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ABSTRACT

OPTIMUM DESIGN OF TRANSMISSION

TOWERS

MOHAMMED, Abdullah

M.Sc. in Civil Engineering

Supervisor: Prof. Dr. Mustafa ÖZAKÇA

Co-supervisor: Asst. Prof. Dr. Nildem TAYŞİ 

August 2012, 101 pages

This thesis deals with the improvement of reliable and efficient computational tools

to analyze and find optimum weights for transmission towers subjected to static

loading. The finite element method is used to determine the stresses and

displacements. An automated analysis and optimization procedure which integrate

with finite element analysis and numerical methods have been used. Also, a

FORTRAN based genetic algorithm is implemented to search the optimum design.

Finally, the results that are obtained from these programs are compared with the

available literature and SAP2000 to figure out the efficiency of FORTRAN program.

Key words: Transmission tower, static analysis, optimum weight, finite element

method.
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ÖZET

Enerjı Nakil Kulelerinin Optimum 

Tasarımı  

MOHAMMED, Abdullah

Yüksek Lisans Tezi, İnşaat Müh. Bölümü 

Tez Yöneticisi: Prof. Dr. Mustafa ÖZAKÇA

Yardimci Tez Yöneticisi: Yrd. Doç. Dr. Nildem TAYŞİ 

Ağustos 2012, 101 sayfa 

Bu tez, statik yüklemeye maruz enerji nakil hattı kulelerinin analizi ve optimum 

ağırlıklarının bulunmasına yönelik güvenilir ve verimli bir bilgisayar programı 

geliştirilmesini kapsamaktadır. Sonlu elemanlar yöntemi kullanılarak gerilme ve 

şekil değiştirme değerleri hesaplanmıştır. Sonlu elemanlar yöntemi ve sayısal 

yöntemleri birleştiren bir otomatik analiz ve optimizasyon tekniği uygulanmaktadır. 

Optimum tasarım için FORTRAN tabanlı bir genetik algoritma kullanılmıştır. Son 

olarak, FORTRAN programının verimliliğini ölçmek amacıyla elde edilen sonuçlar 

SAP2000 ve önceki yayınlarla karşılaştırılmıştır.  

Anahtar kelimeler: Enerji nakil hattı kuleleri, statik analiz, optimum ağırlık, sonlu 

elemanlar metodu.
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CHAPTER 1

INTRODUCTION

1.1 General

Latticed structures are used in a wide variety of civil engineering applications. A

latticed structure is a system of members (elements) and connections (nodes) which

act together as a one structure to bear and resist the applied acting load. Transmission

line as lattice structures plays a significant role in human society and a failure in the

system of transmission line may cause an interruption in the energy supply to

consumers, which may lead to severe social and economic losses. To prevent this

occurred it must guarantee the stability and the low cost of maintenance, and this

system must be well designed.

The structure cost usually accounts for 30 to 40 % of the total cost of a transmission

line. Therefore, selecting an optimum structure becomes a crucial part of a cost-

effective transmission line design. A structural study usually is performed to

determine the most suitable structure configuration and material based on cost,

construction, and maintenance considerations and amount of electricity [1].

The used structures on transmission lines are generally lattice or pole type. Lattice

type structures are commonly composed of angled steel sections. Pole types may be

concrete, wood or steel. Both types of structures are self-supporting or guyed [1].

The minimum weight of the tower structure maintained by using the minimum cross

sectional area for the members under the constrained condition to make members full
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stressed according to the allowable tolerance of the material used for fabrication of

the sections.

Nowadays computers are playing an important task in the analysis and design of such

structures. In the past analysis and design were performed by manual calculations

based on a two dimensional (2D) stress analysis which is time consuming and

laborious. The highly sophisticated softwares have been developed to automate

calculations of member forces based on three dimensional (3D) Finite Element (FE)

analyses. Such softwares find out critical member forces for a type of loading and a

variety of possible tower combination, giving accurate results for analysis and

design.

Optimization is an automated design procedure in which the computers are utilized

to obtain the best results. The numerical methods of Structural Optimization (SO),

with applications of computers automatically generate a near optimal design

(converge to solve) in interactive manner. A program was modified and used to

automate analysis and optimization of the structure written in FORTRAN language

based FE analysis and Genetic Algorithm (GA) optimization technique.

1.2 Transmission Towers

Transmission towers were increasingly constructed for transport high voltage from

the source to consumers. Because of it’s advantageous to reduce the number of

locations from a maintenance point of view (longer span) to get proper ground

clearance and to have strong support to withstand wind load. The tower is a balanced

structure with four legs covering the spans of 250 meters and above can be adopted

for tower line.

1.2.1 Parts of transmission towers

As shown in Figure 1.1 transmission towers are consist of a pylon with crossarms

connected by hanging insulator for supporting conductors and at the top earth wire

with extra accessories like spacer and vibration dampers.
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Figure 1.1 Transmission line tower.

1.2.2 Transmission towers types

There are many classifications for types of towers, which depends on,

 Number of used circuits,

 Use in the line alignment (such as; straight, varying angle and dead ends).

Generally transmission towers in line alignment classified to many standard types as

mentioned below:

Tangent suspension towers: straight line and deviation angle up to about 2°. These

towers are designed to withstand to the, ice load, wind load and broken conductor

loads. Hence 90 percent of the lines are of this type and the SO tools become

important to reduce the total weight of the structure under service condition.

Angle towers (semi-anchor towers): deviation angle greater than 2°. They must

withstand the transverse load from the line tension and its components produced by

this angle. Mainly for angle towers are classified into the types below [2];

 Light angle: from 2° to 15° angle of the line deviation.
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 Medium angle: from 15° to 30° angle of the line deviation.

 Heavy angle and dead end: from 30° to 60° angle of the line deviation.

1.2.3 Transmission tower materials

• Metal: galvanized steel and aluminum rods, bars and rolled shapes, fabricated plate

and tubes.

• Concrete: spun with pre-tensioned or post-tensioned reinforcing cable, statically

cast, non tensioned reinforcing steel and single or multiple piece.

• Other types of wood as grown and glued laminated, plastics, composites and

variation of all the above.

Depending on their style and material contents, structures vary considerably in how

they respond to loads. Some are rigid or flexible. Those structures that can safely

deflect under loads and absorb energy while doing so, provide an ameliorating

influence on progressive damage after the failure of the first element [2].

1.2.4 Factors affecting structure type selection

There are many factors that effect on the selection of the structure type for use in a

transmission line. Some of these which have more influence are shortly identified

below:

Erection technique: It is clear there is many require different erection techniques for

different structure types.

Public concerns: Perhaps the most difficult factors to deal with arise as a result of

the concerns of the general public living, working, or coming in proximity to the line.

Inspection, assessment and maintenance: Taking this point in view for future

maintenance when there is a cut or the type of the equipments for easy reach and

working on the alignment of the transmission line.
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Future upgrading or updating: Because of the difficulty of procuring the right of

way’s and to get the necessary permits to build new lines, many facilities make

improvement for their future options by selecting structure types of current line

projects that will permit future upgrading or operating initiatives [2].

1.3 Design Span Lengths

When transmission towers are designed, there are many terms used for span in

calculations according to the location of the tower on the line alignment such as:

 Normal span: the line is designed over level ground, so that the required

ground clearance is obtained at the maximum specified temperature. The

normal span is the most economic span.

 Ruling span: ıt is a weighted average span of the varying span lengths the 

assumed design span measured between dead ends and it can be calculated by

the equation:

Ruling span=ඨ
L1

3+L2
3+…Ln

3

L1+L1+…Ln

(1.1)

Where L1, L2, …Ln are the spans Lenghts consequently in longitudinal

section of line alignment. The horizontal component of tension is found with

the application of this span in calculations and to be used to all spans between

the anchor points.

 Average span: is the mean span length between dead ends. On this

assumption the calculation of sag and tension is taken, where it is expected

that freely suspended for the conductor in a way for every separate span gives

varies replies in tension as a single average span.

 Wind span: is that span which is calculated from the average of the two spans

adjacent to the support is assumed to work transversely on the conductors.
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 Weight span: can be measured as the horizontaly distance between the lowest

sag points of conductor for the two adjacent spans from the tower. This span

is used in the design of the arms [3].

1.4 Basic Idea and Theories Used in Analysis

The basic theories used in the analysis are the following: Matrix Stiffness Method

(MSM), the possible displacements of the ends Degrees Of Freedom (DOFs), the

global and local coordinate systems.

1.4.1 Matrix stiffness method

The recent effective technique in the analysis of engineering structures is MSM. The

presence of effective computer programs and modern computers supplemented

efficiency and common function of its applications. By taking into account different

features of a structure and loading MSM permits carrying out detailed analysis of

every complex 2D and 3D structures in engineering. A set of new ideas is required

for the method. They are possible displacements of the ends, global and local

coordinate systems, FE, separate element stiffness matrix and whole structure, etc.

The scheme of the displacement method is used by this method and covers its extra

developments. The presentation of arbitrary structure should be taken as a set of FEs

and three aspects of any problem such as, statically, geometrically and physically

should be shown in matrix form. The bending moment diagram caused by unit

primary unknowns in the primary system does not require in MSM method. Instead it

is needed to prepare few initial matrices according to strong algorithms and perform

matrix procedures by computer using the standard programs [4].
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1.4.2 Degree of freedoms and displacement of joints

When a set of FEs representing a structure, the description of the possible end

displacements of each member is needed. These displacements are representing the

unknowns in the displacement method. These displacements are known as the

possible angular and direct displacements of the joints. The term of possible involves

that in a particular structure such displacement is possible, but not fundamentally

used. For example, in case of two span continuous beam, a section at the middle

support generally rotates; but, if symmetrical beam and loading are available then the

rotation angle is zero. In brief, we can consider it that any possible displacement of

the joint is a displacement in global coordinates.

1.4.3 Coordinate in local and global systems

The local coordinate system is indicated to as the specified element, while global

system is associated to the whole structure. The relation between the global and local

coordinates is done by apply the transformation matrix with trigonometric function.

1.5 Analysis and Design of Steel Frame Structures Related Problems

The strategy for structural steel construction is a procedure based on many

contributing sides. Past practice of successful and unsuccessful structure, laboratory

experiments and outcomes of research, come together to confirm structures do not

collapse. Structures can then be used powerfully and securely but on the other hand

must be economically built and maintained. Since it can be known that the design

process must satisfy two opposing goals economy and security. Performing this

compromise is not an easy job, therefore codes of practice have developed to help

and guide the designer, but special national codes, for example, British and American

codes of practice deal with the design problem differently. This may be because the

behavior of steel construction frames, for example, is not good understood because

methods of design are still at an elementary stage of improvement. This may be due
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to the reality that the problem of design is much less specific than that of analysis

[5,6].

The problem of design or composition comprises producing member sizes which are

acceptable in all requirements, under all loading conditions. In most cases, an

unrestricted number of designs will meet these requirements. More practical designs

are based harshly on a trial and error process. The design process starts with the

analysis step. After analyzing a structure, an initial solution of the member properties

is modified and the next solution is re-analyzed.

1.6 The Requirement of Design Optimization

When conventional design methods are used design engineer may face some severe

difficulties. Firstly, the talent and practice of the designer is important to obtain safe

designs. Secondly, the complication of the treated structure and doing a number of

re-analyses and following redesigns are very tedious and probable cause of mistakes.

Thirdly, there is the trouble of covering all probable loading cases. Fourthly, the

proposed usage of the structure might avoid the designer from getting economical

design. Fifthly, the different design and analysis techniques might hesitate the

designer in choosing the appropriate technique. Consequently, the use of computers

offers reliable and precise analysis much easier. Also the speed of computer

application is faster compared to traditional hand solutions.

Design optimization is a stimulating research topic and proposals for design

optimization have been made by design professionals. Design optimization is

focused with the problem of the selection of geometric parameters and mechanical

strength properties of the structural elements. This choice involves of a search for the

extremely solutions, which fulfils the specified criteria, the investigate being shown

in an objective and reasonable way, that does not depend on the feeling or special

skills of the designer. Thus, design optimization takes over that part of the design

process, which consists of choosing sizes and later checking that the demanded

criteria have been met. The question arises whether the design optimization field can

or should fully substitute conventional designing ways, for example, whether or not
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the task of optimization is to adopt all structural parameters so that the solution of an

optimization problem should be the same to attaining a complete design of a

structure [5,6].

1.7 Layout of The Thesis

In present work main attention is focused on SO of lattice transmission towers under

static loading condition. To do so FORTRAN based analysis and optimization tool is

improved for using in this study. The main goal of the study is to reduce the total

weight of transmission towers without causing a strength base failure. The

organization of the study and the layout of the thesis is now pronounced:

 Chapter 2 is the literature review in analysis and design optimization.

 Chapter 3 is devoted to the static analysis of 3D structures. The basic theory and

matrix analysis is first presented and then several examples are studied and

illustrated.

 Chapter 4 deals with various aspects of the optimization process including the

definition and selection of the design variables and the GA technique.

 Chapter 5 presents the work of SAP2000 software in the design of space truss

with the (AISC-ASD-89) code. The optimum structure is designed under the

auto selected section feature in the software.

 Finally in Chapter 6, some brief conclusions are presented together with some

suggestions for future work.
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CHAPTER 2

LITRATURE REVIEW

2.1 Literature Survey

The analysis and optimization of lattice structures have found great attention in

literature. Different analysis methods were used by researchers to capture the

response of lattice structures under service loads. The analysis techniques which are

used for lattice structures were also used for transmission towers. So it is important

to capture the works presented for analysis of transmission towers to link theoretical

knowledge and the experiences on lattice structures.

Also it is important to detail published works on the SO to compare performances of

approaches. This chapter treats the works published so far on structural analysis and

optimization of the lattice structure.

2.1.1 Analysis

During the past decades, before the advent of computers huge experimental and

theoretical investigations on such structures have been carried out and the evolution

of Matrix Structural Analysis (MSA). The researchers performed on MSA from 1930

to 1970 is outlined [7]. With the available tools it was very difficult to analyse 3D

trusses. Therefore, simplifying assumptions were made in order to reduce the

analysis of a tower to independent analysis of several statically determinate plane

trusses. These assumptions in structural analysis are explained by Marjerrison in
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1968 and Zar and Arena in 1979 [8] to simplify the analysis as determinate plane

truss using algebraic or graphs.

Of the many existing analytical and numerical tools, the Finite Element Method

(FEM) has been the generally common method used in the analysis of transmission

tower. Generally, the stiffness matrix method is employed in the model of the

transmission tower. Although, with the rapid progress in high-speed computation,

because of the huge amount of degrees of freedom required for exact modelling,

described 3D FE. Analysis of transmission tower is still time consuming because it

needs large data input and it produces enormous output with solving very big

dimension matrices, they frequently show the natural behavior of the transmission

tower.

The principal of the stiffness matrix was illustrated early between 1954-1955 by

Argyris [9]. These articles were originally published in a series of articles in aircraft

engineering. The purpose of these papers is to generalize and extend the fundamental

energy principles of analysis of elastic structures. The most important contributions

of his study are the matrix methods of analysis.

Jensen et al. [10] presented a paper about analysis of self supporting structures as

highly indeterminate structures. Such structures were solved by determinate methods

due to the number of calculations involved in indeterminate methods. Large

numerical problems were solved with digital computers, for this the researcher

presented a technique for efficiently solving large systems without resorting to

matrix inversion.

Lee et al. [11] presented a method for the limit analysis of indeterminate space truss

utilizing the static equilibrium equations and linear programming techniques. In that

paper, a general formulation for both the limit analysis and design problems were

developed. They mentioned that additional research is required to enhance the future

use of limit design for the transmission structures.

