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ABSTRACT 

A NEW APPROACH FOR DETERMINING STATISTICAL DISTRIBUTION 

OF IMPULSE BREAKDOWN VOLTAGE UNDER EXTERNAL 

ELECTRICAL EFFECTS 

DEMİR, Mehmet 

M.Sc. in Electrical-Electronics Eng. 

Supervisor: Prof. Dr. Celal KORAŞLI 

September 2012, 70 pages 

This study presents a comprehensive approach to statistical characterization of 

impulse breakdown voltage under the influence of DC sweep voltage. Several 

goodness-of-fit procedures are applied to the up-and-down test results which are 

obtained experimentally with and without a sweep field in air-insulated rod-plane 

gap system in order to decide upon the the type of impulse breakdown voltage 

distribution. Three distributions; Normal, logistic and Gumbel distributions are 

compared by means of Kolmogorov-Smirnov (K-S) goodness-of-fit test. Logistic 

distribution fits better than other two distributions for all positive impulse breakdown 

voltage data in the existence of sweep voltages. Logistic distribution is also 

compared with three-parameter Weibull (3PW) distribution by using likelihood ratio 

(LR) test. Consequently, logistic distribution can be accepted as an alternative to 

normal and 3PW distributions.  

 

The statistical time-lag distribution of positive impulse breakdown voltage under 

various DC sweep voltages was also investigated using the ‘Laue’ plot technique. 

Time-lag distributions of the impulse breakdown voltage data generally found to 

exhibit no definitive statistical variation but it seems an exponential type distribution 

can be applied to charaterize the data. 

 

Keywords: Sweep voltage, swing-motion impulse generator, Kolmogorov-Smirnov 

test, likelihood ratio test, 50% impulse breakdown voltage, Monte-Carlo 

optimization, logistic distribution.  



 

 

ÖZET 

HARİCİ ELEKTRİKSEL ETKİ ALTINDA DARBE DELİNME 

GERİLİMİNİN İSTATİKSEL DAĞILIMINI BELİRLEMEK İÇİN YENİ BİR 

YAKLAŞIM 

DEMİR, Mehmet 

Yüksek Lisans Tezi, Elektrik-Elektronik Müh. Bölümü 

Tez Yöneticisi: Prof. Dr. Celal KORAŞLI 

Eylül 2012, 70 sayfa 

Bu çalışma DC süpürme gerilimi etkisi altındaki darbe delinme geriliminin istatiksel 

karakterizasyonu hakkında geniş kapsamlı yaklaşım sunmaktadır. Darbe delinme 

gerilim dağılımının tipine karar vermek için, birkaç uyum iyiliği testleri hava 

izolasyonlu çubuk-düzlem elektrot sisteminde DC süpürme gerilimli ve DC süpürme 

gerilimi olmadan deneysel olarak elde edilen up-and-down test sonuçlarına 

uygulanmıştır. Üç istatiksel dağılım; Normal, lojistik ve Gumbel dağılımları 

Kolmogorov-Smirnov (K-S) uyum iyiliği testi ile karşılaştırılmıştır. DC süpürme 

gerilimi varlığında bütün pozitif darbe delinme gerilim verilerine lojistik dağılım 

diğer iki dağılımdan daha iyi uymuştur. Ayrıca lojistik dağılım olasılık oran testi 

(OOT) kullanılarak üç parametreli Weibull (ÜPW) ile karşılaştırılmıştır. Bu testlerin 

sonucunda lojistik dağılımın normal ve ÜPW dağılımlarına alternatif olabileceği 

kabul edilmiştir.  

 

Çeşitli DC süpürme geriliminin etkisi altında elde edilen pozitif darbe delinme 

gerilim verilerinin istatiksel zaman gecikme dağılımı ‘Laue’ grafik tekniği ile 

incelenmiştir. Zaman gecikme dağılımlarının kesin bir istatiksel değişim 

göstermediği bulunmuştur ama zaman gecikme dağılımlarını karakterize etmek için 

eksponansiyel dağılım uygulanabileceği görülmektedir. 

 

Anahtar Kelimeler: Süpürme gerilimi, dönel hareket ateşlemeli darbe jenaratörü, 

Kolmogorov-Smirnov test, olasılık oran testi, 50% darbe delinme gerilimi, Monte-

Carlo optimizasyon, lojistik dağılım.  
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CHAPTER I 

 

INTRODUCTION 

 

1.1. Insulation Coordination and Impulse Voltages 

The term “insulation coordination” means that arrangement of insulation levels of 

power equipments against any insulation failure in the electric power system. 

Insulation coordination is important for keeping interrruptions minimum and allows 

continuous operation of electric power grid in the case of any insulation outages. 

 

In electric grids, nominal voltages of power equipments are determined optimally, 

and they may sometimes increase above their rated values. These overvoltages are 

called ‘’maximum system voltage’’. Maximum system voltages are allowed to exist 

in a very short duration. 

 

There are two types of impulse voltages; lightning and switching impulses. A 

lightning impulse is generated on power lines when a lightning strucks on or near 

transmission lines. Switching impulse voltage is usually formed due to switching of 

circuit breakers during power grid operation.  

 

To achieve an optimum and continuous operation of power grid, and to determine 

variation of insulation level is quite important. We can classify the insulation levels 

in two situations; below 300 kV and above 300 kV. If the voltage rating of the power 

equipment is less than 300 kV, insulation level is a statement of lightning impulse 

withstand voltage. If the voltage rating of the power equipment is greater than 300 

kV, insulation level is a statement of switching impulse withstand voltage [1]. 
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Lightning Impulse (LI) Voltage: 

As shown in Figure 1.1, the waveshape is known as, 1 2/ 1.2 / 50T T =  µs wave, 1T  is 

the virtual rising time and 2T  is the virtual time to half-value. 1T  is obtained  

multiplying T  by 1.67, where T  is the time interval  between the instants when the 

impulse has 30% and 90% of the peak value, these instants correspond to points A 

and B. 2T  is the time interval between the virtual origin ( 1O ) and the instant on the 

tail when the voltage has decreased to half of the peak value. Virtual origin ( 1O ) is 

the intersection point with the time axis of a straight line drawn through  points A 

and B  on the front of LI waveform, and virtual origin 1O  precedes by a 10.3*T  from 

the instant that corresponds to the point A. 

 

 

Figure 1.1 Full lightning impulse voltage without any oscillations or overshoots. 

 

In practice, LIs  have some overshoots and oscillations. It is very hard to produce LI 

that has no overshoot and oscillation in laboratory conditions. The value of the test 

voltage for a LI without any overshoot or oscillations is its peak value. Some LIs that 

have overshoots and oscillations are shown in Figure 1.2. To determine the peak 

value of LI including overshoots and oscillations is diffucult. When overshoots and 

oscillations occured, determination of peak value of LI depends on oscillation 

frequency and overshoot duration. If the oscillation frequency is less than 0.5 MHz 

or greater than 1 µs, the peak value is accepted as the maximum value of the 

waveform. If the oscillation frequency is greater than 0.5 MHz or less than 1 µs, the 

1 2/ 1.2 / 50T T sµ=
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peak value is determined from the maximum value of the mean curve. In Figures 1.2 

(a) and (b), the value of test voltage is calculated by a mean curve. In Figures 1.2 (c) 

and (d), the value of test voltage is determined by the peak value. In Figures 1.2 (e) 

,(f), (g) and (h), no guidance can be given to determine the value of test voltage. 

 

 

Figure 1.2 Examples of lightning impulse voltages with oscillations and overshoots. 
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A chopped lightning impulse is formed when any type of discharge causes a rapid 

collapse of the voltage. The discharge that causes collapse of voltage, may occur due 

to internal or external insulation failure of a test object. The time to chopping ( c
T ) is 

the time interval between the virtual origin ( 1O ) and the instant of chopping. A 

chopped lightning impulse waveform collapsed at the tail is shown in Figure 1.3. 

 

 

Figure 1.3 Lightning impulse voltage chopped on the tail. 

 

On the tail part of the chopped waveform, the intersection of 10%-70% line (line 

CD) with the waveform and time axis determines the voltage at the instant of 

chopping and therefore the chopping time c
T  [2]. 

 

The voltage/time curve shown in Figure 1.4 indicates different chopping phases on 

the LI waveforms; on the front , at the peak or on the tail. When the peak value of 

applied LI is decreased , the chopping time of LI increases. The voltage/time curve 

which passes through the voltage points where choppings occurred determines basic 

insulation level to which the power equipment should withstand.[3].  
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Figure 1.4 Voltage-time curve for impulses of constant prospective shape. 

 

Switching Impulse (SI) Voltage: 

The standard switching impulse voltage known as 2/ 250 / 2500pT T =  µs where 
pT  

is the rising time to peak and 2T  is the decaying time to half-value. The waveform of 

SI is shown in Figure 1.5. 1T  is the time interval between the instants when the 

voltage has values 90% of its peak. 

 

 

Figure 1.5 Full switching impulse. 

Peak values of LI and SI voltages are critical in determining withstand voltage in 

relation to basic insulation level of a power transmission and distribution networks 

[2]. 

2

250

2500

p
T s

T s

µ

µ

=

=



6 

1.2 Breakdown Characteristics of Impulse Voltage Test  

The results taken from many laboratory tests with impulse voltages show that 

breakdown voltage has statistical characteristic: The probability of breakdown 

changes according to peak value of applied impulse voltage and depends on many 

known and unknown physical factors. 

 

The probability of breakdown under impulsive fields is of great importance. There 

are two basic processes of concern in occurrence of breakdown. First one is the 

appearance of avalanche-initiating electrons and the second one is the temporal 

growth of current after all conditions that cause breakdown are satisfied. 

 

Natural sources may not be adequate to produce an initiating electron when the 

impulse is applied because of the short duration of applied impulse waveform 

(approximately microseconds level). It is important to note that finding an initiatory 

electron in the gap is statistically distributed. The time s
t  which elapses between the 

application of a impulse voltage to the spark gap and the appearance of initiatory 

electron is called the statistical time lag. After the appearance of free electron, the 

time 
ft  required for the ionization processes to produce a current which has a 

sufficient magnitude is formative time lag. 

 

In the statistical time lag, two probabilities play a key role, 1P  is the probability of an 

appearance of an electron in the gap which can lead to breakdown. Since it is not 

known that whether such an electron can cause to a breakdown or not, causing to 

breakdown of such an electron is also probabilistic and its value is 2P . Basically, 

probability of breakdown ( P ) is equal to 1 2PP , and the average  statistical time lag is 

1 21/ PPβ , where β  represents effects of peripheral factors like the level of 

surrounding irradiation, and the surface condition of cathode material. 

It is generally assumed that breakdown probability curve has a good resemblance to 

the cumulative normal distribution function which is shown in Fig.1.6, we can divide 

breakdown probability curve into three different zones; Zone1, Zone2, and Zone3. 

Zone1 shows the probabilities of voltages which are smaller than the highest 

withstand voltage ( A
V ). Zone2 shows the probabilities of voltages which are between 
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the highest withstand voltage ( A
V ) and the lowest breakdown voltage ( B

V ). 50% 

breakdown voltage lies in Zone2. Zone 3 shows the probabilities of voltages which 

are greater than the lowest breakdown voltage ( B
V ). The probability values are close 

to 0 in Zone1 and the probability values in Zone3 are near to 1. 

