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ABSTRACT 

 

COMPREHENSIVE TREATMENTS FOR SCHRÖDINGER EQUATIONS 

INVOLVING CONSTANT AND NON-CONSTANT MASSES 

 

 

ATAY, ŞULE 

M. Sc. Thesis in Engineering Physics 
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January 2012 

52 pages 

 

 

       The concept of the elegant work introduced by Lévai in Ref. [21] is extended for 

the solutions of the Schrödinger equation with more realistic other potentials used in 

different disciplines of physics within the constant mass consideration. The 

connection between the present model and the other alternative algebraic technique 

[32] in the literature is discussed in detail. Extending the point canonical 

transformation approach introduced in this thesis in a manner distinct from the 

previous ones, we also propose a unified approach of generating potentials of all 

classes having non-constant masses. 
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       Sabit kütle içeren Schrödinger dalga denkleminin analitik çözümleri için Levai 

[21] tarafından önerilen titiz çalışmanın kapsamı, fiziğin farklı disiplinlerinde 

kullanılan daha gerçekçi potansiyellere de uygulanabilmesi için genişletilmiştir. 

Geliştirilen bu model ile literatürde bulunan [32] ve analitik çözüm içerebilen diğer 

model arasındaki ilişki detaylı olarak incelenmiştir. Bu tez çalışmasında ayrıca, sabit 

kütle içeren sistemler için ileri sürülen ve kapsamı noktasal kanonik dönüşüm içeren 

benzer çalışmalardan farklı olarak genişletilen yaklaşım yardımı ile sabit olmayan 

kütle içeren sistemlerde dahil olmak üzere tüm etkileşim potansiyellerini, çözümleri 

ile birlikte, türetebilen diğer bir model teklif edilmiştir. 

 

 

Anahtar Kelimeler: Sch denklemi, PCT modeli, tam-çözülebilir potansiyeller, tam 

çözülemeyen potansiyeller, sabit olmayan (hareket ile değişen) kütle. 
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CHAPTER 1  

     INTRODUCTION 

 

       One of the challenging problems in non-relativistic quantum mechanics is to find 

solutions to the Schrödinger equation for potentials that are used in different fields of 

physics. However, an exact solution of the Schrödinger equation exists only for a few 

idealized problems. Normally it has to be solved using an approximation method 

such as the usual perturbation theory which constitutes one of the most powerful 

tools available in the study of quantum mechanics in the atoms and molecules. 

Perturbation theory is applied to those cases in which the real system can be 

described by a small change in an exactly solvable idealized system. In this form we 

can describe a great number of problems encountered especially in atomic physics, in 

which the nucleus provides the strong central potential for the electrons; further 

interactions of less strength are described by the perturbation. Examples of these 

additional interactions are: the magnetic interaction (spin-orbit coupling), the 

electrostatic repulsion of electrons and the influence of external fields. But in spite of 

widespread application of this theory, its basic analytical properties are poorly 

understood and the corresponding framework is not easily applicable. In addition, 

performing explicit calculations in non-relativistic quantum mechanics using the 

familiar Rayleigh-Schrödinger perturbation expansion mentioned above is rendered 

difficult by the presence of summations over all intermediate unperturbed 

eigenstates. Alternative perturbation procedures have been proposed to avoid this 

difficulty, notably the logarithmic perturbation theory (LPT) [1-4] and the Dalgarno-

Lewis technique [5-8]. The virtue of LPT is its avoidance of the cumbersome 

summation over states for second and higher-order corrections in Rayleigh-

Schrödinger perturbation theory. Unfortunately, it has problems of its own in 

calculating corrections to excited states, owing to presence of nodes in the 

wavefunctions. Various schemes have been proposed to circumvent the resulting 
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singularities [4, 9, 10]. In spite of the progress given above, over the years the 

Schrödinger equation has been studied extensively regarding its exact solvability. 

Many advances have been made in this area by classifying quantum mechanical 

potentials according to their symmetry properties. For instance, various algebras 

which reveal the underlying symmetry as well as facilitating and obtaining the 

solutions have been found. In this respect, the application of supersymmetry ideas to 

non-relativistic quantum mechanics has  revived fresh interest in the problem of 

obtaining algebraic solutions of exactly solvable non-relativistic potentials and 

provided a deeper understanding of analytically solvable Hamiltonians, as well as a 

set of powerful approximate schemes for dealing with problems admitting no exact 

solutions. The concept of supersymmetry and its application to quantum mechanics 

[11,12], together with the shape invariance, have played a fundamental role in these 

developments. Supersymmetric quantum mechanics (SSQM) has developed 

immensely since the first models were introduced [13,14]. Several approximation 

methods using SSQM formalism have been developed, including the supersymmetric 

perturbation theory (SSPT) of Cooper and Roy [15]. Recently, Lee [16] has shown 

that SSPT and LPT are entirely equivalent and fortuitously, each turns out to resolve 

difficulties encountered in the other. Namely, LPT formulas for energy corrections 

obviate tedious procedures in the SSQM method, while the use of SSQM partner 

potentials with virtually identical bound state spectra solves difficulties with excited 

states encountered in LPT. Although the iterative procedure in SSPT may not 

actually reduce the calculational workload, it does cast the calculations into a 

physically-motivated, visualizable framework. Along this line, recently a more 

economical scheme has been introduced, which yields simple but closed perturbation 

theory formulae [17] leading to the Riccati equation from which one can actually 

obtain all the perturbation corrections to both energy level shifts and wavefunctions 

for all states, unlike the other models mentioned above. In the application of this 

method to the nth excited state, one requires knowledge of the unperturbed 

eigenfunction but no knowledge of the other eigenvalues or eigenfunctions is 

necessary. The procedure underlined does not involve either tedious explicit 

factoring out of the zeros of  unperturbed eigenfunction [1,2] or introduction of ghost 

states [4] as were the cases encountered for applying LPT to excited states. The 

model discussed in Ref. [17] offers the explicit expressions for the energy  

corrections, which are absent in the original SSPT while the treatment of Lee [16] for 
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such calculations has mathematical complexity, and provides a clean route to the 

excited states, which are cumbersome to analyze in both LPT and SSPT. Thus, the 

results obtained in [17] can be thought of as a generalization of logarithmic and 

supersymmetric based perturbation theories.  

       Nevertheless, no single approximation method available in the literature is ideal 

for every problem. SSPT and LPT based theories [1-17] avoid the Rayleigh-

Schrödinger summation, but it can in general lead to nasty integrals and more effort 

in particular for excited states. The method is valuable when the integrals can be 

done exactly or by a reliable numerical procedure. Otherwise, the Rayleigh-

Schrödinger summation, even when it does not give an exact answer, starts not to 

look so bad after all. This was the motivation behind the work introduced in this 

thesis. One needs at this stage an algebraic model for the analysis of quantum 

mechanical problems of sub-atomic world, providing a quick route to the calculation 

of all corrections within the frame of an easily applicable perturbation theory to 

considerably simplify one's calculational workload including any interaction 

(corresponding to any potential) in micro-world.  

       Considering all these, and keeping the main aim of the thesis work in mind, we 

remind another simple method of investigating the solution of the Schrödinger 

equation, which is related to the work of Bhattacharjie and Sudarsan [18] that has 

been known for a long time. These authors applied their method to the 

hypergeometric, confluent hypergeometric and Bessel equations. Later it turned out 

that it can be related to algebraic techniques of solving differential equations [19]. 

Another systematic application of this method (to the hypergeometric functions) has 

been carried out by Natanzon [20] independently. Further, Lévai [21] in his 

pioneering work discussed a significant question, through the consideration of the 

link between the works in [18-20], if there are any other special functions which are 

solutions of the Schrödinger equation with shape invariant potentials deducing a 

condition which has to be satisfied by any special function leading to the orthogonal 

polynomials and exactly solvable shape invariant potentials discussed above. Besides 

the results obtained, the combination of SSQM with traditional approaches to 

solvable potentials proved to be fruitful. For instance, Refs. [22-31] involve some 

significant applications of the original idea discussed in [21], clarifying the physics 

behind a variety of interactions in sub-atomic world.  
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       However, to our knowledge, this formalism up to now has been used only to 

study for exactly solvable systems. Therefore, bearing in mind that realistic physical 

problems can practically never be solved exactly, it needs a meticulous modification 

to also solve more realistic other systems as the ones of interest in this thesis. This is 

the main motivation behind the present work suggesting a more comprehensive and 

generalized model using the spirit of the investigation in [21], which escaped notice 

in other publications. 

       In other words, using the basic ingredient of the elegant work introduced by 

Lévai in Ref. [21] we have developed in the present thesis work a simple  alternative 

approach to perturbation theory in one-dimensional non-relativistic quantum 

mechanics for the solutions of the Schrödinger equation with more realistic other 

potentials used in different disciplines of physics. The formulae for the energy shifts 

and wave functions do not involve tedious calculations which appear in the available 

perturbation theories discussed above. The present model applicable in the same 

form to both the ground state and excited bound states involving  all classes of 

potentials including exactly-/quasi-exactly solvable and non-solvable potentials, 

unlike earlier algebraic techniques for the analytical or perturbative treatment of 

Schrödinger equation. The power and elegancy of the present unified model, which 

is in a sense complete, are illustrated via specifically chosen examples. We now have 

clear and explicit ways to get corrections to all energy levels and state wave 

functions for a given perturbed potential. 