An incrementally small-deformation theory that was physically self explainable is

presented by Yang et al. [12] for the large displacement nonlinear analysis of
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structural frames. They made them assumptions strictly based on small

displacements, small rotations, and small strains during every incremental stage,

from the force displacement relationships the elastic and geometric stiffness matrices

for the beam element are derived.

The structure's stability is associated with the actual behaviour of being have a

probabilistic description of close to semi-rigid connections instead of the supposed

hinged connections. For this objective Silva et al. [13] presented a paper that

suggests a different structural analysis modelling approach to the design of steel

tower take into account completely the real structural moments and forces linking 3D

truss and beam FEs. The two mentioned design methods was compared with a third

method established for the use of spatial beam FEs to model the main structure and

the bracing system on two actually built steel telecommunication towers (40 and 75

m high steel towers) are explained.

The objective of the paper prepared by Lee et al. [14] was to expand a numerical

model for representing the ultimate behavior of lattice steel tower structures. The

elastoplastic big deformation analysis of a lattice steel tower structure by FE analysis

were displayed and the numerical results were compared with full scale destructive

tests. A 2-node 3D L-section beam FE is used and the eccentricities of loading and

boundary conditions were considered as well as material and geometrical

nonlinearities. The real tower structure model was used and built with sections using

the beam elements.

The objectives of giving a presentation of past and recent developments in the

stochastic FEM area and signifying future directions as well as some open issues to

be checked by the computational mechanics community in the future. Consequently

Stefano [15] mentioned in his article that an extension of the classical deterministic

FE approach to the stochastic framework was SFEM (i.e. with stochastic mechanical,

geometric and/or loading properties in the solution of static and dynamic problems).

They were addressed some open issues and indicating future directions to be studied

by the engineering community in the future.
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Taking into account the real lattice towers complexity, also it would be important to

achieve investigations on a real tower in the field to give owners and designers on the

stiffness and damping of lattice towers with full information. A study was presented

by Taillon et al. [16] dealing with the design of steel lattice structure, although the

dynamic loads are controlled this structure such as shocks (free vibrating) resulting

from broken components such as guy cables or conductors, earthquake, or wind. In

the study, found the practical information on modeling techniques to be used for

lattice structures. They show that the stiffness and damping relation to evaluate the

influence of load level on both structural characteristics. The 40% of stiffness can be

reduced and the values between 2 and 5 % of damping ratio can reach. The structural

models of three types have been used to the tower to predict the initial stiffness.

When the boundary conditions taking into account it was a very important

assumption in proper modeling of the tower. In terms of modeling technique they

recommend, also it would be interesting to examine the overall behavior and the

interest of nonlinear analysis with the effect of the eccentricity of connections.

Transmission tower structures with nonlinear analysis technique has been presented

in a study by Albermani et al. [17] They proposed a procedure to be used with

exactly expect structural failure, Their expectations in the study are based on of an

expensive full scale test results. This accuracy is given, and the method that applied

to failure analysis and expectation, and for design upgrades and modifications. An

enormous savings in supplies by using of this method is obtained, and will reduce the

need for the full scale testing that is ordinary in the transmission industry.

Consequently, modified and upgraded can be easily done for tower designs.

The analysis of space frames with the FE formulation is discussed by Shakourzadeh

et al. [18]. The joint connections deformation in linear, non-linear and stability

analyses of 3D thin walled beam structures to be considerd a numerical method was

presented. The consideration of joint deformation caused by a torsion, membrane,

bending or even warping effects are taken. An existing FE code can be easily

introduced in their method. Determining the overall stability and ultimate strength

response of framed structures has been demonstrated with the importance of

connection behaviour. The response of frames is very sensitive to the joint flexibility

as the numerical examples presented.
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The joint effects were described for many models representation and the numerical

predictions were compared with experimental results as objective discussed by Jiang

et al. [19]. The importance in design decision making is an accurate expectation of

the ultimate load capacity of transmission towers. The conventional structural

analysis models which do not take into account joint eccentricities and slippage

effects are non-conservative in predicting the global response of lattice towers

measured in full scale tests. They reach in their study to the following decisions that

in numerical models both diagonal members and main leg splice connections by the

effects the joint slippage can expect the tower displacement with reasonable

engineering accuracy. When under the consideration of the joint slippage increases

the expected tower distortion without changing its failure mode. In the other hand the

effect of joint slippage on the ultimate load bearing capacity of the towers will be

find by the magnitude of the applied vertical load and by the load directions and

associated tower failure mode.

2.1.2 Structural design optimization

In this section the literature is observed and from the study is classified with related

studies work with GAs or traditional method.

2.1.2.1 Structural optimization using genetic algorithms

GA which has been used for many years is one of the SO methods. This method is

also used as a tool to optimize lattice towers in this study. GAs, firstly examined by

Holland at the University of Michigan as search procedures based on natural

selection is the basic engine of Darwinian natural selection and survival of the fittest

[20]. The literature is reviewed for the GA, and this literature classified into three

types of studies:
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2.1.2.1.1 Specialized design

Specialized structure designs involve GAs that adapt to particular structure types.

Some of these designs will mainly include trusses, 2D frames, 3D frames and lattice

towers.

The paper presented by Ghasemi et al. [20] demonstrated the use of GAs for SO of

trusses. They discussed the idea of rebirthing to be significantly efficient for

problems concerning continuous design variables. Specific standard examples were

examined concerning 4-bar, 10-bar, 64-bar, 200-bar and 940-bar 2D trusses.

Together continuous and discrete variables were studied. A normal GA technique

and other improved one were presented and their implementation has been examined

with some 2D plane trusses. Together approaches provide fine solutions when

compared with results existing in the literature with the modified GA technique

providing an improved total implementation. The application of rebirthing lets

improve optimal solutions to be achieved for problems concerning continuous design

variables supplied that the solution at the first rebirthing is near to the optimal

solution.

A design procedure incorporating a simple GA is developed for discrete optimization

of 2D structure is included in article by Camp et al. [21]. The objective function of

the research was the weight (or cost) which is minimized in correlation to the

serviceability and strength requirements. To complete this optimization, a program

was developed based on a simple GA for optimization called FEAPGEN. This

program was a module incorporated into a modified version of a FE analysis

program. This program includes special features such as discrete design variables,

open format for designed constraints, design checks using AISC-ASD specification,

and multiple loading conditions.

A paper was reported by Erbatur et al. [22] which was discussing the expansion of a

discrete optimal design of planar and space structures by computer-based systems

approach for composed of one-dimensional elements. The important characteristic of

the solution approach was the application of GA in the optimization process. The

steel frame and truss structures applications and experience were discussed. The

comparative studies results of the GA against various discrete and continuous
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optimization algorithms for a group of representative structural design problems

were described to display the efficiency of the former. It was performed that GA

regularly finds the region of the search space including the global optimum, but not

the true optimum itself. Moreover, in this study a method based on a suggested

multilevel optimization was tested and showed to overcome this fault.

The minimum weight weight optimization as optimization process was presented for

the optimum weight by Tong et al. [23] discussed the truss structure subjected to

constraints on stresses, natural frequency responses using the discrete design

variable. The study consisted of two steps for optimization procedure. The first step

is to use a difference quotient method and find a feasible basic point through defining

a global normalized constraint function. The second step is to establish the discrete

value of the design optimization into linear zero-one programing. They employed a

binary combinatorial algorithm to achieve the zero-one programing. Examples of

discrete optimum truss design were presented to demonstrate the feasibility of the

optimization process.

The paper by Domingues et al. [24] investigated the topology optimization with

geometry and simultaneous size of existent great truss structures using GAs as

optimization technique and the analyser as the FEM. Thus, when optimizing the

characteristic of basic bays instead of whole structure to get the final optimum design

may be reached. The cross-sectional areas have been obtained from the standard

profiles according to AISC codes in order to obtain realistic optimal designs, and

practical conditions are imposed on the bays. Also the constrained by the maximum

and minimum cross-sectional area, maximum slenderness ratio and the maximum

stress of the truss members in the design optimization problem. To take all these

constraints in account, the consideration of two different penalty functions was taken.

The first penalty function with respect to the normalization of violated constraints

considering the allowable stress or slenderness ratio. The second penalty function is a

constant function which is worked to penalize the violations of the slenderness ratio.

Illustration of the method was done on the 2D and 3D examples to show the

performance of the study.
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2.1.2.1.2 Genetic algorithm improvements

Improvements include the research done to enhance the robustness of the

optimization program. This classification will include research improving execution

time, crossover techniques and selection.

The observations were made on the discrete optimal design because they note that

almost all design variables in many of SO problems were discrete in nature using the

proposed GAs. This feature makes it a perfect choice for optimization problem, when

the optimum solution produced will be feasible from both a calculation and practical

point of view. Rajeev et al. [25] found that the number of function evaluations is

greater, hence the number of analyses. Though the gradient computations were

absent, GAs is slower compared to traditional optimization algorithms. This problem

is not viewed today as a limitation in the computing environment, when fast

computers are available with relatively low cost.

Classical optimization method using GAs during recent years as a valid option, such

as heuristic algorithm, especially using with the problems have huge cardinal

searching space, very common incomplete problems. The goal of the work which

was presented by Barrios et al. [26], the study of the necessary conditions (measured

as the optimum values for the GA main parameters) to obtain the convergence in the

shortest possible time. In order to reach the aim of the study, a dynamic model, based

on biological models of evolution was proposed. The differential equation could be

defined The model, that they were study to determinate the conditions that enable the

study to ensure the convergence of the algorithms and the conditions for accelerating

this convergence.

Chen et al. [27] focused on the search for the most economical steel roof truss design

in a reasonable amount of time with the improvements of a design software system

that has enough flexibility and capability. Improving the efficiency and robustness

of the GA approach that developed earlier was the objective to be achieved. The

influences of schema survival, schema representation, problem definition, type of

crossover, the number of design iterations, and size of the population on the

computational expense and the value of the objective function are considered. Their
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results show some interesting conclusions, that the maximum number of design

iterations (generation) and the size of the population need to be at minimum the size

of the chromosome. The one of the most important factors was the schema

representation. The initial design (density of the ground structure) and the size of the

chromosome was depending on the complexity, a newly developed association string

strategy has led to a computationally effective GA process when combined with the

elitist, one-point and uniform crossover strategies.

The crossover was one of the basic three operators in any GA. A study was proposed

by Hassançebi et al. [28] with several crossover techniques and their relative

specifications under investigation. And they performed that the mixed crossover use

displayed a quite suitable performance for all test problems and they observed from

the test examples that the success of the GA method increases with the size of the

design space is increased, hence the design space is necessary to search the optima

for the solutions which is the best solution taken by the mixed crossover used

method.

The adaptive approach in GA was discussed in articale by Toğan et al. [29]. In this 

study they attempted to show how the implementation of GAs was influenced the

adaptive method, and some improvements were proposed in each of crossover,

mutation, and penalty function. An approach was taken into account for grouping of

members to reduce the size of the problem. Space truss with several practical design

examples taken from the literature were optimized by the algorithm suggested in the

work. Design constraints such as stability, displacements and tensile stress given by

national specifications were included and the comparison of results with that ones

achieved by previous studies. In the study the probability of catching the global

solution and enhance the performance of GAs it was increase by concluded the

member grouping together with the adaptive approach.

Vedat et al. [30] showed that many factors such as genetic operator, coefficients, and

some strategies effected on the performance of GAs. These strategies also affected

by the initial population and member grouping as samples of factors. When the initial

population is applied to minimize the number of searches to reach the optimum

design variable in the search space, hence grouping strategy is performed to reduce
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the size of the problem. They proposed that this strategy reduces the number of

searches within the solution space and effectively performed the convergence

capability and directly the performance of the GA.

The design variables encoding type such as value and binary encoding is important to

save more memory for computation this study concerned by Dede et al. [31].

2.1.2.1.3 Optimization goals

Optimization goals focus on the GAs designed specifically to improve the

optimization of one or more objectives. Some of these objectives include member

size, shape, topology, and vibration control.

The various developments of increasing complexity involved in layout optimization

were discussed by Azid et al. [32]. They mentioned the application of traditional GA

in layout optimization briefly with draw attention to its conditions and limitations

imposed to finding the optimal design. They suggested a new method applied to the

benchmark examples for verification. The methodology also was used to new

examples of crane truss and bridge truss problems so as to determine the generality

and robustness for topology optimization. They extended their method to involve

dual stress displacement constraints then many practical problems include these two

constraints at once. Also they focus on the effect of mutation on the final topology.

The explanation of the robustness, generality, and ability in obtaining optimal

designs by using the suggested new method in layout optimization problems.

Shape optimization through a GA using discrete boundary steps and the fixed-grid

FE analysis concept was recently introduced by the Woon et al. [33].

The paper prepared by Göğüş et al. [34] deals with the SO of vibrating planar and 

space trusses. The objective of the study was to develop a robust and reliable shape

optimization tool for vibrating trusses. Natural frequencies are determined using

standard FE matrix displacement method. The fundamental concept is to generate

structural shapes for trusses in which certain vibration characteristics were improved.
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The comparative studied results of the GA against other continuous optimization

algorithms for truss examples were described to display the efficiency of the SO.

The transmission tower shape can be optimized by a GA to acquire the maximum

fundamental frequency, considering that there are some disadvantages such as

premature convergence and low robustness in solving complex optimization

problems with the standard GA. In connection a new adaptive strategy was suggested

by Gan et al. [35] to improve the performance of the algorithm, including the design

for selection mechanism and the method of selecting both dynamic crossover and

mutation probability. Then they show solution for several problems in independent

optimization program. Finally, they showed the efficiency and feasibility of the

method with solving a tower with 108 bars.

2.1.2.2 Structural design optimization traditional methods

In this section the optimum design of structures (2D and 3D) by traditional methods

in literature is presented. This section is in relation with practical methods submitted

by the researchers to compose the designer’s with economic design and rich the

literature with this type of the study.

Rao [36] discussed the concept of optimum design beside transmission towers with

practical design controls. In the study for obtaining minimum weight of tower design

in both crisp and fuzzy environments a systematic procedure has been presented. The

chosen of a few parameters to enhance the optimization scheme that influences the

tower weight indirectly and geometry, by means of design control variables. On the

other hand it reduces the computational effort significantly. They devoted a program

has been improved for developing the optimum design. The study covers the result of

the typical transmission tower, and presents substantial saving in tower weight.

The discrete variables linked to the problem of optimal structural design was

presented by Huang et al. [37]. When selecting a discrete value for a variable, values

must also be selected from a table with other variables linked to it. A major

application area was such problems of the design steel structures using available

sections. In their study they made three approaches that link a optimization method
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of continuous variable with a simulated annealing, branch and bound method, and

GA, are shown and applied in a computer program for their numerical evaluation.

The design problems solution of three structural explained to study the performance

of the suggested methods. The problems solution with discrete variables taking into

account the CPU times are large. They proposed an approach to reduce the CPU

times.

The examining for the best of all combinations is the basis of most optimum

structural designs, arising from the parameters of listed rolled profiles, and the

number of structural members. Consequently Blachowski et al. [38] adopted method

on this idea, because completely known methods of finding the discrete minimum of

structural weight require a very large number of analyses often of an order of four. In

their study, for solving such problems a relatively simple method was presented. A

tree graph was the basis of it, demonstrating discrete values of the structural volume.

The structure could be exposed toloadings of multi static with the constraints

imposed on stresses and displacements. The knowledge of apply the method is

limited to graph representation and the FEM. They explained with two problems has

a numbers of combinations up to 4238.

2.2 Summary

The literature is reviewed with available articles related with the topic of the study.