 

Even if we know that breakdown probability curve ( )P P V=  obviously exists, it is 

not possible to determine it exactly by means of measurements. This is caused by the 

fact that the curve has to be found by using  statistical estimation techniques, 

deviations in the results therefore cannot be avoided. The size of  these deviations 

depends on the number of applied impulses, provided all other influencing factors are 

kept constant. The breakdown probability curve is fully determined by two 

parameters 50V  and σ . In this curve, 0%  probability is at −∞ , and 100% probability 

is at +∞ . That’s why the breakdown probability curve does not exist in the finite 

range. The 50% breakdown voltage is the characteristic value for EHV equipment, 

because this value is relatively simple to determine with sufficient accuracy and 

should be provieded by manufacturer for the usage of the installer. There are several 

methods of measurement suitable for a determination of the 50% value. Three of 

these methods are described in [2]. The 50% breakdown  voltage cannot be used 

directly in insulation coordination, where the voltages near to 0% and 100% 

probability are the voltages of real importance. 

 

 

Figure 1.6 Breakdown probability curve. 

� = �(�) 

���% 
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There are three important parameters on the breakdown probability curve which are 

used to determine the level of insulation coordination (Figure 1.6). They are: 

 

1) The highest withstand voltage A
V . 

2) The 50% breakdown voltage that corresponds to a probability of 0.5 on 

breakdown probability curve. 

3) The lowest breakdown voltage B
V .  

 

As shown in Figure 1.7, statistical impulse withstand voltage probability is 

characterized by two distinct curves: breakdown probability and withstand 

probability curves. Statistical impulse withstand voltage of any insulation system is 

the peak value of a SI or LI test voltage at which insulation can withstand. To 

designate the withstand voltage of power equipments in insulation coordination, a 

voltage, which corresponds to a 10% probability on the breakdown probability graph, 

is selected. 10% impulse voltage corresponds to a 90% probability voltage on the 

withstand probability plot. 

 

Figure 1.7 Breakdown and withstand probability curves 

 

50 % impulse breakdown voltage and standard deviation σ  value plays a key role in 

determining probability function of breakdown [4,5]. 

( )P V

50/V V
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In order to avoid insulation failure, the insulation level of different types of 

equipment connected to the system has to be higher than the magnitude of highest 

transient overvoltages that appear on the system. The magnitude of transient 

overvoltages are usually limited to a protective level by protective devices. Thus the 

insulation level has to be above the protective level by a safe margin (Figure 1.8). 

Normally, the impulse insulation level is established at a value 15-25% above the 

protective level [1]. 

 

 

Figure 1.8 An example of a typical insulation co-ordination system 

 

1.3 Method of Determining 50% Breakdown Voltage 

To determine 50% breakdown voltage ( 50V ) and standard deviation (σ ), some 

breakdown tests in uniform, quasi-uniform and non-uniform field gaps are 

performed. These tests can be divided into three categories. 

1) Multiple-level tests 

2) Successive discharge tests 

3) Up-and-down tests  

 

1.3.1 Multiple-Level Tests 

In multiple-level tests, for every voltage levels selected as ( 1,2,..., )
i

V i n=  and i
m  

substantially equal voltage stresses (e.g. LIs ) are applied at each voltage level i
V . 

This method is generally applied at impulse voltage tests but some tests with 

alternating and direct voltage tests also fall into this class. 
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The tests result in i
d  number of breakdown voltages for i

m  numbers of voltages 

applied across the test gap at each voltage level i
V  [2]. 

 

1.3.2 Successive Discharge Tests 

In successive discharge tests, the procedure leading to determine the breakdown 

voltage of a test object follows application of n  number of successive voltages to the 

test gap. The test voltage may be increased continously until a breakdown occurs, or 

the test voltage may be held constant at some level until a breakdown is observed. 

The results are the n  values of voltage i
V  (or time i

t ) at which the breakdown 

occured. 

 

Such tests are made with direct, alternating, or impulse voltages. Tests where 

disruptive discharges occur on the front of the impulse fall into this class [2]. 

 

1.3.3 Up-and-Down Tests 

Up-and-down method is the test procedure used to estimate 50% probability 

breakdown voltage. This recognition of 50% probability breakdown voltage is the 

result of approximation to assumed normal probability distribution of the test results. 

For an initial chosen voltage value k
V  which is tought to be approximately equal to 

the 50% breakdown voltage level is applied across the test gap. An impulse is 

applied at the level k
V . If this does not cause a breakdown, the next impulse should 

have the level k
V V+ ∆  where a voltage interval V∆ , approximately 3% of k

V , is 

chosen. If a breakdown occurs at the level k
V , the next impulse should have the level 

k
V V− ∆ . 

 

This procedure is continued, the level of each impulse being thus determined by the 

result of the previous one, until a sufficient number of observations has been 

recorded. The number of impulses i
n  applied at each level i

V  is then counted and the 

50% disruptive discharge voltage is given by: 

 



11 

50%
i i

i

nV
V

n
=
∑
∑

                                                            (1.1)

 

 

i
n  should be greater than 20 for higher accuracies. The higher number of voltages 

are applied, the more accurate 50% impulse breakdown voltage is obtained [6]. 

 

1.4 Unaccuracy in Up-and-Down Test 

In order to design insulation systems, it is essential to assess the breakdown 

probability of the various air gaps and recovery-type insulation systems. Up-and-

Down method is used to estimate 50% probability breakdown voltage and standard 

deviation σ  (scaling parameter). But there are doubts whether these estimates are 

reliable or not [5]. 

 

Estimation of breakdown voltages corresponding to low probability fractiles which 

are important for determining basic insulation level of power equipment that requires 

precise knowledge of 50V  and σ . In fact, it is also important to know that a certain 

error in σ  may increase error in the estimation of low probability fractiles [5]. 

 

The classical up-and-down method of Dixon and Mood was based on a maximum 

likelihood estimation of 50V  and σ  for a normal distribution. However, due to the 

lack of modern computing facilities at that time, Dixon and Mood developed a 

simple approximation to the maximum likelihood estimator [5]. In order to obtain the 

exact values of 50V  ( µ ) and σ , maximum likelihood method is widely used. 

 

In classical up-and-down method, LI or SI voltages are applied specified number of 

times. It is assumed that breakdown probability distribution is normally distributed in 

classical Up-and-Down method. Up-and-own method is particularly effective for 

estimating the mean voltage value. It is not a good method for estimating small or 

large probability fractiles unless normality of the distribution is assured. The interval 

between testing levels should be approximately equal to the standard deviation. In 

any experiment the total number of successes will be approximately equal to the total 

number of failures. We shall let N denote the smaller total and let 0 1 2, , ,...
k

n n n n  
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denote the frequencies at each voltage level for this less frequent event where 0n  

corresponds to the lowest level and k
n  the highest level on which the event occurs. 

We have then in N=∑  [7].  

 

The estimates of µ  and σ  are based on the first two moments of the voltage values 

using the frequencies i
n . But since the voltage values are equally spaced, the 

moments are more easily computed in terms of the two sums  

 

iA in=∑                                                                         (1.2) 

2
iB i n=∑                                                                        (1.3) 

 

We estimate the value of 50%V  and σ  using the following two equations. 

 

50%

1
' ( )

2

A
V v d

N
= + ±                                                              (1.4) 

 

Here the plus sign is taken when the nonbreakdown number is used and the minus 

sign in the opposite case; 'v  is the voltage corresponding to 0i =  [7,8]. This 

equation (1.4) gives the same result with the previous equation (1.1) that is used for 

estimating 50%V . 

 

2

2
1.62 ( 0.029)

NB A
s d

N

−
= +                                                    (1.5) 

 

This equation is used for estimating standard deviation (σ ) value. d  is the voltage 

interval between two successive voltage applications in up-and-down method [7,8].  
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CHAPTER II 

 

STATISTICAL INVESTIGATION OF BREAKDOWN PHENOMENA 

 

2.1 Introduction 

There are two conditions which must be simultaneously satisfied in order that an 

impulse discharge can occur in air. First, there should be at least one suitably located 

free electron in air, and secondly, the electric field should be of sufficiently high 

within the critical volume (see definition of critical volume) of the stressed electrode 

to ensure that this electron produces a sequence of avalanches which lead to 

breakdown. In the absence of an initiatory electron in this volume, no single 

avalanche can lead to breakdown even if the electric field exceeds the breakdown 

field strength of the gas medium [9]. 

 

Free electrons are produced naturally in the air as a result of external radiation due to 

cosmic rays and the penetration of ultraviolet radiation from the sun or the presence 

of local radioactive materials. Once an electron is liberated, it is attached to an 

electronegative oxygen molecule rapidly and removed effectively. Indeed, the rate of 

production and concentration of free electrons are quite random. When an 

overvoltage impulse is applied to a spark gap in air, there is only a small probability 

of there being a liberated electron between two electrodes. Some time elapses are 

needed before breakdown to occur [9]. 

 

Definition of critical volume: At the tip and around any stressed electrode in gases, 

a volume is determined between two boundaries: 0α =  and ln
cr

dr Nα =∫  which is 

known as ‘critical volume’ where α  is the effective ionization constant and cr
N  is 

the critical electron concentration in an avalanche giving rise to an initiation of a 

streamer. The limits of integration is determined by the geometric parameters of the 

gap related to generation of cr
N . Ionization occurs in any gas effectively when an 
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initiatory electron appears within the critical volume closer to the stressed electrode 

surface (Figure 2.1). 

ln
cr

dr Nα =∫

0α =

1V

2V

3V

1 2 3V V V< <

 

Figure 2.1 (a) Definition of critical volume and (b) its depence on applied gap 

voltage. 

 

Since the distributions of free electrons close to the stressed electrode is statistical in 

nature, their distribution should be known before any laboratory and field tests 

performed on high voltage power equipment. Since the concentration of free 

electrons and their probability of occurrence in the critical volume is undeterministic, 

there is no definitive method that is applied for determining breakdown voltage 

under LI&SI stresses. If the applied voltage on test gap is increased, the critical 

volume becomes larger as shown in Figure 2.1(b). 

 

2.2 Effects of Sweep Voltages to Statistical Time-Lag and Breakdown 

It is thought that the breakdown probability and statistical time-lag in air and other 

electronegative gases can be correlated directly with the density of the small negative 
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ions. There should exist a correlation between the statistical time-lag distribution and 

the initial spatial ion densities [10].  

This correlation can be presented with the relationship between the time-lag 

distribution and the rate of production of initiating electrons, , is given by the 

Laue expression [10], 

 

                                      (2.1) 

 

where  is the probability that an electron will cause breakdown and  is the 

probability that breakdown has not occurred in the time interval . It is useful to 

represent the experimental time-lag results in the form of a ‘Laue plot’ [10].  

 

                                         (2.2)  

 

then the slope of the Laue plot is proportional to the rate of production of initiating 

electrons [10]. 

