

                ሺ5.18ሻ 

Although both work hardening and strain hardening are included in Equation 5.18, 

practical applications will probably use one or the other, or perhaps a fraction of 

each. Using this, the incremental stress-strain equation can be written as 

݀ો ൌ ۲൬݀ઽ െ
߲ܳ

߲ો
൰ߣ݀ ൌ ۲൬݀ઽ െ ܲૃ

߲ܳ

߲ો
݀ઽ൰ ൌ  ઽ                ሺ5.19ሻ݀ܘ܍۲

where 

۲௘௣ ൌ ۲ െ ۲ܲૃ
߲ܳ

߲ો
                                                    ሺ5.20ሻ 

۲௘௣ is the generalized form tangent modulus. 

5.3 The RPIM Formulation For Elasto-Plastic Problems 

The formulations used for the analysis are based on virtual work principle. If 

a body is subjected to a set of body forces ܚ௕ and a set of traction loads then the 

Virtual Work Principle can be written as [162] 

නሺߜઽ்ો െ ௕ሻ݀Ω܎்ܝߜ

 

ஐ

െ ௤܎்܌ߜ ൌ 0                                      ሺ5.21ሻ 

where ો is the vector of internal stresses, ܎௕ is the body load, ܎௤ is the external 

applied forces comprises from both point loads and surface loads, ܌ߜ is the vector of 

virtual displacements, ߜઽ is the vector of associated virtual strains, ܝߜ is the internal 

displacements, Ω is the domain of interest. 

In the RPIM representation, the displacements and strains within any local domain 

may be expressed by the relationships [1,2] 

ܝߜ ൌ  ሺ5.22ሻ                                                                 ܌ߜۼ

and 
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ઽߜ ൌ  ሺ5.23ሻ                                                                 ܌ߜ۰

where, ۼ is the matrix of shape functions and ۰ is the matrix derivatives of the nodal 

shape functions . Substitution of these into virtual work expression gives 

න்܌ߜሺ۰்ો െ ௕ሻ݀Ω܎்ۼ

 

ஐ

െ ௤܎்܌ߜ ൌ 0                                    ሺ5.24ሻ 

This equation must be true for any arbitrary set of virtual displacements ܌ߜ 

න۰்ો݀Ω

 

ஐ

െ ௤܎ െ න܎்ۼ௕݀Ω

 

ஐ

ൌ 0                                          ሺ5.25ሻ 

The solution of Equation 5.25 will not be generally satisfied at any stage of the 

computation, and 

߰ ൌ න۰்ો݀Ω

 

ஐ

െ ൭܎௤ ൅ න܎்ۼ௕݀Ω

 

ஐ

൱ ് 0                               ሺ5.26ሻ 

where ૐ is the residual force vector. To evaluate the tangential stiffness matrix 

incremental form of Equation 5.26 must be employed. For a load increment the 

following equation is obtained as 

Δૐ ൌ න۰்Δો݀Ω

 

ஐ

െ ൭Δ܎௤ ൅ න்ۼΔ܎௕݀Ω

 

ஐ

൱                                  ሺ5.27ሻ 

Substitution of Equation 5.19 into Equation 5.27 gives 

Δૐ ൌ ܌۹் െ ൭Δ܎௤ ൅ න்ۼΔ܎௕݀Ω

 

ஐ

൱                                     ሺ5.28ሻ 

where 

۹் ൌ න۰்۲௘௣۰݀Ω

 

ஐ

                                                    ሺ5.29ሻ 

5.4. Summary Of Solution Procedures 

The summary of equation solving technique is as follows [162] 

1. Begin new load increment,  ܎ ൌ ܎ ൅ Δ܎. 

2. Set Δ܎ equal to the current load increment vector. 



71 
 

3. Set ܌଴ equal to 0 for the first increment or equal to the total displacement 

vector at the end of the last load increment. 

4. Set  ૐ଴ equal to the residual force vector at the end of the last increment or 

equal to 0 for the first load increment. 

5. Set  ૐ଴ ൌ ૐ଴ ൅ Δ܎. 

6. Solve  Δ܌଴ ൌ െ۹்
ିଵૐ଴. Use old or updated value  ۹். 

7. Set  ܌ଵ ൌ ଴܌ ൅ Δ܌଴. 

8. Evaluate  ૐଵሺ܌ଵሻ. 

9. If solution has converged go to 11; otherwise continue. 

10. Iterate until solution has converged. 

11. If this is not the last increment go to 1; otherwise stop.  

The iteration loop for elasto-plastic 2D problems is as follows [162] 

1. Set iteration number  ݅ ൌ 1. 

2. Solve  Δ܌௜ ൌ െ۹்
ିଵૐ௜. Use old or updated  ۹். 

3. Set  ܌௜ାଵ ൌ ௜܌ ൅ Δ܌௜. 

4. For each Gauss point, evaluate the increments in stain resultants  Δઽ௜ ൌ ۰Δ܌௜ 

5. Assuming the elastic behaviour compute the increments in stress resultants 

and hence the total stress resultants at each Gauss point Δો௜ ൌ ۲Δઽ௜ hence 

ો௜ାଵ ൌ ો௜ ൅ Δો௜. 

6. At each Gauss point, ો௜ାଵ is adjusted depending on the states of  ો௜ and, ો௜ାଵ 

to satisfy the yield criterion and preserve the normality condition. 

7. Evaluate the residual force vector ૐ௜ାଵ ൌ ׬ ۰்ો݀ܣ
 

஺
െ  ܎

8. Check the convergency. If it is not satisfied, set ݅ ൌ ݅ ൅ 1 and go to 2. 

9. Go to next load increment. 
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5.5 Numerical Examples 

The effects of RPIM shape parameters on the solution of accuracy of 2D elasto-

plastic problems are investigated. The multi-quadric radial basis functions are used in 

the RPIM algorithm. A number of case studies with regular and irregular node 

distributions are solved. The convergence rates of RPIM solutions after yielding are 

investigated for various ߙ௖ and ݍ. Both regular and irregular node distributions are 

used in the RPIM models. It is shown that the solutions after yielding can be 

improved using appropriate shape parameter values. The propagation of plastic 

region is also represented against load increments. 

5.5.1 End Loaded Cantilever Beam 

 The solution of an end loaded elastic-perfectly plastic cantilever beam is 

derived in detail in Section 4.2.2 of Lubliner [163]. Therefore, it is a good measure to 

observe RPIM shape parameter effects on the elasto-plastic solution accuracy of it.  

A cantilever beam is solved with dimensions of 40 ܿ݉ 4 ݔ ܿ݉ as shown in Figure 

5.5. The regular and irregular RPIM models and FEM model are shown in Fig. 5.6. 

The material is assumed as perfectly plastic with 
ఙ೤

ா
ൌ 2 ∗ 10ିଷ as in [163]. The 

propagation of plastic region as the load increases is given in Figure 5.7. The plastic 

region starts at the high stress point then is spread out toward to neutral axis as the 

load increases. It is in good agreement with the analytical solution where given in the 

elementary textbook of mechanics of materials. Figures 5.8, 5.9 and 5.10 show that 

RPIM gives higher displacements for regular and irregular distributed nodes as the 

number of nodes in the models is increased. In contrast to RPIM, ANSYS gives 

lesser displacements in the plastic region. Displacement variations against load steps 

for RPIM regular and irregular distributed nodes are given in Fig. 5. 11-14 for 

various values of ߙ௖  and q. RPIM nearly gives same results for all values of ߙ௖  and 

 .ݍ

 

Figure 5.5 Cantilever beam with an end load of 320 N. 

40 mm

4 mm 

F = 320 N 
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Figure 5.6 RPIM models with regular and irregular distributed nodes and FEM 
model of cantilever beam. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 The propagation of the plastic region and deformed shape as the load 
increases (  shows the nodes in the plastic region. ) 

 

 

 

 

Load Increment 10 of 10 

Load Increment 9 of 10 

Load Increment 8 of 10 

Load Increment 7 of 10 
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Figure 5.8 Displacement variations against load steps for RPIM regular distributed 
nodes with ߙ௖ ൌ 2 and ݍ ൌ 1.03 at the free end of cantilever beam. 

 

 

Figure 5.9 Displacement variations against load steps for RPIM irregular distributed 
nodes with αc=2 and q=1.03 at the free end of cantilever beam. 
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Figure 5.10  Displacement variations against load steps for ANSYS with different 
number of nodes at the free end of cantilever beam. 

 

 

Figure 5.11 Displacement variations against load steps for RPIM regular distributed 
nodes with ݍ ൌ 1.03 and different αc at the free end of cantilever beam. 
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Figure 5.12 Displacement variations against load steps for RPIM irregular 
distributed nodes with ݍ ൌ 1.03 and different αc at the free end of cantilever beam. 

 

 

Figure 5.13 Displacement variations against load steps for RPIM regular distributed 
nodes with αc =7.0 and different q at the free end of cantilever beam. 
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Figure 5.14 Displacement variations against load steps for RPIM irregular 
distributed nodes with αc =7.0 and different q at the free end of cantilever beam. 

 

5.5.2 Thick Walled Internally Pressurized Cylinder 

The elasto-plastic solution of this case is given in Section 7.5.1 of Owen 

[162,164]. Therefore, the same model is obtained with axi-symmetric assumption 

(Figure 5.15). The inner and outer radii are 100 mm and 200 mm respectively. The 

material is again elastic-perfectly plastic with ܧ ൌ ߭ ,ܽܲܩ 210 ൌ 0.1 and ߪ௬ ൌ

 The RPIM models with regular and irregular nodes and FEM model are .ܽܲܩ 0.24

given in Figure 5. 16. The propagation of plastic region against pressure increments 

is shown in Figure 5.17. When the pressure reaches the limit load of 0.91209 GPa 

[164], all nodes enter the plastic region except the nodes at the outer region. For 

RPIM and FEM solutions, when numbers of nodes in the models are increased, the 

amount of displacement in the plastic region is also increased as shown in Figures 

5.18, 5.19 and 5. 20. However, same amount of large displacements in the plastic 

region can be obtained without increasing nodes, but with increasing the values of αc 

and q as shown in Figures 5.20, 5.21, 5.22, 5.23 and 5.24.    
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Figure 5.15 Thick-walled pressurized cylinder and its axisymmetric model 

 

 

 

 

 

 

Figure 5.16 RPIM models with regular and irregular distributed nodes and FEM 
model of thick-walled pressurized cylinder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 The propagation of the plastic region and deformed shape of thick 
walled cylinder as the load increases (  shows the nodes in the plastic region. ) 
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Figure 5.18 Displacement variations against load steps for RPIM regular distributed 
nodes with αc=4 and q=1.03 at the outer surface of thick walled pressurized cylinder. 

 

 

Figure 5.19 Displacement variations against load steps for RPIM irregular 
distributed nodes with αc=4 and q=1.03 at the outer surface of thick walled 
pressurized cylinder. 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25

R
ad

ia
l d

is
p

la
ce

m
en

t 
at

 o
u

te
r 

fa
ce

 (
m

m
)

Internal pressure, P (GPa)

Analytical

RPIM-36 regular nodes

RPIM-121 regular nodes

RPIM-441  regular nodes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2 0.25

R
ad

ia
l d

is
p

la
ce

m
en

t 
at

 o
u

te
r 

fa
ce

 (
m

m
)

Internal pressure, P (GPa)

Analytical

RPIM-40 irregular nodes

RPIM-132 irregular nodes

RPIM-488 irregular nodes



80 
 

 

Figure 5.20 Displacement variations against load steps for ANSYS with different 
number of nodes at the outer surface of thick walled pressurized cylinder. 

 

 

Figure 5.21 Displacement variations against load steps for RPIM regular distributed 
nodes with ݍ ൌ 1.03 and different αc at the outer surface of thick walled pressurized 
cylinder. 
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Figure 5.22 Displacement variations against load steps for RPIM irregular 
distributed nodes with ݍ ൌ 1.03 and different αc at the outer surface of thick walled 
pressurized cylinder. 

 

 

Figure 5.23 Displacement variations against load steps for RPIM regular distributed 
nodes with αc =7.0 and different q at the free end of cantilever beam. 
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Figure 5.24 Displacement variations against load steps for RPIM irregular 
distributed nodes with αc =7.0 and different q at the free end of cantilever beam. 