When the information about the study is collected, after that these topics are

classified related to the nature of each study. Firstly we listed the works which deal

with analysis in the first section to show the study adoption analysis of the truss

structure generally and connections particularly. Secondly, the next section is related

to the design optimization of truss structure. These classified articles are linked to

zero-one algorithm according to classification have taken from the nature of the

study. Finaly the section cover the literature of traditional methods for design

optimization.
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CHAPTER 3

STATIC ANALYSIS

3.1 Three Dimensional Space Frame

Space frame is the common to the most types of the framed structures which have

members oriented in any direction in the 3D space. The connections may be rigid or

flexible between elements of the structure and external loads acted in any randomly

directions and can apply to the joints and the members of space frames generally

subject to bending moments, shears about both principle axes directions and axial

force.

Where the analysis of space frames is generally based on the assumption that the

cross section areas of the all members are symmetric about the two mutually axes

and frees to warp out of their planes under the action of torsional moments.

The DOF of a structure are the independent joint displacements (translations and

rotations) that are necessary to describe the deformed shape of the structure at the

time when subject to random loads.

NDOF=6 (NJ) -NR (3.1)

Where NDOF is the number degree of freedom for 3D elements, NJ is the number of

joints and NR is the number of joints restrained by the support of the structure [39].
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3.2 Theory of Structural Analysis and Stiffness Matrix Formulation

Essentially the direct stiffness method is the basis of all modern structural analysis

softwares, which is a branch of the FEM. Now, a group of elements and nodes is

measured as the structure. A location in space is expected for every node, outlined by

a set of degrees of freedom and the coordinates. DOFs are the elements of the

displacement vector (selected as ux, uy, and uz in 3D space) and the components of a

rotation vector (selected as θx, θy and θz). With each DOF is a relating moment or

force that, after multiplied by the DOF, gives a units of work [40].

3.2.1 Stifness matrix method

Stiffness matrix formulation is done by the principals of virtual work which is the

area under the force-deflection curve and according linear behaviour, displacements

and forces are proportional by deflection, where single forces varies linearly with

displacement from zero to its final intensity F1 as shown in the Figure 3.1 [41].

Figure 3.1 Force deflection relation.

Where from the Figure 3.1 by calculating the area which is triangle to represent the

work done by F1 can be written as :

 W= 1/2×F1×δ1 (3.2)



24

3.2.1.1 Two dimensional frame element

The nodes are the connection of elements, and every element supplies stiffness with

relate applied forces (or moments) occurring related displacement (or rotation) DOFs

of the nodes it connects. Since multiple DOFs exists for a structure element, there are

many stiffness coefficients. Setting the stiffness coefficients into a stiffness matrix

with the relation vector of each DOFs for the nodes of the element to a vector of each

relating force and/or moment components for the nodes of the element. Stiffness

coefficients are generally set in terms of material properties and cross section of the

element. The general form of the equation provided is f (e) = k (e) u, which is an

equation of equilibrium that shows “external applied forces, f are balanced by

internal forces, ku”. Note that stiffness matrices for structural elements are normally

defined in a local frame of reference, defined to pass along the length of the element.

The formulation from 2D element is extended to 3D element in the space when the

joints are rigidly connected a typical member for 2D element is shown in the Figure

3.2 where the displacement and forces take action on the element ends as shown we

have three independent displacements for the results of acting forces at each end

which can be written below [39],

ܴ
=

R୶୧

R୷୧

M୧

 , ߜ
=

δ୶୧
δ୷୧
θ୧

 (3.3)

Where Rxi , Ryi and δxi , δyi are representing the force and displacement components in

the local x, y directions and Mi and θi are the moment and rotation (positive in

anticlockwise direction) at the beginning of the element (e). The axial behaviour of

the element is can represent by the equation 3.4 for the element end acting force and

resulting displacement relation is in simplicity,

Rxi=-Rxj=ቀ



ቁ
ୣ

(δ୶୧
ୣ -δ୶୨

ୣ ) (3.4)
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Figure 3.2 2D element local coordinate.

Where E denoted by the elastic modulus of the material and A represents the element

cross section area which is constant along its length. The moment at the ends of the

element are driven by the method of slope deflection equation,

Mi=2ke(2θi
e+θj

e+
3൫δyi

e -δyj
e ൯

L
)

Mj=2ke(2θj
e+θi

e+
3൫δyi

e -δyj
e ൯

L
)

(3.5)

From equilibrium by taking a moment about the two ends of the element;

R୷୧
ୣ = −R୷୨

ୣ = (M୧
ୣ + M୨

ୣ)/L

=
12EI

Lଷ
൫δ୷୧

ୣ − δ୷୨
ୣ ൯+

6EI

Lଶ
(θ୧

ୣ− θ୨
ୣ)

(3.6)

From the above equation we can assembly in on matrix form of the format shown

below

ቊ
R୧
ୣ

R୨
ୣቋ= ቈ

୧୧ܭ
ୣ ୧୨ܭ

ୣ

୨୧ܭ
ୣ ୨୨ܭ

ୣቊ
δ୧
ୣ

δ୨
ୣቋ (3.7)

Equation 3.8 displays the stiffness matrix and the DOFs for a 2D frame element.



26

⎩
⎪⎪
⎨

⎪⎪
⎧

R୶୧
ୣ

R୷୧
ୣ

m୧
ୣ

R୶୨
ୣ

R୷୨
ୣ

m୨
ୣ
⎭
⎪⎪
⎬

⎪⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡




0 0

0
ଵଶ୍

య
୍

మ

0
୍

మ
ସ୍



ି


0 0

0
ିଵଶ୍

య
୍

మ

0
ି୍

మ
ସ୍


ି


0 0

0
ିଵଶ୍

య
ି୍

మ

0
୍

మ
ଶ୍






0 0

0
ଵଶ୍

య
ି୍

మ

0
ି୍

మ
ସ୍

 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪⎪
⎨

⎪⎪
⎧

u୶୧
u୷୧

θ୧
ୣ

u୶୨
u୷୨

θ୨
ୣ
⎭
⎪⎪
⎬

⎪⎪
⎫

(3.8)

The process by which can be transform these equations to the global coordinates

system X, Y for simply an individual element was described in the particular form

below:

୧୨ܭ]
ୣ] = [T][ܭ୧୨

′ ][T] (3.9)

The transformation matrix T which it is the relation between force and displacement

components in the local and global coordinate systems can be written,

[T] = 
Cosα −Sinα 0
Sinα Cosα 0

0 0 1
൩ (3.10)

3.2.1.1 Three dimensional frame element

For an element subject to bending moments, a 3D frame element is used. Dealing

with a local coordinate system with six degrees of freedom per node as shown in the

Figure 3.3 below:

When axial force is applied to the frame element (DOFs 1 and 7), bending in the

local 1-2 plane (DOFs 2, 6, 8, and 12), bending in the local 1-3 plane (DOFs 3, 5, 9

and 11), and for applied torsion (DOFs 4 and 10).
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Figure 3.3 3D element subject to bending.

The section properties, element length, and material properties were represented in

the stiffness coefficients. When in the case of axial stiffness the functions have

represented the element length, L, modulus of elasticity, E, and the cross sectional

area, A. Consequently, for bending in the local 1-2 plane are moment of inertia for

bending about the local 3-axis, I3, E, and L. While for bending in the local 1-3 plane

are moment of inertia for bending about the local 2-axis, I2, E, and L. Finally for

torsion are the length, L, the shear modulus, G, and the torsional constant, J [40].

Where the principal moment of inertia was represented by I2 and I3 with the central

axis of the element is run through the shear center. Besides, the classic beam theory

is the basis of the element, with the consideration that warping of the cross section

does not exist. For symmetric, solid, or closed sections, warping is either nonexistent

or unimportant and the shear center is at the centroid of the section [39].

The evaluation of the frame element in 3D stiffness as mentioned before represents

by a regular expanding of the equations described in the 2D element. Shearing and

bending deformations can be involved in the normal direction using the same

equations. Furthermore, it is clear that the isolated torsional flexibility is given in

equation (3.36) below [43],



28

F =  න
1

G(s)J(s)
ds

ୱశభ

ୱ

୫୍ ୟ୶

୧

(3.11)

While for the term of torsional stiffness, G (s), and polar moment of inertia, J (s), it

could be difficult to calculate for several cross-sections. The application of the FE

mesh might be necessary with complex sections. In which the basis of the evolution

of the beam element by using FEM. The stiffness matrix of any type of element is

obtained from strain energy, hence the stiffness matrix for the case of bending in any

plane it can be written [43],

kୠ
′ = න [B] ∙ EI ∙ [B] ∙ dx





(3.12)

Where [B] is based on a supposed group of shape functions and give curvature at any

specified point (x) as a function of nodal displacement. In the same manner we can

describe the stiffness for the axial load element which is represented by,

kୟ
′ = න [B] ∙ EA ∙ [B] ∙ dx





(3.13)

Where [B] here is provides axial stretch along the length of the element as a function

of nodal displacement, and further more the derivation for torsion element is;

k
′ = න [B] ∙ GJ ∙ [B] ∙ dx





(3.14)

In this case [B] provides the twist along the length of the element as a function of

nodal displacements. Opposed to prismatic element for tapered in which there is

variation in moment of Inertia (I), cross sectional Area (A) and polar moment of

inertia (J), hence the variation can include naturally as a part of integrals. We can
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compute the stiffness coefficients by defining shape functions, for developing the [B]

matrix and integrating numerically for each of the [ ݇
′ ], [ ݇

′ ]and [ ்݇
′ ].

For the stiffness matrix [ ݇
′ ] due to bending is obtained by subdividing the element

longitudinally the simplest Bernoulli Euler beam element which has to node, i and j,

and four degrees of freedom shown in the node displacement vector [44];

[u]ୣ = uൣ୧
ୣ θ୧

ୣ u୨
ୣ θ୨

ୣ
൧


(3.15)

In this case for C(1) continuity which is the simplest shape function meet this

continuity for the nodal freedom configuration by choosing polynomial interpolation

function called Hermitian cubic shape functions, hence the interpolation formula of

the functions can be written as [44]

[Nଵ
ୣ Nଶ

ୣ Nଷ
ୣ Nସ

ୣ]

⎣
⎢
⎢
⎢
⎡
u୧
ୣ

θ୧
ୣ

u୨
ୣ

θ୨
ୣ
⎦
⎥
⎥
⎥
⎤

=Nue (3.16)

Here it is assumed the natural coordinate ξ, which varies from -1 when (x=0) to +1 at 

(x=L) along the length of the member, while ξ= (2x/L) -2 then the shape function for 

bending with the 1-2 plane is calculated as [44]. It is shown in Figure 3.4.

Nଵ
ୣ =

ଵ

ସ
(1-ξ)2(2+ξ),                         Nଷ

ୣ =
ଵ

ସ
(1+ξ)2(2-ξ), 

Nଶ
ୣ =

ଵ

଼
L(1-ξ)2(1+ξ),                      Nସ

ୣ = −
ଵ

଼
L(1+ξ)2(1-ξ) 

(3.17)

In the equation of total potential energy

 Π=U-W (3.18)
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Figure 3.4 Cubic shape functions.

Where U and W denote the internal and external energies and for U are including

only bending in Bernoulli-Euler model [44],

U=
ଵ

ଶ
∫ σєdV =


ଵ

ଶ
∫ Mkdx =

ଵ

ଶ
∫ EIkଶdx =

ଵ

ଶ
∫ EI(v′′)ଶdx












W=∫ qvdx




(3.19)

Where the q is the applied force and the curvature k in U can be expressed in the

terms of differentiating twice the nodal displacements with respect to x:

k=
d2ve(x)

dx2 =
4

L2

d2ve(ξ)

dξ2 =
4

L2

dNe

dξ2 ue=[B][u]e=N"[u]e (3.20)

For this [B]= N" and it is 1×4 curvature displacement matrix as shown:

[B]=
ଵ


[6

ξ


3ξ − 1 − 6

ξ


3ξ + 1] (3.21)

Transforming of integrating the natural coordinate system obtaining the following

integral from the mentioned integral before,
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[ ݇
′ ] = න [B]. EI. [B]. dx





= න EI. [B]. [B].
1

2
. L. dξ

ଵ

ିଵ

(3.22)

When substituting the above integral with value of [B] and [B]T from (3.22) to get

the following integral as a function of (ξ): 

[ ݇
′ ] =

୍

ଶ
∫

⎣
⎢
⎢
⎢
⎡ 6

ξ



3ξ − 1

−6
ξ



3ξ + 1 ⎦
⎥
⎥
⎥
⎤

ଵ

ିଵ
ቂ6

ξ


3ξ − 1 −6

ξ


3ξ + 1ቃdξ (3.23)

We get integral of a matrix of 4×4 symmetric matrix from the above multiplication

of matrices which is discussed in next sections the operation on matrices with the

sections we explained numerical techniques, hence we get the following integral

[44],

[ ݇
′ ] =

୍

ଶయ
∫

⎣
⎢
⎢
⎢
⎡36ξଶ 6ξ(3ξ − 1)L −36ξଶ 6ξ(3ξ + 1)L

(3ξ − 1)ଶLଶ −6ξ(3ξ − 1)L ൫9ξଶ− 1൯Lଶ

36ξଶ −6ξ(3ξ + 1)L

sym (3ξ + 1)ଶLଶ ⎦
⎥
⎥
⎥
⎤

ଵ

ିଵ
. dξ 

(3.24)

Integration is performed numerically, using n integration point for ξ and weight 

factors are applied finally we get [44],

[ ݇ଵଶ
′ ] =

EIଷ
Lଷ

൦

12 6L −12 6L
4Lଶ −6L 2Lଶ

12 −6L
sym 4Lଶ

൪ (3.25)

This matrix is cover the degrees of freedom 2, 6, 8 and 12 shown in Figure 3.3

similarly for bending with the 1-3 plane to pertains the degrees of freedom 3,5,9 and

11. [ ݇
′ ] was mentioned before as the stiffness matrix for axial force is derived

similarly from the linear shape functions as ξ=x/L [39,42] 
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[N] = [1 − ξ ξ] (3.26)

The derived strain-displacement matrix is calculated and the result shown below:

[B]=ቂ−
ଵ



ଵ


ቃ (3.27)

Substituting [B] and [B]T in equation (3.13) and plugging in and multiplying to get:

[ ݇
′ ] =




∫ ቂ

1 −1
−1 1

ቃ
ଵ

ିଵ
. dξ (3.28)

Finally for a stiffness matrix in the torsion case which pertains the degrees of

freedom 4 and 10 in Figure 3.3 the using of exact same approach and it is find that:

[kT
' ]=

JG

L
∫ ቈ

1 -1

-1 1


1

-1
.dξ (3.29)

Numerical integrals are used for the stiffness contributions in the case of torsion,

bending, and axial force before collective in the model of the total stiffness matrix of

the element in the local axis of the system. The direction of the local axis and the

transformation matrix are applied to get the final total stiffness matrix for prismatic

element.

3.2.2 Geometric stiffness matrix

The geometric stiffness matrix for 3D element is calculated from the basics of virtual

work. This study is explained in the a textbook by Yang and Kuo (1994) [45]. This

matrix is written in terms of the present element forces, cross section area, moment

of inertia, member length and torsional constant.

Pavg.=
1

2
൫Pj-Pi൯, a=

Pavg.

L
, b=1.2a+

12Pavg.I3

AL3 ,

c=1.2a+
12Pavg.I2

AL3 , d=
M2i

L
, e=

M3i

L
,

(3.30)
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f=
Pavg.J

AL
, g=

Tj

L
, h=

Pavg.

10
+

6Pavg.I2

AL2 , i=
M3i+M3j

6
,

j=
2Pavg.L

15
+

4Pavg.I2

AL
, k=

Pavg.