 

It is assumed that very small electric sweep fields across the test gap can have a 

drastic effect in reducing the small negative ion population [10]. These sweep fields 

may arise, for example, from leakage across the capacitors of the impulse generator, 

the remanence magnetic flux in the core of transformers and dielectric polarization 

within the insulation systems generated across the terminals of power equipment 

undergoing tests, or from a difference in contact potential between the test 

electrodes. 

 

It is assumed that applied sweep voltage also affects the breakdown strength of air 

and electronegative gases. It is thought that sweep fields are adequate to cause the 

ions in the region of the tip of the rod electrode to be swept either towards or away 

from the rod, depending on the polarity [11]. Sweep voltages should reduce negative 

ion density according to these stated theories. To see the effect of sweep field on the 

breakdown strength, test gap should be isolated from the main impulse generator 

( )k t

0

( ) exp( ( ) )
t

P t k t dtβ= −∫

β ( )P t

0 t−

0

ln ( ) ( )
t

P t k t dtβ= −∫
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with a small air gap, and negative or positive sweep voltages should be applied to the 

test gap via a high ohmic resistance 

 

The slopes of the Laue plots should be proporitonal to the rate of production of free 

electrons which in turn will be proportinal to negative ion density in the region of the 

electrode tip.  

 

Negative ion density changes according to polarity of the applied impulse voltage 

and the polarity of sweep voltages [10]. When sweep voltage has an opposite polarity 

to applied impulse voltage, then the rate of production of free electron may be 

expressed as  and Laue plot function becomes . 

 

When sweep voltage has the same polarity with the applied impulse voltage, then 

rate of production of free electron and Laue plot function becomes  and 

, respectively. 

 

The effect of sweep voltage to ion density can be considered from following 

expression,  

 

                         (2.3) 

 

where  is the negative ion density,  is radius of the tip of the electrode,  is the 

mobility of negative ions,  is the sweep voltage,  is the rate of creation of 

negative ions in per unit volume and approximately 10  [11]. 

 

2.3 Determining the distribution function of impulse breakdown voltage 

The influence of sweep voltage on impulse breakdown voltage distribution has not 

been investigated so far. The aim of this work is to determine the probability 

distribution of impulse breakdown voltage under the effect of positive and negative 

DC sweep voltage. The selected distribution is very important in designing electrical 

insulation of high-voltage power equipment.  

 

1( )k t A Bt= + 2
1ln ( ) / 2P t A t Bt= +

2( )k t A Bt= −

2
2ln ( ) / 2P t A t Bt= −

5/ 2 5/ 2 1/ 2( ) 4 ( ) / (5 )o o o or N r r V rρ µ= −

ρ o
r

o
µ

o
V N

3/ions cm
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To estimate the impulse breakdown voltage for electrical insulation which has a self-

restoring property such as air,vacuum or SF6 gas, the up-and-down method by Dixon 

and Mood [7] is generally used, where the underlying distribution is assumed to be 

the normal distribution [12]. This method is adopted in electrical insulation test 

standards such as IEC 60060-2 and IEEE Std 4-1995 where the impulse breakdown 

voltage is thought to follow the normal distribution [12]. In non-self-restoring 

electrical insulation systems, the up-and-down method is not used because electrical 

insulation is not usable after it is broken [13]. Bakken assumed that the lightning and 

switching impulse voltages are characterized by the normal distribution [4]. Hirose 

proposed new step-up test method for normal, Weibull and Gumbel distributions in 

the electrical insulation which does not have a self-restoring [12-14]. Yildirim and 

Korasli have shown that the three-parameter Weibull (3PW) distribution is found to 

be the best-suited distribution among the other exponential distributions for 

compressed-gas insulated systems [15]. Korasli have also shown that the statistical 

distribution of first ac breakdown field data is to be represented by the 3PW 

distribution [16]. It is also revealed that the impulse breakdown probability 

distribution of vacuum interrupters follow Weibull distribution when the breakdown 

voltage is saturated within the investigated contact gaps 10 to 50 mm [17]. Wibholm 

and Thyregod assessed four different distribution functions for air insulated systems: 

Normal, logistic, 3PW and Gumbel distributions [18]. 

 

In this work, we compare four distribution functions which are commonly used to 

represent the impulse breakdown voltage of self-restoring insulation systems: 

Normal, logistic, 3PW, Gumbel distributions. The cumulative distribution function 

(cdf) of four distributions under investigation are given by 

 

Normal Distribution: The cdf of normal distribution is denoted by 

 

2

2

1 ( )
( ) exp[ ] 

22

v
t

P v dt
µ

σσ π −∞

− −
= ∫                                (2.4) 

 

where µ  is the mean value and σ  is the standard deviation. 
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Logistic Distribution: The cdf of logistic distribution is given by 

 

1
( )

1 exp[ ( ) / ]
P v

v sµ
=

+ − −
                                         (2.5) 

 

where µ  is the mean value like in normal distribution and s  is the scale parameter. 

 

Three-Parameter Weibull Distribution: The cdf of 3PW distribution has the form 

 

( ) 1 exp
v

P v

β
γ

α

 − 
= − −  

   
                                        (2.6) 

 

where α , β ,γ  are the scale, shape and location (threshold) parameters, respectively 

and intervals for α , β ,γ  are given by 

10 vγ≤ ≤                                                  (2.7) 

, 0α β >                                                   (2.8) 

where 1v  is the lowest sample in the ordered breakdown voltage data. 

 

Gumbel Distribution: The cdf of Gumbel distribution is given by 

 

( ) 1 exp exp
v

P v
β

α

 −  
= − −   

  
                                    (2.9) 

 

where α , β  are scale and location parameters, respectively. 

 

2.4 Maximum Likelihood Estimation (MLE) 

For the selection of best-fitted distribution for impulse breakdown voltage data which 

is obtained from up-and-down test under DC sweep voltage, maximum likelihood 

estimation (MLE) method is used to find the parameters of four different 

distributions. The MLE method basically depends on the solution of the likelihood 

function which is defined as the product of probability density functions of selected 
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distributions and the parameter estimates that maximize the likelihood function are 

obtained by numerical methods. 

 

Estimation of parameters of selected distributions has a great importance for the high 

voltage design engineer. Precise knowledge of parameters of distributions is required 

to make the prediction of fractiles corresponding to extremely low probabilities, 

which are of particular importance for the insulation coordination. A certain error in 

the estimation of distribution parameters may increase the error in finding the low 

probability fractiles such as 5% or 10% [18]. For this reason, MLE method is used to 

get exact parameter values for the selected distributions. 

 

2.4.1 Maximum Likelihood Estimation of Normal Distribution 

The probability density function (pdf) of normal distribution is given by 

2

2

( )

2
1

( )
2

v

p v e

µ

σ

σ π

−
−

=                                             (2.10) 

The likelihood function L  corresponding to n  breakdowns occurring at each voltage 

level 
i

v  is denoted by 

2

2

( )

2
1 2

1

1
( , ,..., | , )

2

ivn

n

i

L v v v e

µ

σµ σ
σ π

−
−

=

 
=  

  
∏                         (2.11) 

Since 
i

v  and size n  are known, L  is a function of µ  and σ  only. For complete 

impulse breakdown voltage samples, natural logarithm of the likelihood function 

2

1

1
ln ln(2 ) ln( )

2 2

n
i

i

vn
L n

µ
π σ

σ=

− 
= − − −  

 
∑                        (2.12) 

yield the log-likelihood (LL) functions 

( )2
1

ln 1
0

n

i

i

L
v µ

µ σ =

∂
= − =

∂
∑                                  (2.13) 

( )
2

3
1

ln 1
0

n

i

i

L n
v µ

σ σ σ =

∂
= − + − =

∂
∑                            (2.14) 
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2.4.2 Maximum Likelihood Estimation of Logistic Distribution 

The pdf of logistic distribution is given by 

( )/

( )/ 2
( )

(1 )

v s

v s

e
p v

s e

µ

µ

− −

− −
=

+
                                     (2.15) 

Likelihood function for logistic distribution is  

( )/

1 2 ( )/ 2
1

( , ,..., | , )  
( 1 )

i

i

v sn

n v s

i

e
L v v v s

s e

µ

µ
µ

− −

− −
=

 
=  

+ 
∏                     (2.16) 

where 1 2, ,...,
n

v v v  are the impulse breakdown voltages. The logarithm of the 

likelihood function is defined by 

( )( )/

1 1 1

ln ln( ) 2 ln 1 i

n n n
v si

i i i

v
L s e

s

µµ − −

= = =

− 
= − − − + 

 
∑ ∑ ∑              (2.17) 

To find the parameters that maximize the LL function, the following MLE equations 

need to be solved simultaneously.  

( )/

( )/
1

1
ln

2  0
1

i

i

v s
n

v s
i

e
L n

s e

µ

µ
σ

µ

− −

− −
=

 
 ∂

= − = 
∂ + 

 

∑                          (2.18) 

( )/

2

( )/2
1 1

( )
( )ln

2 0
1

i

i

v si
n n

i

v s
i i

v
e

vL n s

s s s e

µ

µ

µ
µ

− −

− −
= =

− 
 −∂

= − + − = 
∂ + 

 

∑ ∑          (2.19) 

 

2.4.3 Maximum Likelihood Estimation of Three-Parameter Weibull 

Distribution 

The pdf of 3PW distribution is defined by 

1

( ) exp
v v

p v

β β
β γ γ

α α α

−  − −   
= −    

     
                         (2.20) 

The likelihood function is given by 
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1

1 2
1

( , ,..., | , , ) exp
n

i i

n

i

v v
L v v v

β β
γ γβ

α β γ
α α α

−

=

  − −   
= −     

       
∏         (2.21) 

1 2, ,...,
n

v v v  are the lightning impulse breakdown voltages. The logarithm of 

likelihood function is denoted by 

( ) ( ) ( )
1 1

1
ln ln 1 ln

n n

i i

i i

L n v v
ββ

β γ γ
α α= =

 
= + − − − − 

 
∑ ∑              (2.22) 

LL equations are given by 

( )2
1

ln 1
0

n

i

i

L n
v

β
γ

α α α =

∂
= − + − =

∂
∑                             (2.23) 

( ) ( ) ( )
1 1

ln 1
ln  ln 0

n n

i i i

i i

L n
v v v

β
γ γ γ

β β α= =

∂  = + − − − − =
 ∂

∑ ∑          (2.24) 

( ) ( ) ( )
1 1

  1 1

ln
ln 1 0

 

n n

i i

i i

L
v v

ββ
γ β γ

γ α

− −

= =

∂
= − − − − =

∂
∑ ∑             (2.25) 

 

2.4.4 Maximum Likelihood Estimation of Gumbel Distribution 

The pdf of Gumbel distribution has the form 

1
( ) exp exp exp

v v
p v

β β

α α α

−  −      
= −      
      

                      (2.26) 

Likelihood function is given by 

1 2
1

1
( , ,..., | , ) exp exp exp

n

i i

n

i

v v
L v v v

β β
α β

α α α=

 −  −     
= −       

       
∏         (2.27) 

where 1 2, ,...,
n

v v v  are the impulse breakdown voltages obtained from up-and-down 

test. The logarithm of likelihood function is denoted by 

1 1

1
ln ln exp

n n
i i

i i

v v
L n

β β

α α α= =

− −    
= + −     

     
∑ ∑                     (2.28) 

The first derivatives of LL function w.r.to distribution parameters α  and β  yield the 

following two equations  
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2
1 1

ln
exp 0

n n
i i i

i i

v v vL
n

β β β
α

α α α α= =

− − −∂      
= − + =     

∂      
∑ ∑          (2.29) 

1

ln 1
exp 0

n
i

i

vL n β

β α α α=

−∂  
= − + = 

∂  
∑                         (2.30) 

There is no explicit solution of LL functions, so they need to be solved numerically. 

