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ABSTRACT

COMPREHENSIVE TREATMENTS FOR SCHRODINGER EQUATIONS
INVOLVING CONSTANT AND NON-CONSTANT MASSES

ATAY, SULE
M. Sc. Thesis in Engineering Physics
Supervisor: Prof. Dr. Biilent Goniil
January 2012
52 pages

The concept of the elegant work introduced by Lévai in Ref. [21] is extended for
the solutions of the Schrodinger equation with more realistic other potentials used in
different disciplines of physics within the constant mass consideration. The
connection between the present model and the other alternative algebraic technique
[32] in the literature is discussed in detail. Extending the point canonical
transformation approach introduced in this thesis in a manner distinct from the
previous ones, we also propose a unified approach of generating potentials of all

classes having non-constant masses.

Keywords: Schrodinger equation, PCT method, exactly-solvable potentials, non-
solvable potentials, position-dependent mass.
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SABIT VE DEGISKEN KUTLE iCEREN SCHRODINGER DENKLEMLERI
ICIN KAPSAMLI COZUMLER

ATAY, SULE
Yiiksek Lisans Tezi, Fizik Miihendisligi Boliimii
Tez Damismani: Prof. Dr. Biilent Goniil
Ocak 2012
52 sayfa

Sabit kiitle iceren Schrodinger dalga denkleminin analitik ¢éziimleri i¢in Levai
[21] tarafindan Onerilen titiz c¢alismanin kapsami, fizigin farkli disiplinlerinde
kullanilan daha gercek¢i potansiyellere de uygulanabilmesi icin genisletilmistir.
Gelistirilen bu model ile literatiirde bulunan [32] ve analitik ¢6ziim igerebilen diger
model arasindaki iligski detayli olarak incelenmistir. Bu tez ¢alismasinda ayrica, sabit
kiitle igeren sistemler i¢in ileri siirlilen ve kapsami noktasal kanonik doniisiim i¢eren
benzer ¢aligmalardan farkli olarak genisletilen yaklasim yardimi ile sabit olmayan
kiitle i¢eren sistemlerde dahil olmak {izere tiim etkilesim potansiyellerini, ¢oziimleri

ile birlikte, tiiretebilen diger bir model teklif edilmistir.

Anahtar Kelimeler: Sch denklemi, PCT modeli, tam-¢6ziilebilir potansiyeller, tam

cOziilemeyen potansiyeller, sabit olmayan (hareket ile degisen) kiitle.
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CHAPTER 1

INTRODUCTION

One of the challenging problems in non-relativistic quantum mechanics is to find
solutions to the Schrodinger equation for potentials that are used in different fields of
physics. However, an exact solution of the Schrodinger equation exists only for a few
idealized problems. Normally it has to be solved using an approximation method
such as the usual perturbation theory which constitutes one of the most powerful
tools available in the study of quantum mechanics in the atoms and molecules.
Perturbation theory is applied to those cases in which the real system can be
described by a small change in an exactly solvable idealized system. In this form we
can describe a great number of problems encountered especially in atomic physics, in
which the nucleus provides the strong central potential for the electrons; further
interactions of less strength are described by the perturbation. Examples of these
additional interactions are: the magnetic interaction (spin-orbit coupling), the
electrostatic repulsion of electrons and the influence of external fields. But in spite of
widespread application of this theory, its basic analytical properties are poorly
understood and the corresponding framework is not easily applicable. In addition,
performing explicit calculations in non-relativistic quantum mechanics using the
familiar Rayleigh-Schrodinger perturbation expansion mentioned above is rendered
difficult by the presence of summations over all intermediate unperturbed
eigenstates. Alternative perturbation procedures have been proposed to avoid this
difficulty, notably the logarithmic perturbation theory (LPT) [1-4] and the Dalgarno-
Lewis technique [5-8]. The virtue of LPT is its avoidance of the cumbersome
summation over states for second and higher-order corrections in Rayleigh-
Schrodinger perturbation theory. Unfortunately, it has problems of its own in
calculating corrections to excited states, owing to presence of nodes in the

wavefunctions. Various schemes have been proposed to circumvent the resulting



singularities [4, 9, 10]. In spite of the progress given above, over the years the
Schrodinger equation has been studied extensively regarding its exact solvability.
Many advances have been made in this area by classifying quantum mechanical
potentials according to their symmetry properties. For instance, various algebras
which reveal the underlying symmetry as well as facilitating and obtaining the
solutions have been found. In this respect, the application of supersymmetry ideas to
non-relativistic quantum mechanics has revived fresh interest in the problem of
obtaining algebraic solutions of exactly solvable non-relativistic potentials and
provided a deeper understanding of analytically solvable Hamiltonians, as well as a
set of powerful approximate schemes for dealing with problems admitting no exact
solutions. The concept of supersymmetry and its application to quantum mechanics
[11,12], together with the shape invariance, have played a fundamental role in these
developments. Supersymmetric quantum mechanics (SSQM) has developed
immensely since the first models were introduced [13,14]. Several approximation
methods using SSQM formalism have been developed, including the supersymmetric
perturbation theory (SSPT) of Cooper and Roy [15]. Recently, Lee [16] has shown
that SSPT and LPT are entirely equivalent and fortuitously, each turns out to resolve
difficulties encountered in the other. Namely, LPT formulas for energy corrections
obviate tedious procedures in the SSQM method, while the use of SSQM partner
potentials with virtually identical bound state spectra solves difficulties with excited
states encountered in LPT. Although the iterative procedure in SSPT may not
actually reduce the calculational workload, it does cast the calculations into a
physically-motivated, visualizable framework. Along this line, recently a more
economical scheme has been introduced, which yields simple but closed perturbation
theory formulae [17] leading to the Riccati equation from which one can actually
obtain all the perturbation corrections to both energy level shifts and wavefunctions
for all states, unlike the other models mentioned above. In the application of this
method to the nth excited state, one requires knowledge of the unperturbed
eigenfunction but no knowledge of the other eigenvalues or eigenfunctions is
necessary. The procedure underlined does not involve either tedious explicit
factoring out of the zeros of unperturbed eigenfunction [1,2] or introduction of ghost
states [4] as were the cases encountered for applying LPT to excited states. The
model discussed in Ref. [17] offers the explicit expressions for the energy

corrections, which are absent in the original SSPT while the treatment of Lee [16] for
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such calculations has mathematical complexity, and provides a clean route to the
excited states, which are cumbersome to analyze in both LPT and SSPT. Thus, the
results obtained in [17] can be thought of as a generalization of logarithmic and
supersymmetric based perturbation theories.

Nevertheless, no single approximation method available in the literature is ideal
for every problem. SSPT and LPT based theories [1-17] avoid the Rayleigh-
Schrodinger summation, but it can in general lead to nasty integrals and more effort
in particular for excited states. The method is valuable when the integrals can be
done exactly or by a reliable numerical procedure. Otherwise, the Rayleigh-
Schrédinger summation, even when it does not give an exact answer, starts not to
look so bad after all. This was the motivation behind the work introduced in this
thesis. One needs at this stage an algebraic model for the analysis of quantum
mechanical problems of sub-atomic world, providing a quick route to the calculation
of all corrections within the frame of an easily applicable perturbation theory to
considerably simplify one's calculational workload including any interaction

(corresponding to any potential) in micro-world.

Considering all these, and keeping the main aim of the thesis work in mind, we
remind another simple method of investigating the solution of the Schrdodinger
equation, which is related to the work of Bhattacharjie and Sudarsan [18] that has
been known for a long time. These authors applied their method to the
hypergeometric, confluent hypergeometric and Bessel equations. Later it turned out
that it can be related to algebraic techniques of solving differential equations [19].
Another systematic application of this method (to the hypergeometric functions) has
been carried out by Natanzon [20] independently. Further, Lévai [21] in his
pioneering work discussed a significant question, through the consideration of the
link between the works in [18-20], if there are any other special functions which are
solutions of the Schrodinger equation with shape invariant potentials deducing a
condition which has to be satisfied by any special function leading to the orthogonal
polynomials and exactly solvable shape invariant potentials discussed above. Besides
the results obtained, the combination of SSQM with traditional approaches to
solvable potentials proved to be fruitful. For instance, Refs. [22-31] involve some
significant applications of the original idea discussed in [21], clarifying the physics

behind a variety of interactions in sub-atomic world.



However, to our knowledge, this formalism up to now has been used only to
study for exactly solvable systems. Therefore, bearing in mind that realistic physical
problems can practically never be solved exactly, it needs a meticulous modification
to also solve more realistic other systems as the ones of interest in this thesis. This is
the main motivation behind the present work suggesting a more comprehensive and
generalized model using the spirit of the investigation in [21], which escaped notice

in other publications.