10
+

6Pavg.I3

AL2 ,l=-
M2i+M2j

6

, m=
2Pavg.L

15
+

4Pavg.I3

AL
, n=

M2j

L
, o=

M3j

L
,

p=-
Pavg.L

30
+

2Pavg.I2

AL
, q=-

Tj

2
, r=-

Pavg.I3

30
+

2Pavg.I3

AL

These coefficients are used in the 12×12 matrix as represent in

kൣg ൧=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

a 0 0 0 -d -e -a 0 0 0 -n -o
b 0 d g k 0 -b 0 n -g k

c e -h g 0 0 -c o -h -g

f i l 0 -d -e -f -i -l
j 0 d -g h -i p -q

m e -k -g -l q r

a 0 0 0 n o
b 0 -n g -k

c -o h g

symm f i l

j 0

m⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(3.31)

The geometric stiffness matrix kൣg ൧which is derived by Yang and Kuo (1994) [45]

for the 3D element has been said to consist of bending moments of the quasi

tangential type and torsional moments of the semi tangential type, the two of them

was defined as stress resultant of the member cross sections. The derived [kg]

represents only part of the terms dealing with the rotational properties of nodal

moments. In addition, Yang and Kuo (1994) proposed a modification that results

from the effect of point rotation on torque. The prepared stiffness matrix is called the

joint moment matrix [kj] with dimensions 12×12:
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[ ݇]=

⎣
⎢
⎢
⎢
⎡
[0]

[si]

[0]

sൣj൧⎦
⎥
⎥
⎥
⎤

, [si]=

⎣
⎢
⎢
⎢
⎢
⎡ 0 -

M3i

2

M2i

2

-
M3i

2
0 0

M2i

2
0 0 ⎦

⎥
⎥
⎥
⎥
⎤

(3.32)

Finally the complete tangent stiffness matrix with the local system can be calculated

and obtained from:

ቂ݇ t
′
ቃ= [ ]݇ + ൣ݇ g൧+ [ j݇] (3.33)

Transforming the above equation to global form by;

[k
t
e]=[T][k

t
'][T]T (3.34)

3.2.3 Fixed end forces

Fixed element loads for element in a frame element in 3D comes from the weight of

element, wind, changing in temperature and distributed ice load. The fixed end loads

were given in simple equations in many texts prepared for prismatic element only

one point of view is taken that the load components given is in the local frame

coordinates. In short mean they must be transformed to the global coordinates of the

system.

Member weight: (γx,γy,γz) the global components of material weight density are

given. The calculation of global components of distributed force is obtained by

multiplying the cross sectional area. In the direction of local force components along

the differential length derived by transforming into local components:

൞

wx2
'

wy2
'

wz2
'

ൢ=A.
l m n
l2 m2 n2

l3 m3 n3

൩൝

γ
x

γ
y

γ
z

ൡ (3.35)
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When the member weight is distributed load on the length of the member and can

write in the term of FE on the basis of virtual work as driving below: [44]

fୣ =
1

2
wLන [N]dξ

ଵ

ିଵ

=
ଵ

ଶ
wL∫

⎣
⎢
⎢
⎢
⎢
⎡
ଵ

ସ
(1 − ξ)ଶ(2 + ξ)



଼
(1 − ξ)ଶ(1 + ξ)

ଵ

ସ
(1 − ξ)ଶ(2 − ξ)

−


଼
(1 − ξ)ଶ(1 − ξ)⎦

⎥
⎥
⎥
⎥
⎤

dξ = wL

⎣
⎢
⎢
⎢
⎢
⎡

ଵ

ଶ


ଵଶ
ଵ

ଶ

−


ଵଶ⎦
⎥
⎥
⎥
⎥
⎤

ଵ

ିଵ

(3.36)

This displays that a uniform load w over the beam element in one plane maps to two

transverse node loads wL/2, as may be expected, plus two nodal moments ± wL2/12.

The last is called the fixed-end moments in the FEM literature. Then, the fixed end

moment vector in the local system is:

{f}e'
=ቊ-

wx2
' L

2
-
wy2

' L

2
-
wz2

' L

2
0 -

wz2
' L2

12
-
wy2

' L2

12

-
wx2

' L

2
-
wy2

' L

2
-
wz2

' L

2
0 -

wz2
' L2

12
-
wy2

' L2

12
ቋ

T
(3.37)

3.2.4 Transformation from local to global system

The expression [T] is denoted to transformation matrix for the elements of space

frames can be obtained using the principals of trigonometric direction cosines with

respect all three (x, y and z) axes of the member local coordinate system with respect

to the structure’s global axis (X,Y and Z) coordinate system.

The algebraic sums of the components of the global forces F1,F2 and F3 in the

directions of the local coordinates x, y and z axis which is shown in the Figure 3.5 it

can be calculated as:
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F1=Fଵ
ᇱcosߐ୶ଡ଼ + Fଶ

ᇱcosϴ୶ଢ଼ + Fଷ
ᇱcosϴ୶

F2=Fଵ
ᇱcosϴ୷ଡ଼ + Fଶ

ᇱcosϴ୷ଢ଼ + Fଷ
ᇱcosϴ୷

F3=Fଵ
ᇱcosϴଡ଼ + Fଶ

ᇱcosϴଢ଼ + Fଷ
ᇱcosϴ

(3.38)

This equation can be written in the Matrix form:

൝
F1

F2

F3

ൡ=

cosϴxX cosϴxY cosߐxZ

cosϴyX cosϴyY cosϴyZ

cosϴzX cosϴzY cosϴzZ

ቐ

F1
'

F1
'

F1
'

ቑ ,

r =

cosϴxX cosϴxY cosϴxZ

cosϴyX cosϴyY cosϴyZ

cosϴzX cosϴzY cosϴzZ



(3.39)

This matrix represents one node end force transformation from local to global system

of element and we do this operation for other end forces and the final matrix form

can write in the 12×12 matrix as collected below:

T=൦

r 0 0 0
0 r 0 0
0 0 r 0
0 0 0 r

൪ (3.40)

3.3 The Numerical Basis in Solving Analysis Matrix

When we analyze structures with the stiffness matrix method it is required to know

some basic on numerical analysis to get results. Today with high motivation

computers we can do these operations preciously and quickly the important of this

work is that you have experience to obtain accurate results with minimum steps to

saving time.
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Figure 3.5 Global and local forces and displacement for 3D member frame.

3.3.1 Operation on matrix

There are many operations work with matrices and many texts on numerical analysis

explained these operations in this section we show only the multiplication operation

which is important and give the final size of the stiffness matrix. Multiplication of

two matrices can be performed only if the columns number of the first matrix should

be equal to the rows number of the second matrix. Such matrices are said to be

conformable for multiplication [41].

[A](l,m) [B](m,n) =[C]
(l,n) (3.41)

3.3.2 Gause Jordan elimination method

The Gauss Jordan elimination method is one of the most used procedures for solving

simultaneous linear equations and for determining inverses of matrices [41].
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3.3.3 Numerical integration techniques

The integrals that represent the element matrices are written with respect to dx and

we must make a change in the integration variables to transfer the integral with the

evaluated natural coordinate system [46].

න f(x)dx = න g(p)(
d(x(p))

dp

୮మ

୮భ

ଡ଼ౣ

ଡ଼

)dp (3.42)

Where x(p) is the equation that have relation of the two coordinates system in which

the term:

d(x(p))

dp
= [J] (3.43)

Is called the jacobian matrix for the transformation equation. We evaluate the

integral using the natural coordinate ξ therefore the equation (3.41) becomes: 

න f(x)dx = න g(ξ)(
d(x(ξ))

dξ

ଵ

ିଵ

ଡ଼ౣ

ଡ଼

)dξ (3.44)

We must have an equation that gives the relation of x and ξ. This transformation is 

written using the element shape function and the global coordinates of the nodes.

Here we can deal with numerical integration techniques associated with the natural

coordinates ξ relative to evaluate the matrices of element which is the Gause 

Legendre quadrature. This locates the sampling points to achieve the maximum

accuracy. In the short manner this mean if take n sampling points a polynomial of

(2n-1) can be integrated exactly. The sampling points are in the interval -1 to +1

showing the location of points for n=2 and n=3 are shown in Table 3.1 below [46].

The result of our examples showed in the end of this chapter is solved by using two

point 3 Gause polynomial degree to get the result of analysis shown in the tables for

deflections.
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Table 3.1 Location and weights for Gause- Legendere Quadrature.

n ξi Wi

1 0.0 2.0

2 ±0.577350 1.0

3
0.0

±0.774597

8/9

5/9

4
±0.861136

±0.339981

0.347855

0.652145

3.4 Loadings and Loading Cases on Transmission Tower

Transmission line for design purpose must include loadings from many sources.

Transmission line tower loading is involve of three commonly perpendicular systems

of loads working normal, vertically and parallel to the line direction [3].

3.4.1 Transverse load

The loads were carried by the ground wire spport and points of conductor with the

direction perpendicular to the line way as shown in Figure 3.6 including the wind

load distributed over the transverse face of the structure of the tower.

3.4.2 Longitudinal load

This loads acting in the direction parallel to the line on the tower structure and is

happening with unequal conductor tension to the tower structure.

3.4.3 Vertical load

This type of load is applied to the ends of the cross arms and on the peak point of

ground wire downward and consist of the following vertical components:
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 Weight of conductor itself and the weight of the ice if included in the

covering weight span.

 Weight of insulators and accessories.

 Extra loads to be include for the weight of the man with maintenance tools.

3.4.4 Weight of the structure

The weight of the structure is unknown till the complete design of the structure is

complete. First we put the initial weight of the structure by assuming reasonable

cross section area and geometry of the tower and checking for design with the

requirement of the codes and stress constraints.

Figure 3.6 Direction of loading for transmission tower.

3.5 Examples of Three Dimension Frame Analysis

To perform that the previous formulation of the stiffness matrix is work which are

coded with FORTRAN starting with simple frame examples extended to more

complicated example for transmission tower which has relation with the study for

static analysis and comparing results with program SAP2000 for checking the results

or with literature if available.
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3.5.1 Three dimension four bar frame

Problem definition: The four bar frame of Figure 3.7 is to be analyzed. Material

properties are: E=0.2×109 kN/m2 and material density ρ=1.0 kg/m3 and Poisson’s

ratio=0.3. Two horizontal loads of (2.0 kN) and (-0.4 kN) are imposed in the x and y-

direction at node 5, along with (3.0 kN) upward vertical load. The cross sectional

areas of members are 0.001 m2.

Figure 3.7 Node coordinates and element number for 3D four bar frame.

Discussions of results: The analysis by the FEM coded program is performed and

the analysis result with three nodes and two gause quadrature is obtained. These

results are compared with source program (SAP2000) to show the efficiency of the

program. The results are tabulated in Table 3.2 for comparison of 4bar results and

from the table the results is can be said close to each other.

Table 3.2 Comparisons of displacement at point 5 for four bar 3D frame including

self weight of structure.

Results U1 (m) U2 (m) U3 (m)
Weight

(Kg)

Present -0.398378×10-4 -0.52558×10-4 0.440217×10-4 0.010553

SAP2000 -0.3941×10-4 -0.5255×10-4 0.4335×10-4 0.01055



42

3.5.2 Three dimensional twenty five bar truss

Problem definition: The 25-bar 3D frame of Figure 3.8 is to be analyzed by frame

program. Material properties are: Young’s modulus, E = 1.0×104 ksi, material

density, ρ = 0.1 lb/in3, Nodes 7, 8, 9 and 10 are fully constrained and nodes 1, 2, 3

and 6 are loaded with different load values see Table 3.3. Cross-sectional areas of

members are 3.0 in2 [48, 49].

Table 3.3 Loading for 25 bars 3D truss.

Nodes Px (lb) Py (lb) Pz (lb)

1 1000 -10000 -10000

2 0 -10000 -10000

3 500 0 0

6 600 0 0

Discussion of Results: The analysis by the FEM coded program is performed and

the analysis result with three nodes and two gause quadrature is obtained. These

results are compared with source program (SAP2000) to show the efficiency of the

program. 25 Bar truss results are tabulated in Table 3.4 and compared and there is

small difference in weight because the approximation of the gravity in SAP2000.

Figure 3.8 25 bar 3D truss element number and dimensions.
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Table 3.4 Comparisons of analysis results for 3D 25 bar truss under self weight of

the structure.

Joints Results U1 (in) U2 (in) U3 (in)
weight

(lb)

2
Present 0.0120077 -0.259052 -0.0330087

992.474
SAP2000 0.012 -0.259 -0.033

1
Present 0.0168350 -0.25875 -0.0407211

992.16
SAP2000 0.0168 -0.2587 -0.0407

3.5.3 Three dimensions (672) bars and (306) nodes transmission tower

Problem definition: A transmission tower loaded due to earth wire and conductor

loading as shown in the Figure 3.9 at nodes (a, b, c and d) and have material property

for steel E=200×109 N/m2 and ρ=7860 Kg/m3 and Poisson’s ratio=0.3 and bottom

nodes are fully constrained.

Figure 3.9 Transmission tower, dimensions (m) and applied loads (N).

a
a

b
b

cc

d
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Discussion of Results: The analysis by the FEM coded program is performed and

the analysis result with three nodes and two gause quadrature is obtained. These

results are compared with source program (SAP2000) to show the efficiency of the

program. The results are tabulated in Table 3.5 and specified nodes shown in Figure

3.9 for comparison of the tower results.

Table 3.5 Comparisons of deflection at top and end of crossarms for the transmission

tower.

Nodes
Present U3

(m)
SAP2000 U3

(m)

a -1.59×10-4 -1.58×10-4

b -3.29×10-4 -3.29×10-4

c -2.08×10-4 -2.08×10-4

d -1.23×10-4 -1.23×10-4

Total weight
(Kg)

48608 48606

3.6 Summary and Conclusions

In this chapter the concept of FE stiffness matrix analysis explained, besides some

techniques in numerical analysis used in the FORTRAN program. To confirm the

efficiency of the program, results were compared with SAP2000 program. From the

comparisons, it is clear that there is a slight difference between the results in the

main direction (in direction of applied loads) and in the other directions the

displacements are almost zero.
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CHAPTER 4

OPTIMIZATION ALGORITHM

4.1 Introduction

In structural design it is essential to get an appropriate cross section for the members

of structure so that they can carry the imposed loads economically and safely. This

may be done by the use of SO processes taking into account the structure elements

width and thickness are differing to achieve a particular purpose of weight

minimization with considering certain constraints. Such techniques are iterative and

include numerous re-analyses before an optimum solution can be attained. SO

implements can be developed by the efficient integration of structural geometry

definitions, structural analysis, optimum design and mathematical programming

methods.

4.2 Mathematical Definition of Optimization Problem

The variable and objective function explained in the next sections always exist with a

optimization problem of the structure:

• Objective function: Refers to a function done to sort designs. Any design variable

with feasibility in solution, F represents a number which shows the goodness of the

design. Generally F chooses in away a minimum value which is better than a

maximum one (a minimization problem). Regularly F indicates the weight, effective

stress, displacement in a given direction or even the cost of manufacture.
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• Design variable: Refer to a variables which expresses the design solutions, and

could be swapped during the optimization process with upper and lower limit. It

represents the selected material or geometry. if it represents geometry, it may interact

to a shape sophisticated interpolation or it may simply be the element cross-section,

or the sheet thickness [50].

• Gene: A gene refers to an arbitrary length represented by bit string. A binary

illustration of the bit string is the number of domains from a lower bound. The GA’s

demonstration of a single factor value for a control factor represents by the gene.

Although the control factor must have a lower limit and upper limit, the domain can

be separated into several intervals that can be stated by a bit string of the gene’s.

• Individuals: Refer to a single result in the population. Two forms of results exists

for individual groups as shown below:

1. The genotype, refers to the basic genetic data that the GA deals.

2. The phenotype, refers to the illustration of the chromosome in the terms of the

model.