 
5.5.3 Simply Supported Circular Plate 

It is well known problem and solved with perfectly plastic material in 

[162,164]. RPIM and FEM results are compared with the analytical limit pressure of 

260.8. The radius and height of the plate are taken as ܴ ൌ 10 and ݄ ൌ 1. It is simply 

supported on its edge and exposed to uniform limit pressure of ܲ ൌ 260.8 on its top 

surface. The axisymmetric model and its dimensions are shown in Figure 5.25. The 

material constants are ܧ ൌ 10଻, ߭ ൌ 0.24 and ߪ௬ ൌ 16000. RPIM models with 

regular and irregular distributed nodes and FEM model are given in Figure 5.26. The 

propagation of the plastic region and deformed shapes against the pressure 

increments are given in Figure 5.27. The nodes along upper and lower edges are 

completely plastic at the load increment of 18. After that point, the plastic region 

completely propagates towards to neutral axis.  Central deflections of the plate are 

obtained using RPIM regular and irregular distributed nodes and ANSYS as shown 

in Figure 5.28-5.30. RPIM with regular distributed nodes gives higher displacements 

than RPIM with irregular distributed nodes after yielding. The results of ANSYS can 

be seriously improved by increasing number of nodes in the model. Increasing values 

of ߙ௖ and ݍ improves the results after yielding as shown in Figures 5.31-5.34.  
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Figure 5.25 Axi-symmetric model and its dimensions of uniform pressurized simply 
supported circular plate. 

 

 

 

 

 
 
Figure 5.26 RPIM models with regular and irregular distributed nodes and FEM 
model of uniform pressurized simply supported circular plate. 

 

 

Figure 5.27 The propagation of the plastic region and deformed shape of uniform 
pressurized simply supported circular plate as the pressure increases (  shows the 
nodes in the plastic region. ) 
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Figure 5.28 Central deflections of uniform pressurized simply supported circular 
plate against load steps for RPIM regular distributed nodes with αc=1 and q=1.03. 

 

 

Figure 5.29 Central deflections of uniform pressurized simply supported circular 
plate against load steps for RPIM irregular distributed nodes with αc=1 and q=1.03. 
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Figure 5.30 Central deflections of uniform pressurized simply supported circular 
plate against load steps for ANSYS with different number of nodes. 

 

 

Figure 5.31 Central deflections of uniform pressurized simply supported circular 
plate against load steps for RPIM regular distributed nodes with q=1.03 and different 
αc. 
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Figure 5.32 Central deflections of uniform pressurized simply supported circular 
plate against load steps for RPIM irregular distributed nodes with q=1.03 and 
different αc. 

 

 

Figure 5.33 Central deflections of uniform pressurized simply supported circular 
plate against load steps for RPIM regular distributed nodes with αc =7.0 and different 
q. 
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Figure 5.34 Central deflections of uniform pressurized simply supported circular 
plate against load steps for RPIM irregular distributed nodes with αc =7.0 and 
different ݍ. 

 
5.6. Results and Discussions 

The RPIM shape parameters are investigated in the solution of 2D elasto-

plastic problems. It has been shown that FEM have convergence problems after 

yielding. However, In the RPIM solutions, the convergence can be improved using 

appropriate shape parameters. Increasing αc and ݍ values after yielding can improve 

the convergency.    

If large deformations are required after yielding as in the metal forming, the 

shape parameters can be used as αc=7 and ݍ ൌ  1.3. 
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CHAPTER 6 

A DIAGONAL OFFSET ALGORITHM FOR THE POLYNOMIAL POINT 
INTERPOLATION METHOD 

6.1 Introduction 

Point interpolation method (PIM) is a simple and useful Meshfree technique 

and originally proposed by Liu and Gu [94]. In the PIM, the field variables are 

interpolated using point interpolation shape functions. In contrast to MLS shape 

functions, the point interpolation shape functions posses the Kronecker delta function 

property and they do not require an extra algorithm to compute nodal values of field 

variables. Although the background cells are used for the integration in the Gakerin 

weak formulation, the field variable interpolation is carried on a local domain.  

The main problem in the PIM is the singularity of the moment matrix. 

Because of arbitrary scattered nodes in the influence domain, the moment matrix 

becomes singular in some situations. Some algorithms are developed to overcome 

this problem. Moving or shifting the nodes in the local domain by a small distance is 

the simplest method to avoid singularity [1,94].  However, it is not a complete 

solution and the moment matrix can still be singular even if the nodes are shifted. 

Using the radial functions as the basis is a robust solution of this problem 

[86,87,96,100,101]. However, when the radial basis functions are used in the PIM, 

the computational efficiency is extremely reduced. Therefore, the matrix 

triangularization algorithm (MTA) was proposed to avoid singular moment matrix 

[95]. In MTA, the nodes, which cause the singularity in the moment matrix, are 

determined and excluded from the influence domain. PIM with the MTA is very 

effective in constructing Meshfree shape functions. However, it may be numerical 

unstable especially for the big influence domains [95]. 

6.2. Singularity in the Moment Matrix 

The moment matrix given in Equation 3.8 must be invertible to obtain the 

PIM shape functions given in the Equation 3.11. It includes the nodal coordinate 

values of arbitrary distributed nodes in the local domain. Therefore the distribution of 
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the nodes directly affects the moment matrix. There are some situations where the 

moment matrix is not invertible. For example, the node configuration in a local 

domain shown in Figure 6.1 causes the singularity in the moment matrix. The nodes 

in the local domain sit in the lines parallel to the x-axis and y axis. As a general rule, 

the terms in the basis functions should be selected symmetrically from the Pascal 

triangle [1]. So, the basis function terms for the local domain shown in Figure 6.1 

can be selected as follows: 

ሻݔሺ܂ܘ ൌ ሼ1, ,ݔ ,ݕ ,ݕݔ ,ଶݔ                                                      ଶሽݕ

It also satisfies the completeness requirements. However, the nodes in the 

local domain have only two distinct y-coordinate and cannot be represented by 

second order polynomial in the y-direction. Consequently, the moment matrix is 

singular. 

 

Figure 6.1 A local domain causes singularity in the moment matrix 

 
6.3. A Diagonal Offset Algorithm to Avoid Singularity 

Several algorithms are proposed to overcome the singularity in the moment 

matrix. However, each method has some disadvantages. For example, the 

computational efficiency is extremely reduced when the radial functions are used as 

the basis [86,87,96,100,101]. The MTA algorithm may be numerical unstable 

especially for the big influence domains [95]. Moving or shifting the nodes is the 

simplest way to avoid singularity [1,2]. However, it is not a complete solution. 

Changing the coordinates of a node in a local domain causes changing the value of 

elements in the relevant row of the moment matrix. For example, if the coordinate of 

the 2nd node in a local domain, it results changing the second row of the moment 

matrix of this local domain. However, the elements in the diagonal line of the 

moment matrix may be also changed to avoid the singularity. A simple and effective 
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algorithm can be proposed using this idea. The diagonal elements of the moment 

matrix of a local domain (except the first element) can be changed with an offset 

value as follows: 

ொ۾ ൌ

ۏ
ێ
ێ
ێ
ۍ
1 ଵݔ ଵݕ ଵݕଵݔ ⋯ ଵሻܠ௠ሺ݌

1 ଶݔ െ ݂݂݋ ଶݕ ଶݕଶݔ ⋯ ଶሻܠ௠ሺ݌

1 ଷݔ ଷݕ െ ݂݂݋ ଷݕଷݔ ⋯ ଷሻܠ௠ሺ݌
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 ௡ݔ ௡ݕ ௡ݕ௡ݔ ⋯ ௡ሻܠ௠ሺ݌ െ ے݂݂݋

ۑ
ۑ
ۑ
ې

 

Where ݂݂݋ ൌ
ௌ௘

ଵ଴ೖ
 and ݁݀ܯ is the minimum value in the diagonal line of the 

moment matrix. It must be different from zero. ݇  is an integer number which 

determines the amount of the offset value. The first term in the first row is always 

equal to 1. It is the first term of the basis function and not affected by the nodal 

coordinates. So, it must be kept as 1. 

The PIM shape functions have the Kronecker Delta function and the partition 

of unity properties. A detailed numerical investigation is presented in the following 

section to show the effect of using diagonal offset algorithm on the Kronecker delta 

and partition of unity properties. Its effect on the displacements and stresses are also 

presented. 

6.4. Numerical Results and Discussions 

6.4.1 Patch tests 

Four different patches are tested. They include 33ݔ and 43ݔ regular distributed 

nodes and 9 and 12 irregular distributed nodes as shown in Figure 6.2. The moment 

matrix in the original PIM is singular for 43ݔ regular and 12 irregular distributed 

nodes. Therefore, they have no results. The node numbers of Patches are shown in 

the Figure 6.2. Their coordinates are given in the Tables 6.1-6.4. A single 

background cell with 44ݔ integration points is used for integrations.  The dimensions 

of influence domains are 22ݔ ݉ଶ. The displacements are prescribed on all outside 

boundaries by a linear function,  ݑ௫  ൌ ௬ݑ and ݔ0.6  ൌ  The material .[1,2,94] ݕ0.6

parameters are taken as ܧ  ൌ 1.0, and ߭ ൌ 0.3. The patches pass the tests if the 

displacements on the interior nodes are equal to the displacements given by linear 

functions. The test also requires constant stresses and strains in the entire solution 

domain. Although, the Patches that include the 33ݔ regular and 9 irregular 
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distributed nodes are not singular, the offset algorithm is used on them to see what 

happens if it is used in non-singular moment matrices. 

 
Figure 6.2 Patch tests with a) 3x3 regular nodes, b) 4x3 regular nodes, c) 9 irregular 
nodes, d)12 irregular nodes 
 
Table 6.1 PIM shape functions ( Ф ) for Node 5 for different values of ݇ (3x3 
regular nodes). 

PIM shape functions for Node 5 ( Ф ) 

Node x y Without Offset ݇=4 ݇=5 ݇=6 

1 0.0 2.0 0.00000000E+00 5.48453833E-20 -9.41511449E-20 6.27788887E-21 

2 0.0 1.0 0.00000000E+00 -4.99937473E-09 -4.99993750E-11 -4.99999376E-13 

3 0.0 0.0 0.00000000E+00 -9.99724987E-13 -9.99972500E-16 -9.99997252E-19 

4 1.0 2.0 0.00000000E+00 3.99982501E-04 3.99998250E-05 3.99999825E-06 

5 1.0 1.0 1.00000000E+00 1.00000000E+00 1.00000000E+00 1.00000000E+00 

6 1.0 0.0 0.00000000E+00 4.99964274E-13 1.22047368E-15 2.21044577E-16 

7 2.0 2.0 0.00000000E+00 -2.00002498E-04 -2.00000250E-05 -2.00000025E-06 

8 2.0 1.0 0.00000000E+00 -1.99967502E-04 -1.99996750E-05 -1.99999675E-06 

9 2.0 0.0 0.00000000E+00 9.99874996E-05 9.99987500E-06 9.99998752E-07 

∑Ф 1.00000000E+00 1.00010000E+00 1.00001000E+00 1.00000100E+00 

 
Table 6.2 PIM shape functions ( Ф ) for Node 5 for different values of ݇ (4x3 
regular nodes). 