       In Chapter 2, we give a theoretical background based on the previous work in 

Ref [32] which is interestingly in connection with the one we developed in this 

thesis. Chapter 3 discusses the framework of the present formalism together with 

distinct examples in order to convince the reader regarding the reliability and 

flexibility of the model introduced, where we also discuss a significant result behind 

the calculations and clarifies the inter-relation between the present formalism and the 

one used in the related literature [32] that was performed within the frame of an 

extended SSQM theory. The applications of the new model for position-dependent 

masses is discussed in Chapter 4. Some concluding remarks and summary of the 

work, together with the outlook, are drawn in the last chapter. 
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CHAPTER 2  

THEORETICAL BACKGROUND 

 

       An algebraic non-perturbative approach has been recently proposed [32] for the 

analytical treatment of Schrödinger equations with a potential that can be expressed 

in terms of an exactly solvable piece with an additional potential involving constant 

masses. Avoiding disadvantages of standard approaches, new handy recursion 

formulae with the same simple form both for ground and excited states have been 

obtained in there. As an illustration the procedure, well adapted to the use of 

computer algebra, has been successfully applied to quartic anharmonic oscillators by 

means of very simple algebraic manipulations. The trend of the exact values of the 

energies has been rather well reproduced for a large range of values of the coupling 

constant  10000001.0 g .  

       As the novel algebraic model presented in Chapter 3, being as an alternative to 

the one presented in [32], reproduces similar numerical results to those of [32] we 

will first focus in this chapter to the previous model introduced by [32] due to the 

interesting inter-relation between the two different methods mentioned for solving 

Schrödinger equation. The link between the models will also be discussed in detail 

through the next chapter. 

 

2.1 Previous Consideration 

 

       The main task in application of the quantum mechanics is to solve Schrödinger 

equations with different potentials. Unfortunately, realistic physical problems can 

practically never be solved exactly. Then one has to resort to some approximations. 

Most widely used among them is the perturbation theory. However, the explicit 

calculation with the Rayleigh-Schrödinger perturbation theory, described in most 
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quantum mechanics textbooks, runs into the difficulty of the summation over all 

intermediate unperturbed eigenstates. To avoid this difficulty, alternative 

perturbation procedures have been proposed. Unfortunately, as discussed in Chapter 

1, they have other problems in calculating corrections to excited states, owing to 

presence of nodes in the wavefunctions. Various schemes have been proposed to 

circumvent the resulting singularities, which however cause to clumsy and 

cumbersome produres.   

       Considering such drawbacks of the available treatments and gaining confidence 

from their success of the recent works, Gönül and his co-workers [32], have 

presented an alternative approach to perturbation theory in one-dimensional non-

relativistic quantum mechanics, which yields simple but closed perturbation theory 

formulae leading to the Riccati equation from which one can actually obtain all the 

perturbation corrections to both energy level shifts and wavefunctions for all state. 

These quantities can be calculated to any given accuracy since the generation of 

successive corrections in the perturbative expansions introduced only requires the 

solution of simple algebraic solutions. The model applicable in the same form to both 

the ground state and excited bound states without involving tedious calculations 

which appear in the available perturbation theories. In particular they noted that the 

procedure introduced in [32] does not involve either tedious explicit factoring out of 

the zeros of  [1,2] or introduction of ghost states [4] as were the cases encountered 

for applying LPT to excited states. In the application of the present method to the nth 

excited state, one requires only knowledge of the unperturbed state eigenfunction but 

no knowledge of the other eigenvalues or eigenfunctions is necessary.  

As an illustration, their scheme in [32] has been applied to quartic anharmonic 

oscillator since there has been a great deal of interest in the analytical and numerical 

investigation of the one-dimensional anharmonic oscillator. They are of interest 

because of their importance in molecular vibrations [33] as well as in solid state 

physics [34] and quantum field theories [35]. Since anharmonic oscillators model 

intrinsic anharmonic effects of the real world, they continue to play a crucially 

important role in contemporary physics. On the other hand, the anharmonic 

oscillators with quartic potentials can serve as a testing ground for the various 

methods based on perturbative and non-perturbative approaches. In other words, 

interest in such a model stems mainly from the fact that, if one considers the 
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anharmonicity 4gx  as a perturbing operator, then the Rayleigh-Schrödinger 

perturbation expansion for the eigenvalues diverges [36] for every value of g. 

Consequently, several methods have been used to calculate the quartic anharmonic 

oscillator eigenvalues and eigenfunctions. Without being exhaustive, we may recall 

variational methods [37], WKB methods [38], Hill determinant [39-40], Riccati [41] 

or Riccati-Hill determinant methods [42], perturbative treatment prescriptions using 

summability techniques such as the Stieljes, Pade and Borrell methods [35-43]. We 

should also mention the hypervirial perturbation method of Fernandez and Castro 

[44], which can be viewed as a generalization of the Killingbeck method [45], and 

other alternative treatments [46], together with those involving a group-theoretical 

approach [47], the multiple scale technique [48], and supersymmetric methods [49]. 

After all, it appears challenging to test the new formalism in [32] avoiding the failure 

of the other perturbation series for the  treatment of the quartic anharmonic oscillator. 

       The layout of this section is as follows. In the next sub-section we summarize 

the main ideas of the approach in Ref. [32] to understand deeply the physics behind 

the formalism, which leads to the clear understanding of the inter-connection 

between the model presented here and our novel method introduced in the next 

chapter. The application of the present model to quartic anharmonic oscillators 

leading to simple recursion relations for the calculations at each succesive 

perturbation order and the results obtained are shown in sub-section 2.3. This section 

ends with a brief summary and concluding remarks given by the Section 2.4. 

 

2.2 The previous model 

 

We first start with a brief introduction of the present formalism. Throughout the 

work the unit system 12  m  is chosen. In general, the goal in the supersymmetric 

quantum theory [50] is to solve the Riccati equation, 

0

2 )()()( ErVrWrW                                                                                  (2.2.1) 

where )(rV
 is the potential of interest and 0E

 
is the corresponding ground state 
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energy. If we find )(rW , the so called superpotential, we have of course found the 

ground state wave function via, 





 

r

dzzWNr )(exp)(0 ,                                                                             (2.2.2) 

where N  is the normalization constant. If )(rV  is a shape invariant potential, we can 

in fact obtain the entire spectrum of bound state energies and wave functions via 

ladder operators.  

Keeping in mind this point, now suppose that we are interested in a potential for 

which we do not know )(rW  exactly. More specifically, we assume that )(rV  differs 

by a small amount from a potential )(0 rV  plus angular momentum barrier if any, for 

which one solves the Riccati equation explicitly. For the consideration of spherically 

symmetric potentials, the corresponding Schrödinger equation for the radial wave 

function has the form  

  )(
)1(

)()(,)(
)(

)(
20 rV

r
rVrVErV

r

r
n

n

n 






 


 




,                             (2.2.3) 

where V is a perturbing potential. Let us write the wave function 
n  as 

)()()( rrr nnn   ,                                                                                        (2.2.4) 

in which 
n  is the known normalized eigenfunction of the unperturbed Schrödinger 

equation whereas 
n  

is a moderating function corresponding to the perturbing 

potential. Substituting Eq. (2.2.4) into Eq. (2.2.3) yields 

n

n

n

n

n

n

n

n

n EV 








 






















2 .                                                                          (2.2.5) 

Instead of setting the functions 
n  and 

n , we will set their logarithmic derivatives 

using the spirit of Eqs. (2.2.1-2.2.2)  

,
n

n

nW


 


n

n

nW


 
                                                                               (2.2.6) 
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which leads to 

nnn

n

n

r
rVWW 












 



20

2 )1(
)(


  ,                                                          (2.2.7) 

where n  is the eigenvalue of the exactly solvable unperturbed potential, and  

nnnnn

n

n

n

n

n

n rVWWWW 



















 



)(22
2

  ,                               (2.2.8) 

in which 
n  is the eigenvalue for the perturbed potential, and 

nnnE   . 

Then, Eq. (2.2.5), and subsequently Eq. (2.2.3), reduces to  

    nnnnn EVWWWW 



2

  ,                                                            (2.2.9)  

which is similar to Eq. (2.2.1), nevertheless it is valid for all states unlike usual 

supersymmetric treatments [50] which use (2.2.9) only for the ground state due to 

theoretical considerations. Further, as one in principle knows explicitly the solution 

of Eq. (2.2.7), namely the whole spectrum and corresponding eigenfunctions of the 

unperturbed interaction potential, the goal here is to solve only Eq. (2.2.8), which is 

the backbone of this formalism. The reader is referred to [17] for the successful 

applications of Eq. (2.2.8) involving different problems in quantum theory through 

exactly solvable potentials.  

