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ABSTRACT 

ADAPTIVE FUZZY FILTERING FOR ARTIFACT ELIMINATION IN 
COMPRESSED IMAGES AND VIDEOS 

KAÇMAZ, Seydi 

M.Sc. in Electrical-Electronics Eng. 

Supervisor:  Asst. Prof. Dr. Sema Koç KAYHAN 

August 2012, 72 pages 

 

Block-based Discrete Cosine Transform (DCT) image and video compression 

methods have been successfully used in image and video compression applications 

due to bandwidth and storage limitations. However, compression distortion becomes 

significant when these algorithms are used under a certain bit rate. The most 

noticeable degradations of block transform coding are blocking and ringing artifacts. 

 

In this thesis, two new adaptive post-filtering algorithms are proposed to remove 

observed coding artifacts as a result of DCT based image and video compression 

standards at low bit rates. With identification of coding artifact strength, fuzzy filter 

is applied by adjusting filtering range and its parameters.  

 

Experimental results showed that, the proposed algorithms exhibit better detail 

preservation and artifact removal performance with lower computational cost as 

compared to other post-processing techniques. Accordingly, these can be used for the 

real time image and video applications without undesired artifacts. 

 

Key Words: Block-based DCT, image and video compression, post-processing 

filter, coding artifacts, blocking artifact, ringing artifact, adaptive fuzzy filter, real 

time image and video applications 



 

ÖZET 

SIKIŞTIRILMIŞ İMGELERDE VE VİDEOLARDA BOZULMA ETKİSİNİ 
GİDERMEK İÇİN UYARLAMALI BULANIK SÜZGEÇLEME 

KAÇMAZ, Seydi 

Yüksek Lisans Tezi, Elektrik-Elektronik Müh. Bölümü 

Tez Yöneticisi:  Yrd. Doç. Dr. Sema Koç KAYHAN 

Ağustos 2012, 72 sayfa 

 

Blok temelli Ayrık Kosinüs Dönüşümünü (AKD) kullanan resim ve video sıkıştırma 

metodları, bant genişliği ve bellek kısıtlamaları yüzünden resim ve video sıkıştırma 

uygulamalarında başarılı bir şekilde kullanılmaktadır. Ama bu algoritmalar belli bir 

oranının altında kullanıldığında sıkıştırma bozulmaları önemli hale gelmektedir. Blok 

dönüşümünün en farkedilebilir bozulmaları blok ve yüksek frekans bozulmalarıdır.  

 

Bu tezde, düşük bit oranlarında AKD temelli imge ve video standartlarının 

sonucunda gözlenen kodlama bozulmalarını gidermek için, iki yeni uyarlamalı 

sıkıştırma sonrası algoritmalar önerilmiştir. Kodlama bozulmalarının şiddetine göre, 

filtre aralığı ve parametreleri ayarlanarak bulanık filtre uygulanmıştır. 

 

Deney sonuçlarına göre, önerilen algoritmalar diğer yöntemlere göre daha iyi detay 

koruma performansı sergilemekte ve daha düşük işlem yükü gerektirmektedir. 

Özetle, bu algoritmalar gerçek zamanlı imge ve video uygulamalarında istenmeyen 

bozulmaları gidermekte kullanılabilecektir. 

 

Anahtar Kelimeler: Blok-temelli AKD, imge ve video sıkıştırma, işlem-sonrası 

filtreleme, kodlama bozulması, blok bozulması, yüksek frekans bozulması, 

uyarlamalı bulanık filtre, gerçek zamanlı imge ve video uygulamaları 
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CHAPTER I 
 

INTRODUCTION 
 

Nowadays, a lot of communication applications contain pictures or video such as 

many web pages on the internet, video conferencing, video over the internet, 

videophones, high definition television (HDTV) among many others. And they are 

increasingly entered our lives. Accordingly, the storage and transmission is getting 

an importance. Because, uncompressed pictures or video requires very large space, 

also needs very high data rates without interruption. However, there are limited 

memory and bandwidth to supply these requirements. The most popular solution of 

this problem is to compress images or video by removing significant redundancy. 

Image or video compression techniques offer good solution to reduce file size while 

preserving the original content. 

 

There are two types of compression: lossless and lossy. Lossless compression 

removes only the redundancy in images. For this form of compression, the 

reconstructed images are identical to original ones. So, it doesn’t change any image 

detail. But unlike lossless compression, lossy compression has a trade-off between 

the amount of information lost and the degree of compression. The amount of 

compression is determined by the bandwidth requirements of the application. 

Applications have a very small bandwidth need at very high compression ratios. 

Under this condition, some visually annoying artifacts known as coding artifacts 

occur, in addition to loss of detail. The most obvious coding artifacts affect the visual 

quality of the image and video are blocking and ringing artifacts. Coding artifacts are 

making the image or video unpleasant to the viewer, as shown in Figure 1.1. For this 

reason, reduction of coding artifacts is essential to make the compressed image and 

video acceptable to the human viewer.  
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(a)                   (b) 

Figure 1. 1. The compressed Lena image at different bit rates; (a) 1 bbp (b) 0.188 

bbp. 

 

Block-based DCT coding has been widely used in image and video compression 

algorithms, such as JPEG and MPEG. Each block is coded in three main steps: 

transform, quantization and entropy coding. These steps are applied to each block 

independently of other blocks. Therefore, as the compression factor increases, the 

correlation between two adjacent pixels that fall into different blocks decreases 

because the reconstruction of these pixels becomes poorer in an independent manner. 

Consequently, an artificial discontinuity appears along this block boundary. This can 

be seen main reason for coding artifacts. Various methods have been proposed in the 

literature to reduce coding artifacts. In this thesis, new and efficient approach is 

developed.  

 

An overview of the remaining chapters is as follows: In the second chapter of this 

thesis, first, backgrounds for image and video processing and DCT are given, after 

that the description of coding artifacts are introduced, then, a summary of existing 

methods in the literature is provided. In the third chapter, fuzzy logic and filter is 

explained. In Chapter 4 and 5, proposed deblocking algorithm and deringing 

algorithm are presented respectively. Experimental results of the developed 

algorithms are showed and the success of methods is proved in Chapter 6. Finally, 

Chapter 7 summarizes contribution of this thesis to the literature, and points to future 

research directions. 
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CHAPTER II 
 

BACKGROUND 
 
2.1. Image and Video Processing Definitions 

An image signal can be considered as a continuous function of two dimensions; 

horizontal and vertical position. This signal must be digitized for the digital image 

processing and transmission. This involves sampling the signal along two dimensions 

and quantizing those samples. The resulting image samples are often referred to 

picture elements or pixels. The number of pixels used for the entire image is called 

the spatial resolution of the image.  

 

To represent a color, additive combination of three primary colors, red, green, and 

blue, is used. This representation of the color information is called the RGB color 

system. Quantization is often done with 8-bit accuracy for each of the color 

components. Consequently, each pixel is associated with three color components and 

each of them is represented by 8 bits.  

 

Similar to an image signal, a video signal can be considered as a continuous function 

in three dimensions; horizontal position, vertical position and time. Sampling the 

video signal in the temporal dimension gives us a sequence of images. These images 

can be sampled in the spatial dimensions and then quantized, as explained above. 

The sampled and quantized version of each of these images is called a frame in a 

video processing terminology. This way of digitizing the video signal is called 

progressive scanning. A video sequence can be seen as a collection of frames, with 

equal dimensions, sampled at equally spaced time intervals. 

 

2.2. Image Compression Using Discrete Cosine Transform 

Discrete cosine transform (DCT) is widely used in image processing, especially for 

compression. Some of the applications of two-dimensional DCT involve still image 

compression and compression of individual video frames, while multidimensional 

DCT is mostly used for compression of video streams. DCT is also useful for
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transferring multidimensional data to frequency domain, where different operations, 

like spread spectrum, data compression, data watermarking, can be performed in 

easier and more efficient manner. A number of papers discussing DCT algorithms 

are available in the literature that signifies its importance and application [1]. The 

DCT is an orthogonal transform, which has a fixed set of (image independent) basis 

functions, an efficient algorithm for computation, and good energy compaction and 

correlation reduction properties.  

 

The DCT belongs to the family of discrete trigonometric transform, which has 16 

members [2]. The 1D DCT of a 1 × N vector x(n) is defined as 

 

[ ] [ ] [ ]
N 1

n 0

(2n 1)k
Y k C k x n cos

2N

−

=

+ π 
=   

∑                 (2.1) 

 

where k = 0,1,2,..., N−1 and 

 

[ ]

1
for  k 0                    

N
C k

2
for  k 1,2,......, N 1

N

 
= 

 =
 

= − 
 

                          (2.2) 

 

The original signal vector x(n) can be reconstructed back from the DCT coefficients 

Y[k] using the Inverse DCT (IDCT) operation and can be defined as 

 

[ ] [ ] [ ]
N 1

k 0

(2n 1)k
x n C k Y k cos

2N

−

=

+ π 
=   
∑                           (2.3) 

 

where n = 0,1,2,..., N−1 and 

 

[ ]

1
for  k 0                    

N
C k

2
for  k 1,2,......, N 1

N

 
= 

 =
 

= − 
 

                          (2.4) 
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The DCT can be extended to the transformation of 2D signals or images. This can be 

achieved in two steps: by computing the 1D DCT of each of the individual rows of 

the two dimensional image and then computing the 1D DCT of each column of the 

image. If represents a 2D image of size x(n1,n2) N x N , then the 2D DCT of an 

image is given by: 

 

[ ] [ ] [ ] [ ]
N 1 N 1

m 0 n 0

(2m 1) j (2n 1)k
Y j,k C j C k x m,n cos cos

2N 2N

− −

= =

+ π + π   
=       

∑∑                      (2.5) 

 

where m = 0,1,2,..., N−1 , n = 0,1,2,..., N−1 and 

 

[ ] [ ]

1 1
for   j 0                     for   k 0                     

N N
C j         and     C k

2 2
for   j 1, 2, ......, N 1 for   k 1, 2, ......, N 1

N N

   
= =   

   = =
   

= − = −   
   

     (2.6) 

 

Similarly the 2D IDCT can be defined as 

 

[ ] [ ] [ ] [ ]
N 1 N 1

m 0 n 0

(2m 1) j (2n 1)k
x m, n C j Y k Y j, k cos cos

2N 2N

− −

= =

+ π + π   
=       
∑∑             (2.7) 

 

where m = 0,1,2,..., N−1 , n = 0,1,2,..., N−1 and 

 

[ ] [ ]

1 1
for   j 0                     for   k 0                     

N N
C j         and     C k

2 2
for   j 1, 2, ......, N 1 for   k 1, 2, ......, N 1

N N

   
= =   

   = =
   

= − = −   
   

     (2.8) 

 

The DCT is a real valued transform and is closely related to the DFT. In particular, a 

N x N DCT of x(n1,n2) can be expressed in terms of DFT of its even-symmetric 

extension, which leads to a fast computational algorithm. Because of the even-

symmetric extension process, no artificial discontinuities are introduced at the block 

boundaries. Additionally the computation of the DCT requires only real arithmetic. 

