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ABSTRACT 

Dynamic Flexible Job Shop Scheduling with Simulation Optimization by Using 

Genetic Algorithm  

 

DOSDOĞRU, Ayşe Tuğba 

M. Sc. in Industrial Eng. 

Supervisor: Assist. Prof. Dr. Faruk GEYİK 

July 2012, 97 pages 

 

In most real life manufacturing problems, certain operation of a part can be 

processed on more than one machine which makes the considered system (i.e. job 

shops) flexible. On one hand, flexibility provides alternative part routings which 

most of the time relaxes shop floor operations. On the other hand, increased 

flexibility makes operation machine pairing decisions (i.e., the most suitable part 

routing) much more complex. Thus, manufacturing systems must be scheduled by 

considering the flexibility to improve effectiveness and performance.  

The aim of the study is to develop a system that generates the best feasible part 

routings in a dynamic flexible job shop scheduling environment. For this purpose 

both the best feasible process plan for each part and the best feasible machine for 

each operation in a dynamic flexible job shop scheduling environment must be 

determined, respectively. In this respect, a genetic algorithm is adapted to determine 

best part processing plan for each part and then select appropriate machines for each 

operation of each part according to the determined part processing plan. Genetic 

algorithm solves to the optimization phase of solution methodology. Then these 

machine-operation pairings are utilized by discrete-event system simulation model to 

estimate their performances. These two phases of the study follow each other 

iteratively. The goal of the proposed methodology is to find the solution that 

minimizes total of average flow times for all parts. The results show that the 

objective function improves as the considered level of flexibility increases.  

 

Keywords: Flexible job shop scheduling, genetic algorithm, simulation optimization. 

 

 



ÖZ 

Genetik Algoritma Kullanılarak Benzetim Optimizasyonlu Dinamik Esnek 

Üretim Atölyesi Çizelgeleme 

 

DOSDOĞRU, Ayşe Tuğba 

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Faruk GEYİK 

Temmuz 2012, 97 sayfa 

 

Gerçek hayat üretim problemlerinin çoğunda, bir parçanın belirli bir operasyonu 

birden fazla makinede işlenebilmektedir. Bu opsiyon göz önüne alınan sisteme (örn., 

atölye tipi üretim sistemi) esneklik katmaktadır. Esneklik bir taraftan üretim 

süreçlerini rahatlatan alternatif parça rotaları sağlarken diğer bir taraftan da parça-

makine seçimlerinde (örn., en uygun parça rotasının seçimi) karmaşıklığa sebep 

olabilmektedir. Etkinliğin ve verimliliğin artırılması için, üretim sistemleri esneklik 

göz önüne alınarak çizelgelenmelidir.  

Ele alınan çalışmanın amacı, bir dinamik esnek atölye tipi üretim ortamında olurlu en 

iyi parça rotalarının üretilmesini sağlayan bir sistem geliştirmektir. Bu amaçla, bir 

dinamik esnek atölye tipi üretim ortamında, sırasıyla hem her bir parça için olurlu en 

iyi proses planı hem de her bir operasyon için en iyi olurlu makinenin belirlenmesi 

gerekmektedir. Bu bağlamda, her bir parça için en iyi parça proses planı ve sonra 

belirlenen parça proses planına göre her bir parçanın her bir operasyonu için uygun 

makinenin seçilmesini sağlayan genetik algoritma geliştirilmiştir. Geliştirilen 

algoritma çözüm metodolojisinin optimizasyon aşamasını oluşturmaktadır. Elde 

edilen makine-operasyon ikilileri, performanslarının tahmini amacıyla, kesikli olay 

sistem simülasyonu modeline beslenmiştir. Çalışmanın bu iki aşaması birbirini 

ardışık bir şekilde izlemektedir. Önerilen metodolojinin amacı tüm parçalar için 

toplam ortalama akış süresini minimize eden çözümü bulmaktır. Sonuçlar, amaç 

fonksiyonunun göz önüne alınan esneklik seviyesinin artan değerleri için iyileştiğini 

göstermiştir.      

 

Anahtar Kelimeler: Esnek üretim atölyesi çizelgeleme, genetik algoritma, benzetim 

optimizasyonu. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1. Introduction 

Scheduling is an important process in the planning and managing of manufacturing 

and service systems which deals with allocation of resources to tasks in a limited 

time period. Pinedo (2008) explains the scheduling in manufacturing systems as 

“Orders that are released in a manufacturing setting have to be translated into jobs 

with associated due dates. These jobs often have to be processed on the machines in 

a workcenter in a given order or sequence”.  

One of the most well known and studied problem is Job Shop Scheduling Problem 

(JSSP) in which finding optimum solution is still a challenging problem. JSSP deals 

with sequencing operations of a set of jobs on a set of machine which one is specific 

for an operation. If an operation can be processed at more than one machine, the 

problem converts to Flexible Job Shop Scheduling problem (FJSSP). FJSSP deals 

with two sub-problems. One of them is assigning operations to machines selected out 

of alternative machines and the other one is sequencing of operations on each 

machine. So, FJSSP becomes more difficult to find a feasible solution due to 

consider these two sub-problems (Zhang, et al., 2011).  

JSSPs and FJSSPs are handled with different forms of parameters and in varied 

scheduling environments. Scheduling environments can be classified into two main 

categories as static and dynamic. In the static scheduling environment, all shop 

parameters are predetermined and already known. All jobs are released to the shop 

floor at once and, jobs’ processing times are known at the beginning. In the static 

scheduling environment, jobs’ processing times can be defined either deterministic or 
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stochastic. In the dynamic scheduling environment, jobs are released to the shop 

floor constantly. Processing times are to be uncertain and unexpected events such as 

machine breakdowns and/or preemptions can occur at an arbitrary point in time. 

Numerous methods has been proposed to cope with sequencing and scheduling 

problems to date. These methods can be classified into two main categories: (1) 

Exact and (2) Approximation methods (Bondal, 2008). Exact methods, such as 

branch and bound, linear programming and integer programming have been 

developed to small-sized problem and guarantee global optimum. However, 

analytical methods cannot find the optimum when the problem size increased. 

Therefore, a large part of studies pay attention to approximation methods such as 

heuristics and artificial intelligence techniques to cope with large-sized problems. 

They could produce reasonably good schedules in a reasonable computational time, 

and could get near optimal solution easily (Zhang, et al., 2011). The intelligent 

optimization algorithms such as genetic algorithm (GA), particle swarm optimization 

(PSO) and ant colony (ACO) are relatively easy to implement and they could 

conveniently be adapted for different kinds of scheduling problems. For this reason, 

they become progressively popular in recent years (Zhang, et al., 2010).  

GA is one of the most used meta-heuristic algorithms and has been applied 

successfully in the area of scheduling. GA is developed by John Holland in 1960s, 

and David Goldberg who is the one of his student, is applied a GA to the control of 

gas-pipeline transmission successfully (Yamada, 2003). In recent years, GA is 

applied to the FJSSP successfully with different GA procedures and hybrid 

approaches (Kacem, et al., 2002, Pezzella, et al., 2008, Zhang, et al., 2011). 

In spite of being a powerful method to solve wide range of scheduling problems, 

GA's usage for solving real life problems is inadequate. This inability can mainly 

attributed to uncertainties in the structure of real-life problems. In this case, other 

approaches which successfully consider the uncertainties of real life problems should 

also be taken into account together with meta-heuristics.  

In general, real life systems are often said to be probabilistic and models of such 

systems are known to be probabilistic models as well. It is well known that 

simulation is an indispensible tool for analyzing such complex real life systems. 

Also, more recently simulation together with meta-heuristics is an appropriate tool 
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optimizing such complex systems. Fu (2002) reported that optimization and 

simulation is become more popular and there is a large body of research literature 

relevant to combining them. Simulation optimization helps to find the values for the 

input parameters while optimizing the performance of the considered system 

(Medaglia, 2000).  

1.2. Aim of the Thesis 

The main purpose of this study is to develop an effective methodology for 

minimizing total average flow time of all parts in a dynamic and stochastic FJSSP. 

Achieving an optimal or near optimal solution is a challenging problem when 

considered system dynamic and stochastic. While meta-heuristic algorithms have 

been applied for static scheduling problems successfully, the complexity of the 

problem increases as the size of the problem increases. This thesis proposes a 

simulation optimization methodology to  cope with the solution complexity of the 

dynamic and stochastic FJSSP regardless of the size of the problem. As the name 

suggests, the proposed methodology is composed of two consecutive stages; (1) 

Simulation, and (2) Optimization. Owing to simulation stage the complexity of the 

real life problem can be easily modelled. Besides, owing to optimization stage, 

various combinations of input variables can be generated to be tested in simulation 

model of the real system. By this way, obtaining high quality solutions in a 

reasonable solution time is aimed.        

In optimization stage, a GA is needed for optimization phase of the proposed 

method. For this purpose, a GA is developed for static stochastic FJSSP. The 

processing times are considered to be stochastic to make the problem more realistic. 

A full factorial design is utilized to evaluate the performance of the stochastic 

flexible job shop and investigate relationship between the considered factors (parts, 

jobs, operations, and flexibility). 81 experiments are generated to investigate all 

factor level combinations. 

Finally, the GA is adopted to dynamic and stochastic FJSSP and integrated with 

simulation. The integration of GA and simulation can be considered the most 

important part of the study. GA accounts for optimization phase of the simulation 

optimization methodology. Then the outputs of the GA are fed into the simulation as 

inputs to estimate the performance of the system.  
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1.3. Outline of the Thesis 

In the context of this thesis, different types of FJSSP is considered. First, a GA is 

adapted to solve the general FJSSP and then adapted for use in different type of 

scheduling environments. The detailed explanation is given below. 

First, a GA is proposed to solve static deterministic FJSSP. Initial population is 

generated by mixed initial strategies and, various crossover and mutation procedures 

are applied. The algorithm is tested with most used benchmark problems in the 

literature.  

Then, static deterministic FJSSP is converted to static stochastic FJSSP type. Here, 

processing time is sampled from predetermined probability distribution. An 

experimental design is composed to evaluate the impact of flexibility level to the 

shop performance.  

Finally, the system considered as dynamic stochastic FJSSP. The operation 

processing times are considered to be random in order to represent real life problems 

more closely which is the same as in the second section. Additionally, to provide the 

system being dynamic, jobs arrive to the shop constantly. Thesis outline is organized 

as follows: 

A literature review of JSSPs and FJSSPs and background of scheduling problems are 

given in chapter 2. Applied methods and problem types are emphasized briefly. The 

problem definitions of JSSP and FJSSP are provided here. Shop configurations and 

scheduling environments are explained and the most commonly used objective 

functions are given. The most commonly used scheduling approximations in the 

literature and the general information about the methodologies used in our study is 

given chapter 3.  

In chapter 4, the FJSSP is solved by using GA.  The detailed explanations of the 

main framework of the GA and the procedures for GA are given. The algorithm is 

tested with well known benchmark problems from the literature and the results are 

given in this section. Afterwards, an experimental design is utilized for stochastic 

FJSSP. The problem statement and the GA are explained and the results of the 

analysis are given in this section. 

Finally, simulation optimization methodology for dynamic FJSSP is presented in 

chapter 5. System characteristics and problem definition together with the 
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methodologies for simulation optimization is given. Computational results are also 

given in this section. 

Chapter 6 contains the conclusions and the recommendations for future studies.       
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CHAPTER 2 

LITERATURE REVIEW AND BACKGROUND 

 

 

JSSP is studied in a great number of researches for several decades. Due to large 

number of studies, studies after millennium are reviewed. Therefore, the most recent 

methods, problem types and problem environments were taken into consideration. In 

this respect, a comprehensive review of JSSP and FJSSP literature are given, 

respectively. 

2.1.  Review of Job Shop Scheduling 

Most of the JSSPs are handled in a static environment with known processing times, 

and ignored machine breakdowns or unexpected events.  

Chong, et al. (2006) handled the JSSP as deterministic JSSP. There are a set of 

machines and a set of jobs. Each job has a pre-determined operation sequence. And, 

each operation can be processed on a determined machine within a processing time 

period. The objective function is to minimize the makespan (Cmax) and a disjunctive 

graph is used to represent the JSSP. They proposed a honey bee colony algorithm to 

solve JSSP. The honey bee colony algorithm is tested on 82 benchmark problems. 

They used Ant Colony (ACO) and Tabu Search (TS) algorithm to compare their 

algorithm. Their algorithm is found to be comparable to ACO, but TS is found to be 

more efficient. 

Sha, et al. (2006) used a hybrid PSO for deterministic JSSP. They used Giffler and 

Thompson's heuristic to decode a particle position into a schedule. TS is also applied 

for comparison purposes. All considered heuristics are applied to same set of 

benchmark problems. The computational results showed that the hybrid PSO 

performs better than the general PSO and the other traditional meta-heuristics.  
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Lian, et al. (2006) is used PSO to solve deterministic JSSP with some new algorithm 

operators. Makespan (Cmax) is used as objective function. They used simulation to 

evaluate the algorithm with three instances. The results are compared with traditional 

GA. The results revealed that their algorithm is more efficient than the traditional 

GA.  

Zhang, et al. (2007) proposed a TS with a new enhanced neighbourhood structure for 

JSSP. This neighbourhood structure can obtain a new set of neighbour solutions by a 

small mutation to a given solution. The objective is to find a solution with a 

minimum makespan. The computational results show that their proposed TS gives 

better solutions than an estimation approach and an exact evaluation approach. 

Geyik, et al. (2004) investigated the parameters and strategies of tabu search such as 

initial solution, neighbourhood structure, tabu list, aspiration criterion, elite solutions 

lists, intensification, diversification and the number of iteration. Benchmark 

problems are solved with tabu search to test the parameters and strategies. 

Essafi, et al. (2008) solved deterministic JSSP using a genetic algorithm combined 

with an iterated local search heuristic. The minimization of the total weighted 

tardiness considered as objective function. Their study proved that using an iterative 

local search considerably enhanced the quality of genetic algorithms and decrease the 

role of the schedule builder.  

Lei (2008) proposed a Pareto archive particle swarm optimization and, the objective 

of the study is to minimize both makespan and total tardiness of jobs simultaneously. 

Pareto is an archive system which maintains optimal solutions to a multi-objective 

problem. Their proposed algorithm is tested on 18 benchmark problems and results 

showed that the algorithm performs better than a multi-objective particle swarm 

optimization. 

Zhang, et al. (2008) and Pan, et al. (2009) proposed a hybrid GA. Zhang, et al. 

(2008) constructed a schedule using a new full active schedule procedure based on 

the operation-based representation. A local search heuristic is used to improve the 

obtained schedules while getting away from local optimum. In the study, a new 

crossover operator, called the precedence operation crossover (POX) is used which 

maintains feasibility of schedule after the crossover. Pan, et al. (2009) used a hybrid 

GA and determined their problem to be no-wait JSSP. No-wait JSSP is a job shop 
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with a constraint that a job cannot wait between operations. A local search is applied 

to solve no-wait JSSP as a sub-problem in GA. Both studies’ results showed that 

hybrid GA performs better than general GAs.  

Roshanaei, et al. (2009) proposed a local search-based algorithm called variable 

neighbourhood search (VNS). In the study, set-up times are also considered which 

makes JSSP with sequence-dependent set-up times. Besides, the objective is to 

minimize makespan. VNS uses three advanced neighbourhood search techniques. 

The VNS achieved effective results in terms of computational time and solution 

quality than any other well known algorithms. 

Fığlalı, et al. (2009) proposed an ACO algorithm to solve general JSSP. ACO 

parameters are set by an experimental design on different sized and randomly 

generated JSSPs. The effect of ACO parameters to the job shop performance is 

investigated by the results. The results revealed that, ACO parameters have a 

significant effect on makespan value.  

Manikas, et al. (2009) used GA to solve multi-criteria sequence-dependent JSSP. 

Apart from the literature, sequence-dependent setup times, staggered release dates 

(i.e., all jobs are not release to the system at the same time) and recirculation are 

included to JSSP. They used three criteria for objective function: makespan, 

earliness, tardiness and costumer and/or job rank. The fitness function is evaluated 

by using weights which are determined for each criterion. These weights are 

determined according to a manufacturer's needs. Due to being a novel problem in the 

literature, they did not have the chance to compare their solution quality with 

benchmark problems. Thus, an experimental design is used to test the different levels 

of the factors considered in the study. 

A hybrid immune simulated annealing algorithm is proposed by Zhang, et al. (2010) 

in which the objective is to minimize total weighted tardiness. This study focused on 

the bottleneck jobs which processing sequence have a significant effect on the job 

performance and these jobs needs more intensive optimization. A fuzzy inference 

system is designed for evaluating the bottleneck level to determine the bottleneck job 

distribution. The main logic behind using the fuzzy inference system is to take 

variety in job shops into account where critical jobs can be changed. Simulated 

annealing is used to determine solution space and the immune mechanism is applied 
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to increase the solution quality. Computational results showed that the proposed 

approach is effective and robust. 

Hybrid algorithms are studied in recent years progressively. Lian (2010) combined a 

local and global search while using PSO and to minimize the makespan. A local 

search is used to determine best position with the lowest fitness particle in the swarm 

in a particle (local search) and to find the best position of the whole colony (global 

search). Meeran, et al. (2011) combined GA and TS to solve a real life JSSP. First 

GA starts with a set of initial solutions and TS improves these solutions. Then, GA 

continues with the solutions obtained from TS. Cheng, et al. (2011) solved the multi-

objective JSSP with a two stage algorithm which combines a dispatching rule based 

memetic algorithm in the first stage and a re-optimization procedure of shifting 

bottleneck in the second stage. Zhang, et al. (2012) used a hybrid artificial bee 

algorithm where a tree-based local search procedure is embedded into bee algorithm 

to enhance the solution quality. All these studies showed that hybrid algorithms are 

much more effective than the pure ones. 

As clear from the above discussion, considerable amount of studies considered the 

JSSP as being static. In these studies, all jobs are ready at the beginning and random 

events are ignored. However, there are always random and unexpected events in real 

life systems (Fang, et al., 1997). To analyze real life problems accurately and 

reasonably these uncertainties should be considered.   

Yoshitomi, et al. (2003) used a GA and the Monte Carlo (MC) method for stochastic 

JSSP. Job processing times are considered to be random variables that have 

stochastic distribution functions and the objective functions. Thus, the objective 

function is specified as expected value of makespan. First, GA is applied to 

stochastic JSSP. Crossover operator based on Giffler & Thompson's algorithm 

(Giffler & Thompson, 1960) is applied. Then, the solutions with higher frequencies 

are selected as best solutions and, MC is applied to find optimum schedule among 

these best solutions. Results showed that this GA-MC method needs less time than 

MC. Similarly, Lei, et al. (2008) solved JSSP with stochastic processing time using 

GA. Processing times are sampled from normal distribution. A new permutation-

based representation method is used and the objective function is to minimize the 

makespan. 
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Gu, et al. (2009) proposed a new Quantum GA to solve stochastic JSSP with the 

objective of minimizing the expected value of makespan. The processing times of 

each job is sampled from normal distribution. Gu, et al. (2009) proposed a new 

parallel quantum GA. This new scheduling algorithm provides high convergence 

performance to either optimum or near optimum for stochastic JSSP. Gu, et al. 

(2010) proposed a competitive co-evolutionary quantum GA. New strategies called 

competitive hunter, cooperative surviving and the big fish eating small fish are 

developed in population growth process. The results revealed that this algorithm 

provides better performance than both quantum based GA and standard GA. 