PIM shape functions  for Node 5 ( Ф ) 

Node x y Without Offset k=4 k=5 k=6 

1 0.0000 2.0000 - 1.45519152E-11 -1.16415322E-10 4.65661287E-10 

2 0.0000 1.0000 - 3.16602600E-04 3.16653168E-05 3.16696241E-06 

3 0.0000 0.0000 - -7.49823323E-01 -7.49980541E-01 -7.49996261E-01 

4 0.6667 2.0000 - -3.56184530E-04 -3.56237288E-05 -3.56277451E-06 

5 0.6667 1.0000 - 9.99929171E-01 9.99992917E-01 9.99999291E-01 

6 0.6667 0.0000 - 1.12479333E+00 1.12497664E+00 1.12499498E+00 

7 1.3333 2.0000 - 1.03107377E-04 1.03119528E-05 1.03050843E-06 

8 1.3333 1.0000 - 7.91684579E-05 7.91647471E-06 7.91391358E-07 

9 1.3333 0.0000 - -4.58393600E-05 -4.58328733E-06 -4.57909652E-07 

10 2.0000 2.0000 - -3.74936669E-01 -3.74992770E-01 -3.74998380E-01 

11 2.0000 1.0000 - -2.81287357E-05 -2.81253597E-06 -2.80793756E-07 

12 2.0000 0.0000 - 2.70879329E-05 2.70831564E-06 2.71039045E-07 

∑Ф - 1.00005832E+00 1.00000583E+00 1.00000058E+00 
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Table 6.1 shows the shape functions of 33ݔ regular local domain for the node 

5. Using the diagonal offset algorithm does not affect the Kronecker delta function 

property for ݇ ൌ 4, 5 and 6. However, it causes 1E-6 error in the partition of unity 

property for ݇ ൌ 6. The shape functions of 4x3 regular local domain for node 5 are 

shown in the Table 6.2. The diagonal offset algorithm causes 7.09E-7 error in the 

Kronecker Delta function property and 5.8ܧ െ 7 error in the partition of unity 

property for ݇ ൌ 6. For 33ݔ regular local domain, these errors do not result any 

important effects in the stresses and displacements as shown in Figure 6.3 and 6.4. 

PIM with diagonal offset algorithm gives the same results with original PIM and 

analytical solutions for ݇ ൐ 3. For 4x3 regular local domain, similar conclusions can 

be drawn as shown in Figure 6.5 and 6.6.  However, the axial stress starts to deviate 

from exact results for ݇ ൐ 8 as shown in Figure 6.6. 

 

Figure 6.3 The axial displacements (Ux) at node 5 for different values of k (The 
patch of 3x3 regular distributed nodes) 
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Figure 6.4 The axial stress (σx) at node 5 for different values of k (The patch of 3x3 
regular distributed nodes) 

 

Figure 6.5 The axial displacements (Ux) at node 5 for different values of k (The 
patch of 4x3 regular distributed nodes) 
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Figure 6.6 The axial stress (σx) at node 5 for different values of k (The patch of 4x3 
regular distributed nodes) 

 
Table 6.3 and 6.4 show the shape functions of 9 and 12 irregular local 

domains for the nodes 5. The Kronecker Delta property is not affected and partition 

of unity property is affected from offsets in an average error of 2ܧ െ 7 for ݇ ൌ 6. 

However, this amount of error does not affect the displacements and stresses as 

shown in Figure 6.7, 6.8, 6.9 and 6.10 for ݇ ൌ 6. 

Table 6.3 PIM shape functions ( Ф ) for Node 5 for different values of ݇ (3x3 
regular nodes). 

PIM shape functions for Node 5 ( Ф ) 

Node x y Without Offset k=4 k=5 k=6 

1 0.0 2.0 0.00000000E+00 3.33814940E-20 2.08709398E-20 1.87116734E-21 

2 0.0 1.0 0.00000000E+00 -4.44431974E-10 -4.44443197E-12 -4.44444311E-14

3 0.0 0.0 0.00000000E+00 -2.22207654E-14 -2.22220766E-17 -2.22222075E-20

4 1.0 2.0 0.00000000E+00 1.42221121E-04 1.42222112E-05 1.42222211E-06 

5 0.4 0.75 1.00000000E+00 1.00000000E+00 1.00000000E+00 1.00000000E+00

6 1.0 0.0 0.00000000E+00 1.18843296E-14 -1.91699755E-15 -6.31615899E-16

7 2.0 2.0 0.00000000E+00 -7.11115605E-05 -7.11111560E-06 -7.11111159E-07

8 2.0 1.0 0.00000000E+00 -7.11084494E-05 -7.11108449E-06 -7.11110845E-07

9 2.0 0.0 0.00000000E+00 3.55545580E-05 3.55554558E-06 3.55555455E-07 

∑Ф 1.00000000E+00 1.00003556E+00 1.00000356E+00 1.00000036E+00
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Table 6.4 PIM shape functions ( Ф ) for Node 5 for different values of ݇ (4x3 
regular nodes). 

PIM shape functions  for Node 5 ( Ф ) 

Node x y 
Without 
Offset k=4 k=5 k=6 

1 0.0000 2.0000 - -2.37587727E-14 -3.55271368E-15 -1.99840144E-15 

2 0.0000 1.0000 - 9.86420520E-05 9.86669347E-06 9.86694226E-07 

3 0.0000 0.0000 - 3.12422305E-05 3.12465735E-06 3.12470076E-07 

4 0.6667 2.0000 - -2.71367749E-04 -2.71345778E-05 -2.71343582E-06 

5 0.5000 1.2800 - 9.99999988E-01 1.00000000E+00 1.00000000E+00 

6 0.6667 0.0000 - -3.05431214E-04 -3.05390101E-05 -3.05385990E-06 

7 1.3333 2.0000 - 2.22072415E-04 2.22015379E-05 2.22009677E-06 

8 1.6500 0.3300 - 3.06733783E-09 3.06741854E-11 3.17967874E-13 

9 1.3333 0.0000 - 6.12525319E-09 6.12452311E-11 6.13731288E-13 

10 2.0000 2.0000 - 4.03479082E-04 4.03404264E-05 4.03396784E-06 

11 2.0000 1.0000 - -5.55249728E-05 -5.55046566E-06 -5.55026252E-07 

12 2.0000 0.0000 - -1.29287103E-04 -1.29260437E-05 -1.29257772E-06 

∑Ф - 9.99993822E-01 9.99999383E-01 9.99999938E-01 

 

 

Figure 6.7 The axial displacements (Ux) at node 5 for different values of k (The 
patch of 9 irregular distributed nodes) 
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Figure 6.8 The axial stress (σx) at node 5 for different values of k (The patch of 9 
irregular distributed nodes) 

 

 

Figure 6.9 The axial displacements (Ux) at node 5 for different values of k (The 
patch of 12 irregular distributed nodes) 
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Figure 6.10 The axial stress (σx) at node 5 for different values of k (The patch of 12 
irregular distributed nodes) 

6.4.2 Axially loaded plate 

 

Figure 6.11 Axially loaded plate and its PIM model 

It is a plane stress problem. A rectangular plate with dimensions of 

12 mm 48 ݔ mm is loaded as shown in Figure 6.11. Rectangular influence domains 

are used with dimensions of 24 mm 24 ݔ mm. The material parameters are taken as 

ܧ ൌ 200 GPa and ߭ ൌ 0.  12 mm 12 ݔ mm background cells are used with 33ݔ 

gauss integration points. 

The original PIM method does not give any solution because of singular 

moment matrices in the influence domain of nodes 1, 2, 3, 13, 14 and 15. ݇ is taken 

as 6 for all influence domains without considering it has singular moment matrix or 

not. The displacements, which are obtained from PIM with diagonal offset algorithm, 

are same as the exact solutions as shown in Figure 6.12. Although, there are some 
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differences between the PIM stresses and exact stresses as shown in Figure 6.13, they 

can be reduced by increasing the number of nodes in the solution domain.  

 

Figure 6.12 Axial displacement distributions of rectangular plate with k=6. 

 

Figure 6.13 Axial stress distributions of rectangular plate with k=6. 
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6.4.3 Cantilever beam 

 

Figure 6.14 Cantilever beam and its PIM model 

A cantilever beam which is a classical benchmark test is solved as a plane 

stress problem. Its boundary conditions are shown in Figure 6.14. The material 

constants are as follows: ܧ ൌ 200 GPa and ߭ ൌ 0. Its PIM model is obtained using 

33 nodes, 10 background cells with 33ݔ gauss integration points and influence 

domains with dimensions of 0.1m x 0.1m. 

The PIM without diagonal offset algorithm includes singular moment matrix 

at all nodes. Therefore, it does not give any solution. However, if the diagonal offset 

algorithm is used in the PIM with ݇ ൌ 6, the displacement and stress solutions shows 

a good agreement with exact solutions as shown in Figure 6.15 and 6.16. 

 

Figure 6.15 Vertical displacement distributions along the neutral line of cantilever 
beam with k=6. 
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Figure 6.16 Axial stress distributions along the upper line of cantilever beam with 
k=6. 

 

6.5. Results and Discussions 

It has been shown that the diagonal offset algorithm overcomes the singular 

moment matrix problem in the polynomial PIM and it eliminates the extra 

calculations caused from complex algorithms. Also, it doesn’t decrease the efficiency 

of the PIM as other methods. 

The results of the studies show that the Kronecker Delta function and 

partition of unity properties are affected from the diagonal offset algorithm. The 

amount of the error is directly related with the amount of offset. It is shown that PIM 

with the proposed algorithm gives nearly same results with the exact results for 

4 ൑ ݇ ൑ 7. The solutions deviate from exact results for ݇ ൏ 4 and ݇ ൐ 7. 
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CHAPTER 7 

A REGULAR BASIS ALGORITHM FOR THE POLYNOMIAL POINT 
INTERPOLATION METHOD 

7.1 Introduction 

As already specified before, Point Interpolation Method (PIM) has inherent 

properties that give advantages over the Mesh-free methods based on Moving Least 

Square (MLS) shape functions. These properties are the Kronecker delta function 

property of its shape functions and the simplicity of its computation algorithm. But 

inspite of its positives it has two negativities during its application. Detailed study of 

the first one, the singularity problem, was presented in the previous chapter. The 

second one is selection of the polynomial terms. 

The selection of the polynomial terms and the relation between the selection 

process and the singularity are discussed in detail in the section 7.2. A general rule 

for the selection of polynomial terms are proposed in section 7.3 and the test of the 

proposed rule is done in section 7.4. 

7.2 A detailed view to the selection of the polynomial terms 

The basis function is constructed by selecting the terms from the Pascal’s 

triangle. However, there isn’t any definite general rule or rules for the selection of 

the terms. Two properties are pointed in the literature for the construction of the basis 

function. One is the symmetrically selection of the terms from Pascal’s triangle [1], 

and the other is the completeness of the basis function [2,87,94,95,115-117,119,125]. 

The p௜ሺݔሻ was built utilizing the Pascal’s triangle with complete basis, but the basis 

was provided with different terms [87,94,95,115-117]. Liew and Chen [125] were 

mentioned that the basis is chosen as a complete polynomial basis for computational 

accuracy. Liu et al. [119] were presented that basis should satisfy the completeness 

or quasi-completeness. The complete basis is a preference according to Liu and Gu 

[2]. Liu [1] and Liu et al. [119] were emphasized that the addition of higher order 

terms to the basis can be possible. 
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In addition to those, the reason of the singularity is based on the improper 

selection of polynomial terms and the singularity problem is eliminated with the 

appropriate selection of the polynomial terms [1,95]. It is shown that there is a gap in 

the selection of polynomial terms for the basis. 

7.3 A regular basis algorithm for the polynomial point interpolation method 

In this part of the study, it is tried to eliminate the singularity problem by 

proposing an algorithm about the selection of the polynomial terms for basis 

functions. All the proposed singularity elimination algorithms are put into use when a 

singularity encountered. However, up to this step, most of the calculations including 

taking the inverse of moment matrix are generally completed. Therefore, an 

algorithm before all of these calculations can have important advantageous over 

existing algorithms. The purpose of regular basis algorithm is to eliminate singularity 

at the initial stage of shape function computation. Employment of it without losing 

any advantages of PIM is planned. 

In this algorithm, terms of the basis functions are selected from the Pascal’s 

triangle according to the position of the nodes. This is different from the original 

polynomial PIM. In the original polynomial PIM, there is not any relation shown 

between polynomial terms and their positions at the formulation. However, the 

source of singularity was explained with the positions of the nodes by Liu [1] and 

Liu and Gu [95]. Also, Wang and Liu [86] were emphasized that the node 

distribution in polynomial PIM is structured. But the structure is not defined. The 

idea behind the selection of polynomial terms according to the position of the nodes 

comes not only for elimination of singularity but also find a physical relation 

between the local domain and the terms. 

The general form of the algorithm can be illustrated in the Figure 7.1. 

Selection of tip points in the local domains is starting point of the algorithm. Two tip 

points, one for x-direction and one for y-direction, are selected for a two-dimensional 

local domains. Tip points must be the last node of the support domain on the x- or y-

directions for a two-dimensional domain. It is not important which side of the 

coordinate axes, left or right and up or down, is selected as long as it is consistent 

with the other local domains. The distances between the nodes of local domain are 

determined after the selection of tip points. The order of x-terms are increased for 
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every distance in x-direction between two adjacent nodes starting from the tip point 

and the order of y-terms are increased for each distance in y-direction. The order of 

the terms for the tip points is zero in the related direction. 