Maximum likelihood estimates of four distributions are calculated by Newton-

Raphson method, and all parameters of four distributions are considered to be 

unknown. 

 

2.5 Goodness-of-Fit Procedure 

Kolmogorov-Smirnov (K-S) goodness-of-fit and likelihood ratio (LR) tests are 

applied to decide the best-suited distribution for the present up-and-down test data 

which are obtained under the effect of DC sweep voltage. K-S test is applied to 

compare normal, logistic and Gumbel distributions which are of two-parameter type, 

and logistic and 3PW distributions that have different number of parameters are 

compared by LR test. LR test is not used to compare two-parameter type 

distributions because application of LR test is possible when considered distributions 

have different number of parameters. 

 

2.5.1 Kolmogorov-Smirnov Goodness-of-Fit Test 

Analyzing the works of the researchers in the literature, four different types of 

distributions are considered to decide on the best-fitted distribution for the present 

up-and-down test data. Among four distributions, normal, logistic and Gumbel 

distributions which have two parameters are compared by means of Kolmogorov-

Smirnov (K-S) goodness-of-fit test. In order to assess the goodness-of-fit of up-and-

down test data by K-S test, the hypothesised distribution should be continuous, and 

this condition of K-S test is satisfied to compare three distributions, all investigated 

distributions are continuous type distributions.  

 

The K-S test is a one-sample test designed to assess the goodness-of-fit of a data 

sample to a continuous distribution ( )
v

F v  [19]. 
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Let ( )
n

S v  be the observed empirical cumulative distribution of random impulse 

voltages, 1 2, ,...,
n

v v v . The up-and-down test data is sorted in increasing order and the 

values of ( )
n

S v  are calculated by adding successive frequencies of occurrence, /
i

k n  

for each distinct 
i

v  [19]. It is expected to obtain small deviations of ( )
n

S v  from 

( )
v

F v . The K-S test uses the largest of these deviations as a goodness-of-fit measure 

[18].  

 

max ( ) ( )
n v n

D F v S v= − ,    for each distinct 
i

v               (2.31) 

 

Maximum of these deviations is used as a K-S test value. 

 

2.5.2 Likelihood Ratio Test 

Likelihood ratio test provides to compare the goodness-of-fit of two distribution 

models. LR test benefits from LL values of distributions. For essentially large sample 

size, LR test statistic is 2
kχ - distributed where k  is the degrees of freedom. The LR 

test statistic is given by 

H0: Data come from a logistic distribution model 

H1: Data come from a 3PW distribution model 

                                                   
3

   2  ln    L

PW

L
R

L

 
= − ∗  

 
 

3  2  ln   2  ln
L PW

L L= − ∗ + ∗                     (2.32) 

where ln
L

L  and 3ln
PW

L  are LL values of logistic and 3PW distributions, 

respectively. 

 

If R  is greater than 2
, 0.05k

χ , then H0 is rejected and H1 is accepted. Otherwise, H1 is 

rejected and H0 is accepted. All data is considered at 5% significance level for this 

work. 

 

( 3 ) ( )k  parameter number of  PW distribution   parameter number of  logistic distribution= −

 (2.33) 
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To test easily whether the data comes from logistic or 3PW distribution models, p  

(probability value) is given by 

( )21 ,p R kχ= −                                            (2.34) 

where R  is the value of LR test. 

2.5.3 Quantile-Quantile Plots 

Quantile-Quantile plot is a graphical technique to check whether or not the up-and-

down test data comes from selected distribution model. In this work, theoretical and 

actual impulse breakdown voltage data are compared where one axis shows actual 

impulse breakdown voltage data and the other axis denotes theoretical impulse 

breakdown voltage data. In order to make use of Q-Q plot, empirical cumulative 

distribution probabilities for each distinct voltage value are used. Theoretical 

voltages are produced by inverse distribution function 1( )F p−  where p values are 

taken from empirical distribution probabilities. If the actual and theoretical data 

being compared is similar, the points in Q-Q plot will approximately follow the line 

y=x.  

 



25 

CHAPTER III 

 

EXPERIMENTAL SETUP 

 

3.1 Two-Stage Swing-Motion Impulse Generator 

In this work, we investigated the standard lightning impulse voltage breakdown 

characteristics of air-insulated rod-plane gap system under the influence of positive 

and negative DC sweep voltages. All data was acquired by up-and-down method 

which was proposed by Dixon and Mood [7]. As shown in Figure 3.1 the impulse 

generator which was used in the experiments has two stage and is arranged to fire 

with a specially designed swing-motion stage-gap system. The impulse generator is 

of two-stage Marx type and each stage voltage can reach to 120 kV. DC stage 

voltage can be adjusted to desired voltage level  manually before to trigger the 

system and is measured by a digital voltmeter with the aid of a 1/2000 resistive 

voltage divider. Each stage is is equipped with a 0.26 µF polystyrene capacitor, and 

hence the impulse generator can deliver maximum of 1.872 kJ (Figure 3.1). With the 

wave front and tail resistance of 540 Ω and 2.5 kΩ the generator produces the 

standart 1.2/50 µs lighting waveform (Figure 3.2). The impulse generator used in the 

present work has one distinct faeture is that the column of two spheres make a free 

swing-motion to trigger the impulse generator for any impulse voltage level. The 

impulse waveshape is recorded by the digital storage oscilloscope by means of a 

capacitive voltage divider (voltage ratio a=1/3500). The digital oscilloscope is also 

connected to a PC and any parameter required in the experiment can be measured by 

the software of the oscilloscope. 

 

3.2 Experimental Setup of External DC Sweep Voltage 

As explained in Section 2.2, the density of electronegative ions in the region close to 

the rod electrode of a rod-plane gap system is affected by any externally generated 

voltage (sweep voltage). There are two sources of the sweep voltages: One is 

resulted from the test objects and the other is the impulse generator itself.
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While testing any power equipment, say a power transformer, the sweep voltage is 

generated owing to remanence magnetization in the ferromagnetic material of 

transformer core and dielectric polarization within insulation materials. 

 

Sweep voltages are also produced by leakage currents from stage capacitors of the 

impulse generator. 

 

All these external effects cause sweep voltages to appear across terminals of an 

unenergized power equipment during field tests prior to trigerring the generator [10].  

 

1R

2R

loadR

 

Figure 3.1 Two-stage swing-motion impulse generator. 

 

Sweep voltage was found to affect the insulation strength and statistical time-lag of 

gas-insulated systems by Somerville and Tedford [10,11], hence, leads to variation of 

impulse breakdown voltage performance of power equipment undergoing tests. In 

order to consider the influence of sweep voltage on the impulse breakdown voltage 

and on the type of distribution functions, a DC voltage source was connected to the 

test gap via a small sphere-to-sphere gap (Figure 3.3) to isolate the generator from 

the test gap. The isolator spheres are 2-cm in diameter and was located 1 m away 
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from the impulse generator. The isolation of the DC source from the impulse 

generator is done by a 50 MΩ resistance. 

 

 

Figure 3. 2 Impulse generator used in the experiments and rod-plane test gap. 

 

During the tests, a rod-plane test gap was used. The height of test gap is 84 cm from 

the ground level. The rod is 2.5-cm in diameter. The radius of the rod tip is 1 cm and 

the diameter of the plane is 31.5 cm. The rod-plane test gap can be adjusted manually 

up to desired length through a gap space adjuster. The rod-plane test gap was set to 

3-cm during the tests. 
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Figure 3. 3 Lightning impulse voltage waveshape obtained from swing-motion 

impulse generator. 

 

A positive polarity lightning impulse voltage (1.2/50 µs) was applied to the test gap 

throughout the tests. The tests were carried out by up-and-down method [17] and the 

incremental voltage V∆  was selected as ~1 kV. The occurrence of breakdown was 

observed from records of the digital storage oscilloscope. The time-lags and peak 

values were measured from the digital records of oscilloscope via a capacitive 

voltage divider (1/3500). The tests were performed without any interruption to avoid 

undesirable environmental conditions on the test results.  

 

Figure 3. 4 Experimental setup and sweep voltage deterring sphere-to-sphere gap. 
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CHAPTER IV 

 

RESULTS AND DISCUSSIONS 

 

4.1 Up-and-Down Breakdown Test Data  

Up-and-down test data which was obtained under positive and negative sweep 

voltages are illustrated in Figures 4.1 and 4.2. Number of voltages applied for any set 

of up-and-down experiment conditions is selected to be as 150 in order to reduce 

standard deviations with respect to the selected incremental voltage steps and to 

achive accurate 50% voltage values. This further allows to optimize the number of 

voltage applications. Moreover, the tests are performed under strictly similar ambient 

conditions and impulse breakdown voltages are corrected to to STP conditions (see 

Appendix A.4). 

 

In Table 4.1 normalized up-and-down test data obtained for positive sweep voltages 

0 V, +75 V, +150 V, and +300 V are illustrated and the results are plotted in Figure 

4.1. Assuming the underlying probability distribution for all up-and-down test data is 

the logistic type distribution which is the consequence of this study, the 50% impulse 

breakdown voltage values determined by MLE method are also given in Figures 4.1. 
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Table 4. 1 Positive sweep voltages and STP normalized impulse up-and-down test 

results  

Sweep 
voltage (V) 

Up-and-down test data (kV) 

0 V 

52.15 52.5 52.85 53.55 54.6 56 57.75 58.8 59.5 59.85 60.2 59.85 60.2 59.5 47.25 59.5 
52.5 59.5 59.15 57.75 56 56 55.3 54.25 49.35 52.5 50.75 46.55 49 49.35 49 49.35 49 
45.15 49 49 40.6 48.65 49 49.7 51.1 52.5 51.1 49.35 48.65 49.35 50.75 47.95 49 45.5 
47.25 44.1 45.15 44.1 45.15 45.85 47.25 42.35 44.8 45.85 45.15 44.45 45.15 45.85 46.2 
40.95 47.6 45.5 44.8 45.5 45.85 45.5 47.25 48.3 49 49.7 51.45 47.25 50.75 50.05 51.8 
49.35 51.8 49.35 45.15 47.95 49 45.5 47.25 48.65 49 49.7 48.65 48.3 47.25 48.3 49 
49.7 51.1 52.5 51.8 50.75 50.4 49.35 51.8 45.85 51.1 49.35 45.15 47.25 49 44.8 46.9 
47.6 47.25 48.3 48.65 48.3 49 50.05 49 49.7 51.1 52.5 52.85 53.55 49.7 49.7 52.5 52.15 
49.35 52.15 50.05 49 49 47.95 45.5 49 46.2 45.85 38.5 45.5 47.25 47.95 49 50.4 51.8 
52.15 49 48.3 