• Population: A group of individuals refers to population. A number of individuals

involving the population of being examined, the individuals and specific information

about the search space described the phenotype parameters. The population with two

significant aspects applied in GAs are [52].

1. The population size.

2. The initial population generation.

The aim of minimizing the weight of the structure subjecting to constraints for the

member stresses or joint displacements is the basis of the optimization process. The

expression of mathematical programming of optimization problem was represented

in the equations below:

Minimize F(x)

Subject to gi(x)≤ 0; i = 1, 2, …nc

(4.1)
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Where nc refers to the number of constraints. While the structure weight

minimization is the goal, F(x) is expressed as follows:

F(x)=  ρAjLj

nelem.

j=1

(4.2)

Where Aj is the jth element cross sectional area, Lj is the jth element length and ρ is 

the material density. Constraint function gi(x) can be written in a dimensionless

formula as,

ฬ
σj

σall.
ฬ-1 ≤ 0 (4.3)

Where σj is the jth member stress and σall refers to the allowable stress,

ฬ
di

dall.
ฬ-1 ≤ 0 (4.4)

Where di may refer to the displacement uxi and uyi at joint i which is the horizontal

and vertical displacement correspondingly the dall is the allowable displacement. The

each constraints cannot characterize directly in a design variable expression; hence,

they are implicit and their calculation requires using an analysis of truss matrix type

[20].

4.3 Types of Structural Optimization Problems

In the most of the optimization texts, x will closely perform several kinds of

structural geometric feature. The geometric feature depends on, three classes of

optimization problems for structures.

• Size optimization: Refer to problems when x is represented thickness of the

structural member, (i.e., truss member cross-sectional areas), or a sheet distributed

thickness. A truss structure sizing optimization problem is shown in Figure 4.1.



• Shape optimization: Refers to problems when x represents the form or shape of

several portions of the structural domain of the boundary condition. A set of partial

differential equation is describing this condition. An optimal way in the optimization

depends on the choosing of the integration domain from the differential equations.

State that the structure connectivity is not swapped by shape optimization; forming

of new boundaries are not exist.
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4.4 Genetic Algorithms for Optimization

GAs are one of the type search optimization that used for minimizing the objective

function (the structure weight) and it is different from many algorithms of

mathematical programming, is that they do not need the calculation of derivatives of

the objective function and the constraints. It’s search steps depends on the mechanics

of natural genetics and selection. To represent a robust search mechanism it is

working on the scheme of the artificial survival of the fittest with genetic operators

founds from the nature.

4.4.1 Fundamentals of simple genetic algorithm

Reproduction, crossover, and mutation are the major basics of normal genetics. Their

application is used in the genetic search process. GAs advantages compared with

other form of the traditional methods of optimization are listed in the following

points:

1. A population of points is applied to starting the technique instead of a single

design point. Then a several points are applied as electing results, GAs is less

probable to catch confined in a local optimum.

2. The objective function value only is used by GAs. The mathematical forms were

not applied in the search process.

3. In GAs the design variables are characterized as a binary string variable which in

normal genetic is related to the chromosomes. So the method of search is normally

valid to solve integer and discrete examples dealing with programming. the string

length can be varied to get any preferred solution, For continuous design variables.

4. In normal genetics the objective function value relating to a design function plays

the role of fitness.
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5. During each new production, a creation of new group of strings is produced by the

randomized parents from the selection and crossover of the old generation (strings

old group). While randomized, GAs as search technique are not simply arbitrary. The

efficiencies of the algorithm are exploring the new procedures beside the existing

information that obtain a new production with objective function value or improved

fitness [51].

4.4.2 Genetic operators

Three genetic operators are included in a simple GA as mentioned before, beginning

from a strings initial population (representing possible solutions), the GAs applies

the three operators to calculate sequential generations. First, pairs of individuals of

the existing population are elected to mate with each other to create the offspring, to

examined and then create the generation for next iteration.

4.4.2.1 Selection of parents

In this operator the algorithm elects the chromosome from the population for next

operator which is reproduction. The selection of suitable chromosome is the greatest

for the possibility of being chosen for reproduction. Thus, the basis selection is on

the survival-of-the-fittest approach with respect to Darwin’s theory of evolution, but

the main theory in choosing the best individuals in the population. After selection of

the parent string pair, the application of crossover operator is performed to all of

these pairs. Selecting these chromosomes is the problem.

The ability of GAs to obtain nearly optimal or exact optimal solutions under a large

selection scheme range. Though, when the selection process is very low, the

convergence rate will be slow, and the GA may require unnecessarily longer time to

obtain the optimal solution.

Naturally it can recognize two kinds of the selection method, proportionate selection

and ordinal-based selection. Selecting individuals built on their fitness values deal

with the fitness of the other individuals in the population is the main idea of
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proportionate based selection. In selection of ordinal-based methods electing

individuals not depend on their exact fitness, but depend on their sorting inside the

population. This involves that the selection pressure is independent of the fitness

distribution of the population, and is only based on the proportional ranking of the

population.

It is also probable to apply a scaling function to reorder the fitness range of the

population in order to adjust the selection. In another aspect the chance of selecting

useful individual in place of poor one will be important. There are several kinds of

selection methods clarified below:

 Roulette wheel selection: Refers to one of the selection technique of

conventional GAs. The application of reproduction operator is usually the

operator of proportionate reproductive where choosing a string from the

mating pool taking a chance relative to the fitness. The roulette selection

basic is a linear search over a roulette wheel with the holes in the wheel

weighted in relation to the individual’s fitness values. An objective value is

put, which is the sum of the fitnesses with a random proportion in the

population. The population is moving through up to the objective value is

achieved. This is just a moderately robust selection technique, since match

individuals are not guaranteed to be elected for, then somewhat have a greater

possibility. A match individual will provide more to the target value, but if it

does not exceed it, the next chromosome in line has a chance, and it may be

poor. It is elementary that the population not be sorted by fitness, because this

would dramatically bias the selection. This selection method is simpler to

apply but is noisy. The evolution rate depends on the variance of fitness’s in

the population.

 Random Selection: Refers to the method of selecting parents from the

population randomly. In terms of disruption of genetic codes, random

selection is a little more disruptive, on average that roulette wheel selection

[52].
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 Tournament Selection: A perfect selection approach should be in a way

when it has the ability of adjusting selective pressure and population variety

so as to fine tune GA search implementation. Disparate to, the selection in

Roulette wheel, the selection in tournament approach supplies selective

pressure by considering a tournament competition among several individuals.

The elite individual from the tournament is the one with the highest fitness,

which is the winner of the individuals. Tournament competitions and the

winner are then added into the mating pool. The tournament competition is

iterated until the mating pool for generating new offspring is filled. The

mating pool including of the tournament winner has a higher average

population fitness. The fitness difference provides the selection scheme,

which makes GA to enhance the fitness of the succeeding genes. This process

is more efficient and runs to an optimal solution [52].

 Boltzmann selection: The method of simulated annealing is a function of

minimization or maximization. These processes simulate the procedure of

molten metal slow cooling to attain the minimum function value in a

minimization problem. Temperature controlling like parameter established to

the theory of Boltzmann probability distribution simulates the cooling

phenomenon. This method is not related to this study for this connection the

mention of the method is not explained in detail [52].

In the explained section above concluding the mention of fitness of individuals in a

GA is the objective function value for its phenotype. In Fitness calculation, the first

step is to decode the chromosome and the evaluation of the objective function is to

be performed. The fitness not only indicates how good the solution is, but also relates

to how close the chromosome is to the optimal one.

4.4.2.2 Recombination or crossover

The crossover operation includes the changing of genetic bit strings (materials)

between the two parents. Choosing randomly a place by this operator (along the two

chromosomes a bit position) and swaps the sub strings before and after that point



between two chromosomes to generate two offspring (new generation). There are

various types of crossover can take place, hence these types are of the simplest is

explained.

One-point crossover: The easiest kind of the crossover of all of the available kinds.

When selecting a pair of individuals to exchange their first few bits and the results

are a new pair of children. So suppose a selecting parents pair from the mating pool

is displayed in Figure 4.2 below [20],
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expect that offsprings will include good parts of the parents and therefore the

offsprings will be improved. Though, it is better to allow a specific portion of old

population survive to the next generation.

4.4.2.3 Mutation

Every crossover process creates two individuals (children), therefore it will be

exposed to the mutation process in the final step to creating the new generation. This

process randomly changes or flips values of one or more bit at randomly particular

locations in a chromosome bit strings.

The ability of the GA is improved by mutation operator to obtain for a given problem

a near optimal solution by providing an adequate level of genetic variation in the

population, which is required to make sure that the entire solution space is used in

the search for obtaining the best solution. In a sense, it helps as a guarantee; it serves

to avoid the loss of genetic material. To illustrate mutation with an example shown in

Figure 4.4, assuming that the new parents in the following is obtained from applying

one-point crossover [20].

Fig
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to split the search range into a number (a two powered) of ranges set by a tolerance

(or resolution) specified by the designer. For example in size optimization, visualize

that the cross sectional areas interval for every design variable can vary from Xmin to

Xmax. Let imagining that the range is divided into 1,024 (210) ranges with 1,024

values recognized in the interval. Therefore the bit string values interval is from

0000000000 to 1111111111 . Furthermore this interval of values needs ten bits.

Usually, if lcrom bits are used, then the resolution r is found from the equation [20].

r =
X୫ ୟ୶− X୫ ୧୬

2୪ୡ୰୭୫ − 1
(4.6)

4.6 Structure of Genetic Algorithm

The selection, crossover and mutation are three operators to be verified to both

simple in computation and effective in attacking a number of important optimization

problems. Figure 4.6 demonstrates a chart of the structure for a simple GA. In the

starting, the reading of all required data is done and the procedure of the GA will

begin for the first generation. The creation of initial population is implemented

randomly.

The violation of constraint is calculated and properly modification of the objective

function is attained. The fittest design, average, the maximum is obtained, and

several convergence criteria, this explained later, are checked. The GA process is

terminated, if convergence is achieved; else the GA process returns. Through

producing the mating pool, the next population breeding is begun by applying the

crossover operator, and the GA process will proceed continuously until convergence,

or the maximum number of allowable generations, is completed.

4.7 Constraint in Genetic Algorithm

In unconstrained optimization problems GAs is the best appropriate algorithm. Many

engineering problems are constraint optimization, hence to handle the constraint a
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transformation from is used for a constant case of unconstrained problems by

applying penalty based transformation methods. Various approaches to applying

penalty functions are found in the literature.

The one method of transformation in such away violated constraints is normalized

explained by Goldberg, sum of squared, and then a penalty coefficient is multiplied

to the summation. This sum is then added to the actual objective function allowing

the constrained problem to select an unconstrained form of the structure. A near

method was employed by Rajeev and Krishnamoorthy in 1992 [25]. The method

applied by Ghasemi [20] is a little different, as explained in the next sections. To

generalize the problem, constraints are stated in normalized form.

Inequality constraints: Dealing with the inequality constraints, the first step is to

normalize the constraints by dividing them by the related permissible value of the

constraint; thus

ci,j=
g

i,j

g
i,all

, i=1,…nc and j=1,…p
s
.

ḡi,j=ci,j-1.0

(4.7)

Where nc is the number of constraints, ps is the population size, gi,j is the ith constraint

function of jth of population, gi,all is the allowable value of ith constraints and ci,j is the

normalized value of the ith constraints for jth population. Therefore the constraints are

achieved if  ḡi,j ≤ 0. Here, corresponding to the degree by which the constraint is 

violated, the modified objective function is penalized. So another parameter (pv,i) is

taken when the ḡi,j>0 then:

Pv,i=(ci,j)
k (4.8)

When k is an integer represents the degree of constraint violation. Here, another

parameter gi,j and it is computed from the equation:

gi,j = pc . pv,i . (ḡi,j)
2 (4.9)
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Where pc is penalty coefficient. Therefore, every constraint has been violated

individually with penalized, then additional parameter gොj represents the sum is

set,where

gො
j
= g

i,j

nc

i=1

(4.10)

The objective function is not controlled for the value of pc, it should be matched to

the value of the objective function. This problem is solved by adding unity to the

sum of gොj for all the individual populations in a generation, and also dealing with the

current non-penalized objective value and multiplying it by the sum. F୨ is the

penalized objective function can be represented in the equation (4.11) as,

Fj=Fj. (1+gො
j
) (4.11)

Where, the objective function F୨is without any constraint penalization effect.

Equality constraints: An upper and lower limit as the constraint function have, the

violation on either side of the limit constraint it is essential that it is treated in the

same way. Else, if treatment of one side is penalized more than the other, this makes

the population to transport towards the less penalized side. Then, the modification for

limits on both sides of the constraint is happening so that balance is reached. The

equality constraint violation, where the lower and upper limits closely match, will be

handled in exactly the same way, here divergence from a limit to the other part will

be penalized equally [20].

4.8 Convergence of Solution

GAs using many convergence criteria in its process. There are three type of

convergence criteria was used by Ghasemi et al. [20] in their study, and if only one

of them is attained, then the termination of the optimization process is reached. These

are as shown below:
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 As the percentage difference between the average value of all the designs and

the best parent in a population (non-penalized values) achieves a very small

defined value of convergence rate. Therefore,

Where

ቤ
Fത-Fj(best)

Fത
ቤ×100 ≤ convergence rate

Fത=ቌ Fj

Ps

j=1

ቍ Ps൘

(4.12)

Where Fത is the average fitness value in a generation, Fj(best) is the fittest design

variable.

 If the fittest design variable not changed for a number of successive

generations, or the difference of the fittest design of common generation and

that of a number of generations before is a small amount.

 Maximum generations: When the required number of generation’s has been

reached the algorithm is terminated.

 Elapsed time: When a required time has reached the termination of the

process is obtained. If the maximum number of generations has been reached

before the required time has finished, the process will end.

 Stall generations: The algorithm stops if there is no improvement in the

objective function for a sequence of consecutive generations of length stall

generations.

 Stall time limit: If there is no improvement in the objective function during

the process the algorithm terminates during a period of time in seconds equal

to stall time limit.
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The criteria of convergence or termination is at the end carries the search to stop. A

few methods of termination process are sorted in the following sections.

4.8.1 Best individual

Once the minimum fitness in the population falls below the convergence value when

the criteria of best individual convergence is finishing the search. This carries the

search to a faster conclusion guaranteeing at least one good solution.

4.8.2 Worst individual

When the least suitable individuals in the population have fitness less than the

convergence criteria worst individual terminates the search. This guarantees the

entire population to be of minimum set, while the best individual may not be

considerably better than the worst. In this case, the strict convergence value may

never be happened, in which case the search will terminate after the maximum has

been exceeded [52].

4.8.3 Sum of fitness

In this termination method, when the sum of the fittest in the entire population is

equal or less than to the value of convergence in the population record, the search is

considered to have satisfied the convergency. This guarantees that essentially all

individuals in the population will be within a specific fitness interval, while it is

better to pair this criteria of convergence with lowest gene replacement, then a few

weak individuals in the population will blow out the fitness sum. While setting the

convergence value, the population size has to be considered.