 

 

The algorithm can also be used for the irregular distributed nodes. For example, 

consider a node configuration of a rectangular support domain as shown in Figure  

7.2. The nodes, denoted by 1, 2, 9 and 10, are the last nodes on both x- and y-

directions so any one can be selected for a tip point. 

 

 

 

Figure 7.1 A regular basis algorithm for selection of the basis function terms 

Selected tip point for X‐ axis  Selected tip point for Y‐ axis 
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If node 1 is selected. The order of x and y terms of the nodes are obtained as shown 

in Figure 7.3. And the polynomial basis function is expressed as follows 

୘ܘ ൌ ሼ1, ,଺ݕ ,ݕݔ ,ଶݕଶݔ ,ଷݕଷݔ ,ହݕସݔ ,ݕହݔ ,ସݕହݔ ,଺ݔ                     ଺ሽݕ଺ݔ

 

 

 

For an arbitrary shape support domain, shown in Figure 7.4, the last nodes of support 

domain in x- and y-direction are different nodes. They aren’t coincide. Two tip 

points, one for x-direction and one for y-direction, are selected. Any of the nodes 

numbered with 1 or 13 can be the tip point for x-direction and node 7 or node 10 can 

be the tip point for y-direction. The node 1 for x-direction and the node 10 for the y-

direction are the selected tip points of each directions. The selected terms of each 

Figure 7.3 Illustration of selection of the basis function terms for a rectangular 
support domain 
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nodes in x-, and y-directions are shown in Figure 7.5. The PBF with these terms has 

the following form: 

୘ܘ ൌ ሼݕଷ, ,ݕݔ ,଻ݕݔ ,଺ݕଶݔ ,ଶݕଷݔ ,ସݕଷݔ ,଼ݕସݔ ,ସݕହݔ ,଺ݕ଺ݔ

,ଶݕ଺ݔ ,଻ݕ଻ݔ ,ݕ଻ݔ                                    ହሽݕ଼ݔ
                     

 

 
 

 

 

 

 

Figure 7.5 Illustration of selection of the basis function terms for an ellipse 
                  support domain 
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Figure 7.4 An ellipse support domain with irregular distributed nodes 
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7.4 Numerical Tests 

7.4.1 Patch Tests 

Four patch tests are prepared to verify the proposed algorithm. First patch is not a 

standard patch test. It is a problem found in the literature that polynomial PIM has 

singular moment matrix. The other three patches are the standard patch tests and also 

they are the situations that polynomial PIM have singularity problem potential. 

The first patch is shown in Figure 7.6, and it includes six nodes in a support domain. 

These six nodes sit in two lines parallel to the x axis and in three lines parallel to the 

y axis.  

 

 

Figure 7.7.a, shows the second patch comprised form nine nodes in 33ݔ regular 

distribution. It has one interior node. Figure 7.7.b, shows the third patch with 25 

nodes in 55ݔ format. This patch includes 9 interior nodes. Figure 7.7.c, shows the 

fourth patch that constructed using 49 regularly distributed nodes. 25 nodes of the 

fourth patch are interior nodes. The dimensions of second, third and fourth patches 

are 22ݔ. The material properties are taken as ܧ ൌ 1.0 and ݒ ൌ 0.3. Prescribed 

displacements are applied to the boundary nodes. The prescribed displacements are 

linear and the value of them are ݑ௫ ൌ ௬ݑ and ݔ0.6 ൌ  rectangular 2ݔA 2 .ݕ0.6

background cell and different gauss configuration are used for integration in these 

patch tests.  

 ݔ

ݕ

ொݔ

Support 

domain 

Figure 7.6 A patch test causes singularity in original PIM 
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The results of the patch tests are shown in Table 1. The table shows that original 

polynomial PIM has singular moment matrix problem in all configuration of the first 

patch test and it fails in the first patch test. However, the proposed algorithm passes 

the patch test without having any singularity problem and giving good accuracy.  

In the second patch test, the original polynomial PIM and the proposed algorithm are 

passed the patch test. In this patch, they are same because both of them use the same 

polynomial basis function. 

The original polynomial PIM method fails in the third and fourth patch tests. In these 

tests it doesn’t have any singularity problem but it doesn’t give the accurate results. 

The proposed algorithm doesn’t have any singularity problem in the third and fourth 

patch tests. However, the result obtained using 22ݔ or 33ݔ gauss point integrations 

aren’t accurate in the third patch test. It passes the third patch with 46ݔ6 ,4ݔ and 88ݔ 

gauss point configurations.  

a) 3x3 nodes  b) 5x5 nodes  c) 7x7 nodes 

Figure 7.7 Patch tests with regular node distributions 
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7.4.2 Case Studies 

7.4.2.1 Axially Loaded Bar 

In the first case study, an axially loaded bar is solved. One side of the bar is clamped 

and 83. kN/mm is applied to the other side as shown in Figure 7.8. The material 

properties are ܧ ൌ 200 GPa and ߭ ൌ 0. The problem domain is represented by 15 

nodes. The rectangular support domains are used for interpolation. The size of them 

are 0.12 m 0.12 ݔ m. Therefore, 6-9 nodes are found in the support domains. Four 

background cells are used for integration.  

 

 

3 x 3 nodes3 x 2 nodes 5 x 5 nodes 7 x 7 nodes 

2 x 2 gauss points

3 x 3 gauss points

4 x 4 gauss points

6 x 6 gauss points

8 x 8 gauss points
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PIM

Regular 

PIM

Singularity:  

Accuracy:   

Singularity:  

Accuracy:   

Original 

PIM

Regular

PIM

Singularity:  

Accuracy:   

Singularity:  

Accuracy:   

Original 

PIM
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PIM

Singularity:  

Accuracy:   

Singularity:  

Accuracy:   
Original 

PIM
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PIM

Singularity:  

Accuracy:   

Singularity:  

Accuracy:   

Original 

PIM

Regular 

PIM

Singularity:  

Accuracy:   

Singularity:  

Accuracy:   

FAILED 

FAILED 

FAILED 

FAILED 

FAILED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

- 

- 

- 

- 

- 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

FAILED 

FAILED 

FAILED 

FAILED 

FAILED 

FAILED 

FAILED 

FAILED 

FAILED 

FAILED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 

PASSED 
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PASSED 

PASSED 

PASSED 

PASSED 

FAILED 

FAILED 

PASSED 

PASSED 

PASSED 

FAILED 

FAILED 

FAILED 

PASSED 

PASSED 

Table 7.1. Singularity and accuracy results of the patch tests. 
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Figure 7.9 The axial displacements of the bar. 
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Figure 7.8 Axially loaded bar and the PIM model. 
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Figure 7.10 The axial stress distributions of the bar. 
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Table 7.2 The displacement and stress values in axial direction of the bar for  
different sizes of the domains. (Original PIM has singularity problem. Only PIM 
with regular basis results listed.) 

  
Domain Size 

12x12 
(6-9 nodes) 

Domain Size 
24x12 

(9-12 nodes) 

Domain Size 
36x12 

(12-15 nodes) 

Domain Size 
48x12 

(15 nodes) 
Node 

Coordinate 
regular basis PIM regular basis PIM regular basis PIM regular basis PIM 

X Y Ux Sx Ux Sx Ux Sx Ux Sx 

0 6 5.82E-16 8.33E+01 4.29E-16 8.33E+01 3.50E-16 8.33E+01 2.77E-16 8.33E+01

0 0 2.33E-15 8.33E+01 1.72E-15 8.33E+01 1.40E-15 8.33E+01 1.11E-15 8.33E+01

0 -6 5.82E-16 8.33E+01 4.29E-16 8.33E+01 3.50E-16 8.33E+01 2.77E-16 8.33E+01

12 6 1.43E-05 8.33E+01 1.43E-05 8.33E+01 1.43E-05 8.33E+01 1.43E-05 8.33E+01

12 0 1.43E-05 8.33E+01 1.43E-05 8.33E+01 1.43E-05 8.33E+01 1.43E-05 8.33E+01

12 -6 1.43E-05 8.33E+01 1.43E-05 8.33E+01 1.43E-05 8.33E+01 1.43E-05 8.33E+01

24 6 2.86E-05 8.33E+01 2.86E-05 8.33E+01 2.86E-05 8.33E+01 2.86E-05 8.33E+01

24 0 2.86E-05 8.33E+01 2.86E-05 8.33E+01 2.86E-05 8.33E+01 2.86E-05 8.33E+01

24 -6 2.86E-05 8.33E+01 2.86E-05 8.33E+01 2.86E-05 8.33E+01 2.86E-05 8.33E+01

36 6 4.29E-05 8.33E+01 4.29E-05 8.33E+01 4.29E-05 8.33E+01 4.29E-05 8.33E+01

36 0 4.29E-05 8.33E+01 4.29E-05 8.33E+01 4.29E-05 8.33E+01 4.29E-05 8.33E+01

36 -6 4.29E-05 8.33E+01 4.29E-05 8.33E+01 4.29E-05 8.33E+01 4.29E-05 8.33E+01

48 6 5.71E-05 8.33E+01 5.71E-05 8.33E+01 5.71E-05 8.33E+01 5.71E-05 8.33E+01

48 0 5.71E-05 8.33E+01 5.71E-05 8.33E+01 5.71E-05 8.33E+01 5.71E-05 8.33E+01

48 -6 5.71E-05 8.33E+01 5.71E-05 8.33E+01 5.71E-05 8.33E+01 5.71E-05 8.33E+01

 

7.4.2.2 Cantilever Beam 

 

 

 

 

Figure 7.12 The PIM model of cantilever beam problem. 

Figure 7.11 The cantilever beam problem. 
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In the second case study, an elasto-static cantilever beam problem is solved with the 

proposed algorithm. The cantilever beam is loaded as shown in Figure 7.11 and the 

model used for original PIM and regular basis PIM is shown in Figure 7.12. The 

material properties are as follows: ܧ ൌ 200 GPa and ߭ ൌ 0. 63 nodes are used to 

represent the cantilever beam geometry. 10 background cells are used to evaluate the 

integrals. The size of the formed support domains are 0.1 m 0.1 ݔ m. 9 െ 15 nodes 

are used for interpolation in a local domain. The results are compared with analytical 

solution results in Figure 7.13 and Figure 7.14. The transverse displacement and 

stress values in ݔ െ direction of the bar along AB line are computed using different 

support domain sizes. They are shown in Table 7.3. 

 

 

Figure 7.13 The lateral displacements along the mid-point of the cantilever beam. 
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Figure 7.14 The axial stress distributions along the top surface of the cantilever 
beam. 
 

To investigate the effect of number of nodes in a local domain, the displacement and 

stress values along AB line of the cantilever beam are computed using different 

support domain sizes. They are compared in Table 7.3.  
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Table 7.3 The transverse displacements and Sx along AB line using different domain 
sizes. (Original PIM has singularity problem. Only PIM with regular basis results 
listed.) 