Fuzzy processing time and fuzzy due date are studied by Hu, et al. (2011) using 

differential evolution algorithm. A special fuzzy number defined for processing times 

and due dates. Then, the analytical formulas are determined for these objective 

functions. A fuzzy ranking concept is used to investigate the relation between fuzzy 

completion time and fuzzy due date. According to the experimental design results, 

this method is found comparable with state-of-the-art methods. The smallest 

makespan found in this study is not the best but reasonable for due dates of each 

jobs.  

Lei (2011a) and Lei (2012) used interval theory (a special fuzzy number) to 

determine processing times for JSSP. Lei (2011a) applied a population based 

neighbourhood  search (PNS) to find minimum interval makespan. It is reported that 

sometimes it can be difficult to determine an appropriate membership function or a 

probability distribution. That is why, interval theory is used in this study. The 

proposed algorithm is compared with particle swarm optimization with genetic 

operators (GPSO) and Simulated Annealing (SA). The results showed that the PNS is 

better than GPSO and SA. Lei (2012) used operation-based GA with interval theory. 

These studies claimed that interval theory is more easier to obtain interval processing 

time and to build schedule.   

Lei (2011b) dealt with stochastic JSSP considering random breakdowns and repairs. 

GA is used to solve this problem and the objective is to minimize the stochastic 

makespan. Processing times and machine breakdowns are assumed to be random 

variables with exponential distribution. Random key representation is used to cope 
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with random events. It is reported that the proposed GA gives successful results for 

stochastic JSSP. 

A multi-objective stochastic JSSP with exponential distribution is investigated by Lei 

(2011c). The study deals with two objective function: makespan and total tardiness. 

An effective ordered operation-based GA is proposed. Successful results are obtained 

with adopting a simplified external archive updating strategy and an efficient 

crossover. 

A hybrid differential evolution algorithm Zhang, et al. (2012) and a two stage hybrid 

PSO Zhang, et al. (2012) used for stochastic JSSP with expected total tardiness 

objective function. Both of these studies, at first stage, applied meta-heuristics to 

stochastic JSSP with independent random variables with known expectation (E(pjk)) 

and variance (var(pjk)) where j denotes to jobs and k denotes to machines. At second 

stage, simulation is used to find optimum solution among a set of best solution 

obtained from the first stage.  

The studies mentioned above are all related to static and/or stochastic JSSP. Besides 

them, some studies are handled dynamic and/or stochastic JSSP to represent real life 

problems more closely. Zhou, et al. (2009) studied ACO to measure it's performance 

in a dynamic JSSP. Processing times, release dates and the job routes are generated 

randomly with different ranges. ACO is tested in different levels of machine 

utilization, different processing time distributions and different performance 

measures. These performance measures are determined as mean flow time, mean 

tardiness and total throughput. Different dispatching rules are applied to compare 

each other. These are FIFO, SPT and MST (minimum slack time). The 

computational results showed that ACO can perform well when the machine 

utilization is low and, when the variation of processing times is small. 

Zandieh, et al. (2010) proposed a variable neighbourhood search (VNS) to solve 

dynamic JSSP with random job arrivals and machine breakdowns. The objective of 

the study is to minimize the mean flow time. The time between arrivals, mean time 

between failure and the mean time to repair are set as exponential distribution. The 

parameters of VNS are adjusted at any rescheduling point by Artificial Neural 

Network to increase efficiency and effectiveness. The proposed method compared 

with the SPT, FIFO and LIFO dispatching rules via simulation. And the results 
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showed that the proposed method performs better than the dispatching rules. Adibi, 

et al. (2010) studied an extended version of Zandieh, et al. (2010)'s study. A multi-

objective scheduling in a dynamic JSSP is presented and a VNS is used. A multi-

objective function composed of weighted makespan and tardiness is proposed. 

2.2. Review of Flexible Job Shop Scheduling 

Kacem, et al. (2002) applied two approaches to solve machine assignment problem 

and scheduling problem to minimize both makespan and total workload. First, they 

proposed an approach to assign each operation to a suitable machine while 

considering processing times and machine workloads called approach by localization 

(AL). Two assignment procedures are proposed for machine assignment. Assignment 

1 is proposed to select a job with minimum processing time. At the end of this search 

step, found processing time is added to each machine workload. Assignment 2 is 

implemented in the same way as in the Assignment 1 procedure jobs are selected at 

random. Therefore, different solutions could be obtained in each run of the 

algorithm. Initial solutions are obtained with mixing these assignment procedures. 

Second, a GA is applied to generate new solutions from initial solutions obtained by 

AL. The results showed that using AL with GA enables better solutions. Another 

study which uses Kacem, et al. (2002)'s AL algorithms is Pezzella, et al. (2008). The 

AL is used to find initial solutions. The Most Work Remaining, the Most Operation 

Remaining and random selection is used to sequence these initial solutions. 

Afterwards, they solved the problems by using GA with different crossover and 

mutation operators. Computational results, revealed that their algorithms perform 

better than the others.  

A combination of evolutionary algorithms and fuzzy logic is used to solve a Pareto 

optimality approach for FJSSP by Kacem, et al. (2002). Pareto optimality is a well 

known concept which related with multi-objective problems. Fuzzy logic is used to 

find a final set of near optimal solutions for selecting Pareto optimal solutions. After 

this step, AL and the controlled GA is used for resolution of the problem. The 

approach is tested with different problems by using simulation. The results showed 

that the proposed approach provides high quality solutions but does not guarantee the 

optimality. 
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Baykasoğlu, et al. (2004) presents a tabu search and grammars method to solve 

multi-objective FJSSP. The FJSSP data (part process plans, processing requirements 

and machine tool capabilities etc.) are represented by using context-free grammars. 

Later, the controls of the grammar is determined. Dispatching rules (Giffler & 

Thompson algorithm) are used to find feasible schedules. A selection probability is 

assigned to each machine according to processing times. FJSSP is solved by using 

tabu search algorithm. The authors claimed that using grammars simplifies solution 

complexity of the scheduling problems. 

PSO and SA are combined to solve multi-objective FJSSP by Xia, et al. (2005). PSO 

is used to assign operations to machines and SA is used to schedule operations on 

each machine. The objectives of the study are determined to be minimizing 

makespan, the total workload of machines and the workload of the critical machine. 

Each particle's fitness is evaluated by SA, which makes SA a sub-algorithm. The 

algorithm is compared with other studies' algorithms and the results showed that the 

proposed method is effective for FJSSP. 

Gao, et al. (2007) proposed a hybrid GA with multi-objective FJSSP. A local search 

procedure: bottleneck shifting is embedded to GA. The local search investigates 

neighbour solutions to improve each individual before added into the population. A 

two vector representation composed of machine assignment vector and operation 

sequence vector is used. The algorithm is tested by using simulation and, it is 

reported that according to the several computational results the proposed algorithm 

has superior performance than the other methods. 

Liouane, et al. (2007) proposed ant systems and local search for FJSSP. Initial 

solutions are obtained by mixing dispatching rules (SPT, FIFO, etc.) and random 

solutions. Tabu search is used to improve solution quality. The results proved that ant 

systems and tabu search hybridization can find optimal solutions in FJSSPs. 

Saidi-Mehrabad, et al. (2007) solved the FJSSP with sequence-dependent setup times 

by a two stage tabu search algorithm. Sequence-dependent setup time means that the 

setup depends on the previous processed operation on the machine. The first stage 

deals with the sequencing of operations and the second stage is related to selection of 

machines from alternative machine sets. Proposed algorithm is compared with 

branch and bound algorithm, and the computational results show that the proposed 
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algorithm dominates the branch and bound algorithm in terms of solution quality and 

time. 

Ant colony optimization method is used to solve FJSSP with routing flexibility and 

separable setup times by Rossi, et al. (2007). Each operation has a setup time period 

with two independent activities: (1) sequence-dependent setup, (2) sequence-

independent setup. The setup time which depends on the previous processed 

operation is called sequence-dependent setup time. However, the setup time which 

depends on the previous operation in the job routing is called sequence-independent 

setup time. First a disjunctive graph model and local search algorithm is applied to 

FJSSP with transportation and setup times, and combined them with selection of 

machines from alternative machine set. Afterwards, ACO is used to improve solution 

quality. The proposed method is found to be effective according to the benchmark 

problems. 

Fattahi, et al. (2007) modelled a mixed integer linear programming for small-sized 

FJSSP. This mathematical formulas are coded in a software which uses branch and 

bound algorithm. The small-sized problems can be solved by this model and good 

solutions are achieved. But, it is reported that it can be hard to reach optimum 

solutions for medium and large-sized problems with branch and bound algorithm. 

Consequently, the upper and lower bounds of medium and large-sized problems 

obtained by mathematical model. Afterwards, heuristics are used to solve medium 

and large-sized problems considering pre-found upper and lower bounds. An 

integrated approach (integrated approach with simulated annealing, ISA and 

integrated approach with tabu search, ITS) is applied. These integrated approaches 

consider the assignment and sequencing problems together. Four hierarchical 

approaches are applied to FJSSPs in the study. These are HSA/SA, HSA/TS, 

HTS/TS and HTS/SA. These hierarchical approaches solve the assignment and 

sequencing problems separately. HSA/SA solves the assignment problem with 

hierarchical approach and SA, and solves the sequencing problem with SA. HSA/TS 

solves the assignment problem with hierarchical approach and SA, and solves the 

sequencing problem with TS. HTS/TS is used for the assignment problem with 

hierarchical approach and TS, and solves the sequencing problem with TS. HTS/SA 

is applied to the assignment problem with hierarchical approach and TS, and solves 

the sequencing problem with SA. As a result, hierarchical approaches are found to be 
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better than integrated approaches; however none of these algorithms can found 

optimum solutions for medium and large scale size problems. Both HSA/SA and 

HSA/TS can reach optimum solutions for all small size problems and HSA/TS is 

found better than the others. For medium and large-sized problems, HTS/SA and 

HTS/TS perform better than the others. 

Zhang, et al. (2009) proposed PSO assigning operations to machines and sequencing 

of operations, and applied TS algorithm to schedule the problem according to the 

findings obtained from PSO. The objective is to minimize the makespan, the 

workload of the critical machine and the total workload of machines simultaneously. 

The PSO algorithm is hybridized by using GA procedures. A crossover is applied to 

update each particle. Additionally, a mutation procedure is also applied to enhance 

the diversity of each particle. An effective GA is proposed with different initial 

strategies by Zhang, et al. (2011). Global Selection (GS) where sum of the 

processing times of each machine are recorded and Local Selection (LS) where a 

machine with minimum processing time for each operation is selected are used to 

generate high quality solutions. Zhang, et al. (2009) and Zhang, et al. (2011) show 

that both the hybrid algorithms and local selections improve the solution quality.   

Zhang, et al. (2012) expanded the FJSSP with transportation constraints and bounded 

processing times. In the problem, transportation resources supposed to be available to 

transport a job from one machine to another machine. All the loaded/empty 

transportation times are defined as machine dependent. The objective of the study is 

to minimize the makespan and the storage time which is the total waiting time before 

and after each machine during the production. Earliest and latest starting times are 

defined as bounds. A GA with TS is used to solve this problem. GA is used to solve 

the assignment problem with transportation and TS is used for both finding and 

improving the appropriate sequence on each machine.   

As in JSSPs, FJSSPs can be defined as dynamic and stochastic FJSSPs. Gholami, et 

al. (2009) considered the breakdowns in FJSSP. An integration of GA and simulation 

is proposed for finding minimum expected makespan and minimum expected mean 

tardiness. GA is used for machine assignment problem and sequencing of operations. 

A simulator is used to evaluate the results obtained by GA. A breakdown algorithm 

where breakdowns are generated by exponential random numbers is embedded in 
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simulator algorithm. Al-Hinai, et al. (2011) used a hybrid GA for FJSSP with 

random breakdowns. The objective of the study is to minimize the effect of 

breakdowns on job shop performance. A two stage hybrid GA is proposed where at 

the first stage the makespan optimized with no expected disruptions and at the 

second stage the multi-objective optimized and the machine assignments and 

operations sequencing are integrated with the expected machine breakdowns. 

Rajabinasab, et al. (2011) proposed a multi-agent based approach in a dynamic 

FJSSP with alternative process plans. Each job has alternative process plans and each 

job can be processed on a set of alternative machines. Random job arrivals and 

random machine breakdowns considered. Several objective functions are considered 

for measurement of the performance such as flow time based performance measures 

and due date based performance measures. Two types of agents (job agents and 

machine agents) are considered in the study. Machine assignment and operation 

sequencing are performed through negotiation and coordination between these two 

agents. A manager agent is used to make the coordination between job agent and 

machine agent easier. This multi-agent based approach is compared with common 

dispatching rules by using simulation. The proposed approach performs better than 

the common dispatching rules. 

From the literature, it is apparent that FJSSP is much more complicated than the 

JSSP. Thus, FJSSP is studied less than JSSP. One of the main reasons for such 

complexity is FJSSP have to deal with both machine assignment and operations 

sequencing problems simultaneously. If a system is said to be flexible then it 

definitely becomes more complicated and difficult to solve. To tackle with this 

problem, both hybrid approaches and simulation-based approaches are found to be 

more useful and effective. Hybrid meta-heuristics are applied to static and stochastic 

problems generally. Simulation-based approaches with hybrid algorithms are 

encountered when the considered system dynamic.  

2.3. Shop Configurations and Scheduling Environments 

Shop configurations vary according to the machine types and their characteristics, 

production flow and number of resources. The most well known configurations 

defined in Pinedo (2008) are given in this section. 
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Single Machine Shop: There are only one machine to processed all jobs in the shop. 

Single machine is the simplest case of all possible machine environments and is a 

specific form of all other more complicated shop configurations.  

Parallel Machine Shop: Parallel machine is a generalization of the single machine 

model. Jobs can be processed on any one of the parallel machines. These machines 

are assumed to be identical. 

Flow Shop: There are m machines in series. Each job has to be processed on each 

one of the m machines. All jobs have to visit machines in the same order. If there are 

multiple parallel machines in one stage, the flow shop converts to flexible flow shop. 

In flexible flow shop, a job can visit one of these parallel machines. 

 Job Shop: There are m machines and each job has to be processed on each one of the 

m machines. In job shop, jobs can visit the machines in different orders. Therefore, 

there is a distinction between flow shop and job shop. A flow shop is a job shop in 

which each job visits the machines in the same order. 

Flexible Job Shop: Flexible job shop is a generalization of job shop. Each job can be 

processed on one of the alternative machines. Alternative machine set consists of 

identical parallel machines. 

In scheduling problems different type of scheduling environments are considered in 

the literature. These scheduling environments are classified into two main categories: 

static environment and dynamic environment.  

In static environments, all jobs release at the same time to the shop and all 

parameters are known in advance (Büyükköprü, 2005). Static scheduling problems 

can be handled with deterministic or stochastic parameters. In stochastic scheduling 

problem, some parameters can be defined as random with a probabilistic distribution. 

By this way, the problem reflects real life problems more closely. 

In dynamic environments, jobs arrive to the system constantly and, the finished jobs 

are moved out of the system as their completion of all operations. Similar to the 

static environments, dynamic environment can be considered to be either 

deterministic or stochastic. In static ones, job release times are known in advance. 

But in stochastic one, job release times sampled from a probabilistic distribution. 
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Random events such as machine breakdowns, repairs and due date changes may 

occur in dynamic environments (Ouelhadj, et al., 2009). Some characteristics are 

given in Table 2.1. 

Table 2.1 Characteristics of static and dynamic environment 

 Static 

Environment 

Dynamic 

Environment 

All jobs arrive at the same time  *  

Jobs arrive continuously  * 

Deterministic processing times * * 

Random processing times * * 

Machine breakdowns and repairs  * 

Unexpected events (i.e., Due date changes)  * 

 

Scheduling problems vary according to shop configurations and scheduling 

environments. One of the most well known problems is JSSP in the literature. JSSP 

and, an extension version of it, the FJSSP is handled in the next section. 

2.4. Problem Definition 

Scheduling is a decision-making process that is used on a regular basis in many 

manufacturing and services industries. It deals with the allocation of resources to 

tasks and sequencing tasks over given time periods. The goal of the scheduling 

problems is to optimize one or more objectives (Pinedo, 2008). 

In manufacturing systems, tasks usually refer to “jobs” and resources correspond to 

“machines”. In some cases, jobs have elementary tasks which are called “operations” 

(Baker, et al., 2009). Each job which has a known processing time has to be 

processed on a predefined machine in a given sequence. 

2.4.1 Job Shop Scheduling Problem 

Job shop scheduling problem is a well known and most studied problem in literature. 

In general, JSSP is denoted by n×m where n represents jobs and m corresponds to 

machines. Job j can be processed on machine i and, job i has its own predetermined 

route. The processing of job j on machine i is referred to as operation (i,j) and its 

processing time denoted by pij. General assumptions can be given as follows: 

 There are N jobs J={J1, J2,…,Jn} indexed by j. 

 There are M machines M={M1,M2,…,Mm} indexed by i. 



19 
 

 Operations {Oi1, Oi2,…,OiN} indexed by (i,j) can be processed on more 

than one machine. 

 Each job must be processed on each machine in a predefined 

operation route. 

 A machine cannot perform more than one operation at a time. 

 Pre-emption is not allowed. (Operation Oij can be processed on 

machine i without any interruption) 

 All jobs arrive at the same time t to the system. (t=0) 

 Consecutive operations of parts can be processed on the same 

machine. 

 The objective of JSSP is to find a feasible schedule with a desired 

objective function (i.e., minimization of makespan).   

Table 2.2 gives an example of JSSP which shows the allocated machines of each 

operation and operations’ processing times. For example, job 1 goes through 

machine 1, machine 3 and then machine 2,and the processing times of each operation 

is 4,5 and 3 respectively.  

Table 2.2. An example of JSSP 

Jobs Operations Machines Processing times 

1 1 1 4 

 

2 3 5 

 

3 2 3 

2 1 4 5 

  2 1 6 

  3 3 4 

2.4.2 Flexible Job Shop Scheduling 

FJSSP is a generalization of JSSP which represents real world manufacturing 

systems more closely. The main difference between JSSP and FJSSP is that one has 

to select a machine from a set of alternative machines for each operation in FJSSP. 

The other assumptions are similar to JSSP. 

FJSSP has n jobs and m machines. There are a number of operations for each job 

which are allowed to be processed on a set of alternative machines. Therefore, FJSSP 

deals with two sub-problems: one of them is selecting a machine for each operation 

from the alternative machine set and the other one is sequencing operations. 
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Table 2.3 gives an example which has 3 jobs and 5 machines, and the operations 

column shows all of the operations of each job Ji. Note that, each operation can be 

processed at one of the two alternative machines among five machines. From Table 

2.3, it is apparently seen that if an operation cannot be processed at a machine (i.e., 

infeasible), its processing time is represented by an asterisk.  The other cells in Table 

2.3 represent the processing times for all feasible operation & machine pairings. 

Table 2.3. An example of FJSSP 

Jobs Operations Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

1 1 2 * 4 * * 

 

2 * 5 * * 7 

2 1 7 * 3 * * 

 

2 * 10 * * 8 

 

3 * 6 * * 4 

3 1 * * 1 3 * 

 

2 8 * * 11 * 

 

2.5. Objective Functions in Scheduling 

The goal of manufacturing systems is scheduling of jobs on machines while 

achieving its objectives. The objectives can be defined by a manager or a researcher 

according to the problem types, shop configurations, etc.  