In other words, using the basic ingredient of the elegant work introduced by
Lévai in Ref. [21] we have developed in the present thesis work a simple alternative
approach to perturbation theory in one-dimensional non-relativistic quantum
mechanics for the solutions of the Schrodinger equation with more realistic other
potentials used in different disciplines of physics. The formulae for the energy shifts
and wave functions do not involve tedious calculations which appear in the available
perturbation theories discussed above. The present model applicable in the same
form to both the ground state and excited bound states involving all classes of
potentials including exactly-/quasi-exactly solvable and non-solvable potentials,
unlike earlier algebraic techniques for the analytical or perturbative treatment of
Schrodinger equation. The power and elegancy of the present unified model, which
IS in a sense complete, are illustrated via specifically chosen examples. We now have
clear and explicit ways to get corrections to all energy levels and state wave

functions for a given perturbed potential.

In Chapter 2, we give a theoretical background based on the previous work in
Ref [32] which is interestingly in connection with the one we developed in this
thesis. Chapter 3 discusses the framework of the present formalism together with
distinct examples in order to convince the reader regarding the reliability and
flexibility of the model introduced, where we also discuss a significant result behind
the calculations and clarifies the inter-relation between the present formalism and the
one used in the related literature [32] that was performed within the frame of an
extended SSQM theory. The applications of the new model for position-dependent
masses is discussed in Chapter 4. Some concluding remarks and summary of the

work, together with the outlook, are drawn in the last chapter.



CHAPTER 2

THEORETICAL BACKGROUND

An algebraic non-perturbative approach has been recently proposed [32] for the
analytical treatment of Schrodinger equations with a potential that can be expressed
in terms of an exactly solvable piece with an additional potential involving constant
masses. Avoiding disadvantages of standard approaches, new handy recursion
formulae with the same simple form both for ground and excited states have been
obtained in there. As an illustration the procedure, well adapted to the use of
computer algebra, has been successfully applied to quartic anharmonic oscillators by
means of very simple algebraic manipulations. The trend of the exact values of the
energies has been rather well reproduced for a large range of values of the coupling
constant (g = 0.001-10000).

As the novel algebraic model presented in Chapter 3, being as an alternative to
the one presented in [32], reproduces similar numerical results to those of [32] we
will first focus in this chapter to the previous model introduced by [32] due to the
interesting inter-relation between the two different methods mentioned for solving
Schrodinger equation. The link between the models will also be discussed in detail

through the next chapter.

2.1 Previous Consideration

The main task in application of the quantum mechanics is to solve Schrodinger
equations with different potentials. Unfortunately, realistic physical problems can
practically never be solved exactly. Then one has to resort to some approximations.
Most widely used among them is the perturbation theory. However, the explicit

calculation with the Rayleigh-Schrodinger perturbation theory, described in most
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quantum mechanics textbooks, runs into the difficulty of the summation over all
intermediate unperturbed eigenstates. To avoid this difficulty, alternative
perturbation procedures have been proposed. Unfortunately, as discussed in Chapter
1, they have other problems in calculating corrections to excited states, owing to
presence of nodes in the wavefunctions. Various schemes have been proposed to
circumvent the resulting singularities, which however cause to clumsy and

cumbersome produres.

Considering such drawbacks of the available treatments and gaining confidence
from their success of the recent works, Goniil and his co-workers [32], have
presented an alternative approach to perturbation theory in one-dimensional non-
relativistic quantum mechanics, which yields simple but closed perturbation theory
formulae leading to the Riccati equation from which one can actually obtain all the
perturbation corrections to both energy level shifts and wavefunctions for all state.
These quantities can be calculated to any given accuracy since the generation of
successive corrections in the perturbative expansions introduced only requires the
solution of simple algebraic solutions. The model applicable in the same form to both
the ground state and excited bound states without involving tedious calculations
which appear in the available perturbation theories. In particular they noted that the
procedure introduced in [32] does not involve either tedious explicit factoring out of
the zeros of [1,2] or introduction of ghost states [4] as were the cases encountered
for applying LPT to excited states. In the application of the present method to the nth
excited state, one requires only knowledge of the unperturbed state eigenfunction but

no knowledge of the other eigenvalues or eigenfunctions is necessary.

As an illustration, their scheme in [32] has been applied to quartic anharmonic
oscillator since there has been a great deal of interest in the analytical and numerical
investigation of the one-dimensional anharmonic oscillator. They are of interest
because of their importance in molecular vibrations [33] as well as in solid state
physics [34] and quantum field theories [35]. Since anharmonic oscillators model
intrinsic anharmonic effects of the real world, they continue to play a crucially
important role in contemporary physics. On the other hand, the anharmonic
oscillators with quartic potentials can serve as a testing ground for the various
methods based on perturbative and non-perturbative approaches. In other words,

interest in such a model stems mainly from the fact that, if one considers the
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anharmonicity gx* as a perturbing operator, then the Rayleigh-Schrodinger

perturbation expansion for the eigenvalues diverges [36] for every value of g.
Consequently, several methods have been used to calculate the quartic anharmonic
oscillator eigenvalues and eigenfunctions. Without being exhaustive, we may recall
variational methods [37], WKB methods [38], Hill determinant [39-40], Riccati [41]
or Riccati-Hill determinant methods [42], perturbative treatment prescriptions using
summability techniques such as the Stieljes, Pade and Borrell methods [35-43]. We
should also mention the hypervirial perturbation method of Fernandez and Castro
[44], which can be viewed as a generalization of the Killingbeck method [45], and
other alternative treatments [46], together with those involving a group-theoretical
approach [47], the multiple scale technique [48], and supersymmetric methods [49].
After all, it appears challenging to test the new formalism in [32] avoiding the failure
of the other perturbation series for the treatment of the quartic anharmonic oscillator.

The layout of this section is as follows. In the next sub-section we summarize
the main ideas of the approach in Ref. [32] to understand deeply the physics behind
the formalism, which leads to the clear understanding of the inter-connection
between the model presented here and our novel method introduced in the next
chapter. The application of the present model to quartic anharmonic oscillators
leading to simple recursion relations for the calculations at each succesive
perturbation order and the results obtained are shown in sub-section 2.3. This section

ends with a brief summary and concluding remarks given by the Section 2.4.

2.2 The previous model

We first start with a brief introduction of the present formalism. Throughout the
work the unit system 7 =2m=1 is chosen. In general, the goal in the supersymmetric
quantum theory [50] is to solve the Riccati equation,

W2(r)-W'(r) =V (r)-E, (2.2.1)

where V(r) is the potential of interest and E, is the corresponding ground state



energy. If we find W (r), the so called superpotential, we have of course found the

ground state wave function via,
v =Neo|-[Wad|, 222)

where N is the normalization constant. If V (r) is a shape invariant potential, we can

in fact obtain the entire spectrum of bound state energies and wave functions via

ladder operators.

Keeping in mind this point, now suppose that we are interested in a potential for

which we do not know W (r) exactly. More specifically, we assume that V(r) differs
by a small amount from a potential v, (r) plus angular momentum barrier if any, for
which one solves the Riccati equation explicitly. For the consideration of spherically
symmetric potentials, the corresponding Schrdodinger equation for the radial wave
function has the form

00 +1)

0 -k, V(r>={vo(r)+ rz }AV(f), (223

w,(r)

where AV is a perturbing potential. Let us write the wave function y as

Wo(r) = 2,(N¢g,(r), (2.2.4)

in which y, is the known normalized eigenfunction of the unperturbed Schrédinger
equation whereas ¢, is a moderating function corresponding to the perturbing

potential. Substituting Eq. (2.2.4) into Eq. (2.2.3) yields

(11+ﬁ42§iﬂJ=V—Em (2.2.5)
X b Za b

Instead of setting the functions y, and ¢, we will set their logarithmic derivatives

using the spirit of Egs. (2.2.1-2.2.2)

w =41 aw =% (2.2.6)

"o "4,



which leads to

! , (0 +1
ﬁzwnz —an{vo(r)+ (I’Z )}—gn , (2.2.7)
Xn

where €&, is the eigenvalue of the exactly solvable unperturbed potential, and

(%uﬁ%}Awnz AW+ 2W. AW, = AV (1) - Ag, | (2.2.8)
n Zn n

in which Ag, is the eigenvalue for the perturbed potential, and E, = ¢, + Ag,,.

Then, Eq. (2.2.5), and subsequently Eq. (2.2.3), reduces to

(W, + AW, )’ (W, +AW,) =V —E (2.2.9)

n H

which is similar to Eq. (2.2.1), nevertheless it is valid for all states unlike usual
supersymmetric treatments [50] which use (2.2.9) only for the ground state due to
theoretical considerations. Further, as one in principle knows explicitly the solution
of Eqg. (2.2.7), namely the whole spectrum and corresponding eigenfunctions of the
unperturbed interaction potential, the goal here is to solve only Eq. (2.2.8), which is
the backbone of this formalism. The reader is referred to [17] for the successful
applications of Eq. (2.2.8) involving different problems in quantum theory through

exactly solvable potentials.

However, if the whole potential has no analytical solution as the case considered
in this section, which means AW and subsequently Eq. (2.2.8) cannot be exactly
solvable, then one can expand the functions in terms of the perturbation parameter
A,

AV(r;2) =D ANAV (1), AW, (r; 2) =D AYAW, (1), Ae, () =D e,y (2.2.10)
N=1 N=1 N=1
where N denotes the perturbation order. Substitution of the above expansion into Eqg.