+75 V 

52.15 51.1 52.15 52.5 52.85 53.9 55.65 56 48.65 55.65 56 55.65 56.35 51.45 54.6 55.65 
49.35 56 56.35 57.75 52.85 52.5 55.65 51.45 54.6 55.65 52.85 55.3 56.175 56.7 57.75 
59.15 59.5 61.25 61.6 57.75 52.5 59.5 59.85 50.75 57.75 59.5 57.75 54.25 56 57.05 56 
52.15 52.85 52.85 47.6 45.85 45.85 49.35 49.7 49.35 50.75 49 50.75 51.8 52.5 49 52.5 
51.8 51.45 52.15 52.5 52.15 50.75 47.6 48.65 49 47.95 49 49 49.35 50.75 51.45 48.65 
49.35 45.5 49.35 50.05 52.15 52.5 52.85 53.55 55.3 56 56.35 58.1 54.25 57.75 56.7 
59.15 52.5 52.15 52.5 52.15 48.65 52.5 46.2 48.65 49 50.75 51.8 52.5 47.25 52.5 53.2 
53.55 54.6 56 55.65 56 52.85 52.5 52.85 53.55 52.5 53.2 49.35 45.85 51.8 51.1 50.4 
47.95 49 45.85 46.55 46.9 48.3 49 47.6 45.15 45.5 46.2 47.25 47.25 46.55 47.25 47.6 
49 49 50.75 49.35 49 49.35 50.05 49.35 

+150 V 

52.15 42.35 51.8 50.75 49 48.65 49.35 48.65 49 45.85 48.65 48.65 49 45.5 47.25 48.65 
43.75 48.65 49 49 45.15 45.85 47.25 45.85 47.25 48.3 49 49.35 51.1 52.5 52.85 53.2 
54.25 55.65 56.35 57.75 58.8 59.5 58.1 50.75 49.7 55.65 50.75 50.05 52.85 48.3 52.5 
49 49.7 52.15 52.5 48.65 50.4 49 49 49.7 50.75 49.35 49 49 49 49.35 49 49.35 51.1 
52.15 52.5 53.2 50.4 52.5 52.85 51.1 52.5 52.5 49 49.7 50.75 52.15 50.75 49.7 51.1 
51.8 49.35 52.15 52.5 52.85 45.5 52.15 52.5 52.15 51.8 47.25 47.25 47.25 47.25 47.6 
49 49.7 50.75 52.15 51.1 52.15 52.5 53.2 55.3 52.5 52.5 50.75 47.25 49 50.75 49.35 49 
48.3 49 43.75 47.25 47.6 49 49 49 48.65 43.75 45.85 45.15 45.85 45.15 45.5 46.2 45.5 
46.2 45.5 46.2 47.25 46.55 47.6 49 47.25 48.65 48.3 49 49 49 49.35 50.75 52.15 50.75 
49 49 49 

+300 V 

52.15 52.5 52.85 52.85 55.3 56 56.35 57.75 59.15 59.5 55.65 59.5 43.75 48.65 58.8 
52.85 55.65 51.8 52.5 52.85 51.8 52.5 50.75 49.35 49 49.35 49 49 47.25 46.9 46.9 48.3 
49 49 49 44.8 49 47.95 45.15 47.25 49 46.9 46.9 47.6 49 49 48.65 49 50.75 50.05 50.4 
49 51.1 52.15 52.5 52.85 53.9 55.65 54.25 52.15 52.5 52.5 48.65 52.15 51.8 49.7 49 
48.3 48.65 45.85 49 44.1 46.55 42.35 45.85 45.5 45.85 47.95 48.65 49 50.75 51.8 52.5 
52.85 51.8 52.5 52.5 49 50.75 49 46.2 47.6 47.25 43.75 44.45 45.5 44.8 45.85 45.15 
45.5 46.2 47.95 49 47.6 45.85 47.6 48.65 48.3 43.75 47.25 49 49 50.75 45.15 45.5 47.6 
49 49.35 47.25 49.35 47.6 48.3 49 49.35 51.1 49 49 49 47.25 46.55 46.9 47.6 49 47.6 
47.25 48.65 51.8 47.6 49 49 50.75 52.15 52.5 52.85 53.9 55.3 56 56.35 58.1 59.15 
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Figure 4. 1 Up-and-down test data for positive sweep voltages. 50% impulse 

breakdown voltages are indicated. 

 

Table 4.2 shows the normalized up-and-down test data for negative sweep voltages 0 

V, -75 V, -150 V, and -300 V. The plots of breakdown test results given in Table 4.2 

are shown in Figure 4.2. Assuming the underlying probability distribution for all up-

and-down test data is the logistic type distribution, the 50% impulse breakdown 

voltage values determined by MLE method are also given in Figures 4.2. 
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Table 4. 2 Negative sweep voltages and STP normalized impulse up-and-down test 

results  

Sweep 
voltage (V) 

Up-and-down test data (kV) 

0 V 

52.15 48.65 49 48.3 49.35 48.65 47.6 48.65 49 51.45 47.25 45.85 47.25 46.9 45.5 46.2 
47.6 46.2 47.6 48.65 49 48.65 49 47.25 49 50.75 42.7 49 47.25 47.6 48.65 48.65 47.6 
48.65 49 50.05 49 49.7 52.15 49.7 47.25 47.6 49 49.35 49 47.25 48.65 49.7 47.6 47.95 
48.65 48.3 49 49 49 45.5 50.75 47.6 46.55 45.5 46.55 43.75 47.25 48.65 46.9 47.95 
47.25 45.5 46.55 45.5 47.25 47.95 49 47.6 49 50.05 49 49.7 48.65 45.85 48.65 48.3 49 
49 40.6 49.35 50.4 49.7 49 49 51.45 48.3 51.45 52.5 51.45 47.25 44.8 47.6 46.9 47.6 
45.85 45.5 47.25 48.3 48.65 48.3 48.3 47.6 41.65 45.85 45.5 45.85 45.5 45.5 47.25 
45.85 47.25 45.5 45.5 45.5 46.9 46.2 47.25 48.3 47.95 43.75 45.15 45.5 45.5 44.1 45.15 
45.5 47.6 45.85 46.9 47.25 47.25 45.85 45.15 45.5 46.9 44.8 46.9 47.25 46.9 47.6 49 
47.95 48.65 50.4 

-75 V 

50.4 45.85 51.1 49.35 48.65 49.35 50.4 51.45 52.5 51.45 52.15 49.35 48.65 49 47.6 
44.45 44.45 42.35 44.8 45.5 45.85 45.5 46.55 47.6 48.65 49.35 49.7 46.55 47.6 47.6 
46.2 45.85 45.85 45.5 44.1 45.15 44.8 45.85 46.2 47.6 48.3 49 47.6 43.75 46.55 44.8 
46.725 45.85 46.55 47.6 47.6 47.6 48.3 45.675 48.3 49.35 50.4 47.95 44.8 45.85 45.85 
45.15 44.8 45.85 46.9 44.8 45.5 45.15 44.8 45.85 46.55 47.6 48.65 49 49 48.65 42 47.6 
48.3 46.2 48.3 49 50.05 47.6 50.05 51.1 50.05 51.1 52.15 51.1 50.05 47.775 47.6 44.8 
46.55 47.6 48.65 44.8 46.55 47.6 48.3 49.7 47.6 47.6 46.9 47.25 46.9 47.6 48.65 46.2 
45.15 45.85 46.55 47.6 44.1 46.2 46.55 47.6 46.9 45.85 46.9 47.6 48.3 49 50.4 50.05 
50.4 49.35 48.3 46.55 48.3 47.6 47.95 49 50.05 51.1 47.95 49 50.4 49.7 50.05 51.1 50.4 
47.25 48.3 49 44.8 47.25 47.075 47.25 

-150 V 

52.15 52.5 47.6 52.5 49.35 49 52.15 50.05 48.3 47.95 47.25 47.95 49 49 46.55 47.95 
47.25 46.55 44.1 44.45 43.75 42.35 43.75 42 43.4 42.7 42.7 44.1 43.75 43.75 45.15 
45.5 47.25 42 45.15 45.5 47.25 47.6 42.35 48.3 48.3 47.25 46.9 47.6 49 49.35 50.75 
50.4 47.6 49 49 49 50.75 48.3 50.4 49 48.65 49.35 49.7 49 45.85 47.6 48.65 49 45.5 49 
45.5 47.6 44.625 45.5 44.8 45.15 45.15 45.5 47.25 45.5 45.15 45.5 44.8 45.5 46.2 47.95 
48.65 49 50.4 49 50.75 48.65 48.65 49 50.4 52.15 52.5 47.25 52.5 47.6 50.4 49 45.5 
47.25 46.9 47.6 48.65 49 45.15 47.6 44.8 47.95 47.6 47.6 49 45.5 48.65 49 50.75 45.5 
50.75 48.65 47.95 45.5 46.2 45.5 46.2 47.6 48.65 47.25 48.65 47.25 43.75 47.6 45.15 
45.5 46.55 45.5 46.9 45.15 45.5 44.275 44.8 44.1 43.05 43.4 45.15 45.5 45.85 47.6 45.5 
46.9 46.2 47.6 

-300 V 

50.75 52.5 53.2 53.55 54.95 55.65 56 57.4 56.35 56 50.75 56 54.6 52.5 52.5 49.7 48.65 
47.25 49 49.35 47.6 43.75 46.55 46.55 46.55 45.85 47.25 45.5 47.95 45.5 45.15 45.5 
47.25 42.7 44.8 44.45 43.05 44.45 45.1545.5 46.55 47.6 48.65 49.35 48.3 46.2 46.2 
47.6 45.85 47.95 49 47.6 46.2 47.25 43.75 47.25 48.65 49 49 49 50.05 45.5 52.15 48.65 
47.25 47.95 49 47.95 48.65 49 48.65 49.35 38.5 45.5 43.75 45.15 44.8 45.5 46.55 47.25 
48.3 47.25 48.65 49.35 50.75 52.15 52.5 52.85 52.5 49 52.5 52.5 52.85 54.25 52.5 
54.95 43.75 49.35 50.75 48.65 52.5 52.15 45.85 51.8 52.5 51.45 49.35 52.15 50.75 
49.35 48.65 47.6 48.3 47.6 46.2 45.5 46.55 45.5 36.75 40.6 42.35 42 42.35 43.75 45.15 
42 44.45 45.5 45.85 47.6 48.3 49 48.65 49 50.4 49.7 44.8 49 45.85 48.65 50.05 51.1 
51.45 43.4 49.7 44.8 48.3 49 50.05 51.1 
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Figure 4. 2 Up-and-down test data for negative sweep voltages. 50% impulse 

breakdown voltages are indicated. 

 

4.2 Results of Parameter Estimates 

As explained in Section 2.3, four distribution functions are generally applied to 

represent distribution of the impulse breakdown voltage for self-restoring insulation 

systems: Normal, logistic 3PW, and Gumbel distributions. The parameters of these 

distributions are estimated from the up-and-down test data. Also, in Section 2.4, 

utilization of the MLE method for evaluation of the parameters of these distributions 

were explained. The reason for selecting the MLE method is because of its its well 

known accurate outcomes in statistical assesments. For optimization of the MLE 

equations (Appendix A.1) the Monte Carlo (MC) and the Newton-Raphon (N-R) 

methods are employed to ensure the accurate estimates with less number of 

iterations. The results of parameter estimates for positive and negative sweep 

voltages data are shown in Tables 4.3 and 4.4.  