  Domain Size 0.05x0.05 Domain Size 0.05x0.1 Domain Size 0.1x0.1

Node Coordinate regular basis PIM regular basis PIM regular basis PIM 

X Y Uy Sx Uy Sx Uy Sx 

0 0.05 -3.74E-27 5.83E+07 6.08E-27 5.83E+07 3.55E-27 5.96E+07

0.05 0.05 -6.91E-06 5.70E+07 -6.83E-06 5.70E+07 -7.94E-06 5.75E+07

0.1 0.05 -2.94E-05 5.40E+07 -2.95E-05 5.40E+07 -2.99E-05 5.39E+07

0.15 0.05 -6.50E-05 5.10E+07 -6.48E-05 5.10E+07 -6.61E-05 5.10E+07

0.2 0.05 -1.13E-04 4.80E+07 -1.13E-04 4.80E+07 -1.14E-04 4.80E+07

0.25 0.05 -1.74E-04 4.50E+07 -1.74E-04 4.50E+07 -1.75E-04 4.50E+07

0.3 0.05 -2.44E-04 4.20E+07 -2.45E-04 4.20E+07 -2.46E-04 4.20E+07

0.35 0.05 -3.28E-04 3.90E+07 -3.28E-04 3.90E+07 -3.29E-04 3.90E+07

0.4 0.05 -4.18E-04 3.60E+07 -4.18E-04 3.60E+07 -4.19E-04 3.60E+07

0.45 0.05 -5.21E-04 3.30E+07 -5.21E-04 3.30E+07 -5.23E-04 3.30E+07

0.5 0.05 -6.27E-04 3.00E+07 -6.28E-04 3.00E+07 -6.29E-04 3.00E+07

0.55 0.05 -7.48E-04 2.70E+07 -7.47E-04 2.70E+07 -7.49E-04 2.70E+07

0.6 0.05 -8.66E-04 2.40E+07 -8.67E-04 2.40E+07 -8.69E-04 2.40E+07

0.65 0.05 -1.00E-03 2.10E+07 -1.00E-03 2.10E+07 -1.00E-03 2.10E+07

0.7 0.05 -1.13E-03 1.80E+07 -1.13E-03 1.80E+07 -1.13E-03 1.80E+07

0.75 0.05 -1.27E-03 1.50E+07 -1.27E-03 1.50E+07 -1.28E-03 1.50E+07

0.8 0.05 -1.41E-03 1.20E+07 -1.41E-03 1.20E+07 -1.41E-03 1.20E+07

0.85 0.05 -1.56E-03 9.00E+06 -1.56E-03 9.00E+06 -1.57E-03 8.99E+06

0.9 0.05 -1.70E-03 6.00E+06 -1.71E-03 6.00E+06 -1.71E-03 6.10E+06

0.95 0.05 -1.86E-03 3.00E+06 -1.86E-03 3.00E+06 -1.86E-03 2.53E+06

1 0.05 -2.00E-03 1.73E+06 -2.01E-03 1.73E+06 -2.01E-03 3.85E+05

 

7.4.2.3 Simply Supported Circular Plate 

 

 

 

Figure 7.15 Simply supported circular plate. 

ݎ ൌ 10.0 ܿ݉

݄ ൌ 1.0 cm

ܲ ൌ 260.8 Pa
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In the third case study, the simply supported circular plate, shown in Figure 7.15, is 

analyzed. The plate is modeled by 33 nodes as illustrated in Figure 7.16. The 

material properties are as follows: ܧ ൌ 105 GPa and ߭ ൌ 0.24. In the cantilever 

beam, 63 nodes are used to represent the cantilever beam geometry. The integration 

is done using 20 background cells. The size of the support domains are 

1.0 ܿm 1.0 ݔ ܿm. 6 െ 9 nodes are used for interpolation in a local domain. The 

deflection profile of problem is shown in Figure 7.17. The displacement values are 

computed using different support domain sizes. They are shown in Table 7.4. 

 

 

Figure 7.17 The deflection profile of simply supported circular plate. 
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Figure 7.16 The PIM model of simply supported circular plate. 
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Table 7.4 The deflection profile of simply supported circular plate for different 
domain sizes. (Original PIM has singularity problem. Only PIM with regular based 
results listed.) 

  
Domain Size 1.0x1.0

(6-9 nodes) 
Domain Size 2.0x1.0

(9-15 nodes) 
Domain Size 3.0x1.0

(12-21 nodes) 
Node Coordinate Regular basis PIM Regular basis PIM Regular basis PIM 

R Z Ur Uz Ur Uz Ur Uz 

0.00 0 1.39E-07 -1.78E-04 -2.22E-09 -1.87E-04 -1.06E-09 -1.87E-04
0.01 0 2.75E-06 -1.74E-04 2.30E-06 -1.84E-04 2.30E-06 -1.84E-04
0.02 0 4.85E-06 -1.66E-04 4.53E-06 -1.77E-04 4.53E-06 -1.78E-04
0.03 0 6.72E-06 -1.55E-04 6.66E-06 -1.66E-04 6.66E-06 -1.66E-04
0.04 0 8.39E-06 -1.39E-04 8.63E-06 -1.51E-04 8.62E-06 -1.51E-04
0.05 0 9.83E-06 -1.21E-04 1.04E-05 -1.32E-04 1.04E-05 -1.32E-04
0.06 0 1.10E-05 -9.99E-05 1.19E-05 -1.09E-04 1.19E-05 -1.09E-04
0.07 0 1.20E-05 -7.67E-05 1.30E-05 -8.41E-05 1.30E-05 -8.42E-05
0.08 0 1.26E-05 -5.19E-05 1.39E-05 -5.70E-05 1.39E-05 -5.71E-05
0.09 0 1.29E-05 -2.62E-05 1.42E-05 -2.88E-05 1.42E-05 -2.89E-05
0.10 0 1.30E-05 -2.99E-17 1.42E-05 -2.17E-17 1.42E-05 -1.87E-17
0.00 0.5 1.57E-12 -1.78E-04 1.07E-09 -1.87E-04 8.45E-10 -1.87E-04
0.01 0.5 4.06E-09 -1.74E-04 4.90E-09 -1.85E-04 4.88E-09 -1.85E-04
0.02 0.5 8.11E-09 -1.67E-04 8.19E-09 -1.78E-04 8.25E-09 -1.78E-04
0.03 0.5 1.22E-08 -1.55E-04 1.25E-08 -1.67E-04 1.23E-08 -1.67E-04
0.04 0.5 1.62E-08 -1.40E-04 1.66E-08 -1.51E-04 1.70E-08 -1.51E-04
0.05 0.5 2.03E-08 -1.21E-04 2.04E-08 -1.32E-04 1.95E-08 -1.32E-04
0.06 0.5 2.44E-08 -1.00E-04 2.58E-08 -1.10E-04 2.71E-08 -1.10E-04
0.07 0.5 2.78E-08 -7.69E-05 2.61E-08 -8.44E-05 2.38E-08 -8.45E-05
0.08 0.5 3.52E-08 -5.21E-05 3.96E-08 -5.72E-05 4.18E-08 -5.73E-05
0.09 0.5 2.78E-08 -2.63E-05 2.38E-08 -2.89E-05 2.45E-08 -2.90E-05
0.10 0.5 4.82E-08 -2.39E-07 3.98E-08 -2.87E-07 3.13E-08 -3.26E-07
0.00 1 1.39E-07 -1.78E-04 2.82E-10 -1.87E-04 -9.41E-10 -1.87E-04
0.01 1 2.74E-06 -1.74E-04 -2.29E-06 -1.84E-04 -2.29E-06 -1.84E-04
0.02 1 4.84E-06 -1.66E-04 -4.51E-06 -1.77E-04 -4.51E-06 -1.78E-04
0.03 1 6.70E-06 -1.55E-04 -6.63E-06 -1.66E-04 -6.63E-06 -1.66E-04
0.04 1 8.35E-06 -1.39E-04 -8.59E-06 -1.51E-04 -8.59E-06 -1.51E-04
0.05 1 9.79E-06 -1.21E-04 -1.03E-05 -1.32E-04 -1.03E-05 -1.32E-04
0.06 1 1.10E-05 -9.99E-05 -1.18E-05 -1.09E-04 -1.18E-05 -1.09E-04
0.07 1 1.19E-05 -7.67E-05 -1.30E-05 -8.42E-05 -1.30E-05 -8.43E-05
0.08 1 1.26E-05 -5.20E-05 -1.38E-05 -5.71E-05 -1.38E-05 -5.72E-05
0.09 1 1.29E-05 -2.62E-05 -1.41E-05 -2.87E-05 -1.41E-05 -2.88E-05
0.10 1 1.28E-05 -2.03E-07 -1.40E-05 -2.75E-07 -1.40E-05 -3.38E-07
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7.5 Results and Discussions 

 The regular basis PIM algorithm is proposed to define a rule for the selection 

of basis function terms. It is a simple and practical algorithm. It can be easily 

implemented in the PIM solutions, only the polynomial terms are changed in PIM 

solution procedure. It is stable and accurate even for small local domains. And also it 

eliminates the singularity problem without requiring extra any operations. However, 

it has a major drawback that it does not work for other than a regular node 

configuration in a local domain. The reason of this can be the requirement of 

completeness. The regular basis algorithm is far away to satisfy completeness for 

irregular node configurations. But the results of case studies show that the PIM 

with regular basis algorithm gives excellent results for regular distributed 

nodes. Therefore, the original PIM can be improved using proposed algorithm for 

the regular distributed nodes. 
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CHAPTER 8 

CONCLUSIONS 

The original PIM method is improved using two different algorithms. The 

diagonal offset method is a simple and practical method and makes the moment 

matrix invertible. Regular basis algorithm is used for appropriate selection of 

polynomial terms and it gives excellent results for regularly distributed nodes. 

It has been shown that the diagonal offset algorithm overcomes the singular 

moment matrix problem in the polynomial PIM. It has significant advantages over 

the other singularity elimination algorithms 

 eliminates the extra calculations, 

 simple and practical algorithm, 

 doesn’t decrease the computation efficiency of the PIM, 

 preserves accuracy of the PIM. 

It is shown that PIM with the proposed algorithm gives nearly same results 

with the exact results for 4 ൑ ݇ ൑ 7. The solutions deviate from exact results for 

݇ ൏ 4 and ݇ ൐ 7. 

The proposed regular basis algorithm is stable and accurate even for small 

local domains. And it also eliminates the singularity problem without requiring extra 

any operations. However, it has a major drawback that it does not work for other than 

a regular node configuration in a local domain. But the results of case studies show 

that the PIM with regular basis algorithm gives excellent results for regularly 

distributed nodes. Therefore, the original PIM can be improved using proposed 

algorithm for the regularly distributed nodes. 

The RPIM method is also used for the solution of 2D elasticity problems. The 

effect of radial basis shape parameters are investigated in the solution of 

geometrically nonlinear and elasto-plastic problems. 
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It is observed that the node distribution characteristics is more effective than 

the shape parameters in the displacement and stress solutions. It is also shown that 

RPIM shape parameters usually affect the stresses more than displacements. The 

values of shape parameters are generally problem dependent. However, more stable 

results are obtained with shape parameters, q=1.03 and αc=3 and m=3.  

It is also shown that when the same increase in the number of nodes is 

considered, improvements in the RPIM results are better than FEM with suggested 

values of shape parameters. 
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FUTURE WORKS 

The  application of PIM to geometric nonlinear problems and elasto-plastic 

problems are planned. Also, the implementation of Moving-Least Square methods to 

these problems can be studied. 
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APPENDIX 

A SAMPLE SOLUTION OF 2D GEOMETRICALLY NONLINEAR 
PROBLEMS USING RPIM 

Taking large displacements into consideration, deflections and stresses in the 

axially loaded thin plate, shown in Figure A.1, are solved using RPIM. The 

material parameters are considered as ܧ ൌ ݒ ,1000 ൌ 0.25 and thickness is 

݄ ൌ 0.1. For simplicity, 4 nodes and single background cell are used. Load is 

applied in one step and the computations for the first two iterations are given. 