(2.2.8) by equating terms with the same power of A on both sides yields up to for

instance o( 3)



W AW, — AW =AV, —Ag, (2.2.11)
AW +2W AW, — AW/, = AV, —Ag,, , (2.2.12)
2(W AW, + AW, AW, ) - AW/, = AV, - Ag,, | (2.2.13)

Eqg. (2.2.8) and its expansion give a flexibility for the easy calculations of the
perturbative corrections to energy and wave functions for the nth state of interest
through an appropriately chosen perturbed superpotential. It has been shown [17,
32] that this feature of the present model leads to a simple framework in obtaining

the corrections to all states without using complicated mathematical procedures.

2.3 Application

For clarity, in this paper we restrict ourselves to the Schrodinger equation in one

dimension (E = 0) and consider the anharmonic potential as
V=V, +AV = x> +gx* | (2.3.1)

in which the unperturbed potential represents the well known factorizable harmonic
oscillator. From the literature [11,50], the corresponding superpotentials, wave

functions and energy values are

_ Ho (Vax)
-] e
2 =H,(Vax)exp(-ax’/2) , &, = 2a(n+%) (2.3.2)

where H denotes the Hermite polynomials, n=0,1,2,...is the radial quantum

number and a is the potential parameter. With a suitable choice of AW ,

, (2.3.3)
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corresponding to the perturbed potential gx“ in Eg. (2.3.1), one obtains some

equations at successive orders for different states, which reveal some interesting
relations between them leading to a simple algebraic treatment of the problem of

interest here.

2.3.1 Calculations for n=0 and n=1 states

For instance, starting from the ground state calculations (n=0), where, from Eq.

(2.3.2), W =ax and considering Egs. (2.2.11) through (2.2.13) we get at the first
order (N =1),

2af, =g f1=%(a2—1) N EfO—Eno—ggzo. (2.3.4)

Similarly, at the second order (N =2)of the perturbation we have

2af, - 22 18 5
_cah—9 B4 - 22E2 "9 F .2 _0, (235)

f2+2af, =0 , f — .
! 2 2 5 <17 ™ 17 17

and the third order (N =3) calculations give

2
2(af, + £,1,)=0, f, =%
£, -20gr, - (D L2104 (2.3.6)
31 31 31 31

The results for the ground state energy values at succesive orders within the frame of
the above expressions are given below. The agreement between our calculation and

the corresponding exact values is remarkably reasonable.
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Table 2.1 Lowest eigenvalue of the anharmonic oscillator

g N=1 N=2 N=3 N=4 Exact [40]
0.001 1.00075 [1.00075 [1.00075 |1.00075 |1.000748
0.01 1.00742 [1.00737 [1.00737 |1.00737 |1.007373
0.05 1.03558 |1.03467 [1.03474 [1.03473 |1.034729
0.1 1.06792 |1.06500 |1.06533 |1.06528 |1.065286
05 126255 |1.23689 |1.24347 |1.24118 |1.2418541
1.0 143113 [1.38082 |1.39672 |1.39017 |1.392352
10 260124 [2.38404 |2.47867 |2.42910 |2.449174
100 537603 |4.82115 |5.08211 |4.93770 |4.999417
1000 114763 |10.2346 |10.8285 |10.4960 |10.639789
10000  |24.6756 |21.9784 |23.2731 |22.5463 |22.861608

If one repeats the same calculations for the first excited state (n =1), for which the

superpotential is set W = ax — 1 in the light of Eq. (2.3.2), then the first order yields
X

2af, =g , f,= %(a2 ~1) = E),-9E, —1375 g=0, (2.3.7)
and at the second order we have
f?+2af,=0 , f,= 2af, — ¢ E:, - 3—34 EZ, —50¢E,, +21=0, (2.3.8)

while the third order expressions are

2
2(af, + 1,1,)=0, , =%
E°,-14E°, -57gE%, +45E ,+243g =0 (2.3.9)

12



In our calculations, the upper bounds which are the largest real and positive roots in
these equations are chosen as the energy of the anharmonic oscillator in the related

guantum state.

The repeat of such calculations for large successive orders reproduces similar
relations in a manner of hierarchy. The systematic calculation of perturbation
corrections of large orders offer no difficulty if we resort a computer algebra system
like Mathematica, Mapple or Reduce. This realization leads us to generalize
anharmonic oscillator solutions for the ground and first excited states without solving
the Schrodinger equation. To calculate the energy values individually at each

perturbation order, one needs to solve only

N

2 fifu =96, =0, (2:3.10)
k=0
in which ¢ is the Kronecker delta and f, =a is the parameter related to Eq. (2.3.2).

The perturbation coefficients above can easily be computed through
1 N-1
f, =(2N+2n+1) (Z fofys —Ong — gész . (2.3.11)
k=0

The calculations are carried out for different range of g values and the results
obtained for the ground and first excited state energies are compared to the one
computed numerically. The agreement is remarkable in the whole range of g values
for the first excited state (n=1), see Table 2.2. The large order perturbation
calculations are performed by a simple use of Mathematica [51] along the line of Eqg.
(2.3.10) and Eq. (2.3.11) with simple algebraic manipulations.

13



Table 2.2 First excited state energies of the anharmonic oscillator

g N=1 N=2 N=3 N=4 N=8  |Exact [40]
0.001 3.00374 [3.00374 |3.00374 [3.00374 |3.00374 |3.003739
0.01 3.03682 [3.03652 |3.03653 |3.03653 |3.03653 |3.036525
0.05 3.17236 [3.16683 |3.16727 |3.16722 |3.16723 |3.167225
0.1 3.32148 [3.30511 |3.30718 |3.30681 |3.30687 |3.306872
05 414123 [4.03032 |4.05869 |4.04924 |4.05171 |4.051932
1.0 480180 |4.60453 |4.66448 |4.64159 |4.64784 |4.648813
10 9.11388 |8.39998 |8.68054 |8.55128 |8.58582 |8.599004
100 19.0576 |17.3193 |18.0446 |17.6965 |17.7864 |17.83019
1000 40.7899 |36.9427 |38.5693 |37.7818 |37.9829 |38.08683
10000  |87.7547 |79.4176 |82.9526 |81.2378 |81.6747 |81.90331

2.3.2 Calculations for n > 2 states

When dealing with excited states this approach seems rather cumbersome because
the zeros of the wavefunction have to be taken into account explicitly. However, with
some simple but physically acceptable algebraic manipulations, we can obtain simple
analytical expressions for higher excited states easily from a straightforward

generalisation of the resulting expressions at successive perturbation orders as in the

previous section.

Starting with the second excited state (n=2), where from Eg. (2.3.2) the

superpotential is W, _, =ax(2ax? —5)/(2ax? —1), energies up to for example the fifth

order (N =5) can be obtained through

2af, =g , f, :%(a2 —1)

N=1
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f0+2af, =0, f, =0 , N=2
2
2(af, + f,f,)=0 , g:% , N=3
oaf, + f, f

£2 4 2(f,f, +af,)=0 | f4=m . N=4

14

2
o5 f, + £.1, +af)=0 , f, =tz tAffral) g o (2.3.12)
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In these treatments, to remove the singularities in the related super potential due to

the zeros of the wavefunction, we accept that 2ax®>1 leading to physically
acceptable results. This simple assumption reproduces good accuracy in the
calculations when compared to tedious calculations of LPT for higher excited states.

The results obtained are shown in Table 2.3

Table 2.3 Second excited state energies of the anharmonic oscillator

g N=1 N=2 N=3 N=4 N=15 Exact [40]
0.001 5.00997 |5.00996 |5.00996 |5.00996 |5.00996 |5.009711
0.01 5.09715 |5.09606 |5.09609 |5.09609 |5.09609 |5.093939
0.05 5.44017 |5.42257 |5.42423 |5.42401 |5.42404 |5.417261
0.1 5.79852 |5.75129 |5.75799 |5.75670 |5.75694 |5.747959
0.5 7.60690 |7.35517 |7.41992 |7.39911 |7.40489 |7.396900
1.0 8.98161 |8.56694 |8.68960 |8.64563 |8.65908 |8.655049
10 175870 |16.2662 16.7452 16.5461 |16.6188 |16.63592
100 37.0665 |33.9532 |35.1363 |34.6287 |34.8238 |34.87398
1000 79.4750 | 72.6342 |75.2605 |74.1261 |74.5674 |74.68140
10000 171.046  |156.245 161.940 |160.830 |160.437 |160.6859

Finally, within the same framework one can readily get similar expressions for other

excited states. For instance, in order to deal with the third excited state (n =3) of the
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anharmonic oscillator one can choose the corresponding super potential
W, :(2a2x4 —9ax? +3)/(2ax3 —3x) via Eq. (2.3.2) for the unperturbed piece of the

potential and end up with some explicit algebraic equations at each order,

2af, =g fl=%(a2—l) , N=1,

_ 2af, —g

f?+2af,=0 , f
1 2 2 14

_ f2 +2af,

2(af, + f,f,)=0 , f, 1

, N=3, (2.3.13)
...and so on. In this case the wave function and consequently the superpotential have
three zeros at x=+,/3/2a. As argued above, to circumvent the resulting

singularities the present calculations here make a similar assumption that is

2ax’ > 3x which produces reasonable results. This choice however for higher excited

2N+2

states with n>3 allows only the coefficients f, with X" and x*"** through the

linear perturbation expressions at each order. The results obtained are illustrated in
Table 2.3. Although the present formalism suggest a systematic way of improving
the anharmonic oscillator perturbation series, the accuracy of the present formulae as
expected gets decrease with the increase of the quantum number since the

perturbation becomes more important.

