
Dynamic Flexible Job Shop Scheduling with Simulation

Optimization by Using Genetic Algorithm

M. Sc. Thesis

In

Industrial Engineering

University of Gaziantep

Supervisor

Assist. Prof. Dr. Faruk GEYİK

by

Ayşe Tuğba DOSDOĞRU

July 2012

©2012[Ayşe Tuğba DOSDOĞRU].

ABSTRACT

Dynamic Flexible Job Shop Scheduling with Simulation Optimization by Using

Genetic Algorithm

DOSDOĞRU, Ayşe Tuğba

M. Sc. in Industrial Eng.

Supervisor: Assist. Prof. Dr. Faruk GEYİK

July 2012, 97 pages

In most real life manufacturing problems, certain operation of a part can be

processed on more than one machine which makes the considered system (i.e. job

shops) flexible. On one hand, flexibility provides alternative part routings which

most of the time relaxes shop floor operations. On the other hand, increased

flexibility makes operation machine pairing decisions (i.e., the most suitable part

routing) much more complex. Thus, manufacturing systems must be scheduled by

considering the flexibility to improve effectiveness and performance.

The aim of the study is to develop a system that generates the best feasible part

routings in a dynamic flexible job shop scheduling environment. For this purpose

both the best feasible process plan for each part and the best feasible machine for

each operation in a dynamic flexible job shop scheduling environment must be

determined, respectively. In this respect, a genetic algorithm is adapted to determine

best part processing plan for each part and then select appropriate machines for each

operation of each part according to the determined part processing plan. Genetic

algorithm solves to the optimization phase of solution methodology. Then these

machine-operation pairings are utilized by discrete-event system simulation model to

estimate their performances. These two phases of the study follow each other

iteratively. The goal of the proposed methodology is to find the solution that

minimizes total of average flow times for all parts. The results show that the

objective function improves as the considered level of flexibility increases.

Keywords: Flexible job shop scheduling, genetic algorithm, simulation optimization.

ÖZ

Genetik Algoritma Kullanılarak Benzetim Optimizasyonlu Dinamik Esnek

Üretim Atölyesi Çizelgeleme

DOSDOĞRU, Ayşe Tuğba

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Faruk GEYİK

Temmuz 2012, 97 sayfa

Gerçek hayat üretim problemlerinin çoğunda, bir parçanın belirli bir operasyonu

birden fazla makinede işlenebilmektedir. Bu opsiyon göz önüne alınan sisteme (örn.,

atölye tipi üretim sistemi) esneklik katmaktadır. Esneklik bir taraftan üretim

süreçlerini rahatlatan alternatif parça rotaları sağlarken diğer bir taraftan da parça-

makine seçimlerinde (örn., en uygun parça rotasının seçimi) karmaşıklığa sebep

olabilmektedir. Etkinliğin ve verimliliğin artırılması için, üretim sistemleri esneklik

göz önüne alınarak çizelgelenmelidir.

Ele alınan çalışmanın amacı, bir dinamik esnek atölye tipi üretim ortamında olurlu en

iyi parça rotalarının üretilmesini sağlayan bir sistem geliştirmektir. Bu amaçla, bir

dinamik esnek atölye tipi üretim ortamında, sırasıyla hem her bir parça için olurlu en

iyi proses planı hem de her bir operasyon için en iyi olurlu makinenin belirlenmesi

gerekmektedir. Bu bağlamda, her bir parça için en iyi parça proses planı ve sonra

belirlenen parça proses planına göre her bir parçanın her bir operasyonu için uygun

makinenin seçilmesini sağlayan genetik algoritma geliştirilmiştir. Geliştirilen

algoritma çözüm metodolojisinin optimizasyon aşamasını oluşturmaktadır. Elde

edilen makine-operasyon ikilileri, performanslarının tahmini amacıyla, kesikli olay

sistem simülasyonu modeline beslenmiştir. Çalışmanın bu iki aşaması birbirini

ardışık bir şekilde izlemektedir. Önerilen metodolojinin amacı tüm parçalar için

toplam ortalama akış süresini minimize eden çözümü bulmaktır. Sonuçlar, amaç

fonksiyonunun göz önüne alınan esneklik seviyesinin artan değerleri için iyileştiğini

göstermiştir.

