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ABSTRACT

NONCONVEX lp MINIMIZATION FOR COMPRESSED SENSING UNDER
GENERAL PERTURBATIONS

�NCE, Taner

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Arif Nacaro§lu

Co-Supervisor: Asst. Prof. Dr. Nurdal Watsuji

September 2012, 84 pages

Compressed sensing (CS) provides a framework for acquisition of signals
far below the Nyquist rate if it is represented as sparse or compressible on an
orthonormal basis. Recovering sparse and compressible signals using lp mini-
mization with p < 1 when some part of the support of the signal is known a
priori is studied. A sparse reconstruction method based on lp minimization with
partially known set is proposed and recovery conditions are given. Error bound
noise constant and error bound compressibility constants are obtained for sparse
and compressible signal cases. Theoretical results show that lp minimization
with partially known support is stable and robust. Experimental results are pre-
sented to expose the modi�cation of lp minimization improves performance and
need fewer samples to reconstruct the signal. Also lp minimization with p < 1 un-
der both additive and multiplicative noise in compressed sensing is studied. The
results are based on the restricted isometry constant and relative perturbations.
The exact reconstruction of a signal is not possible under additive and multi-
plicative noise. However simulation results show that under multiplicative noise,
lp minimization performs better than l1 minimization for average reconstruction
error with varying parameters such as noise level, sparsity and measurement
level.

Key words: Compressed sensing, restricted isometry property, lp minimization,
sparse signal recovery, partially known support, perturbation, l1 minimization



ÖZET

GENEL BOZULMALAR ALTINDA SIKI�TIRMALI ALGILAMA �Ç�N
DI�BÜKEY lp KÜÇÜMSEME

�NCE, Taner

Doktora Tezi, Elektrik ve Elektronik. Müh.

Tez Yöneticisi: Prof. Dr. Arif Nacaro§lu

Tez Yönetici Yard�mc�s�: Yrd. Doç. Dr. Nurdal Watsuji

Eylül 2012, 84 sayfa

S�k�³t�rmal� alg�lama, e§er bir i³aret dik bir dönü³ümle seyrek veya s�k�³t�r�la-
bilir olarak ifade edilebilirse o i³aretin Nyquist h�z�n�n alt�nda örneklenmesine
olanak sa§lamaktad�r. K�smi destek kümesi bilinen seyrek veya s�k�³t�r�labilir
i³aretlerin lp küçümseme ile geri çat�lmas� çal�³�lmaktad�r. K�smi destek kümeli
lp küçümseme tabanl� seyrek geri çat�lma metodu sunulmu³tur ve geri kazan�m
³artlar� verilmi³tir. Seyrek ve s�k�³t�r�labilir i³aretler için hata s�n�r sabiti ve hata
s�k�³t�rma sabiti elde edilmi³tir. Teorik sonuçlara göre lp küçümsemenin kararl�
ve gürbüz oldu§u gözlemlenmi³tir. Deneysel sonuçlara göre lp küçümseme daha
az say�da örnek kullanarak i³aretin geri çat�lmas�na olanak sa§lamaktad�r. Buna
ek olarak p < 1 de§erli lp küçümseme metodunun ekleyici ve çarp�c� gürültü
alt�ndaki performans� incelenmi³tir. Sonuçlar k�s�tl� izometri özelli§i ve göreceli
bozulmalara göre verilmi³tir. �³aretin çözümü kesin olmamas�na ra§men sim-
ulasyon sonuçlar�na göre çarp�c� gürültü alt�nda lp küçümseme l1 küçümsemeye
göre geri kazan�m hata oran�na göre daha iyi sonuç vermektedir. Bu parametreler
gürültü seviyesi, seyreklik ve ölçüm seviyesidir.

Anahtar kelimeler: S�k�³t�rmal� alg�lama, k�s�tl� izometri özelli§i, lp küçümseme,
seyrek i³aret kazan�m�, k�smi bilinen destek, bozukluk, l1 küçümseme



I dedicate this work to my parents.....

vii



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Prof. Dr.

Arif Nacaroglu, for his excellent guidance, caring, patience, and providing me

with an excellent atmosphere for doing research.
I would also like to thank my parents. They were always supporting me

and encouraging me with their best wishes.

viii



TABLE OF CONTENTS

CHAPTER

1 INTRODUCTION 1
1.1 Thesis Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 COMPRESSED SENSING 5
2.1 Undersampled Situations . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Signal Recovery From Undersampled Measurements . . . . 6
2.1.2 Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Restricted Isometry Property . . . . . . . . . . . . . . . . 7
2.1.4 Noiseless Recovery . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Noisy Recovery . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . 10
2.2.2 OMP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Compressive Sampling Matching Pursuit (COSAMP) . . . 12
2.2.4 COSAMP Algorithm . . . . . . . . . . . . . . . . . . . . . 13

2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 NONCONVEX COMPRESSED SENSINGWITH PARTIALLY KNOWN
SIGNAL SUPPORT 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Nonconvex Compressed Sensing . . . . . . . . . . . . . . . . . . . 21
3.3 CS With Partially Known Signal Support . . . . . . . . . . . . . . 24
3.4 lp<1 Minimization With Partially Known Support . . . . . . . . . 25
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Exact Recovery Results . . . . . . . . . . . . . . . . . . . 31
3.5.2 The Sparse Case . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.3 The Compressible Case . . . . . . . . . . . . . . . . . . . . 35

4 NONCONVEX COMPRESSED SENSING FOR GENERAL PERTUR-
BATIONS 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Notations and Symbols . . . . . . . . . . . . . . . . . . . . 40
4.2 Completely Perturbed l1 Minimization . . . . . . . . . . . . . . . 40

4.2.1 RIP for A . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Stability From Completely Perturbed Observations . . . . 41

ix



4.2.3 Derivation of Total Perturbation Bound ε
′
Φ,K,y . . . . . . . 41

4.3 lp<1 Minimization Under General Perturbations . . . . . . . . . . 42
4.4 Stability and Instance Optimality in Nonconvex Compressed Sensing 47
4.5 Stability and Instance Optimality in Completely Perturbed lp<1

Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 CONCLUSION 60

APPENDIX

A DERIVATION OF IRLS 66

B CODES FOR SIMULATIONS IN CHAPTER 3 67
B.1 MATLAB CODES . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.1.1 IRLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.1.2 IRLS with partially known support . . . . . . . . . . . . . 69
B.1.3 Script for Simulation Results (Sparse Case) . . . . . . . . 70
B.1.4 Script for Simulation Results (Compressible case) . . . . . 72

C CODES FOR SIMULATIONS IN CHAPTER 4 75
C.1 MATLAB CODES . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C.1.1 Noisy IRLS . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.1.2 Script for varying sparsity level K . . . . . . . . . . . . . 77
C.1.3 Script for varying sparsity level εΦ,K,y . . . . . . . . . . . 78
C.1.4 Script for varying measurement level under additive Gaus-

sian noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

PUBLICATIONS 82

x



LIST OF TABLES

Table

3.1 Commonly used nonconvex penalty functions . . . . . . . . . . . . 21

xi



LIST OF FIGURES

Figure

1.1 Typical Compression Scheme . . . . . . . . . . . . . . . . . . . . 1
1.2 (a) 256 × 256 cameraman image (b) Restored image using only

8000 largest coe�cients . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Wavelet coe�cients of cameraman image . . . . . . . . . . . . . . 3

2.1 Illustration of CS process with random gaussian measurement ma-
trix Φ and discrete cosine transform (DCT) matrix Ψ. . . . . . . . 6

2.2 Exact reconstruction frequency versus measurement level using
Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Exact reconstruction frequency versus measurement level using
OMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Exact reconstruction frequency versus measurement level using
COSAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Exact reconstruction frequency versus measurement level for spar-
sity level K=20 using three algorithms . . . . . . . . . . . . . . . 16

2.6 Exact reconstruction frequency versus sparsity using BP . . . . . 16
2.7 Exact reconstruction frequency versus sparsity using OMP . . . . 17
2.8 Exact reconstruction frequency versus sparsity using COSAMP . . 17
2.9 Exact reconstruction frequency versus sparsity for measurement

level M = 100 using three algorithms . . . . . . . . . . . . . . . . 18

3.1 Penalty functions in Table I (a) SCAD (b) Zhang (c) lp<1 (d) Log 22
3.2 (a) Ca,k,s,p versus p, (b) Da,k,s,p versus p, for di�erent values of a . 29
3.3 (a) Reconstruction error to the pth power versus p for various s

for M = 256, (b) Theoretical error bound for s = 60, k = 20, (c)
Theoretical error bound for s = 90, k = 30, (d) Theoretical error
bound for s = 120, k = 40 . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Exact reconstruction frequency of modi�ed lp<1 minimization and
MOD-CS for (a) s = 0, (b) s = 12, (c) s = 20. . . . . . . . . . . . 32

3.5 Exact reconstruction frequency of modi�ed lp<1 minimization and
MOD-CS for (a) M = 80, (b) M = 100 and (c) M = 120. . . . . . 33

3.6 Performance of lp<1 minimization with partially known support
and MOD-CS in terms of SNR for sparse signal, varying the num-
ber of measurements for (a) s=4, (b) s=16 and (c) s=24. . . . . . 34

3.7 Performance of lp<1 minimization with partially known support
and MOD-CS in terms of SNR for sparse signals, varying the sup-
port size s for (a) M=80, (b) M=120 and (c) M=160. . . . . . . . 35

xii



3.8 Performance of lp<1 minimization with partially known support
and MOD-CS in terms of SNR for compressible signals, varying
the number of measurements for (a) s=4, (b) s=16 and (c) s=24.
The coe�cients decay with a power τ = 1.5 . . . . . . . . . . . . . 36

3.9 Performance of lp<1 minimization with partially known support
and MOD-CS in terms of SNR for compressible signals, varying
the support size s for (a) M=100, (b) M=120 and (c) M=140. The
coe�cients decay with a power τ = 1.5 . . . . . . . . . . . . . . . 37

3.10 Performance of lp<1 minimization with partially known support
and MOD-CS in terms of SNR for cardiac image, varying the
number of measurements (s=64). . . . . . . . . . . . . . . . . . . 38

4.1 Error bound noise constant (C(1)
1 ) versus p . . . . . . . . . . . . . 45

4.2 Error bound noise compressibility constant (C(2)
1 ) versus p . . . . 45

4.3 Average relative error versus εΦ for (a) K = 10, (b) K = 20, (c)
K = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Average relative error versus εΦ with measurement noise σ = 0.05
for (a) K = 10, (b) K = 20, (c) K = 30. . . . . . . . . . . . . . . 55

4.5 Average relative error versus measurement level M for (a) εΦ=0,
(b) εΦ=0.05 and (c) εΦ=0.1. . . . . . . . . . . . . . . . . . . . . . 56

4.6 Average relative error versus measurement level M for εΦ=0.05
with measurement noise, (a) σ = 0.01 (b) σ = 0.05 . . . . . . . . . 57

4.7 Average relative error versus sparsity level K for (a) εΦ=0, (b)
εΦ=0.05 and (c) εΦ=0.1. . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Average relative error versus sparsity level K for (a) εΦ=0.05 and
measurement noise σ = 0.05 . . . . . . . . . . . . . . . . . . . . . 58

4.9 Average relative error versus p with measurement noise σ = 0.05 . 59

xiii



LIST OF SYMBOLS

CS: Compressed Sensing

Φ : Measurement Matrix

Ψ: Orthonormal Basis

K: Signal sparsity

y: Measurement vector

x: General signal

x̂: Reconstructed signal

e: Measurement noise

E: Perturbation matrix

A: Perturbed matrix

BP: Basis pursuit

BPDN: Basis pursuit denoising

COSAMP: Compressive Sampling matching pursuit

OMP: Orthogonal matching pursuit

ROMP: Regularized Orthogonal matching pursuit

DFT: Discrete Fourier transform

DCT: Discrete cosine transform

DWT: Discrete wavelet transform

T : Partially known set

s: Size of |T |

T0: K largest components of x

RIP: Restricted isometry property

xiv



RIC: Restricted isometry constant

δK : Restricted isometry constant

ϵ: Noise level

∥x∥0: l0 norm of x

∥x∥1: l1 norm of x

∥x∥2: l2 norm of x

∥x∥p: lp norm of x

r: Residual vector

ε
′
Φ,K,y: Total noise parameter

O(n): Order of n

xv



CHAPTER 1

INTRODUCTION

The classical Nyquist sampling theorem [1] suggests that the sampling rate

must be at least twice the maximum frequency content in the signal in order to

reconstruct the original signal. In numerous applications such as digital cameras,

the Nyquist rate can be so high that many samples result in that compression

becomes a necessity for storage or transmission. Standard Analog to Digital

Converters (ADC) follows this rule when sampling a signal. However, if a signal

has a bandwidth around GHz levels or not bandlimited, then standard ADC are

not capable of sampling this kind of signals, such as Ultra Wide Band Signals

(UWB). Therefore sampling this kind of signals pushes the performance limits

of ADCs around GHz levels, which is not acceptable in nowadays if sampling

frequencies of the ADCs are compared.

Figure 1.1: Typical Compression Scheme

In data acquisition systems transform coding [2] plays a very important

role. In a typical compression scheme given in Fig. 1.1, the image is acquired

from a digital camera or an acquisition device, then all the transform coe�-

cients (Wavelet, Discrete Cosine Transform, etc) are calculated and then small

coe�cients are discarded, �nally the remaining coe�cients are encoded in an

adaptive manner based the compression scheme such as JPEG, JPEG2000 etc.
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But this "sample and then encode" framework has some disadvantages. First,

initial samples may be quite large for even if the number of large coe�cients

is small, second, even if the number of large coe�cients is small, all the trans-

form coe�cients must be calculated. As a third disadvantage, locations of large

coe�cients must be encoded.

Many natural signals have sparse representations when transformed into a

convenient basis. Suppose that signal x ∈ RN such as the image in Fig. 1.2 (a)

can be expanded using an orthonormal basis such as wavelet DCT or any other

convenient basis Ψ = [ψ1 ψ2...ψN ] as follows:

u(t) =
N∑
i=1

xiψi(t) (1.1)

where x is the coe�cient vector of u. u can be expressed as Ψx where Ψ is

the N × N matrix with ψ1 ψ2...ψN as its columns. When a signal has a sparse

representation, small coe�cients can be discarded without much perceptual loss.

Suppose that uK := ΨxK is represented as where xK is the vector of the largest

K coe�cients. This type of signals called K−sparse meaning that it has at most
K nonzero entries. Since the columns of Ψ constitutes an orthonormal basis we

have

∥u− uK∥2 = ∥x− xK∥2 (1.2)

and if x is sparse or compressible meaning that the magnitude of coe�cients in x

decay quickly, then u is well-approximated by uK and therefore u− uK is small.

In Fig. 1.2 (a) 256× 256 camera is shown and its wavelet coe�cients are shown

in Fig. 1.3. Many of the wavelet coe�cients of this image are small and most of

the information of the image is concentrated on a few of large coe�cients. In Fig.