Nevertheless, owing to the nearly correct large g behaviour of the results presented
here they are expected to be much more accurate than the perturbation series. This
idea exploited by Fernandez et al [41] in order to obtain analytical expressions for

the eigenvalues of the anharmonic oscillator from the semiclassical considerations.
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Table 2.4 Third excited state energies of the anharmonic oscillator

g N=1 N=2 N=3 N=4 N=15 |Exact [40]
0.001 7.02091 [7.02087 |7.02087 |7.02087 |7.02087 |7.018652
0.01 7.20124 [7.19823 |7.19833 |7.19832 |7.19832 |7.178573
0.05 787793 |7.83590 |7.84053 |7.83985 |7.83995 |7.770271
0.1 8.54838 |8.44564 |8.46179 |8.45849 |8.45913 |8.352677
05 117019 [11.2511 |11.3683 |11.3315 |11.3415 |11.11515
1.0 140000 [13.2973 |13.5021 |13.4319 |13.4524 |13.15680
10 28.0000 |25.9479 |26.6524 |26.3804 |26.4698 |25.80627
100 59.3169 |54.5806 |56.2681 |55.5997 |55.4001 |54.38529
1000 127.327 |116.968 |120.689 |119.207 |119.712 |116.60319
10000  [274.100 |251.711 |259.767 |256.555 |257.651 |250.95073

In the light of the above discussions one can easily generalize the whole

calculations discussed in Section 3 in a compact form to determine the solutions of

quartic anharmonic oscillator in a closed algebraic form, which should be valid for

the all states. Eq. (2.3.10) can be safely used for this purpose, however the

coefficients should be re-defined as

N-1
fy =(2N +2n+a, ){Z fo oy — Ony — gész ,
k=0

(2.3.14)

where ¢, =(n—1)+¢«, , being with n>1 and «, =1. As a matter of fact, the only

data that is needed when using Mathematica is Eq. (2.3.14) to solve Eq. (2.3.10)

yielding energy values through the perturbation orders for any quantum state.
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2.3.3 Large-order calculations

A question now arises about the convergence of the method just described. Since
it seems closely related to perturbation theory, one expects it to be asymptotic
divergent. The numerical results shown here almost confirm this assumption. We
have calculated low-lying energy levels of the anharmonic oscillator for several g
values, finding almost the same behavior in all cases. Tables 2.5 and 2.6 represent
the oscillations of our results, though they remain quite close to the true eigenvalue,

about its actual value as the perturbation order (N ) increases, which are carried out
for g=1 and g =10 respectively for the lowest state. Although divergent the

present method is still useful because it certainly improves the perturbation series.
The most accurate results are obtained from the N value corresponding to the
smallest oscillation amplitude. Such an accuracy cannot be obtained from the other

perturbation series.

Table 2.5 Lowest eigenvalues calculated for ¢ =1 at large orders

N E. o N E.

5 1.39357 |15 1.39269
6 1.39155 |16 1.39196
7 1.39201 |17 1.39272
8 1.39191 |18 1.39221
9 139271 |19 1.39273
10 139202 |20 1.39231
11 139265 |21 1.39273
12 139201 |22 1.39235
13 139266 |23 1.39272
14 1.39186 |24 1.39238
Eo2 =1.392352
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Table 2.6 Lowest eigenvalues calculated for g =10 at large orders

N E, N E,

5 2.46214 15 2.45815
6 2.43752 16 2.44941
7 2.45804 17 2.45808
8 2.43856 18 2.45067
9 2.45720 19 2.45800
10 2.43125 20 2.45176
11 2.45752 21 2.45798
12 244277 22 2.45276
13 2.45799 23 2.45798
14 2.44735 24 2.45358
EZ°C = 2.449174

2.4 Concluding Remarks

We have discussed that the eigenvalues of quantum mechanical systems can be
approximately obtained from the present formalism of Ref. [32] which is non-
perturbative, self-consistent and systematically improvable. Although we have
limited ourselves to one illustrative example, the range of application of the method
is rather large and appears to be straightforward. The perturbation procedure is well
adapted to the use of software systems such as Mathematica and allows the
computation to be carried out up to high orders of the perturbation. For any given
state, simple algebraic manipulations provide, at the same time, analytical
expressions of the perturbed eigenvalues and eigenfunctions, without having to

compute any matrix elements or to perform any integration.
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The increase in the value of g for different quantum numbers do not imply special
difficulty, unlike the other perturbation theories available in the literature.
Furthermore, the remove of the singularities in the unperturbed wavefunction via the
superpotential introduced in the present formalism does not cause tedious
calculations which are great pain when dealing with excited states in the other
theoretical treatments.

As a concluding remark, due to its simplicity and accuracy in particular for small
g-values at low-lying states we believe this method to be competitive with other
methods developed to deal with perturbation treatments. As a matter of fact that, the
degree of precision of the results can be drastically improved by raising the
perturbative order in the expansion, a step which does not bear any technical
difficulty. It would be interesting to extend the present scheme to other non-exactly
solvable potentials.

In the next chapters, we will introduce alternative schemes to solve all classes of
potentials, involving solvable and non-solvable potentials, with constant and also
position- dependent masses. We will further discuss the relation between the model

presented here and the one that will be introduced in the following chapter.
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CHAPTER 3

AN EXTENDED FORMALISM FOR THE SCHRODINGER EQUATION
WITH A CONSTANT MASS

A simple method of investigating the solution of the Schrodinger equation,
which is related to the work of Bhattacharjie and Sudarsan [18] has been known for a
long time. These authors applied their method to the hypergeometric, confluent
hypergeometric and Bessel equations. Later it turned out that it can be related to
algebraic techniques of solving differential equations [19]. Another systematic
application of this method (to the hypergeometric functions) has been carried out by
Natanzon [20] independently. In the following years, there has been also renewed
interest in simple quantum mechanical systems as a result of the introduction of two
important concepts: supersymmetric quantum mechanics (SUSYQM) and shape
invariance. For a comprehensive review on this topic, the reader is referred to [11]
and the related references therein. In the light of this progress and the previous works
mentioned, a significant question has then arised regarding if there are any other
special functions which are solutions of the Schrodinger equation with shape
invariant potentials. This question has been answered in detail by Lévai [21] through
the consideration of the link between the works in [18-20] and the formalism of
SUSYQM, deducing a condition which has to be satisfied by any special function
leading to the orthogonal polynomials and exactly solvable shape invariant
potentials. Besides the results obtained, the combination of SUSYQM with
traditional approaches to solvable potentials proved to be fruitful. For instance, Refs.

[22-31] involves some applications of the original idea discussed in [21].

However, to our knowledge, this formalism up to now has been used only to
study exactly solvable systems. Therefore, it needs a meticulous modification to also
solve more realistic other systems as the ones of interest in this article. Within this

context the main motivation behind the present work, bearing in mind that realistic
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physical problems can practically never be solved exactly, is to suggest a more
comprehensive and generalized model [57] using the spirit of the investigation in
[21], which escaped notice in other publications. As an illustration, the present novel
scheme is applied first to quartic anharmonic oscillator since there has been a great
deal of interest in anharmonic oscillators due to their phenomenological as well as

methodological use in physics.

These potentials also has the characteristics of being a rather simple model where
many non-trivial features essential to understanding quite complicated system may
be implemented. Their exact solutions however for arbitrary couplings are hard to
find. This has culminated into the development of many fascinating techniques based
on perturbative and non-perturbative approaches, which was well discussed in the
previous chapter. Thus, it appears challenging to test our formalism in avoiding the
failure of other perturbation series for the treatment of the quartic anharmonic
oscillator. For completeness, the model proposed will also be applied to the well-
known sextic oscillator problem, which provides an alternative perspective in

justifying the capability of widespread applicability of the present scheme.

In Section 3.1 we present the formalism of our method, and in Section 3.2 we
apply it to distinct cases including different potentials in order to convince the reader
regarding the reliability and flexibility of the model introduced. Section 3.2 also
discusses a significant result behind the calculations and clarifies the inter-relation
between the present formalism and the one used in [32] that was performed within
the frame of an extended SUSYQM theory. Finally, concluding remarks are given in
Section 3.3.