Most used objective functions are given as follows (Pinedo, 2008): 

Makespan: The makespan denoted by Cmax and is defined as the time when the last 

job leaves the system, i.e., 

                    

where Cj is the completion time of job j and n is the total number of jobs. The 

scheduler deals with minimizing the makespan. If each job has predetermined 

weights, where the weight of job j is wj, the objective is converted to total weighted 

completion time. Total weighted completion time is given as follows: 
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Flow time: The flow time for job j, Fj, is given by the time span between the 

completion time Cj and the ready time rj. The weighted completion time is 

corresponds to the weighted flow time (Metta, 2008).  

         

Mean flow time: The average of flow time of all jobs in a system is defined as the 

mean flow time (Metta, 2008). Number of jobs is denoted as n. 

       

 

   

 

Maximum Lateness: It measures the worst violation of the due dates. The objective 

of the schedule is to minimize the maximum lateness. The lateness of job j, Lj, can be 

found as, 

         

Where Cj is the completion time of job j and, dj is the due date of job j. The 

maximum lateness, Lmax is defined as, 

                   

Total Tardiness: The tardiness of job j, Tj, is defined as 

                                        

and the objective function is 

   

 

   

 

 

Suppose that different jobs have weights, where the weight of job j is wj. And, the 

total weighted tardiness can be given as    
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Number of tardy jobs, Uj, or weighted number of tardy jobs can be considered as 

objective function which is given as follows: 

 Number of tardy jobs: 

   

 

   

 

Weighted number of tardy jobs: 
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CHAPTER 3 

METHODOLOGY 

 

 

In this study a GA is used for FJSSP. First, GA is adapted to solve static FJSSP and 

tested with benchmark problems from the literature. Generated problems are solved 

by using proposed GA to analyze the shop performance with respect to the 

considered factors. Finally, optimization via simulation by GA is used to solve the 

dynamic and stochastic FJSSP. Here with dynamic it is meant that jobs arrive to the 

shop constantly, and with stochastic it is meant that the processing times are sampled 

form a probability distribution. Therefore, different approaches are used in the study. 

The general information about the most commonly used methods in the literature and 

the methodologies of the study are given in subsections.    

3.1. Scheduling Approximations 

Various scheduling methods have been applied to the JSSPs and FJSSPs in the 

literature. Scheduling methods can be classified as exact methods and approximation 

methods.  

Exact methods include some Operations Research methods such as Linear and 

Integer programming. These approaches were never accepted applicable for real life 

problems due to their failure to solve large size problems. Most successful results 

were obtained by Lagrangian Relaxation and branch and bound in this category 

(Martinis, 2003). Branch and bound finds exact value first by finding a feasible 

solution space in which the solution exists and then narrow down the search in the 

feasible solution space.  

Heuristics methods such as dispatching rules and neighbourhood search are found to 

be more useful for dynamic scheduling environments. These methods are common in
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real life applications which determine the sequence of jobs to be processed when the 

machines become available. Simulation can be used to evaluate the performance of 

dispatching rules. Pinedo (2005) gives the most common dispatching rules as 

follows: 

The Service in Random Order (SIRO) rule: The next job is selected randomly from 

jobs waiting for processing when a machine is become available. 

The Earliest Release Date first (ERD) rule: This rule minimizes the variation in the 

waiting times of the jobs at a machine which is known as First Come First Served 

rule.    

The Earliest Due Date first (EDD) rule: The job with the earliest due date is selected 

to be processed next when a machine become available. This rules’ objective is to 

minimize the maximum lateness. 

The Weighted Shortest Processing Time first (WSPT) rule: The job with the highest 

ratio of weight (wj)  over processing time (pj) is scheduled next when a machine 

become available. This rules’ objective is to minimize the weighted sum of the 

completion times, i.e.,       
 
   . If the all weights are equal, the WSPT rule 

converts to the Shortest Processing Time first (SPT) rule. 

Other dispatching rules are summarized in Table 3.1. 

Table 3.1 Summary of other dispatching rules 

Rule Abbreviation Objectives 

The Longest Processing Time 

first 

LPT Load Balancing over Parallel 

Machines 

The Shortest Setup Time first  SST Makespan and Throughput 

The Least Flexible Job first LFJ Makespan and Throughput 

The Critical Path CP Makespan  

The Largest Number of 

Successors 

LNS Makespan  

The Shortest Queue at the Next 

Operation 

SQNO Machine Idleness 

TS and SA are the heuristic methods which are known as neighbourhood search 

methods. These algorithms start with an initial schedule and try to obtain a better 

schedule with small changes among neighbours. Afterwards, the algorithm accepts or 

rejects the new schedule depending on an objective function. This procedure 
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continues to find the best schedule iteratively. Schedule representation, 

neighbourhood design, search process and acceptance/rejection criterion are the 

most important processes (Pinedo, 2008). 

Simulated annealing and tabu search algorithms together with notations are given as 

follows: 

Sk: a current schedule in k
th 

iteration 

S0: best schedule found so far 

G(Sk): objective function value of Sk 

G(S0): objective function value of S0 

Sc: a candidate schedule selected from the neighborhood 

              
           

  
  : probability of a move from Sk to Sc 

βk: cooling parameter  

Simulated Annealing 

1. For i= 1 to N 

 1.1. Select an initial schedule S1 and β1 

         Set S0 = S1 

 1.2. Select a candidate schedule Sc from the neighbourhood  

  1.2.1. if G(S0)< G(Sc)< G(Sk) then Sk+1 = Sc and go to step 1.3 

 1.2.2. if G(Sc)< G(S0) then S0 = Sk+1 = Sc and go to step 1.3 

 1.2.3. if G(Sc)< G(Sk) then generate a random number Uk from a 

Uniform(0,1) distribution 

   1.2.3.1. if Uk ≤          then Sk+1 = Sc  else Sk+1 = Sk  and go to 

step 1.3 

1.3. Select βk+1 ≤ βk 

       1.3.1. k = k + 1 

       1.3.2. if k = N then STOP else go to Step 1.2   

Tabu Search 

1. For i= 1 to N 

 1.1. Select an initial schedule S1 and β1 

         Set S0 = S1 

 1.2. Select a candidate schedule Sc from the neighbourhood  

  1.2.1. if the move Sk → Sc is prohibited by a mutation on tabu list then 

set Sk+1 = Sk and go to step 1.4 

  1.2.2. if the move Sk → Sc is not prohibited by a mutation on tabu list 

then set Sk+1 = Sc and enter reverse mutation at the top of the tabu list 

  1.2.3. Push all other entries in the tabu list one position down and 

delete the entry at the bottom of the tabu list 

 1.3. if G(Sc)< G(S0) then S0 = Sc and go to step 1.4 

 1.4. k = k + 1 

       1.4.1. if k = N then STOP else go to Step 1.2 

 



26 
 

In recent years meta-heuristics become more popular for solving sequencing and 

scheduling problems. Meta-heuristic algorithms inspired by natural life (i.e., ACO, 

BA, Artificial Immune System (AIS) and PSO).  

One of the most common meta-heuristic, GA which is inspired by Darwin’s 

evolutionary theory is used in this study. The details of the general GA is given in 

subsection 3.1.1. 

3.1.1 Genetic Algorithm 

GA is a population-based algorithm which consists of individuals. Each individual 

corresponds to a chromosome which holds genes. Each individual is evaluated by its 

fitness. Selection, crossover and mutation are the most important procedures of GA. 

These procedures apply iteratively and each iteration called generation. New 

generation consist of offspring (children) using two parents selected from current 

generation (Pinedo, 2008). General GA pseudo codes are given as follows.          

General Genetic Algorithm 

1. For i= 1 to N 

 Generate initial schedules S1…..Sn 

 Evaluate fitness of each individual (fi) 

2. For i= 1 to N   

    2.1. Select two parents S1 and S2 form current generation  

  2.1.1. Apply crossover and set the changes as offspring (C1 and C2) 

  2.1.2. Apply mutation to offspring and set the changes as offspring   

3. For i= 1 to N   

 Evaluate fitness of each offspring (fi) 

4. Select the best m new individual and place with worst m individual in the current 

generation 

4.1. k=k+1 

  if k=max iteration then STOP else go to Step 1.2 

 

3.1.1.1 Representation 

Deciding how the problem will be represented with a string of symbols known as 

genes is the first step in GA. This string itself is the information about the solution. 

The representation is usually formed with binary, real-valued or integer-valued 

arrays. Binary encoding occurs by 1-0 strings and needs more memory space while 

computing (Figure 3.1). Integer encoding contains real values that represent the 

solution. For example, a string can be composed of job numbers or operation 
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numbers. The most important thing in the representation is construction of a structure 

that maintains the feasibility after the generation of new individuals. Most of the 

studies used integer encoding for combinatorial optimization problems (Innani, 

2004).  

1 1 0 1 0 0 1 1 0 1 

Figure 3.1 A binary chromosome representation 

3.1.1.2 Fitness Function 

Each individual’s fitness is evaluated by an objective function, i.e. makespan, which 

is used for comparison purpose with other individuals. According to the this 

comparison results an individual survives or deaths. The objective function is 

converted into each individual’s fitness.   

3.1.1.3 Selection 

Selection is an important procedure to choose individuals for reproduction according 

to their fitness. All selected, select all but protect the best individuals, select the 

worst individuals, select the best individuals, roulette wheel selection, ranking and 

the tournament selection are some of the selection strategies. All individuals are 

selected for reproduction in all selected strategy. Select all, but protect the best 

individuals strategy selects the all individuals except the best individuals for 

reproduction. The best individuals are transferred to the new generation directly. 

Select the worst individuals strategy selects the worst individuals for reproduction 

and tries to improve them. Best individuals are protected. The worst individuals are 

selected according to a threshold value which is calculated from the fitness values of 

all individuals. Select the best individuals are similar to the select the worst ones. It 

selects the best individuals for reproduction (Chen, et al., 1999). The roulette wheel 

strategy selects the individuals according to a proportional to their fitness. Selection 

probability is determined according to the ratio of its fitness value to the total 

population fitness. The individual with high fitness has a high selection chance 

(Innani, 2004). Tournament selection selects n individuals randomly from the 

population and selects the best individual among these n individuals. Ranking 
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method orders the individuals according to its fitness and assigns a rank to each 

individual. Individual is selected according to its rank (Pezzella, et al., 2008).  

3.1.1.4 General Crossover Procedures 

After selecting the individuals for reproduction, crossover procedure begins. 

Crossover is applied using two individual by a crossover operator to generate new 

offspring (child). Crossover procedure can be applied as one-point crossover or 

multiple-point crossover. In one-point crossover, a point is selected randomly. From 

starting to this point of the chromosome is copied to the first offspring and remaining 

part of the chromosome is copied to the second offspring. And the vice versa is done 

for the second chromosome. In the two-point crossover procedure, the string between 

the two points is copied to the first offspring, and the remaining parts are copied to 

the second offspring.  

Uniform crossover operator (Figure 3.2) creates the offspring by selecting a gene 

from the parent chromosome randomly. 

There exist variety of crossover operators in the literature such as partially mapped 

crossover, order based crossover, cycle crossover, precedence preserving order based 

crossover (POX). Crossover operators must be selected according to the form of the 

representation.    

Parent 1   Parent 2 

1 0 0 0 1 1 0 1 1 1 

 

Offspring 

Figure 3.2 An example of uniform crossover operator 

 

3.1.1.5 General Mutation Procedures 

Mutation procedure is applied to create variability in the population and to keep 

diversity of the population. Mutation is usually applied to a single chromosome by 

exchanging a string position or a value of a string with a small probability. There are 

several mutation types such as insertion, displacement, reciprocal exchange and 

1 1 0 1 0 0 1 1 0 1 

1 1 0 0 0 1 1 1 1 1 
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scramble mutation. For example, the inversion mutation (Figure 3.3) selects two 

positions randomly and exchanges these two positions (Innani, 2004). 

Before mutation 

After mutation 

Figure 3.3 An example for inversion mutation  

3.2. Simulation Optimization 

Simulation is a powerful tool when integrated with other approaches in a wide range 

of application areas. In this study, an optimization model integrated with simulation 

is proposed for dynamic and stochastic FJSSP. Details of the proposed approach are 

given in Section 5.      

Simulation is used to model of the operation of a real world process or system over 

time. Simulation helps to analyze the effects of changes to the existing system or to 

predict the performance of a new system (Banks, et al., 2010). It is easy to model the 

system more close to the real system without simplifying assumptions (i.e., 

deterministic processing times, deterministic interarrival times). Simulation enables 

to compare the different alternative strategies and analyzes the effect of these 

strategies to the system performance. 

A system considered to study is represented by a simulation model. Entities, 

attributes and activities are the components of a model. 

Simulation models can be classified mainly as static or dynamic, deterministic or 

stochastic, and discrete or continuous. Static simulation model represents a system at 

a certain point in time. Dynamic simulation model represents a system that changes 

over time. If simulation model doesn't contain random variables, it is called 

deterministic simulation model. The stochastic simulation model possessed one or 

more random variables as input. State variables change only at a discrete set of points 

in time in discrete simulation model. And, in the continuous simulation model, state 

variables change continuously over time (Banks, et al., 2010). 

Many real life problems do incorporate uncertainty and result in uncertain solutions. 

This type of systems are said to be probabilistic and models of such systems are 

1 1 0 1 0 0 1 1 0 1 

1 1 1 1 0 0 1 0 0 1 
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known to be probabilistic models as well. Simulation is an indispensable tool for 

analyzing such systems. One of the limitations of simulation models in general is that 

they basically act as “black boxes” — they can only evaluate the model for the 

decision variables that are pre-specified. Thus, to use a simulation model for 

evaluating the performance of a process, one must first set the values of decision 

variables and then run a simulation to forecast the performance of that particular 

configuration. Adjusting true values of decision variables manually to get optimality 

gives rise to boredom and dissipation of time even for small problems. Moreover, it 

is often not clear how to adjust the decision variables from one simulation run to the 

next. In such cases, finding an optimal solution for a simulation model generally 

requires that you search in a heuristic or ad hoc fashion. This usually involves 

running a simulation for an initial set of decision variables, analyzing the results, 

changing one or more variables, re-running the simulation, and repeating this process 

until a satisfactory solution is obtained. As implicitly mentioned above, simulation 

itself can not automatically adjust the decision variables so as to reach an optimum 

solution. This was one of the main problems of simulation which left large scale 

models unresolved in the past.  

Simulation modelling can require too many trial and error processes in many 

complex and uncertain systems. Therefore, using simulation can be very time 

consuming and it can be hard to achieve robust and efficient results. Using an 

optimization method with simulation experiments can be very challenging to cope 

with complex and uncertain systems (Paris, et al., 2001). 

In parallel with the developments in simulation world, the techniques of optimization 

have evolved in a dizzying speed since 1990s. Particularly, after millennium, 

developments in the area of optimization have allowed for the creation of intelligent  

search methods capable of finding optimal or near optimal solutions to complex 

problems involving elements of uncertainty. Often, optimal solutions can be found 

among large sets of possible solutions even when exploring only a small fraction of 

them. But, it must be stated that increasing the number of decision variables 

increases the solution complexity of optimization via simulation methodology. Even 

with limited number of decision variables optimization via simulation is much more 

difficult than deterministic optimization setting due to inherent stochastic nature of 

simulation. For details readers can refer to (Banks, et al., 2010).  
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Although “simulation” and “optimization” each have distinguishing characteristics 

and are regarded as different disciplines in some cases it is a requirement that 

“simulation” and “optimization” should operate simultaneously. Until the end of the 

last millennium, optimization and simulation were kept pretty much separate in 

practice, even though there was a large body of research literature relevant to 

combining them (Fu, 2002). But, recent developments in both disciplines already 

herald a marriage between these two distinct disciplines. Moreover, in time, it 

already became a necessity to work hand in hand for these versatile disciplines (e.g., 

integration of optimization techniques into simulation practice). In the last decade, 

such cooperation appeared between well known optimization routines and simulation 

software packages. Nowadays, successful cooperations are made between 

commercial optimization routines (e.g., OptQuest, optimization technologies, Inc) 

and simulation software packages (e.g., Simio/Simio LLC, Arena/Rockwell software 

Inc.). The reader can refer to (Law, et al., 2000) for a list of other cooperation. 

OptQuest is known to be a standalone optimization routine that can be bundled with 

a number of commercial simulation languages. Briefly, OptQuest enhances the 

optimization capabilities of commercial simulation languages by searching optimal 

solutions to simulation models. 

In simulation optimization terminology different keywords for the terms related to 

inputs and outputs are used. They all express the same meaning either intentionally 

or inadvertently used. For convenience some favourite sample naming for inputs and 

outputs from literature is given and then our naming convention in this study is 

given. The terms related to the inputs and outputs of a simulation optimization 

problem is well defined in Fu (2002) as follows:  

“In the literature, there is a wide variety of terms used in referring to the inputs and 

outputs of a simulation optimization problem. Inputs are called (controllable) 

parameter settings, values, variables, (proposed) solutions, designs, configurations, 

or factors (in design of experiments terminology). Outputs are called performance 

measures, criteria, or responses (in design of experiments terminology). Some of the 

outputs are used to form an objective function, and there is a constraint set on the 

inputs.”  

In his study Fu (2002) follows deterministic optimization common usage, and 

adopted “variables” and “objective function”, with the latter comprised of 
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performance measures estimated from simulation (consistent with discrete-event 

simulation common usage). In addition, he called “configuration” or a “design” as a 

particular setting of the variables. In this study, we adopt “decision variables” in 

referring to inputs and “objective function” in referring to outputs. In this respect, 

decision variables are to be process plan alternatives and alternative machines for 

each operation and objective function is to be total of average flow times.  

3.3. Experimental Design 

Experimental design provides a better understanding on experiment results. Factors 

are the input parameters and structural assumptions composed a model, and the 

responses are the output performance measures. The main issue is to determine 

which parameters and structural assumptions will be fixed aspects and which 

experimental factors are (Law, 2007). 

Experimental design methods are useful for evaluation and comparison the basic 

design configurations and selecting the design parameters. The factorial 

experimental design is useful when there are two or more factors. In general, all 

combinations of factor levels are taken into account. The analysis of variance 

(ANOVA) is the primary tool for statistical data analysis. Detailed information can 

be found in (Montogomery, et al., 2002).  

In the study, a four full factorial analysis is used to measure the effect of flexibility 

level on shop performance. The factorial design enables testing hypotheses 

concerning the effects of various levels of a factor and detection of interactions 

between factors by using ANOVA. The details of experimental design and results of 

analysis are given in section 4.4. 
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CHAPTER 4 

SOLVING THE FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY 

USING GENETIC ALGORITHM 

 

 

JSSP deals with sequencing operations of a set of jobs on a set of machine which is 

specific for an operation. Thus, JSSP is one of the most difficult optimization 

problems that are known to be NP-Hard (Garey, et al., 1976). FJSSP is an extension 

of the classical JSSP which makes the problem much more complex even NP-Hard.  

Each operation can be processed at more than one machine and operations can be 

processed in any order in FJSSP. FJSSP can be divided into two sub-problems: (1) 

the routing sub-problem that assigns each operation to a machine selected out of 

available machines set which is determined for each operation. (2) Scheduling sub-

problem deals with sequencing the assigned operations on all machines to achieve a 

feasible schedule (Zhang, et al., 2011). 

4.1. Problem Notification 

The problem is composed of N jobs Ji  (i=1,2...,N) and M machines (k=1,.....,M). 

Each job Ji composed of a number of operations Oij. FJSSP is formulated as follows: 

N Number of jobs 

M Number of machines 

T Number of total operations 

Pijk Processing time of operation Oij on machine k  

i Job index (i=1,.....,N).     

k Machine index (k=1,.....,M)    

j Operation index         

Oij The jth operation of job i.        