 

As is observed in Table 4.3, the parameter estimates of four distributions obtained 

with the MC and N-R methods are close to each other for all positive sweep voltages 

except the sweep voltage + 75 V. The parameter estimates of four distributions for 

this sweep voltage are appreciably different from the other estimates obtained for the 

other sweep fields. 
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Somerville and Tedford have shown that statistical time-lag and impulse breakdown 

strength of SF6 in a gas vessel are affected by sweep voltages [10,11]. However, in 

the present study the MLEs of the positive impulse breakdown voltage data are not 

influenced much by the sweep fields. This may be due to the fact that during the 

present experiments no artificial radiaton source was used. 

 

Table 4. 3 Maximum likelihood estimates for positive sweep voltage data. 

ND: Normal Distribution, ( )1
ˆ ˆ ˆ,θ µ σ=   (in kV);  

LD: Logistic Distribution, ( )2
ˆ ˆ ˆ, sθ µ=

 
(in kV); 

3PWD: Three-parameter Weibull Distribution, ( )3
ˆ ˆˆ ˆ, ,θ α β γ=  (in  kV); 

GD: Gumbel Distribution, ( )4
ˆ ˆˆ,θ α β=

 
(in kV). 

 

Sweep 

Voltage 

Dist. 

Type 
MC Opt N-R Opt 

0 V 

ND 1θ̂ =(49.1949, 4.3738) 1θ̂ =(49.1959, 4.3685) 

LD 2θ̂ =(48.9953, 2.3993) 2θ̂ =(48.9952, 2.3986) 

3PWD 3θ̂ =(14.0028, 3.0510, 36.7128) 3θ̂ =(13.8305, 3.0086, 36.8138) 

GD 4θ̂ =(4.7628, 51.4372) 4θ̂ =(4.7614, 51.4373) 

+ 75 V 

ND 1θ̂ =(51.3760, 3.7909) 1θ̂ =(51.3757, 3.7891) 

LD 2θ̂ =(51.2159, 2.2155) 2θ̂ =(51.2156, 2.2160) 

3PWD 3θ̂ =(7.8761, 1.9218, 44.4437) 3θ̂ =(7.6477,1.8408, 44.6049) 

GD 4θ̂ =(3.9077, 53.2685) 4θ̂ =(3.9055, 53.2834) 

+ 150 V 

ND 1θ̂ =(49.2607, 2.8397) 1θ̂ =(49.2561, 2.8474) 

LD 2θ̂ =(49.2636, 1.5728) 2θ̂ =(49.2674, 1.5727) 

3PWD 3θ̂ =(9.3833, 3.2282, 40.7559) 3θ̂ =(9.5516, 3.2510, 40.6727) 

GD 4θ̂ =(3.1151, 50.6441) 4θ̂ =(3.1115, 50.6539) 

+ 300 V 

ND 2θ̂ =(49.1023, 3.2930) 2θ̂ =(49.1052, 3.2984) 

LD 2θ̂ =(49.0370, 1.8892) 2θ̂ =(49.0322, 1.8910) 

3PWD 3θ̂ =(8.8184, 2.5912, 41.1790) 3θ̂ =(8.7913, 2.5343, 41.3095) 

GD 4θ̂ =(3.5515, 50.7447) 4θ̂ =(3.5545, 50.7460) 
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The parameter estimates of four distributions obtained with the MC and N-R 

methods for the all negative sweep voltages are given in Table 4.4. The paremeter 

estimates are remarkably close to each other.  

 

Table 4. 4 Maximum likelihood estimates for negative sweep voltage data. 

ND: Normal Distribution, ( )1
ˆ ˆ ˆ,θ µ σ=   (in kV);  

LD: Logistic Distribution, ( )2
ˆ ˆ ˆ, sθ µ=

 
(in kV); 

3PWD: Three-parameter Weibull Distribution, ( )3
ˆ ˆˆ ˆ, ,θ α β γ=  (in  kV); 

GD: Gumbel Distribution, ( )4
ˆ ˆˆ,θ α β=

 
(in kV). 

Sweep 

Voltage 

Dist. 

Type 
MC Opt N-R Opt 

0 V 

ND 1θ̂ =(47.5616, 2.4315) 1θ̂ =(47.5565, 2.4288) 

LD 2θ̂ =(47.6041, 1.3791) 2θ̂ =(47.6108, 1.3792) 

3PWD 3θ̂ =(12.0656, 5.1940, 36.4312) 3θ̂ =(12.3427, 5.3660, 36.1514) 

GD 4θ̂ =(2.2504, 48.6952) 4θ̂ =(2.2489, 48.6958) 

- 75 V 

ND 1θ̂ =(47.2615, 2.3956) 1θ̂ =(47.2639, 2.3989) 

LD 2θ̂ =(47.2016, 1.4149) 2θ̂ =(47.1949, 1.4198) 

3PWD 3θ̂ =(7.2208, 2.9168, 40.8867) 3θ̂ =(7.2310, 2.9448, 40.8223) 

GD 4θ̂ =(2.3343, 48.4341) 4θ̂ =(2.3406, 48.4308) 

- 150 V 

ND 1θ̂ =(46.8637, 2.2760) 1θ̂ =(46.8743, 2.2706) 

LD 2θ̂ =(46.8474, 1.3253) 2θ̂ =(46.8435, 1.3273) 

3PWD 3θ̂ =(6.8974, 2.9175, 40.7225) 3θ̂ =(6.7806, 2.9089, 40.8367) 

GD 4θ̂ =(2.2936, 47.9866) 4θ̂ =(2.2979, 47.9829) 

- 300 V 

ND 1θ̂ =(47.8055, 3.7486) 1θ̂ =(47.8077, 3.7555) 

LD 2θ̂ =(47.8476, 2.0669) 2θ̂ =(47.8507, 2.0680) 

3PWD 3θ̂ =(17.3321, 4.6303, 31.8752) 3θ̂ =(17.3131, 4.6931, 31.9167) 

GD 4θ̂ =(3.6964, 49.6185) 4θ̂ =(3.7015, 49.6169) 
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4.3 Discussion of Kolmogorov-Smirnov Test Results 

To determine the most fitting distribution function, among the normal, logistic and 

Gumbel distributions, to the up-and-down tests data for various sweep voltages, the 

K-S tests are applied [20-22]. The results are shown in Tables 4.5 and 4.6.  

The Gumbel distribution seems to be the most unfitting distribution for all impulse 

breakdown data under all sweep voltages beacuse of its large K-S outcomes (Table 

4.5 and 4.6)  

Also, the small K-S values determined for the logistic distribution indicates that it 

serves better than both the normal and Gumbel distributions for the set of all positive 

sweep voltage data as illustrated in Table 4.5.  

 

Table 4. 5 Kolmogorov Smirnov test results for positive sweep voltage data. 

Sweep 

Voltage 

Dist. 

Type 
MLE K-S 

 

0 V  

ND 1θ̂ =(49.1959, 4.3685) 0.1896 

LD 2θ̂ =(48.9952, 2.3986) 0.1807 

GD 3θ̂ =(4.7614, 51.4373) 0.2079 

 

+ 75 V 

ND 1θ̂ =(51.3757, 3.7891) 0.1524 

LD 2θ̂ =(51.2156, 2.2160) 0.1329 

GD 3θ̂ =(3.9055, 53.2834) 0.2010 

 

+ 150 V 

ND 1θ̂ =(49.2561, 2.8474) 0.1279 

LD 2θ̂ =(49.2674, 1.5727) 0.1263 

GD 3θ̂ =(3.1115, 50.6539) 0.1617 

 

+ 300 V 

ND 1θ̂ =(49.1052, 3.2984) 0.1033 

LD 2θ̂ =(49.0322, 1.8910) 0.0999 

GD 3θ̂ =(3.5545, 50.7460) 0.1506 

ND: Normal Distribution, ( )1
ˆ ˆ ˆ,θ µ σ=

 
(in kV); 

LD: Logistic Distribution, ( )2
ˆ ˆ ˆ, sθ µ=

 
(in kV); 

GD: Gumbel Distribution, ( )3
ˆ ˆˆ,θ α β=

 
(in kV). 
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As is indicated in Table 4.6, in the case of all negative sweep voltages impulse 

breakdown voltage data the logistic distribution performs better than other 

distributions for the only set of sweep voltages –75 V and -300 V. On the other 

hand, the normal distribution outperforms the logistic and Gumbel distributions for 

the sweep voltages 0 V and –150 V similar to the results obtained in references [20-

22]. 

 

Table 4. 6 Kolmogorov Smirnov test results for negative sweep voltage data. 

Sweep 

Voltage 

Dist. 

Type 
MLE K-S 

 

0 V 

ND 1θ̂ =(47.5565, 2.4288) 0.1199 

LD 2θ̂ =(47.6108, 1.3792) 0.1362 

GD 3θ̂ =(2.2489, 48.6958) 0.1580 

 

- 75 V 

ND 1θ̂ =(47.2639, 2.3989) 0.1182 

LD 2θ̂ =(47.1949, 1.4198) 0.1032 

GD 3θ̂ =(2.3406, 48.4308) 0.1696 

 

- 150 V 

ND 1θ̂ =(46.8743, 2.2706) 0.1223 

LD 2θ̂ =(46.8435, 1.3273) 0.1279 

GD 3θ̂ =(2.2979, 47.9829) 0.1397 

 

- 300 V 

ND 1θ̂ =(47.8077, 3.7555) 0.1299 

LD 2θ̂ =(47.8507, 2.0680) 0.1169 

GD 3θ̂ =(3.7015, 49.6169) 0.1833 

ND: Normal Distribution, ( )1
ˆ ˆ ˆ,θ µ σ=

 
(in kV); 

LD: Logistic Distribution, ( )2
ˆ ˆ ˆ, sθ µ=

 
(in kV); 

GD: Gumbel Distribution, ( )3
ˆ ˆˆ,θ α β=

 
(in kV). 

 

4.4 Discussion of Likelihood Ratio Test Results 

Because of distinctive feature of the logistic distribution in representing the impulse 

breakdown test data and its outstanding performance better than the other two-
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parameter distributions, as a next step, its performance is compared it with three-

parameter Weibull distribution. As explained in Section 2.5.2, for this purpose the 

likelihood ratio (LR) test is applied [15] at 5% significance level which allows to 

figure out whether the test data comes from the logistic or the 3PW distributions.  

 

Table 4. 7 Likelihood ratio test results for positive sweep voltage data. 

Sweep 

Voltage 

Dist. 