3.1 Formalism

It is well known that the general framework of non-relativistic quantum mechanics is
by now well understood and its predictions have been carefully proved against
observations. Physics is permanently developing in a tight interplay with
mathematics. It is of importance to know therefore whether some familiar problems

are of particular case of a more general scheme or to search if a map between the
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radial equations of two different scenarios exist. It is hence worthwhile to devote
ourselves to the clarification of this point through the rest of this article.

Considering the Schrodinger equation (7 =2m =1)

d?¥

X2

+(E-V())¥ =0 (3.1.1)

we suggest, for a generalized formalism, that
Y(x) = F)F(Oh(x) (3.1.2)

where f(x)F(g) Yields an algebraic closed solution for exactly solvable potentials
[21-31] with F(g) being a special function which satisfies a second-order
differential equation

d?F
dg?

+Q<g>j—';+ R(G)F(g) =0 , (3.13)

while h(X) is the moderating function in connection with a perturbing piece of the
full potential corresponding to Eq. (3.1.2). The form of Q(g) and R(g) is already
well defined for any special function F(g)when dealing with analytically solvable

potentials. However, in case of the consideration of a realistic non-exactly solvable
problem one should derive reliable expressions, in an explicit form, for plausible

definitions of the related Q(g)and R(g). This is the significant point in the

framework of the new formalism to reach physically meaningful solutions.

Substituting Eq. (3.1.2) into Eq. (3.1.1) leads to

d2F dF( g" 2f' 2W
t—| = t+—+— |+
dg® dgl(g)* fg' hg'

fr 26N " E-V(X)
E =0 3.14
(g)[ug')z “They h@y (@Y j (314

From the comparison of Egs. (3.1.3) and (3.1.4) it follows that

g +2f +2h

QOM) = o7+ 17 g

(3.1.5)
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and

i 2f'h W E-V(X)
!2+ /2+ 12+ "2
(97" fh(g)" h(g)" (9"

R(g(x)) = . (3.1.6)
Obviously, Egs. (3.1.4-3.1.6) reduce to Egs. (3.4-3.6) in Ref. [21] for the

consideration of exact solvability, in which case h(X) in the equations above goes to

a constant value. Gaining confidence from this observation we proceed with

V(X) = Ve () + AV (x)

3.1.7
E=E. +AE 3.L7)

in accordance with our choice in Eq. (3.1.2), which means that potentials considered
in this article are admitted as the sum of an exactly solvable potential with a

perturbation or a moderating piece. Hence, the aim in this perspective is to reveal the
corrections to energy (AE ) and wavefunction h(x) for a given AV (x), as the main

piece of the solutions leading to exact solvability can easily be found from the

literature.

The use of Eq. (3.1.7) within Eq. (3.1.6) produces coupled equations in the form of

Ees —Ves () = Res (9(X))(9)* - £/ : (3.1.8)
and
AE — AV (X) = AR(g(x))(9")* = 2f'h’/(f h)—h"/h (3.1.9)

where R (g)+AR(g) should certainly reproduces Eg. (3.1.6). Similarly, Eqg. (3.1.5)

can be decomposed as
Qe (9(x)=9"/(9)* +2f'/fg" , AQ(I(x)=2hhg’ = Q=Qgx+AQ  (3.1.10)

To be more practical it is reminded that f”/f =(f’/f)>+(f’/f)" and the same is

valid for h"/h in the equations above, which transform Egs. (3.1.8) and (3.1.9) into

more applicable forms

Ee Ve (x>=§;,—§(g—fj +(g')2[REs<g<x»—%‘f—gES—%Qés (g(x»] (3.1.11)
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and

n

AE ~ AV (x) =—(%+ f'fg'jAQ(gm)+(g'){AR(g(x»—%%f)—%mﬂg(x»}

(3.1.12)

The result of this brief investigation opens a gate to the reader for the
visualization of the explicit form of the correction (AE) to the energy.
Unfortunately, there seems a problem naturally arised in calculating the correction

term owing to the presence of two unknown: AQ(g)and AR(g)on the right hand

side of Eq. (3.1.12). To circumvent the resulting drawback and proceed safely we
need to go back Eq. (3.1.4) and substitute the definitions given by Eq. (3.1.7) in it,

which leads us to handle

_ __Aft Flg') R
AE-AV (x)=-= (f + F(g(x»j - (3.1.13)

that is another form of Eq. (3.1.9). Thus, equating Eqg. (3.1.9) and Eq. (3.1.13) and
remembering the form of AQ(g) in Eqg. (3.1.10) we arrive at

AR(g) = —AQ(Q)% (3.1.14)

which is vital to overcome the problem encountered in Eq. (3.1.12). As F(g) is well

defined for a given exactly solvable potential, evidently one needs here to find only

an appropriate expression for AQ(g) to be employed in Eq. (3.1.12) that reveals

clearly the full solution. However, singular functions appearing in Egs. (3.1.13-
3.1.14), and subsequently in Eq. (3.1.12), are systematically generated when dealing

with excited state wavefunctions of any given potential due to the zeros of F(g)

function. The effects of this consideration on the calculations are discussed in
Section 3.2.

Before closing this section, we should remark that once choosing carefully Qg (g)

and R (g) for the analytically solvable part (Vs (x)) of the full potential under
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investigation we can easily set a proper internal function g(x) and considering Eq.

(3.1.5)
1g(><)
f(x)~ (g™ exp& [ Qe (g)dg} , (3.1.15)

as discussed in Ref. [21], which are used in Eg. (3.1.12) to find corrections to the

solutions of the exactly solvable piece.

The application of the model to specifically chosen different potentials is discussed

in the following section.

3.2 Application

Special care has to be taken in the application of the model as the results
obtained are crucial in the interpretation of the system behavior in terms of the
Hamiltonian described in this work. To reveal especially the flexibility of the scheme
used particular cases are discussed below.

3.2.1 Quartic oscillator

In the light of experiences gained from successful modeling based on
anharmonic oscillators, an obvious step in the direction of improvement is to define
modifications more accurately brought by anharmonic terms leading to more precise

descriptions of the systems considered.

Keeping this point in mind, and also to clarify the relationship between the procedure
proposed in this article and the one [32] that was presented in Chapter 2, together
with the comparison of the results obtained, we restrict ourselves to the Schrodinger

equation in one dimension (¢ = 0) and consider the anharmonic potential as

V(x)=x>+8x", (3.2.1)
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in which the first piece Vv (x) = x> represents the well-known exactly solvable

harmonic oscillator potential. From the differential equation of the Hermite

polynomials [52] one can see that
F(g)=ep(-g*/2H,(9) . Re(9)=2n+1-g* |
Qs(9)=0 , g(¥)=a"’x (3.2.2)

where a(=w/2) is the parameter related to E. . Clearly, from Egs. (3.1.11) and

(3.1.15), the main contributions through to the closed analytical solutions of the

harmonic oscillator are
1 2
Ec =2a(n+E) , n=012.. , ¥ =TfX)F(@) =exp(—g?)Hn(g) (3.2.3)

in which W is the unnormalized wavefunction for the exactly solvable piece of the

unharmonic oscillator.

As the whole potential in Eq. (3.2.1) has no analytical solution, one may expand the

related functions in terms of the perturbation such that AV(r):ZAVN(r) and

N=1
Ag, = ZgnN where N denotes the perturbation order. In connection with this idea
N=1

we choose, after some exhaustive analyses, the form of AQ as

2 . o
AQ(9) =—EZJNXZN ! (3.24)
N=1

and substitute all the above expansions into Eqg. (3.1.12) by equating terms with the
same power of the perturbation order on both sides, which yield the modifying terms
in the frame of coupled equations at successive orders for different states. It is
stressed that as g(x), f(x)., F(g) and finally AR(g), from Egs. (3.1.14) and
(3.2.4), are known one can compute readily the corrections to the whole solution
using Eq. (3.1.12) at each perturbation order for a quantum state of interest. Before
discussing the calculation technique of the corrections to the energy, it is reminded

that the modifying function in Eq. (3.1.2) is formed consistently as
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h(x) = exp(%jAngJ (3.2.5)

as a consequence of the choice in Eg. (3.2.4) and the eventual use of it in Eq.
(3.1.10).

The systematic calculation of energy corrections in different orders involving large
N —values offers no difficulty if we resort a computer algebra system like
Mathematica. The repeat of our calculations for large successive orders reproduces
similar relations in a manner of equation hierarchy. This realization leads us to
generalize anharmonic oscillator solutions obtained within the frame of Eq. (3.1.12),
without solving the Schrddinger equation. To calculate the energy values

individually at each order we need to solve

N - -

ZJkJN—k — POy =0 (3.2.6)
k=0

in which & is the Kronecker delta and j, =a=wj/2. The perturbation coefficients

above can be computed through

k=0

N-1
Jn =N +2n+an)_l(zjij—k—1_5Nl_ﬁ5N2j (3.2.7)

where «, = (n—1)+ ¢, , for the excited states (n>1) and ¢, =1 in the case of ground

(n=0) and first excited state (n=1) calculations. As a matter of fact, the only data
that are needed when using Mathematica is Eq. (3.2.7) to solve Eq. (3.2.6) producing
energy values through the perturbation orders for any quantum state.