Because of the above properties the DCT is popular and widely used for data 

compression operation. 
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The DCT is applied to image blocks N x N pixels in size (where N is usually 

multiple of 2) over the entire image. The size of the blocks used is an important 

factor since they determine the effectiveness of the transform over the whole image. 

If the blocks are too small then the images is not effectively decorrelated but if the 

blocks are too big then local features are no longer exploited. The tiling of any 

transform across the image leads to artifacts at the block boundaries. The DCT is 

associated with blocking artifact since the JPEG standard suffers heavily from this at 

higher compressions. However the DCT is protected against blocking artifact as 

effectively as possible, without interconnecting blocks, since the DCT basis 

functions all have a zero gradient at the edges of their blocks. This means that only 

the DC level significantly affects the blocking artifact and this can then be targeted. 

Ringing is a major problem in DCT operation. When edges occur in an image DCT 

relies on the high frequency components to make the image shaper. However these 

high frequency components persist across the whole block and although they are 

effective at improving the edge quality they tend to 'ring' in the flat areas of the 

block. This ringing effect increases, when larger blocks are used, but larger blocks 

are better in compression terms, so a trade off is usually established [3]. The 

blocking and ringing artifacts are also discussed in the next parts. 

 

2.3. Jpeg Compression 

The JPEG (Joint Photographic Experts Group) standard has been around since the 

late 1980's and has been an effective first solution to the standardization of lossy 

image compression. Although JPEG has some very useful strategies for DCT 

quantization and compression, it was only developed for low compressions. The 8 x 

8 DCT block size was chosen. The JPEG Standard will be also briefly explained in 

this part to provide a basis to understand the new DCT related work [4]. 

 

The following is the general overview of the JPEG process. There are quite a lot of 

interesting techniques used in the JPEG standard and it is important to give an 

overview of how JPEG works. There are several variations of JPEG, but only the 

'baseline' method is discussed here. 

 

1) The image is broken into 8*8 blocks of pixels. 

2) Working from left to right, top to bottom, the DCT is applies to each block. 
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3) Each block is compressed through quantization. 

4) The array of compressed blocks that constitute the image is stored in a 

drastically reduced amount of space. 

5) When desired the image is constructed through decompression, a process that 

uses the Inverse Discrete Cosine Transform (IDCT). 

 

 

Figure 2. 1. JPEG Encoder. 

 

As shown in the Figure 2.1, the image is first partitioned into non-overlapping 8 x 8 

blocks. A Discrete Cosine Transform (DCT) is applied to each block to convert the 

spatial domain gray levels of pixels into coefficients in frequency domain. To 

improve the precision of the DCT the image is 'zero shifted', before the DCT is 

applied. This converts a 0 → 255 image intensity range to a -128 → 127 range, 

which works more efficiently with the DCT. One of these transformed values is 

referred to as the DC coefficient and the other 63 as the AC coefficients [5].  

 

After the computation of DCT coefficients, they are normalized with different scales 

according to a quantization table provided by the JPEG standard conducted by 

psycho visual evidence. The quantized coefficients are rearranged in a zigzag scan 

order for further compressed by an efficient lossless coding algorithm such as 

runlength coding, arithmetic coding, Huffman coding. The decoding process is 

simply the inverse process of encoding as shown in Figure 2.2. 

 

 

Figure 2. 2. JPEG Decoder. 
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2.4. Coding Artifacts 

During the image and video coding, block based discrete cosine transform causes a 

number of visibly annoying coding artifacts. Classifications of these coding artifacts 

are essential in evaluating the overall visual quality of the compressed images and 

video. To understand the image and video quality, causes of these artifacts and their 

effects on viewing quality need to be understood [6]. 

2.4.1. Blocking Artifacts 

Blocking artifact is the most recognizable and widely studied distortion in block 

based DCT coders. Generally, the blocking effect is perceived as a discontinuity 

between the boundaries of two neighboring blocks.  

 

The main cause of blocking artifact is the non-overlapping block coding strategy. A 

picture is divided into a number of non-overlapping blocks. Each block is 

independently transformed with the DCT and then quantized. The signal continuities 

between blocks are not always guaranteed and discontinuity between two blocks may 

become visible at the boundary between those two blocks. This artifact is called the 

blocking artifact. It is more prominent at a low-bit rate coding. This kind of edge 

artifact is composed only horizontal and vertical edges at the boundaries between 

two blocks. The compressed image at 0.188 bpp is shown in Figure 2.3, where the 

blocking effect can be easily noticed and is visually unpleasant. 

2.4.2. Ringing Artifacts 

The ringing effect usually appears as shimmering ripples along high contrast edges 

surrounded by smooth texture areas. With a coarse quantization, large ripples often 

appear around the high contrast edges. Moreover, these ripples are only constrained 

inside the blocks that contain high contrast edges. Figure 2.4 illustrates the ringing 

effect along the edges. However, ringing may not be visibly noticeable in high 

texture areas because rough texture areas can hide ringing artifacts. This 

phenomenon can be regarded as the masking effect of the human visual system 

(HVS). 
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Figure 2. 3. Blocking Artifacts in compressed image at 0.188 bpp. 

 

Figure 2. 4. Ringing Artifacts in compressed image at 0.13 bpp. 
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2.5. Previous Research 

Block-based coding is extensively used both in the image and video coding systems. 

In low bit rate applications, this scheme gives rise to coding artifacts which severely 

reduce the visual quality of the image or video. Reducing coding artifacts is essential 

to make the compressed visual data acceptable to the viewer.  

 

Various deblocking and deringing methods have been proposed in the literature to 

reduce the coding artifacts. Many of these methods are based on the post-processing 

idea. In other words, these methods take only the compressed image as their input 

and process it to reduce the coding artifacts.  

 

We provide a brief summary of our literature search in this section. Our literature 

search indicates that the use of adaptive fuzzy filter to reduce the coding artifacts has 

not been explored enough. Since the reduction of coding artifacts is an important 

problem, especially in a low bit-rate video coding, new approaches should be 

explored, even if existing methods work reasonably well. Therefore, this thesis 

develops both new detection algorithm and efficient fuzzy filter to reduce coding 

artifacts and shows results with comparison of some methods in literature.  

 

In the following subsections, main ideas of some of the previous researches are 

summarized. Post-processing-type methods are based on different theoretical 

frameworks including Estimation Theory, Projection onto Convex Sets (POCS), 

Wavelets, Adaptive Filtering and Fuzzy Filtering. 

 

2.5.1. Estimation Theoretic Methods 

In methods based on the Estimation Theory [7-10], probabilistic models are used for 

the compressed and desirable deblocked images. Then, estimators are derived based 

on these probabilistic models. To be able to model image characteristics well, 

complex probabilistic models are used, which then lead to quite involved estimation 

procedures. For example, in [11], the Hueber-Markov random field model is used to 

model image characteristics. The corresponding estimation procedure then leads to a 

constrained minimization problem which the authors solve using an optimization 

technique, called gradient projection. This requires several iterations until a 

sufficiently deblocked image is obtained.  
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These methods require excessive amount of computation. While this may be 

acceptable to a certain degree for reducing blocking artifacts in images, it is not 

acceptable for reducing blocking artifacts in video. 

 
2.5.2. POCS Based Methods 

POCS theory was first applied to image restoration problems by Youla [12]. After 

the blocking artifact problem began to be studied by the image coding community, 

many methods based on POCS theory for reducing the blocking artifacts flourished 

[13-17]. In methods based on POCS theory, the desired properties for the deblocked 

image are captured by defining appropriate convex sets. For example, one local 

convex set could be defined as the set of all possible neighboring two blocks whose 

sum of absolute values of the difference of pixels along the block boundary is 

smaller than a threshold. Attention should be paid to the convexity of the sets 

because that is what enables the resulting algorithm to converge to a meaningful 

deblocked image.  

 
After defining convex sets, their projection operators are established. Projecting a 

point (or vector) onto a convex set gives the element of that set that is closest to the 

point (or vector) that was projected in some appropriate norm. The 12 norm is used 

widely. For example, for the above defined convex set, the projection would give us 

the neighboring two blocks which are closest (in terms of 12 norm) to the initial 

neighboring two blocks and also satisfy the requirements of the convex set, which is 

to have sum of absolute values of the difference of pixels along the block boundary 

smaller than the threshold. 