1.2 (b) image is reconstructed using only 8000 coe�cients out of 65536. As it is

noticed the di�erence between Fig. 1.2 (a) and Fig. 1.2 (b) is hardly noticeable.

This is the basic principle of most modern transform coding techniques including

JPEG, JPEG2000 [2]. Therefore sparsity is a fundamental modelling tool which

provides e�cient signal processing such as statistical estimation, classi�cation,

data compression etc.
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(a) (b)

Figure 1.2: (a) 256× 256 cameraman image (b) Restored image using only 8000

largest coe�cients
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Figure 1.3: Wavelet coe�cients of cameraman image

A new signal processing area, Compressive Sampling / Compressed Sensing

(CS) which emerged in the works [3�6], addresses these disadvantages by acquir-

ing the signal in compressed form without acquiring all samples, and sampling

it far below the Nyquist rate [1].

1.1 Thesis Motivation

In Chapter 2 the detailed literature search is presented and basic concepts

of compressed sensing and the algorithms used in the recovery process are given.
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Basically, necessary conditions for l1 minimization and commonly used greedy

algorithms are explained. Also simulation results are given for l1 minimization

and greedy algorithms are given at the end of Chapter 2.

Chapter 3 is related with the sparse approximation problem using noncon-

vex compressed sensing when some part of the signal is known a priori. Back-

ground on nonconvex approximation problem and a literature survey is also given

in this chapter. Theorems are proved to show the validity of nonconvex com-

pressed sensing with partially known support. Simulation results are given at

the end of this chapter and compared to l1 minimization with partially known

support. Simulations are carried on with di�erent parameter sets. These are

partially known signal support level and measurement level. Also validation of

the theoretical results are presented for the cardiac signal by varying the non-

convexity parameter p.

Chapter 4 deals with the perturbation analysis in nonconvex compressed

sensing. Additive and multiplicative noise is considered for nonconvex com-

pressed sensing. Theoretical and simulation results are given in this chapter and

compared to l1 minimization. The simulations are realized for di�erent sets of

parameters such as measurement level, sparsity level, perturbation level, and

nonconvexity parameter.
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CHAPTER 2

COMPRESSED SENSING

Compressed Sensing/Compressive Sampling (CS) uses the fact that any

natural signal is sparse or compressible, if it is expressed on some transform basis

Ψ (Wavelet, Fourier, etc). For example, a periodical sum of a �nite number of

sinusoidal functions has a sparse representation if they are expressed in Fourier

basis. In general, signals are of interest may not be sparse, but they may be

thought approximately as a sparse set. For example transform coe�cients of

natural signals decay geometrically in magnitude. In this chapter background on

CS and algorithms used in the recovery process are given and these algorithms

are run for di�erent sparsity and measurement levels.

2.1 Undersampled Situations

Consider the problem of recovering a vector u ∈ RN from M linear mea-

surements y about u of the form (2.1)

y = Φu (2.1)

Then, replacing u = Ψx into (2.1), y can be written as

y = Φu = ΦΨx = Θx (2.2)

where Θ = ΦΨ is an M ×N measurement with M ≪ N meaning that it has far

fewer rows than columns. This situation can be demonstrated in Fig. 2.1

5



Figure 2.1: Illustration of CS process with random gaussian measurement matrix

Φ and discrete cosine transform (DCT) matrix Ψ.

2.1.1 Signal Recovery From Undersampled

Measurements

Reconstruction algorithms can be divided into 3 broad categories. These

are convex relaxation by replacing intractable combinatorial problem (2.3) with

(2.5) and solve using convex optimization techniques, greedy pursuits and non-

convex optimization. Greedy pursuits try to �nd a one or more components that

produces the greatest improvement in quality. Nonconvex optimization prob-

lems relaxes the l0 minimization problem in (2.3) to a nonconvex problem (lp
minimization) to obtain a global minimum [7]. There also exist reconstruction

algorithms such as Bayesian framework [8] and brute force.

2.1.2 Basis Pursuit

The system of equations in (2.2) is an undetermined system M ≪ N ,

where the number of equations are far fewer than the number of unknowns. This

occurs in many areas of signal processing problems. This system appears to be

ill-conditioned. However, x is K-sparse and locations of the nonzero terms in x

are known, then the problem can be solved provided M ≥ K.

In order to obtain an exact solution of this problem, one of the simplest way

to recover signal from its measurements y = ΦΨx is to solve the l0 minimization.

l0 norm counts the nonzero terms in reconstructed vector x̂.

min∥x̂∥0 subject to ΦΨx̂ = y (2.3)

(2.3) can reconstruct a K-sparse signal with high probability using only M =

K + 1 iid (independent and identically distributed) Gaussian measurements.

Solution must be sparse basis which means that it must have only K nonzero

terms. In theory l0 minimization works perfect. However, it is NP-Hard in

6



general, it requires an exhaustive search of all
(
N
K

)
possible locations of nonzero

entries in x.

It is possible to propose a minimum energy solution

min∥x̂∥2 subject to ΦΨx̂ = y (2.4)

to solve the system. This optimization problem has the closed form solution

x̂ = ΘT (ΘΘT )−1y. But the solution can be a nonsparse x̂ with many nonzero

components and one can almost never �nd a K-sparse solution.

The problem in (2.3) is NP-Hard and combinatorially intractable, however

Donoho et. al [9] showed that for certain measurement matrices Φ, this problem

is equivalent to

min∥x̂∥1 subject to ΦΨx̂ = y (2.5)

which is called Basis Pursuit (BP).

2.1.3 Restricted Isometry Property

In order to recover a sparse signal stably from far fewer observations by

solving (2.5), the matrix ΦΨ must satisfy the Restricted Isometry Property

(RIP). Candes and Tao proved that if certain matrices satisfy the RIP then

programs (2.3) and (2.5) are equivalent [4].

De�nition 2.1.1. For each integer K = 1, 2.... de�ne the isometry constant δK

of a matrix ΦΨ as the smallest number such that

(1− δK)∥x∥22 ≤ ∥ΦΨx∥22 ≤ (1 + δK)∥x∥22 (2.6)

which holds for all sparse vectors x. δK is called restricted isometry constant

(RIC).

If δK is small, then the matrix ΦΨ is approximately an orthonormal ma-

trix. It is di�cult to check whether a measurement matrix satis�es RIP or not.

However in the literature it has been shown that certain matrices satisfy the RIP

property with high probability such as, Gaussian, Bernoulli and partial Fourier

matrices. Candes and Tao [4] showed that if a measurement matrix satis�es the

restricted isometry condition, BP recovers all sparse signals exactly. In other

publication of Candes the results in [4] are sharpened and recovery conditions

for noiseless measurement and noisy measurements are given [10].

Verifying the RIP for a matrix may be a di�cult task. It requires the

combinatorial search for all submatrices by selecting K columns. it is di�cult

to check
(
N
K

)
columns, also calculation of spectral norm of a random matrix is

7



not easy generally. However some certain matrices having special distribution

can hold RIP with high probability. In [11] it is shown that ∥Φx∥22 is strongly

concentrated about its expected value as

Pr(|Φx∥22 − ∥x∥22| ≥ ϵ∥x∥22) ≤ 2e−Mc0(ϵ), 0 < ϵ < 1 (2.7)

where the probability is taken over all M ×N matrices Φ and c0(ϵ) is a positive

constant that depends on ϵ. Some examples of matrices that can satisfy (2.7)

are Gaussian and Bernoulli matrices.

An M ×N random matrix whose entries ϕi,j are distributed as

ϕi,j N
(
0,

1

M

)
(2.8)

satisfy (2.7) with c0(ϵ) = ϵ2/4 − ϵ3/6. Also matrices where the entries are

realizations of Bernoulli distributions like

ϕi,j :=

+1/
√
M with probability 1

2
,

−1/
√
M with probability 1

2
,

(2.9)

or distributions such as

ϕi,j :=


+
√
3/M with probability 1

6
,

0 with probability 2
3
,

−
√
3/M with probability 1

6
,

(2.10)

satisfy (2.7) with c0(ϵ) = ϵ2/4− ϵ3/6.

Theorem 2.1.1. [11] Suppose that M , N , and 0 < δ < 1 are given. If the

probability distribution generating the M × N matrices Φ satis�es (2.7), then

there exists costants c1, c2 > 0 depending only on δ such that the RIP (2.6) holds

for Φ with the prescribed δ and any K ≤ c1M/ log(N/K) with probability not

less than 1− 2e−c2M .

It is proved in [11] that RIP holds for Φ with a high probability when

the matrix is drawn according to the one of the distributions (2.8), (2.9), and

(2.10).

2.1.4 Noiseless Recovery

Theorem 2.1.2. Suppose that xK is the best K-term approximation to x and

δ2K <
√
2− 1 then the solution x̂ to (2.5) obeys

∥x̂− x∥2 ≤ C0K
−1/2∥x− xK∥1 (2.11)

for some constant C0. In particular, if x is K-sparse then the recovery is exact.
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2.1.5 Noisy Recovery

Since in any acquisition device, measured data may be corrupted by many

sources, so one needs to reconstruct the signal in any noisy environment. In CS

theory [12], supposing that the measurements are corrupted at the output of the

acquisition device, it is modeled as

y = ΦΨx+ e (2.12)

where e is the noise term. Then program in (2.5) is relaxed to

min∥x̂∥1 subject to ∥ΦΨx̂− y∥2 ≤ ϵ (2.13)

and is called Basis Pursuit Denoising (BPDN).

Theorem 2.1.3. Suppose that xK is the best K-term approximation to x and

δ2K <
√
2− 1 then the solution x̂ to (2.13) obeys

∥x̂− x∥2 ≤ C0ϵ+ C1K
−1/2∥x− xK∥1 (2.14)

for constants C0 and C1 [10], within the noise level ∥e∥2 ≤ ϵ. where

C0 =
4
√
1 + δ2K

1− (
√
2 + 1)δ2K

, C1 =
2(1 + (

√
2− 1)δ2K)

1− (
√
2 + 1)δ2K

(2.15)

If x is K-sparse which means that it has only K components and there is no

error in the measurements then the recovery will be exact.

When δK = 0.2 the error in (2.14) is less than 4.2K−1/2∥x − xK∥1 + 8.5ϵ

In the following chapters orthonormal transformation matrix Ψ is assumed to be

identity matrix I in order to simplify the notations (Ψ = I). The RIP property

also holds for any orthonormal basis.

In [3], Donoho asked a question "Can we not just directly measure the part

that will not end up being thrown away?" and showed the possibility of recover-

ing a sparse signal from nonadaptive measurements which is very small than the

signal dimension. If a signal x has a sparse representation on some orthonormal

basis (e.g., Wavelet, Fourier) then it is possible to recover the expansion coef-

�cients using only M = O(K log(N/K)) non-adaptive measurements, M is the

measurement number, N is the signal dimension and K is the sparsity level.

Another important study about CS is the signal reconstruction from cor-

rupted measurements [4]. Candes considers the problem of recovering a sparse

signal with corrupted measurements. He studied to recover an input signal

x ∈ RN from y = Φx + e measurements, where Φ is M by N sensing ma-

trix with M ≪ N , and e is the error term. Then under suitable conditions
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on sensing matrix Φ, the input x is the unique solution to the l1 minimization

problem given as minx̂∈RN∥y − Φx̂∥1 provided that the norm of error vector is

not too large.

In an other publication [5], Candes considers the problem of reconstructing

a signal from highly incomplete frequency samples. For a discrete signal f and

a randomly chosen set of frequencies Ω, if f is composed of superposition of |T0|
spikes expressed as f(t) =

∑
τ∈T0

f(τ)δ(t−τ) satisfying |T0| ≤ CM(logN)−1(|Ω|)
for some constant CM > 0, again f can be reconstructed as the solution of l1
minimization problem ming

∑N−1
0 |g(t)|, subject to ĝ(ω) = f̂(ω).

In order to consider how compressive sampling works, it is suitable to give

an example in signal processing area. Suppose that we are given an incomplete set

of frequency samples of a discrete signal x of length N . Our aim is to reconstruct

the signal x given only K samples in the Fourier domain such that

yk =
1√
N

N−1∑
t=0

xte
−j2πωkt/N (2.16)

where the visible frequencies ωk are a subset Ω that has a size K. In this problem,

the sensing matrix Φ is chosen as N by N DFT matrix. Then Candes [5] showed

that it is always (almost) possible to recover the signal x exactly by solving the

BP problem Assume that signal x is K-sparse and that we are given M Fourier

coe�cients with frequencies selected uniformly at random. Suppose that the

number of observations obeys

M > K log(N) (2.17)

then BP reconstructs x exactly with a high probability. The �rst important

result is that the information is not lost even if just K frequency coe�cients are

measured. As a second result, nonzero coordinates and amplitudes of the signal

x are all completely unknown.

2.2 Greedy Algorithms

Greedy algorithms �nd the support (location of nonzero entries) of the

sparse vector x iteratively. When the support of x is computed correctly then

pseudo-inverse of the measurement matrix related to corresponding columns can

be used to reconstruct the original signal x.

2.2.1 Orthogonal Matching Pursuit

Mallat and Zhang [13] introduced Orthogonal Matching Pursuit (OMP)

and analyzed by Gilbert and Tropp [14]. OMP is a greedy algorithm and for
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an N dimensional signal with K nonzero entry it reconstructs signal x from

O(K log(N)) random measurements.

Suppose x is an arbitrary K-sparse signal in RN . Construct an M × N

measurement matrix Φ and observe theM measurements as y = Φx and columns

of Φ are denoted as φ1, φ2...φN . Since x has only K nonzero components, the

data vector y = Φx is a linear combination of K columns from Φ. In the

language of sparse approximation, we say that x has K-term representation over

the dictionary Φ.

In order to recover K-sparse signal x, question is to determine which

columns of Φ participate in the measurement vector. The idea is to collect

columns in a greedy manner. At each iteration, a column of Φ that is most

strongly correlated with the remaining part of y is selected. Then contribution

due to this column is subtracted from y and iterated on the residual. After K

iterations the algorithm will have identi�ed the correct set of columns.

Once the correct set of columns, denoted I, are found, the estimate of

sparse signal x can be found using

x = Φ†
Iy (2.18)

Φ†
I , (Φ∗

IΦI)
−1Φ∗

I

OMP is fast in theory and practice but its recovery guarantees are not as strong

as that of Basis Pursuit.

Theorem 2.2.1. Fix δ ∈ (0, 0.36) and let Φ be anM×N Gaussian measurement

matrix with M > CK log(N/δ) . Let x be a K-sparse signal in RN . Then with

high probability exceeding 1− 2δ , OMP correctly reconstructs the signal x from

its measurements Φx.

2.2.2 OMP Algorithm

INPUT:

� An M ×N measurement matrix Φ

� An M dimensional data vector y

� The sparsity level K of the ideal signal

OUTPUT:

� An estimate x̂ in RN for the ideal signal

� A set ΛK containing the K elements from {1, 2, ....N}

11



� An M -dimensional approximation aK of the data y

� A K-dimensional residual rK = y − aK of the data y

PROCEDURE:

(1) Initialize residual r0 = y, the index set Λ0 = ∅

(2) Find the index λt that solves easy optimization problem

λt = arg maxj=1,2...N |⟨rt−1,φj
⟩| if the maximum occurs for multiple in-

dices, break the tie deterministically.