Ĵ The set of jobs     

Â The set of machines 
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Âij The set of alternative machines on which operation Oij can be  

processed (Âij    Â) 

Sk The start time of the idle time interval on machine k 

Ek The end time of the idle time interval on machine k 

Tbi The end time of ith job’s last operation processed 

Tmk The end time of the last operation on machine k 

 

Assumptions of FJSSP are given as follows: 

 All jobs are released at time 0, 

 All machines are available at time 0, 

 Each part has more than one operation,  

 Each operation can be processed on more than one machine. 

 Operations can be processed according to the precedence constraints. Oi(j+1) 

cannot be processed before Oij. 

 Operations’ processing times can be defined as deterministic or stochastic. 

 Pre-emption is not allowed. A machine cannot perform more than one 

operation at a time. 

 Consecutive operations of parts can be processed on the same machine. 

 The setup times and transportation times are not considered. 

The problem consist of two sub-problems: one of them is the selection of a machine 

from a set of alternative machines Âij for each job Ji and, the other one is sequencing 

operations Oij on the machines to obtain a feasible schedule.  

The objective is to find a schedule with minimum makespan, maximum completion 

time of jobs, Cmax={Ci | i=1,...,n.}.  

To explain the problem briefly, a small example is given in the Table 4.1. There are 3 

jobs and 5 machines, and the operation column shows all of the operations of each 

job Ji. Note that, each operation can be processed at one of the two alternative 

machines among five machines. From Table 4.1, it is apparently seen that if an 

operation cannot be processed at a machine (i.e., infeasible), its processing time is 

represented by an asterisk.  The other cells in Table 4.1 represent the processing time 

for all feasible operation & machine pairings. 
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Table 4.1 Operation processing time table with deterministic times of FJSSP 

Job Operation Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

J1 O11 4 * 6 * * 

 

O12 * 7 * * 5 

J2 O21 3 * 5 * * 

 

O22 * 10 * * 14 

 

O23 * 8 * * 4 

J3 O31 * * 8 11 * 

 

O32 7 * * 4 * 

 

Table 4.2 shows an example of FJSSP with stochastic times. Stochastic times are 

sampled from a probabilistic distribution. Triangular distribution is used in our 

analysis in order to represent real life problems more closely which is ignored to 

simplify the problem in most of the past studies. 

Table 4.2 Operation processing times with stochastic times 

Job Operation Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

J1 O11 Tria(2,4,6) * Tria(2,4,6) * * 

 

O12 * Tria(5,7,9) * * Tria(5,7,9) 

J2 O21 Tria(3,5,7) * Tria(3,5,7) * * 

 

O22 * Tria(10,12,14) * * Tria(10,12,14) 

 

O23 * Tria(4,6,8) * * Tria(4,6,8) 

J3 O31 * * Tria(8,10,12) Tria(8,10,12) * 

 

O32 Tria(6,8,10) * * Tria(6,8,10) * 

 

4.2. Proposed GA for FJSSP 

GA is a suitable and applicable method for scheduling problems. GAs start with an 

initial set of (random) solutions.  Primarily, a suitable chromosome structure must be 

constructed to represent a solution, that is, a schedule for the given FJSSP. The 

chromosomes evolve through successive iterations called generations (Moon, et al., 

2008). A GA is adapted to select the machines among alternative machine sets for 

each operations and sequencing operations in a suitable order for determined FJSSP. 

4.2.1. Chromosome Representation 

Representation of a problem solution is the first but the most significant step in GA. 

An individual can consist of more than one chromosome and a chromosome 

composed of genes. In the study of (Chen, et al., 1999), individuals consist of two 

chromosomes. The first part of the individual illustrates the routing policy of the 

problem and the second one illustrates the operation sequence on each machine. 



36 
 

(Gao, et al., 2008) divided chromosome into two strings which represents machine 

assignment and operation sequencing, respectively. In the study of (Zhang, et al., 

2011), the chromosome structure composed of two components where one of them 

stands for machine selection and the other one stand for operation sequencing, 

separately. 

In a great deal of studies it is emphasized that integer encoding is more effective than 

binary (0-1) encoding, because binary encoding needs more memory space and 

increases the computational time. Thus, an integer based coding system is adopted to 

represent the problem solution. The chromosome structure is considered to be 

composed of two parts: (1) machine assignment and (2) operation sequencing parts. 

The first part of the individual consists of an array of integer values which represents 

selected machine numbers for each operation. These machines are selected from a 

certain machine set which are specific for each operation. The second one depicts the 

sequence of operations which consist of job index i. Thus, total number of i’s placed 

on the operations sequence part of the individual should be equal to the total number 

of operations of job i (see Figure 4.1). Chromosome representation is depicted over a 

small example in Figure 4.1.  

Chromosome:      

                            Machine selection                           Operation sequence 

                        O11  O12  O21 O22 O23 O31 O32                    J3     J1     J1     J2     J3    J2    J2 

    1     5    3    2    5    4     1    +       3     1    1    2    3    2    2 

                                                       

                                                                                  O31 O11 O12 O21 O32 O22 O23 

              M1 M3 

O11 alternative machine set 

               M2    M5 

  O22 alternative machine set 

Figure 4.1 Chromosome structure of proposed GA 
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4.2.2. Decoding process 

The decoding process evaluates the objective function of each individual using the 

information obtained by each chromosome and generates a schedule. The makespan 

(maximum completion time of jobs) is determined to be the objective function and 

active schedule is taken into account while calculating the makespan. The steps for 

decoding a chromosome to a feasible schedule are given step by step as follows: 

Step 1:  

Generate a machine matrix and processing time matrix. Record machine numbers of 

each operations of each job from machine selection part of the chromosome to the 

machine matrix. And record processing times of each operation to the processing 

time matrix. In each matrix, rows correspond to jobs, and columns correspond to 

operations of each job (Figure 4.2).   

Machine matrix:  
  
   
  

     Processing time matrix:  
  
    
   

  

Figure 4.2 Machine and processing time matrix used in decoding process 

Step 2:  

Starts with reading the operation sequence part of the chromosome and in this way 

determine Oij. First, find the corresponding machine k for operation Oij from machine 

matrix. Then, find corresponding processing time Pijk from the processing time 

matrix for Oij at machine k. Next, find the ith job’s last operation’s Oi(j-1) ending time 

Tbi and determine the last operation’s ending time Tmk on machine k.  

If Tbi > Tmk then record an idle time interval. Assign Sk = Tmk  and Ek= Tbi,  update 

Tbi = Tbi + Pijk and Tmk = Tbi.  

Else if Tbi ≤ Tmk then look for an appropriate idle time for Oij . If there is an 

appropriate idle time and if Sk ≥ Tbi, assign Sk = Sk + Pijk  and update Tbi and Ek 

(Figure 4.3). If there is not an appropriate idle time  then assign Oij to the end of the 

last operation at machine k. Update Tbi as  Tbi = Tmk + Pijk and also update Tmk  

(Figure 4.4). Note that this procedure applies for each gene placed on the operation 

sequence part of the chromosome. 
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Figure 4.3 An example Gantt chart to set the operation into the idle time. 

 

 

 

 

 

 

 

Figure 4.4 An example Gantt chart to set the operation to the end of the machine. 

 

4.2.3. Initial Population 

In literature, it is recognized that mixed strategies increases the quality of the 

solution. (Zhang, et al., 2011) tested two different mixed strategies; 1)Global 

Selection, 2)Local Selection and also considered the random selection to account for 

randomness. They reported that these strategies improve the quality of the initial 

solutions.  

Due to the structure of the problem, proposed algorithm evaluates two sub-problems 

separately. First, it selects machines for each operation and then sequences the 

operations at each selected machine. In order to obtain more qualified solutions 

different strategies are combined while selecting machines. In this study, in addition 

to (Zhang, et al., 2011)’s strategies a new strategy which selects the machine with the 
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minimum workload is included. The motivation for including this strategy is to 

improve the quality of the initial solutions. The strategies and their details are given 

as follows:  

Strategy 1: 

Selecting a machine with minimum total processing time (Global Selection, (Zhang 

et. al., 2011)) 

1. For k=1 to M 

         // Set total processing times of machines equal to 0 

 end 

2. For j=1 to T 

       // Check alternative machines’ total processing times 

      2.1. If alternative machines’ total processing times are all equal 

             // Select a machine randomly among them 

             else 

             // Select a machine with minimum total processing times 

      2.2. // Add the operation’s processing time to the selected machine’s total 

processing times 

      end                      

end  

Strategy 2: 

Selecting a machine with minimum processing time (Local Selection, (Zhang et. al., 

2011)) 

1. For j=1 to T 

       // Check alternative machines’ processing times 

1.1. If alternative machines’ processing times are all equal 

      // Select a machine randomly among them 

     else 

     // Select a machine with minimum processing times 

     end                      

end  
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Strategy 3: 

Selecting a machine with minimum workload (number of jobs) 

1. For k=1 to M 

        // Set workload of each machine equal to 0 

 End 

2. For j=1 to T 

        // Check alternative machines’ number of workload 

      2.1. If alternative machines’ number of workload are all equal 

             // Select a machine randomly among them 

             else 

             // Select a machine with minimum number of workload 

      2.2. Assign Workload of selected machine = Workload of selected 

machine + 1 

             end                      

end  

Strategy 4: 

Selecting a machine randomly 

1. For j=1 to T 

       // Select a machine randomly for an operation 

 end  

4.2.4. Generation of new candidate solutions 

After generating initial solutions GA jumps to other steps. First, makespans of the 

initial solutions are evaluated. Hereafter, individuals are chosen for reproduction 

among the current population. And, chosen individuals are translated to the mating 

pool. In the literature, tournament approach is found to be more successful than other 

selection strategies (Pezzella, et al., (2008), Zhang, et al., (2011)). For this reason a 

tournament approach is utilized in this study as well. Two individuals are chosen 

randomly from current generation, and the best one among them is translated to the 

mating pool. 

4.2.5. Crossover 

Several crossover operators have been proposed for permutation representation, such 

as single-point crossover, cycle crossover, order crossover, and so on. (Gao, et al., 

2007) proposed a two vector permutation representation which considers the 

operations’ precedence constraint. (Gao, et al., 2008) applied order crossover to 

operation sequence chromosomes and used extended order crossover and uniform 

crossover to machine assignment chromosomes. (Zhang, et al., 2011) used two-point 
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crossover and uniform crossover for machine selection part and, precedence POX 

crossover for operation sequence part. 

Crossover operator is applied to machine selection part and sequencing part of the 

chromosome separately. POX crossover is used for sequencing part of the crossover 

(Figure 4.5). The steps of POX crossover is given as follows: 

POX 

1. Select two individual from mating pool randomly and set them as parent1 and 

parent2 

2. Determine two chromosomes as child1 and child2 

3. Generate a random number p[0,1] for each chromosome and determine a crossover 

probability pr 

 3.1. If p < pr then  

         //Copy the gene to the child1 from parent1 in the same position 

        Else 

  //Copy the gene to the child2 from parent1 in the same position 

  3.2. Copy the genes that are not found in child1 from parent2 and do the 

same for child2 

 

The uniform crossover is used for machine selection part (Figure 4.5). The steps of 

uniform crossover are given as follows: 

Uniform Crossover 

1. Select two individual from mating pool randomly and set them as parent1 and 

parent2 

2. Determine two chromosomes as child1 and child2 

3. Generate a random number p[0,1] for each chromosome and determine a crossover 

probability pr 

 3.1. If p < pr then  

         //Copy the gene to the child1 from parent1 in the same position 

        Else 

  //Copy the gene to the child2 from parent1 in the same position 

  3.2. Fill the empty genes in child1 and child2 from parent2  
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Parent 1            Parent 1 

 

O11 O12 O21 O22 O23 O31 O32 

   

  J3 J1 J1 J2 J3 J2 J2 

1 5 3 2 5 4 1 
   

3 1 1 2 3 2 2 

 

 

  

 

     

  

  

 

  

                 O11 O12 O21 O22 O23 O31 O32 

   

  J3 J1 J1 J2 J3 J2 J2 

3 5 1 5 5 3 4 

   

3 1 2 2 3 1 3 
 

 

  

 

  

    

  

 

 

 

 

                 O11 O12 O21 O22 O23 O31 O32 

   

  J1 J2 J2 J3 J1 J3 J3 

3 2 1 5 2 3 4 

   

1 2 2 3 1 3 3 

Parent 2                                                      Parent 2  

Crossover for machine selection part         Crossover  for operation sequence part 

Figure 4.5 Illustration of crossover operations  

4.2.6. Mutation 

Mutation operator exchanges one gene at a time according to a mutation probability 

pm to increase the variety of population. The decision whether to exchange each gene 

of the chromosome is dependent upon mutation probability. 

Two mutation operators are used in the study. One of the mutation operators changes 

a gene with another machine if there is a machine with shorter processing time than 

selected machine’s processing time in the alternative machine set. Otherwise, the 

gene should not be mutated. If there is more than one machine with shorter 

processing time, one of them is selected randomly (Figure 4.6).  
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Alternative  

machine set 

Before mutation                                                     

O11 O12 O21 O22 O23 O31 O32 
  

   
      1 5 3 2 5 4 1 

         

 

 

              

   

M2 M5 

           Processing time 6 7 

           

 

 

              O11 O12 O21 O22 O23 O31 O32 

  

   

      1 2 3 2 5 4 1 

         
After mutation                                                     

Mutation for machine selection part                       

Figure 4.6 Illustration of mutation operation which selects a machine with a shorter 

processing time  

In other mutation operator, the machine is exchanged with another machine from 

alternative machine set if a gene of the chromosome is determined to be exchanged 

according to the mutation probability. While doing this, alternative machine set 

should be taken into account carefully (Figure 4.7). 

In operation sequence part, two genes are selected randomly and their positions are 

exchanged (Figure 4.7). The crossover and mutation procedures save the feasibility 

of the chromosomes. Therefore, new chromosomes do not need to control the 

feasibility. They are also ready for the decoding procedure. 

Before mutation                                                                Before mutation 

O11 O12 O21 O22 O23 O31 O32 

  

  J3 J1 J1 J2 J3 J2 J2 

1 5 3 2 5 4 1 

  

3 1 1 2 3 2 2 

  

 

       

 

     
 

               

 
1 3 

           

  

 

             O11 O12 O21 O22 O23 O31 O32 

  

  J3 J1 J2 J1 J3 J2 J2 

1 5 1 2 5 4 1 

  

3 3 1 2 1 2 2 

After mutation                                                                   After mutation 

Mutation for machine selection part                              Mutation for operation sequence part   

Figure 4.7 Illustration of mutation operation for machine selection and operation 

sequence parts  



44 
 

4.3. Applying the proposed GA to Benchmark Problems and Computational 

Results 

The GA is tested with the Brandimerte's problem data set from literature 

(http://www.idsia.ch/~monaldo/fjsp.html) to understand how it works. The proposed 

GA is coded in Visual Basic® for Applications by Microsoft®. For convenience, the 

problem data sets are given in APPENDIX A.  

The initial population is generated by mixing of strategy1, strategy2, strategy3 and 

strategy4. As shown in Zhang, et al. (2011)'s study, mixed strategy gives the near 

optimal solution more quickly than the single ones. According to the preliminary 

runs, an initial population with 40% strategy1, 20% strategy2, 30% strategy3 and 

10% strategy4 gives the best solutions. Operations sequencing is selected randomly 

by considering the precedence constraint. After generating the initial solutions, 

predetermined number of individual is selected for reproduction. This parameter is 

determined as select size and, given in Table 4.3 for each problem instance. After 

reproduction, predetermined number of individual among new population, which is 

called number of exchanges, is translated to the current population. By the way, the 

population size for each problem instance is given in the same table. Other 

parameters of the GA is given in the below. The algorithm is run for five times for 

each instance and the best results among them are taken into account.  

Parameters of the GA 

Rate of initial strategy 1: 40%   

Rate of initial strategy 2: 20%   

Rate of initial strategy 3: 30%   

Rate of initial strategy 4: 10%  

Mutation probability: 0.01 

Number of iteration: 100-300 

The Brandimerte's problem data set (BRdata) consist of number of jobs between 10 

and 20 and the number of operations of each job changes between 5 and 15. Number 

of machines ranges between 4 and 15.  

Table 4.3 gives the computational results and the results of comparisons with other 

studies from literature. n×m column gives the number of jobs & number of machines 

http://www.idsia.ch/~monaldo/fjsp.html
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for each problem instance. Flex gives the average number of machines per operation. 

(LB, UB) column gives the best known solution, if it is known, otherwise, the lower 

and upper bound found so far. The maximum completion time, Cmax (makespan), is 

considered as the measure of comparison. If the best known solution is found, an 

asterisk (i.e., *) is indicated near the solution. The results are compared with three 

studies from the literature. M&G column is the results of the study of Mastrolilli, et 

al. (2000), GENACE is the results of  Ho, et al. (2004)'s study and the eGA is the 

results of Zhang, et al. (2011).     

Table 4.3 Computational results and comparisons 

Results of Brdata 
  

M&G GENACE eGA 
Computational Results and 

parameters 

Problem nxm T0 Flex LB, UB Cm Cm Cm 
Best 
Results 

Pop    
Size 

Select     
Size 

Num of 
Exchange 

Mk01 10x6 55 2,09 36, 42 40* 40* 40* 40* 100 50 20 

Mk02 10x6 58 4,01 24, 32 26* 32 26* 27 200 50 20 

Mk03 15x8 150 3,01 204, 211 204* N/A 204* 204* 50 20 10 

Mk04 15x8 90 1,91 48, 81 60* 67 60* 61 300 200 100 

Mk05 15x4 106 1,71 168, 186 173* 176 173* 176 300 100 100 

Mk06 10x15 150 3,27 33, 86 58* 67 58* 70 300 100 50 

Mk07 20x5 100 2,83 133, 157 144* 147 144* 144* 200 100 20 

Mk08 20x10 225 1,43 523 523* 523* 523* 523* 50 10 10 

Mk09 20x10 240 2,53 299, 369 307* 320 307* 315 300 100 100 

Mk10 20x15 240 2,98 165, 296 198* 229 198* 247 300 100 100 

From Table 4.3, the GA obtained the best known solutions in problems Mk01, Mk03, 

Mk07 and Mk08. However, in Mk02, Mk04, Mk06 and Mk09 approximate solutions 

to the best known solutions are obtained. The algorithm cannot achieve the best 

known solution for the Mk10 problem since it is being the most challenging problem. 

As a result, from Table 4.3, it is apparently seen that not best but promising solutions 

obtained with proposed GA. It should be mentioned that the solutions are obtained 

with small GA parameters. Therefore, it can achieve the near optimal solutions in a 

limited time which is important for integrated systems. 

4.4. Experimental Design and Analysis 

An experimental design is utilized to analyze the main and the interaction effects of 

the factors considered (i.e., Part number, machine number, operation number, and 

flexibility levels) by using GA which is specifically designed for FJSSP. Stochastic 

processing times sampled from triangular distribution are considered in the problem. 
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A four full factorial design is utilized to evaluate the performance of the shop and 

investigate relationships between the considered factors. The design includes three 

level of each number of parts, number of jobs, number of operations, and level of 

flexibility. Thus, 81 experiments are necessary (i.e., 3*3*3*3=81) to investigate all 

factor level combinations. Table 4.4 gives part × machine groups used in the 

experiments. Three levels of number of operations determined and are defined as 

low, medium, and high. Number of operations for each part is generated from 

uniform distribution. Parameters of uniform distribution are given in Table 4.5. 