 

If we want the deblocked image to satisfy several properties, we have to define 

several convex sets. The desired deblocked image can then be found after several 

iterations of the projections. For example, if three convex sets were defined, then 

iterations of the projections would be as follows: Project the initial image onto 

convex set 1, then project the result onto convex set 2, then project the result onto 

convex set 3, then project the result onto convex set 1, then project the result onto 

convex set 2 and so on. The iterations are guaranteed to converge to a unique image 

by the theory of POCS.  
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These methods also require excessive amount of computation. Similarly in the 

Estimation Theoretic methods, altough it provide acceptable to a certain degree for 

reducing blocking artifacts in images, it is not acceptable for reducing blocking 

artifacts in video.  

 
2.5.3. Wavelet Based Methods 

Some methods reduce the blocking artifacts using the wavelet domain representation 

of images. These methods start by transforming the compressed image with the 

blocking artifacts to the wavelet domain. Then, the wavelet coefficients related to 

block boundaries with the blocking artifacts are modified. The algorithms to modify 

these coefficients differ between the various methods based on wavelets and they are 

the most distinguishing feature between these methods.  

 

In [18], an over-complete wavelet representation is used. In other words, wavelet 

representations in all scales have the same number of coefficients as the image with 

blocking artifacts. First, an edge map is created using the correlation of the wavelet 

coefficients across scales. Locations above a threshold are identified as edges. Then, 

the wavelet coefficients at non-edge locations are set to zero while the coefficients at 

edge locations are untouched. Finally, the low-pass component (the scaling 

coefficients) is averaged at the block-boundary locations with its neighbors. The 

inverse wavelet transform using the modified coefficients gives the deblocked image. 

 
2.5.4. Adaptive Filtering Methods 

Since the blocking artifacts are artificial discontinuities along block-boundaries, they 

can be considered as high frequency artifacts. Then, a simple solution is to apply 

low-pass filtering to the regions where they occur. This is the basis of the filtering 

method. A space-invariant filtering method was first proposed in [19]. Maintaining 

sharpness of detailed regions and edges while sufficiently smoothing blocking 

artifacts in smooth regions of an image requires adaptation of the filtering to the local 

characteristics of an image. This idea of adapting the filtering to local characteristics 

is also supported by the masking effect, which says that the HVS is less sensitive to 

the artifacts in texture regions than in smooth regions of an image. 
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The above observations have led to a number of adaptive filtering methods in the 

literature [20-24]. For example, in [25], first, blocks with the visible blocking 

artifacts are detected, then an edge map for these blocks is created, and finally edge-

sensitive filtering is performed. Edge-sensitive filtering is performed by low pass 

filtering pixels near edges using only pixels on the same side of the edge. Pixels on 

the edges are left untouched. In [26], the filtering method has two modes, filtering for 

smooth regions and filtering for other regions. Mode decision is performed for each 

row of a vertical block boundary or each column of a horizontal block boundary by 

examining the flatness of this row or column respectively. Filtering for smooth 

region is performed by using a 9 tap one dimensional low pass filter. For example, 

using this filter along each row of a vertical block boundary, the innermost four 

pixels are modified on either side of the block boundary. Filtering for other regions is 

performed by modifying only the pixels adjacent to the block boundary, based on a 

row wise 4-point DCT analysis on the pixels across the vertical block boundary. 

There is also an option that leaves some block boundaries untouched. Other methods 

based on adaptive filtering are very similar in spirit to the two methods which were 

explained above. 

 

The main issue with methods based on adaptive filtering is the tradeoff between 

sufficient smoothing and maintaining details. This tradeoff is accounted for by the 

adaptive nature of the algorithm. However, still some problems occur, especially in 

some complex regions of an image. Furthermore, there are regions in an image where 

some texture is introduced by the lossy compression algorithm which was actually 

not present there in the original image. For example, ringing artifacts are caused 

during the coding of strong edges. The ringing artifacts manifest themselves as 

artificial fluctuations on both sides of the edge. However, in the original image both 

sides of the image are quite smooth. The ringing artifacts can mislead the algorithm 

as the algorithm might interpret blocks with the blocking artifacts to have high-

frequency content that is spread over the entire block, whereas the high-frequency 

content is actually concentrated only on the edge. 
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2.5.5. Fuzzy Filtering Methods 

Fuzzy filters are improved median filters or a rank condition rank selection filters 

[27], where the binary spatial-rank relation is replaced by a real valued relation. This 

permits the filter to adapt to the spread of the signal by averaging the flat areas, while 

the isolated pixels in the edge areas remain. Fuzzy filter is also a specific case of 

bilateral filters [28], [29].  

 

The fuzzy filter [30] exploits the spatial correlation, rank order and diversity of the 

signal. It overcomes the limitation of the spatial-rank space filters such as weighted 

median [31], rank condition rank selection [32] and lowerupper- middle [33] filters 

by adding the spread information to get better clustering performance. Clustering the 

similarly valued samples to their mean value and keeping isolated values unchanged. 

This characteristic is very helpful in preserving the real edge of the image while 

reducing the ringing artifact in the flat area near these edges. 

 

In [34], a new method using fuzzy filtering is presented to remove the coding 

artifacts in compressed video. For deblocking, the block edge strength is detected, 

and a 1D fuzzy filter adjusts its window size and filtering range according to it. For 

deringing, 8x8 blocks are finely classified into four categories and 2D fuzzy filter 

with adaptive spread parameter is applied to them. Although this method involves 

promising fuzzy filter, its artifact judgment is not accurate enough. When blocking 

artifacts or ringing artifacts get serious, the corresponding judgment conditions 

become invalid.  
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CHAPTER III 
 

FUZZY LOGIC 
 
Human knowledge nowadays becomes increasingly important. It is gained by 

experiencing the world. However, we are all limited in our ability to perceive the 

world. So, we find uncertainty in everywhere. The other limitation factor for 

precision is a natural language used for describing knowledge. We understand 

general meaning of the word and are able to communicate in an acceptable degree, 

but generally we can not precisely agree among ourselves on the single word or 

terms of common sense meaning. Accordingly, natural languages are vague. 

 

Our perception of the real world does not have sharply defined boundaries. For 

example; many, short, much larger than, old, etc. are true for some degree and false 

for some degree as well. These concepts are called fuzzy or gray concepts. Although 

a human brain works with them, computers may not do it. Natural languages can be 

vague whereas programming languages can not.  

 

The entire real world is complex, and this complexity arises from uncertainty. 

According to Dr. Lotfi Zadeh, the complexity and the imprecision are correlated. The 

Fuzzy Logic tool is a mathematical tool for dealing with uncertainty. It offers to a 

soft computing with the important concept of the words. The fuzzy theory provides a 

technique for representing linguistic constructs such as “many,” “low,” “medium,” 

“often,” “few.” In general, the fuzzy logic presents an inference structure that enables 

appropriate human reasoning capabilities.  

 

The traditional binary set theory describes crisp events, events that either do or do 

not occur. It uses probability theory to explain if an event will occur, measuring the 

chance with which a given event is expected to occur. On the other hand, the theory 

of fuzzy logic is based upon the notion of relative graded membership. The utility of 

fuzzy sets lies in their ability to model uncertain or ambiguous data encountered in 

real life. Figure 3.1 models basic Fuzzy Logic System.  
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Figure 3. 1. A fuzzy logic system which accepts imprecise data and vague 

statements. 

 
Real world problems are too complex, and the complexity comes from the degree of 

uncertainty. As uncertainty increases, the complexity of the problem also increases. 

Traditional system modeling and analysis techniques are too precise for such 

problems, and in order to make less complexity, we introduce appropriate 

simplifications, assumptions, etc. to achieve a satisfactory compromise between the 

information we have and the amount of uncertainty we are willing to accept. In this 

aspect, fuzzy systems theory is similar to other engineering theories, because almost 

all of them characterize the real world in an approximate manner. 

 

Fuzzy sets provide means to model the uncertainty associated with vagueness, 

imprecision, and lack of information regarding a problem or a plant, etc. For 

example, consider the meaning of a “short person”. For an individual X, the short 

person may be one whose height is below 1.50 meters. For other individual Y, the 

short person may be one whose height is below or equal to 1.60 meters. The term 

“short” informs the same meaning to the individuals X and Y, but it is found that they 

both do not provide a unique definition. This variable “short” is called as linguistic 

variable, which represents the imprecision existing in the system.  

 

The uncertainty is found to arise from ignorance, from chance and randomness, due 

to lack of knowledge, from vagueness, like the fuzziness existing in our natural 

language. Lotfi Zadeh proposed the set membership idea to make suitable decisions 

when uncertainty occurs. Consider the “short” example discussed previously. If we 

take “short” as a height equal to or less than 1.55 meters, then 1.50 meter would 

easily become the member of the set “short” and 1.60 meters will not be a member of 

the set “short.” The membership value is “1” if it belongs to the set or “0” if it is not 

a member of the set. Thus membership in a set is found to be binary i.e., the element 

is a member of a set or not. 



 

17 

It can be indicated as, 

A

1 , x A
(x)

0 , x A

∈ 
Χ =  

∉ 
                   (3.1) 

where  A (x)Χ is the membership of element x in set A and A is the entire set on the 

universe. 

This membership was extended to possess various degree of membership on the real 

continuous interval [0,1]. Zadeh formed fuzzy sets as the sets on the universe X 

which can accommodate degrees of membership. The concept of a fuzzy set 

contrasts with a classical concept of a crisp set which is a collection of things for 

which it is known whether any given thing is inside it or not. Zadeh generalized the 

idea of a crisp set by extending a valuation set {1, 0} (definitely in/definitely out) to 

the interval of real values (degrees of membership) between 1 and 0 denoted as [0,1]. 