(3) Augment the index set and the matrix of chosen atoms: Λt = Λt−1∪{λt}
and Φt = [Φt−1 φλt ]

(4) Solve a least squares problem to obtain a new signal estimate: vt =

argminx∥y − Φtv∥2

(5) Calculate the new approximation of the data and the new residual

at = Φtvt

rt = y − vt

(6) Increment t, and return step 2 if t < K

(7) The estimate x̂ for the ideal signal has nonzero indices at the components

listed in ΛK . The value of the estimate x̂ in component λj equals the jth

component of vt

2.2.3 Compressive Sampling Matching Pursuit

(COSAMP)

The di�culty of signal reconstruction comes from the identi�cation of the

locations of the largest components in the signal. Tropp and Needell developed a

new OMP based algorithm namely COSAMP [15]. It uses an approach inspired

by the Restricted Isometry Property. Suppose the measurement matrix Φ has

Restricted Isometry Property δK ≪ 1. For a K-sparse signal x, measurements

u = Φ∗Φx can be used as a proxy for the signal because the energy in each set of

K components of u approximates the energy in the corresponding K components

of x. The largest K entries of the proxy u points toward the largest K entries of

the signal x. Because the samples have the form y = Φx , proxy can be obtained

by multiplying the measurements by Φ∗ . The algorithm uses this idea iteratively

to approximate the original signal. The steps in the algorithm are
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(1) Identi�cation. The algorithm forms a proxy of the residual form the

current samples and locates the largest components of the proxy.

(2) Support Merger. The set of newly identi�ed components is united

with the set of components that appear in the current approximation.

(3) Estimation. The algorithm solves a least squares problem to approxi-

mate the target signal on the merged set of components.

(4) Pruning. The algorithm produces a new approximation by retaining

onlt the largest entries in the least-squares signal approximation.

(5) Sample Update. Finally, the samples are updated so that they re�ect

the residual, the part of the signal that has not been approximated.

Theorem 2.2.2. Suppose that Φ is an M × N measurement matrix satisfying

the restricted isometry condition δ2K < c . Let y = Φx + e be measurements

contaminated with arbitrary noise e. For a given precision parameter η, the

algorithm COSAMP produces a K-sparse approximation x̂ that satis�es

∥x− x̂∥2 ≤ Cmax

{
η,

1√
K
∥x− xK/2∥2 + ∥e∥2

}
(2.19)

where xK/2 is a best-(K/2) approximation to x.

2.2.4 COSAMP Algorithm

INPUT:

� Measurement Matrix Φ, noisy measurement vector y, sparsity level K

OUTPUT:

� A K-sparse approximation a of the target signal

PROCEDURE:

(1) a0 ← 0 //Trivial Initial approximation

(2) v ← y //Current samples =input samples

(3) k ← 0

(4) repeat

k ← k + 1

u = Φ∗Φx //Form signal proxy

Ω← supp(u2s) //Identify large components
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T ← Ω ∪ supp(ak−1) //Merge Supports

b|T ← Φ†
Ty //Signal estimation by least squares

b|T c ← 0

ak ← bs //Prune to obtain next approximation

v ← y − Φak //Update current samples

Until halting criterion true

2.3 Simulation Results

In this section above mentioned algorithms are simulated to compare the

OMP, COSAMP and Basis Pursuit. 100 trials are performed for each set of spar-

sity level and measurement levels (K,M) and selected signal dimension N = 256.

Probabilities of exact reconstructions are plotted as a function of measurement

levels for di�erent sparsity levels. Figure 3.1.1 through Figure 3.1.3 shows the

performances of three algorithms as a number of measurement levels for di�er-

ent sparsity levels. Figure 3.1.4 shows the Performance of di�erent algorithms

for a �xed sparsity levels. It is clear that Basis Pursuit outperforms OMP

and COSAMP in measurement levels. Basis Pursuit requires fewer measure-

ments than OMP and COSAMP. Also OMP requires more measurement than

COSAMP. If run-times of the algorithms are compared, COSAMP has the best

run time compared with others, especially much shorter run time than Basis

Pursuit.
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Figure 2.2: Exact reconstruction frequency versus measurement level using Basis

Pursuit
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Figure 2.3: Exact reconstruction frequency versus measurement level using OMP
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Figure 2.4: Exact reconstruction frequency versus measurement level using

COSAMP
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Figure 2.5: Exact reconstruction frequency versus measurement level for sparsity

level K=20 using three algorithms
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Figure 2.6: Exact reconstruction frequency versus sparsity using BP
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Figure 2.7: Exact reconstruction frequency versus sparsity using OMP
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Figure 2.8: Exact reconstruction frequency versus sparsity using COSAMP
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Figure 2.9: Exact reconstruction frequency versus sparsity for measurement level

M = 100 using three algorithms

2.4 Applications

CS can be used to capture a signal using a small number of measurements

compared to signal dimension. This leads CS to use in many applications of

signal processing area [16].

� Data compression. In some situations, the sparsity basis Ψ is not be

able to known at the encoder or impractical to implement for data com-

pression. However a randomly designed Φ can be considered a universal

encoding strategy. This property is useful in distributed sensor networks.

� Channel Coding. CS can be used to design error correcting codes to

prevent errors during transmission.

� Inverse problems.

� Data acquisition. In ADC systems sometimes it may be di�cult to

obtain the full collection of samples of an analog signal. Therefore CS is

powerful a sensing mechanism that allows to sample signal below Nyquist

rate.A digital camera has millions of digital sensors, as soon as after the

photo is taken; huge amount of information is coded (transform coding)

in to a small size such as around Kilobytes levels. Duarte et. al [17] used

the results of Compressed Sensing (CS) to build a simple, cheap, single

pixel camera based on Digital Micromirror Device (DMD). His motiva-

tion on this study is just to show, how CS is powerful sensing mechanism
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in signal processing area. Instead of calculating all the transformation

coe�cients as in JPEG or other transform coding approaches, the pro-

posed architecture captures the image in already compressed form.

2.5 Summary

OMP works only for the case where Φ is Gaussian matrix, whereas BP

works for a more general class of matrices. Also BP works correctly for all

signals once the measurement matrix satis�es the restricted isometry property.

The advantage of OMP however is that, it has faster runtime than Basis Pursuit.

There are other versions of OMP based algorithms namely, Regularized Orthog-

onal Matching Pursuit (ROMP) [18], Stagewise Orthogonal Matching Pursuit

(StOMP) [19]. COSAMP [15] combines both the advantages of optimization

based approaches and greedy approaches.
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CHAPTER 3

NONCONVEX COMPRESSED SENSING WITH PARTIALLY

KNOWN SIGNAL SUPPORT

3.1 Introduction

Recovering compressively sampled signals with partially known support

has been previously studied. Borries et al. [20] showed that it is possible to

decrease the number of compressive measurements by the size of partially known

support, if the signal has a sparse discrete fourier transform (DFT). Khajehnejad

et al. [21] have also studied the partially known compressed sensing (CS) problem

using a probabilistic approach of the known part of the signal. In a recent study

of Vaswani [22], recovery conditions of noise free compressive sensing over the

complement of the known set is studied and is called modi�ed-CS (MOD-CS).

Their results are weaker than the standard l1 minimization conditions of [12] and

they also extended the study to noisy CS problem with partially known support

using a regularized MOD-CS approach [23]. Furthermore Jacques [24] improved

the results in [22] to the case of compressible signals and noisy measurements

by demonstrating that the solution is l2 − l1 instance optimal. More recently

Friedlander et al. [25] studied weighted l1 minimization approach when support

of the signal is partially known. They showed that if at least 50% of the partial

support information is available, then weighted l1 minimization is stable and

robust under weaker conditions than standard l1 minimization.

Our work has shown that lp minimization with partially known signal sup-

port for p < 1, denoted by lp<1, exhibits similar stability and robustness com-

pared to l1 minimization with partially known signal support [24]. Recovery error

is bounded by two terms; one is related to measurement noise and the other with

best k-term approximation of residual de�ned as the di�erence between the orig-

inal signal and the signal with known support.
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3.2 Nonconvex Compressed Sensing

In the literature there exists convex and nonconvex penalty functions for

recovering sparse vectors using

min
1

2
∥y − Φx∥2 +

N∑
i=1

gλ(|xi|) (3.1)

which includes a nonsmooth and nonconvex penalty function gλ(.). These penalty

functions are summarized in Table 1 and in Fig. 3.1.

Table 3.1: Commonly used nonconvex penalty functions

Penalty Formula

SCAD gλ(xi) =


λ|xi| |xi| ≤ λ
−|xi|2+2aλ|xi|−λ2

2(a−1)
λ < |xi| ≤ aλ

(a+1)λ2

2
|xi| ≥ aλ

Zhang gλ(xi) =

{
λ|xi| if|xi| < η

λη otherwise

lp gλ(xi) = λ|xi|p, 0 < p < 1

Log gλ(xi) = λ log(|xi|+ ε)− λ log(ε)

Nonconvex minimization methods have been studied in literature previ-

ously. Nikolova et al. studied image restoration and reconstruction problem

using nonconvex regularized least squares for di�erent penalty functions includ-

ing lp penalty with p < 1 [26�28], actually not related with CS approach, they try

to restore images with neat edges. In [29] sparse recovery problem is solved using

nonconvex penalty functions like lp<1 or Smoothly Clipped Absolute Deviation

(SCAD) penalty which is proposed by Fan and Li [30] instead of l1 norm. In [31]

Zhang penalty is proposed in solution of (3.1). This penalty is composed of two

stages, �rst stage corresponds to original Lasso and second stage is a modi�ed

Lasso problem where large parameters are not penalized anymore.

21



−2 −1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

g
(x

)

(a)

−2 −1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

g
(x

)

(b)

−2 −1 0 1 2
0

0.5

1

1.5

x

g
(x

)

(c)

−2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

0

1

x

g
(x

)

(d)

Figure 3.1: Penalty functions in Table I (a) SCAD (b) Zhang (c) lp<1 (d) Log

Rao and Kreutz-Delgado replaced the objective l1 norm with lp<1 norm

and solved lp<1 minimization using Iteratively Reweighted Least Squares (IRLS)

[32]. Chartrand applied a regularization strategy in solution of IRLS and has

shown that lp<1 minimization reconstructs sparse signal exactly with fewer mea-

surements compared to BP [33]. Saab et al. [34, 35] studied the stability of lp<1

minimization for the sparse and compressible signals when measurements contain

some additive noise and gave the error bounds on the reconstruction error.

Theorem 3.2.1. [7] Let Φ be an M ×N matrix. Let x ∈ CN and let K = ∥x∥0
be the size of the support of x. Let p ∈ [0, 1], b > 1, and a = bp/(2−p). Suppose

that Φ satis�es

δaK + bδ(a+1)K < b− 1 (3.2)

then unique minimizer to

min∥x̂∥p subject to y = Φx̂ (3.3)

is exactly x.
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Interpretation of Theorem 3.2.1 is important when p = 0.5 and a = 3,

δ3K + 27δ4K < 26 is required for perfect reconstruction. In [7] solution of (3.3)

is computed using a regularized IRLS approach. Although it is not guaranteed

to obtain a global minimum, it has been shown that computed local minimizers

are actually global [7, 36].

In an other publication Saab et.al [34] provided theoretical and numerical

results to recover sparse and compressible signals from incomplete and noisy

measurements. Results of Candes et. al [12] are extended to the p < 1 case.

Results indicate that lp<1 minimization provides better theoretical guarantees in

terms of stability and robustness compared to l1 minimization.

Theorem 3.2.2. [34] Assume that x is an arbitrary signal and if

δaK + a2/p−1δ(a+1)K < a2/p−1 − 1 (3.4)

holds for some a > 1 and ak ∈ Z+. Then solution x̂ to

min∥x̂∥pp subject to ∥y − Φx̂∥2 ≤ ϵ (3.5)

for p < 1 obeys

∥x̂− x∥p2 < C
(1)
K,a,pϵ

p + C
(2)
K,a,p

∥x− xK∥pp
K1−p/2

(3.6)

for some constants C
(1)
K,a,p and C

(2)
K,a,p

Theorem 3.2.2 states that, one can recover sparse and compressible signal

stably and robustly.

Chartrand and Staneva studied to obtain the number of Gaussian mea-

surements needed to reconstruct the sparse signal.

Theorem 3.2.3. [36] Let Φ be an M×N matrix whose elements are iid random

variables distributed normally with mean zero and variance σ2, where M < N .

Then there are constants C1(p) and C2(p) such that whenever 0 < p ≤ 1 and

M ≥ C1(p)K + pC2(p)K log(N/K), (3.7)

the following is true with probability exceeding 1 − 1
/(

N
K

)
for any x ∈ RN with

sparsity ∥x∥0 = K, x is unique solution to

min∥x̂∥pp subject to y = Φx̂ (3.8)

Numerical results in [36] are shown to obtain much lower measurement

numbers although Theorem 3.2.3 requires more.
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3.3 CS With Partially Known Signal Support

Vaswani et. al. [22] studied the problem of reconstructing a sparse signal

from a limited number of measurements when some part of the support of the

signal is known a priori for noiseless measurements and the problem is called

Modi�ed CS (MOD-CS). Numerical and theoretical studies have shown that CS

with partially known support can reduce the required number of measurements

for exact recovery. They obtained su�cient conditions for exact reconstruction

for the MOD-CS. This technique is then used to reconstruct a series of dynamic

MR images frame by frame. Their results are much weaker than those needed

for CS. BP problem is solved over the complement of the partially known set T

given by

min∥x̂T c∥1 subject to y = Φx (3.9)

The results in [22] are then modi�ed by the Jacques [24] for noisy measurements

and reconstruction error bound is given.

Theorem 3.3.1. [24] Suppose that the partially known signal support of signal

x is given as T and size of |T | = s. Let us assume that the matrix Φ satis�es

the RIP with δ22k + 2δs+2k < 1 then solution to program

min∥x̂T c∥1 subject to ∥y − Φx̂∥2 ≤ ϵ (3.10)

obeys

∥x− x̂∥2 ≤ Cs,kϵ+Ds,ke0(r; k) (3.11)

where r is residual r = x−xT , and e0(r; k) = k−1/2∥r−rk∥1 is the compressibility

error at k-term of r. When k ≪ s, if δ2k = 0.02 and δs+2k = 0.2, then Cs,k < 7.32

and Ds,k < 3.35.

Some observations can be given for Theorem 3.3.1, if there is no knowledge

about the signal support, i.e., T = ∅ and s = 0, we �nd the previous conditions of

[10], δ2k <
√
2−1. Also the condition δ22k+2δs+2k < 1 is satis�ed if δs+2k <

√
2−1

since δ2k < δs+2k. If the signal is exactly sparse and no noise in the measurements,

perfect reconstruction is guaranteed as in [22].

In another study about partially known CS problem is the weighted l1

minimization problem [25]. Friedlander et.al studied weighted l1 minimization

problem for signal reconstruction when partial support information is available.