The calculations are carried out for different range of g —values and the results

obtained for different states at various orders are compared to those of the work in
[32] given in the previous chapter. The agreement is remarkable in the whole range
of p—values. AIll the numerical results produced by completely different
mathematical procedures of the two alternative approaches, the present one and the
other in [32], are exactly the same, which for clarity are not repeated here. This
interesting coincidental outcome is of course due to the natural inheritance of the

same calculation scheme, Eq. (3.2.6.) and (3.2.7), in both model. As the same results
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tabulated in [32] through the Tables 2.1 and 2.6, which are illustrated in Chapter 2,
are appeared naturally in the present work with the same precision, and also the
accuracy, convergency and the success of the identical model are well discussed in
[32] when compared to other techniques available in the related literature, we intend
in this section to focus our attention only to this interesting inter-connection between
the seemingly alternative but in fact identical prescriptions for the treatments of

bound states in non-relativistic domain of the subatomic world.

The most significant piece in [32] is Eq. (2.2.8) discussed in Chapter 2 to find energy

corrections through the model used,
AE = AV (%) = =[ AW (X) +2W (X) AW (X) ]+ AW'(x) (3.2.8)

where W (x) and AW (x) are the superpotentials, concerning with the exactly

solvable part V(X) and the perturbing piece AV (x) respectively, as appeared

correspondingly in Eq. (3.2.1) above. From the extended definitions of superpotential
terms in Ref. [32] by employing the spirit of the standard treatment of SUSYQM, we

make clear that

W, (x) =—%In e ——(fTJr Fan J , AW (x) :_% (3.2.9)

Certainly, the substitution of Eq. (3.2.9) into Eq. (3.2.8) yields Eq. (3.1.13) which
can easily be transformed to Eqgs. (3.1.9) and subsequently (3.1.12) as discussed in
the previous section, clarifying the reason behind obtaining the identical results.
Further, from the definitions of AW in Eq. (3.2.9) and AQ in Eq. (3.1.10) and also
Eq. (3.2.5) one can find an explicit relationship such that AQ =-2AW/g’ which

makes another link between the theoretical considerations of the models being

analysed in this section.

Afterall, this brief but concrete analysis sheds a light on a remarkable
coincidence regarding the identical treatment of the two alternative scenarios
underlined. This investigation also completes the idea of Lévai [21] in which he has
related his simple analytic scheme with the treatment procedure in the standard

SUSYQM, as the present discussion has made clear the close relation between the

29



generalized work introduced in this article and the method proposed in [32] within
the extended framework of SUSYQM, in a similar but extended manner used by
[21].

3.2.2 Sextic oscillator

To improve the precision of the description of bistable systems one has to add a
sextic term to the quadratic anharmonic oscillator equation discussed above. Though
this section deals with the applications involving general form of sextic oscillators,
we need first to remind briefly a peculiar behaviour of such potentials in case it is
quasi-exactly solvable, which would be useful in understanding the mathematical
procedure behind the present calculations leading to the energy values in case the
sextic oscillator potential of interest is non-solvable.

The quasi-exactly solvable form of sextic oscillator potentials with a centrifugal
barrier is defined [53]

V(X) = (2s _]/23((225 —3/2) {az —4b(s +%+ M ﬂ X 2+ 2abx* +b2x® (3.2.10)

where x<[0,0) and M is a non-negative integer. For any value of M, leading to

certain combinations of potential parameters, only M+1 solutions for the related

Schrédinger equation can be obtained in an algebraic fashion. The simplest solutions

are obtained for M=0 and M=1.

Starting with M=0 case and considering Eq. (3.1.7),

VES(x)=a2x2+(25_]/2)(225_3/2) : AV(x)=—4b(s+%]x2+2abx“+b2x6 (3.2.11)
X

where the exactly solvable piece, in general, requires

F@)=L () . Qu(@)=(2s-0)/g . Ry(g)=n/g, (3.2.12)
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in which g=ax* that yields f ~ x26~Y%®exp(—ax?/2). Hence the corresponding

ground state algebraic solutions for V(r) are

EE%=4as , WEO(x)~x26"VDexp(—ax?/2). (3.2.13)

To obtain the modifying terms to the solutions in Eqg. (3.2.13), due to the additional
term (AV) in Eq. (3.2.11), we set AQ as

AQ(g) = —%g = —gxz , (3.2.14)

and the substitution of which into Eq. (3.1.12) reveals that
ENY =4as , WHS(0) = f(0Oh() ~ x2C/Pexp (- 2x* —2x2)  (3.2.15)

Obviously, the solutions reduce to the analytically solvable harmonic oscillator for

the choice of b=0, which clarifies that the contributions to EJ;°due to the two
pieces of AV in Eq. (3.2.11), having opposite signs, cancel each other.

However, the situation for the case of M=1 is different. Because, the generalized

Laquerre  polynomial now is not constant, which appears as

1
2(s—)
F(@)=L_*(9)= 2s—ax”. Moreover, the change in the potential parameter of the

harmonic oscillator like term forces us to re-consider the structure of g=ax’ which

now should be A(a,b,s)x* due to the presence of anharmonic terms in the potential.

1
2(s-=)
This behaviour thus requires the replacement of L _ * = 2s—ax’ with an appropriate

) 2 o
another orthogonal polynomial P_ * (9)=2S—AX". With this new consideration the

full wavefunction for the first excited state becomes
- A(ab,s) _ b
PM=L(x) ~ (1 — %xz) x26=1/Nexp (—Zx4 - %xz) (3.2.16)

which guides us to use the exact treatment, *” _,, -, unlike the ground state case,
W

that produces the related energy value as
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EMt=4(as+1) , ﬂ,i(a,b,s):%(a$x/a2+8bs) (3.2.17)

As stated in Ref. [53], A. choice has to be made for n=0 and n=1 state

F

calculations, respectively. Note that b=0 case causes A, —a, subsequently

1
2(s—) 453 . . .
Pn=1S 4 —>Ln(=l ‘J which reproduces the known solutions of the usual harmonic

oscillator problem.
It has to be finally remarked that the solutions for M=0 and M=1 belong to different

sextic potentials if s (:ng%j is the same, as the coefficient of the quadratic term is

different then. This shifting in the parameters defines the corresponding energy value
for different considerations which are certainly related to the same subsequent
perturbation order solutions in distinct quantum states if one deals with non-solvable

sextic oscillator problems discussed below.

To complete the discussion in this section, we consider now a general form of

the sextic potential in one dimension
V(X) = ux* +ox* +nx° | (3.2.18)

and solve the corresponding Schrédinger equation approximately within the frame of

the present scheme. In this case, Egs. (3.2.6) and (3.2.7) become

N
Z Ji Iy =00y =16y, =0
k=0

N-1
Jy=(2N+2n +Ofn)7l [z Ji I — MOy, — T0 _775N3j (3.2.19)

k=0

for the systematic calculations of the energy corrections concerning with the
quadratic and sextic pieces in Eq. (3.2.18) , where «, discussed in the previous
section. For clarity, as the details of the similar calculation procedure for the
quadratic potential were well discussed in Ref. [32] through Hermite polynomials,

we illustrate only our application results in Tables 3.1 and 3.2

32



Table 3.1 Comparison of the first four eigenvalues of the potential ,LlX2+77X6

obtained by the present method with the exact values ( [Ref. 40] for x =1, and Ref.

[54] for £=0)

#e o n N=4 N=8 N =12 Exact
1 0 0.1 1104923 1109628 1.109070  1.109 087
3.576 125 3.598684 3.595729  3.596 037
6.609983 6.662450 6.655648  6.644 392
10.391 040 10.483375 10.472339 10.237874
1.0 1418059 1442229 1435465  1.435625
4971886 5.051659 5.034736  5.033 396
9.831164 9.974381 9.958135  9.966 622
16.219169 16.435265 16.391053 15.989 441
10.0 2174017 2221521 2205998  2.205723
8.002 447  8.156 497 8.110650  8.114 843
16.353 667 16.624 921 16.587 359 16.641 218
27.537 122 27.940075 27.843302 27.155 086
100.0 3.665363 3.745295 3.718101 3.716 975
13.751 708 14.023562 13.966 820 13.946 207
28.440597 28.925950 28.863 060 28.977 294
48.230 105 48.952973 48.770486 47.564 985
1000.0 6.404 635 6.542058 6.487758 6.492 350
24,184 202 24.664 085 24.557556 24.525 316
50.214 147 51.077 401 50.968 447 51.182 480
85.350 546 86.638 619 86.308 303 84.175 584
0 0 1 1129584  1.153559 1.143340 1.144 802
4278386 4.363353 4.340883  4.338 599
8.899 753 9.053228 9.034111 9.073 085
15.143 475 15.372717 15.313502 14.935 169
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Table 3.2 Comparison of the present calculation results for the first four eigenvalues
of the potential ux*+ox* +nx°, where 1 =30, o =2030 and =100, with those

obtained with the two different algebraic models

Average SWKB [Ref. 55] Modified Hill Determinant Present Calculations
Method [Ref. 56]

7.3786 7.3569 7.3569

24.6861 24.6462 24.6462
46.3690 46.3355 46.3585
71.3823 71.3534 73.0669

The agreement is remarkable in the whole range of the potential parameters in the
low-lying states. Similar accuracy is observed for the higher quantum levels.
Nevertheless, when dealing with excited states the present approach becomes rather
cumbersome because the zeros of the wavefunction have to be taken into account
explicitly. As expected, due to the consequence of the radial nodes in - more

specifically - F(g) and subsequently AR(g) in Egs. (3.1.14) and (3.1.12), the

present formulae gives small accuracy for large quantum numbers since the

perturbation becomes more more important.