Fuzzy sets tend to capture vagueness exclusively via membership functions that are 

mappings from a given universe of discourse X to a unit interval containing 

membership values.  

 

 

 

Figure 3. 2. Boundary region of a fuzzy set. 

 

For example, from the Figure 3.2, it can be noted that a is clearly a member of fuzzy 

set P, c is clearly not a member of fuzzy set P, but the membership of b is found to 

be vague. Hence a can take membership value 1, c can take membership value 0 and 

b can take membership value between 0 and 1, say 0.4, 0.7, etc. This is set to be a 

partial membership of fuzzy set P.  
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The membership function for a set maps each element of the set to a membership 

value between 0 and 1 and uniquely describes that set. The values 0 and 1 describe 

“not belonging to” and “belonging to” a conventional set respectively. The values 

between 0 and 1 represent fuzziness. Determining the membership function is 

subjective to varying degrees depending on the situation. It depends on an 

individual’s perception of the data in question and does not depend on randomness. 

This is important, and distinguishes fuzzy set theory from probability theory. Figure 

3.3 shows an example of the classification which is subjective and depends on what 

height is measured relative to. At the extremes, the distinction is clear, but there is a 

large amount of overlap in the middle. 

 

Figure 3. 3. The fuzzy sets “tall” and “short”.  

In practice, fuzzy logic means computation of words. Since computation with words 

is possible, computerized systems can be built by embedding human expertise 

articulated in daily language. Also called a fuzzy inference engine or fuzzy rule-base, 

such a system can perform approximate reasoning somewhat similar to but much 

more primitive than that of the human brain.  

 

A fuzzy system is a set of fuzzy rules that converts inputs to outputs. The basic 

configuration of a pure fuzzy system is shown in Figure 3.4. The fuzzy inference 

engine combines fuzzy IF–THEN rules into a mapping from fuzzy sets in the input 

space X to fuzzy sets in the output space Y based on fuzzy logic principles. Fuzzy 

sets form the building blocks for fuzzy IF–THEN rules which have the general form 

“IF X is A THEN Y is B,” where A and B are fuzzy sets. The term “fuzzy systems” 

refers mostly to systems that are governed by fuzzy IF– THEN rules. The IF part of 

an implication is called the antecedent, whereas THEN part is a consequent. The 

main feature of reasoning using these rules is its partial matching capability, which 
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enables an inference to be made from a fuzzy rule even when the rule’s condition is 

only partially satisfied. 

 

Figure 3. 4. Configuration of a pure fuzzy system. 

 
3.1. Fuzzy Image Processing 

Fuzzy image processing has not a unique theory. Because it is a collection of all 

approaches that understand, represent and process the images, their segments and 

features. The representation and processing is determined by the selected fuzzy 

technique and the problem to be solved [35].  

There are three main stages in fuzzy image processing: image fuzzification, 

modification of membership values, and, if necessary, image defuzzification. The 

Figure 3.5 shows these stages. 

 

Figure 3. 5. Fuzzy Image Processing [36]. 

The fuzzification and defuzzification steps are due to the fact that we do not possess 

fuzzy hardware. Therefore, the coding of image data (fuzzification) and decoding of 

the results (defuzzification) are steps that make possible to process images with 

fuzzy techniques. The main power of fuzzy image processing is in the middle step 

(modification of membership values). After the image data are transformed from 
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gray-level plane to the membership plane (fuzzification), appropriate fuzzy 

techniques modify the membership values. This can be a fuzzy clustering; a fuzzy 

rule-based approach, a fuzzy integration approach, and so on. 

 

The most important of the needs of fuzzy image processing are as follows:  

 

1. Fuzzy techniques are powerful tools for knowledge representation and processing 

2. Fuzzy techniques can manage the vagueness and ambiguity efficiently 

3. In many image-processing applications, we have to use expert knowledge to 

overcome the difficulties (e.g., object recognition, scene analysis)  

 

Fuzzy set theory and fuzzy logic offer us powerful tools to represent and process 

human knowledge in form of fuzzy if–then rules. On the other side, many difficulties 

in image processing arise because the data/tasks/results are uncertain. This 

uncertainty, however, is not always due to the randomness but to the ambiguity and 

vagueness. Beside randomness which can be managed by probability theory we can 

distinguish between three other kinds of imperfection in the image processing: 

 

– Grayness ambiguity 

– Geometrical fuzziness 

– Vague (complex/ill-defined) knowledge 

 

These problems are fuzzy in the nature. The question whether a pixel should become 

darker or brighter than it already is, the question where is the boundary between two 

image segments, and the question what is a tree in a scene analysis problem, all of 

these and other similar questions are examples for situations that a fuzzy approach 

can be the more suitable way to manage the imperfection. 

 
So, Fuzzy Image Processing methods show promising result relative to classical 

methods dealing with some drawbacks in image processing tasks. This filter is not 

complex and it has maximum efficiency in calculation speed. So, it can be used for 

real time applications. 



 

21 

CHAPTER IV 
 

REMOVING BLOCKING ARTIFACTS 
 
In this chapter, a new adaptive algorithm is developed to remove the blocking 

artifacts from compressed images. The proposed deblocking algorithm consists of 

blocking artifact detection and deblocking filtering. The method starts with the block 

artifact detection, then continues finding type of the region, and finally finishes 

filtering of the blocking artifacts. The general block diagram is shown in Figure 4.1 

and the flowchart of deblocking algorithm is shown in Figure 4.2. It is applied on all 

the 8x8 block boundaries first along the vertical edges followed by the horizontal 

edges.   

 

Figure 4. 1. The general flow of the proposed deblocking algorithm. 

4.1. Blocking Artifact Detection 

The first step of the proposed algorithm is detecting the blocking artifacts. Since the 

detected block strength indicates the existence of the artifacts and their influence, the 

detection accuracy is very important. And to avoid the blur in the texture and edge 

areas, the detection method should be able to distinguish the blocking artifacts from 

the object edges. There are three main regions according to our method in image.

• Smooth Region 

• Transition Region 

• Texture Region 
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Figure 4. 2. The flowchart of the proposed deblocking algorithm. 

 

In images, smooth region indicates areas which have low details, so it has low 

frequency. Texture region contains many edges, hence frequency is high. And 

transition region is between two regions. How well these regions are distinguished, 

we have the opportunity to remove artifacts without blurring.  

Figure 4.3 shows pixels on block boundaries along 8x8 blocks used in detection the 

block artifacts. In each line, a vector v (4.1) is constructed for all boundaries.   

0 1 2 3 4 5 6 7 8 9v=[v   v   v   v   v   v   v   v   v   v ]                      (4.1) 
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Detection of the vertical and horizontal blocking artifacts has same algorithm, only 

selection of pixels differs as shown in Figure 4.3.  

v0 v2 v3 v4 v5 v6 v7 v8 v9v1

v0

v2

v1

v3

v4

v5

v6

v7

v8

v9

Pixels 
for filtering

on an vertical edge
Block boundary

Pixels
for filtering

on a horizontal edge
 

Figure 4. 3. Boundary areas around the block of interest in blocking artifact 

detection. 

 

By using obtained vector v (4.1), the mean of each first five and last five components 

(4.2) are computed.  

( )

( )
1 0 1 2 3 4

2 5 6 7 8 9

= v +v +v +v +v /5

= v +v +v +v +v /5

Mean

Mean
                 (4.2) 
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The threshold T is found by calculating average of 64 pixels of neighboring blocks. 

The absolute value of the difference between these means is compared with T and 

the constant 2.6 is obtained using experimental study. 

1 2Mean -Mean <2.6*T                                  (4.3)  

 

If the equation 4.3 is not satisfied, there is no need to filter pixels in that region. On 

the contrary, it is understood existence of the artifacts and the algorithm proceeds 

second comparison which determines the regions. According to this, an absolute 

difference vector ∆  (4.4) is formed for successive pixels in the vector v (4.1) except 

for the boundary pixels. 

i i i+1= -vv∆
   

i=0,1,2,3,5,6,7,8               (4.4) 

 
By finding the maximum value of the difference vector (4.4) and using experimental 

constants which are obtained using experimental studies, we obtain 3 different 

regions. 

Smooth Region  :  max( ) 2∆ ≤                 (4.5) 

 

Transition Region   :  2<max( )<8∆                  (4.6) 

 

Texture Region  :  8 max( )≤ ∆                  (4.7) 

 

4.2. Deblocking Filtering 

After the blocking artifacts detection and determining the regions, an adaptive fuzzy 

filter is applied to the pixels for a specified interval considering the detection and the 

region in each row to the remove blocking artifacts consecutively. For the vertical 

blocking artifacts, the fuzzy filter based on fuzzy transformation theory [34] is 

defined as: 

a a

B
 =  -a j=  -a

v = v ( x ,y + j)w / w
   
   
   
∑ ∑x j j

j

                    (4.8) 

[ ] [ ]
a a

B
 =  -a  =  -a

v = v (x ,y+ j)µ d (x ,y+ j) / µ d (x ,y+ j)
   
   
   
∑ ∑x

j j

             (4.9) 

( )d (x ,y+ j)= v(x ,y)- v(x ,y)+ v(x ,y+ j) /2
             

(4.10) 
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Similar algorithm is applied to the each column in the determined region to remove 

horizontal blocking artifacts as follows: 

 

a a

B i i
i  =  -a i  =  -a

v = v(x + i,y)w / w
   
   
   
∑ ∑y

                 (4.11) 

[ ] [ ]
a a

B
i  =  -a i  =  -a

v = v(x+i,y)µ d(x+i,y) / µ d(x+i,y)
   
   
   
∑ ∑y

           (4.12) 

( )d(x+ i,y)= v(x,y)- v(x ,y)+ v(x+ i,y) /2
             

(4.13) 

 

where; 

 

a   : Window size 

 

v(x,y)   :  The value of image in location (x,y) 

 

( , )
B

v x y  :  The deblocking result of pixel in location (x,y) 

 

( / )( ) e x
x

ξµ −=                                    (4.14) 

 

µ is an exponential membership function to describe the relationship between pixels 

by their distance. Here, ξ is the spread parameter. The larger it is, the stronger is the 

smoothing effect. According to the characteristics of the regions determined by the 

deblocking part, both window size and the spread parameter are adjusted. So, the 

fuzzy filter (4.9) becomes adaptive. 