Type 
MLE LL value R p-value 

0 V 
LD 1θ̂ =(48.9952, 2.3986) -216.3519 4.0218 0.0449 

3PWD 2θ̂ =(13.8305, 3.0086, 36.8138) -218.3628 

+ 75 V 
LD 1θ̂ =(51.2156, 2.2160) -206.4928 10.1708 0.0014 

3PWD 2θ̂ =(7.6477, 1.8408, 44.6049) -201.4074 

+ 150 V 
LD 1θ̂ =(49.2674, 1.5727) -181.4788 3.7128 0.0540 

3PWD 2θ̂ =(9.5516, 3.2510, 40.6727) -183.3352 

+ 300 V 
LD 1θ̂ =(49.0322, 1.8910) -178.3459 2.4346 0.1187 

3PWD 2θ̂ =(8.7913, 2.5343, 41.3095) -177.1286 

LD: Logistic Distribution, ( )1
ˆ ˆ ˆ, sθ µ=

 
(in kV); 

3PWD: Three-parameter Weibull Distribution, ( )2
ˆ ˆˆ ˆ, ,θ α β γ= (in kV). 

R: Likelihood ratio test statistic value; 

LL: Log-likelihood value. 

 

Since the LR test provides information to compare the goodness-of-fit of two 

distributions namely logistic and 3PW distributions, following the steps of the test, 

which requires determining  distribution from the LR test statistics (R) (Equation 

2.31), then resulting p-value (Equation 2.34) allows to determine the type of 

statistical distribution. 

 

The LR test statistics requires  limit to be 3.841 at k=1 degrees of fredom and the 

corresponding p-value to be 0.05 at 5% significance level. Under this requisite R 

values smaller than 3.841 and p-values greater than 0.005, denote that logistic 

distribution fits better than 3PW distribution to the test data. As shown in Tables 4.7 

and 4.8, for sweep voltages 0 V, -300 V and +150 V, +300 V, the impulse 

2χ

2χ
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breakdown data samples, logistic distribution serves better than 3PW distribution 

since all R values remain less than 3.842 limit and p-values become greater than 

0.005. 

 

On the other hand, for sweep voltages 0 V, +75 V, -75 V and –150 V, the impulse 

breakdown data samples fit well to 3PW distribution rather than logistic distribution 

according to LR test (Tables 4.7 and 4.8), since R and 1-p values remain less than the 

prerequisites. 

 

Table 4. 8 Likelihood ratio test results for negative sweep voltage data. 

Sweep 

Voltage 

Dist. 

Type 
MLE LL value R 

p-

value 

0 V 
LD 1θ̂ =(47.6108, 1.3792) -170.4623 0.0388 0.8438 

3PWD 2θ̂ =(12.3427, 5.3660, 36.1514) -170.4817 

- 75 V 
LD 1θ̂ =(47.1949, 1.4198) -172.5591 4.5044 0.0338 

3PWD 2θ̂ =(7.231036, 2.9448, 40.8223) -170.3069 

- 150 V 
LD 1θ̂ =(46.8435, 1.3273) -169.5264 3.9018 0.0482 

3PWD 2θ̂ =(6.7806, 2.9089, 40.8367) -167.5755 

- 300 V 
LD 1θ̂ =(47.8507, 2.0680) -191.6012 3.6278 0.0568 

3PWD 2θ̂ =(17.3131, 4.6931, 31.9167) -193.4151 

LD: Logistic Distribution, ( )1
ˆ ˆ ˆ, sθ µ=

 
(in kV); 

3PWD: Three-parameter Weibull Distribution, ( )2
ˆ ˆˆ ˆ, ,θ α β γ= (in kV). 

R: Likelihood ratio test statistic value; 

LL: Log-likelihood value. 

 

4.5 Discussion of Quantile-Quantile Plots 

A visual comparative study for deciding the best fitted distribution to the impulse 

breakdown data, which is performed under positive and negative DC sweep voltages, 

is carried out with Quantile-Quantile (Q-Q) plots. Since )(1
ipF

−  provides the 

impulse breakdown voltage estimates, the closest value of )(1
ipF

−  to the actual 

impulse breakdown voltage allows us to determine the most fitted ditribution 
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function. In these plots the percentile  is taken to be  [20]. Figures 4.3, 

4.4, 4.5 and 4.6 show the Q-Q plots of normal, logistic, Gumbel and three-parameter 

Weibull disributions for sweep voltages 0 V (Figure 4.3), +75 V (Figure 4.4), +150 

V (Figure 4.5), and +300 V (Figure 4.6), respectively. The results of these plots 

confirm the results of LR and K-S tests. That is, the logistic distribution fits well to 

the test data for +150 V and +300 V sweep voltages. Gumbel is the most 

incompatible among four distributions. Normal, logistic and 3PW distributions seem 

to be acceptable for all positive sweep voltage data. 

 

 

Figure 4. 3 Q-Q plots of four distributions for 0 V sweep voltage data. 

 

i
p ( 0.5) /i n−
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Figure 4. 4 Q-Q plots of four distributions for + 75 V sweep voltage data. 

 

Figure 4. 5 Q-Q plots of four distributions for + 150 V sweep voltage data. 
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Figure 4. 6 Q-Q plots of four distributions for + 300 V sweep voltage data. 

 

Figures 4.7, 4.8, 4.9, and 4.10 show the Q-Q plots of normal, logistic, Gumbel and 

3PW disributions for sweep voltages 0 V (Figure 4.7), -75 V (Figure 4.8), -150 V 

(Figure 4.9), and -300 V (Figure 4.10), respectively. The results of these plots 

confirm the results of LR and K-S tests. That is, the logistic distribution fits well to 

the test data for 0V and -300 V sweep voltages. The Gumbel distribution is also the 

most improper among four distributions for all negative sweep voltage data. It may 

be concluded that normal and 3PW distributions can be used well enough to model 

negative sweep voltage data. 
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Figure 4.7 Q-Q plots of four distributions for 0 V sweep voltage data. 

 

 

Figure 4.8 Q-Q plots of four distributions for - 75 V sweep voltage data. 
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Figure 4.9 Q-Q plots of four distributions for - 150 V sweep voltage data. 

 

 

Figure 4.10 Q-Q plots of four distributions for – 300 V sweep voltage data. 
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4.6 Logistic Plots of Various Sweep Voltages Data and Confidence Limits 

For theoretical justification of the logistic distribution as an alternative to commonly 

used normal, 3PW and Gumbel distributions, whether the distribution of impulse 

breakdown data for positive sweep voltages lies within 95% confidence interval or 

not is shown on ))1/(ln( pp −  versus impulse breakdown voltage, V plot. In Figures 

4.11-4.14 logistic plots for impulse breakdown voltage data for positive sweep 

voltages and in Figures 4.15-4.18 logistic plots for impulse breakdown voltage data 

for negative  sweep voltages are shown.  

 

For sweep voltages 0 V (Figure 4.11), +150 V (Figure 4.13), and +300 V (Figure 

4.14) the data points remain well enough within 95% limits. However, for the sweep 

voltage +75 V (Figure 4.12) there is a slight skewness such that the data falls out of 

the limits at lower probability level. 

 

 

Figure 4.11 Logistic plot of 0 V sweep voltage data and 95% confidence limits. 
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Figure 4.12 Logistic plot of + 75 V sweep voltage data and 95% confidence limits. 

 

 

Figure 4.13 Logistic plot of + 150 V sweep voltage data and 95% confidence limits. 

 

45 50 55 60
-6

-4

-2

0

2

4

6

Voltage (kV)

ln
(p

/(
1
-p

))

Probability Plot for Logistic Distribution

 

 

+75 V

42 44 46 48 50 52 54 56 58 60
-6

-4

-2

0

2

4

6

8

Voltage (kV)

ln
(p

/(
1
-p

))

Probability Plot for Logistic Distribution

 

 

+150 V



47 

 

Figure 4.14 Logistic plot of + 300 V sweep voltage data and 95% confidence limits. 

 

Similarly, for sweep voltages 0 V (Figure 4.15), -150 V (Figure 4.17), and -300 V 

(Figure 4.18) almost all the breakdown data points are observed to lie within 95% 

limits. Still, there is a slight exclusion of the data for the sweep voltage -75 V (Figure 

4.16) out of the 95% tolrance bounds i.e., there is a slight skewness of the data at 

lower probability level.  

 

Figure 4.15 Logistic plot of 0 V sweep voltage data and 95% confidence limits. 
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Figure 4.16 Logistic plot of - 75 V sweep voltage data and 95% confidence limits. 

 

 

Figure 4.17 Logistic plot of - 150 V sweep voltage data and 95% confidence limits. 
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Figure 4.18 Logistic plot of - 300 V sweep voltage data and 95% confidence limits. 

 

Hence, we can conclude that the statistical distribution of the data for positive and 

negative sweep voltages of the present experimental work is statistically sufficient to 

be represented by logistic distribution within the acceptable confidence limits.  

 

35 40 45 50 55 60
-6

-4

-2

0

2

4

6

Voltage (kV)

ln
(p

/(
1
-p

))

Probability Plot for Logistic Distribution

 

 

-300 V



50 

4.7 Experimental Time-Lag Results 

The graphical representation showing a visual distribution of the statistical time-lag 

data of positive impulse breakdown voltage are observed to be skewed toward zero 

time-lag as illustarted in the histograms in the plots of Figure 4.19 for positive sweep 

voltages and in the plots of Figure 4.20 for negative sweep voltages. Hence, the 

distribution of time lags is likely to be exponential type [10]. For comparison 

purpose to show the effect of sweep voltages on the statistical time-lag distribution of 

the impulse breakdown voltage data, it is more illustrative to indicate all time-lag 

data in the form of ‘Laue’ plots [25].  

 

 

Figure 4. 19 Histograms of statistical time-lag data for various positive sweep 

voltages.  
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Figure 4. 20 Histograms of statistical time-lag data for various negative sweep 

voltages. 

 

The distributions of time-lag data are illustrated in the form of ‘Laue’ plots in 

Figures 4.21 and 4.22. As was mentioned in Section 2.2, the slopes of these plots 

should be proportional to the rate of production of free electrons which is correlated 

to the negative ion density in the region of the tip of the rod [10], hence, appearence 

of negative ions within the critical volume prior to application of the impulse 

voltage.  

 

The distributions of statistical time-lag data with and without a positive and negative 

sweep voltage are very close to each other. This phenomena clearly displayed in 

‘Laue’ plots shown in Figure 4.21 under the effect of positive sweep voltages and in 

Figure 4.22 for negative sweep voltages. In both figures, statistical time-lags do not 

show any tendency to change with increasing sweep voltage. The reason for this is 

probably due to the fact that the tip of the rod-plane test gap is always left to the 
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natural radiation, contrary to the works in the literature performed under continuous 

external radiative illumination [10, 11]. 
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Figure 4.21 Laue plots for the rod-plane test gap for various positive sweep voltages. 
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Figure 4.22 Laue plots for the rod-plane test gap for various negative sweep voltage.
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As shown in Figures 4.21 and 4.22, the slopes of Laue plots of statistical time-lag 

distributions for +75 V and –300 V sweep voltages are less steeper than the other 

distributions of the same polarity set. Correspondingly, 50% impulse breakdown 

voltages for +75 V and -300 V are also greater than others. We can conclude that 

there is a clear correlation between statistical time-lag distributions and the values of 

50% impulse breakdown voltage. 