Flexibility levels are adjusted according to the number of machines (Table 4.6).  

Table 4.4 Part × Machine Groups 

 

 

 

Table 4.5 Number of operation levels 

 

 

 

Table 4.6 Flexibility levels for each machine sizes 

 

Flexibility levels 

# machines 1 2 3 

5 2 3 5 

10 4 6 10 

15 6 9 15 

 

Data is collected on one performance measure to evaluate the performance of the 

stochastic flexible job shop. The selected performance measure is makespan. The 

# parts # machines 

10 5 

10 10 

10 15 

20 5 

20 10 

20 15 

30 5 

30 10 

30 15 

Operation levels Ranges 

low [3,5] 

medium [6,8] 

high [8,10] 



47 
 

experiments are performed using 20 replications of each treatment, thus minimizing 

the variability in the results. In addition, common random numbers are used between 

each experiment as another variance reduction technique.  

The main and interaction effects of all factors will be discussed for the performance 

measure considered (i.e., makespan) in subsequent section. α=0.05 was used in 

evaluating statistical significance. 

4.4.1.  Framework of the proposed GA for the Experimental Design 

GA starts with an initial solution. As mentioned before, three different initial 

strategies and random selection is used. Individuals are generated by using these four 

strategies with a fixed percentage of population size. Initial population is generated 

by 30% strategy 1 and 20% strategy 2, 30% strategy 3, and 20% strategy 4. Note 

that, strategy 1 and 3 have much percentage in the population because they can give 

different solutions in each run and help reaching better solutions more quickly 

(Figure 4.8). Strategy 2 finds solutions by selecting a machine with minimum 

processing time from alternative machine set of jobs. And the random selection 

(strategy 4) is added because it keeps up randomness and more general solutions. In 

Table 4.7, the best makespan values together with iteration number for each strategy 

are summarized. And, the GA parameters are adjusted according to the problem size.  

Table 4.7 Best makespans over five runs. 

Strategy Best makespan 

Iteration 

number 

1 47 30 

2 54 8 

3 44 80 

4 44 84 

Combined 44 16 
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Figure 4.8 Comparison between random strategy and combined strategy.  

Other GA parameters are given as follows: 

Population size: 100-250  

Number of iteration: 200-300 

Mutation probability: 0.01 

Selection type: Tournament approach 

4.5. Results of Analysis 

The analysis of variance results reported in Table 4.8 suggest that makespan 

performance of the shop is significantly affected by factors and some factor 

interactions.  

According to Table 4.8, it is seen that all main factors have significant effect on 

makespan performance at 0.05 significance level. It is interesting to observe some of 

the factor interactions do not have significant effect on makespan (i.e., Part Number 

* Machine Number * Flexibility Level, Part Number * Operation Number * 

Flexibility Level, Machine Number * Operation Number * Flexibility Level, Part 

Number * Flexibility Level, Operation Number * Flexibility Level, Part Number * 

Machine Number * Operation Number * Flexibility Level). Below a detailed 

analysis of these insignificant interaction effects will be given with their interaction 

plots, respectively. 
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Table 4.8 Analysis of Variance for Makespan 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 13179375,067 80 164742,188 1311,185 ,000 

Intercept 35739734,193 1 35739734,193 284452,869 ,000 

Part Number (A) 3910127,201 2 1955063,600 15560,369 ,000 

Machine Number (B) 3633461,242 2 1816730,621 14459,376 ,000 

Operation Number (C) 4057699,119 2 2028849,559 16147,632 ,000 

Flexibility level (D) 14392,624 2 7196,312 57,276 ,000 

AB 824532,732 4 206133,183 1640,616 ,000 

AC 384669,226 4 96167,307 765,396 ,000 

AD 416,988 4 104,247 ,830 ,506 

BC 293598,844 4 73399,711 584,189 ,000 

BD 3638,585 4 909,646 7,240 ,000 

CD 943,042 4 235,760 1,876 ,112 

ABC 54243,198 8 6780,400 53,965 ,000 

ABD 292,050 8 36,506 ,291 ,969 

ACD 323,958 8 40,495 ,322 ,958 

BCD 409,322 8 51,165 ,407 ,917 

ABCD 626,936 16 39,184 ,312 ,996 

Error 193365,780 1539 125,644 
  

Total 49112475,040 1620 
   

Corrected Total 13372740,847 1619 

   

a. R Squared = ,986 (Adjusted R Squared = ,985)  

 

  



50 
 

 

Figure 4.9 Interaction Effect of Part Number, Machine Number, and Flexibility 

Level on Makespan 

Interaction Effect of Part Number, Machine Number, and Flexibility Level on 

Makespan is given in Figure 4.9. From Figure 4.9, it is noticeable that the interaction 

between flexibility level and the other two factors (i.e., Machine number and part 

number) has no significant effect on makespan performance of the shop. From 

flexibility level&machine number and flexibility level&part number interaction 

graphs it is clearly seen that as the level of the flexibility increases only marginal 

improvements gained on makespan performance at different levels of other factors 

which makes part number, machine number, and flexibility level interaction effect on 

makespan insignificant. A wide range of insights can be gained by looking into 

machine number and part number interaction graphs. For example, by looking into 

machine number interaction graphs it is clearly seen that makespan performance of 

the shop improves as the level of machine number increases. Also, by looking into 

machine number and part number interaction graph it is seen that at low level of 

machine number the makespan performances of the shop significantly differ for each 

level of part number whereas for higher levels of machine number it is observed that 

the difference between makespan performances for each level of part number get 

much more closed. Another significant insight can be gained by analyzing part 

number and machine number interaction graph. In this graph it is observed that 

Part Number

300

200

100

Machine Number

Flexibility Level

321

321

300

200

100

321

300

200

100

Part

3

Number

1

2

Machine

3

Number

1

2

Flexibility

3

Level

1

2

Interaction Effect of Part Number, Machine Number, and Flexibility Level on Makespan



51 
 

setting the machine number at its low level makes the makespan performance of the 

shop much more sensitive to different levels of part number. Further insights can be 

gained by analyzing Figure 4.9 thoroughly. As a result, from the Figure 4.9, it is 

obvious that the best makespan performance can be gained for high levels of 

machine number together with low level of part number regardless of the flexibility 

level.     

 

Figure 4.10 Interaction Effect of Part Number, Operation Number, and Flexibility 

Level on Makespan 

Interaction effect of part number, operation number, and flexibility level on 

makespan is given in Figure 4.10. From Figure 4.10, it is noticeable that the 

interaction between flexibility level and the other two factors (i.e., Part number and 

operation number) has no significant effect on makespan performance of the shop. 

From flexibility level&operation number and flexibility level&part number 

interaction graphs it is clearly seen that as the level of the flexibility increases only 

marginal improvements gained on makespan performance at different levels of other 

factors which makes part number, machine number, and flexibility level interaction 

effect on makespan insignificant. A wide range of insights can be gained by looking 

into machine number and part number interaction graphs. For example, by looking 

into operation number interaction graphs it is clearly seen that makespan 
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performance of the shop deteriorates as the level of operation number increases. In 

addition to this, as the level of the part number increases, the makespan performance 

of the shop gets much more deteriorated for each level of operation number. Note 

that, as the level of part number increases, the gap between the makespan 

performances of the shop gets larger as the level of the operation numbers increases. 

Further insights can be gained by analyzing Figure 4.10 thoroughly. As a result, from 

the Figure 4.10, it is obvious that the best makespan performance can be gained for 

low levels of operation number and part number regardless of the flexibility level.     

 

Figure 4.11 Interaction Effect of Machine Number, Operation Number, and 

Flexibility Level on Makespan 

Interaction effect of machine number, operation number, and flexibility level on 

makespan is given in Figure 4.11. From Figure 4.11, it is noticeable that the 

interaction between flexibility level and the other two factors (i.e., Machine number 

and operation number) has no significant effect on makespan performance of the 

shop. From flexibility level&operation number and flexibility level&machine 

number interaction graphs it is clearly seen that as the level of the flexibility 

increases only marginal improvements gained on makespan performance at different 

levels of other factors which makes machine number, operation number, and 

flexibility level interaction effect on makespan insignificant. By looking into 

operation number interaction graphs it is clearly seen that makespan performance of 
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the shop deteriorates as the level of operation number increases. Also, it is apparently 

seen that at low level of machine number the makespan performances of the shop 

significantly deteriorates while increasing the level of operation number from low to 

high whereas for higher levels of machine number it is observed that the difference 

between makespan performances for each level of part number get much more 

closed. Further insights can be gained by analyzing Figure 4.11 thoroughly. As a 

result, from the Figure 4.11, it is obvious that the best makespan performance can be 

gained for high levels of machine number together with low level of operation 

number regardless of the flexibility level.  

 
 

Figure 4.12 Interaction Effect of Part Number and Flexibility Level on Makespan 

Interaction effect of flexibility level and part number on makespan performance is 

given in Figure 4.12. From figure 4.12 it is clearly seen that as the level of the 

flexibility increases only marginal improvements gained on makespan performance 

at different levels of part number which makes flexibility level and part number 

interaction effect on makespan insignificant. 
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Figure 4.13 Interaction Effect of Operation Number and Flexibility Level on 

Makespan 

Interaction effect of flexibility level and operation number on makespan performance 

is given in Figure 4.13. From figure it is clearly seen that as the level of the 

flexibility increases only marginal improvements gained on makespan performance 

at different levels of operation number which makes operation number and flexibility 

level interaction effect on makespan insignificant. 
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Figure 4.14 Interaction Effect of Part Number, Machine Number, Operation 

Number, and Flexibility Level on Makespan 

Figure 4.14 summarizes all of the discussions made above. It is apparently seen from 

the figure that flexibility level has negligible effect on makespan performance of the 

shop.  Makespan performance of the shop deteriorates  as the level of operation 

number and part number increases. Also, makespan performance of the shop 

improves  as the level of machine number increases.   
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CHAPTER 5 

APPLICATION OF SIMULATION OPTIMIZATION BY USING GA TO 

DYNAMIC FJSSP 

 

 

This part of the study presents an optimization via simulation approach to solve 

dynamic FJSSPs. The study deals with both determining the best process plan for 

each part and then finding the best machine for each operation in a dynamic FJSSP 

environment. In this respect, a GA is adapted to determine best part processing plan 

for each part and then select appropriate machines for each operation of each part 

according to the determined part processing plan. Genetic algorithm solves the 

optimization phase of solution methodology. Then these machine-operation pairings 

are utilized by discrete-event system simulation model to estimate their 

performances. These two phases of the study follow each other iteratively. The goal 

of methodology is to find the solution that minimizes total of average flow times for 

all parts. 

5.1. System Characteristics and Problem Definition 

Having flexibility option enables job shops to respond faster to various changes such 

as machine breakdowns, demand fluctuation and product mix. Due to its great 

flexibility on the shop floor and the efficiency of large volume production, the 

production scheduling and control in flexible manufacturing systems becomes very 

complex as the number of jobs, operations, parts and machines increases 

(Siwamogsatham, et al., 2004). System characteristics and definition of such a 

challenging problem is given below.  
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5.1.1. System Characteristics 

General job shop scheduling assumptions are applied here for the purpose of model 

standardization (Baker, 1974). The required parameters of the model are as follows:   

 Parts dynamically arrive to the shop and the arrival rate is exponentially 

distributed with a mean of 130 unit of time. 

 At each arrival only one part arrives at the system (i.e., no batches 

considered).   

 Jobs are released to the shop as soon as they arrive to the system. 

 FIFO dispatching rule considered in front of all machine queues.   

 There are N parts P={p1, p2,…,pN} indexed by j. 

 There are M machines M={m1,m2,…,mM} indexed by k.  

 Alternative process plans are predetermined for each part. 

 Operations {Oi1, Oi2,…,OiN} indexed by i can be processed on more than 

one machine. 

 Operations’ processing times are sampled from triangular distribution. 

 Pre-emption is not allowed.  

 A machine cannot perform more than one operation at a time. 

 Consecutive operations of parts can be processed on the same machine. 

 The warm-up period for the shop is determined to be 20% of the total 

simulation run after preliminary runs. The data are then collected for the 

remaining 80% of the total simulation run.  

 Common random numbers are used within each replication as a variance 

reduction technique, i.e., for each replication we use the same stream of 

random numbers for both system configurations we wish to compare. By 

this way, comparison of different methods under similar experimental 

conditions enabled.  

 The objective is to find a solution with minimum total of average flow 

times which is represented by Eq. (5.2).       

 The setup times and transportation times assumed to be zero and are 

excluded from the model. 

 Machine breakdowns are neglected. 
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Fj can be calculated by using Eq. (5.1). For more details the reader should refer to 

Baykasoglu, et al. (2008). 

     

      

                                                                     

 

where  

Fj: Flowtime of each part. 

j: Part type 

m: Station no 

pjm: Processing time of part j at station m. 

sjm: Setup time needed by part j at station m. 

tjm: Transportation time necessary for moving part j from station m to the next station 

on its route. 

wjm: Queue waiting time of part j at station m’s queue. 

S{j}: The set of stations which are placed on part j’s route. 
 

   

   

                                                                                                            

where  

N: Number of parts to be produced. 

5.1.2. Problem Definition of dynamic FJSSP 

The FJSSP is addressed in two phases; (1) Optimization, (2) Simulation. 

Optimization phase composed of two consecutive stages; (1) Selection of appropriate 

process plan for each part by using GA, and then (2) Matching the most suitable 

machine-operation pairs by using GA. In the simulation phase, new sets of values for 

decision variables (i.e., obtained machine-operation pairings for all parts) are 

generated by GA from the first phase evaluated by running the discrete-event 

simulation model of dynamic FJSS. This is an iterative process that successively 

generates new sets of values for the decision variables, not all of them improving, but 

which, over time, provides a highly efficient trajectory to the best solutions. The 

process continues until some termination criterion is satisfied — usually stopping 

after a number of simulations or when the GA determines the objective value has 

stopped improving. Its ultimate goal is to find the solution that optimizes (maximizes 

or minimizes) the value of the model’s objective. By this way finding the best 
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process plan for each part and then machine-operation pairs that minimizes the total 

of average flow times achieved in an iterative manner. 

Meanwhile, it should be noted that while obtaining the total of average flow times, 

the system (i.e., flexible job shop) dynamics (i.e., random arrivals, random operation 

processing times) are taken into account. In related literature, limited number of 

studies handled both of “dynamic” and “stochastic” FJSSP. Most of these studies are 

applied optimization techniques and simulation separately. In our study, an effective 

optimization tool (GA) and simulation are integrated to solve and to evaluate FJSSP. 

From this point of view, to our best knowledge this study is a premier one that solves 

“dynamic” and “stochastic” FJSSP simultaneously (i.e., iterative process).    

A sample instance which takes place in the study of Baykasoglu, et al. (2008) is 

utilized with minor modifications as a test bed for the proposed approach in this 

study. In its modified form, the problem includes random interarrival times and 

random processing times to further reflect stochastic nature that real world problems 

inherent. The process plans for each part is given in the Table 5.1 and appropriate 

machine sets for each operation is given in Table 5.2. Processing time distributions 

for each part is shown in Table 5.3. 

Table 5.1 Part-operation plans data 

Parts Process 

Plans 

Process plans and processing 

sequences 

1 1 Op1, Op2, Op3 

 

2 Op1, Op3, Op2 

2 1 Op2, Op3, Op1 

 

2 Op3, Op2, Op1 

3 1 Op1, Op3 

  2 Op1, Op2 

 

Table 5.2 Machine-operation suitability data 

Machines Operation1 Operation2 Operation3 

M1 * 

  M2 * 

 

* 

M3 

 

* 

 M4 

  

* 

M5   *   
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Table 5.3 Processing times distributions for each part 

  Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

Part 1 Tria(7,9,11) Tria(10,12,14) Tria(8,10,13) Tria(10,15,17) Tria(6,8,10) 

Part 2 Tria(10,12,14) Tria(12,14,16) Tria(10,12,14) Tria(12,15,18) Tria(4,9,13) 

Part 3 Tria(8,10,13) Tria(13,15,17) Tria(7,9,11) Tria(10,15,20) Tria(7,10,12) 

 

 

5.2. Proposed GA for dynamic FJSSP 

GA is developed to select the appropriate process plan for each part and then to 

match the most appropriate machine-operation pairs among machine sets, 

respectively. 

5.2.1. Chromosome Representation for the Considered FJSSP 

An integer based coding system is adopted to represent the problem solution. The 

chromosome structure is considered to be composed of two parts: (1) Process plan 

selection denoted by circles in Figure 5.1 and (2) machine-operation matching 

denoted by squares in Figure 5.1 (i.e., operation sequence). The first part of the 

chromosome locates integer coding for the selection of process plan for each part. 

Then, the second part of the chromosome locates integer coding for the machines. 

The proposed chromosome representation is depicted in Figure 5.1. 

 
Figure 5.1 Illustration of the proposed chromosome representation 

5.2.2. Initial Population Generation for the Considered FJSSP 

The algorithm begins with the selection of process plans for each part. Then, 

according to the selected process plan corresponding machine is assigned to each 

operation. Plans and machines are assigned randomly for the initial population. Then, 

the initial population is fed into the simulation model to be evaluated. Note that, 
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simulation model takes these values as a control (since they control the inputs to the 

model) and after completion of the simulation run the responses sent (i.e., outputs) to 

GA. The GA module evaluates the responses from the simulation run, analyzes and 

integrates these with responses from previous simulation runs, and determines a new 

set of values for the controls which are then evaluated by running the simulation 

model etc. Intermediate steps of the evaluation process of GA are given in 

subsequent sections.  

As mentioned before, chromosomes are translated to the mating pool by tournament 

approach. Two individual are selected from the population and, the best one among 

them is translated to the mating pool. 

5.2.3. Crossover for the proposed GA 

Crossover operator designed to take features from both parents and it’s performed in 

two stages. In the first stage, crossover operation is related to the first three genes of 

chromosomes (i.e., process plan selection). In the second stage crossover operation is 

related to the rest of genes (i.e., machine-operation assignment). First of all, process 

plans selected randomly for each part from both selected parents. In machine-

operation assignment section, for each part type, genes are replaced according to the 

process plan section. Genes are randomly exchanged between individuals having 

same process plan sequence. This is implemented for each part separately. A sample 

crossover operator is depicted in Figure 5.2. 

 

Figure 5.2 An illustration of crossover operator 
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5.2.4. Mutation for the Proposed GA 

In general, mutation is applied with small probability because large probability may 

disorder the good individuals (Zhang, et al., 2011). Mutation probability is usually 

determined to be 0.05. A probability value for each gene in the chromosome is 

generated and compared with the mutation probability value. If the mutation 

probability value bigger than the gene’s probability value, the gene is changed 

accordingly. See Figure 5.3 for how this mechanism works. 

 

Figure 5.3 An illustration of a mutation operator 

5.3. The methodology of Optimization via Simulation 

As mentioned before, the aim of this study is to determine the best process plan for 

each part and then determine the best machine-operation pairing along the part’s 

routing while minimizing the total of average flow times. In this respect, the problem 

can be interpreted as optimizing part routing in a FJSSP. For this purpose a computer 

model of dynamic FJSS is coded in ARENA. Note that this model will be evaluated 

in simulation stage of the proposed methodology. Furthermore, a problem specific 

GA is coded for the optimization stage of the proposed methodology. It should be 

emphasized that this is a “specific” optimization routine like other optimization 

tools. Then, this optimization routine is linked with simulation model. By this way 

(1) the problem transformed into resolvable format and (2) the user given the 

capability of managing his/her optimization routine easily. 