If at least 50% of the partial support information is available, then weighted l1

minimization is stable and robust under weaker conditions than the standard l1

minimization.
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Theorem 3.3.2. [25] Let x be in RN and let xK be its best k-term approximation,

supported on T0. Let partially known part of the signal is denoted by |T | = ρK

and |T ∩ T0| = αρK. Suppose that ak is a positive integer, with a ≥ (1 − α)ρ,
a > 1, and if

δaK +
a

(ω + (1− ω)
√
(1 + ρ− 2αρ))

δ(a+1)K <
a

(ω + (1− ω)
√

(1 + ρ− 2αρ))
− 1

(3.12)

for some given 0 ≤ ω ≤ 1. Then solution x̂ to

min∥x̂∥1,ω subject to ∥y − Φx̂∥2 ≤ ϵ (3.13)

obeys

∥x− x̂∥2 ≤ C
′

0ϵ+ C
′

1K
−1/2(ω∥x− xK∥1 + (1− ω∥xT c∩T c

0
∥1)) (3.14)

∥x̂∥1,ω :=
∑

i ωi|x̂i| is the weighted l1 norm. The main idea is to choose

ω such that the entries of x expected to be large are penalized less in this opti-

mization problem.

3.4 lp<1 Minimization With Partially Known Support

In this section we study sparse recovery problem from compressive mea-

surements using nonconvex optimization when some part of the support of the

signal is known a priori. We present theoretical results and simulations for lp<1

minimization with partial support information. The support of the signal may

exist from prior knowledge in various applications [17, 22, 37]. For instance,

support estimation of the previous time instant may be used to reconstruct time

sequences of sparse signals iteratively. This problem arises in applications such

as real-time dynamic MRI reconstruction, real time single pixel camera imaging

or video compression. It is possible to have many non-zero wavelet or DCT co-

e�cients which carry most of the energy of the signal [38]. In these cases it is

useful to incorporate prior information for reconstructing signals from compres-

sive measurements.

Theoretical results are presented by showing that it is possible to recover

sparse and compressible signals using lp<1 minimization when partial support

information is available. The stability of recovering x from y is also related with

the RIP of the measurement matrix. The following two theorems summarize our

results.

Theorem 3.4.1. [39] Suppose that complement of the partially known set of the

signal x is denoted as T c and the size of partially known set T is |T | = s. If

δs+(a+1)k + a1/2−1/p(δ2s+(a+1)k + δ22ak)
1/2 < 1 (3.15)
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is satis�ed for some constant a > 1 and ak is a positive integer then the solution

x̂ to

min∥x̂T c∥pp subject to ∥y − Φx̂∥2 ≤ ϵ (3.16)

for p < 1 obeys

∥x̂− x∥p2 < Ca,k,s,pϵ
p +Da,k,s,p

∥r − rk∥pp
k1−p/2

(3.17)

where r is de�ned as the residual r = x − xT and rk is the best k-term approxi-

mation to r. The constants Ca,k,s,p and Da,k,s,p are found as

Ca,k,s,p = 2p
(1 + ap/2−1)(1 + δs+(a+1)k)

p/2

(1− δs+(a+1)k)p − ap/2−1(δ2s+(a+1)k + δ22ak)
p/2

(3.18)

Da,k,s,p = 2ap/2−1

[
1 +

(1 + ap/2−1)(δ2s+(a+1)k + δ22ak)
p/2

(1− δs+(a+1)k)p − ap/2−1(δ2s+(a+1)k + δ22ak)
p/2

]
(3.19)

Recovery error (to the pth power) is bounded by the sum of two terms, �rst one

is proportional to the measurement error and the second is related to best k-term

approximation error of the residual.

Proof. Let x be an arbitrary signal and 0 < p < 1. T is a known set and T0 be

the locations of the k -largest coe�cients of the residual with T0 ∩ T = ∅. First,
let us write x̂ = x + h with h ∈ RN . Our aim is to bound ∥h∥2 given that

∥Φh∥2 ≤ 2ϵ. Let T̄0 = T ∪ T0 and T̄01 = T ∪ T0 ∪ T1. We begin by dividing h

into a sum of sparse vectors with disjoint sets. Then divide T̄ c
0 into sets T1, T2, ...

where |Tj| = L for j ≥ 1. T1 is the location of L largest coe�cients of hT̄ c
0
;

T2 is the locations of the second L largest coe�cients of hT̄ c
0
and so on. Since

T c = T0 ∪ T̄ c
0 and ∥ · ∥pp satis�es the triangle inequality

∥xT c∥pp ≥ ∥xT c + hT c∥pp = ∥xT0 + hT0∥pp + ∥xT̄ c
0
+ hT̄ c

0
∥pp

≥ ∥xT0∥pp − ∥hT0∥pp − ∥xT̄ c
0
∥pp + ∥hT̄ c

0
∥pp

then

∥hT̄ c
0
∥pp ≤ ∥xT c∥pp + ∥xT̄ c

0
∥pp + ∥hT0∥pp − ∥xT0∥pp

= 2∥xT̄ c
0
∥pp + ∥hT0∥pp

= 2∥r − rT0∥pp + ∥hT0∥pp

For each u ∈ Tj and v ∈ Tj−1 |h(u)| ≤ |h(v)| so

|h(u)|p ≤ ∥hTj−1
∥pp/L
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Then

|h(u)|2 = ∥hTj−1
∥2p/L2/p

∥hTj
∥22 ≤ L1−2/p∥hTj−1

∥2p
∥hTj
∥p2 ≤ Lp/2−1∥hTj−1

∥pp

and thus

∥hT̄ c
01
∥p2 ≤

∑
j≥2

∥hTj
∥p2 ≤ Lp/2−1

∑
j≥1

∥hTj
∥pp = Lp/2−1∥hT̄ c

0
∥pp

= Lp/2−1(2∥r − rT0∥pp + ∥hT0∥pp) (3.20)

Using Hölder's inequality for ∥hT0∥pp to convert back from lp to l2

∥hT0∥pp ≤ (|T0|)1−p/2∥hT̄01
∥p2 (3.21)

is obtained and (3.20) becomes

∥hT̄ c
01
∥p2 ≤

∑
j≥2

∥hTj
∥p2 ≤ Lp/2−1

(
(|T0|)1−p/2∥hT̄01

∥p2 + 2∥r − rT0∥pp
)

(3.22)

Now we need to control the size of ∥hT̄01
∥p2 . Observe that ΦhT̄01

= Φh−Σj≥2ΦhTj

therefore

∥ΦhT̄01
∥22 = ⟨ΦhT̄01

,ΦhT̄01
⟩ = ⟨ΦhT̄01

,Φh⟩ − ⟨ΦhT̄01
,
∑
j≥2

ΦhTj
⟩

≤ ∥ΦhT̄01
∥2∥Φh∥2 +

∑
j≥2

|⟨ΦhT̄01
,ΦhTj

⟩|

Taking the pth power and using the fact that for any b, c ≥ 0, and 0 < p < 1,

bp + cp > (b+ c)p we have

∥ΦhT̄01
∥2p2 ≤ ∥ΦhT̄01

∥p2∥Φh∥
p
2 +

∑
j≥2

(|⟨ΦhT̄01
,ΦhTj

⟩|)p (3.23)

Observing that (1− δL+|T0|+|T |)
p/2∥hT̄01

∥p2 ≤ ∥ΦhT̄01
∥p2 and ∥ΦhT̄01

∥p2 ≤ (2ϵ)p,

(3.23) becomes

(1− δL+|T0|+|T |)
p(∥hT̄01

∥p2)2 ≤ (2ϵ)p(1 + δL+|T0|+|T |)
p/2∥hT̄01

∥p2
+(δL+|T0|+|T |∥hT̄0

∥2 + δ2L∥hT̄1
∥2)p ×

∑
j≥2

∥hTj
∥p2

≤ (2ϵ)p(1 + δL+|T0|+|T |)
p/2∥hT̄01

∥p2
+(δ2L+|T0|+|T | + δ22L)

p/2∥hT̄01
∥p2 ×

∑
j≥2

∥hTj
∥p2
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Using (3.21) and (3.22) we have

(1− δL+|T0|+|T |)
p∥hT̄01

∥p2 ≤ (2ϵ)p(1 + δL+|T0|+|T |)
p/2 + (δ2L+|T0|+|T | + δ22L)

p/2Lp/2−1 ×(
2∥r − rT0∥pp + (|T0|)1−p/2∥hT̄01

∥p2
)

(3.24)

Then setting L = ak, |T0| = k and |T | = s in (3.24) we obtain

∥hT̄01
∥p2 ≤ αϵp + β

∥r − rk∥pp
k1−p/2

(3.25)

with constants

α =
2p(1 + δs+(a+1)k)

p/2

(1− δs+(a+1)k)p − ap/2−1(δ2s+(a+1)k + δ22ak)
p/2

β =
2(δ2s+(a+1)k + δ22ak)

p/2ap/2−1

(1− δs+(a+1)k)p − ap/2−1(δ2s+(a+1)k + δ22ak)
p/2

Substituting (3.22) and (3.25) into ∥h∥p2 ≤ ∥hT̄ c
01
∥p2 + ∥hT̄01

∥p2 results in

∥h∥p2 ≤ Ca,k,s,pϵ
p +Da,k,s,p

∥r − rk∥pp
k1−p/2

where the constants Ca,k,s,p and Da,k,s,p are as in (3.18) and (3.19) in Theorem

3.4.1. Denominator of these constants must be positive implying the condition

given in (3.15).

Theorem 3.4.2. [39] Let x be a strictly sparse signal and suppose that support

of the signal is partially known. If (3.15) is satis�ed for some constant a > 1

and ak is a positive integer, then the solution x̂ to (3.16) for p < 1 obeys

∥x̂− x∥2 < (Ca,k,s,p)
1/pϵ

where Ca,k,s,p is given in (3.18)

Proof. The proof can easily be deduced from the proof of Theorem 3.4.1 by

setting r = rk. Since we assume x is sparse, the term related with Da,k,s,p in

(3.17) goes to zero and Ca,k,s,p in Theorem 3.4.2 is obtained.

Remark 3.4.1. In Theorems 3.4.1 and 3.4.2 necessary conditions are provided

for recovering sparse and compressible signals with partially known support. The

constants Ca,k,s,p and Da,k,s,p determines the upper bounds on the recovery error.

Remark 3.4.2. If p = 1 and a = 1 we obtain precisely the same constants Cs,k =

4
√
1 + δs+2k/(1− δs+2k − µs,k) and Ds,k = 2(1 + µs,k − δs+2k)/(1− δs+2k − µs,k)

and reconstruction conditions 1− δs+2k > µs,k with µs,k =
√
δ2s+2k + δ22k given in

[24].
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Remark 3.4.3. If there is no partial support information with a = 1 and p = 1,

i.e., T = ∅ and s = 0 then r = x, we �nd the reconstruction conditions and

constants given in [10]

Remark 3.4.4. If p = 1 and a = 1 when k ≪ s, the constants Ca,k,s,p < 7.32

and Da,k,s,p < 3.35 for δs+2k = 0.2 and δ2k = 0.02, which is the same constants

given in [24].

Remark 3.4.5. In Theorem 3.4.1, the compressibility of the signal is determined

by the compressibility error r − rk.

The constants Ca,k,s,p and Da,k,s,p depend on s which is related to partially

known support level, on k which re�ects the degree of compressibility of the

residual r, on p determined by the recovery algorithm and on a which is a free

parameter that (3.15) holds. In Fig. 3.2 (a) and (b), Ca,k,s,p and Da,k,s,p are

plotted versus p for di�erent values of a. δs+(a+1)k = 0.2 and δ2ak = 0.1 are �xed

for k ≪ s. As shown in Fig. 3.2 (a), error bound noise constant (Ca,k,s,p) is

lower for smaller p (p < 1) and for bigger a and in Fig. 3.2 (b), error bound

compressibility constant (Da,k,s,p) is lower for bigger a.
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Figure 3.2: (a) Ca,k,s,p versus p, (b) Da,k,s,p versus p, for di�erent values of a

3.5 Experimental Results

In this section we present the results of several numerical experiments to

explore the performance of lp<1 minimization with partially known support for

sparse and compressible signals. The problem in (3.16) is nonconvex and it
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is possible to have several local minima on the feasible set. Therefore IRLS

approach (3.26) is used in the solution of (3.16).

min
N∑
i=1

wix̂
2
i subject to Φx̂ = y (3.26)

The closed form of the solution is given as, giving the next iterate x̂(n+1):

x̂(n+1) = QnΦ
T (ΦQnΦ

T )−1y

where Qn is diagonal matrix with elements 1/wi. Choose the weights wi =

((x̂
(n)
i )2 + γ)p/2−1 where γ is initially a large constant added to avoid division

by zero whenever x̂(n)i = 0 since p − 2 is negative. The value of γ is decreased

according to rule γn+1 = 0.99γn and iteration is continued until γ becomes very

small. In order to include partially known support in the solution, the elements

on the diagonal of Qn whose positions are in T need to have larger weight than

the others. This is satis�ed by multiplying these elements with 1000 times the

largest element on the diagonal.

In order to show that the recovery error in the simulations does below the

given theoretical error bound given in (3.17), N = 1024 dimensional compress-

ible 32 × 32 cardiac image [22] and zero mean Gaussian matrix are used. The

simulations are performed by selecting s = 60, s = 90 and s = 120 best term

approximations. Measurement level M is set to 256 and this process is repeated

50 times. In Fig. 3.3 (a) ∥x̂ − x∥p2 is plotted versus p for s = 60, s = 90 and

s = 120. The theoretical error bound is plotted in Fig. 3.3 (b)-(d) for di�erent

values of a and k providing that the condition in (3.15) holds. Also k is assumed

to be less than s and hence RIC of the measurement is �xed as δs+(a+1)k = 0.2

and δ2ak = 0.1. It can be observed that ∥x̂ − x∥p2 is lower than the theoretical

error bounds for s = 60, s = 90 and s = 120.

30



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

p

‖
x̂
−

x
‖

p 2

 

 

s=60

s=90

s=120

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

p

T
h
e
o

re
ti
c
a

l 
e
rr

o
r 

b
o
u
n
d

 

 

a=1.5

a=2

a=2.5

a=3.5

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

p

T
h
e

o
re

ti
c
a
l 
e
rr

o
r 

b
o
u
n
d

 

 

a=1.5

a=2

a=2.5

a=3.5

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

p

T
h
e

o
re

ti
c
a
l 
e
rr

o
r 

b
o
u
n
d

 

 

a=1.5

a=2

a=2.5

a=3.5

(d)

Figure 3.3: (a) Reconstruction error to the pth power versus p for various s for

M = 256, (b) Theoretical error bound for s = 60, k = 20, (c) Theoretical error

bound for s = 90, k = 30, (d) Theoretical error bound for s = 120, k = 40

3.5.1 Exact Recovery Results

100 trials are performed and correct reconstructions out of 100 trials are

recorded and it is de�ned as the exact reconstruction frequency. If ∥x − x̂∥2 ≤
10−3, we accept the recovery of x is exact. In Fig. 3.4 we compare the per-

formance of lp<1 minimization with partially known support for di�erent values

of p with modi�ed compressed sensing approach (MOD-CS) [22] for di�erent

number of measurement levels. Fig. 3.4 (a)-(c) are plotted for s = 0, s = 12

and (c) s = 20 known support levels, respectively. It is observed that exact

reconstruction frequency is more accurate for p < 1 for the same measurement

levels.