       However, if the whole potential has no analytical solution as the case considered 

in this section, which means W and subsequently Eq. (2.2.8) cannot be exactly 

solvable, then one can expand the functions in terms of the perturbation parameter 

 , 















111

)(,)();(,)();(
N

nN

N

nnN

N

N

N

nN

N rWrWrVrV      (2.2.10) 

where N denotes the perturbation order. Substitution of the above expansion into Eq. 

(2.2.8) by equating terms with the same power of   on both sides yields up to for 

instance  3O   
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11112 nnnn VWWW      ,                                                                       (2.2.11) 

2222

2

1 2 nnnnn VWWWW    ,                                                           (2.2.12) 

 
3332132 nnnnnn VWWWWW    ,                                                 (2.2.13)    

Eq. (2.2.8) and its expansion give a flexibility for the easy calculations of the 

perturbative corrections to energy and wave functions for the nth  state of interest 

through an appropriately chosen perturbed superpotential.  It has been shown [17, 

32] that this feature of the present model leads to a simple framework in obtaining 

the corrections to all states without using complicated mathematical procedures. 

 

2.3 Application 

 

For clarity, in this paper we restrict ourselves to the Schrödinger equation in one 

dimension  0  and consider the anharmonic potential as 

42

0 gxxVVV   ,                                                                                     (2.3.1) 

in which the unperturbed potential represents the well known factorizable harmonic 

oscillator.  From the literature [11,50], the corresponding superpotentials, wave 

functions and energy values are 

 
 

1

,
n

n

n

H ax
W a ax

H ax


 
   
 
 

   2 1
exp 2 , 2

2
n n nH ax ax a n 

 
    

 
                                              

(2.3.2)

 

where 
nH denotes the Hermite polynomials, ,...2,1,0n is the radial quantum 

number and a  is the potential parameter. With a suitable choice of W ,

 







1

12

N

N

N xfW     ,                                                                                            (2.3.3)
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corresponding to the perturbed potential 
4gx
 in Eq. (2.3.1), one obtains some 

equations at successive orders for different states, which reveal some interesting 

relations between them leading to a simple algebraic treatment of the problem of 

interest here.  

 

2.3.1 Calculations for n=0 and n=1 states   

 

For instance, starting from the ground state calculations )0( n , where, from Eq. 

(2.3.2), axW   and considering Eqs. (2.2.11) through (2.2.13) we get at the first 

order  1N , 

  0
2

3
1

3

1
,2 0

3

0

2

11   gEEafgaf nn
  .                                  (2.3.4) 

Similarly, at the second order  2N of the perturbation we have  

0
17

5

17

18

17

22

5

2
,02 0

2

0

4

0
1

22

2

1 


  nnn E
g

EE
gaf

faff  ,    (2.3.5) 

and the third order  3N  calculations give 

 
2

1 2
3 1 2 3

2
2 0 ,

7

f af
af f f f


                                       

5 3 2

0 0 0 0

50 39 19 21
0

31 31 31 31
n n n n

g g
E E E E                                                              (2.3.6) 

The results for the ground state energy values at succesive orders within the frame of 

the above expressions are given below. The agreement between our calculation and 

the corresponding exact values is remarkably reasonable. 
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Table 2.1 Lowest eigenvalue of the anharmonic oscillator   

g N=1 N=2 N=3 N=4 Exact [40] 

0.001 1.00075 1.00075 1.00075 1.00075 1.000748 

0.01 1.00742 1.00737 1.00737 1.00737 1.007373 

0.05 1.03558 1.03467 1.03474 1.03473 1.034729 

0.1 1.06792 1.06500 1.06533 1.06528 1.065286 

0.5 1.26255 1.23689 1.24347 1.24118 1.2418541 

1.0 1.43113 1.38082 1.39672 1.39017 1.392352 

10 2.60124 2.38404 2.47867 2.42910 2.449174 

100 5.37603 4.82115 5.08211 4.93770 4.999417 

1000 11.4763 10.2346 10.8285 10.4960 10.639789 

10000 24.6756 21.9784 23.2731 22.5463 22.861608 

 

If one repeats the same calculations for the first excited state )1( n , for which the 

superpotential is set 
x

axW
1

  in the light of Eq. (2.3.2), then the first order yields 

  0
2

135
91

5

1
,2 1

3

1

2

11   gEEafgaf nn
  ,                             (2.3.7) 

and at the second order we have 

02150
3

34

7

2
,02 1

2

1

4

1
1

22

2

1 


  nnn gEEE
gaf

faff   ,         (2.3.8) 

while the third order expressions are 

 
2

1 2
3 1 2 3

2
2 0 ,

9

f af
af f f f


   

  

5 3 2

1 1 1 014 57 45 243 0n n n nE E gE E g       
                                                                         

(2.3.9)
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In our calculations, the upper bounds which are the largest real and positive roots in 

these equations are chosen as the energy of the anharmonic oscillator in the related 

quantum state. 

The repeat of such calculations for large successive orders reproduces similar 

relations in a manner of hierarchy. The systematic calculation of perturbation 

corrections of large orders offer no difficulty if we resort a computer algebra system 

like Mathematica, Mapple or Reduce. This realization leads us to generalize 

anharmonic oscillator solutions for the ground and first excited states without solving 

the Schrödinger equation. To calculate the energy values individually at each 

perturbation order, one needs to solve only 

0
0

1 




N

k

NkNk gff   ,                                                                                     (2.3.10) 

in which   is the Kronecker delta and af 0  is the parameter related to Eq. (2.3.2). 

The perturbation coefficients above can easily be computed through 

  







 









21

1

0

1

1
122 NN

N

k

kNkN gffnNf     .                                             (2.3.11) 

The calculations are carried out for different range of g values and the results 

obtained for the ground and first excited state energies are compared to the one 

computed numerically. The agreement is remarkable in the whole range of g values 

for the first excited state (n=1), see Table 2.2. The large order perturbation 

calculations are performed by a simple use of Mathematica [51] along the line of Eq. 

(2.3.10) and Eq. (2.3.11) with simple algebraic manipulations. 
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Table 2.2 First excited state energies of the anharmonic oscillator   

g N=1 N=2 N=3 N=4 N=8 Exact [40] 

0.001 3.00374 3.00374 3.00374 3.00374 3.00374 3.003739 

0.01 3.03682 3.03652 3.03653 3.03653 3.03653 3.036525 

0.05 3.17236 3.16683 3.16727 3.16722 3.16723 3.167225 

0.1 3.32148 3.30511 3.30718 3.30681 3.30687 3.306872 

0.5 4.14123 4.03032 4.05869 4.04924 4.05171 4.051932 

1.0 4.80180 4.60453 4.66448 4.64159 4.64784 4.648813 

10 9.11388 8.39998 8.68054 8.55128 8.58582 8.599004 

100 19.0576 17.3193 18.0446 17.6965 17.7864 17.83019 

1000 40.7899 36.9427 38.5693 37.7818 37.9829 38.08683 

10000 87.7547 79.4176 82.9526 81.2378 81.6747 81.90331 

 

2.3.2 Calculations for 2n  states 

 

When dealing with excited states this approach seems rather cumbersome because 

the zeros of the wavefunction have to be taken into account explicitly. However, with 

some simple but physically acceptable algebraic manipulations, we can obtain simple 

analytical expressions for higher excited states easily from a straightforward 

generalisation of the resulting expressions at successive perturbation orders as in the 

previous section.  

Starting with the second excited state  2n , where from Eq. (2.3.2) the 

superpotential is    1252 22

2  axaxaxWn
, energies up to for example the fifth 

order  5N  can be obtained through 

  1,1
8

1
,2 2

11  Nafgaf     ,            
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2,
10

2
,02 1

22

2

1 


 N
gaf

faff       ,  

  3,
12

2
,02 2

2

1

3213 


 N
aff

fffaf       ,                                                    

 
 

4,
14

2
,02 213

4431

2

2 


 N
ffaf

faffff      , 

 
 

5,
16

2
,02 431

2

2

554132 


 N
affff

fafffff     .          (2.3.12)        

In these treatments, to remove the singularities in the related super potential due to 

the zeros of the wavefunction, we accept that 22 1ax   leading to physically 

acceptable results.  This simple assumption reproduces good accuracy in the 

calculations when compared to tedious calculations of LPT for higher excited states. 