5.3.1. Problem Formulation 

There has been many optimization formulations offered in literature. Their common 

purpose is to find a “configuration” or “design” that minimizes the objective 

function. We adopted Fu (2002)’s notation to represent our “objective function” or 

“fitness function” (in GA terminology). As mentioned, the total of average flow 
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times is considered as objective function to be minimized. In equation (5.3) objective 

function is given: 

                     (5.3) 

 

Where  θ Θ represents the (vector of) input variables, J(θ) is the objective function, 

w represents a sample path (simulation replication), and L is the sample performance 

measure. We will use    to represent an estimate for J(θ), e.g., L[θ, ] would provide 

one such estimator that is unbiased. The constraint set Θ defined to be finite (e.g., an 

operation of any part can be processed on a certain number of machines).  

 θ Θ: A representation of a problem solution (i.e., the vector of decision variables) 

which is called as chromosome in this study. 

Θ: All possible chromosomes.   

L[θ,2]: Response of simulation model after replication 2 with chromosome 

representation θ. 

Once the optimization problem is described (by means of selecting decision 

variables, the objective, and possibly imposing constraints), simulation model is 

called every time a different set of decision variables’ values needed to be evaluated. 

The GA module (e.g., optimization routine) evaluates the responses from the current 

simulation run, analyzes and integrates these with responses from previous 

simulation runs, and determines a new set of values for the decision variables which 

are then fed into the simulation model to be evaluated. This is a multi stage iterative 

process that successively generates new sets of values for the decision variables, not 

all of them improving, but which, over time, provides a highly efficient trajectory to 

the best solutions. The process continues until some termination criterion is satisfied 

— usually stopping after a number of simulations or when the GA module 

determines the objective value has stopped improving. Its ultimate goal is to find the 

solution that optimizes (maximizes or minimizes) the value of the model’s objective. 

This somewhat complex process is depicted in Figure 5.4 to increase its 

intelligibility. 
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Figure 5.4 Optimization via Simulation Methodology 

5.4. Computational Results and Discussions 

The GA coded using Visual Basic® for Applications by Microsoft®. A Pseudo code 

of GA is given in APPENDIX B. After preliminary runs, the parameter of the GA is 

determined to be as follows:  

Population size (Ps): 10  

Number of generations (Gmax): 20 

Mutation probability (pm): 0.05 

Chromosome length (Cl: number of total parts + number of total operations): 11 

Selection type: Tournament approach 

The hypothetical simulation model coded using ARENA. A Pseudo code of 

simulation model is given in APPENDIX B. In simulation experiments two levels of 

flexibility taken into account to show the efficiency of the GA.  (1) Full flexibility 

(i.e., all machines are considered to be available for each operation to be chosen as 

alternatives), (2) partial flexibility (i.e., for each operation a machine has to be 

chosen from among several “available alternatives”). It should be noted that 

increasing the level of the flexibility increases the number of alternatives which 

complicates the job of GA.   

Our solution approach starts up with five different initial solutions determined by 

GA, for each level of flexibility, to guarantee to obtain near optimal solutions. For 

each generation of all initial solutions final machine-operation pairings are fed into 

simulation model. Then, ten independent replications are conducted for one 

simulation run. At the end of each simulation run an average of ten replications fed 

into GA as an objective function. This iterative procedure repeats itself until 20 
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iterations completed. Note that, common random numbers (i.e., the same random 

number streams) are used for each simulation run to improve estimates of differences 

in performance.       

Figure 5.5 shows an average “total of average flow times” of 5 runs with different 

initial solutions and the best “total of average flow times” among 5 runs with full 

flexibility. Figure 5.6 shows an average “total of average flow times” of 5 runs with 

different initial solutions and the best “total of average flow times” among 5 runs 

with partial flexibility.  

Figure 5.4 shows the selected machine-operation pairings of the best results. From 

figure 5.4, note that all operations of part 1 are processed on only machine 5 with full 

flexibility. This is a result of system characteristics which enable process of 

consecutive operations of a part on the same machine. In this case, GA strives only 

for coming up with a solution for the system that specifies optimal machine-

operation  pairs (i.e., part routings) while minimizing the objective function. 



66 
 

Table 5.4 Operation sequences and machine numbers of best results 

Full Flexibility     

Total average part 

flow times 

  Part 1     

  

Operation 

Sequence 

Machine 

Sequence   

  O11 O12 O13 5_5_5   

  Part2   96 

  

Operation 

Sequence 

Machine 

Sequence   

  O23 O22 O21 1_5_5   

  Part3     

  O31 O33 3_3   

  

Operation 

Sequence 

Machine 

Sequence   

Partial Flexibility     

Total average part 

flow times 

  Part 1     

  

Operation 

Sequence 

Machine 

Sequence   

  O11 O12 O13 1_5_2   

  Part2     

  

Operation 

Sequence 

Machine 

Sequence 106 

  O22 O23 O21 5_2_1   

  Part3     

  

Operation 

Sequence 

Machine 

Sequence   

  O31 O32 1_3   

 

GA achieves the best when “total of average flow times” is equal to 96, at 4th 

generation in the fifth run with full flexibility. And with the partial flexibility, our 

algorithm improves the best “total of average flow times” very quickly, that the best 

“total of average flow times”, equal to 106, is achieved at 2nd generation in first run. 

The very early convergence to optimum can be explained by limited choice of 

alternative machines with partial flexibility (see Table 5.2 for alternative machines 

with partial flexibility).   
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Figure 5.5 Total of average flow times obtained with full flexibility 

 

  

Figure 5.6 Total of average flow times results obtained with partial flexibility 

90 

92 

94 

96 

98 

100 

102 

104 

106 

1 3 5 7 9 11 13 15 17 19 

To
ta

l o
f 

av
er

ag
e 

p
ar

t 
fl

o
w

ti
m

es
 

Number of generations  

Average 

Best 

102 

104 

106 

108 

110 

112 

114 

1 3 5 7 9 11 13 15 17 19 

To
ta

l o
f 

av
e

ra
ge

 p
ar

t 
fl

o
w

ti
m

es
 

Number of generations 

Average 

Best  



68 
 

CHAPTER 6 

CONCLUSION 

 

 

FJSSP is handled as static, stochastic and dynamic scheduling problem within the 

context of this study. FJSSP deals with two sub problems: (1) selecting a machine 

from alternative machine set for each operation, and (2) sequencing the operations on 

all machines to achieve a feasible schedule. First, the GA is adapted to static FJSSP. 

In static FJSSP, all jobs and machines are ready at time 0. And, the processing times 

of all operations are already known. The maximum completion times of jobs, Cmax 

(makespan), is determined as the objective function to be minimized. Initial 

population is generated with a mixed initial strategy. Four strategies are used to 

generate initial population. This mixed strategy helps  achieving near optimal 

solution more quickly. The algorithm is tested with  Brandimerte's data set (BRdata) 

(Brandimerte, 1993). Ten problem instances are run for five times and the best 

results among them are selected. The proposed GA obtains the best known solution 

in problems of Mk01, Mk03, Mk07 and Mk08. Besides, the proposed GA can find 

the solutions with small parameter size as well. Therefore the algorithm can be 

considered a promising candidate for further studies. 

An experimental design is generated for static stochastic FJSSPs to measure the 

impact of flexibility on shop performance by using an efficient GA. A four full 

factorial design is utilized to evaluate the performance of the shop and investigate 

relationships between the considered factors. Three levels of each number of parts, 

number of jobs, number of operations, and level of flexibility are included to the 

experimental design. A total of 81 experiments performed to investigate all factor 

level combinations. The algorithm is run within 20 replications of each experiment to 

evaluate the performance of the static stochastic flexible job shop. Results revealed 

that makespan performance of the shop is significantly affected by the considered 
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factors and some factor interactions. It is seen that all main factors have significant 

effect on makespan performance at 0.05 significance level. Makespan performance 

of the shop improves as the level of machine number increases. It is observed that 

setting the machine number at its low level makes makespan performance of the shop 

becomes much more sensitive to different levels of part number. The best makespan 

performance observed for high levels of machine number together with low level of 

part number regardless of the flexibility level. As the level of the flexibility increases 

only marginal improvements gained on makespan performance at different levels of 

part number which makes flexibility level and part number interaction effect on 

makespan insignificant. It is apparently seen that flexibility level has negligible 

effect on makespan performance of the shop. Makespan performance of the shop 

deteriorates as the level of operation number and part number increases. Also, 

makespan performance of the shop improves as the level of machine number 

increases.   

In Section 5 an optimization via simulation methodology is proposed to solve a 

dynamic stochastic FJSSP which inherents considerable complexity. By the proposed 

approach the best process plan for each part and then the best machine-operation 

pairing along the part’s routing is determined while minimizing the total of average 

flow times. By this aim, an optimization via simulation approach is adopted to a 

dynamic stochastic FJSSP with random inter-arrivals and processing times.  The GA 

module is used as an optimization routine and it is iterated by the objective function 

obtained from simulation. This synergic integration is aimed at tackling two common 

challenges in designing and optimizing complex, dynamic, and stochastic real-world 

production systems. This includes problem formulation/representation in terms of 

objective function and constraints (i.e., simulation phase of the methodology), 

searching the often complex and large problem domain (i.e., optimization phase of 

the methodology). Note that, in most cases it is impractical to search complex and 

large problem domain. 
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One of the most important findings of the study is that the objective function (i.e., 

total of average flow times) improves as the level of flexibility increases. Also, it is 

shown that good solutions can be obtained using GA as a tool for systematically 

guiding the recursive process towards convergence to an optimum solution by 

considering only a limited number of alternative configurations of the system. 

Without the help of GA it would be impractical to evaluate all possible system 

configurations resulting from the combination of design factors, as the number of 

possibilities could be in thousands and in many cases in millions. 

The main contribution of this study is that the optimization via simulation 

methodology is used in an iterative manner automatically. Thus, this methodology 

can be modified and used for most of the other industrial and service problems. For 

further studies, the methodology must be extended and compared with other 

methods. Furthermore, some production constraints or other performance measures 

together with machine breakdowns and other random events can be included in this 

problem.  

Other meta-heuristic algorithms, such as simulated annealing, artificial immune 

systems, differential evolution, bee algorithms etc., can be used in optimization phase 

of the methodology. 

It would be interesting to use this methodology for other similar problem types in 

this area, i.e., shop configuration problems, part-machine grouping etc. Also, it is 

possible to apply this methodology to many real life problems exist in service and 

manufacturing systems.   
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APPENDIX A 

Data set explanations: 

In the first line there are (at least) 2 numbers: the first is the number of jobs and the second the number of machines (the 3rd is not necessary, it is 

the average number of machines per operation) 

Every row represents one job: the first number is the number of operations of that job, the second number (let's say k>=1) is the number of 

machines that can process the first operation; then according to k, there are k pairs of numbers (machine, processing time) that specify which are 

the machines and the processing times; then the data for the second operation and so on... 

Example: Fisher and Thompson 6x6 instance, alternate name (mt06) 

6   6   1    

6   1   3   1   1   1   3   1   2   6   1   4   7   1   6   3   1   5   6    

6   1   2   8   1   3   5   1   5   10  1   6   10  1   1   10  1   4   4    

6   1   3   5   1   4   4   1   6   8   1   1   9   1   2   1   1   5   7    

6   1   2   5   1   1   5   1   3   5   1   4   3   1   5   8   1   6   9    

6   1   3   9   1   2   3   1   5   5   1   6   4   1   1   3   1   4   1    

6   1   2   3   1   4   3   1   6   9   1   1   10  1   5   4   1   3   1    

first row = 6 jobs and 6 machines 1 machine per operation 

second row: job 1 has 6 operations, the first operation can be processed by 1 machine that is machine 3 with processing time 1. 
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Table A1: Mk01 problem data 

10 6 2 
                                6 2 1 5 3 4 3 5 3 3 5 2 1 2 3 4 6 2 3 6 5 2 6 1 1 1 3 1 3 6 6 3 6 4 3 

5 1 2 6 1 3 1 1 1 2 2 2 6 4 6 3 6 5 2 6 1 1 
            

  

5 1 2 6 2 3 4 6 2 3 6 5 2 6 1 1 3 3 4 2 6 6 6 2 1 1 5 5               

5 3 6 5 2 6 1 1 1 2 6 1 3 1 3 5 3 3 5 2 1 2 3 4 6 2 
        

  

6 3 5 3 3 5 2 1 3 6 5 2 6 1 1 1 2 6 2 1 5 3 4 2 2 6 4 6 3 3 4 2 6 6 6 

6 2 3 4 6 2 1 1 2 3 3 4 2 6 6 6 1 2 6 3 6 5 2 6 1 1 2 1 3 4 2 
   

  

5 1 6 1 2 1 3 4 2 3 3 4 2 6 6 6 3 2 6 5 1 1 6 1 3 1                   

5 2 3 4 6 2 3 3 4 2 6 6 6 3 6 5 2 6 1 1 1 2 6 2 2 6 4 6 
      

  

6 1 6 1 2 1 1 5 5 3 6 6 3 6 4 3 1 1 2 3 3 4 2 6 6 6 2 2 6 4 6         

6 2 3 4 6 2 3 3 4 2 6 6 6 3 5 3 3 5 2 1 1 6 1 2 2 6 4 6 2 1 3 4 2     
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Table A2: Mk02 problem data 

10 6 
                                                       6 6 3 3 4 5 1 3 6 6 2 2 5 3 2 6 5 3 4 6 1 1 5 6 3 3 4 3 2 6 6 5 1 2 6 2 6 3 5 6 3 3 2 2 1 5 4                     

6 5 6 1 5 6 1 3 2 4 4 2 2 6 3 5 6 1 5 2 2 2 4 3 3 3 3 2 2 1 5 4 6 3 3 4 5 1 3 6 6 2 2 5 3 
           

  

6 6 1 1 5 6 3 3 4 3 2 6 6 5 6 5 3 4 6 2 4 6 6 3 6 1 2 3 3 2 2 1 5 4 5 3 5 1 4 2 3 6 3 5 2 6 4 
         

  

  1 1 5 2 4 5 5 3 3 6 3 5 6 3 1 4 4 6 3 6 5 3                                                                     

6 5 3 5 1 4 2 3 6 3 5 2 5 6 1 5 6 1 3 2 4 4 2 1 2 6 6 1 1 5 6 3 3 4 3 2 6 6 5 5 1 4 4 5 2 3 6 
         

  

  3 5 4 6 4 1 1 5 2 4 5 5 3 3 6 3 
                                       

  

6 6 5 3 4 6 2 4 6 6 3 6 1 2 5 1 4 4 5 2 3 6 3 5 4 1 4 3 5 6 3 1 4 4 6 3 6 5 3 5 6 1 5 6 1 3 2 4 4 2 2 2 4 3 3     

6 5 6 3 1 4 4 6 3 6 5 3 2 6 5 3 4 5 3 5 1 4 2 3 6 3 5 2 6 5 3 4 6 2 4 6 6 3 6 1 2 1 2 6 5 6 1 5 6 1 3 2 4 4 2 
 

  

5 6 4 1 1 5 2 4 5 5 3 3 6 3 1 5 2 6 5 3 4 6 2 4 6 6 3 6 1 2 6 3 3 4 5 1 3 6 6 2 2 5 3 5 6 3 1 4 4 6 3 6 5 3       

6 2 2 4 3 3 5 3 5 1 4 2 3 6 3 5 2 6 5 3 4 6 2 4 6 6 3 6 1 2 5 6 3 1 4 4 6 3 6 5 3 5 1 4 4 5 2 
         

  

  3 6 3 5 4 5 6 1 5 6 1 3 2 4 4 2 
                                       

  

5 1 2 6 2 6 5 3 4 5 6 1 5 6 1 3 2 4 4 2 5 1 4 4 5 2 3 6 3 5 4 2 2 4 3 3                                           

6 1 4 3 6 5 3 4 6 2 4 6 6 3 6 1 2 5 6 3 1 4 4 6 3 6 5 3 6 4 1 1 5 2 4 5 5 3 3 6 3 2 6 3 5 6 5 6 1 5 6 1 3 2 4 4 2 
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Table A3: Mk03 problem data 

15 8 3 
                                     10 4 7 15 8 11 4 5 5 19 2 3 18 4 5 4 8 18 7 3 6 11 3 16 4 5 7 2 1 7 2 3 19 2 5 6 6 3 3 4 

  5 5 2 8 18 1 5 2 1 1 17 5 5 10 2 10 1 12 8 5 3 14 3 7 15 6 2 8 19                     

10 4 8 18 7 3 6 11 3 16 1 1 17 2 2 1 4 13 5 5 10 2 10 1 12 8 5 3 14 5 4 11 1 9 2 18 6 18 3 13 

  2 6 15 7 13 4 7 15 8 11 4 5 5 19 4 5 7 2 1 7 2 3 19 4 4 11 1 7 6 13 8 3 3 7 15 6 2 8 19 

10 2 3 3 5 5 4 5 7 2 1 7 2 3 19 2 3 18 4 5 2 5 6 6 3 4 4 11 1 7 6 13 8 3 3 7 15 6 2 8 

  19 5 4 11 1 9 2 18 6 18 3 13 3 4 5 5 2 8 18 1 1 17 2 2 1 4 13                         

10 2 3 18 4 5 2 3 3 5 5 5 4 11 1 9 2 18 6 18 3 13 4 4 11 1 7 6 13 8 3 2 6 15 7 13 4 5 7 2 

  1 7 2 3 19 1 5 2 4 8 18 7 3 6 11 3 16 1 1 17 2 5 6 6 3 
             

  

10 2 6 15 7 13 3 7 15 6 2 8 19 1 5 2 4 7 15 8 11 4 5 5 19 5 4 11 1 9 2 18 6 18 3 13 4 5 7 2 

  1 7 2 3 19 3 4 5 5 2 8 18 2 5 6 6 3 2 3 3 5 5 5 5 10 2 10 1 12 8 5 3 14             

10 2 2 1 4 13 2 6 15 7 13 2 3 18 4 5 4 8 18 7 3 6 11 3 16 5 4 11 1 9 2 18 6 18 3 13 5 5 10 2 

  10 1 12 8 5 3 14 4 4 11 1 7 6 13 8 3 4 7 15 8 11 4 5 5 19 2 5 6 6 3 2 3 3 5 5 
   

  

10 5 5 10 2 10 1 12 8 5 3 14 4 4 11 1 7 6 13 8 3 2 2 1 4 13 1 1 17 2 6 15 7 13 4 5 7 2 1 7 

  2 3 19 1 5 2 5 4 11 1 9 2 18 6 18 3 13 2 3 18 4 5 3 7 15 6 2 8 19                     

10 3 7 15 6 2 8 19 1 1 17 4 7 15 8 11 4 5 5 19 2 6 15 7 13 5 5 10 2 10 1 12 8 5 3 14 4 4 11 1 

  7 6 13 8 3 5 4 11 1 9 2 18 6 18 3 13 2 2 1 4 13 2 3 18 4 5 2 3 3 5 5 
       

  

10 1 1 17 5 5 10 2 10 1 12 8 5 3 14 4 8 18 7 3 6 11 3 16 3 7 15 6 2 8 19 2 6 15 7 13 4 4 11 1 

  7 6 13 8 3 1 5 2 2 2 1 4 13 5 4 11 1 9 2 18 6 18 3 13 4 7 15 8 11 4 5 5 19             

10 1 1 17 2 6 15 7 13 3 4 5 5 2 8 18 5 4 11 1 9 2 18 6 18 3 13 4 4 11 1 7 6 13 8 3 2 3 18 4 