4.8.4 Median fitness

Which should give a good range of solutions to choose from, here at least half of the

individuals will be better than or equal to the convergence value [52].
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4.9 Examples

The theory of GA was explained in the previous sections of this chapter. To perform

the previous formulation of the GAs, 3D truss optimization examples are done. The

GA is coded with FORTRAN language run by a compiler. Starting the work with a

simple frame example and extended it to more complicated examples for

transmission tower. This study is done under the static analysis base the FE. The

obtained results compared with the results available in the literature solved by other

researchers. In all examples of GA for types of design veriables are used. Such as;

 Rectangular cross section (thicknesses are different to the widths of

members)

 Square cross section (thicknesses are equal to the widths of members)

 Rectangular cross section (widths of the section are constant and thickness

are design variables)

 Rectangular cross section (thicknesses of section are constant and widths are

design variables)

4.9.1 Three dimensional four bar truss

Problem definition: The four bar truss of Figure 4.7 is to be optimized for minimum

weight. Two design variables are considered by the GA, DV1 is A(1)=A(2) and DV2

is A(3)=A(4), where the design variables is the cross-sectional dimensions. The

constraints are maximum tensile stress 2kN/m0.4500t , maximum compressive

stress 2kN/m0.2500c and maximum displacement m1.0 . Material properties

for the truss are: Young’s modulus 29 kN/m102.0 E and material density

3kg/m0.1 . Two horizontal loads of 2.0 KN and kN0.4 are imposed in the x

and y-directions at node 5, along with a 3.0 kN upward vertical load [48-49].

The GA pseudo-continuous design variables considered are in the range 0.003 to

0.035 m, population size 100, number of iterations 100, design variable binary string

length .8m
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Figure 4.7 Nodal and element numbering for four-bar 3D truss.

Discussion of results: The optimum results are summarized and compared with

other solutions, which are available in the literature and shown in Table 4.1. Size

optimization resulted in a 13.8 % reduction in the total weight from the initial value

of 10.5 kg. The solution for four types of cross section is done. All solution is

converged only the fix width not converged (give the best solution) with the

convergency of (0.15%). The best optimal design for four-bar truss was achieved

after finishing maximum number of generations 3rd case of this solution, the obtained

results of the final objective function shown in Table 4.1 below.

Table 4.1 Comparison of optimum static four bar 3D truss against other solutions.

M
em

b
ers

Optimum design variables Area (m2)

Present

Tayşi [47] 
Langley

[47]

Al-Khamis

[48]

Rectangular

Section

(4 DV)

Square

Section

(2 DV)

fixed

width (2

DV)

fixed

thickness

(2 DV)
width thick

1,2 0.034 0.035 0.00108 0.00117 0.00121 0.001055 0.001102 0.001100

3,4 0.0078 0.034 0.00033 0.00008 0.000574 0.00057 0.000279 0.000290

Opt.W

(kg)
9.82 9.15 9.053 10.184 9.677 9.158 9.150
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4.9.2 Twenty five bar truss

Problem definition: The twenty five bar 3D truss of Figure 4.8 is to be optimized

for minimum weight. The following material properties are used: elastic modulus

ksi100.1 4E and material density, 3lb/in1.0 . Nodes 7, 8, 9 and 10 are fully

constrained, and nodes 1, 2, 3 and 6 are loaded with different load magnitude see

Table 4.2. The design constraints are maximum tensile stress ksi0.40t ,

maximum compressive stress ksi0.40c and maximum displacement in35.0

which is imposed for all nodes and in all directions. Eight groups of members are

used are considered by the GA. The member groupings for design variable

assignment are shown in Table 4.3 [47-48].

The GA pseudo-continuous design variables considered are in the range 0.316 to

2.236 in, population size 100, number of generation is 100, design variable binary

string length 8m .

Figure 4.8 Nodal and element numbering for twenty five bar 3D truss.
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Table 4.2 Loading details for twenty five bar 3D truss.

Joint Px (lb) Py (lb) Pz (lb)

1 1000 -10000 -10000

2 0 -10000 -10000

3 500 0 0

6 600 0 0

Discussion of Results: The resulting truss design of the GA for pseudo-continuous

design variables are presented and compared with various references in Table 4.3.

Size optimization results with (52.14 %) reduction (for the rectangular solution) from

the initial weight value of (992.16 lb). Initial cross sectional areas use in the

optimization process is 3.0 in2. Four section properties is used for the optimization

process as tabulated, and different solutions are obtained with the convergency rate

of (0.15%). While the algorithm is not converged during all optimization procedure

with various cross sections.
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Table 4.3 Comparison of optimum static twenty five bar 3D truss against other

solutions in literature.

Element

number

Present study area (in2)
Reference solutions area

(in2)

Rectangular

section

DV=16

Square

section

DV=8

Fixed

width

DV=8

Fixed

thickness

DV=8

Tayşi 

[47]

Langley

[47]

Al-

Khamis

[48]
Width Thick.

1 1.66 1.27 0.29 0.43 2.73 0.1000 0.1000 0.1000

2,3,4,5 1.74 1.96 0.15 4.29 4.15 0.1000 0.2537 0.1000

6,7,8,9 1.17 0.775 0.49 0.58 0.87 3.2600 3.2322 3.5800

10,11 1.66 0.956 0.35 1.94 1.42 0.1000 0.1000 0.1000

12,13 0.549 0.534 1.00 2.75 0.37 2.6300 1.9831 2.0500

14,15,16,17 1.00 0.452 0.285 3.73 0.98 0.8900 0.8686 0.8000

18,19,20,21 0.994 1.68 1.40 3.46 3.19 0.4200 0.2345 0.2200

22,23,24,25 0.768 1.46 1.33 1.27 2.42 3.8900 3.9816 3.8700

Optimum

weight (lb)
474.83 243.88 911.54 733.56 488.74 488.74 472.43

4.9.3 3D Transmission Tower

Problem definition: The 3D transmission tower truss of Figure 4.9 with 672 elements

and 306 nodes is to be optimized for minimum weight. The following material

properties are used: elastic modulus 29 N/m10200E and material density,

3kg/m7860 . Nodes bottom points are fully constrained, and nodes a, b, c and d

are loaded with different loads magnitude see Table 4.4. The design constraints are

maximum tensile stress 26 N/m100.400 t , maximum compressive stress

26 N/m100.400 c and maximum displacement m1.0 in each node and in all

directions.
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Table 4.4 Loading for transmission tower.

Node number
Load (N)

(Z-direction)

a, b, c -3850

d -1900

Initial design cross sectional areas of the members were 0.01 m2, thickness and width

of rectangular cross section of members are considered for the GA pseudo-

continuous design variables. Minimum and maximum values of dimensions are 0.05

and 0.15 m respectively. The member groupings for design variable assignment are

shown in Figure 4.9 and classified by;

 Rectangular cross section (with 12 thickness and 12 width, totaly 24 design

variables)

 Square cross section (width and thickness are equal so totaly 12 design

variables)

 Rectangular cross section (width of sections are constant and 12 thickness

design variables)

 Rectangular cross section (thickness of sections are constant and 12 width

design variables)

The GA pseudo-continuous design variables considered are in the range 0.05 to 0.15

m, population size 100, number of generation is 100, design variable binary string

length 8m .
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Figure 4.9 Transmission tower loading and grouping of design variables.

Discussion of Results: The resulting tower design of the GA for pseudo-continuous

design variables are presented in Table 4.5. The optimum structure weight is

obtained for various sections in square meters with the algorithm. For initial design

cross sectional areas of the members were 0.01 m2 and initial total weight is 48606

Kg. Percent improvements are shown in Table 3 and, size optimization results with

64.68 % reduction of total weight of the initial value. Figure 4.10 shows the objective

function improvements with respect to iteration numbers of a typical optimization

problem for rectangular section.

Figure 4.10 Show relation between generations no. and objective function for tower
using rectangular sections.
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Table 4.5 Comparison of optimum transmission towers with various design variables

4.10 Summary and Conclusions

The GA is coded in FORTRAN language to run the algorithm process for the search

optimization. Size optimization is the aim of this study to minimize the weight’s of

the structure as objective function. The optimum design of the structures is obtained

Element group

Present GA (m2)

Rectangular

section

DV=24

Square

section

DV=12

Width fixed

section

DV=12

Thickness fixed

section

DV=12Width

(m)

Thick.

(m)

1G 0.0438 0.0123 0.00453 0.0081 0.00751

2G 0.0943 0.0925 0.0141 0.0119 0.00916

3G 0.123 0.0966 0.00924 0.00022 0.00721

4G 0.0348 0.0375 0.00043 0.00697 0.0102

5G 0.123 0.0619 0.00022 0.0066 0.00539

6G 0.110 0.0623 0.011 0.00557 0.0116

7G 0.028 0.019 0.00697 0.00295 0.00344

8G 0.027 0.067 0.00873 0.0115 0.00152

9G 0.012 0.108 0.0108 0.00533 0.00022

10G 0.015 0.069 0.00645 0.00447 0.00405

11G 0.026 0.033 0.00127 0.00405 0.00447

12G 0.123 0.01 0.0135 0.0103 0.0115

Optimum weight

(Kg)
17163.85 39729.30 33795.14 44085.71

Percent

improvements
64.68 18.26 30.47 9.30
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under stress and displacement constraints. The weight of the structures is optimized

with significant difference for 3D examples. The weights of four, twenty five and

672 bars are decreased from the initial weight by (13.8%), (52.14%) and (64.7%)

respectively for the available solution results. The results obtained from this chapter

encourages to expand the study of the future works. The design variables were cross

section dimensions, while the solution is done for various types of sections. The

algorithm searches all the available solution under the constraints of allowable stress

and displacement to converge solution or find the best solution. The best solution is

selected among all available results satisfying the constraints by the algorithm.
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CHAPTER 5

DESIGN BY COMPUTER AIDED SOFTWARE

5.1 Introduction

The features of today software’s are powerful and completely integrated modules for

the design of steel and reinforced concrete structures. The program provides the user

with options to create, modify, analyse and design structural models, all from within

the same user interface. The software programs are capable of performing initial

member sizing and optimization from within the same interface.

The software programs provide an interactive environment in which the user can

study the stress conditions, make appropriate changes, such as revising member

properties, and re-examine the results without the need to re-run the analysis.

Detailed design information brings up with a single mouse click on an element. For

design purposes members can be grouped together. Both graphical and tabulated

formats can be readily printed as output results.

The software programs are structured to support a wide variety of the latest

international and national design codes for the automated design and check of

concrete and steel frame members. The programs currently support the following

steel design codes especially the software used in this study [52],

• U.S. AISC/ASD (1989),

• U.S. AISC/LRFD (1994),

• U.S. AASHTO LRFD (1997)

• Canadian CAN/CSA-S16.1-94 (1994),

• British BS 5950 (1990), and

• Eurocode 3 (ENV 1993-1-1).
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5.2 Engineering Design

The design of a structural member entails the selection of a cross section that will

safely and economically resist the applied loads. The economy usually means

minimum weight that is, the minimum amount of steel. This amount corresponds to

the cross section with the smallest weight per foot, which is the one with the smallest

cross-sectional area. Although other considerations, such as ease of construction,

may ultimately affect the choice of member size, the process begins with the

selection of the lightest cross-sectional shape that will do the job. Having established

this objective, the designer must decide how doing it safely, which is where different

approaches to design come into play. The fundamental requirement of structural

design is that the required strength not exceed the available strength, thus the

required strength must be less than the available strength to ensure that the structure

is within safe situation to resist the applied loads.

For example the Allowable Strength Design (ASD), the member was selected under

the consideration of it has cross-sectional properties which give proper area and

moment of Inertia that are enough to resist the maximum applied load, torsion and

bending moment that not exceeding the allowable. This allowable value is obtained

by dividing the nominal strength by a factor of safety. Strength can be an axial force

strength (as in tension or compression members), a flexural strength (moment

strength), or a shear strength.

If stresses are used instead of forces or moments, the relationship becomes the

maximum applied stress must be less than allowable stress. This approach is called

allowable stress design. The allowable stress will be in the elastic range of the

material [54].

5.3 Design Load Combinations According to AISC-ASD (89)

The design load combinations are used to find different combinations of the various

load cases for which the structure needs to be make design and check the structure

according to the selected standard by the user. The load combination factors are used
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and defined in the selected design code, but here in this study the dead loads are used

only to make comparisons between the program and the software and I try to in this

modelling to be near to that modelled by the program in the previous chapter.

The combinations of design load are the several combinations of the load cases for

making the required checking for the structure. When using the AISC-ASD89 code,

if a structure is exposed to Dead Load (DL), Live Load (LL), Wind Load (WL), and

Earthquake caused Load (EL), and taking into account that wind and earthquake

forces are reversible, also the combination of the following load may have to be

defined (ASD section A4) [53,54].

DL

DL+LL

DL±WL

DL+LL±WL

DL±EL

DL+LL±EL

(5.1)

These combinations must be considered in the design of steel structure and take the

critical effect of these combinations. In this study the first combination of equation

5.1 is considered and automatic selections for cross sections are performed.

5.4 Classification of Sections According to ASD-89

The allowable stresses for axial compression and flexure are dependent on the

classification of sections as compact, noncompact, slender, or too slender. The way

of classifying the individual members according to the limiting width/thickness ratios

given in sections (ASD B5.1, A-B5-2). The definition of the section properties

required is given in Figure 5.1 and Table 5.1 for single angles as shown [53]
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Table 5.1 Limiting width-thickness ratios for classification of sections based on

AISC-ASD-89.

Section

Description
Ratio Checked

Compact

Section

Noncompact

Section

Slender

Section

Angle b/t Not Applicable ≤76/ඥܨ௬ No limit

Figure 5.1 Single angle dimensions.

5.5 Stress Calculations with ASD-89 Manual

The distribution of internal force systems across the structural member cross section

in the form of stresses. But, there are only two types of stress: first type which works

vertically to the member cross section and the second which works laterally. The first

is known as a direct stress, the latter as a shear stress. These stresses are distributed

over the structural member cross section area depends on the internal force system on

the section and also upon the cross section geometry.

The calculated stress for the member in non-slender section is calculated for each

load combination based on the gross cross-sectional properties [52].

fa=
P

A

fb33=
M33

S33

fb22=
M22

S22

fv2=
V2

Av2

(5.2)
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fv3=
V3

Av3

If the section is slender with slender stiffened elements, like slender web in I,

channel, and box sections or slender flanges in a box, effective section moduli based

on reduced web and reduced flange dimensions are used in calculating stresses(ASD

A-B5.2d) [53].

For Single-angle sections, the design considers the principal properties and the shear

stresses are calculated for directions along the geometric axes.

5.5.1 Allowable stresses calculations

The allowable stresses in compression, tension, bending, and shear are computed for

compact, noncompact, and slender sections according to ASD-89 design manual. For

the angle sections, the principal axes are determined and all computations related to

flexural stresses are based on that. The allowable stress can be explained according

to member internal forces to the following [53];

5.5.1.1 Allowable stress in tension

The allowable axial tensile stress value Fa are assumed to be

Fୟ = 0.6F୷ (5.3)

For members in tension, which have l/r greater than 300, a message to that effect is

printed (ASD B7). For single angles, the minimum radius of gyration, rz , is used

instead of r22 and r33 to compute l/r [53,55].
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5.5.1.2 Allowable stress in compression

The allowable axial compressive stress is the minimum value obtained from flexural

buckling and flexural-torsional buckling. The allowable compressive stresses are

determined according to the following description. For members in compression,

which have Kl/r is greater than 200, a warning message is printed (ASD B7). For

single angles, the minimum radius of gyration, rz , is used instead of r22 and r33 to

compute Kl/r [52,55].

5.5.1.3 Flexural buckling

The allowable axial compressive stress value, Fa , depends on the slenderness ratio

Kl/r based on gross section properties and a corresponding critical value, Cc , where

(ASD E2) [53],

݈ܭ

ݎ
=max൜

ଷଷܭ ଷ݈ଷ

ଷଷݎ
,
ଶଶܭ ଶ݈ଶ

ଶଶݎ
ൠ,

Cc=ඨ
2π2E

Fy

(5.4)

For single angles, the minimum radius of gyration, rz is used instead of r22 and r33 in

computing Kl/r. For compact, or noncompact section Fa are calculated as follows.