In Fig. 3.5 (a)-(c) we analyze the e�ect of partially known support with
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measurement levels M = 80, M = 100 and M = 120, respectively. We plotted

exact reconstruction frequency increasing the known support in steps of s = 4.

p < 1 gives better estimates compared to MOD-CS for all known support levels.
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Figure 3.4: Exact reconstruction frequency of modi�ed lp<1 minimization and

MOD-CS for (a) s = 0, (b) s = 12, (c) s = 20.
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Figure 3.5: Exact reconstruction frequency of modi�ed lp<1 minimization and

MOD-CS for (a) M = 80, (b) M = 100 and (c) M = 120.

3.5.2 The Sparse Case

We choose signal dimension as N = 512 and generate N -dimensional vec-

tor x with 40 nonzero entries. The location of the non-zero entries are selected

randomly using standard Gaussian distribution. We generate M × N measure-

ment matrix Φ with i.i.d. entries. We let y = Φx and run IRLS algorithm to

�nd the local minima of (3.16). Each experiment is repeated 50 times.

We compare the performance of lp<1 minimization with partially known

support for di�erent values of p with MOD-CS [22] and average reconstruction

signal to noise ratio (SNR) is calculated as

SNR = 20 log10

(
∥x∥2
∥x− x̂∥2

)
In Fig. 3.6 (a)-(c) SNR is plotted versus mesurement level M for s = 4, s = 16

and s = 24, respectively. It is evident that increased known support causes
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better reconstruction. Also it is observed that reconstruction SNR is higher for

p < 1 compared to MOD-CS for same measurement levels.
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Figure 3.6: Performance of lp<1 minimization with partially known support and

MOD-CS in terms of SNR for sparse signal, varying the number of measurements

for (a) s=4, (b) s=16 and (c) s=24.

In Fig. 3.7 (a)-(c) measurement level is changed as 80, 120 and 160, re-

spectively for di�erent values of p on domain of known support. As it is expected

SNR is increased with increased level of known support.
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Figure 3.7: Performance of lp<1 minimization with partially known support and

MOD-CS in terms of SNR for sparse signals, varying the support size s for (a)

M=80, (b) M=120 and (c) M=160.

3.5.3 The Compressible Case

For compressible case, we generate x whose coe�cients decay like j−τ where

j ∈ {1, ..., N} and τ > 1 with N = 512. In Fig. 3.8 (a)-(c) we analyze the

e�ect of partially known support for di�erent number of measurement levels for

a compressible signal with τ = 1.5. We choose best 40-term approximation of

the compressible signal x. We plotted reconstruction SNR varying the number

of measurements for s = 4, s = 16 and s = 24.

In Fig. 3.9 (a)-(c) performance of lp<1 minimization with partially known

support and MOD-CS in terms of SNR for compressible signals, varying the

support size s for M = 100, M = 120 and M = 140 is obtained. As it is obvious

in all cases lp<1 minimization with partially known support gives better SNR for
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Figure 3.8: Performance of lp<1 minimization with partially known support and

MOD-CS in terms of SNR for compressible signals, varying the number of mea-

surements for (a) s=4, (b) s=16 and (c) s=24. The coe�cients decay with a

power τ = 1.5 .
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Figure 3.9: Performance of lp<1 minimization with partially known support and

MOD-CS in terms of SNR for compressible signals, varying the support size s

for (a) M=100, (b) M=120 and (c) M=140. The coe�cients decay with a power

τ = 1.5 .

As the last experiment, we want to demonstrate the performance of the

lp<1 minimization with partially known support for real compressible signal. We

choose cardiac image as our simulation data used in [22] owing to its structure

for sparse decomposition. Two-level Daubechies-4 2D-DWT as sparsifying basis

is used for 32× 32 cardiac image. Support size of the image is 107 and the set of

indexes of the approximation coe�cients are selected as known part s = |T | = 64.

Reconstruction SNR is shown in Fig. 3.10 for MOD-CS and lp<1 minimization

with partially known support for di�erent p values. For this experiment the per-

formance of lp<1 minimization with partially known support is almost the same

as MOD-CS when measurement level is relatively low. However reconstruction

SNR is higher for increased levels of measurement level M .
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MOD-CS in terms of SNR for cardiac image, varying the number of measure-

ments (s=64).

38



CHAPTER 4

NONCONVEX COMPRESSED SENSING FOR GENERAL

PERTURBATIONS

4.1 Introduction

In the CS community most of the research is directed toward to removing

the additive noise from the measurements. However, when the matrix used to

decode is di�erent than the matrix used to encode, there exists a multiplicative

noise in addition to the additive noise term in the measurements. Let A is

decoding matrix such that

A = Φ+ E (4.1)

where E models the distortions in the measurement matrix Φ. Substituting (4.1)

in ŷ = Φx+ e causes an extra noise term Ex in the measurements in addition to

additive noise. This type of noise can be encountered in several applications, for

example when implementing decoding matrix in a sensor, or E can be modeled

as the errors resulting from the transmission channel, which can be encountered

in telecommunications, radar [40], source separation [41] and other scenarios.

Therefore investigation of the multiplicative noise in compressed sensing is an

important issue. Herman and Strohmer [42] analyzed the performance of BP un-

der multiplicative and additive noise. Their framework is based on the relative

error bounds of the measurement matrix and additive noise and then Herman and

Needell [15] extended to greedy algorithms namely Compressive Sampling Match-

ing Pursuit(COSAMP). Their results show that under reasonable assumptions

stable reconstruction of the signal is limited by the noise level in the observation.

Ding, Chen and Gu [43] analyzed the performance of Orthogonal Matching Pur-

suit [14] under General Perturbations. Exact recovery of support set of x can be

guaranteed under suitable conditions, these conditions are based on RIP, rela-

tive perturbations and the smallest nonzero entry. In this chapter a completely

perturbed nonconvex CS scenario is considered for lp<1 minimization. The main

result is that lp<1 minimization for completely perturbed scenario is better than

BP in terms of l2 reconstruction error.
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4.1.1 Notations and Symbols

Throughout this section, we adopt the notations and symbols used in [42].

Let the relative perturbations E and e are bounded by

∥E∥2
∥Φ∥2

≤ εΦ,
∥E∥(K)

2

∥Φ∥(K)
2

≤ ε
(K)
Φ ,

∥e∥2
∥y∥2

≤ εy. (4.2)

∥ · ∥2 denotes the spectral norm and ∥ · ∥(K)
2 represents the largest spectral norm

taken over all K-column submatrices. αK and βK in (4.3) de�ne the signals tail

relative to its head, xK is the best K-term approximation to x and xKc is the

remaining terms.

αK :=
∥xKc∥2
∥xK∥2

, βK :=
∥xKc∥1√
K∥xK∥2

(4.3)

and κ(K)
Φ and γΦ are given as

κ
(K)
Φ :=

√
1 + δK√
1− δK

, γΦ :=
∥Φ∥2√
1− δK

. (4.4)

4.2 Completely Perturbed l1 Minimization

4.2.1 RIP for A

Assume the completely perturbed situation with e, E ̸= 0. In this case the

problem in (2.13) is generalized to

min∥x̂∥1 subject to ∥ŷ − Ax̂∥2 ≤ ε
′

Φ,K,y (4.5)

with a corrupted measurement matrix A = Φ + E for some ε
′
Φ,K,y [42]. RIP

condition and reconstruction error bounds are given in in [42].

Theorem 4.2.1. Given the RIC δK associated with matrix Φ and the relative

perturbation ε
(K)
Φ associated with matrix E in (4.2), �x the constant

δ̂K ,max := (1 + δK)(1 + ε
(K)
Φ )2 − 1. (4.6)

Then the RIC δK < δ̂K ,max is tha smallest nonnegative number such that

(1− δ̂K)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ̂K)∥x∥22 (4.7)

holds for any K-sparse vector x.
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4.2.2 Stability From Completely Perturbed Observations

Theorem 4.2.2. [42] Fix the relative perturbations εΦ,ε
(K)
Φ ,ε

(2K)
Φ , and εy be in

(4.2). Assume the RIC for matrix Φ satis�es

δ2K <

√
2

(1 + ε
(2K)
Φ )2

− 1 (4.8)

and that general signal x satis�es

αK + βK <
1

κ
(K)
Φ

(4.9)

Set the total noise parameter

ε
′

Φ,K,y =

(
εKΦ κ

(K)
Φ + εΦγΦαK

1− κ(K)
Φ (αK + βK)

+ εy

)
∥y∥2 (4.10)

Then, given ŷ = Φx+ e and A = Φ+E, the solution of BP problem (4.5) obeys

∥x̂− x∥2 ≤ K−1/2C0∥x− xK∥1 + C1ε
′

Φ,K,y (4.11)

where

C0 =
2(1 + (

√
2− 1))[(1 + δ2K)(1 + ε

(2K)
Φ )2 − 1]

1− (
√
2 + 1)[(1 + δ2K)(1 + ε

(2K)
Φ )2 − 1]

(4.12)

C1 =
4
√
1 + δ2K(1 + ε

(2K)
Φ )

1− (
√
2 + 1)[(1 + δ2K)(1 + ε

(2K)
Φ )2 − 1]

(4.13)

Theorem 4.2.2 generalizes the results in [10] in (2.14). If matrix Φ is

unperturbed, then E = 0 and εΦ = ε
(K)
Φ = 0. Then δ̂K = δK in (4.6) and RIP

conditions for A and Φ are same.

4.2.3 Derivation of Total Perturbation Bound ε
′
Φ,K,y

Proposition 4.2.1. Assume that the matrix Φ satis�es the upper bound of the

RIP in (4.7). Then, for every signal x we have

∥Φx∥2 ≤
√

1 + δK(∥x∥2 +
1√
K
∥x∥1) (4.14)

Lemma 4.2.1. Assume the condition (4.9). Then for general signal x, its image

under Φ can be bounded below by the positive quantity

∥Φx∥2 ≥
√

1− δK
(
∥xK∥2 − κ(K)

Φ (∥xKc∥2 +
∥xKc∥1√

K
)

)
(4.15)
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Lemma 4.2.2. Assume the condition (4.9) and set

ε
′

Φ,K,y =

(
εKΦ κ

(K)
Φ + εΦγΦαK

1− κ(K)
Φ (αK + βK)

+ εy

)
∥y∥2 (4.16)

where εΦ, ε
(K)
Φ , εy de�ned in (4.2), and αK and βK in (4.3, then total perturbation

obeys

∥Ex∥2 + ∥e∥2 ≤ ε
′

Φ,K,y (4.17)

Proof. First divide the multiplicative noise term by ∥y∥2 and then apply Lemma

4.2.1

∥Ex∥2
∥Φx∥2

≤
(
∥E∥(K)

2 ∥xK∥2 + ∥E∥2∥xKc∥2
)
. 1√

1−δK

∥xK∥2 − κ(K)
Φ (∥xKc∥2 + ∥xKc∥1/

√
K)

=

(
∥E∥(K)

2 + ∥E∥2αK

)
. 1√

1−δK

1− κ(K)
Φ (αK + βK)

≤
(
εKΦ κ

(K)
Φ + εΦγΦαK

1− κ(K)
Φ (αK + βK)

)
. (4.18)

Including the contribution from the additive noise term completes the proof

[42].

4.3 lp<1 Minimization Under General Perturbations

Problem in (3.3) is nonconvex when p < 1. However Chartrand [33] showed

with extensive numerical results that exact signal reconstruction is possible and

required number of measurements for exact reconstruction is fewer and imple-

mentation is simpler compared to BP.

Saab et al. [34] studied the stability of lp<1 minimization for the sparse and

compressible signals in the presence of additive noise and gave the error bounds

on the reconstruction error. Their results show that lp<1 minimization is better

than the BP in terms of stability and robustness with decreasing values of p.

The following two theorems summarize our results.

Theorem 4.3.1. Let
∑N

K := {x ∈ RN : ∥x∥0 ≤ K} represent the set of all K-

sparse signals in RN and the measurements as given in (2.12), for some constant

a > 1 and aK is a positive integer and if (4.19) and (4.20) satisfy

αK + βK <
1

κ
(K)
Φ

(4.19)

(1 + δaK)(1 + ε
(aK)
Φ )2 + a2/p−1(1 + δ(a+1)K)(1 + ε

(a+1)K
Φ )2 < a2/p (4.20)
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and the total perturbation is de�ned as [42]

ε
′

Φ,K,y =

(
εKΦ κ

(K)
Φ + εΦγΦαK

1− κ(K)
Φ (αK + βK)

+ εy

)
∥y∥2 (4.21)

then program

min∥x̂∥pp subject to ∥ŷ − Ax̂∥2 ≤ ε
′

Φ,K,y (4.22)

obeys

∥x̂− x∥p2 < C
(1)
0 ε

′

Φ,K,y

where C
(1)
0 is given as

C
(1)
0 =

2
√

1 + 1
a(2/p)−1((2/p)−1)[(

2−
(
1 + δ(a+1)K

)(
1 + ε

(a+1)K
Φ

)2)p/2

−
(
1 + δaK

)p/2(
1 + ε

(aK)
Φ

)p

a(p/2)−1

]
(4.23)

Since x is sparse, total perturbation bound given in (4.21) will reduce to

ε
′

Φ,K,y =

(
εKΦ κ

(K)
Φ + εy

)
∥y∥2

for αK and βK are zero.

Theorem 4.3.2. If x is not sparse (general case) and (4.19) and (4.20) are

satis�ed then program (4.22) obeys

∥x− x̂∥p2 ≤ C
(1)
1 (ε

′

Φ,K,y)
p + C

(2)
1 a(p/2)−1∥x− xK∥pp

where

C
(1)
1 =

2p
[
1 + a(p/2)−1(2/p− 1)−p/2

]
[(

2−
(
1 + δ(a+1)K

)(
1 + ε

(a+1)K
Φ

)2)p/2

−
(
1 + δaK

)p/2(
1 + ε

(aK)
Φ

)p

a(p/2)−1

]
(4.24)

and

C
(2)
1 = 2

(
p

2−p

)p/2

a1−p/2
×

=

[
1 +

(
1 + a(p/2)−1

)(
1 + δaK

)p/2(
1 + ε

(aK)
Φ

)p

[(
2−

(
1 + δ(a+1)K

)(
1 + ε

(a+1)K
Φ

)2)p/2

−
(
1 + δaK

)p/2(
1 + ε

(aK)
Φ

)p

a(p/2)−1

]]

(4.25)
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Remark 4.3.1. Theorem 4.3.1 and 4.3.2 generalizes the results of [34]. For

unperturbed decoding matrix Φ, E = 0 and ε
(aK)
Φ = ε

(a+1)K
Φ = 0 and hence (4.23),

(4.24) and (4.25) reduces to

C
(1)
0 =

2
√
1 + 1

a(2/p)−1((2/p)−1)

[(1− δ(a+1)K)p/2 − (1 + δaK)p/2a(p/2)−1]

C
(1)
1 = 2p

[1 + a(p/2)−1((2/p)− 1)−p/2]

[(1− δ(a+1)K)p/2 − (1 + δaK)p/2a(p/2)−1]

and

C
(2)
1 = 2

(( p
2−p

)p/2)

a1−p/2

[
1 +

(1 + a(p/2)−1)(1 + δaK)
p/2

[(1− δ(a+1)K)p/2 − (1 + δaK)p/2a(p/2)−1]

]
respectively as in [34].