  5 2 5 6 6 3 3 7 15 6 2 8 19 4 8 18 7 3 6 11 3 16 5 5 10 2 10 1 12 8 5 3 14 
     

  

10 2 2 1 4 13 3 7 15 6 2 8 19 4 8 18 7 3 6 11 3 16 2 3 18 4 5 2 5 6 6 3 1 1 17 2 3 3 5 5 

  3 4 5 5 2 8 18 5 5 10 2 10 1 12 8 5 3 14 5 4 11 1 9 2 18 6 18 3 13                     

10 4 4 11 1 7 6 13 8 3 3 4 5 5 2 8 18 4 8 18 7 3 6 11 3 16 1 1 17 5 4 11 1 9 2 18 6 18 3 13 

  3 7 15 6 2 8 19 1 5 2 2 3 3 5 5 4 7 15 8 11 4 5 5 19 2 2 1 4 13 
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Table A3 (Continued) 

10 5 5 10 2 10 1 12 8 5 3 14 1 5 2 2 3 18 4 5 4 5 7 2 1 7 2 3 19 2 6 15 7 13 4 8 18 7 3 6 

  11 3 16 4 7 15 8 11 4 5 5 19 5 4 11 1 9 2 18 6 18 3 13 2 5 6 6 3 4 4 11 1 7 6 13 8 3     

10 4 8 18 7 3 6 11 3 16 3 4 5 5 2 8 18 2 2 1 4 13 4 5 7 2 1 7 2 3 19 2 5 6 6 3 2 3 18 4 

  5 2 6 15 7 13 1 5 2 5 4 11 1 9 2 18 6 18 3 13 1 1 17 
               

  

10 5 5 10 2 10 1 12 8 5 3 14 2 5 6 6 3 2 6 15 7 13 4 7 15 8 11 4 5 5 19 4 8 18 7 3 6 11 3 16 

  1 1 17 5 4 11 1 9 2 18 6 18 3 13 3 4 5 5 2 8 18 2 3 18 4 5 4 5 7 2 1 7 2 3 19         
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Table A4: Mk04 problem data 

15 8 2 
                                           8 1 1 6 2 1 6 7 9 2 6 7 3 1 2 4 2 7 5 3 1 8 3 9 8 9 3 2 3 4 8 3 2 2 5 5 6 7 2 6 1 4 7       

7 1 6 1 2 6 1 4 7 1 1 6 2 6 7 3 1 3 2 3 4 8 3 2 1 6 2 1 7 2 
               

  

6 1 6 1 3 2 3 4 8 3 2 3 3 2 7 1 4 4 2 4 2 7 5 2 1 7 3 7 2 4 4 3 1                           

5 1 7 2 1 1 6 2 1 6 7 9 2 6 7 3 1 2 4 5 5 7 
                       

  

7 1 7 2 2 1 6 7 9 2 4 4 3 1 3 1 8 3 9 8 9 2 1 7 3 7 3 2 3 4 8 3 2 2 4 5 5 7                 

9 1 6 2 2 4 4 3 1 3 3 2 7 1 4 4 2 6 1 4 7 2 4 5 5 7 3 1 8 3 9 8 9 2 1 7 3 7 1 6 1 2 1 6 7 9 

5 2 5 5 6 7 2 1 7 3 7 2 6 1 4 7 1 6 2 2 6 7 3 1                                             

6 2 4 5 5 7 2 5 5 6 7 3 2 3 4 8 3 2 1 6 2 1 6 1 2 1 6 7 9 
                

  

9 1 1 6 2 1 6 7 9 2 4 4 3 1 3 1 8 3 9 8 9 2 4 2 7 5 2 6 1 4 7 1 7 2 2 1 7 3 7 3 2 3 4 8 3 2 

5 2 5 5 6 7 1 1 6 1 7 2 2 4 5 5 7 2 1 6 7 9 
                       

  

4 3 1 8 3 9 8 9 1 1 6 3 2 3 4 8 3 2 2 4 2 7 5                                               

6 2 4 2 7 5 1 6 1 1 1 6 2 1 7 3 7 3 1 8 3 9 8 9 1 7 2 
                  

  

4 1 6 2 2 6 7 3 1 2 6 1 4 7 2 5 5 6 7                                                       

3 2 5 5 6 7 1 6 1 2 4 2 7 5 
                               

  

6 2 4 5 5 7 1 7 2 3 1 8 3 9 8 9 3 2 3 4 8 3 2 3 3 2 7 1 4 4 1 1 6                           
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Table A5: Mk05 problem data 

15 4 1,5 
                                     6 2 3 5 2 7 2 1 8 4 8 2 1 6 2 5 1 3 7 2 4 5 2 6 2 4 5 1 5                       

5 1 3 7 2 1 6 2 5 1 4 6 2 4 5 2 6 2 1 8 2 6 
                 

  

8 2 4 7 3 9 2 3 5 2 7 2 4 5 1 5 2 1 8 4 8 2 1 6 2 5 1 4 6 2 1 8 2 6 2 4 9 3 6   

7 2 4 5 1 5 2 4 7 3 9 2 1 8 4 8 1 4 8 2 1 8 2 6 2 4 5 2 6 1 4 6 
       

  

6 2 3 7 1 5 2 4 6 2 7 2 4 7 3 9 1 3 8 2 3 5 2 7 2 1 8 2 6                       

9 1 4 6 2 4 5 2 6 1 3 8 2 3 7 1 5 2 4 6 2 7 1 4 8 2 1 8 2 6 2 1 8 4 8 2 4 5 1 5 

5 1 3 8 2 4 7 3 9 2 1 6 2 5 2 4 6 2 7 1 3 7                                     

8 2 3 7 1 5 1 3 8 2 4 7 3 9 2 4 5 1 5 1 3 7 1 4 8 2 4 9 3 6 2 1 6 2 5 
    

  

9 2 3 5 2 7 1 4 8 2 4 5 2 6 2 1 6 2 5 1 4 6 2 1 8 4 9 2 1 8 4 8 2 1 8 2 6 1 3 7 

9 2 1 8 2 6 2 1 8 4 8 2 1 8 4 9 2 4 9 3 6 2 1 6 2 5 1 3 8 1 3 7 1 4 6 2 4 5 2 6 

7 2 1 8 2 6 2 1 8 4 8 2 1 6 2 5 1 3 7 1 4 6 1 3 8 2 4 9 3 6                     

6 1 4 8 1 3 7 2 4 7 3 9 2 1 6 2 5 1 3 8 2 1 8 4 8 
              

  

7 1 4 8 2 4 9 3 6 2 1 8 4 8 2 4 6 2 7 2 4 6 2 7 2 1 8 2 6 2 3 7 1 5             

7 2 1 6 2 5 2 3 7 1 5 2 1 8 4 8 2 1 8 2 6 2 4 5 1 5 2 4 6 2 7 1 4 6 
     

  

7 1 3 8 2 1 8 4 9 2 4 9 3 6 1 3 7 2 4 5 2 6 2 1 8 2 6 2 1 6 2 5                 
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Table A6: Mk06 problem data 

10 15 
                                       15 4 2 8 6 3 7 2 9 5 2 9 7 1 2 5 7 4 1 4 9 1 2 7 10 4 2 1 1 8 2 3 7 5 3 8 5 8 5 1 3 

  8 8 2 5 3 8 10 9 3 5 6 1 1 6 2 5 2 5 1 9 9 1 5 7 4 6 2 10 6 1 2 2 7 9 5 6 2 4 8 7 

  2 5 2 1 5 8 4 2 1 8 3 7 3 10 2 8 9 4 5 3 7 5 3 7 9 3 3 9 4 5 8 1 1               

15 5 1 3 8 8 2 5 3 8 10 9 5 7 4 1 4 9 1 2 7 10 4 3 5 6 1 1 6 2 5 2 1 5 8 4 2 1 8 3 7 

  2 4 8 7 2 2 10 6 1 2 3 10 2 8 9 4 5 2 7 9 5 6 3 7 5 3 7 9 3 3 7 5 3 8 5 8 3 9 4 5 

  8 1 1 2 9 7 1 2 2 1 1 8 2 4 2 8 6 3 7 2 9 5 5 2 5 1 9 9 1 5 7 4 6 
      

  

15 2 1 1 8 2 2 7 9 5 6 2 10 6 1 2 2 4 8 7 2 5 2 1 5 8 4 2 1 8 3 7 3 9 4 5 8 1 1 2 9 

  7 1 2 3 7 5 3 7 9 3 5 7 4 1 4 9 1 2 7 10 4 4 2 8 6 3 7 2 9 5 5 1 3 8 8 2 5 3 8 10 

  9 3 10 2 8 9 4 5 5 2 5 1 9 9 1 5 7 4 6 3 5 6 1 1 6 2 3 7 5 3 8 5 8               

15 3 5 6 1 1 6 2 5 2 5 1 9 9 1 5 7 4 6 5 1 3 8 8 2 5 3 8 10 9 5 2 1 5 8 4 2 1 8 3 7 

  2 4 8 7 2 2 10 6 1 2 3 7 5 3 8 5 8 2 9 7 1 2 3 7 5 3 7 9 3 3 9 4 5 8 1 1 4 2 8 6 

  3 7 2 9 5 2 1 1 8 2 5 7 4 1 4 9 1 2 7 10 4 2 7 9 5 6 3 10 2 8 9 4 5 
      

  

15 3 10 2 8 9 4 5 2 1 1 8 2 3 9 4 5 8 1 1 2 9 7 1 2 3 7 5 3 8 5 8 5 2 1 5 8 4 2 1 8 

  3 7 3 5 6 1 1 6 2 3 7 5 3 7 9 3 4 2 8 6 3 7 2 9 5 2 10 6 1 2 5 7 4 1 4 9 1 2 7 10 

  4 2 7 9 5 6 5 2 5 1 9 9 1 5 7 4 6 5 1 3 8 8 2 5 3 8 10 9 2 4 8 7 2               

15 3 7 5 3 8 5 8 5 1 3 8 8 2 5 3 8 10 9 2 7 9 5 6 3 5 6 1 1 6 2 5 2 5 1 9 9 1 5 7 4 

  6 2 4 8 7 2 2 9 7 1 2 5 2 1 5 8 4 2 1 8 3 7 5 7 4 1 4 9 1 2 7 10 4 4 2 8 6 3 7 2 

  9 5 2 1 1 8 2 3 7 5 3 7 9 3 2 10 6 1 2 3 9 4 5 8 1 1 3 10 2 8 9 4 5 
      

  

15 3 5 6 1 1 6 2 3 10 2 8 9 4 5 3 7 5 3 8 5 8 5 1 3 8 8 2 5 3 8 10 9 2 1 1 8 2 2 9 7 

  1 2 5 2 1 5 8 4 2 1 8 3 7 3 7 5 3 7 9 3 5 7 4 1 4 9 1 2 7 10 4 3 9 4 5 8 1 1 2 10 

  6 1 2 4 2 8 6 3 7 2 9 5 2 7 9 5 6 2 4 8 7 2 5 2 5 1 9 9 1 5 7 4 6               

15 5 7 4 1 4 9 1 2 7 10 4 3 7 5 3 7 9 3 3 7 5 3 8 5 8 2 1 1 8 2 3 5 6 1 1 6 2 5 2 5 

  1 9 9 1 5 7 4 6 3 10 2 8 9 4 5 3 9 4 5 8 1 1 2 9 7 1 2 4 2 8 6 3 7 2 9 5 5 1 3 8 

  8 2 5 3 8 10 9 2 4 8 7 2 2 10 6 1 2 5 2 1 5 8 4 2 1 8 3 7 2 7 9 5 6 
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Table A6 (Continued)  

15 4 2 8 6 3 7 2 9 5 3 9 4 5 8 1 1 3 7 5 3 8 5 8 5 7 4 1 4 9 1 2 7 10 4 5 2 1 5 8 4 

  2 1 8 3 7 2 4 8 7 2 2 9 7 1 2 3 10 2 8 9 4 5 5 1 3 8 8 2 5 3 8 10 9 2 10 6 1 2 5 2 

  5 1 9 9 1 5 7 4 6 3 7 5 3 7 9 3 2 7 9 5 6 2 1 1 8 2 3 5 6 1 1 6 2               

15 2 1 1 8 2 4 2 8 6 3 7 2 9 5 3 10 2 8 9 4 5 3 7 5 3 8 5 8 3 7 5 3 7 9 3 2 10 6 1 2 

  2 7 9 5 6 3 9 4 5 8 1 1 5 7 4 1 4 9 1 2 7 10 4 5 2 5 1 9 9 1 5 7 4 6 5 1 3 8 8 2 

  5 3 8 10 9 3 5 6 1 1 6 2 5 2 1 5 8 4 2 1 8 3 7 2 4 8 7 2 2 9 7 1 2               
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Table A7: Mk07 problem data 

20 5 3 
                                         5 2 2 4 1 15 2 3 18 1 15 1 2 4 1 4 18 5 3 8 5 2 4 5 1 7 2 7                                 

5 2 1 3 5 13 5 3 8 5 2 4 5 1 7 2 7 2 2 4 1 15 3 1 8 5 1 2 5 3 1 3 5 13 3 2 
       

  

5 5 2 18 5 1 4 19 1 9 3 3 1 4 18 2 4 11 3 9 1 2 4 3 5 12 3 14 4 19                             

5 2 2 4 1 15 4 4 10 3 10 2 17 5 8 4 5 18 3 13 2 2 1 5 5 4 10 5 15 1 2 3 9 2 16 2 3 15 1 6 
   

  

5 3 1 3 5 13 3 2 2 3 18 1 15 5 2 18 5 1 4 19 1 9 3 3 3 5 12 3 14 4 19 1 4 5                     

5 5 3 8 5 2 4 5 1 7 2 7 2 3 18 1 15 2 1 15 5 7 2 2 7 1 17 2 2 4 1 15 
           

  

5 1 4 5 2 1 15 5 7 2 2 4 1 15 3 1 3 5 13 3 2 4 4 6 2 17 3 15 5 7                             

5 4 4 6 2 17 3 15 5 7 3 3 18 1 2 4 15 4 2 14 4 14 3 19 5 15 1 2 4 2 2 7 1 17 
         

  

5 5 2 18 5 1 4 19 1 9 3 3 4 4 6 2 17 3 15 5 7 3 1 8 5 1 2 5 4 2 14 4 14 3 19 5 15 2 1 17 5 15     

5 2 1 15 5 7 4 4 10 3 10 2 17 5 8 2 3 15 1 6 1 4 5 5 3 16 5 17 4 10 2 10 1 7 
         

  

5 1 4 18 3 1 8 5 1 2 5 5 3 8 5 2 4 5 1 7 2 7 2 1 15 5 7 2 1 17 5 15                         

5 3 5 12 3 14 4 19 4 4 10 3 10 2 17 5 8 2 3 15 1 6 5 3 8 5 2 4 5 1 7 2 7 5 3 16 5 17 4 10 2 10 1 7 

5 2 1 17 5 15 1 4 18 4 2 17 5 19 4 5 3 12 3 3 18 1 2 4 15 3 1 8 5 1 2 5                         

5 2 5 1 3 5 3 3 18 1 2 4 15 4 4 10 3 10 2 17 5 8 2 3 18 1 15 5 3 8 5 2 4 5 1 7 2 7 
     

  

5 5 3 8 5 2 4 5 1 7 2 7 2 5 1 3 5 3 5 12 3 14 4 19 5 3 16 5 17 4 10 2 10 1 7 2 1 17 5 15         

5 5 4 10 5 15 1 2 3 9 2 16 2 4 11 3 9 1 2 4 2 1 15 5 7 1 4 5 
               

  

5 5 3 8 5 2 4 5 1 7 2 7 4 2 14 4 14 3 19 5 15 3 3 18 1 2 4 15 2 3 15 1 6 5 2 18 5 1 4 19 1 9 3 3 

5 1 2 4 3 1 8 5 1 2 5 2 5 1 3 5 2 3 18 1 15 2 1 15 5 7 
                 

  

5 3 1 3 5 13 3 2 4 4 6 2 17 3 15 5 7 4 5 18 3 13 2 2 1 5 1 4 18 2 1 3 5 13                     

5 1 4 5 2 2 4 1 15 1 4 18 2 1 15 5 7 5 4 10 5 15 1 2 3 9 2 16                                 
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Table A8: Mk08 problem data 

20 10 
                                          

10 2 7 18 4 5 2 5 7 7 7 1 3 19 1 7 14 2 4 5 10 12 1 1 10 1 10 18 2 7 10 8 19 2 3 11 8 9 2 3 5 8 12   

12 1 2 5 2 7 18 4 5 2 3 5 8 12 1 1 10 1 10 19 2 3 15 4 19 1 7 14 1 5 9 2 5 14 9 5 1 1 19 2 7 10 8 19 

  1 1 16 
                                       

  

14 2 5 14 9 5 1 1 19 1 1 10 1 3 19 2 7 18 4 5 2 4 5 10 12 2 3 5 8 12 1 10 10 1 5 9 1 1 7 2 7 10 8   

  19 1 1 10 1 10 19 1 10 18                                                                   

10 1 10 10 2 5 7 7 7 1 7 14 1 1 10 1 10 18 2 3 15 7 13 2 10 14 5 7 2 3 11 8 9 1 9 11 1 5 9 
    

  

12 1 5 9 2 5 14 9 5 2 7 18 4 5 2 3 11 8 9 1 1 10 1 9 11 1 1 7 1 7 14 2 4 5 10 12 2 3 15 4 19 1 8   

  18 1 10 19                                                                               

10 2 3 15 7 13 1 3 19 1 5 9 1 10 19 2 3 5 8 12 2 7 18 4 5 2 8 14 10 9 2 4 5 10 12 1 10 18 1 1 7 
  

  

12 1 1 10 1 10 18 1 1 7 1 5 9 2 8 14 10 9 2 7 10 8 19 2 3 15 4 19 2 10 14 5 7 1 8 18 1 10 19 1 1 19 1   

  1 10                                                                                   

11 1 1 10 1 7 14 1 1 10 2 3 15 4 19 2 5 14 9 5 2 7 18 4 5 1 3 19 1 1 19 2 4 5 10 12 1 5 9 1 10 19 
 

  

14 2 7 10 8 19 2 8 14 10 9 1 1 19 1 10 19 2 10 14 5 7 1 2 5 2 4 5 10 12 2 5 7 7 7 1 1 16 1 1 7 1 9 11 

  1 3 19 1 1 10 1 10 18                                                                     

11 1 10 19 2 10 14 5 7 1 8 18 2 3 11 8 9 1 1 7 1 1 10 2 5 14 9 5 2 3 15 4 19 1 10 18 1 3 19 1 1 19 
 

  

11 2 5 14 9 5 1 1 10 1 8 18 2 3 15 4 19 2 7 10 8 19 2 3 5 8 12 2 3 11 8 9 2 8 14 10 9 1 10 10 1 9 11 1 

  3 19                                                                                   

10 1 10 19 2 3 11 8 9 2 5 7 7 7 1 1 16 1 7 14 2 7 18 4 5 2 4 5 10 12 1 1 10 1 8 18 2 5 14 9 5 
  

  

11 2 10 14 5 7 1 10 19 2 7 10 8 19 2 3 15 4 19 1 1 19 1 8 18 2 8 14 10 9 2 3 11 8 9 1 10 18 2 5 14 9 5   

  1 2 5                                                                                 

11 1 1 10 2 5 7 7 7 1 1 10 1 9 11 1 7 14 2 3 15 7 13 2 8 14 10 9 1 1 16 2 3 5 8 12 2 5 14 9 5 1 2 5 