The results obtained are shown in Table 2.3 

Table 2.3 Second excited state energies of the anharmonic oscillator   

g N=1 N=2 N=3 N=4 N=15 Exact [40] 

0.001 5.00997 5.00996 5.00996 5.00996 5.00996 5.009711 

0.01 5.09715 5.09606 5.09609 5.09609 5.09609 5.093939 

0.05 5.44017 5.42257 5.42423 5.42401 5.42404 5.417261 

0.1 5.79852 5.75129 5.75799 5.75670 5.75694 5.747959 

0.5 7.60690 7.35517 7.41992 7.39911 7.40489 7.396900 

1.0 8.98161 8.56694 8.68960 8.64563 8.65908 8.655049 

10 17.5870 16.2662 16.7452 16.5461 16.6188 16.63592 

100 37.0665 33.9532 35.1363 34.6287 34.8238 34.87398 

1000 79.4750 72.6342 75.2605 74.1261 74.5674 74.68140 

10000 171.046 156.245 161.940 160.830 160.437 160.6859 

 

Finally, within the same framework one can readily get similar expressions for other 

excited states. For instance, in order to deal with the third excited state  3n  of the 
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anharmonic oscillator one can choose the corresponding super potential 

   xaxaxxaWn 32392 3242

3   via Eq. (2.3.2) for the unperturbed piece of the 

potential and end up with some explicit algebraic equations at each order,  

  1,1
12

1
,2 2

11  Nafgaf  , 

2,
14

2
,02 1

22

2

1 


 N
gaf

faff   , 

  3,
16

2
,02 2

2

1
3213 


 N

aff
fffaf   ,                                        (2.3.13)        

and so on. In this case the wave function and consequently the superpotential have 

three zeros at ax 23 . As argued above, to circumvent the resulting 

singularities the present calculations here make a similar assumption that is 

32 3ax x  which produces reasonable results. This choice however for higher excited 

states with 3n  allows only the coefficients Nf  with 
Nx2

 and 
22 Nx  through the 

linear perturbation expressions at each order. The results obtained are illustrated in 

Table 2.3. Although the present formalism suggest a systematic way of improving 

the anharmonic oscillator perturbation series, the accuracy of the present formulae as 

expected gets decrease with the increase of the quantum number since the 

perturbation becomes more important. 

Nevertheless, owing to the nearly correct large g behaviour of the results presented 

here they are expected to be much more accurate than the perturbation series. This 

idea exploited by Fernandez et al [41] in order to obtain analytical expressions for 

the eigenvalues of the anharmonic oscillator from the semiclassical considerations. 
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Table 2.4 Third excited state energies of the anharmonic oscillator   

g N=1 N=2 N=3 N=4 N=15 Exact [40] 

0.001 7.02091 7.02087 7.02087 7.02087 7.02087 7.018652 

0.01 7.20124 7.19823 7.19833 7.19832 7.19832 7.178573 

0.05 7.87793 7.83590 7.84053 7.83985 7.83995 7.770271 

0.1 8.54838 8.44564 8.46179 8.45849 8.45913 8.352677 

0.5 11.7019 11.2511 11.3683 11.3315 11.3415 11.11515 

1.0 14.0000 13.2973 13.5021 13.4319 13.4524 13.15680 

10 28.0000 25.9479 26.6524 26.3804 26.4698 25.80627 

100 59.3169 54.5806 56.2681 55.5997 55.4001 54.38529 

1000 127.327 116.968 120.689 119.207 119.712 116.60319 

10000 274.100 251.711 259.767 256.555 257.651 250.95073 

   

     In the light of the above discussions one can easily generalize the whole 

calculations discussed in Section 3 in a compact form to determine the solutions of 

quartic anharmonic oscillator in a closed algebraic form, which should be valid for 

the all states. Eq. (2.3.10) can be safely used for this purpose, however the 

coefficients should be re-defined as      

  







 









21

1

0

1

1
22 NN

N

k

kNknN gffnNf    ,                                         (2.3.14) 

where   11  nn n   being with 1n  and 10  . As a matter of fact, the only 

data that is needed when using Mathematica is Eq. (2.3.14) to solve Eq. (2.3.10) 

yielding energy values through the perturbation orders for any quantum state. 
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2.3.3 Large-order calculations 

 

       A question now arises about the convergence of the method just described. Since 

it seems closely related to perturbation theory, one expects it to be asymptotic 

divergent. The numerical results shown here almost confirm this assumption. We 

have calculated low-lying energy levels of the anharmonic oscillator for several g 

values, finding almost the same behavior in all cases. Tables 2.5 and 2.6 represent 

the oscillations of our results, though they remain quite close to the true eigenvalue, 

about its actual value as the perturbation order  N  increases, which are carried out 

for 1g  and 10g  respectively for the lowest state. Although divergent the 

present method is still useful because it certainly improves the perturbation series. 

The most accurate results are obtained from the N  value corresponding to the 

smallest oscillation amplitude. Such an accuracy cannot be obtained from the other 

perturbation series. 

Table 2.5 Lowest eigenvalues calculated for 1g   at large orders 

N  0nE
 

N  0nE
 

5 1.39357 15 1.39269 

6 1.39155 16 1.39196 

7 1.39291 17 1.39272 

8 1.39191 18 1.39221 

9 1.39271 19 1.39273 

10 1.39202 20 1.39231 

11 1.39265 21 1.39273 

12 1.39201 22 1.39235 

13 1.39266 23 1.39272 

14 1.39186 24 1.39238 

392352.10 

exact

nE
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Table 2.6 Lowest eigenvalues calculated for 10g   at large orders 

N  0nE
 

N  0nE
 

5 2.46214 15 2.45815 

 6 2.43752 16 2.44941 

7 2.45804 17 2.45808 

8 2.43856 18 2.45067 

9 2.45720 19 2.45800 

10 2.43125 20 2.45176 

11 2.45752 21 2.45798 

12 2.44277 22 2.45276 

13 2.45799 23 2.45798 

14 2.44735 24 2.45358 

449174.20 

exact

nE  

 

2.4 Concluding Remarks 

 

       We have discussed that the eigenvalues of quantum mechanical systems can be 

approximately obtained from the present formalism of Ref. [32] which is non-

perturbative, self-consistent and systematically improvable. Although we have 

limited ourselves to one illustrative example, the range of application of the method 

is rather large and appears to be straightforward. The perturbation procedure is well 

adapted to the use of software systems such as Mathematica and allows the 

computation to be carried out up to high orders of the perturbation. For any given 

state, simple algebraic manipulations provide, at the same time, analytical 

expressions of the perturbed eigenvalues and eigenfunctions, without having to 

compute any matrix elements or to perform any integration. 
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The increase in the value of g for different quantum numbers do not imply special 

difficulty, unlike the other perturbation theories available in the literature. 

Furthermore, the remove of the singularities in the unperturbed wavefunction via the 

superpotential introduced in the present formalism does not cause tedious 

calculations which are great pain when dealing with excited states in the other 

theoretical treatments.   

       As a concluding remark, due to its simplicity and accuracy in particular for small 

g-values at low-lying states we believe this method to be competitive with other 

methods developed to deal with perturbation treatments. As a matter of fact that, the 

degree of precision of the results can be drastically improved by raising the 

perturbative order in the expansion, a step which does not bear any technical 

difficulty. It would be interesting to extend the present scheme to other non-exactly 

solvable potentials. 

       In the next chapters, we will introduce alternative schemes to solve all classes of 

potentials, involving solvable and non-solvable potentials, with constant and also 

position- dependent masses. We will further discuss the relation between the model 

presented here and the one that will be introduced in the following chapter. 
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CHAPTER 3  

AN EXTENDED FORMALISM FOR THE SCHRÖDINGER EQUATION 

WITH A CONSTANT MASS 

 

       A simple method of investigating the solution of the Schrödinger equation, 

which is related to the work of Bhattacharjie and Sudarsan [18] has been known for a 

long time. These authors applied their method to the hypergeometric, confluent 

hypergeometric and Bessel equations. Later it turned out that it can be related to 

algebraic techniques of solving differential equations [19]. Another systematic 

application of this method (to the hypergeometric functions) has been carried out by 

Natanzon [20] independently. In the following years, there has been also renewed 

interest in simple quantum mechanical systems as a result of the introduction of two 

important concepts: supersymmetric quantum mechanics (SUSYQM) and shape 

invariance. For a comprehensive review on this topic, the reader is referred to [11] 

and the related references therein. In the light of this progress and the previous works 

mentioned, a significant question has then arised regarding if there are any other 

special functions which are solutions of the Schrödinger equation with shape 

invariant potentials. This question has been answered in detail by Lévai  [21] through 

the consideration of the link between the works in [18-20] and the formalism of 

SUSYQM, deducing a condition which has to be satisfied by any special function 

leading to the orthogonal polynomials and exactly solvable shape invariant 

potentials. Besides the results obtained, the combination of SUSYQM with 

traditional approaches to solvable potentials proved to be fruitful. For instance, Refs. 

[22-31] involves some applications of the original idea discussed in [21].  

       However, to our knowledge, this formalism up to now has been used only to 

study exactly solvable systems. Therefore, it needs a meticulous modification to also 

solve more realistic other systems as the ones of interest in this article. Within this 

context the main motivation behind the present work, bearing in mind that realistic



22 
 

physical problems can practically never be solved exactly, is to suggest a more 

comprehensive and generalized model [57] using the spirit of the investigation in 

[21], which escaped notice in other publications. As an illustration, the present novel 

scheme is applied first to quartic anharmonic oscillator since there has been a great 

deal of interest in anharmonic oscillators due to their phenomenological as well as 

methodological use in physics. 