 

Expressions in (4.8), (4.9), (4.10) are almost identical with expressions in (4.11), 

(4.12), (4.13) except for dimensions.   

 

In the following subsections, the regions are clearly described and the values of the 

parameters are determined experimentally. 
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4.2.1. Filtering on Smooth Region (Intensive Degradation) 

As a result of 8x8 block based coding, low frequency areas in the image are affected 

much more. Also, human visual system is more sensitive to the blocking artifacts in 

this region. So, the filtering has to be strong and covers a larger area. Experimental 

studies show that best filtering results are obtained by choosing a = 4 and ξ  = 44 and 

applying the filter (4.8), (4.11) on pixels in the vector v (4.1) between 1v  and 8v . 

Figure 4.4 shows affect of the spread parameter. By varying values of the difference 

between the pixels, the corresponded result of the membership function (4.14) is 

represented.  
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Figure 4. 4. Membership function for Strong Blocking Artifact 

 

4.2.2. Filtering on Texture Region (Low Degradation) 

The Texture region contains edges and textures. So, frequency is very high. It has an 

importance not to blur these oscillations of intensity.  Therefore, filtering has to be 

weak and covers pixels near border. So, again with the experimental study, 

parameters are obtained for the filter (4.8), (4.11) and the membership function 

(4.14). The values are; a = 1, ξ  = 35 and this filter are performed for pixels in the 

vector v (4.1) between 3v  and 6v . Figure 4.5 represents affect of the spread 

parameter. 
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Figure 4. 5. Membership function for Weak Blocking Artifact 

 

4.2.3. Filtering on Transition Region (Moderate Degradation) 

Areas between smooth and texture regions are evaluated as transition regions. 

Because, it shows a blend of two. Accordingly, parameters of filter (4.8), (4.11) and 

the membership function (4.14) are determined by experiments. The obtained values 

are; a = 2, ξ  = 39 and this filter are used for pixels in the vector v (4.1) between 

2v and 7v . Figure 4.6 exhibits affect of the spread parameter. 
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Figure 4. 6. Membership function for Transition Blocking Artifact. 
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CHAPTER V 
 

REMOVING RINGING ARTIFACTS 
 
This chapter aims to remove the ringing artifacts from compressed images. The 

algorithm of ringing artifact removal can be used independently or following the 

deblocking algorithm. Unlike the deblocking algorithm, deringing needs to have two 

dimensional fuzzy filtering. Because the ringing artifacts do not have to be only 

along horizontal and vertical direction. They are arbitrary depending on image. Due 

to the nature of the ringing artifacts explained in chapter 2, artifacts are generally 

found around edges in the image. So, this method starts with edge detection, then is 

followed by classification of 8x8 blocks by the means of complementary ringing 

detection, and finally terminates by deringing filtering. The general block diagram is 

shown in Figure 5.1 and the flowchart of deblocking algorithm is shown in Figure 

5.2.  

 

Figure 5. 1. The general flow of the proposed deringing algorithm. 



 

29 

5.1. Edge Detection 

The goal of edge detection is to mark the points in an image at which the intensity 

changes sharply. Abrupt changes in image usually reflect features of images. Also, 

this tool is very important in compressed images. Because ringing artifacts always 

arise around the object edges, precise edge detection is necessary. Edge detection is 

the first step of deringing algorithm. Here, the fuzzy edge detection method [38] is 

adopted. 

 

Figure 5. 2. The flowchart of the proposed deringing algorithm. 

First, a difference matrix d (5.1) is built by calculating maximum difference in a 3x3 

window around each pixel.  

( )d(x,y)=max v(x,y)-v(x+i,y+i)     i=-1,0,1; j=-1,0,1             (5.1) 

where, v(x,y) is the pixel value of the image in location (x,y).  
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Then, a difference histogram vector H of the image is computed based on the 

statistics of the difference matrix. That is, H(i) denotes the number of pixels whose 

maximum difference in gray level value is i. 

Using this statistics, the summation S (5.2) of maximum differences d(x,y) is also 

found.  

M N

x 1 y 1

S = d ( x , y )
= =

∑ ∑                       (5.2) 

where M is the number of rows and N is the number of columns. And total number 

of pixels T (5.3) is determined. 

T MxN=                     (5.3) 

Then, by using difference histogram H and following rule (5.4), a parameter Th is set 

to the edge detection threshold. 

T h T h T h 1

i 0 i 0 i 0

1 1 1
i H (i) H (i) i H (i)

S T S

+

= = =

⋅ ≤ ≤ ⋅∑ ∑ ∑                 (5.4) 

After that, Sobel operators (5.5) are applied to the image.   

x

1 2 1

G 0 0 0

1 2 1

 
 = 
 − − − 

, y

1 0 1

G 2 0 2

1 0 1

− 
 = − 
 − 

                            (5.5) 

By masking Sobel operators, edge detection is completed by forming the edge pixel 

map with the threshold Th found above.  

1, sobel(x, y) Th
edge(x, y)

0, sobel(x, y) Th

≥
= 

<
                 (5.6) 

Detected edge pixels are strong and clear. If the block contains edge pixels, it is 

regarded as a strong ringing block, since the ringing artifacts emerge around edges 

most probably. So, strong filter is necessary. 
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5.2. Complementary Ringing Detection 

Although edge detection can locate most strong the ringing artifacts, in the area 

where ringing artifacts are serious, the edge detection may miss the edges masked by 

artifacts. Furthermore, due to motion estimation, the no-edge blocks next to the edge 

blocks may also contain the ringing artifacts. As a result, complementary ringing 

detection needs to be applied to recover them. 

Complementary ringing detection works on the 8 adjacent no-Edge blocks of edge 

blocks. The detection is only made on no-Edge blocks. Figure 5.3 shows an example. 

There are 8 adjacent blocks of edge Block 0. In this example, Block 3,4,5,6,7 and 8 

are possible blocks which may contain the ringing artifacts.  

Block 6 

No-Edge 

Block 7 

No-Edge 

Block 8 

No-Edge 

Block 5 

No-Edge 

Block 0 

Edge 

Block 1 

Edge 

Block 4 

No-Edge 

Block 3 

Edge 

Block 2 

Edge 

 

Figure 5. 3. The 8 adjacent blocks of interest in complementary ringing detection. 

 

For the possible blocks, the variance var(x,y) (5.7) in a 3x3 window around each 

pixel are calculated and the maximum one is selected as the variance of the block 

(5.8). 

( )

1 1

j 1 i 1

1 1
2

j 1 i 1

1
m(x, y) v(x i, y j)

9

1
var(x, y) v(x i, y j) m(x, y)

9

=− =−

=− =−


= + +



 = + + −


∑∑

∑∑
              (5.7) 

 

{ }BSTD max var(x, y)=   (x, y) Block∈                                     (5.8) 
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Then, each detected blocks are classified by using BSTD  (5.8) with a set of 

predetermined threshold.  

B

B

B

Strong H _ Th STD

Ringing _ Artifact Weak L _ Th STD H _ Th

No STD L _ Th

≤


= ≤ <
 <

                                    (5.9) 

 

where; 

2
Th

8
H _ th

2

 
 
 =                  (5.10) 

 

Th
L _ th max( , H _ th 100)

16
= −                (5.11) 

 

Th :  The gradient threshold determined from (5.4)  

 

H_th  :  The upper threshold 

 

L_th  :  The lower threshold 

 

Since the gradient threshold of Sobel Th presents characteristics of the image, the 

upper threshold (5.10), the lower threshold (5.11) and the relationship (5.9) are 

defined by experiments. 

In (5.9), Strong, Weak and No means that the block has strong, weak and no ringing 

artifacts respectively. Now, all the ringing blocks are detected.  
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5.3. Deringing Filtering 

According to two step detection, a two dimensional adaptive fuzzy filter (5.12) is 

adopted on the ringing blocks to remove ringing artifacts. The filtering does not 

cover edge pixels in the image. Because if they are not excluded, blurring may exist 

around edges in the image. 

a a

ij
j a i a

R a a

ij
j a i a

v(x i, y j)w

v (x, y)

w

=− =−

=− =−

+ +

=
∑∑

∑∑
              (5.12) 

a a

j a i a

R a a

j a i a

v(x i,y j) [d(x i,y j)]

v (x, y)

[d(x i,y j)]

=− =−

=− =−

+ + µ + +

=

µ + +

∑∑

∑∑
                (5.13) 

where; 

a   : Window size 

 

v(x,y)   :  The value of image in location (x,y) 

 

( , )
R

v x y  :  The deringing result of pixel in location (x,y) 

 

d(x i, y j) v(x i, y j) v(x, y)+ + = + + −               (5.14) 

( / )( ) e x
x

ξµ −=                                    (5.15) 

 

µ is the same membership function with the (4.14) to describe the relationship 

between pixels by their distance. Here, ξ is the spread parameter. Similarly, effect of 

smoothing increases as it gets large values. Again, both window size and spread 

parameter are adjusted for the strong and weak ringing artifacts. So, the fuzzy filter 

(5.12) becomes adaptive. 
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5.3.1. Filtering on Strong Ringing Artifacts 

These kind of ringing artifacts are more intensive and they are generally located very 

close to edges in the image. So, the fuzzy filter has to be strong to eliminate them. 