When Kl/r ≤ Cc [53]

Fa=

ቐ1.0-
ቀKl

rൗ ቁ
2

2Cc
2 ቑFy

5
3 -

3ቀKl
rൗ ቁ

8Cc
-
ቀKl

rൗ ቁ
3

8Cc
3

(5.5)

Or Kl/r > Cc
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Fa=
12π2E

23ቀKl
rൗ ቁ

2 (5.6)

If Kl/r is greater than 200, then the calculated value of the Fa is taken not to exceed

the value of Fa calculated by using the equation ASD E2-2 for compact and

noncompact sections (ASD E1). If we have slender sections except slender pipe

sections Fa is evaluated as evaluated in the ASD-89 manual for steel design as shown

below, when Kl/r ≤ Cୡ
ᇱ: (ASD A-B5-11) [53].

Fa=Q

ቐ1.0-
ቀKl

rൗ ቁ
2

2Cc
2 ቑFy

5
3 -

3ቀKl
rൗ ቁ

8Cc
-
ቀKl

rൗ ቁ
3

8Cc
3

(5.7)

If Kl/r > Cୡ
ᇱ, Fa is evaluated by using the equation according to ASD-89 (ASD A-B5-

12)

Fa=
12π2E

23ቀKl
rൗ ቁ

2 (5.8)

For calculation in this case we use this equation to calculate the corresponding

critical value as evaluated in the section ASD ( A-B5.2c)

Cc
' =ඨ

2π2E

QFy

(5.9)

For slender sections, if Kl/r is greater than 200, then the calculated value of the Fa is

taken not to exceed its value calculated by using the equation ASD A-B5-12 (ASD

B7, E1).
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5.5.1.4 Flexural-torsional buckling

The allowable axial compressive stress value Fa is determined by the limit states of

torsional and flexural-torsional buckling is determined according to section (ASD

E3, C-E3) of ASD-89 for (Kl/r) e ≤ Cୡ
ᇱ.

Fa=Q

ቐ1.0-
൫Kl

rൗ൯e

2

2Cc
,2 ቑFy

5
3 -

3൫Kl
rൗ൯e

Cc
,2 -

൫Kl
rൗ൯e

3

8Cc
,3

(5.10)

If the ܭ) (ݎ݈/ > Cୡ
ᇱ the Fa is calculated as evaluated in ASD-89 section (E2-2, A-B5-

12) as shown in equation below [52, 53].

Cc
' =ඨ

2π2E

QFy

(5.11)

While

൫Kl
rൗ൯e

=ඨ
π2E

Fe

(5.12)

Where Fe can be calculated as mentioned in ASD commentary section (ASD C-E3)

referring to the 1986 version of the AISC-LRFD code for this Fe is calculated with

the software SAP2000 for the single angle section with equal legs as follows.

Fe=൬
Fe33+Fez

2H
൰1-ඨ1-

4Fe33FezH

(Fe33+Fez)2
 (5.13)

When we have single angle sections with unequal legs, Fe is calculated as the

minimum real root of solving the following cubic equation according to LRFD

section (A-E3-7).
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(Fe-Fe33)(Fe-Fe22)(Fe-Fez)-Fe
2(Fe-Fe22)

xo
2

ro
2

=0 (5.14)

Where xo, yo are the coordinates of the shear centre with respect to the centroid of the

cross sectional area, and ro is the polar radius of gyration about the shear centre of

the cross section can be represented by the equation below.

ro=ඨxo
2+y

o
2+

I22+I33

Ag

(5.15)

H=1-ቆ
xo

2+y
o
2

ro
2
ቇ (5.16)

Fe33=
π2E

൭
K33l33

r33
ൗ ൱

2
(5.17)

Fe22=
π2E

൭
K22l22 r22

ൗ ൱

2
(5.18)

Fez=ቈ
π2ECw

(KzIz)2
+GJ

1

Aro
2

(5.19)

K22, K33 are effective length factors in minor and major directions, Kz is the

effective length factor for torsional buckling, and it is taken equal to K22 in the

software SAP2000, l22, l33 are effective lengths in the minor and major directions, lz

is the effective length for torsional buckling, and it is taken equal to l22 .While for

angle sections, the principal moment of inertia and radii of gyration are used for

computing Fe according to (ASD SAM 4). Also, the maximum value of Kl, i.e,

max(K22 l22 ,K33 l33 ), is used in place of K22 l22 or K33 l33 in calculating Fe22 and Fe33

for the angle section case [52].
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5.5.1.5 Allowable stress in bending

There are many criteria’s that affect the allowable stress in bending for a member of

the structure such as the geometric shape of the cross-section, the axis of bending,

the compactness of the section and a length parameter. The allowable flexural

stresses for single angle are calculated based on their principal axes of bending

according to (ASD SAM5.3).

For the major axis of bending the allowable stress is the minimum considering the

limit state of lateral-torsional buckling and local buckling according to (ASD SAM

5.1). The allowable major bending stress for single-angles for the limit state of lateral

torsional buckling is given according to (ASD SAM 5.1.3) as follows for the

limitation of Fob ≤ Fy.

Fb,major=ቈ0.55-0.10
Fob

Fy
Fob (5.20)

When the elastic lateral-torsional buckling stress (Fob) is exceeds the yield stress (Fy)

the equation (5.21) is applied instead of (5.20)

Fb,major=0.95-0.50
Fy

Fob
൨Fy ≤0.66Fy (5.21)

Where, Fob is the elastic lateral-torsional buckling stress as calculated below. The

elastic lateral torsional buckling stress, Fob , for equal-leg angles is taken as

Fob=Cb

28,250

l/t
(5.22)

In the case of using angle sections with unequal leg’s section the Fob is calculated by

the equation.
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Fob=143,100Cb

Imin

Smajorl
2 
ඨβ

w
2 +0.052(

lt

rmin
)
2

+β
w
 (5.23)

Where l is max ( l22 , l33), Imin is minor principal moment of inertia, Imax is major

principal moment of inertia, Smajor is major section modulus for compression at the

tip of one leg, rmin is radius of gyration for minor principal axis, and

β
w

=ቈ
1

Imax
න z൫w2+Z2൯dA

A

-2zo (5.24)

z is coordinate along the major principal axis, w is coordinates along the minor

principal axis, and z0 is coordinate of the shear centre along the major principal axis

with respect to the centroid. β୵ is a special section property for angles. It is positive

for short leg in compression, negative for long leg in compression, and zero for

equal-leg angles (ASD SAM 5.3.2). However, for conservative design of SAP2000

software, it is always taken as negative for unequal-leg angles. In the above

expressions Cb is calculated by the equation below;

Cb=1.75+1.05൬
Ma

Mb
൰+0.3൬

Ma

Mb
൰

2

≤1.5 (5.25)

Ma and Mb are the end moments of any unbraced segment of the member and Ma is

numerically less than Mb ; Ma/Mb being positive for double curvature bending and

negative for single curvature bending. Also, if any moment within the segment is

greater than Mb ,Cb is taken as 1.0. Also, Cb is taken as 1.0 for cantilevers and frames

braced against joint translation (ASD F1.3). SAP2000 defaults Cb to 1.0 if the

unbraced length, l22 of the member is redefined by the user (i.e. it is not equal to the

length of the member). The user can overwrite the value of Cb for any member by

specifying it [52, 53].

In the case of bending, the allowable stress calculated for single angles for the limit

state of local buckling according to ASD SAM section (5.1.1) with the limitation for

b/t ≤ 65/ඥܨ௬ as shown below.
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F
b,major

=0.66Fy (5.26)

If the ratio is between the limitation 65/ඥF୷ < b/t ≤ 76 /ඥF୷

F
b,major

=0.60Fy (5.27)

Otherwise

F
b,major

=Q (0.60Fy)
(5.28)

Where

t = thickness of the leg under consideration,

b = length of the leg under consideration, and

Q = slenderness reduction factor for local buckling.

For the minor axis of bending The allowable stress for single angle is given

according to ASD SAM (5.1.1,5.3.1b,5.3.2b) with respect to comparing the ratio and

limitations in the case when b / t ≤ 65 / ඥF୷.

F
b,minor

=0.66Fy (5.29)

If the ratio is between the limitation 65/ඥF୷ < b/t ≤ 76 /ඥF୷

F
b,minor

=0.60Fy (5.30)

Otherwise

F
b,minor

=Q (0.60Fy) (5.31)
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5.5.1.6 Allowable shear stress

The shear stress is calculated along the geometric axes for the section. For Single-

angle sections, principal axes do not coincide with the geometric axes. The allowable

shear stress for the single angle section at the major and minor axis of bending in

SAP2000 is taken as [52].

Fv=0.4Fy (5.32)

5.5.2 Allowable stress ratio’s for combined stress

In the calculation of the axial and bending stress capacity ratios, first, for each station

along the length of the member, the actual stresses are calculated for each load

combination. Then the corresponding allowable stresses are calculated. Then, the

capacity ratios are calculated at each station for each member under the influence of

each of the design load combinations. The controlling capacity ratio is then obtained,

along with the associated station and load combination. A capacity ratio greater than

1.0 indicates an over stress [52].

5.5.2.1 Axial and bending stress

With the computed allowable axial and bending stress values and the factored axial

and bending member stresses at each station, an interaction stress ratio is produced

for each of the load combinations as follows (ASD H1, H2 ): [53]

 If fa is compressive and fa / Fa > 0.15, the combined stress ration is given by

the larger of .

fa

Fa
+

Cm33fb33

ቆ1-
fa

Fe33
' ቇFb33

+
Cm33fb22

ቆ1-
fa

Fe33
' ቇFb22

(5.33)

݂

(௬ܨ0.6)ܳ
+

݂ଷଷ

ଷଷܨ
+

݂ଶଶ

ଶଶܨ
(5.34)



84

Where fa is axial stress either in compression or in tension. fb33, fb22 are

normal stress in major and minor direction of bending. Fa is the allowable

axial stress. Fb33, Fb22 are allowable major and minor bending stresses. While

Cm33 and Cm22 are coefficients which they representing the distribution of

moment along the member length.

For sway frame Cm has taken 0.85, When if we have nonsway frame with

transverse loads the Cm is taken as ( 0.6-0.4Ma / Mb ), Where Ma / Mb is the

ratio of the smaller to the larger moment at the ends of the member, However

it will be positive for double curvature bending, and negative for single

curvature bending. For nonsway frame with transverse load and end

restrained compression member Cm is taken 0.85 or is taken 1.0 for nonsway

frame with transverse load and end unrestrained compression member. If the

unbraced length l, is not equal to the length of the member, the user can

overwrite the value of Cm for any member. Assumes Cm22 and Cm33 associated

with the major and minor directions [53].

 If fa is compressive and the ratio fa / Fa ≤ 0.15, a relatively simplified formula 

is used for the combined stress ratio.

fa

Fa
+

fb33

Fb33
+

fb22

Fb22
(5.35)

fb33

Fb33
+

fb22

Fb22
(5.36)

Where either Fb33 or Fb22 must be not less than 0.6Fy in the first equation

(ASD H2-1). The second equation imagines flexural buckling without any

beneficial effect from axial compression. For single angle sections, the

combined stress is calculated based on the properties about the principal axis

(ASD SAM 5.3,6.1.5). These principal axis are determined in SAP2000 [52].
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5.5.3 Shear stresses

From the allowable shear stress values and the factored shear stress values at each

station, shear stress ratios for major and minor directions are computed for each of

the load combinations as follows.

fv2

Fv
(5.37)

fv3

Fv
(5.38)

For single angle sections, the shear stress ratio is calculated for directions along the

geometric axis. For all other sections the shear stress is calculated along the principal

axes which coincide with the geometric axes [52-53].

5.6 Examples of SAP2000 Using (AISC-ASD-89) Manual

The GA search optimization technique is explained in chapter four, and the result is

discussed about the minimum weight as objective function. The illustration of that

chapter is reviewed by SAP2000 software to look to the weight’s of the structure in

the real point of view. SAP2000 software takes the effect of buckling in checking the

structure according to the selected design manual. It performs the optimization by

automatic selection of the member sections of the structure. This result gives us

significant idea about the buckling criteria in the design of this type of structures, and

how much the weight is changed. 3D frames design for optimum with of SAP2000

using (AISC-ASD-89) manual are done in this section.

5.6.1 Three dimensions four bar truss

Problem definition: The four bar truss illustrated in section 3.8.1 is to be designed for

minimum weight by SAP2000. The maximum tensile and compressive stresses was

computed by SAP2000. The maximum displacement m1.0 is imposed to joint (5).
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The material properties for the truss are: Young’s modulus 29 kN/m102.0 E and

material density 3kg/m0.1 . Two horizontal loads of 2.0 and kN0.4 are

imposed in the x and y-directions at node 5, along with a 3.0 KN upward vertical

load [41,47].

a) Selected sections of the design

b) Virtual work diagram of static load condition.

Figure 5.2 3D four bar frames.

Discussion of Results: When the analysis of the frame is done under static load

condition and the group of members cross section is selected. This selection is

performed automatically by SAP2000, checking the (AISC-ASD-89) requirements

and limitations. The load conditions of point and gravity load is taken in combination

to select required sections of the structure. The weight obtained by SAP2000 is
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(59.78 Kg) using standard angle sections provided in the software. The structure is

checked as shown in Figure 5.2 after a number of iterations and the software give us

a message that all steel frames are safe as shown in Figure 5.3 below:

Table 5.2 Summary of sections of design for 3D four bars.

Frame Design Sections Design Type Error Message Warning Message

ID in Text Text Text

1 L2.5X2.5X3/16 Brace No Messages No Messages

2 L4X4X1/4 Brace No Messages No Messages

3 L1X1X1/8 Brace No Messages No Messages

4 L2X2X1/8 Brace No Messages No Messages

Figure5.3 A message show that all steel frames passed the stress capacity check.

5.6.2 Three dimensions 25 bars frame

Problem definition: The twenty five bar 3D trusses of section 3.8.2 are to be

designed for minimum weight by SAP2000. The following material properties are

used: elastic modulus ksi100.1 4E and material density, 3lb/in1.0 . Nodes 7,

8, 9 and 10 are fully constrained, and nodes 1, 2, 3 and 6 are loaded with different

load magnitudes see Table 5.3. The maximum allowable stress in compression and

tension are calculated by the program according (AISC-ASD-89). The maximum

displacement of in35.0 is imposed for all nodes and in all directions. The group of
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single angles was selected for the members of the structure in design assignment

processes.

Table 5.3 Loading details for twenty five bar 3D truss.

Joint Px (lb) Py (lb) Pz (lb)

1 1000 -10000 -10000

2 0 -10000 -10000

3 500 0 0

6 600 0 0

Discussion of Results: The twenty five bar design is illustrated with running this

example in SAP2000 after the analysis is done. The member sections is selected

automatically by the software for minimum sections according to (AISC-ASD-89)

design manual. The entered load combination for point and gravity is described to

the software in the analysis and design of the structure. The first trial for the design

of the structure is done.

The program checks the structure automatically with entered geometry, material

definition and search the group sections selected to each member of a proper section.

When the design is complete and the program is selecting the section for each

member. When checking the members design details with the SAP2000, there is a

warning message for five members that kl/r exceeds 200, while for stress capacity all

members passes the check. The second trial is done to change the members with

warning error, and this trial will be continued even all members is checked as shown

in Figure 5.4. The results of selected sections are tabulated and shown in Table 5.4.

The weight of twenty five bars is (0.345 Kip) when taking the effect of buckling in

check for members of the structure.
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a) Selected sections of the design

b) Virtual work diagram for static load condition.

Figure 5.4 3D twenty five bars frame.
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Table 5.4 Summery of 3D twenty five bar steel designs.