11 2 5 14 9 5 2 5 7 7 7 1 7 14 1 10 10 2 7 10 8 19 2 3 15 4 19 2 7 18 4 5 1 1 7 2 3 11 8 9 1 1 19   

  1 8 18                                                                                 

11 1 2 5 2 7 10 8 19 1 10 10 1 9 11 1 8 18 2 10 14 5 7 2 5 14 9 5 1 1 10 1 1 19 2 3 15 7 13 2 8 14 10 9 
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Table A8 (Continued) 

13 1 10 10 2 5 14 9 5 1 5 9 1 10 19 1 1 10 2 3 5 8 12 1 2 5 2 10 14 5 7 1 1 10 2 8 14 10 9 2 3 15 7 13 

  1 1 16 1 7 14                                                                           

11 2 3 15 7 13 1 2 5 1 10 19 1 3 19 1 8 18 1 1 7 1 5 9 1 7 14 2 7 18 4 5 1 1 10 2 5 14 9 5 
   

  

10 2 7 10 8 19 1 2 5 2 3 11 8 9 1 9 11 2 4 5 10 12 1 10 18 2 7 18 4 5 2 8 14 10 9 2 3 5 8 12 1 10 19   

10 1 10 18 1 10 10 1 7 14 1 9 11 2 3 15 7 13 1 2 5 2 8 14 10 9 2 3 5 8 12 1 5 9 1 1 16               
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Table A9: Mk09 problem data 

20 10 
                                          

12 2 2 10 1 11 1 8 17 1 8 14 1 1 10 2 2 16 10 18 2 9 6 2 12 4 7 9 4 11 3 10 1 16 2 5 19 1 7 1 9 11 1 4 

  16 1 2 5 5 7 9 9 9 4 6 8 14 6 16                                                         

13 1 8 17 2 5 6 4 11 2 2 10 1 11 2 5 9 8 8 2 2 16 3 11 4 1 8 5 14 10 15 6 12 4 6 10 8 15 7 5 2 8 2 5 

  19 1 7 4 7 9 4 11 3 10 1 16 1 1 10 4 1 16 3 11 7 17 4 7 1 4 16 4 3 11 5 8 7 11 9 17 
      

  

11 4 6 10 8 15 7 5 2 8 2 5 9 8 8 2 2 16 10 18 2 2 10 1 11 5 7 9 9 9 4 6 8 14 6 16 1 4 16 2 5 19 1 7 

  1 1 10 2 5 6 4 11 2 2 16 3 11 1 3 14                                                       

11 4 1 8 5 14 10 15 6 12 2 5 19 1 7 4 4 11 8 16 9 15 1 6 1 8 14 1 4 16 1 8 17 4 1 16 3 11 7 17 4 7 4 10 

  6 8 13 5 5 2 8 1 3 14 4 7 9 4 11 3 10 1 16 1 1 10 
                    

  

14 1 8 17 1 4 16 1 5 9 4 10 6 8 13 5 5 2 8 4 1 16 3 11 7 17 4 7 2 2 16 10 18 4 6 10 8 15 7 5 2 8 1 8 

  14 2 5 6 4 11 4 2 5 7 13 10 10 5 11 5 7 9 9 9 4 6 8 14 6 16 2 5 9 8 8 4 1 8 5 14 10 15 6 12 2 5 19 

  1 7                                                                                   

11 4 2 5 7 13 10 10 5 11 2 2 16 10 18 1 1 10 1 3 14 1 5 9 5 7 9 9 9 4 6 8 14 6 16 1 8 17 1 8 14 1 2 5 

  4 6 10 8 15 7 5 2 8 4 4 11 8 16 9 15 1 6 
                        

  

14 1 8 14 1 8 17 2 5 9 8 8 1 4 16 1 1 10 4 2 5 7 13 10 10 5 11 1 2 5 2 5 6 4 11 5 7 9 9 9 4 6 8 14 

  6 16 4 4 11 8 16 9 15 1 6 5 2 8 1 19 8 13 6 14 10 18 4 6 10 8 15 7 5 2 8 4 1 16 3 11 7 17 4 7 2 2 16 

  10 18                                                                                   

13 1 1 10 4 10 6 8 13 5 5 2 8 1 5 9 4 7 9 4 11 3 10 1 16 1 9 11 4 2 5 7 13 10 10 5 11 4 6 10 8 15 7 5 

  2 8 1 2 5 5 2 8 1 19 8 13 6 14 10 18 5 7 9 9 9 4 6 8 14 6 16 2 2 10 1 11 4 1 16 3 11 7 17 4 7 2 5 

  6 4 11 
                                       

  

11 1 8 17 1 2 5 1 1 10 1 4 16 2 5 6 4 11 4 7 9 4 11 3 10 1 16 5 2 8 1 19 8 13 6 14 10 18 1 9 11 2 9 6 

  2 12 2 2 10 1 11 2 5 9 8 8                                                               

12 1 4 16 4 4 11 8 16 9 15 1 6 1 3 14 4 2 5 7 13 10 10 5 11 1 9 11 5 7 9 9 9 4 6 8 14 6 16 2 5 6 4 11 

  4 1 16 3 11 7 17 4 7 2 2 10 1 11 2 2 16 3 11 4 1 8 5 14 10 15 6 12 1 1 10 
           

  

10 1 9 11 1 5 9 5 2 8 1 19 8 13 6 14 10 18 1 4 16 4 4 11 8 16 9 15 1 6 2 5 9 8 8 4 7 9 4 11 3 10 1 16 
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Table A9 (Continued) 

  1 3 14 1 1 10 4 1 16 3 11 7 17 4 7                                                         

11 4 10 6 8 13 5 5 2 8 4 4 11 8 16 9 15 1 6 1 4 16 2 9 6 2 12 4 6 10 8 15 7 5 2 8 4 7 9 4 11 3 10 1 

  16 1 2 5 1 8 14 5 7 9 9 9 4 6 8 14 6 16 2 5 6 4 11 2 2 16 10 18 
              

  

11 1 2 5 1 3 14 2 9 6 2 12 1 5 9 4 2 5 7 13 10 10 5 11 4 1 16 3 11 7 17 4 7 2 2 10 1 11 1 8 17 2 5 19 

  1 7 1 1 10 4 7 9 4 11 3 10 1 16                                                           

10 4 3 11 5 8 7 11 9 17 1 1 10 2 2 16 10 18 2 2 10 1 11 4 6 10 8 15 7 5 2 8 4 4 11 8 16 9 15 1 6 1 4 16 

  4 1 16 3 11 7 17 4 7 4 7 9 4 11 3 10 1 16 2 2 16 3 11 
                   

  

12 1 1 10 4 4 11 8 16 9 15 1 6 4 2 5 7 13 10 10 5 11 5 2 8 1 19 8 13 6 14 10 18 2 5 6 4 11 2 9 6 2 12 1 

  2 5 4 10 6 8 13 5 5 2 8 1 4 16 2 2 16 3 11 2 2 10 1 11 4 6 10 8 15 7 5 2 8                     

14 1 8 17 4 4 11 8 16 9 15 1 6 1 3 14 2 9 6 2 12 1 8 14 4 6 10 8 15 7 5 2 8 4 7 9 4 11 3 10 1 16 4 2 

  5 7 13 10 10 5 11 4 1 8 5 14 10 15 6 12 2 2 10 1 11 1 4 16 4 3 11 5 8 7 11 9 17 2 5 19 1 7 4 10 6 8 13 

  5 5 2 8 
                                      

  

13 5 2 8 1 19 8 13 6 14 10 18 1 9 11 4 7 9 4 11 3 10 1 16 1 8 17 4 10 6 8 13 5 5 2 8 2 5 6 4 11 1 1 10 

  4 6 10 8 15 7 5 2 8 2 2 10 1 11 2 2 16 10 18 4 1 16 3 11 7 17 4 7 1 3 14 2 5 19 1 7               

11 5 2 8 1 19 8 13 6 14 10 18 5 7 9 9 9 4 6 8 14 6 16 2 5 6 4 11 4 10 6 8 13 5 5 2 8 1 3 14 4 3 11 5 

  8 7 11 9 17 1 9 11 2 2 10 1 11 4 2 5 7 13 10 10 5 11 1 8 14 4 1 8 5 14 10 15 6 12 
        

  

13 1 3 14 2 2 10 1 11 4 7 9 4 11 3 10 1 16 2 2 16 10 18 2 2 16 3 11 4 4 11 8 16 9 15 1 6 4 1 16 3 11 7 17 

  4 7 4 2 5 7 13 10 10 5 11 4 10 6 8 13 5 5 2 8 2 5 9 8 8 1 2 5 4 6 10 8 15 7 5 2 8 1 5 9       

13 4 1 16 3 11 7 17 4 7 4 2 5 7 13 10 10 5 11 4 6 10 8 15 7 5 2 8 1 3 14 2 5 6 4 11 4 4 11 8 16 9 15 1 

  6 1 5 9 1 1 10 1 8 17 2 9 6 2 12 5 2 8 1 19 8 13 6 14 10 18 2 2 16 3 11 2 2 16 10 18               

 



93 
 

Table A10: Mk10 problem data 

20 15 
                                       12 2 6 5 2 5 2 7 11 6 11 1 2 5 4 8 10 3 18 4 10 9 7 2 7 9 1 7 4 1 8 7 14 9 12 4 7 3 4 13 8 

  8 2 6 5 3 8 1 19 9 13 10 19 2 16 5 2 16 10 9 3 12 4 11 5 15 2 9 10 10 5 3 7 5 2 8 4 7 4 1 6 

  6 13 5 11 10 7                                                                     

13 2 7 11 6 11 4 2 16 10 9 5 9 8 16 2 6 5 2 5 2 2 11 1 9 2 3 12 7 15 4 4 11 10 14 5 10 7 15 4 3 

  8 1 12 5 5 13 11 5 3 8 1 19 9 13 10 19 2 16 3 4 13 8 8 2 6 4 8 10 3 18 4 10 9 7 4 1 16 5 11 10 

  17 3 6 2 9 10 10 5 2 5 11 2 11 
                          

  

11 4 3 8 1 12 5 5 13 11 2 2 11 1 9 2 7 9 1 7 2 6 5 2 5 4 1 6 6 13 5 11 10 7 2 9 10 10 5 5 3 

  8 1 19 9 13 10 19 2 16 4 8 10 3 18 4 10 9 7 4 2 16 10 9 5 9 8 16 2 3 12 7 15 2 2 5 9 19       

11 4 4 11 10 14 5 10 7 15 5 3 8 1 19 9 13 10 19 2 16 1 5 15 1 2 5 2 9 10 10 5 2 7 11 6 11 4 1 16 5 

  11 10 17 3 6 2 10 13 6 11 2 2 5 9 19 3 4 13 8 8 2 6 4 8 10 3 18 4 10 9 7 
        

  

14 2 7 11 6 11 2 9 10 10 5 4 5 11 7 8 10 11 2 16 2 10 13 6 11 4 1 16 5 11 10 17 3 6 2 7 9 1 7 4 3 

  8 1 12 5 5 13 11 1 2 5 4 2 16 10 9 5 9 8 16 3 1 15 2 19 9 9 4 1 6 6 13 5 11 10 7 2 2 11 1 9 

  4 4 11 10 14 5 10 7 15 5 3 8 1 19 9 13 10 19 2 16                                         

11 3 1 15 2 19 9 9 2 7 9 1 7 4 8 10 3 18 4 10 9 7 2 2 5 9 19 4 5 11 7 8 10 11 2 16 4 1 6 6 13 

  5 11 10 7 2 7 11 6 11 1 2 5 3 7 5 2 8 4 7 4 3 8 1 12 5 5 13 11 1 5 15 
        

  

14 1 2 5 2 7 11 6 11 2 2 11 1 9 2 9 10 10 5 4 8 10 3 18 4 10 9 7 3 1 15 2 19 9 9 3 7 5 2 8 4 

  7 4 2 16 10 9 5 9 8 16 4 1 6 6 13 5 11 10 7 1 5 15 4 7 13 10 19 6 18 4 8 4 3 8 1 12 5 5 13 11 

  4 1 16 5 11 10 17 3 6 2 7 9 1 7                                                     

13 4 8 10 3 18 4 10 9 7 2 10 13 6 11 4 5 11 7 8 10 11 2 16 3 4 13 8 8 2 6 5 2 16 10 9 3 12 4 11 5 

  15 3 1 15 2 19 9 9 4 3 8 1 12 5 5 13 11 3 7 5 2 8 4 7 4 7 13 10 19 6 18 4 8 4 1 6 6 13 5 11 

  10 7 2 6 5 2 5 4 1 16 5 11 10 17 3 6 4 2 16 10 9 5 9 8 16 
              

  

11 2 7 11 6 11 3 7 5 2 8 4 7 4 8 10 3 18 4 10 9 7 2 9 10 10 5 4 2 16 10 9 5 9 8 16 3 4 13 8 8 

  2 6 4 7 13 10 19 6 18 4 8 5 2 16 10 9 3 12 4 11 5 15 4 1 8 7 14 9 12 4 7 2 6 5 2 5 2 2 11 1 

  9                                                                               
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Table A10 (Continued) 

12 2 9 10 10 5 1 5 15 2 2 5 9 19 3 1 15 2 19 9 9 5 2 16 10 9 3 12 4 11 5 15 4 1 6 6 13 5 11 10 7 

  4 2 16 10 9 5 9 8 16 4 1 16 5 11 10 17 3 6 2 6 5 2 5 2 3 12 7 15 4 4 11 10 14 5 10 7 15 4 8 10 

  3 18 4 10 9 7 
                                 

  

10 5 2 16 10 9 3 12 4 11 5 15 4 5 11 7 8 10 11 2 16 4 7 13 10 19 6 18 4 8 2 9 10 10 5 1 5 15 2 2 11 

  1 9 3 4 13 8 8 2 6 2 2 5 9 19 4 8 10 3 18 4 10 9 7 4 1 16 5 11 10 17 3 6                 

11 2 10 13 6 11 1 5 15 2 9 10 10 5 4 1 8 7 14 9 12 4 7 4 3 8 1 12 5 5 13 11 3 4 13 8 8 2 6 3 7 

  5 2 8 4 7 1 2 5 4 1 6 6 13 5 11 10 7 4 2 16 10 9 5 9 8 16 2 7 9 1 7 
        

  

11 3 7 5 2 8 4 7 2 2 5 9 19 4 1 8 7 14 9 12 4 7 4 5 11 7 8 10 11 2 16 3 1 15 2 19 9 9 4 1 16 

  5 11 10 17 3 6 2 6 5 2 5 2 7 11 6 11 5 3 8 1 19 9 13 10 19 2 16 4 8 10 3 18 4 10 9 7 3 4 13 8 

  8 2 6                                                                           

10 2 5 11 2 11 4 8 10 3 18 4 10 9 7 2 7 9 1 7 2 6 5 2 5 4 3 8 1 12 5 5 13 11 1 5 15 2 9 10 10 

  5 4 1 16 5 11 10 17 3 6 3 4 13 8 8 2 6 2 3 12 7 15 
                 

  

12 4 8 10 3 18 4 10 9 7 1 5 15 3 1 15 2 19 9 9 4 7 13 10 19 6 18 4 8 4 2 16 10 9 5 9 8 16 4 1 8 

  7 14 9 12 4 7 3 7 5 2 8 4 7 2 10 13 6 11 2 9 10 10 5 2 3 12 7 15 2 6 5 2 5 4 3 8 1 12 5 5 

  13 11                                                                             

14 2 7 11 6 11 1 5 15 2 2 5 9 19 4 1 8 7 14 9 12 4 7 1 2 5 4 3 8 1 12 5 5 13 11 3 4 13 8 8 2 

  6 3 1 15 2 19 9 9 4 4 11 10 14 5 10 7 15 2 6 5 2 5 2 9 10 10 5 2 5 11 2 11 5 3 8 1 19 9 13 10 

  19 2 16 2 10 13 6 11 
                               

  

13 4 7 13 10 19 6 18 4 8 5 2 16 10 9 3 12 4 11 5 15 3 4 13 8 8 2 6 2 7 11 6 11 2 10 13 6 11 4 2 16 

  10 9 5 9 8 16 4 8 10 3 18 4 10 9 7 4 3 8 1 12 5 5 13 11 2 6 5 2 5 2 7 9 1 7 4 1 16 5 11 10 

  17 3 6 2 2 5 9 19 5 3 8 1 19 9 13 10 19 2 16                                           

11 4 7 13 10 19 6 18 4 8 4 1 6 6 13 5 11 10 7 4 2 16 10 9 5 9 8 16 2 10 13 6 11 2 2 5 9 19 2 5 11 

  2 11 5 2 16 10 9 3 12 4 11 5 15 2 6 5 2 5 3 1 15 2 19 9 9 1 2 5 4 4 11 10 14 5 10 7 15 
  

  

13 2 2 5 9 19 2 6 5 2 5 3 4 13 8 8 2 6 2 7 9 1 7 2 3 12 7 15 1 5 15 4 1 16 5 11 10 17 3 6 3 

  1 15 2 19 9 9 2 10 13 6 11 2 2 11 1 9 3 7 5 2 8 4 7 4 3 8 1 12 5 5 13 11 4 5 11 7 8 10 11 2 
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Table A10 (Continued)  

  16                                                                               

13 4 1 16 5 11 10 17 3 6 3 1 15 2 19 9 9 4 3 8 1 12 5 5 13 11 2 2 5 9 19 4 2 16 10 9 5 9 8 16 1 

  5 15 4 5 11 7 8 10 11 2 16 4 8 10 3 18 4 10 9 7 2 7 11 6 11 4 1 8 7 14 9 12 4 7 4 7 13 10 19 6 
  18 4 8 2 3 12 7 15 2 7 9 1 7                                                       
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APPENDIX B 

Figure B1. The pseudo code of the proposed GA 

     Procedure: Genetic Algorithm 

Step 1. Initialize the GA parameters: Stopping criterion: (number of generations) 

gmax; Population size: Ps; Chromosome length: Cl; Mutation probability: pm 

Step 2. for k=1 to Ps  

     2.1.for j=1 to N  

           // Select a plan for part j and Set into chromosome 

        end 

 2.2. for i=1 to total number of operation   

            // Select a machine for operation Oij and Set into chromosome via 

operation sequence 

            end 

        end 

Step 3. g ← 1  

         3.1. // Select parents using Tournament approach from population 

Step 4. Crossover: 

 4.1. // Generate a random number 

 4.2. // Select two parent from mating pool for crossover via random number  

 4.3. // Generate new individual via crossover operator 

Step 5. Mutation: 

     5.1. if p< pm then 

     5.2.    // Mutate the gene 

Step 6. // Get new population 

Step 7. // Get objective function value for each individual 

Step 8. g ← g+1  

end 
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Figure B2. Pseudo Code of FJSSP Simulation Model 

BEGIN 

CREATE Jobs every 130 minutes exponentially 

ASSIGN myJobType=DISC(0.26,1,0.74,2,1,3) 

  myJobSequence=PartSequences(myJobType) 

STATION Order Release 

ROUTE Jobs to the imminent station of myJobSequence after 

vTransferTime(Order Release, myJobSequence) 

// vTransferTime(Order Release, myJobSequence) is 

predetermined.  

A: PROCESS delay jobs by "ProcessTime" minutes 

 //Seize appropriate machine according to the 

myJobSequence 

 //Delay "ProcessTime" 

 //Release the machine   

DECIDE if myJobSequence completed 

  If false, GoTo A 

STATION "Exit System" 

Collect Statistics  

Send Related Statistics to the Database 

DISPOSE  

END 

 

 