Also, the gradient threshold Th gives an idea for the image. Accordingly, the spread 

parameter is chosen as Th/8 and filtering range is adjusted to a=4 as a result of 

experimental study.  

8
=

Th
ξ                                        (5.16) 

 

5.3.2. Filtering on Weak Ringing Artifacts 

Although weak ringing artifacts are observed near edges in the image, they are not 

prominent. However, it is still a problem in terms of visual quality. Consequently, the 

spread parameter is selected as Th/16 and filtering range is determined to a=2 by 

experimental study.  

16
=

Th
ξ                                        (5.17) 
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CHAPTER VI 
 

EXPERIMENTAL RESULTS 
 
This chapter presents the results that are obtained using the coding artifact reduction 

systems based on algorithms described in chapter 4 and 5. These results are intended 

to demonstrate the success of them. Before giving results of experiments, 

determination of picture quality is defined for understanding and evaluating better. 

After that, various experimental results and comparisons are presented. 

6.1. Picture Quality Evaluation 

Picture quality is a term used to measure the fidelity of the perceived picture quality 

[39]. When people say that image quality is good or bad, it usually means how they 

appreciate the image psychovisually. Compressed image may be considered as a 

degraded version. In this case, the image quality evaluation is needed to measure 

how similar the post-filtered image is with the original image which is not 

compressed. 

There are generally two approaches measuring picture quality: Subjective Quality 

Assessment (SQA) and Objective Quality Assessment (OQA) [40]. SQA involves 

the evaluation of picture quality using human subjects. OQA measures the statistical 

aspects of physical picture signal, e.g., error and variance.  

The objective picture quality evaluation uses objective metrics to measure the picture 

quality or impairment. While the subjective assessed results may vary due to the 

change of subjects or subjects’ opinions, results of using objective quality metrics are 

unique in repeated experiments.  

Objective quality metrics can be classified into three categories, i.e., Full Reference 

(FR) metrics, No-Reference (NR) metrics and Reduced-reference (RR) metrics [41]. 

This classification is based on the availability of the reference/original images and 

video used in the quality metrics. In FR metrics, the reference video is fully available 

for quality computation, usually frame by frame or pixel by pixel. In NR metrics, no 

reference signal is available for quality computation. This is suitable for the 



 

36 

applications such as the video receiving and video decoding systems. In this work, 

some FR metrics are sufficient to evaluate the performance of methods. 

 

There is also important thing to know in evaluation for compression. It is bits per 

pixel bpp. It is the number of bits of information stored per pixel of an image. The 

more bits there are, the more colors are represented. For gray scale original image, 

normally 8 bits is used for one pixel. If it is compressed, the bpp decreases according 

to the degree of compression. The bpp (6.1) is calculated as follows; 

 

Total_number_of_bits_of_the_image
bpp=

Total_number_pixels_in_the_image
                                    (6.1) 

 

6.2. Quality Metrics 

The most common FR quality metrics are the mean squared error (MSE) and the 

peak signal to noise ratio (PSNR). The MSE (6.2) is an error-based metric defined as 

2M-1 N-1 ^

x=0 y=0

1
MSE= v(x,y)- v (x,y)

MN
 
 
 

∑∑                            (6.2) 

where; 

M  : The numbers of rows (height) of an image 

N : The numbers of columns (width) of an image 

v(x,y) : The pixel of the reference image in location (x,y) 

^

( , )v x y  : The pixel of the degraded image in location (x,y) 

 

The PSNR metric (6.3) is a derivative of the MSE, in decibel (dB). 

2
max

10

L
PSNR=10log

MSE
                                                                        (6.3) 

where maxL denotes the maximum value. If 8-bit precision is used, then maxL is equal 

to 255. 
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The MSE and the PSNR can reflect how physically close to the degraded image and 

the reference image are. However, they do not always correlate well with perceived 

quality [42][43]. Figure 6.1 shows different degraded images with same MSE. As it 

is seen from images, we also need another quality tool.  

 

Figure 6. 1. Images corrupted with different noise and artifacts with identical MSE. 

It has been believed that the human subjects tend to assess the image quality by 

inspecting the structures and detail features rather than checking the pixels one after 

another. The Structural Similarity Index (SSIM) [44] is used to compared the 

similarity of the structural information (i.e, the mean, variance, and covariance of 

small patches or blocks) extracted from both a test image and a reference image. 

SSIM is designed to improve on traditional methods like PSNR and MSE. 

The SSIM metric is calculated on various windows of an image. The measure 

between two windows x and y of common size NxN is: 
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x y 1 xy 2

2 2 2 2
x y 1 x y 2

(2µ µ +c )(2σ +c )
SSIM(x,y)=

(µ +µ +c )(σ +σ +c )
                                     (6.3) 

where; 

x
µ is the average of x. 

y
µ  is the average of y. 

x
σ  is the variance of x. 

y
σ  is the variance of y. 

xy
σ  the covariance of x and y. 

2
1 1( )=c k L , 2

2 2( )=c k L are two variables to stabilize the division with weak 

denominator. 

L is the dynamic range of the pixel values ( Number_of_bits/pixelL=2 -1) 

1 0.01=k  and 2 0.03=k  by default. 

After applying this metric on the image, the resultant SSIM index is a decimal value 

between -1 and 1. The value 1 is only reachable in the case of two identical sets of 

data. Typically, it is calculated on window size of 8x8. The window can be displaced 

pixel by pixel on the image. 

6.3. The Results for Images from Experiments 

To evaluate the performance of the deblocking and deringing algorithms, PSNR and 

SSIM are used. Here, results of the methods developed are only given. Experiments 

are made using following images: Lena, Goldhill, Airplane, Peppers, and Mandrill. 

All test images are 8-bit grayscale images and have 512x512 pixels.  These images 

are presented in Figure 6.2. 
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(a) Lena                  (b) Goldhill 

     

(c) Airplane                 (d) Peppers 

 

(e) Mandrill 

Figure 6. 2. Images corrupted with different noise and artifacts with identical MSE 
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Table 6.1 – 6.5 shows objective results of the proposed algorithms for different 

compression ratios (especially low bit rates) on various test images. Figure 6.3 – 6.7 

are plotted by using these objective results. 

 

Table 6. 1. Objective results of proposed algorithms for different compression ratios 

for the Lena. 

QF 
(Matlab) bpp 

PSNR 
(Compressed) 

PSNR 
(Filtered) 

SSIM 
(Compressed) 

SSIM 
(Filtered)  

0,00 0,1335 24,25 25,70 0,6417 0,7197 

1,00 0,1335 24,25 25,70 0,6417 0,7197 

2,00 0,1336 24,25 25,70 0,6420 0,7199 

3,00 0,1429 24,84 26,22 0,6732 0,7416 

4,00 0,1571 26,47 27,79 0,7176 0,7782 

5,00 0,1731 27,33 28,71 0,7367 0,8008 

6,00 0,1888 28,25 29,63 0,7623 0,8189 

7,00 0,2034 28,89 30,19 0,7792 0,8293 

8,00 0,2166 29,47 30,69 0,7953 0,8393 

9,00 0,2310 29,95 31,14 0,8068 0,8474 

10,00 0,2446 30,41 31,54 0,8180 0,8547 

11,00 0,2584 30,77 31,85 0,8271 0,8593 

12,00 0,2709 31,09 32,11 0,8340 0,8634 

13,00 0,2838 31,43 32,39 0,8419 0,8675 

14,00 0,2953 31,68 32,57 0,8470 0,8702 

15,00 0,3080 31,95 32,78 0,8532 0,8733 

16,00 0,3199 32,19 32,95 0,8584 0,8754 

17,00 0,3321 32,40 33,10 0,8623 0,8772 

18,00 0,3433 32,62 33,26 0,8665 0,8796 

19,00 0,3531 32,79 33,37 0,8699 0,8811 

20,00 0,3635 32,96 33,47 0,8735 0,8824 

21,00 0,3750 33,14 33,61 0,8768 0,8843 

22,00 0,3850 33,30 33,69 0,8796 0,8856 

23,00 0,3947 33,42 33,78 0,8820 0,8866 

24,00 0,4055 33,57 33,90 0,8847 0,8879 

25,00 0,4145 33,70 33,98 0,8868 0,8888 

26,00 0,4256 33,82 34,03 0,8890 0,8897 

27,00 0,4341 33,94 34,10 0,8908 0,8907 

28,00 0,4450 34,08 34,18 0,8929 0,8916 

29,00 0,4530 34,17 34,24 0,8943 0,8923 

30,00 0,4626 34,28 34,31 0,8961 0,8933 
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Figure 6. 3. PSNR and SSIM performance of the proposed algorithms for the Lena. 
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Table 6. 2. Objective results of proposed algorithms for different compression ratios 

for the Goldhill. 