Remark 4.3.2. If p = 1 and there is no perturbation on the measurement matrix

i.e., ε
(aK)
Φ = ε

((a+1)K)
Φ = 0 we obtain precisely the same constants in [12].

Theorems 4.3.1 and 4.3.2 considers a total noise term ε
′
Φ,K,y which repre-

sents the additive and multiplicative noise simultaneously.

The constants C(1)
1 and C

(1)
2 depend on K which re�ects the degree of

compressibility of signal x, on p determined by the recovery algorithm and on

a which is a free parameter that (4.20) holds. δ(a+1)K and δaK are �xed to 0.2

and 0.1, respectively in the �gures 4.1 and 4.2. In Fig. 4.1 (a) and (b), C(1)
1

is plotted versus p for a = 3 and a = 4 for ε(aK)
Φ = ε

((a+1)K)
Φ = 0, 0.05, 0.1.

Similarly in Fig. 4.2 (a) and (b) C(1)
1 is plotted versus p for a = 3 and a = 4

for the same perturbation levels. As it is observed from the �gures error bound

noise constant (C(1)
1 ) and error bound compressibility constant (C(2)

1 ) is lower

for smaller p (p < 1) and for bigger a. Also these constants are increasing with

increasing values of ε(aK)
Φ and ε((a+1)K)

Φ .
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Figure 4.1: Error bound noise constant (C(1)
1 ) versus p
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Figure 4.2: Error bound noise compressibility constant (C(2)
1 ) versus p

Proof. Let x̂ is the solution of (4.22) and total perturbation is given as in (4.21).

De�ne the di�erence h = x̂ − x between the original and reconstructed signals.

Divide h into hT0 and hT c
0
where T0 is the set of K-largest components of x and

T c
0 is the rest. Decompose T c

0 in to sets T1,T2.....Tj for j > 1. Let T01 denotes the

set union T0 ∪ T1. Our proof is analogous to proof in [34] and [12], but we take

into account the perturbed measurement matrix and modi�ed RIC. Since x and
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x̂ are feasible then from the triangle inequality

∥Ah∥p2 = ∥AhT01 +
∑
j≥2

AhTj
∥p2

= ∥AhT01∥
p
2 − ∥

∑
j≥2

AhTj
∥p2

≥ (1− δ̂L+|T0|)
p/2∥hT01∥

p
2 − (1 + δ̂L+|T0|)

p/2
∑
j≥2

∥hTj
∥p2 (4.26)

Using the result of Theorem 1 in [42], (4.26) becomes

∥Ah∥p2 ≥ (2− (1 + δL+|T0|)(1 + ε
L+|T0|
Φ )2)p/2∥hT01∥

p
2

− (1 + δL)
p/2(1 + δL)

p/2(1 + εLΦ)
p
∑
j≥2

∥hTj
∥p2 (4.27)

writing ∥hT01∥
p
2 and

∑
j≥2 ∥hTj

∥p2 in terms of ∥h∥2. Since [34]∑
j≥2

∥hTj
∥p2 ≤ Lp/2−1

∑
j≥1

∥hTj
∥pp ≤ Lp/2−1∥hT c

0
∥pp

and

∥hT c
0
∥pp ≤ ∥hT0∥pp + 2∥xT c

0
∥pp

then∑
j≥2

∥hTj
∥p2 ≤ Lp/2−1

(
∥hT0∥pp +2∥xT c

0
∥pp
)
≤ (ζ)1−p/2

(
∥hT01∥

p
2 +2|T0|p/2−1∥xT c

0
∥pp
)

(4.28)

where ζ = |T0|
L

and ∥hT0∥pp ≤ |T0|1−p/2(∥hT0∥
p
2). Combining (4.27) and (4.28), the

triangle inequality becomes

∥Ah∥p2 ≥
[(

2− (1 + δL+|T0|)(1 + ε
L+|T0|
Φ )2

)p/2

−
(
(1 + δL)

p/2(1 + εLΦ)
p

)
ζ1−p/2

]
×

∥hT01∥
p
2 − 2ζ1−p/2|T0|p/2−1(1 + δL)

p/2(1 + εLΦ)
p∥xT c

0
∥pp

Also

∥Ah∥2 ≤ 2ε
′

Φ,K,y

then ∥hT01∥
p
2 is bounded as

∥hT01∥
p
2 ≤

[
(2ε

′
Φ,K,y)

p + 2ζ1−p/2

(
(1 + δL)

p/2(1 + εLΦ)
p

)
∥xTc

0
∥pp

|T0|1−p/2

]
[(

2− (1 + δL+|T0|)(1 + ε
L+|T0|
Φ )2

)p/2

−
(
(1 + δL)p/2(1 + εLΦ)

p

)
ζ1−p/2

]
(4.29)

At this point, denominator of (4.29) must be greater than zero which impose the

condition given in (4.20).
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Using the same arguments given in [12]

∥h∥22 ≤
[
(1 + ζ1−p/2(2/p− 1)−p/2)∥hT01∥

p
2 + 2ζ1−p/2(2/p− 1)−p/2

∥xT c
0
∥pp

|T0|1−p/2

]2/p
Setting |T0| = K and L = aK we obtain

∥h∥p2 ≤ C
(1)
1 (ε

′

Φ,K,y)
p + C

(2)
1 a(p/2)−1∥x− xK∥pp

Since ∥xT c
0
∥ is zero for sparse case, the proof of Theorem 4.3.2 is easily modi�ed

for the proof of Theorem 4.3.1.

4.4 Stability and Instance Optimality in Nonconvex Compressed

Sensing

In this section theoretical results are presented to show that it is possible

to recover sparse and compressible signals robustly and stably using lp<1 mini-

mization when additive noise exists. The stability of recovering x from y is also

related with the RIP of the measurement matrix. We begin with a stability and

robustness theorem for lp<1 minimization that generalizes the theorem in [10].

Theorem 4.4.1. Suppose that xK is the best K-term approximation to x and

the measurements are given as in (2.2), if

δ(a+1)K + a1/2−1/p(δ2(a+1)K + δ22aK)
1/2 < 1 (4.30)

is satis�ed for some constant a > 1 and aK is a positive integer then the solution

x̂ to

min∥x̂∥pp subject to ∥ŷ − Φx̂∥2 ≤ ϵ (4.31)

obeys

∥x̂− x∥p2 < Ca,K,p ϵ
p +Da,K,p

∥x− xK∥pp
K1−p/2

The constants Ca,K,p and Da,K,p are

Ca,K,p = 2p
(1 + ap/2−1)(1 + δ(a+1)K)

p/2

(1− δ(a+1)K)p − ap/2−1(δ2(a+1)K + δ22aK)
p/2

(4.32)

Da,K,p = 2ap/2−1

[
1 +

(1 + ap/2−1)(δ2(a+1)K + δ22aK)
p/2

(1− δ(a+1)K)p − ap/2−1(δ2(a+1)K + δ22aK)
p/2

]
(4.33)

Recovery error (to the pth power) is bounded by the sum of two terms, �rst one is

proportional to total perturbation term and the second is related to best K-term

approximation error of signal.
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Proof. Let x be an arbitrary signal and 0 < p < 1. T0 be the locations of the

K-largest coe�cients of x. Let us write x̂ = x + h with h ∈ Rn. Our aim is to

bound ∥h∥2 given that ∥Φh∥2 ≤ 2ϵ. T01 denotes T0 ∪ T1. We begin by dividing

h into a sum of sparse vectors with disjoint set and T c
0 into sets T1, T2, ... where

|Tj| = L for j ≥ 1. T1 is the locations of L largest coe�cients of hT c
0
; T2 is the

locations of the second L largest coe�cients of hT c
0
and so on. Since ∥ . ∥pp satis�es

the triangle inequality

∥x̂∥pp ≥ ∥x+ h∥pp = ∥xT0 + hT0∥pp + ∥xT c
0
+ hT c

0
∥pp

≥ ∥xT0∥pp − ∥hT0∥pp − ∥xT c
0
∥pp + ∥hT c

0
∥pp

then

∥hT c
0
∥pp ≤ ∥x∥pp + ∥xT c

0
∥pp + ∥hT0∥pp − ∥xT0∥pp

= 2∥xT c
0
∥pp + ∥hT0∥pp

= 2∥x− xT0∥pp + ∥hT0∥pp

For each u ∈ Tj and v ∈ Tj−1 |h(u)| ≤ |h(v)| so

|h(u)|p ≤ ∥hTj−1
∥pp/L

Then

|h(u)|2 = ∥hTj−1
∥2p/L2/p

∥hTj
∥22 ≤ L1−2/p∥hTj−1

∥2p
∥hTj
∥p2 ≤ Lp/2−1∥hTj−1

∥pp

and thus

∥hT c
01
∥p2 ≤

∑
j≥2

∥hTj
∥p2 ≤ Lp/2−1

∑
j≥1

∥hTj
∥pp = Lp/2−1∥hT c

0
∥pp

= Lp/2−1(2∥x− xT0∥pp + ∥hT0∥pp) (4.34)

Using Hölder's inequality for ∥hT0∥pp to convert back from lp<1 to l2

∥hT0∥pp ≤ (|T0|)1−p/2∥hT01∥
p
2

is obtained and (4.34) becomes

∥hT c
01
∥p2 ≤

∑
j≥2

∥hTj
∥p2 ≤ Lp/2−1

(
(|T0|)1−p/2∥hT01∥

p
2 + 2∥x− xT0∥pp

)
(4.35)

Now we need to control the size of ∥hT01∥
p
2 . Observing that ΦhT01 = Φh −

Σj≥2ΦhTj
therefore

∥ΦhT01∥22 = ⟨ΦhT01 ,ΦhT01⟩ = ⟨ΦhT01 ,Φh⟩ − ⟨ΦhT01 ,
∑
j≥2

AhTj
⟩

≤ ∥ΦhT01∥2∥Φh∥2 +
∑
j≥2

|⟨ΦhT01 ,ΦhTj
⟩|
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Taking the pth power and using the fact that for any b, c ≥ 0, and 0 < p < 1,

bp + cp > (b+ c)p we have

∥ΦhT01∥
2p
2 ≤ ∥ΦhT01∥

p
2 ∥Φh∥

p
2 +

∑
j≥2

(|⟨ΦhT01 ,ΦhTj
⟩|)p (4.36)

Observing that (1− δL+|T0|)
p/2∥hT01∥

p
2 ≤ ∥ΦhT01∥

p
2 and ∥ΦhT01∥

p
2 ≤ (2ϵ)p, (4.36)

becomes

(1− δL+|T0|)
p(∥hT01∥

p
2)

2 ≤ (2ϵ)p(1 + δL+|T0|)
p/2∥hT01∥

p
2

+(δL+|T0|∥hT0∥2 + δ2L∥hT1∥2)p ×
∑
j≥2

∥hTj
∥p2

≤ (2ϵ)p(1 + δL+|T0|)
p/2∥hT01∥

p
2

+(δ2L+|T0| + δ22L)
p/2∥hT01∥

p
2 ×

∑
j≥2

∥hTj
∥p2

Using (4.35) we have

(1− δL+|T0|)
p∥hT01∥

p
2 ≤ (2ϵ)p(1 + δL+|T0|)

p/2

+ (δ2L+|T0| + δ22L)
p/2Lp/2−1

(
2∥x− xT0∥pp + (|T0|)1−p/2∥hT01∥

p
2

)
(4.37)

Then setting L = aK, |T0| = K in (4.37) we obtain

∥hT01∥
p
2 ≤ θϵp + ζ

∥x− xK∥pp
K1−p/2

(4.38)

with constants

θ =
2p(1 + δ(a+1)K)

p/2

(1− δ(a+1)K)p − ap/2−1(δ2(a+1)K + δ22aK)
p/2

ζ =
2(δ2(a+1)K + δ22aK)

p/2ap/2−1

(1− δ(a+1)K)p − ap/2−1(δ2(a+1)K + δ22aK)
p/2

Substituting (4.35) and (4.38) into ∥h∥p2 ≤ ∥hT c
01
∥p2 + ∥hT01∥

p
2 results in

∥h∥p2 ≤ Ca,K,pϵ
p +Da,K,p

∥x− xK∥pp
K1−p/2

where the constants Ca,K,p and Da,K,p are as in (4.32) and (4.33) in Theorem

4.4.1. Denominator of these constants must be positive implying the condition

given in (4.30).

Theorem 4.4.2. Let x be a strictly sparse signal. If (4.30) is satis�ed for some

constant a > 1 and aK is a positive integer, then the solution x̂ to (4.31) obeys

∥x̂− x∥2 < (Ca,K,p)
1/pϵ

where Ca,K,p is given in (4.32)
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Proof. The proof can easily be deduced from the proof of Theorem 4.4.1 by

setting x = xK . Since we assume x is sparse, the term related with Da,K,p in

(4.33) goes to zero and Ca,K,p in Theorem 4.4.1 is obtained.

In Theorem 4.4.1 and Corollary 4.4.2 necessary conditions are provided

for recovering sparse and compressible signals using lp<1 minimization. The

constants Ca,K,p and Da,K,p determines the upper bounds on the recovery error.

Remark 4.4.1. If p = 1 and a = 1, we obtain precisely the same constants

Ca,K,p and Da,K,p and reconstruction condition δ2K <
√
2 − 1 given in [10] and

Ca,K,p < 8.48 and Da,K,p < 4.19 for δ2K = 0.2.

Remark 4.4.2. It is su�cient to ensure the stable and robust recovery of signal x

from measurements y if the measurement matrix Φ satis�es a stronger condition

δ2aK <
1

1 +
√
2a1/2−1/p

(4.39)

with the constants Ca,K,p and Da,K,p given in (4.32) and (4.33) since δ2aK <

δ(a+1)K.

4.5 Stability and Instance Optimality in Completely Perturbed

lp<1 Minimization

In previous section reconstruction conditions and error bounds for lp<1

minimization under additive noise is given. In this section a completely perturbed

CS scenario is considered for lp<1 minimization. Suppose that the measurement

matrix is corrupted as in (4.1) in addition to additive noise in the measurements.