3.3 Concluding Remarks

An attempt has been made [57] to generalize the work in [21] and shown that the
mathematically rigorous new scheme unifies different theories for the solution of
Schrodinger equation with analytically/approximately solvable conventional and
energy-dependent potentials. The presented algorithm is also found to be equivalent
to the alternative model reported previously [32]. This remarkable coincidence has
revealed the bridge between the algebraic approach in the scenario introduced in this
work and the one carried out within the frame of an extended SUSYQM theory [32],

completing the discussion of Lévai [21] regarding the connection between the simple
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prescription used in his work and the procedure within the usual SUSYQM theory.
Although the literature covered similar problems, to our knowledge an investigation

such as the one presented here was missing.

Beyond its intrinsic importance as a new solution for a fundamental equation in
physics, we expect that the present simple method would find a widespread
application in the study of different quantum mechanical systems with constant and
position-dependent masses. In particular, the present discussion would be useful in
perturbational treatments of the exact spectra of a few particle systems, and thus

provide a further insight on discussion of the fractional nature of such systems.

The application of the present scenario, introduced in this chapter for the
systems with a constant mass, to the systems with spatially varying masses, will be

discussed in the next chapter.
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CHAPTER 4

AN ALTERNATIVE APROACH TO SCHRODINGER EQUATIONS WITH A
SPATIALLY VARYING MASS

Tracking down solvable quantum potentials has always aroused interest. Apart
from being useful in understanding of many physical phenomena, investigations of
such potentials also provide a good starting point for undertaking perturbative
calculations of more complex systems. Within this context, we have recently
suggested [57] a novel algebraic framework for the unified treatment of Schrodinger
equations, with a constant mass, involving solvable and non-solvable potentials,

which was also well discussed in the previous chapter.

For the completeness, and also considering the importance of quantum
mechanical systems with position dependent masses in describing the physics of
many microstructures of current interest [58], the model [57] discussed in the
previous chapter is to be extended in this chapter for also analysing the systems

having non-constant masses.

Unfortunately, up to now, the related previous works have dealt with only either
exact or quasi-exact solutions of the Schrodinger equation in a position-dependent
effective mass back-ground. In the other words, to the best of our knowledge, there
has been no ongoing discussion in the literature regarding approximate solutions of
non-solvable potentials for the case of non-consant masses. Therefore, at present,
there seems no room for a precise test of the application results of the prescription
introduced in Section 4.1. However, we believe that the present algebraic scenario
would find a widespread application in the near future due to the current interest in
microstructures, Ref [58], which eventually would require physically acceptable
approximate descriptions of such systems that should be investigated within the
frame of more complex and non-exactly solvable potentials. In addition, the recent
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progress [59,60] in analysing experimental data within the frame of algebraic models
to investigate nuclear structure gives us a signal for the possibility of using a

prescription such as the one presented in this chapter.

4.1 Formalism

As is well known the general Hermitian position-dependent effective mass
Hamiltonian, initially proposed by von Roos [61] in terms of ambiguity parameters

a, B, ) suchthat a+ f+y=-1, gives rise to the time independent Schrédinger

equation
Hy(x) = ———>i+veﬁ () (x)= Eplx) | (4.1.1)

where the effective potential

M/Z
M3

M "
M2

(4.1.2)

Vo (x)=V(x)+%(ﬂ+1) —[ala+p+1)+ p+1]

depends on the mass term. Here the prime denotes derivative with respect to X,

M (x) is the dimensionless form of the mass function m(x)=m,M(x) and we have

set 7 =2m, =1.

Considering the suggestion in Ref. [57], which is shown by Eq. (3.1.2) in the
previous chapter,

w () =[f (¥)F(g()]h(x) (4.1.3)

where f(x)F(g) Yields an algebraic closed solution for exactly and quasi-exactly
solvable potentials with F(g) being a special function satisfying Schrodinger-like
equations

d?F
dg?

+Q(g)j—Z+R(g)F(g>=o , (4.1.4)
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while h(x) is the moderating function in connection with a perturbing piece of the
full potential corresponding to, in our present consideration, Eq. (4.1.2). The form of
Q(g) and R(g) is already well defined for any special function F(g)when dealing
with analytically solvable potentials. However, in case of the consideration of a
realistic non-exactly solvable system one should suggest reliable expressions, in an
explicit form, for plausible definitions of the related Q(g) and R(g) functions. This
is the significant point in the framework of the new formalism to reach physically

meaningful solutions.

On inserting Eq. (4.1.3) in Eq. (4.1.1) and comparing the result with Eq. (4.1.4), we

arrive at
gﬂ 2f7 Ml 2h7
QUX) =—F+————+—; 4.1.5
(9)* fg' Mg' hg (419
and
7 2 N M o M o [E-V,(x)
R(O(X)=——5 + ot e T e e M N
f(g)? fh(g)* h(g)* M f(gf M h(g) (9"
(4.1.6)
where
y2 g(x)
M 1
f(x)oc(?j exp{E IQ(y)dy} . (4.1.7)

Obviously, Egs. (4.1.5 - 4.1.7) reduce to their standard forms (see, e.g., Ref. [21]) for
the consideration of exact solvability of Schrodinger equations with a constant mass

in which case M(x) and h(x) in the equations above appear as a constant. Gaining

confidence from this observation we proceed with
Vi (X) =V (X)+AV(X) , E=E+AE (4.1.8)

in accordance with our choice in Eg. (4.1.2), which means that potentials considered
in this chapter are admitted as the sum of an exactly (or quasi-exactly) solvable
potential with a perturbation or a moderating piece. Hence, the aim in this
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perspective is to reveal the corrections to energy (AE ) and wavefunction, h(x), for a
given AV (x) as the main piece of the solutions leading to exact solvability can easily

be found from the literature.

The use of Egs. (4.1.5) and (4.1.8) within the frame of Eq. (4.1.6) leads to the

coupled equations in the form of

Ee V) oy -i(g_"j2+<9'>2{RE5<9>_1_dQEs<g>_é 500 e

=—— ——t—
2Mg’ 4M | g’ M 2M?  4M*

(4.1.9)

and

AE — AV () =—ﬁ(g"+ﬂ—M—g’jAQ(g)+ %{AR(Q)—EM—%AQZ(Q)}

f M 2 dg
(4.1.10)
in which, from Eqg. (4.1.5), AQ(g):E—h: leading to
g
h(x) = exp (% [ AQ(g)dgj , (4.1.11)
and
2f'h’ h" M N [AE — AV (X)]

AR(g)= St +M ,

©)=Fh@) "hie) M hgYy @)

It is clear that Q. (g). together with R (g), related to algebraically solvable
potentials, can be obtained from Egs. (4.1.5) and (4.1.6) such that
Q(9)=Qx (9)+AQ(g) and R(g)=Rs(g)+AR(g)- Again, in case of exact
solvability Egs. (4.1.10) and (4.1.11) disappear naturally by reducing the scheme to
Eqg. (4.1.9), which justifies the reliability of the present work, see, e.g., Refs.
[28,30,31]. This realization puts forward the significance of Eg. (4.1.10) for
approximately solvable more complex quantum potentials, which is the main point in

this section.
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The result of this brief investigation opens a gate to the reader for the
visualization of the explicit form of the correction (AE) to the energy. Unfortunately,
there seems a problem arised in calculating the correction term owing to the presence
of two unknown: AQ and AR(g)on the right hand side of Eqg. (4.1.10). To
circumvent the resulting drawback and proceed safely, one needs to use the

interesting expression yielding inter-connection between AQ and AR(g) functions,

as was discussed earlier,

AR(g) = ~AQ(g) FF((S)) , (4.1.12)

that is obtained, after some exhaustive analyses, by considering the another form of
Eqg. (4.1.10)

1 |h" 2n(f" gF'(g) M’
AE_MX)__V{TT(TW_WH . (4113

As F(g) is well defined for solvable potentials, we obviously need here to find only
an appropriate expression for AQ to be employed eventually in Eq. (4.1.10), or in

Eq. (4.1.13) with the use of Eq. (4.1.11), that reveals the full solution.