QF 
(Matlab) bpp 

PSNR 
(Compressed) 

PSNR 
(Filtered) 

SSIM 
(Compressed) 

SSIM 
(Filtered)  

0,00 0,1255 23,74 24,92 0,5153 0,5772 

1,00 0,1255 23,74 24,92 0,5153 0,5772 

2,00 0,1256 23,74 24,93 0,5157 0,5777 

3,00 0,1353 24,15 25,30 0,5442 0,6013 

4,00 0,1522 25,30 26,36 0,5918 0,6410 

5,00 0,1710 26,16 27,22 0,6268 0,6733 

6,00 0,1903 26,87 27,85 0,6570 0,6964 

7,00 0,2090 27,43 28,31 0,6824 0,7140 

8,00 0,2273 27,90 28,72 0,7038 0,7301 

9,00 0,2471 28,29 29,06 0,7206 0,7424 

10,00 0,2655 28,65 29,37 0,7348 0,7526 

11,00 0,2847 28,95 29,62 0,7487 0,7626 

12,00 0,3027 29,23 29,84 0,7602 0,7700 

13,00 0,3231 29,50 30,05 0,7701 0,7772 

14,00 0,3403 29,72 30,23 0,7797 0,7836 

15,00 0,3598 29,95 30,42 0,7880 0,7901 

16,00 0,3773 30,16 30,58 0,7967 0,7954 

17,00 0,3958 30,36 30,73 0,8035 0,7995 

18,00 0,4130 30,56 30,85 0,8102 0,8031 

19,00 0,4292 30,71 30,96 0,8160 0,8068 

20,00 0,4448 30,87 31,06 0,8211 0,8094 

21,00 0,4618 31,03 31,16 0,8265 0,8127 

22,00 0,4766 31,18 31,25 0,8309 0,8153 

23,00 0,4932 31,31 31,33 0,8357 0,8182 

24,00 0,5078 31,45 31,41 0,8398 0,8202 

25,00 0,5218 31,56 31,48 0,8432 0,8222 

26,00 0,5365 31,68 31,55 0,8466 0,8242 

27,00 0,5508 31,80 31,62 0,8499 0,8261 

28,00 0,5660 31,92 31,68 0,8531 0,8275 

29,00 0,5775 32,01 31,72 0,8554 0,8288 

30,00 0,5904 32,10 31,77 0,8579 0,8302 
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Figure 6. 4. PSNR and SSIM performance of the proposed algorithms for the 

Goldhill. 
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Table 6. 3. Objective results of proposed algorithms for different compression ratios 

for the Airplane. 

QF 
(Matlab) bpp 

PSNR 
(Compressed) 

PSNR 
(Filtered) 

SSIM 
(Compressed) 

SSIM 
(Filtered)  

0,00 0,1411 23,39 24,48 0,6979 0,7581 

1,00 0,1411 23,39 24,48 0,6979 0,7581 

2,00 0,1411 23,39 24,49 0,6980 0,7581 

3,00 0,1516 23,99 25,09 0,7176 0,7743 

4,00 0,1689 25,48 26,60 0,7526 0,8057 

5,00 0,1871 26,54 27,73 0,7742 0,8294 

6,00 0,2051 27,45 28,63 0,7929 0,8437 

7,00 0,2219 28,11 29,29 0,8076 0,8564 

8,00 0,2379 28,71 29,89 0,8195 0,8662 

9,00 0,2535 29,27 30,40 0,8343 0,8751 

10,00 0,2685 29,77 30,84 0,8458 0,8831 

11,00 0,2839 30,16 31,26 0,8513 0,8874 

12,00 0,2977 30,49 31,54 0,8568 0,8901 

13,00 0,3127 30,85 31,85 0,8648 0,8953 

14,00 0,3256 31,13 32,09 0,8696 0,8988 

15,00 0,3387 31,43 32,32 0,8759 0,9020 

16,00 0,3527 31,69 32,49 0,8828 0,9047 

17,00 0,3663 31,94 32,69 0,8874 0,9070 

18,00 0,3792 32,17 32,86 0,8907 0,9087 

19,00 0,3913 32,35 33,04 0,8925 0,9100 

20,00 0,4031 32,56 33,20 0,8957 0,9106 

21,00 0,4158 32,78 33,36 0,8985 0,9121 

22,00 0,4281 32,97 33,50 0,9014 0,9133 

23,00 0,4393 33,16 33,63 0,9043 0,9142 

24,00 0,4496 33,32 33,74 0,9061 0,9154 

25,00 0,4603 33,48 33,85 0,9083 0,9166 

26,00 0,4716 33,63 33,97 0,9101 0,9177 

27,00 0,4820 33,78 34,06 0,9121 0,9190 

28,00 0,4936 33,93 34,17 0,9142 0,9201 

29,00 0,5016 34,04 34,25 0,9159 0,9210 

30,00 0,5121 34,17 34,31 0,9177 0,9215 
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Figure 6. 5. PSNR and SSIM performance of the proposed algorithms for the 

Airplane. 
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Table 6. 4. Objective results of proposed algorithms for different compression ratios 

for the Peppers. 

QF 
(Matlab) bpp 

PSNR 
(Compressed) 

PSNR 
(Filtered) 

SSIM 
(Compressed) 

SSIM 
(Filtered)  

0,00 0,1366 24,29 25,88 0,6254 0,7172 

1,00 0,1366 24,29 25,88 0,6254 0,7172 

2,00 0,1368 24,29 25,89 0,6256 0,7175 

3,00 0,1458 24,82 26,32 0,6446 0,7283 

4,00 0,1608 26,02 27,45 0,6743 0,7543 

5,00 0,1762 27,18 28,66 0,7076 0,7819 

6,00 0,1911 28,04 29,48 0,7298 0,7968 

7,00 0,2050 28,68 30,09 0,7441 0,8067 

8,00 0,2186 29,21 30,55 0,7598 0,8154 

9,00 0,2336 29,71 30,98 0,7729 0,8222 

10,00 0,2467 30,13 31,35 0,7824 0,8275 

11,00 0,2597 30,46 31,61 0,7917 0,8317 

12,00 0,2717 30,78 31,87 0,7990 0,8350 

13,00 0,2836 31,07 32,07 0,8066 0,8380 

14,00 0,2945 31,29 32,24 0,8117 0,8403 

15,00 0,3066 31,53 32,44 0,8163 0,8426 

16,00 0,3180 31,75 32,57 0,8218 0,8441 

17,00 0,3300 31,93 32,73 0,8255 0,8461 

18,00 0,3413 32,12 32,89 0,8288 0,8480 

19,00 0,3508 32,26 33,00 0,8315 0,8488 

20,00 0,3607 32,42 33,10 0,8346 0,8499 

21,00 0,3722 32,57 33,22 0,8374 0,8515 

22,00 0,3824 32,71 33,31 0,8404 0,8525 

23,00 0,3926 32,83 33,40 0,8429 0,8538 

24,00 0,4035 32,95 33,49 0,8451 0,8547 

25,00 0,4142 33,05 33,54 0,8472 0,8554 

26,00 0,4244 33,15 33,62 0,8492 0,8564 

27,00 0,4346 33,26 33,68 0,8516 0,8572 

28,00 0,4450 33,37 33,74 0,8537 0,8580 

29,00 0,4528 33,44 33,80 0,8549 0,8588 

30,00 0,4621 33,53 33,86 0,8568 0,8594 
 

 

 

 



 

47 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
24

25

26

27

28

29

30

31

32

33

34

bpp

P
S

N
R

 i
n
 d

B

PSNR comparisons for Peppers

 

 

Compressed

Filtered

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

bpp

S
S

IM
 i
n
d
e
x

SSIM comparisons for Peppers

 

 

Compressed

Filtered

 

Figure 6. 6. PSNR and SSIM performance of the proposed algorithms for the 

Peppers. 
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Table 6. 5. Objective results of proposed algorithms for different compression ratios 

for the Mandrill. 

QF 
(Matlab) bpp 

PSNR 
(Compressed) 

PSNR 
(Filtered) 

SSIM 
(Compressed) 

SSIM 
(Filtered)  

0,00 0,1530 19,93 20,50 0,3798 0,3952 

1,00 0,1530 19,93 20,50 0,3798 0,3952 

2,00 0,1530 19,93 20,50 0,3798 0,3952 

3,00 0,1704 20,22 20,79 0,4195 0,4328 

4,00 0,2105 20,91 21,46 0,4847 0,4948 

5,00 0,2556 21,52 22,05 0,5388 0,5437 

6,00 0,3001 22,05 22,53 0,5808 0,5802 

7,00 0,3427 22,48 22,90 0,6142 0,6088 

8,00 0,3820 22,83 23,18 0,6403 0,6290 

9,00 0,4203 23,15 23,45 0,6623 0,6474 

10,00 0,4572 23,43 23,66 0,6811 0,6619 

11,00 0,4928 23,68 23,87 0,6977 0,6763 

12,00 0,5262 23,91 24,05 0,7115 0,6874 

13,00 0,5607 24,13 24,22 0,7245 0,6974 

14,00 0,5896 24,32 24,36 0,7345 0,7049 

15,00 0,6207 24,51 24,50 0,7449 0,7131 

16,00 0,6506 24,68 24,62 0,7541 0,7197 

17,00 0,6789 24,84 24,73 0,7629 0,7264 

18,00 0,7075 25,00 24,85 0,7713 0,7333 

19,00 0,7319 25,14 24,94 0,7773 0,7377 

20,00 0,7580 25,27 25,02 0,7837 0,7421 

21,00 0,7867 25,41 25,12 0,7900 0,7466 

22,00 0,8128 25,54 25,21 0,7958 0,7515 

23,00 0,8374 25,66 25,29 0,8014 0,7554 

24,00 0,8621 25,78 25,37 0,8065 0,7592 

25,00 0,8850 25,89 25,45 0,8109 0,7629 

26,00 0,9091 26,01 25,53 0,8154 0,7665 

27,00 0,9329 26,12 25,60 0,8197 0,7700 

28,00 0,9594 26,24 25,69 0,8242 0,7736 

29,00 0,9801 26,34 25,75 0,8278 0,7766 

30,00 1,0003 26,45 25,81 0,8315 0,7790 
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Figure 6. 7. PSNR and SSIM performance of the proposed algorithms for the 

Mandrill. 
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As it is seen from Tables 6.1 – 6.5 and Figures 6.3 – 6.7, the success of the proposed 

algorithms is clear. They can effectively be used for many applications especially at 

low bit rates. 