 

Figure A.1 Thin plate 

The coordinates of field nodes and background points are as follows: 

Field Node  X‐coordinate  Y‐coordinate 

1  0  0 

2  1  0 

3  1  1 

4  0  1 

 

Background Point  X‐coordinate  Y‐coordinate 

1  0  0 

2  1  0 

3  1  1 

4  0  1 

 

 

 

1

4

2

3 

25 

25 
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Specified nodal loads: 

Node DOF Value

2  1  25 

3  1  25 

 

Gauss quadrature points and weights of the background cell: 

  Point  Weight  Jacobian 

1 
X  0.211324870586 

1  0.25 
Y  0.211324870586 

2 
X  0.788675129414 

1  0.25 
Y  0.211324870586 

3 
X  0.211324870586 

1  0.25 
Y  0.788675129414 

4 
X  0.788675129414 

1  0.25 
Y  0.788675129414 

 

E=1000  ν=0.25  Initial thickness=0.1  Plane stress analysis 

Lame’s constants: 

ߣ ൌ
ߥܧ

ሺ1 ൅ ሻሺ1ߥ െ ሻߥ2
ൌ 400 

ߤ ൌ
ܧ

2ሺ1 ൅ ሻߥ
ൌ 400 

ߛ ൌ
ߤ2

ሺߣ ൅ ሻߤ2
ൌ 0.6667 

Computation for stiffness matrix of support domain at 

ሼ 0.211324870586 , 0.211324870586 ሽ with ݐ݄݃݅݁ݓ ൌ 1; 

Dimensions of the support domain: 

݀௫ ൌ 1 ܽ݊݀ ݀௬ ൌ 1; 

 

Support domain of gauss point X 

1  2 

3 4 
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Nodes of support domain are;  ݊1 ݁݀݋, ,2 ݁݀݋݊  .4 ݁݀݋݊ and 3 ݁݀݋݊

Interpolation functions and their derivatives: 

઴ሺܠሻ ൌ ሾ߶ଵ, ߶ଶ, ߶ଷ, ߶ସሿ 

Node  1  2  3  4 

߶  0.622825041123  0.165850088290  4.547478229618E‐02  0.165850088290 
߲߶

ݔ߲
  ‐0.790075558664  0.790075558664  0.209924441336  ‐0.209924441336

߲߶

ݕ߲
  ‐0.790075558664  ‐0.209924441336 0.209924441336  0.790075558664  

 

Deformation gradient is calculated using the Equation 4.1 

௜௝ܨ ൌ෍ቈ
ூߔ߲
௝ݔ߲

݀௜ூ቉ ൅ ௜௝ߜ

ே௉

ூୀଵ

 

where ܰܲ ൌ 4 and the displacement vector 

܌ ൌ ሾ0 0 0 0 0 0 0 0ሿ 

Deformation gradient, ܨ ൌ ቂ
1 0
0 1

ቃ; 

and arranged deformation gradient (Equation 4.16); 

Fഥ ൌ ൥
1 0 0 0
0 0 0 1
0 1 1 0

൩ 

Right Cauchy-Green tensor, ܿଵ ൌ ቂ
1 0
0 1

ቃ 

Left Cauchy-Green tensor, ܿଶ ൌ ቂ
1 0
0 1

ቃ 

Second PK stresses, S෠ ൌ ቂ
0 0
0 0

ቃ 

Initial stress matrix, Sത ൌ ൦

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

൪ 

The matrix for derivatives of shape functions of support domain, 

Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 

Internal force vector, ܚଵ ൌ ሾ0 0ሿ 

The matrix for derivatives of shape functions of support domain, 
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Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 

Material matrix, ۲ ൌ ൥
1200  400   0
400  1200  0
0 0 400

൩ 

Current stiffness matrix, ܓ௖ ൌ ቂ
24.96 12.48
12.48 24.96 

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix, 

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 0 0 0 0 0 0
12.48 24.96 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, 

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ17.06 െ4.58
െ4.58 െ1.26

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 0 0 0 0
12.48 24.96 െ4.58 െ1.26 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ6.63 െ3.31
െ3.31 െ6.63

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 0 0
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ1.26 െ4.58
െ4.58 െ17.06

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  
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۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Internal force vector, ܚଶ ൌ ሾ0 0ሿ 

The matrix for derivatives of shape functions of support domain, 

Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 

Material matrix, ۲ ൌ ൥
1200  400   0
400  1200  0
0 0 400

൩ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ17.06  െ4.58
െ4.58 െ1.26

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 0 0 0 0 0 0
െ4.58 െ1.26 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
 19.16 െ3.31
െ3.31 7.56

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 0 0 0 0
െ4.58 െ1.26 െ3.31 7.56 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
4.53  1.21
1.21 0.33

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  
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۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 0 0
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ6.63 6.68
6.68 െ6.63

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 െ6.63 6.68
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 6.68 െ6.63
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 
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Internal force vector, ܚଷ ൌ ሾ0 0ሿ 

The matrix for derivatives of shape functions of support domain, 

Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 

Material matrix, ۲ ൌ ൥
1200  400   0
400  1200  0
0 0 400

൩ 

Current stiffness matrix, ܓ௖ ൌ ቂ
 െ6.63 െ3.31
െ3.31 െ6.63

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 െ6.63 6.68
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 6.68 െ6.63
െ6.63 െ3.31 0 0 0 0 0 0
െ3.31 െ6.63 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
4.53 1.21
1.21 0.33

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  
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۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 െ6.63 6.68
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 6.68 െ6.63
െ6.63 െ3.31 4.53 1.21 0 0 0 0
െ3.31 െ6.63 1.21 0.33 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
1.76 0.88
0.88 1.76

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 െ6.63 6.68
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 6.68 െ6.63
െ6.63 െ3.31 4.53 1.21 1.76 0.88 0 0
െ3.31 െ6.63 1.21 0.33 0.88 1.76 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 
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Current stiffness matrix, ܓ௖ ൌ ቂ
0.33 1.21
1.21 4.53

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 െ6.63 6.68
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 6.68 െ6.63
െ6.63 െ3.31 4.53 1.21 1.76 0.88 0.33 1.21
െ3.31 െ6.63 1.21 0.33 0.88 1.76 1.21 4.53
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 

Internal force vector, ܚସ ൌ ሾ0 0ሿ 

The matrix for derivatives of shape functions of support domain, 

Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 

Material matrix, ۲ ൌ ൥
1200  400   0
400  1200  0
0 0 400

൩ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ1.26 െ4.58
െ4.58 െ17.06

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  
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۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 െ6.63 6.68
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 6.68 െ6.63
െ6.63 െ3.31 4.53 1.21 1.76 0.88 0.33 1.21
െ3.31 െ6.63 1.21 0.33 0.88 1.76 1.21 4.53
െ1.26 െ4.58 0 0 0 0 0 0
െ4.58 െ17.06 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ6.63 6.68
6.68 െ6.63

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 െ6.63 6.68
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 6.68 െ6.63
െ6.63 െ3.31 4.53 1.21 1.76 0.88 0.33 1.21
െ3.31 െ6.63 1.21 0.33 0.88 1.76 1.21 4.53
െ1.26 െ4.58 െ6.63 6.68 0 0 0 0
െ4.58 െ17.06 6.68 െ6.63 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 
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Current stiffness matrix, ܓ௖ ൌ ቂ
0.33 1.21
1.21 4.53

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 െ6.63 6.68
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 6.68 െ6.63
െ6.63 െ3.31 4.53 1.21 1.76 0.88 0.33 1.21
െ3.31 െ6.63 1.21 0.33 0.88 1.76 1.21 4.53
െ1.26 െ4.58 െ6.63 6.68 0.33 1.21 0 0
െ4.58 െ17.06 6.68 െ6.63 1.21 4.53 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
7.56 െ3.31
െ3.31 19.16

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 24.96  12.48 െ17.06 െ4.58 െ6.63 െ3.31 െ1.26 െ4.58
12.48 24.96 െ4.58 െ1.26 െ3.31 െ6.63 െ4.58 െ17.06
െ17.06 െ4.58 19.16 െ3.31 4.53 1.21 െ6.63 6.68
െ4.58 െ1.26 െ3.31 7.56 1.21 0.33 6.68 െ6.63
െ6.63 െ3.31 4.53 1.21 1.76 0.88 0.33 1.21
െ3.31 െ6.63 1.21 0.33 0.88 1.76 1.21 4.53
െ1.26 െ4.58 െ6.63 6.68 0.33 1.21 7.56 െ3.31
െ4.58 െ17.06 6.68 െ6.63 1.21 4.53 െ3.31 19.16 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Assembled geometric stiffness matrix, ۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Tangential stiffness matrix,  

۹் ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 53.46  19.99 െ33.46 0 െ26.53 െ20.00 6.53 0
19.99 53.46 0 6.53 െ20.00 െ26.53 0 െ33.46
െ33.46 0 53.46 െ20.00 6.53 0 െ26.53 20.00

0 6.53 െ20.00 53.46 0 െ33.46 20.00 െ26.53
െ26.53 െ20.00 6.53 0 53.46 20.00 െ33.46 0
െ20.00 െ26.53 0 െ33.46 20.00 53.46 0 6.53
6.53 0 െ26.53 20.00 െ33.46 0 53.46 െ20.00
0  െ33.46 20.00 െ26.53 0 6.53 െ20.00 53.46 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

External force vector, 

ா܀ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
0
50
0
25
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Internal force vector, 

ூ܀ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
0
0
0
0
0
0
ے0
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Residual force vector, 

܀ ൌ ா܀ െ ூ܀ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
0
50
0
25
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

System of equations 
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۹்

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵݑ∆
ଵݒ∆
ଶݑ∆
ଶݒ∆
ଷݑ∆
ଷݒ∆
ସݑ∆
ےସݒ∆

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
0
50
0
25
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Essential boundary conditions: 

Node DOF Value

1 
 ଵ 0ݑ∆

 ଵ 0ݒ∆

4 
 ସ 0ݑ∆

 ସ 0ݒ∆

Solution of system equations, we get 

Node ݒ ݑ 

1 0 0 

2  0.451276683714 0.103830051137 

3 0.451276683710 െ0.103830051133 

4 0 0 

Current configuration II: 

Field Node  X‐coordinate  Y‐coordinate 

1  0  0 

2  1  0 

3  1  1 

4  0  1 

 

Updated coordinates 

Field Node  X‐coordinate  Y‐coordinate 

1  0  0 

2  1.451276683714 0.103830051137 
3  1.451276683710 0.896169949 
4  0  1 

 

Computation for Cauchy stresses at ሼ 0 ,0 ሽ ; 
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Dimensions of the support domain: 

݀௫ ൌ 1 ൅ 0.451276683714 ܽ݊݀ ݀௬ ൌ 1 ൅ 0.103830051137; 

 

Nodes of support domain are; 1,2,3 and 4. 

Interpolation functions and their derivatives: 

઴ሺܠሻ ൌ ሾ߶ଵ, ߶ଶ, ߶ଷ, ߶ସሿ 

Node  1  2  3  4 

߶  1.00000000000  0.00000000000  0.00000000000  0.00000000000 
߲߶

ݔ߲
  ‐0.978933935835  0.978933935835  0.02106606416451  ‐0.0210660641645

߲߶

ݕ߲
  ‐0.978933935835  ‐0.0210660641645 0.02106606416451  0.978933935835 

 

Deformation gradient is calculated using the Equation 4.1 

௜௝ܨ ൌ෍ቈ
ூߔ߲
௝ݔ߲

݀௜ூ቉ ൅ ௜௝ߜ

ே௉

ூୀଵ

 

where ܰܲ ൌ 4 and the displacement vector 

Support domain of field node 1 

1  2 

3 4 
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܌ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0.00
0.00

0.451276683714
0.103830051137
0.451276683714
െ0.103830051133

0.00
0.00 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Deformation gradient, 

ܨ ൌ ቂ
 1.45127668371 െ7.097621101959ܧ െ 14

ܧ9.945547009832 െ 02  0.995625418961
ቃ; 

Right Cauchy-Green tensor, 

ܿଵ ൌ ቂ
 2.11609540322  ܧ9.902039408452 െ 02

ܧ9.902039408452 െ 02 0.991269974882
ቃ 

Left Cauchy-Green tensor, ܿଶ ൌ ቂ
 2.10620401269  0.144337404821
0.144337404821  1.00116136541

ቃ 

Cauchy stresses, ߪො ൌ ቂ
422.996380278  45.1725653200
45.1725653200  77.1566360536

ቃ 

Computation for Cauchy stresses at ሼ 1 ,0 ሽ ; 

Nodes of support domain are; 1,2,3 and 4. 