It is however reminded that if the whole potential such as in Eq. (4.1.2) has no
analytical solution, one should expand the related functions in terms of the

0

perturbation such that AV (X) = ZAVN (x) and AE, = ZAEnN where N denotes the

N=1 N=1
perturbation order and n(=0,1,2,...) is the radial quantum number relating to bound-
state energy levels. In connection with this idea, the form of AQ should be chosen
carefully depending on N —values and the substitution of reasonable AQ values into
either Eq. (4.1.10) or Eqg. (4.1.13), and consequently equating terms with the same
power of the perturbation order on both sides, yields the modifying terms in the
frame of coupled equations at successive orders for different states. The procedure
has been well discussed in Ref. [57], and also in Chapter 3, for approximately

solvable unharmonic potentials involving constant masses.
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4.2  Application

This section gives a clue for exploring new potentials within the unique frame of
the formalism introduced. For clarity, we start with a simple example from the work

of Bagchi and his co-workers [28] where the form of the mass is chosen as M = Ag’

with 1 being a constant, which simplifies Eq. (4.1.9) as

Ees —VEs(X)=%{RES(9)—1M—1Q25(9)} ! (4.2.1)

that is responsible for the piece of the interaction having closed analytical solutions.

Another appropriate choice for the F(g) within the list of the orthogonal

a+l

polynomials used frequently in physics, F(g)= exp(—%) g(Zj L7 (g), implies that

n+a+l 1-a* 1
R(9)= + -, =0 . 4.2.2
The use of Eq. (4.2.2) in Eq. (4.2.1) requires that g'/Ag=,> which must be
restricted to positive values in order to get a constant term on the right-hand side of
Eq. (4.2.1). Setting 2 =-1/3, we arrive at g(x)=€” and, from the definition of

the mass form, M (x)=e#*. Therefore, the related solutions appear as

a+l

Ee :,Bz(n+aT+1J , W =T (x)F(g)ocexp(—%jg(z] Lr(9) . (4.2.3)

for the constructed solvable potential
_ 182 2 Lx - X 4 2 4
Vg (X) = [(a 1)e” +e J : (4.2.4)

At this stage, we focus on Eq. (4.1.10) to observe how additional potential terms can
be generated. This observation would clarify how the present model copes with the

perturbed piece of the potential, as well as the understanding of the procedure for the
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generation of new non-solvable potentials. With the use of M =g’ in Eg. (4.1.10),

we obtain AE —AV (x) = %[AR(Q)—EM—EAQZ (g)} , (4.2.5)

which is similar to Eq. (4.2.1). Bearing the structure of Eq. (4.2.1) in mind, in

particular n-dependence of R(g) term, we transform the above equation, with the

remind of Eq. (4.1.12),

AE—AV(X):—%{EAQ+EM+EAQZ} , (4.2.6)

F 2 dg 4

into the more applicable form. As the study of Eq. (4.2.1) has already defined F(g),
g(x) and 4, one needs here to deal with only AQ(g) term which is the central part of

the whole discussion. Obviously different choice of this term, depending of course
on the perturbation order (N) discussed in the previous section, would lead to distinct

functions generating new additional potentials including the corresponding energy
b<& ...
terms in each order. For instance, a possible choice of AQ(g) = ——,ZG(I, X), where
i=1

b is a constant and G is a general form of the physically reasonable functions,
would help us to define energy term from the first term in the bracket while
generating modifications to the main part of the potential in Eq. (4.2.4). It is clear

that there is no strict definition for the generating function G (i, x) which should be

determined by considering the structure of the realistic system of interest. It is
however stressed that the modifications in each order for successive quantum levels
should be individually considered. This requires a meticulous search for the
corrections brought by Eq. (4.2.6), in which expressions giving the structure of

F(g) for each state (n=0,12,...) ought to be used properly.

Finally, to clarify the flexibility of the approach used, it should be noticed that
additional exactly and quasi-exactly solvable quantum potentials in a spatially
varying mass context may also be generated. As an illustration, we choose again

M = Ag’ option and employ it in Eq. (4.1.10). This consideration leads to
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!

AE — AV (X) =— AQ(g) [V;/E:S(();))] _ 2% d [A;é(g )] _ 49_/; [AQ(g )]2 1

(4.2.7)

where, from Eq. (4.1.3), w(x)=f(x)F(g) is the exact (or quasi-exact) solution

for a solvable potential undertaken. To proceed we choose a specific example
assuming that the sum of the second and third terms on the right hand side of the

above equation is zero. This feasible assumption requires that AQ =2/g which
transforms Eq. (4.2.7) to

!

AE—AV(X):—EM ) (4.2.8)
M Y (X)
As, in general, ¥ and g(x) are readily obtained from Eq. (4.1.9), or they can be

extracted from the literature, Eq. (4.2.8) together with Eq. (4.1.8) may generate new

solvable potentials. In addition, the modification to the wavefunction (h(x)) due to
the additional potential (Av(x)) can easily be obtained through Eq. (4.1.11). More
specifically, the substitution of . in Eq. (4.2.3) into Eq. (4.2.8) generates a

modification in a closed form to the solvable potential in Eq. (4.2.4), the summation

of these terms (v +AV) is a new potential having algebraic solutions involving

either the whole or some part of the spectra.

Overall, the method described here has an ability of generating all classes of
potentials depending of course on the choice of the mass function and the use of
different orthogonal polynomials (F(g)) within the frame of Egs, (4.1.9), (4.1.10)
and (4.1.12), providing closed analytical or approximate solutions to the

corresponding Schrodinger equation.

4.3 Concluding Remarks

The literature covers many applications regarding the description of collective
nuclear properties in terms of the corresponding collective variables within the

framework of Bohr Hamiltonian involving exactly solvable potentials. However, the
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recent analysis [59] has introduced special solutions for the Morse potential which is
known to be exactly soluble only for ¢ =0, unlike the previous applications. For the
approximate treatment of quantum states having non-zero angular momenta, the
well-known Pekeris approximation has been used. This unusual consideration,
however, has suppressed the overestimation of the energy spacings within the beta-
band due to right branch of the Morse potential that imitates the sloped wall, which
has removed a main drawback of the earlier considerations. Furthermore, the Bohr
Hamiltonian and its extensions, for a recent review see Ref. [59] and the references
therein, have provided for several decades a sound framework for understanding the
collective behavior of atomic nuclei. It has been customary to consider in the Bohr
Hamiltonian the mass to be constant, as in [59]. However, evidence has been
accumulating that this approximation might be inadequate [60] in which significant
effects of using a mass depending upon nuclear deformation on the calculations of
spectra and analytical expression of the wavefunction describing the collective
motion of deformed nuclei was discussed in detail. Within this context, the present
algebraic model [63] seems promising as the scheme has a power of yielding the
required expressions in an explicit form for the Morse-like potentials mentioned
above and also the corrections due to the corresponding angular momentum barrier
involving deformation-/position-dependent mass systems. Along this line the works

are in progress.
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CHAPTER 5

CONCLUDING REMARKS

An attempt has been made to generalize the work in [21] and shown that the
mathematically rigorous new scheme [57] unifies different theories for the solution
of Schrodinger equation with analytically/approximately solvable all conventional
potentials. In addition, the procedure used here for approximately solvable potentials
is illustrated as to be well adapted to the use of software systems such as
Mathematica and allows the computation to be carried out up to high orders of the
perturbation. Further, the presented algorithm is also found to be equivalent to the
alternative model reported previously [32]. This remarkable coincidence has revealed
the bridge between the algebraic approach introduced in this work [57] and the one
carried out within the frame of an extended SUSYQM theory [32], completing the
discussion of Lévai [21] regarding the connection between the simple prescription
used in his work and the procedure within the usual SUSYQM theory. Although the
literature covered similar problems, to our knowledge an investigation such as the

one presented here was missing.

Beyond its intrinsic importance as a new solution for a fundamental equation in
physics, we expect that the present simple method [57] would find a widespread
application in the study of different quantum mechanical systems with constant and
position-dependent masses. In particular, the present discussion would be useful in
perturbational treatments of the exact spectra of a few particle systems, and thus
provide a further insight on discussion of the fractional nature of such systems.
Finally, the remaining question here is to know if the scenario put forward in the
present work is applicable to non-central potentials and also, after some necessary
modifications, to the related problems in the relativistic region. Along this line the

works are in progress.

45



Final chapter in this thesis has been devoted to the extension of the formalism
introduced in Chapter 3, where the model is applied to the systems involving position
dependent masses. The novel scheme developed originally [57] for the solutions of
Schrédinger equations with constant masses, has been successfully applied [63] to
other systems involving spatially varying masses. We also showed that the present
algebraic model is capable for the generation of potentials in all classes. We intend to
use this flexible technique [63] to answer some unsolved questions in nuclear physics
dealing with the structure of atomic nuclei with deformation- (like position-)
dependent potentials [59,60].

Moreover, recently, a modified factorization technique [62] of a quantum system
characterized by spatially varying mass-Hamiltonians has been presented and shown
that excited state wavefunctions of a given singular Hamiltonian can be used to
construct non-singular isospectral partner potentials. This work would be helpful to
remove the singularity problem naturally arised in the present formalism due to zeros

of F(g) function, which should be necessary for the case of considering higher

quantum states.
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