These potentials also has the characteristics of being a rather simple model where 

many non-trivial features essential to understanding quite complicated system may 

be implemented. Their exact solutions however for arbitrary couplings are hard to 

find. This has culminated into the development of many fascinating techniques based 

on perturbative and non-perturbative approaches, which was well discussed in the 

previous chapter. Thus, it appears challenging to test our formalism in avoiding the 

failure of other perturbation series for the treatment of the quartic anharmonic 

oscillator. For completeness, the model proposed will also be applied to the well-

known sextic oscillator problem, which provides an alternative perspective in 

justifying the capability of widespread applicability of the present scheme. 

       In Section 3.1 we present the formalism of our method, and in Section 3.2 we 

apply it to distinct cases including different potentials in order to convince the reader 

regarding the reliability and flexibility of the model introduced. Section 3.2 also 

discusses a significant result behind the calculations and clarifies the inter-relation 

between the present formalism and the one used in [32] that was performed within 

the frame of an extended SUSYQM theory. Finally, concluding remarks are given in 

Section 3.3. 

 

3.1 Formalism 

 

It is well known that the general framework of non-relativistic quantum mechanics is 

by now well understood and its predictions have been carefully proved against 

observations. Physics is permanently developing in a tight interplay with 

mathematics. It is of importance to know therefore whether some familiar problems 

are of particular case of a more general scheme or to search if a map between the 
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radial equations of two different scenarios exist. It is hence worthwhile to devote 

ourselves to the clarification of this point through the rest of this article. 

Considering the Schrödinger equation ( 12  m ) 

0))((
2

2




xVE
dx

d
                                                                                     (3.1.1) 

we suggest, for a generalized formalism, that 

( ) ( ) ( ( )) ( )x f x F g x h x     ,                                                                                     (3.1.2) 

where ( ) ( )f x F g  yields an algebraic closed solution for exactly solvable potentials 

[21-31] with )(gF  being a special function which satisfies a second-order 

differential equation 

0)()()(
2

2

 gFgR
dg

dF
gQ

dg

Fd
  ,                                                                      (3.1.3) 

while )(xh  is the moderating function in connection with a perturbing piece of the 

full potential corresponding to Eq. (3.1.2). The form of )(gQ  and )(gR  is already 

well defined for any special function )(gF when dealing with analytically solvable 

potentials. However, in case of the consideration of a realistic non-exactly solvable 

problem one should derive reliable expressions, in an explicit form, for plausible 

definitions of the related )(gQ and )(gR . This is the significant point in the 

framework of the new formalism to reach physically meaningful solutions. 

Substituting Eq. (3.1.2) into Eq. (3.1.1) leads to 

2

2 2

2 2

( )

d F dF g f h

dg dg g fg hg

   
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                                            (3.1.4) 

From the comparison of Eqs. (3.1.3) and (3.1.4) it follows that 

gh
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2                                                                               (3.1.5) 
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and 
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g
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
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         .                                  (3.1.6) 

Obviously, Eqs. (3.1.4-3.1.6) reduce to Eqs. (3.4-3.6) in Ref. [21] for the 

consideration of exact solvability, in which case )(xh
 in the equations above goes to 

a constant value. Gaining confidence from this observation we proceed with 

EEE

xVxVxV

ES

ES



 )()()(
                                                                                        (3.1.7) 

in accordance with our choice in Eq. (3.1.2), which means that potentials considered 

in this article are admitted as the sum of an exactly solvable potential with a 

perturbation or a moderating  piece. Hence, the aim in this perspective is to reveal the 

corrections to energy ( E ) and wavefunction )(xh  for a given )(xV , as the main 

piece of the solutions leading to exact solvability can easily be found from the 

literature.                    

The use of Eq. (3.1.7) within Eq. (3.1.6) produces coupled equations in the form of 

ffgxgRxVE ESESES
 2)))((()(            ,                                                   (3.1.8) 

and 

hhhfhfgxgRxVE  )(2)))((()( 2                                                 (3.1.9) 

where )()( gRgRES   should certainly reproduces Eq. (3.1.6). Similarly, Eq. (3.1.5) 

can be decomposed as 

QQQghhxgQgffggxgQ ESES  2))((,2)())(( 2
       (3.1.10) 

To be more practical it is reminded that 2( ) ( )f f f f f f      and the same is 

valid for hh   in the equations above, which transform Eqs. (3.1.8) and (3.1.9) into 

more applicable forms 
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and 
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     (3.1.12) 

       The result of this brief investigation opens a gate to the reader for the 

visualization of the explicit form of the correction ( E ) to the energy. 

Unfortunately, there seems a problem naturally arised in calculating the correction 

term owing to the presence of two unknown: )(gQ and )(gR on the right hand 

side of Eq. (3.1.12). To circumvent the resulting drawback and proceed safely we 

need to go back Eq. (3.1.4)  and substitute the definitions given by Eq. (3.1.7) in it, 

which leads us to handle 

 2 ( ( )
( )

( ( ))

h f F g x g h
E V x

h f F g x h

     
      

 
                                                      (3.1.13) 

that is another form of Eq. (3.1.9). Thus, equating Eq. (3.1.9) and Eq. (3.1.13) and 

remembering the form of )(gQ  in Eq. (3.1.10) we arrive at 

)(

)(
)()(

gF

gF
gQgR


                                                                               (3.1.14) 

which is vital to overcome the problem encountered in Eq. (3.1.12). As  F g  is well 

defined for a given exactly solvable potential, evidently one needs here to find only 

an appropriate expression for )(gQ  to be employed in Eq. (3.1.12) that reveals 

clearly the full solution. However, singular functions appearing in Eqs. (3.1.13-

3.1.14), and subsequently in Eq. (3.1.12), are systematically generated when dealing 

with excited state wavefunctions of any given potential due to the zeros of  F g

function. The effects of this consideration on the calculations are discussed in 

Section 3.2. 

Before closing this section, we should remark that once choosing carefully )(gQES  

and )(gRES  for the analytically solvable part ( )(xVES ) of the full potential under 
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investigation we can easily set a proper internal function )(xg  and considering Eq. 

(3.1.5)  














 


)(

21 )(
2

1
exp)()(

xg

ES dggQgxf      ,                                                             (3.1.15) 

as discussed in Ref. [21], which are used in Eq. (3.1.12) to find corrections to the 

solutions of the exactly solvable piece. 

The application of the model to specifically chosen different potentials is discussed 

in the following section. 

 

3.2 Application 

 

       Special care has to be taken in the application of the model as the results 

obtained are crucial in the interpretation of the system behavior in terms of the 

Hamiltonian described in this work. To reveal especially the flexibility of the scheme 

used particular cases are discussed below. 

 

3.2.1 Quartic oscillator 

 

       In the light of experiences gained from successful modeling based on 

anharmonic oscillators, an obvious step in the direction of improvement is to define 

modifications more accurately brought by anharmonic terms leading to more precise 

descriptions of the systems considered. 

Keeping this point in mind, and also to clarify the relationship between the procedure 

proposed in this article and the one [32] that was presented in Chapter 2, together 

with the comparison of the results obtained, we restrict ourselves to the Schrödinger 

equation in one dimension ( 0 ) and consider the anharmonic potential as 

42)( xxxV   ,                                                                                                (3.2.1) 
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in which the first piece 2)( xxVES   represents the well-known exactly solvable 

harmonic oscillator potential.  From the differential equation of the Hermite 

polynomials [52] one can see that 

,12)(,)()2exp()( 22 gngRgHggF ESn 
 

xaxggQES

21)(,0)( 
                                                                                

(3.2.2)
 

where ( 2)a w  is the parameter related to ESE . Clearly, from Eqs. (3.1.11) and 

(3.1.15), the main contributions through to the closed analytical solutions of the 

harmonic oscillator are 

)()
2

exp()()(,,...2,1,0,)
2

1
(2

2

gH
g

gFxfnnaE nESES        (3.2.3) 

in which ES  is the unnormalized wavefunction for the exactly solvable piece of the 

unharmonic oscillator. 

As the whole potential in Eq. (3.2.1) has no analytical solution, one may expand the 

related functions in terms of the perturbation such that 
1

( ) ( )N

N

V r V r




  
 

and 

1

n nN

N

 




  where N denotes the perturbation order. In connection with this idea 

we choose, after some exhaustive analyses, the form of Q  as  

12

1

2
)( 








 N

N

N xj
g

gQ                                                                                     (3.2.4) 

and substitute all the above expansions into Eq. (3.1.12) by equating terms with the 

same power of the perturbation order on both sides, which yield the modifying terms 

in the frame of  coupled equations at successive orders for different states. It is 

stressed that as )(xg , )(xf , ( )F g  and finally )(gR , from Eqs. (3.1.14) and 

(3.2.4), are known one can compute readily the corrections to the whole solution 

using Eq. (3.1.12) at each perturbation order for a quantum state of interest. Before 

discussing the calculation technique of the corrections to the energy, it is reminded 

that the modifying function in Eq. (3.1.2) is formed consistently as 
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
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1
exp)(                                                                                          (3.2.5) 

as a consequence of the choice in Eq. (3.2.4) and the eventual use of it in Eq. 