Interpolation functions and their derivatives: 

Node  1  2  3  4 

߶  0.00000000000  1.00000000000  0.00000000000  0.00000000000 
߲߶

ݔ߲
  ‐0.978933935836  0.978933935836  0.02106606416446  ‐0.0210660641644 

߲߶

ݕ߲
  ‐0.0210660641645  ‐0.97893393583  0.978933935836  0.02106606416450 

 

Deformation gradient, 

ܨ ൌ ቂ
 1.45127668371 െ3.299749362640ܧ െ 12

ܧ9.945547009833 െ 02  0.796714478768
ቃ; 

Right Cauchy-Green tensor, 

ܿଵ ൌ ቂ
  2.11609540322  ܧ7.923761301526  െ 02

ܧ7.923761301526 െ 02  0.634753960679
ቃ 

Left Cauchy-Green tensor, ܿଶ ൌ ቂ
  2.10620401269   0.144337404819
0.144337404819  0.644645351211

ቃ 

Cauchy stresses, ߪො ൌ ቂ
436.805509354  52.4087255264
52.4087255264  െ93.8845555425

ቃ 

Computation for Cauchy stresses at ሼ 1 ,1 ሽ ; 

Nodes of support domain are; 1,2,3 and 4. 
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Interpolation functions and their derivatives: 

Node  1  2  3  4 

߶  0.00000000000  0.00000000000  1.00000000000  0.00000000000 
߲߶

ݔ߲
  ‐0.02106606416450  0.02106606416450 0.978933935835  ‐0.978933935835 

߲߶

ݕ߲
  ‐0.02106606416451  ‐0.978933935835  0.978933935835  0.02106606416451

 

Deformation gradient, 

ܨ ൌ ቂ
1.45127668371 െ3.299804873791ܧ െ 12

െ9.945547009458ܧ െ 02  0.796714478768
ቃ; 

Right Cauchy-Green tensor, 

ܿଵ ൌ ቂ
2.11609540321  െ7.923761302184ܧ െ 02

െ7.923761302184ܧ െ 02  0.634753960679
ቃ 

Left Cauchy-Green tensor, ܿଶ ൌ ቂ
 2.10620401268 െ0.144337404818
െ0.144337404818 0.644645351211

ቃ 

Cauchy stresses, ߪො ൌ ቂ
436.805509350  െ52.4087255264
െ52.4087255264  െ93.8845555436

ቃ 

Computation for Cauchy stresses at ሼ 0 ,1 ሽ ; 

Nodes of support domain are; 1,2,3 and 4. 

Interpolation functions and their derivatives: 

Node  1  2  3  4 

߶  0.00000000000  0.00000000000  0.00000000000  1.00000000000 
߲߶

ݔ߲
  ‐0.0210660641645  0.0210660641645  0.978933935836  ‐0.978933935836

߲߶

ݕ߲
  ‐0.978933935836  ‐0.02106606416446 0.02106606416446  0.978933935836 

 

Deformation gradient, 

ܨ ൌ ቂ
  1.45127668371 െ7.103692634125ܧ െ 14

െ9.945547009458ܧ െ 02  0.995625418961
ቃ; 

Right Cauchy-Green tensor, 

ܿଵ ൌ ቂ
 2.11609540321  െ9.902039408100ܧ െ 02

െ9.902039408100ܧ െ 02  0.991269974882
ቃ 

Left Cauchy-Green tensor, ܿଶ ൌ ቂ
 2.10620401268  െ0.144337404816
െ0.144337404816 1.00116136541

ቃ 

Cauchy stresses, ߪො ൌ ቂ
422.996380276  െ45.1725653183
െ45.1725653183  77.1566360530

ቃ 

For the difference between successive solutions we check 
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௥ାଵܝ‖ െ ௥‖ଶܝ
௥ାଵ‖ଶܝ‖

൑  ݎ݋  ݁ܿ݊ܽݎ݈݁݋ݐ

                                
ඥሺܝ௥ାଵ െ ௥ሻܝ ∙ ሺܝ௥ାଵ െ ௥ሻܝ

ඥܝ௥ାଵ ∙ ௥ାଵܝ
൑  ݎ݋  ݁ܿ݊ܽݎ݈݁݋ݐ

ට∑ ሺݑ௜
௥ାଵ െ ௜ݑ

௥ሻଶ௡
௜ୀଵ

ට∑ ሺݑ௜
௥ାଵሻଶ௡

௜ୀଵ

൑  ݁ܿ݊ܽݎ݈݁݋ݐ

௥ାଵܝ‖ െ ௥‖ଶܝ ൌ  0.428862649561 

௥ାଵ‖ଶܝ‖ ൌ 0.428862649561 

ݎ݁ݐ݁݉ܽݎܽ݌ ݁ܿ݊݁݃ݎ݁ݒ݊݋ܿ ൌ
௥ାଵܝ‖ െ ௥‖ଶܝ
௥ାଵ‖ଶܝ‖

ൌ 1.00000000000 

Iteration 2: 

Computation for stiffness matrix of support domain at 

ሼ 0.211324870586 , 0.211324870586 ሽ with ݐ݄݃݅݁ݓ ൌ 1; 

Nodes of support domain are;  ݊1 ݁݀݋, ,2 ݁݀݋݊  .4 ݁݀݋݊ and 3 ݁݀݋݊

Interpolation functions and their derivatives: 

Node  1  2  3  4 

߶  0.622825041123  0.165850088290  4.547478229618E‐02  0.165850088290 
߲߶

ݔ߲
  ‐0.790075558664  0.790075558664  0.209924441336  ‐0.209924441336

߲߶

ݕ߲
  ‐0.790075558664  ‐0.209924441336 0.209924441336  0.790075558664  

 

Deformation gradient is calculated using the Equation 4.1 

௜௝ܨ ൌ෍ቈ
ூߔ߲
௝ݔ߲

݀௜ூ቉ ൅ ௜௝ߜ

ே௉

ூୀଵ

 

where ܰܲ ൌ 4 and the displacement vector 

܌ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0.00
0.00

0.451276683714
0.103830051137
0.451276683714
െ0.103830051133

0.00
0.00 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Deformation gradient, 

ܨ ൌ ቂ
1.45127668371 െ7.076839114717ܧ െ 13

ܧ6.023712018033 െ 02 0.956407069043
ቃ; 

and arranged deformation gradient (Equation 4.16); 

Fഥ ൌ ൥
1.45127668371 0 0.06023712018 0

0 0.00 0 0.956407069
0 1.45127668371 0.956407069 0.06023712018

൩ 

Right Cauchy-Green tensor, 

ܿଵ ൌ ቂ
2.10983252334 ܧ5.761120755824 െ 02

ܧ5.761120755824 െ 02 0.914714481716
ቃ 

Left Cauchy-Green tensor, 

ܿଶ ൌ ቂ
2.10620401269 ܧ8.742072801104 െ 02

ܧ8.742072801104 െ 02 0.918342992363
ቃ 

Second PK stresses, S෠ ൌ ቂ
251.596774166 9.34683905931
9.34683905931 57.7008906161

ቃ 

Initial stress matrix, 

Sത ൌ ൦

251.596774166 9.34683905931 0 0
9.34683905931 57.7008906161 0 0

0 0 251.596774166 9.34683905931
0 0 9.34683905931 57.7008906161

൪ 

The matrix for derivatives of shape functions of support domain, 

Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 

Internal force vector, ܚଵ ൌ ሾെ7.48006764162 െ1.57705825624ሿ 

The matrix for derivatives of shape functions of support domain, 

Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 

Material matrix, 

۲ ൌ ൥
231.089474011  208.538992457  െ14.5546440096
208.538992457  1229.43343515  െ33.5709797001
െ14.5546440096 െ33.5709797001 163.156634593

൩ 

Current stiffness matrix, ܓ௖ ൌ ቂ
12.00 7.50
7.50 19.52 

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
5.11 0
0 5.11

ቃ 

Assembled current stiffness matrix, 
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۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 0 0 0 0 0 0
7.50 19.52 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix, 

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 0 0 0 0 0 0
0 5.11 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ5.81 െ2.45
െ3.69 2.44

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
െ3.79 0
0 െ3.79

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 0 0 0 0
7.50 19.52 െ3.69 2.44 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 0 0 0 0
0 5.11 0 െ3.79 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 
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Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ3.18 െ1.99
െ1.99 െ5.18

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
െ1.35 0
0 െ1.35

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 0 0
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0 0
0 5.11 0 െ3.79 0 െ1.35 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ2.99 െ3.05
െ1.81 െ16.77

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0.03 0
0 0.03

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  
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۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Internal force vector, ܚଶ ൌ ሾ7.14094640179 0.183344097664ሿ 

The matrix for derivatives of shape functions of support domain, 

Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 

Material matrix, 

۲ ൌ ൥
231.089474011  208.538992457  െ14.5546440096
208.538992457  1229.43343515  െ33.5709797001
െ14.5546440096 െ33.5709797001 163.156634593

൩ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ5.81  െ3.69
െ2.45 2.44

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
െ3.79 0
0 െ3.79

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 0 0 0 0 0 0
െ2.45 2.44 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 0 0 0 0 0 0
0 െ3.79 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
 8.22 െ2.16
െ2.16 3.62

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
3.91 0
0 3.91

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 0 0 0 0
െ2.45 2.44 െ2.16 3.62 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 0 0 0 0
0 െ3.79 0 3.91 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
1.54  0.98
0.65 െ0.64

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
1.00 0
0 1.00

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 0 0
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  
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۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 0 0
0 െ3.79 0 3.91 0 1.00 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ3.95 4.87
3.96 െ5.42

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
െ1.12 0
0 െ1.12

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 െ3.95 4.87
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 3.96 െ5.42
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 െ1.12 0
0 െ3.79 0 3.91 0 1.00 0 1.12
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 

Internal force vector, ܚଷ ൌ ሾ1.98746689933 0.419027104135ሿ 

The gradient matrix, 

Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 
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Material matrix, 

۲ ൌ ൥
231.089474011  208.538992457  െ14.5546440096
208.538992457  1229.43343515  െ33.5709797001
െ14.5546440096 െ33.5709797001 163.156634593

൩ 

Current stiffness matrix, ܓ௖ ൌ ቂ
 െ3.18 െ1.99
െ1.99 െ5.18

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
െ1.35 0
0 െ1.35

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 െ3.95 4.87
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 3.96 െ5.42
െ3.18 െ1.99 0 0 0 0 0 0
െ1.99 െ5.18 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 െ1.12 0
0 െ3.79 0 3.91 0 1.00 0 1.12

െ1.35 0 െ1.35 0 0 0 0 0
0 െ1.35 0 െ1.35 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
1.54 0.65
0.98 െ0.64

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
1.00 0
0 1.00

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 െ3.95 4.87
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 3.96 െ5.42
െ3.18 െ1.99 1.54 0.65 0 0 0 0
െ1.99 െ5.18 0.98 െ0.64 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  
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۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 െ1.12 0
0 െ3.79 0 3.91 0 1.00 0 1.12

െ1.35 0 1.00 0 0 0 0 0
0 െ1.35 0 1.00 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
0.84 0.52
0.52 1.37

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0.36 0
0 0.36

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 െ3.95 4.87
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 3.96 െ5.42
െ3.18 െ1.99 1.54 0.65 0.84 0.52 0 0
െ1.99 െ5.18 0.98 െ0.64 0.52 1.37 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 െ1.12 0
0 െ3.79 0 3.91 0 1.00 0 1.12

െ1.35 0 1.00 0 0.36 0 0 0
0 െ1.35 0 1.00 0 0.36 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
0.79 0.81
0.48 4.45

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
െ0.009 0

0 െ0.009
ቃ 

Assembled current stiffness matrix,  
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۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 െ3.95 4.87
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 3.96 െ5.42
െ3.18 െ1.99 1.54 0.65 0.84 0.52 0.79 0.81
െ1.99 െ5.18 0.98 െ0.64 0.52 1.37 0.48 4.45
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 െ1.12 0
0 െ3.79 0 3.91 0 1.00 0 1.12

െ1.35 0 1.00 0 0.36 0 െ0.009 0
0 െ1.35 0 1.00 0 0.36 0 െ0.009
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 

Internal force vector, ܚସ ൌ ሾെ1.64834565951 0.974687054442ሿ 

The matrix for derivatives of shape functions of support domain, 

Bଵ
T ൌ ቂ

 െ0.790075558664   െ0.790075558664  0 0
0 0   െ0.790075558664   െ0.790075558664

ቃ 

Material matrix, 

۲ ൌ ൥
231.089474011  208.538992457  െ14.5546440096
208.538992457  1229.43343515  െ33.5709797001
െ14.5546440096 െ33.5709797001 163.156634593

൩ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ2.99 െ1.81
െ3.05 െ16.77

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0.03 0
0 0.03

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 െ3.95 4.87
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 3.96 െ5.42
െ3.18 െ1.99 1.54 0.65 0.84 0.52 0.79 0.81
െ1.99 െ5.18 0.98 െ0.64 0.52 1.37 0.48 4.45
െ2.99 െ1.81 0 0 0 0 0 0
െ3.05 െ16.77 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  
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۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 െ1.12 0
0 െ3.79 0 3.91 0 1.00 0 1.12

െ1.35 0 1.00 0 0.36 0 െ0.009 0
0 െ1.35 0 1.00 0 0.36 0 െ0.009

0.03 0 0 0 0 0 0 0
0 0.03 0 0 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଶ
T ൌ ቂ