Theorem 4.5.1. Let the relative perturbations εΦ, ε
(2aK)
Φ , and εy be in (4.2) and

signal x satis�es αK + βK < 1

κ
(K)
Φ

. If

δ2aK <
2 +
√
2a1/2−1/p

(1 +
√
2a1/2−1/p)(1 + ε

(2aK)
Φ )2

− 1 (4.40)

is satis�ed for some constant a > 1 and aK is a positive integer then the solution

ẑ to

min∥ẑ∥pp subject to ∥ŷ − Aẑ∥2 ≤ ε
′

Φ,K,y (4.41)

obeys

∥ẑ − x∥p2 < Ĉa,K,p(ε
′

Φ,K,y)
p + D̂a,K,p

∥x− xK∥pp
K1−p/2

with total noise parameter [42]

ε
′

Φ,K,y =

(
ε
(K)
Φ κ

(K)
Φ + εΦγΦαK

1− κ(K)
Φ (αK + βK)

+ εy

)
∥y∥2
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The constants Ĉa,K,p and D̂a,K,p are

Ĉa,K,p = 2p
(1 + ap/2−1)(1 + δ(a+1)K)

p/2(1 + ε
(a+1)K
Φ )p

∆
(4.42)

D̂a,K,p = 2ap/2−1

[
1 +

(1 + ap/2−1)

[(
(1 + δ(a+1)K)(1 + ε

(a+1)K
Φ )2 − 1

)2
+

(
(1 + δ2aK)(1 + ε2aKΦ )2 − 1

)2]p/2
∆

]
(4.43)

where

∆ =

[
2− (1 + δ(a+1)K)(1 + ε

(a+1)K
Φ )2

]p
− ap/2−1

[(
(1 + δ(a+1)K)(1 + ε

(a+1)K
Φ )2 − 1

)2
+
(
(1 + δ2aK)(1 + ε2aKΦ )2 − 1

)2]p/2
(4.44)

Proof. The proof of Theorem 4.5.1 is similar to proof of theorem 4.4.1 with

decoding matrix Φ is replaced with A and δK is replaced with δ̂K . Let the

reconstructed vector be ẑ = x + h where h is the perturbation due to e and E.

Also it is observed

∥A(ẑ − x)∥2 ≤ ∥Aẑ − ŷ∥+ ∥ŷ − Ax∥ ≤ 2ε
′

Φ,K,y (4.45)

where ε
′
Φ,K,y is total noise parameter term. We obtain reconstruction condition

δ̂2aK <
1

1 +
√
2a1/2−1/p

(4.46)

by imposing δ̂(a+1)K < δ̂2aK . Substituting the condition [42]

δ̂2aK,max := (1 + δ2aK)(1 + ε
(2aK)
Φ )2 − 1

into (4.46) we obtain the reconstruction condition in (4.40). Following the same

procedures in proof of theorem 4.4.1 we obtain the constants Ĉa,K,p and D̂a,K,p

in (4.42) and (4.43).

Theorem 4.5.2. Let x be a strictly sparse signal. If (4.40) is satis�ed for some

constant a > 1 and aK is a positive integer, then the solution ẑ to (4.41) obeys

∥ẑ − x∥2 < Ĉa,K,p

((
κ
(K)
Φ ε

(K)
Φ + εy

)
∥y∥2

)p

where Ĉa,K,p is given in (4.42)

Proof. Since x is sparse, total perturbation bound given in (4.31) will reduce to

ε
′

Φ,K,y = (κ
(K)
Φ ε

(K)
Φ + εy)

due to the terms αK and βK goes to zero.
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Remark 4.5.1. If p = 1 and a = 1, we obtain precisely the same constants given

in [42] and reconstruction condition δ2K <
√
2

(1+ε
(2K)
Φ )2

− 1 .

Remark 4.5.2. If p = 1 and a = 1 and there is no perturbation in the mea-

surement matrix, i.e. E = 0, we obtain precisely the same constants Ĉa,K,p =

4
√
1 + δ2K/(1− (

√
2+1)δ2K) and D̂a,K,p = 2(1+(

√
2−1))δ2K/(1− (

√
2+1)δ2K)

and reconstruction condition δ2K <
√
2− 1 [10].

4.6 Simulation Results

In this section the simulation results are presented for lp<1 minimization un-

der multiplicative noise. No measurement noise added so that aim is to show the

e�ect of perturbation in the measurement matrix. The performance of lp<1 min-

imization and BP are compared under perturbed measurement matrix. MAT-

LAB is used in all simulations. Regularized Iteratively Reweighted Least Squares

method is used in the solution of (4.22) where lp<1 objective function in (4.22)

is replaced by a weighted l2 norm [33]

min
N∑
i=1

wix̂
2
i subject to Ax̂ = y (4.47)

The closed form of the solution is given as, giving the next iterate x̂(n+1):

x̂(n+1) = QnA
T (AQnA

T )−1y

where Qn is diagonal matrix with elements 1/wi. Choose the weights wi =

((x̂
(n)
i )2 + γ)p/2−1 where γ is initially a large constant added to avoid division by

zero whenever x̂(n)i = 0 since p − 2 is negative and to prevent local minima in

early iterations. The value of γ is decreased according to rule γn+1 = 0.99γn and

iteration is continued until γ < 10−8 or ∥x̂n − x̂n−1∥2 < 10−8 is satis�ed [33].

Adding Gaussian noise with e ∼ N (0, σ2) in (2.12), measurements are

corrupted and unconstrained lp<1 minimization

min∥x̂∥pp +
1

λ
∥ŷ − Ax̂∥2 (4.48)

is solved. The parameter λ is adjusted manually. Starting with an initial x̂(1)

and using the necessary conditions of Euler-Lagrange equation, iterative solution

of (4.48) giving the next iterate x̂(n+1) is given as

x̂(n+1) =

(
ATA+ λQ−1

n

)−1

AT ŷ (4.49)

where Qn is de�ned previously. Minimization is repeated until the constraint in

(4.22) is active.

52



In each parameter set 100 trials are performed and in each trial an M ×
N Gaussian matrix Φ with independent normally entries N (0, σ2) is created.

Standard deviation is set to 1/
√
M . Di�erent random Gaussian matrix E is

created and it is scaled so that ∥E∥2 = εΦ∥Φ∥2. Perturbed matrix A is formed

as Φ + E and it is used in the solution of lp<1 minimization, BP and BPDN.

SPGL1 [44] toolbox is used for BP and BPDN. Normalized reconstruction error

∥x− x̂∥/∥x∥2 of 100 trials are averaged for di�erent parameter sets.

In the �rst experiment we show the e�ect of increase in the relative pertur-

bation εΦ in reconstructing signal x varying the perturbation level εΦ for mea-

surement level M = 128 and the results are given in Fig. 4.3 (a)-(c) for noiseless

measurements. At low sparsity levels the performance of BP and lp<1 minimiza-

tion almost same but increased sparsity level causes lp<1 minimization to obtain

better estimate compared to BP. For the noisy measurements unconstrained lp<1

minimization and BPDN are solved for comparison. In Fig. 4.4 (a)-(c) average

relative error versus εΦ is shown when measurements are corrupted by adding

Gaussian noise with σ = 0.05.
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Figure 4.3: Average relative error versus εΦ for (a) K = 10, (b) K = 20, (c)

K = 30.
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Figure 4.4: Average relative error versus εΦ with measurement noise σ = 0.05

for (a) K = 10, (b) K = 20, (c) K = 30.

In Fig. 4.5 (a)-(c) average relative error is plotted versus measurement

level M for εΦ = 0, εΦ = 0.05 and εΦ = 0.1, respectively. It is observed that

average relative error is lower for p < 1 compared to BP for same measurement

levels. Also values p < 1 gives lower error compared to p = 1. In Fig. 4.6

(a) and (b) average relative error versus measurement level is presented for per-

turbed measurement matrix A with measurement noise σ = 0.01 and σ = 0.05,

respectively. As it is obvious, lp<1 minimization gives lower error compared to

BPDN for lower measurement levels.
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Figure 4.5: Average relative error versus measurement level M for (a) εΦ=0, (b)

εΦ=0.05 and (c) εΦ=0.1.
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Figure 4.6: Average relative error versus measurement level M for εΦ=0.05 with

measurement noise, (a) σ = 0.01 (b) σ = 0.05

E�ect of increasing sparsity level K is given in Fig. 4.7 (a)-(c) for εΦ = 0,

εΦ = 0.05 and εΦ = 0.1, respectively. As it is seen from the curves, BP and lp<1

minimization gives almost the same reconstruction errors for low sparsity levels.

Nevertheless, reconstruction error remains lower in lp<1 minimization compared

to BP for higher values of sparsity levels. Similar results can also be observed

for the noisy measurements given in Fig. 4.8.
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Figure 4.7: Average relative error versus sparsity level K for (a) εΦ=0, (b)

εΦ=0.05 and (c) εΦ=0.1.
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Figure 4.8: Average relative error versus sparsity level K for (a) εΦ=0.05 and

measurement noise σ = 0.05
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As a last experiment, e�ect of p in reconstructing sparse signal x under

multiplicative noise and measurement noise is investigated. Measurements are

corrupted with Gaussian noise with σ = 0.05 and measurement matrix is per-

turbed with εΦ = 0.05. Then p is increased in steps of 0.1 including p = 0.01

and average error is recorded and results are presented in Fig. 4.9. Clearly p

values smaller than 1 has better signal estimate compared to p = 1. Also error

increases with increased levels of εΦ.
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Figure 4.9: Average relative error versus p with measurement noise σ = 0.05
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CHAPTER 5

CONCLUSION

In this thesis theoretical analysis and experimental results in nonconvex

compressed sensing have been reported. In this chapter, a brief summary of

the investigation and the results of thesis work are presented. In addition some

future works are mentioned in the light of the results found.

In the third chapter a literature survey in nonconvex compressed sensing

is given and a modi�ed lp minimization that includes partially known support

in the recovery process is proposed. The theorems for modi�ed lp minimization

are presented for both sparse and compressible signals when partial known sig-

nal support is available. Necessary conditions related with restricted isometry

constant of the measurement matrix for stable and robust recovery of modi�ed

lp minimization are derived. The derivation of coe�cients determining the upper

bounds of the reconstruction error are given in theorems. Numerical results show

that the modi�cation of lp minimization improves the performance, thereby re-

quiring fewer measurements to reconstruct the signal. The potential applications

of nonconvex compressed sensing with partially known support are real-time dy-

namic MRI reconstruction, video imaging or compression/decompression and

also reconstruction for time sequences of sparse signals.

Chapter 4 presented the general perturbation in nonconvex compressed

sensing. lp minimization for completely perturbed CS scenario is studied for

both sparse and general case. The work in this chapter extends the previous re-

sults of lp minimization by including both the additive and multiplicative noise in

the measurements. Theorems reveal that under suitable conditions reconstruc-

tion error is bounded with total noise parameter, relative perturbations and RIC

of matrix Φ. The error bound noise constant and error bound compressibility

constant in theorems determine the worst case recovery error in the reconstruc-

tion. These constants are based on the sparsity of the signal, p value, relative

perturbations and the parameter a. The multiplicative and additive noise terms

are not exactly known therefore their worst case relative perturbations are used.

In theorems the reconstruction errors caused from the multiplicative and additive

noise terms are bounded with total noise term and best-K term approximation

error of the signal. Simulation results show that reconstruction with perturbed
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matrix using lp minimization performs better than l1 minimization in terms of av-

erage reconstruction error for di�erent parameters such as, relative perturbation,

sparsity level, measurement level and measurement noise.

The presented theorems in this thesis ful�lls the requirements of nonconvex

compressed sensing for lp minimization with partially known signal support and

under general perturbations. This study can be extended to compressive source

separation, hyperspectral imaging, etc.
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APPENDIX A

DERIVATION OF IRLS

De�ne the Lagrangian

L(x, λ) = Ep(x) + λT (Φx− y) (A.1)

where

Ep = ∥x∥pp =
N∑
i=1

(x(i))p 0 ≤ p ≤ 1 (A.2)

Stationary points of Lagrangian are

∇xL(x∗, λ∗) = ∇xE
p(x∗) + ΦTλ∗ = 0 (A.3)

∇λL(x∗, λ∗) = Φx∗ − y (A.4)

then

∇xE
p(x∗) = |p|Q(x)x (A.5)

where Q(x) = diag(|xi|p−2). Substituting (A.5) into (A.3)

|p|Q(x∗)x∗ + ΦTλ∗ Φx∗ − y = 0 (A.6)

From this

x∗ = −
1

p
Q−1(x∗)Φ

Tλ∗ (A.7)

Substituting (A.7) into the �rst equation of (A.6) and solving for λ∗

λ∗ = −|p|(ΦQ−1(x∗)Φ
T )−1y (A.8)

Then x∗ in (A.7) becomes

x∗ = Q−1(x)Φ(T )(ΦQ−1(x∗)Φ
T )y (A.9)

in iterative manner

xn+1 = Q−1
n ΦT (ΦQ−1

n ΦT )−1y (A.10)

where Q−1
n is diagonal matrix with elements wi = |x(n−1)|2−p
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APPENDIX B

CODES FOR SIMULATIONS IN CHAPTER 3

B.1 MATLAB CODES

B.1.1 IRLS

Iteratively reweighted least squares (IRLS)

function [u,flag] = irls1d(Phi,b,p)

% Inputs:

% Phi: forward matrix from sources to data

% b: data vector

% p: power, no more than 1

% Outputs:

% u: the reconstructed solution of Phi * u = b

% flag: 0 − success; 1 − max # itr reached

%

epsilon = 1; % initial epsilon

eps_min = 1e−8; % minimally allowed epsilon

max_itr = 1000; % max # of iterations allowed

%% preparation

PhiT = Phi.';

n = size(Phi,2);

%% initialization

method = 3;

switch method

case 1

% method 1: MATLAB mldivide solution, basis solution

u = Phi\b;

case 2

% method 2: least squares solution

[u,flag_tmp] = lsqr(Phi,b);

case 3

% method 3: u = ones(n,1);
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u = ones(n,1);

end

%% main iterations

for itr = 1 : max_itr'

u_prev = u;

%% main update

Q = spdiags( (u.*u + epsilon).^( 1 − p / 2 ), 0, n, n);

method = 1;

switch method

case 1

% method 1: MATLAB mldivide

u = Q*PhiT*((Phi*Q*PhiT)\b);

case 2

% method 2: wpcg, a correct version of MATLAB's...

% pcg by Zaiwen Wen

[y,flag_tmp] = wpcg(Phi*Q*PhiT,b,1e−8,100);
u=Q*PhiT*y;

end

%% update epsilon

if norm(u−u_prev)<sqrt(epsilon)/100
if epsilon < eps_min − 1e−15; break; end

epsilon = epsilon / 10;

end

end

%% post−process
if itr == max_itr

fprintf('IRLS : max # itr %i reached\n',max_itr);

flag=1; % flag of max # itr reached

else

fprintf('IRLS : normal stop, itr=%i last_eps=%4.2e\n'...