(3.1.10).  

The systematic calculation of energy corrections in different orders involving large 

N values offers no difficulty if we resort a computer algebra system like 

Mathematica. The repeat of our calculations for large successive orders reproduces 

similar relations in a manner of equation hierarchy. This realization leads us to 

generalize anharmonic oscillator solutions obtained within the frame of Eq. (3.1.12), 

without solving the Schrödinger equation. To calculate the energy values 

individually at each order we need to solve 




 
N

k

NkNk jj
0

1 0                                                                                          (3.2.6) 

in which  is the Kronecker delta and 20 waj  . The perturbation coefficients 

above can be computed through 
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where 1)1(  nn n   for the excited states ( 1n ) and 10   in the case of ground   

( 0n ) and first excited state ( 1n ) calculations. As a matter of fact, the only data 

that are needed when using Mathematica is Eq. (3.2.7) to solve Eq. (3.2.6) producing 

energy values through the perturbation orders for any quantum state. 

       The calculations are carried out for different range of  values and the results 

obtained for different states at various orders are compared to those of the work in 

[32] given in the previous chapter. The agreement is remarkable in the whole range 

of  values. All the numerical results produced by completely different 

mathematical procedures of the two alternative approaches, the present one and the 

other in [32], are exactly the same, which for clarity are not repeated here. This 

interesting coincidental outcome is of course due to the natural inheritance of the 

same calculation scheme, Eq. (3.2.6.) and (3.2.7), in both model. As the same results 
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tabulated in [32] through the Tables 2.1 and 2.6, which are illustrated in Chapter 2, 

are appeared naturally in the present work with the same precision, and also the 

accuracy, convergency and the success of the identical model are well discussed in 

[32] when compared to other techniques available in the related literature, we intend 

in this section to focus our attention only to this interesting inter-connection between 

the seemingly alternative but in fact identical prescriptions for the treatments of 

bound states in non-relativistic domain of the subatomic world.  

The most significant piece in [32] is Eq. (2.2.8) discussed in Chapter 2 to find energy 

corrections through the model used,  

2( ) ( ) 2 ( ) ( ) ( )nE V x W x W x W x W x                                                    (3.2.8) 

where )(xW  and )(xW  are the superpotentials, concerning with the exactly 

solvable part )(xVES  and the perturbing piece )(xV  respectively, as appeared 

correspondingly in Eq. (3.2.1) above. From the extended definitions of superpotential 

terms in Ref. [32] by employing the spirit of the standard treatment of SUSYQM, we 

make clear that 

h

h
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nn


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 )(,ln)(                                 (3.2.9) 

Certainly, the substitution of Eq. (3.2.9) into Eq. (3.2.8) yields Eq. (3.1.13) which 

can easily be transformed to Eqs. (3.1.9) and subsequently (3.1.12) as discussed in 

the previous section, clarifying the reason behind obtaining the identical results. 

Further, from the definitions of W in Eq. (3.2.9) and Q  in Eq. (3.1.10) and also 

Eq. (3.2.5) one can find an explicit relationship such that gWQ  2  which 

makes another link between the theoretical considerations of the models being 

analysed in this section. 

       Afterall, this brief but concrete analysis sheds a light on a remarkable 

coincidence regarding the identical treatment of the two alternative scenarios 

underlined. This investigation also completes the idea of Lévai [21] in which he has 

related his simple analytic scheme with the treatment procedure in the standard 

SUSYQM, as the present discussion has made clear the close relation between the 



30 
 

generalized work introduced in this article and the method proposed in [32] within 

the extended framework of SUSYQM, in a similar but extended manner used by 

[21]. 

 

3.2.2 Sextic oscillator 

 

       To improve the precision of the description of bistable systems one has to add a 

sextic term to the quadratic anharmonic oscillator equation discussed above. Though 

this section deals with  the applications involving general form of sextic oscillators, 

we need first to remind briefly a peculiar behaviour of such potentials in case it is 

quasi-exactly solvable, which would be useful in understanding the mathematical 

procedure behind the present calculations leading to the energy values in case the 

sextic oscillator potential of interest is non-solvable. 

The quasi-exactly solvable form of sextic oscillator potentials with a centrifugal 

barrier is defined [53] 

2 2 4 2 6

2

(2 1 2)(2 3 2) 1
( ) 4 2

2

s s
V x a b s M x abx b x
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    
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  
             (3.2.10)  

where x[ 0, ) and M is a non-negative integer. For any value of M, leading to 

certain combinations of potential parameters, only M+1 solutions for the related 

Schrödinger equation can be obtained in an algebraic fashion. The simplest solutions 

are obtained for M=0 and M=1. 

Starting with M=0 case and considering Eq. (3.1.7), 

2 2 2 4 2 6

2

(2 1 2)(2 3 2) 1
( ) , ( ) 4 2

2
ES

s s
V x a x V x b s x abx b x

x

   
        
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(3.2.11)

 

where the exactly solvable piece, in general, requires 

1
2( )

4( ) ( ) , ( ) (2 ) , ( )
s

n ES ESF g L g Q g s g g R g n g


     ,                       (3.2.12) 
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in which 2g ax  that yields                       . Hence the corresponding 

ground state algebraic solutions for ( )ESV r
 
are 

   
              ,           

                           .                             (3.2.13) 

To obtain the modifying terms to the solutions in Eq. (3.2.13), due to the additional 

term ( V ) in Eq. (3.2.11), we set Q  as 

2

2
( )

b b
Q g g x

a a
       ,                                                                                (3.2.14) 

and the substitution of which into Eq. (3.1.12) reveals that 

    
             ,      

                              
 

 
   

 

 
             (3.2.15) 

Obviously, the solutions reduce to the analytically solvable harmonic oscillator for 

the choice of b=0, which clarifies that the contributions to 0n

ESE  due to the two 

pieces of V  in Eq. (3.2.11), having opposite signs, cancel each other. 

However, the situation for the case of M=1 is different. Because, the generalized 

Laquerre polynomial now is not constant, which appears as 

1
2( )

24
1( ) ( ) 2
s

nF g L g s ax


   . Moreover, the change in the potential parameter of the 

harmonic oscillator like term forces us to re-consider the structure of 2g ax  which 

now should be 2( , , )a b s x  due to the presence of anharmonic terms in the potential. 

This behaviour thus requires the replacement of 

1
2( )

24
1 2
s

nL s ax


    with an appropriate 

another orthogonal polynomial 

1
2( )

24
1 ( ) 2
s

nP g s x


   . With this new consideration the 

full wavefunction for the first excited state becomes 

     
          

        

  
                 

 

 
   

 

 
                               (3.2.16) 

which guides us to use the exact treatment, 
V E


 



, unlike the ground state case, 

that produces the related energy value as 
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As stated in Ref. [53], 
 

choice has to be made for n=0 and n=1 state 

calculations, respectively. Note that b=0 case causes a  , subsequently 

11 22( )
44

1 1

ss

n nP L

 
  

 
   which reproduces the known solutions of the usual harmonic 

oscillator problem.  

It has to be finally remarked that the solutions for M=0 and M=1 belong to different 

sextic potentials if 
3

2 4
s
 
  
 

 is the same, as the coefficient of the quadratic term is 

different then. This shifting in the parameters defines the corresponding energy value 

for different considerations which are certainly related to the same subsequent 

perturbation order solutions in distinct quantum states if one deals with non-solvable 

sextic oscillator problems discussed below.  

       To complete the discussion in this section, we consider now a general form of 

the sextic potential in one dimension  

2 4 6( )V x x x x        ,                                                                                 (3.2.18) 

and solve the corresponding Schrödinger equation approximately within the frame of 

the present scheme. In this case, Eqs. (3.2.6) and (3.2.7) become 
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for the systematic calculations of the energy corrections concerning with the 

quadratic and sextic pieces in Eq. (3.2.18) , where n  discussed in the previous 

section. For clarity, as the details of the similar calculation procedure for the 

quadratic potential were well discussed in Ref. [32] through Hermite polynomials, 

we illustrate only our application results in Tables 3.1 and 3.2 
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Table 3.1 Comparison of the first four eigenvalues of the potential 
2x +

6x
 

obtained by the present method with the exact values ( [Ref. 40] for 1  , and Ref. 