 0.790075558664  െ0.209924441336  0 0
0 0 0.790075558664  െ0.209924441336 

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
െ3.95 3.96
4.87 െ5.42

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
െ1.12 0
0 െ1.12

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 െ3.95 4.87
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 3.96 െ5.42
െ3.18 െ1.99 1.54 0.65 0.84 0.52 0.79 0.81
െ1.99 െ5.18 0.98 െ0.64 0.52 1.37 0.48 4.45
െ2.99 െ1.81 െ3.95 3.96 0 0 0 0
െ3.05 െ16.77 4.87 െ5.42 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 െ1.12 0
0 െ3.79 0 3.91 0 1.00 0 1.12

െ1.35 0 1.00 0 0.36 0 െ0.009 0
0 െ1.35 0 1.00 0 0.36 0 െ0.009

0.03 0 െ1.12 0 0 0 0 0
0 0.03 0 െ1.12 0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bଷ
T ൌ ቂ

0.209924441336 0.209924441336 0 0
0 0  0.209924441336 0.209924441336

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
0.79 0.48
0.81 4.45

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
െ0.009 0

0 െ0.009
ቃ 

Assembled current stiffness matrix,  
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۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 െ3.95 4.87
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 3.96 െ5.42
െ3.18 െ1.99 1.54 0.65 0.84 0.52 0.79 0.81
െ1.99 െ5.18 0.98 െ0.64 0.52 1.37 0.48 4.45
െ2.99 െ1.81 െ3.95 3.96 0.79 0.48 0 0
െ3.05 െ16.77 4.87 െ5.42 0.81 4.45 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 െ1.12 0
0 െ3.79 0 3.91 0 1.00 0 1.12

െ1.35 0 1.00 0 0.36 0 െ0.009 0
0 െ1.35 0 1.00 0 0.36 0 െ0.009

0.03 0 െ1.12 0 െ0.009 0 0 0
0 0.03 0 െ1.12 0 െ0.009 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

The matrix for derivatives of shape functions of support domain, 

Bସ
T ൌ ቂ

െ0.209924441336  0.790075558664 0 0
0 0  െ0.209924441336 0.790075558664

ቃ 

Current stiffness matrix, ܓ௖ ൌ ቂ
6.15 െ2.63
െ2.63 17.73

ቃ 

Geometric stiffness matrix, ܓ௦ ൌ ቂ
0 0
0 0

ቃ 

Assembled current stiffness matrix,  

۹௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 12.00  7.50 െ5.81 െ2.45 െ3.18 െ1.99 െ2.99 െ3.05
7.50 19.52 െ3.69 2.44 െ1.99 െ5.18 െ1.81 െ16.77
െ5.81 െ3.69 8.22 െ2.16 1.54 0.98 െ3.95 4.87
െ2.45 2.44 െ2.16 3.62 0.65 െ0.64 3.96 െ5.42
െ3.18 െ1.99 1.54 0.65 0.84 0.52 0.79 0.81
െ1.99 െ5.18 0.98 െ0.64 0.52 1.37 0.48 4.45
െ2.99 െ1.81 െ3.95 3.96 0.79 0.48 6.15 െ2.63
െ3.05 െ16.77 4.87 െ5.42 0.81 4.45 െ2.63 17.73 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Assembled geometric stiffness matrix,  

۹௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
 5.11  0 െ3.79 0 െ1.35 0 0.03 0
0 5.11 0 െ3.79 0 െ1.35 0 0.03

െ3.79 0 3.91 0 1.00 0 െ1.12 0
0 െ3.79 0 3.91 0 1.00 0 1.12

െ1.35 0 1.00 0 0.36 0 െ0.009 0
0 െ1.35 0 1.00 0 0.36 0 െ0.009

0.03 0 െ1.12 0 െ0.009 0 3.64 0
0 0.03 0 െ1.12 0 െ0.009 0 3.64 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Tangential stiffness matrix,  
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۹் ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
37.72 13.37 െ18.33 2.06 െ19.01 െ13.98 െ0.38 െ1.46
13.37 53.40 െ0.56 8.61 െ14.27 െ28.61 1.46 െ33.40
െ18.33 െ0.56 39.09 െ14.88 െ1.75 1.16 െ19.01 14.27
2.06 8.61 െ14.88 61.87 െ1.16 െ41.87 13.98 െ28.61

െ19.01 െ14.27 െ1.75 െ1.16 39.09 14.88 െ18.33 0.56
െ13.98 െ28.61 1.16 െ41.87 14.88 61.87 െ2.06 8.61
െ0.38 1.46 െ19.01 13.98 െ18.33 െ2.06 37.72 െ13.37
െ1.46 െ33.40 14.27 െ28.61 0.56 8.61 െ13.37 53.40 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

External force vector, 

ா܀ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
0
50
0
25
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Internal force vector, 

ூ܀ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ17.6383579717
െ2.03537002612
17.6383579717
3.37248101854
17.6383579717
െ3.37248101852
െ17.6383579717
2.03537002610 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Residual force vector, 

܀ ൌ ா܀ െ ூ܀ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
17.6383579717
 2.03537002612
7.36164202831
െ3.37248101854
7.36164202833
3.37248101852
17.6383579717
െ2.03537002610ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

System of equations 

۹்

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵݑ∆
ଵݒ∆
ଶݑ∆
ଶݒ∆
ଷݑ∆
ଷݒ∆
ସݑ∆
ےସݒ∆

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
17.6383579717
 2.03537002612
7.36164202831
െ3.37248101854
7.36164202833
3.37248101852
17.6383579717
െ2.03537002610ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Essential boundary conditions: 

Node DOF Value

1 
 ଵ 0ݑ∆

 ଵ 0ݒ∆

4 
 ସ 0ݑ∆

 ସ 0ݒ∆

Solution of system equations, we get 

Node ݒ ݑ 

1 0 0 

2  0.196215871018 െ2.151724744991ܧ െ 03 

ܧ2.151724742667 0.196215871019 3 െ 03 

4 0 0 

Total nodal values: 

Node ݒ ݑ 

1 0 0 

2  0.647492554732 0.101678326392 

3 0.647492554729 െ0.101678326391 

4 0 0 

Current configuration II: 

Field Node  X‐coordinate  Y‐coordinate 

1  0  0 

2  1  0 

3  1  1 

4  0  1 

 

Updated coordinates 

Field Node  X‐coordinate  Y‐coordinate 

1  0  0 

2  1.647492554732 0.101678326392 
3  1.647492554732 0.898321674 
4  0  1 
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Computation for Cauchy stresses at ሼ 0 ,0 ሽ ; 

Dimensions of the support domain: 

݀௫ ൌ 1 ൅ 0.647492554732 ܽ݊݀ ݀௬ ൌ 1 ൅ 0.101678326392; 

 

Nodes of support domain are; 1,2,3 and 4. 

Interpolation functions and their derivatives: 

Node  1  2  3  4 

߶  1.00000000000  0.00000000000  0.00000000000  0.00000000000 
߲߶

ݔ߲
  ‐0.98261272217  0.982612722173  0.01738727782706  ‐0.017387277827

߲߶

ݕ߲
  ‐0.98261272217  ‐0.017387277827 0.01738727782707  0.982612722173 

 

܌ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0.00
0.00

 0.647492554732
0.101678326392
 0.647492554732
െ0.101678326391

0.00
0.00 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Deformation gradient, 

ܨ ൌ ቂ
 1.64749255473 െ4.445402379538ܧ െ 14

ܧ9.814250777226 െ 02 0.996464181380
ቃ; 

Support domain of field node 1 

1  2 

3 4 
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Right Cauchy-Green tensor, 

ܿଵ ൌ ቂ
 2.72386366973  ܧ9.779549366580 െ 02

ܧ9.779549366580 െ 02 0.992940864773
ቃ 

Left Cauchy-Green tensor, ܿଶ ൌ ቂ
 2.71423171790  0.161689050857
0.161689050857  1.00257281661

ቃ 

Cauchy stresses, ߪො ൌ ቂ
587.716066780  46.4747612840
46.4747612840  95.7288950128

ቃ 

Computation for Cauchy stresses at ሼ 1 ,0 ሽ ; 

Nodes of support domain are; 1,2,3 and 4. 

Interpolation functions and their derivatives: 

Node  1  2  3  4 

߶  0.00000000000  1.00000000000  0.00000000000  0.00000000000 
߲߶

ݔ߲
  ‐0.98261272217  0.98261272217  0.0173872778269  ‐0.0173872778269 

߲߶

ݕ߲
  ‐0.0173872778269  ‐0.98261272217  0.98261272217  0.01738727782693 

 

Deformation gradient, 

ܨ ൌ ቂ
 1.64749255473 െ2.508215857233ܧ െ 12

ܧ9.814250777228 െ 02  0.800179165837
ቃ; 

Right Cauchy-Green tensor, 

ܿଵ ൌ ቂ
  2.72386366973  ܧ7.853158999824  െ 02

ܧ7.853158999824 െ 02  0.640286697440
ቃ 

Left Cauchy-Green tensor, ܿଶ ൌ ቂ
  2.71423171790   0.161689050856
0.161689050856  0.649918649271

ቃ 

Cauchy stresses, ߪො ൌ ቂ
631.616045025  53.7939542833
53.7939542833  െ55.1810030893

ቃ 

Computation for Cauchy stresses at ሼ 1 ,1 ሽ ; 

Nodes of support domain are; 1,2,3 and 4. 

Interpolation functions and their derivatives: 

Node  1  2  3  4 

߶  0.00000000000  0.00000000000  1.00000000000  0.00000000000 
߲߶

ݔ߲
  ‐1.738727782693E‐02 0.0173872778269 0.982612722173  ‐0.982612722173 

߲߶

ݕ߲
  ‐0.0173872778269  ‐0.982612722173  0.982612722173  0.0173872778269
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Deformation gradient, 

ܨ ൌ ቂ
1.64749255473 െ2.508215857233ܧ െ 12

െ9.814250777086ܧ െ 02  0.800179165837
ቃ; 

Right Cauchy-Green tensor, 

ܿଵ ൌ ቂ
2.72386366972  െ7.853159000536ܧ െ 02

െ7.853159000536ܧ െ 02  0.640286697440
ቃ 

Left Cauchy-Green tensor, ܿଶ ൌ ቂ
2.71423171789 െ0.161689050857

െ0.161689050857 0.649918649271
ቃ 

Cauchy stresses, ߪො ൌ ቂ
631.616045023  െ53.7939542838
െ53.7939542838  െ55.1810030899

ቃ 

Computation for Cauchy stresses at ሼ 0 ,1 ሽ ; 

Nodes of support domain are; 1,2,3 and 4. 

Interpolation functions and their derivatives: 

Node  1  2  3  4 

߶  0.00000000000  0.00000000000  0.00000000000  1.00000000000 
߲߶

ݔ߲
  ‐0.017387277826  0.01738727782693  0.982612722173  ‐0.98261272217 

߲߶

ݕ߲
  ‐0.982612722173  ‐0.01738727782696 0.01738727782696  0.982612722173

 

Deformation gradient, 

ܨ ൌ ቂ
  1.64749255473 െ4.436208345115ܧ െ 14

െ9.814250777086ܧ െ 02  0.996464181380
ቃ; 

Right Cauchy-Green tensor, 

ܿଵ ൌ ቂ
 2.72386366972  െ9.779549366455ܧ െ 02

െ9.779549366455ܧ െ 02  0.992940864774
ቃ 

Left Cauchy-Green tensor, ܿଶ ൌ ቂ
 2.71423171789  െ0.161689050855
െ0.161689050855 1.00257281661

ቃ 

Cauchy stresses, ߪො ൌ ቂ
587.716066778  െ46.4747612833
െ46.4747612833  95.7288950126

ቃ 

௥ାଵܝ‖ െ ௥‖ଶܝ ൌ ܧ7.701059591799  െ 02 

௥ାଵ‖ଶܝ‖ ൌ 0.859170180978 

ݎ݁ݐ݁݉ܽݎܽ݌ ݁ܿ݊݁݃ݎ݁ݒ݊݋ܿ ൌ
௥ାଵܝ‖ െ ௥‖ଶܝ
௥ାଵ‖ଶܝ‖

ൌ 0.299388865239 
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