Frame Design Design Type Error Warning

ID in Text Text Text

1 L2X2X1/8 Beam No Messages No Messages

2 L5X5X3/8 Brace No Messages No Messages

3 L5X5X7/16 Brace No Messages No Messages

4 L3X2X3/16 Beam No Messages No Messages

5 L5X5X5/16 Brace No Messages No Messages

6 L6X6X7/16 Brace No Messages No Messages

7 L2X2X3/16 Brace No Messages No Messages

8 L3X2.5X3/1 Brace No Messages No Messages

9 L3.5X3X1/4 Beam No Messages No Messages

10 L3X2.5X3/1 Brace No Messages No Messages

11 L2X2X1/8 Brace No Messages No Messages

12 L2.5X2X3/1 Beam No Messages No Messages

13 L2X2X1/8 Beam No Messages No Messages

14 L2.5X2.5X3/ Brace No Messages No Messages

15 L5X5X5/16 Brace No Messages No Messages

16 L3.5X3X1/4 Brace No Messages No Messages

17 L6X6X5/16 Brace No Messages No Messages

18 L3X2.5X3/1 Brace No Messages No Messages

19 L3.5X3X1/4 Brace No Messages No Messages

20 L6X6X5/16 Brace No Messages No Messages

21 L3.5X3X1/4 Brace No Messages No Messages

22 L8X6X1/2 Brace No Messages No Messages

23 L6X6X1/2 Brace No Messages No Messages

24 L6X6X3/8 Brace No Messages No Messages

25 L3.5X3X1/4 Brace No Messages No Messages
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5.6.3 Three dimensions 672 bars transmission tower

Problem definition: The 3D transmission tower illustrated in section 3.8.3 with 672

elements and 306 nodes is to be designed for minimum weight by SAP2000. The

following material properties are used: elastic modulus 29 N/m10200E and

material density, 3kg/m7860 . Bottom nodes are fully constrained, and nodes a,

b, c and d are loaded with different load magnitude see Table 5.5. The design

allowable maximum stresses are calculated by the program and maximum

displacement m1.0 which is imposed for all nodes and in all directions. The member

cross section is grouped for automatic selection in design assignment processes.

Table 5.5 Loads of transmission tower.

Node numbers
Load (N)

(Z-direction)

a, b, c -3850

d -1900

Figure5.5 Selected sections for the 3D 672 bars frame for static load condition.

a
a

b
b

cc

d
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Discussion of Results: The 672 bar structure is illustrated in this section. The load

cases are defined for applying point and gravity loads on the structure. and a group of

angle sections is selected. The automatic selection for a cross section of members is

performed by SAP2000; beside this members are checked for buckling criteria

according to (AISC-ASD-89).

The first trial is not succeeded in select proper sections for the structure, after a

number of trials, all members pass the stress capacity check with single angle

sections. The detail of design doesn’t give us any warning message about buckling

problems with single angle sections. The SAP2000 results are obtained after

finishing the design process as shown in Figure 5.5. It gives the weight of (18350.62

Kg) for structural designed sections. Figure 5.6 shows a sample of design members

near the foundation and crossarms:

a) Summary of design for element no. 493 crossarm
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b) Summery of design of member (661) leg element near foundation.

Figure 5.6 Summary of 3D transmission tower steel design.

5.7 Summary and conclusions

The features of software for obtaining results quick and accurate at the same time

provide the user saving time. Understanding the software bases for analysis and

design is the important point to model the real structure. The modelling reality for

geometric, load combinations and material physical properties is affecting the design

results. The illustration of design examples is done according to given material

properties and static load condition for gravity and point imposed load. The design

results are obtained with the check of (AISC-ASD-89) design manual. The effect of

buckling is checked by SAP2000 and the results are considering these criteria.
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CHAPTER 6

CONCLUSIONS AND FURTHER WORK

6.1 Conclusions

The size optimization of transmission tower plays an important role in minimizing

the amount of material used in the construction of the structure for economic point of

view. If reducing the amount of steel used for one tower is affected on the total

amount of steel material which is used in the projects. Optimization algorithm is

starts following the implementation of the analysis of the structure. A FORTRAN

program which uses the FEMs based numerical analysis was modified. To achieve

size optimization based on genetic algorithm to perform the analysis and design of

the space frame which is a complex structure in a 3D system.

The present study is performed for optimization of 3D transmission towers with

computational tools have been used for analysis and size optimization of frame

structures. The used program was written in University college of Swansea and

modified by researchers at the University of Gaziantep [48-49]. A number of

examples are illustrated to testing and showing the efficiency of the coded program.

Built on these concepts the general conclusion is explained.

The algorithm searches all the available solution under the constraints of allowable

stress and displacement to converge solution or find the best solution. The best

solution is selected among all available results satisfying the constraints by the

algorithm. The design variables were cross section dimensions, while the solution is

done for various types of sections. For all design variables significant decrease in

weight of material with respect to the stress and displacement constraints were get.
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When comparing the result with the literature it’s found that the optimum objective

function is close to that obtained by one’s in literature.

6.1.1 Structural analysis

The FE stiffness matrix method is working with accurate results in analysis with

three node two Gause Quadrature. In the program for the analysis the FE and

numerical method applications are used to find the results. The results obtained from

the program are compared with other sources to prove the ability and accuracy. This

comparison helps to improve the written program to give better solutions.

6.1.2 Structural optimization and design

The size optimization based on GA to achieve the optimum design of the space

frames as a complex structure in a 3D system is performed. The constraints are

guiding the GAs to the optimum solution and restrict the search space with feasible

domain of available results. The objective functions of the cross section dimension

give more flexibility to run the GAs with various types of sections. The GAs uses a

strategy of a directed search through a problem space from a variety of points in that

space. The evaluation of individuals within a population can be conducted

simultaneously, as in nature. It successively evaluates and regenerates the new

populations as a trial solution from old populations. Reductions of (13.8%, 52.14%

and 64.7%) for the three illustrated examples respectively give great encouragement

to optimize structures. These reductions are important to save extra materials in

construction projects of transmission towers, consequently serving the economical

point.

The features of software in the analysis and design of special and complex structures

with application of FEM is wide used. Using this application without a background

in analysis and design decreases the degree of accuracy in modeling and obtaining

correct results. The source program is used to perform the three illustrations solved

with a GA to comparing the results. This program checks the structure members for

buckling with (AISC-ASD-89) manual requirements.
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6.2 Future Work

Future work is proposed to expand and develop of this study;

1. Increase the dimension of the program to analyze more than (1000) members

with three noded two Gause-quadrature. To be able in analysis of large

structures of transmission towers.

2. Expanding the FORTRAN code in such a way that covers members buckling

check. This concluded from comparing the results of the source program and

GA.

3. Including discrete optimization approach in a GA to be able to assign

standard used cross sections in the optimization process.

4. The disadvantage of executing optimization with GA is time consuming.

This delaying solved by use high performance computing especially for large

structures like transmission tower [56].



97

LIST OF REFERENCES

[1] Chen, W.F. (2001). Handbook of Structural Engineering, CRC Press LLC.

[2] Grigsby, L.L. (2001). The electric power engineering handbook, CRC Press

LLC.

[3] Kumar, A.R. and Kumar, S.R. Design of steel structures II Courses, IIT Madras,

India.

[4] Karnovsky, I.A. and Lebed, O. (2010). Advanced methods of structural Analysis,

Springer, New York Dordrecht Heidelberg London.

[5] Mahfouz, S.Y. (1999). Design optimization of structural steel work, Ph.D Thesis,

Department of civil and environmental engineering, University of Bradford,

UK.

[6] Arora, J.S. (2004). Introduction to optimum design, 2nd edition, Elsevier

Academic press. The university of Iowa.

[7] Felippa, C.A. (2000). A historical of matrix structural analysis a play in three act,

report, University of Colorado.

[8] Wilhoite, G.E. (1991). Guide for design of steel transmission towers”, ASCE manuals

and Reports on engineering practice, No.52.

[9] Argyris, J. H. and Kelsey, S. (1955). Energy theorems and structural analysis,

published in a series of articles in Aircraft Engineering, ButterWorths, London.

[10] Jensen, H.G. (1967). Efficient matrix techniques applied to transmission tower

design, IEEE, 35, No.11.

[11] Lee, J.W. and Jensen, H.G. (1981). Transmission tower limit analysis and

design by linear programing, IEEE, PAS-100, No.4.

[12] Yang, Y.B., Kuo, S.R. and Wu, Y.S. (2002). Incrementally small defomation

theory for nonlinear analysis of structural frames, Engineering Structures, 24,

783-798.

[13] Da silva, J.G.S., Da S.Vellasco, P.C.G., De Andrade, S.A.L. and De Oliveira,

M.I.R. (2005). Structural assessment of current steel design models for

transmission and telecommunication towers, Journal of construction steel

research, 61, 1108-1134.



98

[14] Lee, P.D. and McClure, G., 2007. Elestoplastic large deformation analysis of a

a lattice steel tower structure and comparison with full scale tests, Journal of

Construction steel research, 63, 709-717.

[15] Stefano, G. (2009). The stochastic finite element method: Past, present and

future, Computation Methods Applied Mechanical Engineering, 198, 1031-

1051.

[16] Taillon, J.Y., Légeron, F. and Prud’homme, S. (2012). Variation of damping

and stiffness of lattice towers with load level, Journal of Constructional steel

Research, 71, 111-118.

[17] Albermani, F., Kitipornchi, S. and Chan, R.W.K. (2009). Failure analysis of

transmission towers, Engineering Failure analysis, 16, 1922-1928.

[18] Shakourzadeh H., Guo Y.Q. and Batoz J. L. (1999). Modeling of connections in

the analysis of thin-walled space frames, Computers and Structures, 71, 423-

433.

[19] Jiang, W.Q., Wang, Z.Q., McClure, G. , Wang, G.L. and Geng, J.D., 2011.

Accurate modeling of joint effects in lattice transmission towers, Engineering

Structures, 33, 1817-1827.

[20] Ghasemi, M.R., Hinton, E. and Wood, R.D. (1997). Optimization of trusses

using genetic algorithms for discrete and continuous variables, ADOPT Group,

EC16,3. University of Wales Swansea, UK.

[21] Camp, C., Pezeshk, S. and Cao, G., (1998). Optimization design of two

dimensional structures using a genetic algorithm, ASCE, Journal of Structural

Engineering, 124, No.5.

[22] Erbatur, F., Hasançebi, O., Tütüncü, İ. and Kiliç, H. (2000). Optimal design of 

planar and space structures with genetic algorithms, Computres and Structures,

75, 209-224.

[23] Tong, W. H. and Liu, G. R. (2001). An optimization procedure for truss

structures with discrete design variables and dynamic constraints, Computers

and Structures, 79, 155-162.

[24] Dominguez, A., Stiharu, I., and Sedaghati, R., (2006). Practical design

optimization of truss structures using genetic algorithm, Springer-Verlag, Res.

Eng. Design, 17, 73-84.

[25] Rajeev, S. and Krishnamoorthy, C.S. (1992), Discrete optimization of structures

using genetic algorithm, journal of structure Engineering, 118, No.5,ASCE.



99

[26] Barrios, D., Malumbres, L., & Rios, J. (1998). Convergence condition of

genetic algorithm, International Journal of computer Mathematic, 68, 231-241.

[27] Chen, S.Y., and Rajan, S.D. (1998). Improving the efficiency of genetic

algorithm, Engineering Optimization, 30, 281-307.

[28] Hasançebi, O. and Erbator, F. (2000), Evaluation of crossover techniques in

genetic algorithm based optimum structural design, Computer and structures,

78, 435-448.

[29] Toğan, V. and Daloğlu, A. T. (2006). Optimization of 3d trusses with adaptive 

approach in genetic algorithms, Engineering Structures, 28, 1019-1027.

[30] Toğan, V., Daloğlu, A. T. (2008). An improved genetic algorithm with initial 

population strategy and self adaptive member grouping, computer and

structures, 86, 1024-1218.

[31] Dede, T., Bekiroğlu, S., and Ayvaz, Y. (2011). Weight minimization of truss 

with genetic algorithm, Applied soft computing, 11, 2565-2575.

[32] Azid, I. A., Kwan, A. S. K. and Seetharamu, K. N. (2002). A GA-based

technique for layout optimization of truss with stress and displacement

constraints, International Journal for Numerical Method in Engineering, 53,

1641-1674.

[33] Woon, S.Y., Tong, L., Querin, O.M. and Steven, G.P. (2003). Knowledge-

Based algorithms in fixed-grid GA shape optimization, International Journal

for Numerical Method in Engineering 58, 643-660.

[34] Göğüş, M.T., Tayşi, N. and Özakça, M. (2005). A computational tool based on 

genetic algorithm for determining optimum shapes of vibrating planner and

space trusses, Vibration Problems ICOVP2005, Springer, 219-224.

[35] Gan, F.L. and Zhou, X.N., (2010). Study on shape optimization of transmission

tower based on genetic algorithm, International Conference on computer

Application and System Modeling (IEEE).

[36] Rao, G. V., 1995. Optimum designs for transmission line towers, Computer and

structures, 52, No.1, 81-92.

[37] Huang, M. W. and Arora, J. S. (1997). Optimal design of steel structures using

standard sections, Springer-Verlag Strutural Optimization, 14, 24-35.

[38] Blachoweski, B. and Gutkowski, W., (2010). A hybride continuous-discrete

approach to large discrete structural optimization problems, Struct Multidisc

optim springer-verlag, 41, 965-977.



100

[39] Hinton, E., Owen, D.R.J. (1979). An introduction to finite element

computation, Pineridge Press limited, Swansea, UK.

[40] Coffer, W. F. Lecture on structural analysis for electric power transmission

structures, Department of civil and environment engineering, Washington state

University.

[41] Kasimali, A., (2012). Matrix analysis of structures, 2nd edition, Southren illinois

university-Carbondale.

[42] McGuire, W., Gallagher, R.H. and Ziemian, R.D. (2000). Matrix structural

analysis, second edition, John Wiley & Sons, Inc.

[43] Wilson, E.L. (2002). Three dimensional static and dynamic Analysis of

structures, Computers and structures, Inc., Berkeley, California, USA.

[44] Fellipa, C.A. (2001). Introduction to finite element methods, University of

Colorado, USA.

[45] Yang, Y.B. and Kuo, S.R. (1994). Theory and analysis of nonlinear framed

structures, Printice Hall Press.

[46] Segerlind, L. J. (1984). Applied finite element analysis, John Wiley and Sons,

Michigan state university.

[47] Tayşi, N. (2005). Analysis and optimum design of structures under static and 

dynamic Loads, Ph.D Thesis, Department of civil engineering, University of

Gaziantep, Turkey.

[48] Al-Khamis, M.T.A. (1996). Structural optimization for static and free vibration

conditions using genetic and gradient-based algorithms. Ph.D Thesis, University

of Wales Swansea.

[49] Christensen, P.W. and Klarbring, A. (2009). An introduction to structural

optimization, Solid Mechanic and Application, Springer.

[50] Singiresu, S.R. (2009). Engineering optimization theory and practice, 4th

edition, John Wiley & Sons, Inc.

[51] Sivanandam, S.N. and Deepa, S.N. (2008). Introduction to genetic algorithms,

Springer-Verlag, Berlin Heidelberg.

[52] Computer and Structures, (2000). SAP2000 Steel design manual, Berkeley,

California, USA.

[53] AISC. American Institute of Steel Construction. (1989). Manual of steel

construction-allowable stress design, 9th edition,Chicago, Illinois.

[54] Segui, W.T. (2007). Steel design, 4th edition, The University of Memphis, USA.



101

[55] Chen, W.F. and Lui, E.M. (2006). Principals of structural design, Taylor &

Francis Group, LLC.

[56] Thampan, C.K. and Krishanmoorthy, C.S. (2001). An HPC model for GA

methodologies applied to reliability-based structural optimization,

Computitional fluid and solid mechanic, 1, 714-717.