[54] for 0  ) 

      4N   8N   12N   Exact  

1 0 0.1 1.104 923 1.109 628 1.109 070 1.109 087 

   3.576 125 3.598 684 3.595 729 3.596 037 

   6.609 983 6.662 450 6.655 648 

10.472 339 

6.644 392 

10.391 040 10.483 375 10.237 874 

      

  1.0 1.418 059 1.442 229 1.435 465 1.435 625 

   4.971 886 5.051 659 5.034 736 5.033 396 

   9.831 164 9.974 381 9.958 135 9.966 622 

   16.219 169 16.435 265 16.391 053 15.989 441 

       

  10.0 2.174 017 2.221 521 2.205 998 2.205 723 

   8.002 447 8.156 497 8.110 650 8.114 843 

   16.353 667 16.624 921 16.587 359 16.641 218 

   27.537 122 27.940 075 27.843 302 27.155 086 

    

  100.0 3.665 363 3.745 295 3.718 101 3.716 975 

   13.751 708 14.023 562 13.966 820 13.946 207 

   28.440 597 28.925 950 28.863 060 28.977 294 

   48.230 105 48.952 973 48.770 486 47.564 985 

       

  1000.0 6.404 635 6.542 058 6.487 758 6.492 350 

   24.184 202 24.664 085 24.557 556 24.525 316 

   50.214 147 51.077 401 50.968 447 51.182 480 

   85.350 546 86.638 619 86.308 303 84.175 584 

       

0 0 1 1.129 584 1.153 559 1.143 340 1.144 802 

   4.278 386 4.363 353 4.340 883 4.338 599 

   8.899 753 9.053 228 9.034 111 9.073 085 

15.143 475 15.372 717 15.313 502 14.935 169 
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Table 3.2 Comparison of the present calculation results for the first four eigenvalues 

of the potential 2 4 6x x x    , where 30  , 20 30   and 100  , with those 

obtained with the two different algebraic models 

Average SWKB [Ref. 55] Modified Hill Determinant 

Method [Ref. 56] 

Present Calculations 

7.3786 7.3569 7.3569 

24.6861 24.6462 24.6462 

46.3690 46.3355 46.3585 

71.3823 71.3534 73.0669 

      

The agreement is remarkable in the whole range of the potential parameters in the 

low-lying states. Similar accuracy is observed for the higher quantum levels. 

Nevertheless, when dealing with excited states the present approach becomes rather 

cumbersome because the zeros of the wavefunction have to be taken into account 

explicitly. As expected, due to the consequence of the radial nodes in - more 

specifically - ( )F g  and subsequently ( )R g  in Eqs. (3.1.14) and (3.1.12), the 

present formulae gives small accuracy for large quantum numbers since the 

perturbation becomes more  more important. 

 

3.3 Concluding Remarks 

 

       An attempt has been made [57] to generalize the work in [21] and shown that the 

mathematically rigorous new scheme unifies different theories for the solution of 

Schrödinger equation with analytically/approximately solvable conventional and 

energy-dependent potentials. The presented algorithm is also found to be equivalent 

to the alternative model reported previously [32]. This remarkable coincidence has 

revealed the bridge between the algebraic approach in the scenario introduced in this 

work and the one carried out within the frame of an extended SUSYQM theory [32], 

completing the discussion of Lévai [21] regarding the connection between the simple 
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prescription used in his work and the procedure within the usual SUSYQM theory. 

Although the literature covered similar problems, to our knowledge an investigation 

such as the one presented here was missing. 

       Beyond its intrinsic importance as a new solution for a fundamental equation in 

physics, we expect that the present simple method would find a widespread 

application in the study of different quantum mechanical systems with constant and 

position-dependent masses. In particular, the present discussion would be useful in 

perturbational treatments of the exact spectra of a few particle systems, and thus 

provide a further insight on discussion of the fractional nature of such systems.  

       The application of the present scenario, introduced in this chapter for the 

systems with a constant mass, to the systems with spatially varying masses, will be 

discussed in the next chapter. 
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CHAPTER 4  

AN ALTERNATIVE APROACH TO SCHRÖDINGER EQUATIONS WITH A 

SPATIALLY VARYING MASS 

 

       Tracking down solvable quantum potentials has always aroused interest. Apart 

from being useful in understanding of many physical phenomena, investigations of 

such potentials also provide a good starting point for undertaking perturbative 

calculations of more complex systems. Within this context, we have recently 

suggested [57]  a novel algebraic framework for the unified treatment of Schrödinger 

equations, with a constant mass,  involving solvable and non-solvable potentials, 

which was also well discussed in the previous chapter. 

       For the completeness, and also considering the importance of quantum 

mechanical systems with position dependent masses in describing the physics of 

many microstructures of current interest [58], the model [57] discussed in the 

previous chapter is to be extended in this chapter for also analysing the systems 

having non-constant masses. 

       Unfortunately, up to now, the related previous works have dealt with only either 

exact or quasi-exact solutions of the Schrödinger equation in a position-dependent 

effective mass back-ground. In the other words, to the best of our knowledge, there 

has been no ongoing discussion in the literature regarding approximate solutions of 

non-solvable potentials for the case of non-consant masses. Therefore, at present, 

there seems no room for a precise test of the application results of the prescription 

introduced in Section 4.1. However, we believe that the present algebraic scenario 

would find a widespread application in the near future due to the current interest in 

microstructures, Ref [58], which eventually would require physically acceptable 

approximate descriptions of such systems that should be investigated within the 

frame of more complex and non-exactly solvable potentials. In addition, the recent 
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progress [59,60] in analysing experimental data within the frame of algebraic models 

to investigate nuclear structure gives us a signal for the possibility of using a 

prescription such as the one presented in this chapter. 

 

4.1 Formalism 

 

As is well known the general Hermitian position-dependent effective mass 

Hamiltonian, initially proposed by von Roos [61] in terms of ambiguity parameters 

 ,  ,   such that 1  , gives rise to the time independent Schrödinger 

equation 
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where the effective potential 
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depends on the mass term. Here the prime denotes derivative with respect to x , 

 xM  is the dimensionless form of the mass function    xMmxm 0  and we have 

set 12 0  m . 

Considering the suggestion in Ref. [57], which is shown by Eq. (3.1.2) in the 

previous chapter, 

         xhxgFxfx     ,                                                                              (4.1.3) 

where ( ) ( )f x F g  yields an algebraic closed solution for exactly and quasi-exactly 

solvable potentials with )(gF being a special function satisfying Schrödinger-like 

equations 
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while )(xh  is the moderating function in connection with a perturbing piece of the 

full potential corresponding to, in our present consideration, Eq. (4.1.2). The form of 

)(gQ  and )(gR  is already well defined for any special function )(gF when dealing 

with analytically solvable potentials. However, in case of the consideration of a 

realistic non-exactly solvable system one should suggest reliable expressions, in an 

explicit form, for plausible definitions of the related )(gQ  and )(gR  functions. This 

is the significant point in the framework of the new formalism to reach physically 

meaningful solutions. 

On inserting Eq. (4.1.3) in Eq. (4.1.1) and comparing the result with Eq. (4.1.4), we 

arrive at  
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Obviously, Eqs. (4.1.5 - 4.1.7) reduce to their standard forms (see, e.g., Ref. [21]) for 

the consideration of exact solvability of Schrödinger equations with a constant mass 

in which case )(xM  and )(xh  in the equations above appear as a constant. Gaining 

confidence from this observation we proceed with 

( ) ( ) ( ) ,eff ES ESV x V x V x E E E                                                          (4.1.8) 

in accordance with our choice in Eq. (4.1.2), which means that potentials considered 

in this chapter are admitted as the sum of an exactly (or quasi-exactly) solvable 

potential with a perturbation or a moderating piece. Hence, the aim in this 



39 
 

perspective is to reveal the corrections to energy ( E ) and wavefunction, )(xh , for a 

given )(xV  as the main piece of the solutions leading to exact solvability can easily 

be found from the literature. 

The use of Eqs. (4.1.5) and (4.1.8) within the frame of Eq. (4.1.6) leads to the 

coupled equations in the form of 
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in which, from Eq. (4.1.5), 
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and 
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It is clear that  gQES
, together with )(gRES

, related to algebraically solvable 

potentials, can be obtained from Eqs. (4.1.5) and (4.1.6) such that 

     gQgQgQ ES   and      gRgRgR ES  . Again, in case of exact 

solvability Eqs. (4.1.10) and (4.1.11) disappear naturally by reducing the scheme to 

Eq. (4.1.9), which justifies the reliability of the present work, see, e.g., Refs.  

[28,30,31]. This realization puts forward the significance of Eq. (4.1.10) for 

approximately solvable more complex quantum potentials, which is the main point in 

this section. 
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       The result of this brief investigation opens a gate to the reader for the 

visualization of the explicit form of the correction ( E ) to the energy. Unfortunately, 

there seems a problem arised in calculating the correction term owing to the presence 

of two unknown: Q  and )(gR on the right hand side of Eq. (4.1.10). To 

circumvent the resulting drawback and proceed safely, one needs to use the 

interesting expression yielding inter-connection between  Q   and )(gR  functions, 

as was discussed earlier,   

)(

)(
)()(

gF

gF
gQgR


     ,                                                                              (4.1.12) 

that is obtained, after some exhaustive analyses, by considering the another form of  

Eq. (4.1.10) 
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As )(gF is well defined for solvable potentials, we obviously need here to find only 

an appropriate expression for Q  to be employed eventually in Eq. (4.1.10),  or in 

Eq. (4.1.13) with the use of Eq. (4.1.11),  that reveals the full solution. 