,itr,epsilon);

flag=0; % flag of success

end

end
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B.1.2 IRLS with partially known support

function [u,flag] = irls_pks(Phi,b,p,T0)

% Inputs:

% Phi: forward matrix from sources to data

% b: data vector

% p: power, no more than 1

% T0: partially known support

% Outputs:

% u: the reconstructed solution of Phi * u = b

% flag: 0 − success; 1 − max # itr reached

%

epsilon = 1; % initial epsilon

eps_min = 1e−8; % minimally allowed epsilon

max_itr = 1000; % max # of iterations allowed

%% preparation

PhiT = Phi';

n = size(Phi,2);

%% initialization

method = 3;

switch method

case 1

% method 1: MATLAB mldivide solution, basis solution

u = Phi\b;

case 2

% method 2: least squares solution

[u,flag_tmp] = lsqr(Phi,b); %#ok<NASGU>

case 3

u = ones(n,1);

%% main iterations

for itr = 1 : max_itr'

u_prev = u;

%% main update

if T0~=0;

Q = spdiags( (u.*u + epsilon^2).^( 1 − p / 2 ), 0, n, n);

for i=1:size(T0,2)

Q(T0(i),T0(i))=10^4;

end

else if T0==0
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Q = spdiags( (u.*u + epsilon^2).^( 1 − p / 2 ), 0, n, n);

end

end

method = 1;

switch method

case 1

% method 1: MATLAB mldivide

u = Q*PhiT*((Phi*Q*PhiT)\b);

case 2

% method 2: wpcg, a correct version of MATLAB's pcg ...

%by Zaiwen Wen

[y,flag_tmp] = wpcg(Phi*Q*PhiT,b,1e−8,100); %#ok<NASGU>

u=Q*PhiT*y;

end

%% update epsilon

if norm(u−u_prev)<sqrt(epsilon)/100
if epsilon < eps_min − 1e−15; break; end

epsilon = epsilon / 10;

end

end

%% post−process
if itr == max_itr

% fprintf('IRLS : max # itr %i reached\n',max_itr);

flag=1; % flag of max # itr reached

else

% fprintf('IRLS : normal stop, itr=%i last_eps=%4.2e\n'...

%,itr,epsilon);

flag=0; % flag of success

end

end

B.1.3 Script for Simulation Results (Sparse Case)

p=[0.01 0.1:0.1:1];

sVals=40; % Sparsity levels

mVals=60:20:200; %Measurement levels

dVals=512; %dimension

numTrials=20; %Number of trials per parameter set
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%partially known support percentage

% percentage=0:0.25:1;

Ti=sVals;

%Set Variable lengths and Data Collection

nump=length(p);

% per=length(percentage);

nums=length(sVals);

numm=length(mVals);

numd=length(dVals);

error = zeros(nump,numm, numd);

numCorrect_lp = zeros(numm,Ti,nump);

numCorrect_modcs= zeros(numm,Ti);

error_bp=zeros(numm,Ti,numTrials);

error_lp = zeros(numm,Ti,nump,numTrials);

error_lp_ppower = zeros(numm,Ti,nump,numTrials);

s = sVals;

d = dVals;

z = randperm(d);

x = zeros(d, 1);

x(z(1:sVals)) = (randn(sVals,1));

T=z(1:sVals);

Ti=length(T);

for im=1:numm

for Tindex=4:4:Ti

for pp=1:nump

for trial=1:numTrials

phi = randn(mVals(im),d)/sqrt(mVals(im));

y = phi*x;

if pp==1

xhat_modcs=Modifiedcs_static(phi,y,T(1:Tindex));

xhat_lp_pks=irls_pks(phi,y,p(pp),T(1:Tindex));

error_lp(im,Tindex,pp,trial) = norm(xhat_lp_pks−x)/norm(x);
error_lp_ppower(im,Tindex,pp,trial) = (norm(xhat_lp_pks−x))^p(pp);
error_bp(im,Tindex,trial) = norm(xhat_modcs−x)/norm(x);

if norm(xhat_lp_pks(1:dVals)−x) <= 10^(−3)
numCorrect_lp(im,Tindex,pp) = numCorrect_lp(im,Tindex,pp) + 1;

end
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if norm(xhat_modcs(1:dVals)−x) <= 10^(−3)
numCorrect_modcs(im,Tindex) = numCorrect_modcs(im,Tindex) + 1;

end

elseif pp~=1

xhat_lp_pks=irls_pks(phi,y,p(pp),T(1:Tindex));

error_lp_ppower(im,Tindex,pp,trial) = (norm(xhat_lp_pks−x))^p(pp);
error_lp(im,Tindex,pp,trial) = norm(xhat_lp_pks−x)/norm(x);

if norm(xhat_lp_pks(1:dVals)−x) <= 10^(−3)
numCorrect_lp(im,Tindex,pp) = numCorrect_lp(im,Tindex,pp) + 1;

end

end

fid=fopen('result.txt','wt');

fprintf(fid,'im %d\nTindex %d\npp %d\ntrial %d\n',im,Tindex,pp,trial);

fclose(fid);

end

end

end

end

B.1.4 Script for Simulation Results (Compressible case)

p=[0.01 0.1:0.1:0.9 0.95 1];

sVals=40; % Sparsity levels

mVals=60:10:200; %Measurement levels

dVals=512; %dimension

numTrials=50; %Number of trials per parameter set

%partially known support percentage

Ti=sVals;

%Set Variable lengths and Data Collection

nump=length(p);

% per=length(percentage);

nums=length(sVals);

numm=length(mVals);

numd=length(dVals);

error = zeros(nump,numm, numd);

numCorrect_lp = zeros(numm,Ti,nump);

numCorrect_modcs= zeros(numm,Ti);
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error_bp=zeros(numm,Ti,numTrials);

error_lp = zeros(numm,Ti,nump,numTrials);

error_lp_ppower = zeros(numm,Ti,nump,numTrials);

s = sVals;

d = dVals;

z = randperm(d);

x = zeros(d, 1);

x=(z.^−1.5)';

[xx, index]=sort(x,'descend');

T=[(index(1:40))]';

Ti=length(T);

for im=1:numm

for Tindex=4:4:Ti

for pp=1:nump

for trial=1:numTrials

phi = randn(mVals(im),d)/sqrt(mVals(im));

y = phi*x;

if pp==1

xhat_modcs=Modifiedcs_static(phi,y,T(1:Tindex));

xhat_lp_pks=irls_pks(phi,y,p(pp),T(1:Tindex));

error_lp(im,Tindex,pp,trial) = norm(xhat_lp_pks−x)/norm(x);
error_lp_ppower(im,Tindex,pp,trial) = (norm(xhat_lp_pks−x))^p(pp);
error_bp(im,Tindex,trial) = norm(xhat_modcs−x)/norm(x);

if norm(xhat_lp_pks(1:dVals)−x) <= 10^(−3)
numCorrect_lp(im,Tindex,pp) = numCorrect_lp(im,Tindex,pp) + 1;

end

if norm(xhat_modcs(1:dVals)−x) <= 10^(−3)
numCorrect_modcs(im,Tindex) = numCorrect_modcs(im,Tindex) + 1;

end

elseif pp~=1

xhat_lp_pks=irls_pks(phi,y,p(pp),T(1:Tindex));

error_lp_ppower(im,Tindex,pp,trial) = (norm(xhat_lp_pks−x))^p(pp);
error_lp(im,Tindex,pp,trial) = norm(xhat_lp_pks−x)/norm(x);
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if norm(xhat_lp_pks(1:dVals)−x) <= 10^(−3)
numCorrect_lp(im,Tindex,pp) = numCorrect_lp(im,Tindex,pp) + 1;

end

end

fid=fopen('result.txt','wt');

fprintf(fid,'im %d\nTindex %d\npp %d\ntrial %d\n',im,Tindex,pp,trial);

fclose(fid);

end

end

end

end
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APPENDIX C

CODES FOR SIMULATIONS IN CHAPTER 4

C.1 MATLAB CODES

C.1.1 Noisy IRLS

function [u,flag] = irls1d_mu(Phi,b,p,lambda)

% Inputs:

% Phi: forward matrix from sources to data

% b: data vector

% p: power, no more than 1

% Outputs:

% u: the reconstructed solution of Phi * u = b

% flag: 0 − success; 1 − max # itr reached

epsilon = 1; % initial epsilon

eps_min = 1e−8; % minimally allowed epsilon

max_itr = 1000; % max # of iterations allowed

%% preparation

PhiT = Phi.';

n = size(Phi,2);

%% initialization

method = 1;

switch method

case 1

% method 1: MATLAB mldivide solution, basis solution

u = Phi\b;

case 2

% method 2: least squares solution

[u,flag_tmp] = lsqr(Phi,b);

case 3

% method 3: u = ones(n,1);

u = ones(n,1);

end
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%% main iterations

for itr = 1 : max_itr'

u_prev = u;

%% main update

Q = spdiags( p*lambda*(u.*u + epsilon).^( p/2 −1 ), 0, n, n);

method = 1;

switch method

case 1

% method 1: MATLAB mldivide

% u = Q*PhiT*((Phi*Q*PhiT)\b);

u=(PhiT*Phi+Q)\(PhiT*b);

case 2

% method 2: wpcg, a correct version of MATLAB's pcg ...

%by Zaiwen Wen

[y,flag_tmp] = wpcg(Phi*Q*PhiT,b,1e−8,100);
u=Q*PhiT*y;

end

%% update epsilon

if norm(u−u_prev)<sqrt(epsilon)/100
if epsilon < eps_min − 1e−15;

break;

end

epsilon = epsilon / 10;

end

end

%% post−process
if itr == max_itr

% fprintf('IRLS : max # itr %i reached\n',max_itr);

flag=1; % flag of max # itr reached

else

% fprintf('IRLS : normal stop, itr=%i last_eps=%4.2e\n'...

%,itr,epsilon);

flag=0; % flag of success

end

end
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C.1.2 Script for varying sparsity level K

sVals=2:2:50; % Sparsity levels

mVals=[80 120 160 200]; %Measurement levels

n=512; %ambient dimension

numTrials=100; %Number of trials per parameter set

perturbation_epsA=[0 0.05 0.1];

p=[0.01 0.1 0.5 0.9 1];

pert=length(perturbation_epsA);

nums=length(sVals);

numm=length(mVals);

numd=length(n);

nump=length(p);

error_irls1d = zeros(pert,nums,numm,nump);

error_bp = zeros(pert,nums,numm);

out_irls1d_signal=zeros(n,pert,nums,numm,nump);

out_bp_signal=zeros(n,pert,nums,numm,nump);

signal=zeros(n,pert,nums,numm,nump);

for ipert=1:pert

for is=1:nums

for im=1:numm

s = sVals(is);

m = mVals(im);

for pi=1:nump

for trial=1:numTrials

A = randn(m,n)/sqrt(m);

F=randn(m,n);

spettr_F=sqrt(max(eig(F*F')));

spettr_A=sqrt(max(eig(A*A')));

F=F/spettr_F;

E=F*perturbation_epsA(ipert)*spettr_A;

phi=A+E;

z = randperm(n);

x = zeros(n, 1);

x(z(1:s)) =sign(randn(s,1));

y=A*x;

%x01 = phi'*y;

xhat_irls = irls1d(phi,y,p(pi));

error_irls1d(ipert,is,im,pi,trial) =...
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norm(xhat_irls−x)/norm(x);

if pi==1

opts = spgSetParms('verbosity',0);

xhat_bp = spg_bp(phi,y,opts);

error_bp(ipert,is,im,trial) = norm(xhat_bp−x)/norm(x);

end

fid=fopen('result.txt','wt');

fprintf(fid,'ipert %d\nis %d\nim %d\npi %d\ntrial %d\n'...

,ipert,is,im,pi,trial);

fclose(fid);

clc

end

end

end

end

end

C.1.3 Script for varying sparsity level εΦ,K,y

sVals=10:10:30; % Sparsity levels

mVals=128; %Measurement levels

n=512; %ambient dimension

numTrials=100; %Number of trials per parameter set

perturbation_epsA=0:0.02:0.2;

% perturbation_epsA=[0 0.05 0.1 0.2];

% p=[0.1 0.5 0.9 1];

p=[0.01 0.1:0.1:0.9 1];

pert=length(perturbation_epsA);

nums=length(sVals);

numm=length(mVals);

numd=length(n);

nump=length(p);

for ipert=1:pert

for is=1:nums

for im=1:numm

s = sVals(is);

m = mVals(im);
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for pi=1:nump

for trial=1:numTrials

A = randn(m,n)/sqrt(m);

F=randn(m,n);

spettr_F=sqrt(max(eig(F*F')));

spettr_A=sqrt(max(eig(A*A')));

F=F/spettr_F;

E=F*perturbation_epsA(ipert)*spettr_A;

phi=A+E;

z = randperm(n);

x = zeros(n, 1);

x(z(1:s)) =randn(s,1);

y=A*x;

%x01 = phi'*y;

xhat_irls = irls1d(phi,y,p(pi));

error_irls1d(ipert,is,im,pi,trial) =...

norm(xhat_irls−x)/norm(x);

if pi==1

opts = spgSetParms('verbosity',0);

xhat_bp = spg_bp(phi,y,opts);

error_bp(ipert,is,im,trial) = norm(xhat_bp−x)/norm(x);

end

fid=fopen('result.txt','wt');

fprintf(fid,'ipert %d\nis %d\nim %d\npi %d\ntrial %d\n'...

,ipert,is,im,pi,trial);

fclose(fid);

end

end

end

end

end

C.1.4 Script for varying measurement level under additive Gaus-

sian noise

sVals=40; % Sparsity levels

mVals=80:10:200; %Measurement levels

n=512; %ambient dimension

numTrials=100; %Number of trials per parameter set
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perturbation_epsA=0.05;

p=[0.1 0.5 1];

noise_sigma=[0.01 0.05];

lambda=1e−2;

pert=length(perturbation_epsA);

nums=length(sVals);

numm=length(mVals);

numd=length(n);

nump=length(p);

for ipert=1:pert

for isigma=1:length(noise_sigma)

for im=1:numm

s = sVals;

m = mVals(im);

for pi=1:nump

for trial=1:numTrials

A = randn(m,n)/sqrt(m);

F=randn(m,n);

spettr_F=sqrt(max(eig(F*F')));

spettr_A=sqrt(max(eig(A*A')));

F=F/spettr_F;

E=F*perturbation_epsA(ipert)*spettr_A;

phi=A+E;

e = noise_sigma(isigma)*randn(m,1);

z = randperm(n);

x = zeros(n, 1);

x(z(1:sVals)) =(randn(sVals,1));

y=A*x+e;

%x01 = phi'*y;

xhat_irls = irls1d_mu(phi,y,p(pi),lambda);

error_irls1d(ipert,isigma,im,pi,trial) = ...

norm(xhat_irls−x)/norm(x);

if pi==1

sigma=0.01;

opts = spgSetParms('verbosity',0);

xhat_bpdn = spg_bpdn(phi,y,sigma,opts);

error_bpdn(ipert,isigma,im,trial) =...

norm(xhat_bpdn−x)/norm(x);
end
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fid=fopen('result.txt','wt');

fprintf(fid,'ipert %d\nisigma %d\nim %d\npi %d\ntrial %d\n'...

,ipert,isigma,im,pi,trial);

fclose(fid);

clc

end

end

end

end

end
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