Since PSNR and SSIM are not directly correlated with the quality of human visual 

system perceives, visual appearances are also taken into account. So, some visual 

results are presented in Figures 6.8 – 6.17 for compressed test images having 

different compression ratios. 
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(a) Compressed, PSNR: 24.25 

 

(b) Filtered, PSNR: 25.70 

Figure 6. 8. Subjective quality comparison of the compressed image the Lena at 

0.1335 bpp. 
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(a) Compressed, PSNR: 28.89 

 

(b) Filtered, PSNR: 30.19 

Figure 6. 9. Subjective quality comparison of the compressed image the Lena at 

0.2034 bpp. 
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(a) Compressed, PSNR: 23.74 

 

(b) Filtered, PSNR: 24.92 

Figure 6. 10. Subjective quality comparison of the compressed image the Goldhill at 

0.1255 bpp. 
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(a) Compressed, PSNR: 27.43 

 

(b) Filtered, PSNR: 28.31 

Figure 6. 11. Subjective quality comparison of the compressed image the Goldhill at 

0.2090 bpp. 
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(a) Compressed, PSNR: 23.39 

 

(b) Filtered, PSNR: 24.48 

Figure 6. 12. Subjective quality comparison of the compressed image the Airplane at 

0.1411 bpp. 
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(a) Compressed, PSNR: 27.45 

 

(b) Filtered, PSNR: 28.63 

Figure 6. 13. Subjective quality comparison of the compressed image the Airplane at 

0.2051 bpp. 
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(a) Compressed, PSNR: 24.29 

 

(b) Filtered, PSNR: 25.88 

Figure 6. 14. Subjective quality comparison of the compressed image the Peppers at 

0.1366 bpp. 
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(a) Compressed, PSNR: 28.68 

 

(b) Filtered, PSNR: 30.09 

Figure 6. 15. Subjective quality comparison of the compressed image the Peppers at 

0.2050 bpp. 
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(a) Compressed, PSNR: 19.93 

 

(b) Filtered, PSNR: 20.20 

Figure 6. 16. Subjective quality comparison of the compressed image the Mandrill at 

0.1530 bpp. 
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(a) Compressed, PSNR: 20.91 

 

(b) Filtered, PSNR: 21.46 

Figure 6. 17. Subjective quality comparison of the compressed image the Mandrill at 

0.2105 bpp. 
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Table 6.6 are obtained for different compression ratios, it shows consuming times 

when the proposed method runs. The speeds of the algorithm decreases as the 

compression rate increases since more artifacts occur. Also, different pictures affect 

the run time, because they have a specific characteristic separately. Finally, 

processors in hardware change the operating time of the proposed method. Time 

measurements are taken by computer having Dual CPU at 2.2 GHz at normal load 

conditions. 

Table 6. 6. Bit rate versus Run time. 

 
bbp Run Time (in Seconds) 

Lena   

 0.1335 5.84 

 0.1571 5.70 

 0.2034 5.47 

 0.2584 5.36 

 0.3080 5.24 

Goldhill   

 0.1255 6.34 

 0.1522 5.68 

 0.2090 5.32 

 0.2655 5.27 

 0.3027 5.17 

Airplane   

 0.1411 5.97 

 0.1689 5.53 

 0.2051 5.43 

 0.2535 5.27 

 0.3127 5.20 

Peppers   

 0.1366 5.69 

 0.1608 5.46 

 0.2050 5.30 

 0.2597 5.23 

 0.3066 5.05 

Mandrill   

 0.1530 5.59 

 0.1704 5.27 

 0.2105 4.92 

 0.2556 4.77 

 0.3001 4.67 
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In order to evaluate the performance of the proposed deblocking and deringing 

techniques and to compare them with other techniques; the H263 standard [45], the 

MPEG4 standard [46], the POCS technique proposed in [47], two post-processing 

techniques proposed by Zeng [48] and Chen [49] are used. The results over different 

images are tabulated in Table 6.7. Figure 6.18 shows PSNR versus bit rate for the 

compressed image Lena. 

Table 6. 7. Comparison of PSNR for different post-processing techniques. 

Test 
Images 

Bits/pixel 
(bpp) 

 
PSNR 

Decoded H.263 MPEG4 POCS 
Ref. 
[48] 

Ref. 
[49] 

Proposed 

 
Lena 

 
0.217 29.47 30.20 30.02 30.23 29.56 30.39 30.69 

 
Goldhill 

 
0.227 27.90 28.50 28.31 28.46 27.85 28.54 28.72 

 
Airplane 

 
0.240 28.72 29.34 29.32 29.34 28.41 29.39 29.89 

 
Peppers 

 
0.221 29.21 30.02 30.04 29.85 29.39 29.95 30.55 

 
Mandrill 

 
0.300 22.05 22.35 22.15 22.44 21.92 22.49 22.53 
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Figure 6. 18. PSNR versus bit rate for the compressed image Lena. 
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And, for the subjective evaluation of the proposed techniques, examples are shown in 

Figure 6.19 and 6.20. In Figure 6.19, an enlarged part of the compressed Lena image 

at 0.217 bpp and the corresponding results post-processed by different techniques are 

presented. As it is seen, the resultant image of the proposed algorithms is the best of 

them. 

 

a) Decoded, PSNR=29.47                   b) Zeng  [48], PSNR=29.56 

 

c) Chen [49], PSNR=30.39           d) The proposed algorithms, PSNR=30.69 

Figure 6. 19. Subjective quality comparison of the compressed Lena image at 0.217 

bpp post-processed by different methods. 
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In Figure 6.20, an enlarged part of the compressed the Peppers image at 0.221 bpp 

and the corresponding results post-processed by different techniques are presented. 

Again it is seen, the resultant image of the proposed algorithms is the best of them. 

 

a) Decoded, PSNR=29.21                   b) Zeng  [48], PSNR=29.39 

  

c) Chen [49], PSNR=29.95           d) The proposed algorithms, PSNR=30.55 

Figure 6. 20. Subjective quality comparison of the compressed the Peppers image at 

0.221 bpp post-processed by different methods. 
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Also, some other methods are tested to show advantages of the proposed techniques.  

They are an adaptive deblocking filter for DCT coded video [50] and the deblocking 

filter according to the book named still image and video compression with matlab 

[51]. The results over different images are tabulated in Table 6.8. Figure 6.21 shows 

PSNR versus bit rate for the compressed image Lena. 

Table 6. 8. Comparison of PSNR for different post-processing techniques. 

Test 
Images 

Bits/pixel 
(bpp) 

 
PSNR 

Decoded 
Ref. 
[50] 

Ref. 
[51] 

Proposed 

 
Lena 

 
0.217 29.47 28.51 29.75 30.69 

 
Goldhill 

 
0.227 27.90 27.75 28.10 28.72 

 
Airplane 

 
0.240 28.72 27.24 28.93 29.89 

 
Peppers 

 
0.221 29.21 28.46 29.53 30.55 

 
Mandrill 

 
0.300 22.05 21.60 22.10 22.53 
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Figure 6. 21. PSNR versus bit rate for the compressed image Lena. 
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And, also for the subjective evaluation of the proposed techniques, examples are 

shown in Figure 6.22 and 6.23. In Figure 6.22, an enlarged part of the compressed 

Goldhill image at 0.227 bpp and the corresponding results post-processed by 

different techniques are presented. As it is seen, the resultant image of the proposed 

algorithms is the best of them. 

  

a) Decoded, PSNR=27.90                   b) Ref  [50], PSNR=27.75 

  

c) Ref [51], PSNR=28.10           d) The proposed algorithms, PSNR=28.72 

Figure 6. 22. Subjective quality comparison of the compressed Lena image at 0.227 

bpp post-processed by different methods. 
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In Figure 6.23, an enlarged part of the compressed Airplane image at 0.240 bpp and 

the corresponding results post-processed by different techniques are presented. Again 

it is seen, the resultant image of the proposed algorithms is the best of them. 

  

a) Decoded, PSNR=28.72                   b) Ref  [50], PSNR=27.24 

  

c) Ref [51], PSNR=28.93           d) The proposed algorithms, PSNR=29.89 

Figure 6. 23. Subjective quality comparison of the compressed the Peppers image at 

0.240 bpp post-processed by different methods. 
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CHAPTER VII 
 

CONCLUSION 
 
This thesis addresses artifacts that arise in block based DCT image compression. The 

objective of the thesis is to classify, analyze and find solutions to reduce the visual 

appearance of coding artifacts. Two new independent adaptive algorithms using 

adaptive fuzzy filter are developed to reduce coding artifacts. First, blocking artifacts 

are removed and then ringing artifacts are eliminated. They detect the possible 

locations of artifacts and adapt the filtering strength to the detected artifact level. 

Then, a fuzzy filter based on detection results is used. The algorithms can highly 

preserve the high frequency components while smoothing out artifacts.  

 

Simulation results show that the proposed algorithms significantly reduce the 

blocking artifacts in both objective and subjective measures. It is able to be adaptive 

to different image content and qualities. It can effectively remove coding artifacts 

even at very low bit rate.  

 

The amount of computation it requires is also acceptable compared to other methods 

in literature. It can also be used for color images by applying all color space like 

monotonic image. Similarly, frames from video sequences can be considered as color 

image. So, the algorithms can be applied on them. But in videos, there is an average 

of 25 frames. Consequently, the algorithms may not reach real time. However, if you 

have sufficient time, the algorithms offer better visual quality. 

 

In future research, although the algorithm of blocking artifacts removal presents 

good working, the algorithm of ringing artifact removal needs to be developed. 

Because, it slows down the overall algorithm since it requires a large number of 

computations. Maybe, the detections of both algorithms can be improved. Despite 

many membership functions tried, other ones can affect the performance and speed 

of the algorithms.  
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