It is however reminded that if the whole potential such as in Eq. (4.1.2) has no 

analytical solution, one should expand the related functions in terms of the 

perturbation such that  





1

)(
N

N xVxV  and 





1N

nNn EE  where N denotes the 

perturbation order and  ,...2,1,0n  is the radial quantum number relating to bound-

state energy levels. In connection with this idea, the form of Q  should be chosen 

carefully depending on N values and the substitution of reasonable Q  values into 

either Eq. (4.1.10) or Eq. (4.1.13), and consequently equating terms with the same 

power of the perturbation order on both sides, yields the modifying terms in the 

frame of  coupled equations at successive orders for different states. The procedure 

has been well discussed in Ref. [57], and also in Chapter 3, for approximately 

solvable unharmonic potentials involving constant masses. 
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4.2 Application 

 

       This section gives a clue for exploring new potentials within the unique frame of 

the formalism introduced. For clarity, we start with a simple example from the work 

of Bagchi and his co-workers [28] where the form of the mass is chosen as M g   

with   being a constant, which simplifies Eq. (4.1.9) as 

   
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 ,                                        (4.2.1) 

that is responsible for the piece of the interaction having closed analytical solutions. 

Another appropriate choice for the  F g
 

within the list of the orthogonal 

polynomials used frequently in physics,    
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The use of Eq. (4.2.2) in Eq. (4.2.1) requires that 2g g    which must be 

restricted to positive values in order to get a constant term on the right-hand side of 

Eq. (4.2.1). Setting 1   , we arrive at  ( ) e xg x  and, from the definition of 

the mass form,   xM x e  . Therefore, the related solutions appear as 
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for the constructed solvable potential  
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At this stage, we focus on Eq. (4.1.10) to observe how additional potential terms can 

be generated. This observation would clarify how the present model copes with the 

perturbed piece of the potential, as well as the understanding of the procedure for the 
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generation of new non-solvable potentials. With the use of  M g   in Eg. (4.1.10), 

we obtain    21 ( ) 1
( )

2 4

g d Q
E V x R g Q g

dg

  
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 
 ,                         (4.2.5) 

which is similar to Eq. (4.2.1). Bearing the structure of Eq. (4.2.1) in mind, in 

particular n-dependence of   R g
 
term, we transform the above equation, with the 

remind of Eq. (4.1.12),  
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into the more applicable form. As the study of Eq. (4.2.1) has already defined ( )F g , 

( )g x  and  , one needs here to deal with only  Q g
 
term which is the central part of 

the whole discussion. Obviously different choice of this term, depending of course 

on the perturbation order (N) discussed in the previous section, would lead to distinct 

functions generating new additional potentials including the corresponding energy 

terms in each order. For instance, a possible choice of  
1

( ) ,
N

i

b
Q g G i x

g 

  

 , where 

b is a constant and G  is a general form of the physically reasonable functions, 

would help us to define energy term from the first term in the bracket while 

generating modifications to the main part of the potential in Eq. (4.2.4). It is clear 

that there is no strict definition for the generating function  ,G i x  which should be 

determined by considering the structure of the realistic system of interest. It is 

however stressed that the modifications in each order for successive quantum levels 

should be individually considered. This requires a meticulous search for the 

corrections brought by Eq. (4.2.6), in which expressions giving the structure of 

 F g  for each state  0,1,2,...n   ought to be used properly. 

       Finally, to clarify the flexibility of the approach used, it should be noticed that 

additional exactly and quasi-exactly solvable quantum potentials in a spatially 

varying mass context may also be generated. As an illustration, we choose again 

gM    option and employ it in Eq. (4.1.10). This consideration leads to 
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where, from Eq. (4.1.3),      ES x f x F g   is the exact (or quasi-exact) solution 

for a solvable potential undertaken. To proceed we choose a specific example 

assuming that the sum of the second and third terms on the right hand side of the 

above equation is zero. This feasible assumption requires that gQ 2  which 

transforms Eq. (4.2.7) to 
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 .                                                                            (4.2.8) 

As, in general, ES  and  xg  are readily obtained from Eq. (4.1.9), or they can be 

extracted from the literature, Eq. (4.2.8) together with Eq. (4.1.8) may generate new 

solvable potentials.  In addition, the modification to the wavefunction   xh  due to 

the additional potential   xV  can easily be obtained through Eq. (4.1.11). More 

specifically, the substitution of ES  in Eq. (4.2.3) into Eq. (4.2.8) generates a 

modification in a closed form to the solvable potential in Eq. (4.2.4), the summation 

of these terms  ESV V  is a new potential having algebraic solutions involving 

either the whole or some part of the spectra. 

       Overall, the method described here has an ability of generating all classes of 

potentials depending of course on the choice of the mass function and the use of 

different orthogonal polynomials   gF  within the frame of Eqs, (4.1.9), (4.1.10) 

and (4.1.12), providing closed analytical or approximate solutions to the 

corresponding Schrödinger equation. 

 

4.3 Concluding Remarks 

 

       The literature covers many applications regarding the description of collective 

nuclear properties in terms of the corresponding collective variables within the 

framework of Bohr Hamiltonian involving exactly solvable potentials. However, the 
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recent analysis [59] has introduced special solutions for the Morse potential which is 

known to be exactly soluble only for 0 , unlike the previous applications. For the 

approximate treatment of quantum states having non-zero angular momenta, the 

well-known Pekeris approximation has been used. This unusual consideration, 

however, has suppressed the overestimation of the energy spacings within the beta-

band due to right branch of the Morse potential that imitates the sloped wall, which 

has removed a main drawback of the earlier considerations. Furthermore, the Bohr 

Hamiltonian and its extensions, for a recent review see Ref. [59] and the references 

therein, have provided for several decades a sound framework for understanding the 

collective behavior of atomic nuclei. It has been customary to consider in the Bohr 

Hamiltonian the mass to be constant, as in [59]. However, evidence has been 

accumulating that this approximation might be inadequate [60] in which significant 

effects of using a mass depending upon nuclear deformation on the calculations of 

spectra and analytical expression of the wavefunction describing the collective 

motion of deformed nuclei was discussed in detail. Within this context, the present 

algebraic model [63] seems promising as the scheme has a power of yielding the 

required expressions in an explicit form for the Morse-like potentials mentioned 

above and also the corrections due to the corresponding angular momentum barrier 

involving deformation-/position-dependent mass systems. Along this line the works 

are in progress. 
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CHAPTER 5  

CONCLUDING REMARKS 

 

       An attempt has been made to generalize the work in [21] and shown that the 

mathematically rigorous new scheme [57] unifies different theories for the solution 

of Schrödinger equation with analytically/approximately solvable all conventional 

potentials. In addition, the procedure used here for approximately solvable potentials 

is illustrated as to be well adapted to the use of software systems such as 

Mathematica and allows the computation to be carried out up to high orders of the 

perturbation. Further, the presented algorithm is also found to be equivalent to the 

alternative model reported previously [32]. This remarkable coincidence has revealed 

the bridge between the algebraic approach introduced in this work [57] and the one 

carried out within the frame of an extended SUSYQM theory [32], completing the 

discussion of Lévai [21] regarding the connection between the simple prescription 

used in his work and the procedure within the usual SUSYQM theory. Although the 

literature covered similar problems, to our knowledge an investigation such as the 

one presented here was missing. 

       Beyond its intrinsic importance as a new solution for a fundamental equation in 

physics, we expect that the present simple method [57] would find a widespread 

application in the study of different quantum mechanical systems with constant and 

position-dependent masses. In particular, the present discussion would be useful in 

perturbational treatments of the exact spectra of a few particle systems, and thus 

provide a further insight on discussion of the fractional nature of such systems.   

Finally, the remaining question here is to know if the scenario put forward in the 

present work is applicable to non-central potentials and also, after some necessary 

modifications, to the related problems in the relativistic region. Along this line the 

works are in progress. 
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       Final chapter in this thesis has been devoted to the extension of the formalism 

introduced in Chapter 3, where the model is applied to the systems involving position 

dependent masses. The novel scheme developed originally [57] for the solutions of 

Schrödinger equations with constant masses, has been successfully applied [63] to 

other systems involving spatially varying masses. We also showed that the present 

algebraic model is capable for the generation of potentials in all classes. We intend to 

use this flexible technique [63] to answer some unsolved questions in nuclear physics 

dealing with the structure of atomic nuclei with deformation- (like position-) 

dependent potentials [59,60]. 

       Moreover, recently, a modified factorization technique [62] of a quantum system 

characterized by spatially varying mass-Hamiltonians has been presented and shown 

that excited state wavefunctions of a given singular Hamiltonian can be used to 

construct non-singular isospectral partner potentials. This work would be helpful to 

remove the singularity problem naturally arised in the present formalism due to zeros 

of )(gF function, which should be necessary for the case of considering higher 

quantum states. 
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