 .
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CHAPTER V 

 

CONCLUSION 

 

The impulse breakdown voltage data obtained from up-and-down tests in the 

literature is generally thought to follow normal or 3PW probability distributions in 

different test gap systems. However, in the present study, the distribution of impulse 

breakdown voltage data obtained in air-insulated rod-plane systems under the various 

DC sweep voltages is generally found to follow the logistic distribution. 

Comparision of the the logistic distribution with the normal, 3PW and Gumbel 

distributions under the effect of DC sweep voltages indicated that Gumbel 

distribution is inappropriate for all present up-and-down test data, and logistic 

distribution can sometimes perform better than normal and 3PW probability 

distribuitons.  

 

The normal and 3PW probability distribuitons although are generally accepted to 

represent the statistical characteristics of self-restoring insulation systems, as a result 

of this study it is proved that logistic distribution may be suggested to be as an 

alternative to these distributions. 

 

Under the same test conditions both the statistical time-lag distributions and the 

corresponding 50% impulse breakdown voltages are found to be not affected with 

the DC sweep voltage. It is also denoted that there is a strong correlation between 

statistical time-lag distribution and the value 50% impulse breakdown voltage. 

 

During tests, the unexpected deviations in the distributions of the impulse breakdown 

data under positive sweep voltage +75 V is probably due to the close weather 

conditions during the experiments; the shielding effect of the clouds for the cosmic 

ray flows [25] is known to be restrictive. Hence, excluding the variations caused by
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 the +75 V sweep voltage, the logistic distribution can be a definitive alternative to 

the generally accepted normal and 3PW probability distributions. 
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APPENDICES 

A.1 Numerical Solution of Log-Likelihood Equations 

The LL equations need to be solved numerically. The numerical solution of LL 

equation systems is very hard to solve owing to the nonlinear nature of the equations 

and numerical solutions are strongly dependent upon the initial values of parameter 

estimates. Newton-Raphson method is used to determine the parameter estimates of 

LL equations  

 

In Newton-Raphson method, Hessian matrix and gradient should be formed. Mostly, 

probability distribution functions have parameters more than one. For this reason, LL 

function is multi-dimensional.  

 

( ; )p v θ  is the probability density function. 1( ,..., )
n

v v  is the random sample on a 

random variable v  and 1( ,..., )
m

θ θ  are the population parameters. v  voltage values 

are taken from up-and-down tests in the laboratory. θ  is the parameters of 

distribution function like µ  and σ  in normal distribution function. m  is the number 

of parameters in probability density function. 

 

Gradient is the first derivative of LL function in maximum likelihood method. 

Gradient tells us that it is the slope of the LL function and also represents the 

directional derivative of LL function at the specific point. The first derivative of LL 

equation is taken with respect to each parameter to form gradient vector. The first 

derivative of log-likelihood function provides a steepest trajectory of the function 

and tells us that we have reached an optimum point. In the matrix format, it is shown 

in Equation (A.1) [23];                                                                                                    
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1
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(ln( ))

(ln( ))
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(ln( ))
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 
∂ 
 ∂
 ∇ =
 
 
 
 ∂
 

∂ 

L                                               (A.1) 

 

Hessian matrix is formed by taking the second derivative of LL function with respect 

to parameters. The second derivative tells us whether we are at a maximum or a 

minimum if optimum point is reached by the first derivatives. If the partial second 

derivatives with respect to all parameters are negative, then the maximum is reached. 

But this is not always true. The rached point may also be a saddle point. At the 

saddle point derivative is zero but it is not a maximum nor a minimum [23]. Hessian 

matrix ( H ) format is given by; 

 

2 2 2

2
1 1 2 1

2 2 2

2
2 1 2 2

2 2 2

2
1 2

ln( ) ln( ) ln( )
. . .

ln( ) ln( ) ln( )
. . .

. .

. .

. .

ln( ) ln( ) ln( )
. . .

m

m

m m m

L L L

L L L

L L L

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ 
 =
 
 
 
 
 ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ 

H                      (A.2) 

 

After Hessian and gradient matrices are formed, the points that provide maximum 

value of LL are found. The vector which include parameters of probability density 

function is given by; 
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m

θ
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To find the optimum parameter values, Equation. (2.24) is produced. 

 

1
1 ( ln( ))−

+ = − ∇θ θθ θθ θθ θ
i i i i

H L                                 (A.4) 

 

If proper initial values are entered, this algorithm finds optimum values easily. This 

method can also find local minimum or local maximum points on the LL function. 

For this reason, this method cannot always find correct results. 

A.1.1 Main Algortihm for Newton-Raphson Method 

At the beginning of the program, initial parameter values and tolerance are wanted 

from the user, and the iteration number k  is equated to zero. In this program, ‘while 

loop’ is formed and there are two conditions of this loop to terminate. One is the 

difference between previous and current parameter values, and the other is maximum 

allowed iteration number N. k  is incremented at each iteration. If iteration number 

reaches 1000, then loop is terminated automatically. After k  is incremented, Hessian 

and gradient matrices are computed in different two functions. The results of these 

matrices are inserted to Equation (A.4) and parameter values are calculated. Later on, 

current parameter values are substracted from the preceding parameter values. 

Provided that difference is small than tolerance, then condition is satisfied and loop 

is terminated. Otherwise, loop continues until finding optimum parameter values. As 

soon as loop is finished, results are displayed on command window of MATLAB. 

Flow chart of this algorithm is shown in Figure A.1. 
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Figure A.1 Flow chart of Newton-Raphson Method. 

 

A.2 Monte Carlo Optimization of Log-likelihood Equations 

MC optimization method repeatedly computes the function at randomly selected 

values of the independent variables. Random numbers are generated in particular 

intervals for each parameter using rand command in MATLAB. After random 

numbers generated, these values are substituted into the LL function. It searches for 

maximum value of the function. If a sufficient number of samples are conducted, the 

optimum values can be found [23].  
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This method works properly for discontinuous and nondifferentiable functions. This 

method always finds global maximum rather than a local maximum. The major 

disadvantage of this method is that as the number of independent variables raises, the 

implementation effort required can become cumbersome [23]. The other 

disadvantage of this method is slower than other numerical methods. To find the 

parameter estimates exactly, the iteration number should be increased. 

 

A.2.1 Main Algorithm for Monte Carlo Optimization Method 

In this algorithm, firstly variable maxln(L) and parameter values are initiated. 

maxln(L) should have a very small negative value. ‘while loop’ is used in this 

program. k  is incremented at each iteration. There is only one condition to terminate 

the loop. If k  reaches N, loop is terminated. N is important variable in this 

algorithm. The bigger the value of N, the more accurate parameter values are 

obtained. Random values are produced in determined interval for parameters and 

assigned to parameter variables of selected probability distribution function at each 

iteration. Provided that new value of log-likelihood function is greater than the 

previous one, the new values for parameters are captured. At the end of iteration, the 

parameter values that make maximum the LL function is displayed. Flow chart of 

this algoritm is shown in Figure A.2. 
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Figure A.2 Flow chart of Monte Carlo Optimization. 

 

A.3 Generation of Impulse Voltages 

A.3.1 Impulse Voltage Generator Circuits 

The fast increase and slow decay in impulse voltages can be accomplished by 

impulse voltage generator circuits. Capacitors should be used for charging and 

discharging in these circuits. The waveshape of impulse voltages may 

mathematically be described as superposition of two exponential functions [24].  
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The introduction to the full impulse voltages as defined in chapter 1 leads to simple 

circuits for the generation of the necassary waveshapes. The rapid increase and slow 

decay can obviously be generated by discharging circuits with two energy storages, 

as the waveshape may well be composed by the superposition of two exponential 

functions [24]. The mathematical expression of standard lightning impulse can be 

given by following Equation (3.1) 

 

0 1 2( ) [exp( ) exp( )]V t V t tα α= − − −                                    (A.5) 

 

For the standard 1.2 / 50  µs lightning  impulse  waveshape, 1α  should be 41.46*10  

1
s

−  and 2α  should be 62.47*10  1
s

−
 [2]. The load of impulse generators are 

capacitive, while insulation systems are being tested. This load will contribute to the 

stored energy. A suitable fast discharge circuit always consist essentially two 

capacitors [24]. 

 

A.3.1.1 Single-Stage Impulse Generator Circuits 

As shown in Figure A.3, there are two basic circuits for single-stage impulse 

generators. 1C  is slowly charged by a d.c. source until spark G breakdowns. After 

ignition time of spark gap G, first capacitor 1C  starts discharging. To obtain d.c. 

voltage at the input of the circuit, half-wave or full-wave rectifier circuits are used. 

The ignition time of spark gap is very low according to rising time 1T . Resistors 1R  

and 2R  and capacitor 2C  are used to form the waveshape of LI voltages. 1R  

determines the rising time 1T , so that 1R   primarily damps the circuit. 2R  will 

discharge the capacitors and control the wavetail of the impulse waveshape. 2C  is 

assumed full load of the circuit, the capacitance of test object and other capacitive 

elements are ignored. Inductances are also ignored to understand the principals of 

these impulse generator circuits [24]. 
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(a) 

1C

G 1R

2R
2C0V ( )V t

(b) 

Figure A.3 Single-stage impulse generator circuits. 

 

We may use the Laplace transform technique to analyze the circuit. For 0t ≤ , 1C  is 

charged to 0V  and for 0t >  this capacitor is directly connected to the wave shaping 

circuit. The output voltage is given by [24];  

 

0 2

1 2

( )
V Z

V s
s Z Z

=
+

                                           (A.6) 

where  

1 1

1

1
Z R

C s
= +                                                (A.7) 

2 2
2

2 2

/

1/

R C s
Z

R C s
=

+
                                            (A.8) 
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By substitution we find 

 

0
2

1
( )

V
V s

k s as b
=

+ +
                                        (A.9) 

 

where  

1 1 1 2 2 2

1 1 1
( )a
R C R C R C

= + +                                  (A.10) 

1 2 1 2

1
( )b
R R C C

=                                          (A.11) 

1 2k R C=                                              (A.12) 

For circuit Figure A.3 (b) the same general expression can be obtained by small 

differences. 

1 1 1 2 2 1

1 1 1
( )a
R C R C R C

= + +                                 (A.13) 

1 2 1 2

1
( )b
R R C C

=                                        (A.14) 

1 2k R C=                                           (A.15) 

For both circuits, we obtain the same expression in time domain. 

 

0
1 2

2 1

1
( ) [exp( ) exp( )]

V
V t t t

k
α α

α α
= − − −

−
             (A.16) 

2
1 2, ( )

2 2

a a
bα α = −m                             (A.17) 

 

The output voltage ( )V t  is the superposition of two exponential functions of 

different signs [24]. 

 

A.4 Normalization of Up-and-down Test Data to STP Conditions 

The normalization of the up-and-down test data to STP conditions is done by 

Equation A.18 
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h
act STP

d

k
V V

k
⋅ =                                               (A.18) 

where 
h

k  is a graphical constant obtained from BS 923:1972 and 
273

273
o

d

o

tp
k

p t

+
= ⋅

+
. 

( p : Ambient pressure, t :Ambient temperature, 
o

p : Pressure at STP, 
o

t : 

Temperature at STP). 

 