Anahtar Kelimeler: Esnek üretim atölyesi çizelgeleme, genetik algoritma, benzetim

optimizasyonu.

vii

ACKNOWLEDGMENT

I would like to sincerely thank to my supervisor, Assist. Prof. Dr. Faruk GEYİK to

his guidance, advice, suggestions and encouragement throughout the study. His

invaluable help of constructive comments and suggestions throughout the

experimental and thesis works have contributed to the success of this research.

My thanks go to other members of my thesis committee, Prof. Dr. Türkay DERELİ,

Assoc. Prof. Dr. Serap Ulusam SEÇKİNER, and Assist. Prof. Dr. Ömer AKGÖBEK.

I am much indebted for using their precious times to read this thesis and gave their

valuable criticisms about it.

I am deeply grateful to Assist. Prof. Dr. Mustafa GÖÇKEN for his important support

and crucial contribution, which made him a backbone of this research and so to this

thesis.

Finally, very special thanks to my family for their inseparable support and prayers.

viii

CONTENTS

 Page

ABSTRACT .. v

ÖZ ... vii

ACKNOWLEDGMENT .. vii

CONTENTS ... viii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

ABBREVIATIONS .. xiv

CHAPTER 1:

INTRODUCTION ... 1

 1.1. Introduction ... 1

1.2. Aim of the Thesis .. 3

1.3. Outline of the Thesis .. 4

CHAPTER 2:

LITERATURE REVIEW AND BACKGROUND ... 6

2.1. Review of Job Shop Scheduling ... 6

2.2. Review of Flexible Job Shop Scheduling ..12

2.3. Shop Configurations and Scheduling Environments16

2.4. Problem Definition ...18

2.4.1 Job Shop Scheduling Problem ...18

2.4.2 Flexible Job Shop Scheduling..19

2.5. Objective Functions in Scheduling ..20

ix

CHAPTER 3:

METHODOLOGY ...23

3.1. Scheduling Approximations ..23

3.1.1 Genetic Algorithm ...26

3.1.1.1 Representation ...26

3.1.1.2 Fitness Function ...27

3.1.1.3 Selection ..27

3.1.1.4 General Crossover Procedures ..28

3.1.1.5 General Mutation Procedures ...28

3.2. Simulation Optimization ...29

3.3. Experimental Design ...32

CHAPTER 4:

SOLVING THE FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY USING

GENETIC ALGORITHM ...33

4.1. Problem Formulation ..33

4.2. Proposed GA for FJSSP ..35

4.2.1. Chromosome Representation ...35

4.2.2. Decoding process ...37

4.2.3. Initial Population ...38

4.2.4. Generation of new candidate solutions ...40

4.2.5. Crossover ..40

4.2.6. Mutation ..42

4.3. Applying the proposed GA to Benchmark Problems and Computational

Results ..44

4.4. Experimental Design and Analysis ..45

4.4.1. Framework of the proposed GA for the Experimental Design47

4.5. Results of Analysis ...48

CHAPTER 5:

APPLICATION OF SIMULATION OPTIMIZATION BY USING GA TO

DYNAMIC FJSSP ..56

5.1. System Characteristics and Problem Definition ...56

5.1.1. System Characteristics ...57

5.1.2. Problem Definition of dynamic FJSSP ...58

5.2. Proposed GA for dynamic FJSSP ..60

5.2.1. Chromosome Representation for the Considered Problem60

5.2.2. Generation of Initial Population for the Considered Problem60

5.2.3. Crossover for the proposed GA ..61

5.2.4. Mutation for the Proposed GA ...62

5.3. The methodology of Optimization via Simulation62

5.3.1. Problem Formulation ...62

5.4. Computational Results and Discussions ..64

x

CHAPTER 6:

CONCLUSION ..68

REFERENCES ...71

APPENDIX A ..79

APPENDIX B ...96

xi

LIST OF TABLES

LIST OF TABLES Page

Table 2.1. Characteristics of static and dynamic environment18

Table 2.2. An example of JSSP ...19

Table 2.3. An example of FJSSP ...20

Table 3.1 Summary of other dispatching rules ...24

Table 4.1 Operation processing time table with deterministic times of FJSSP35

Table 4.2 Operation processing times with stochastic times35

Table 4.3 Computational results and comparisons ...45

Table 4.4 Part × Machine Groups ..46

Table 4.5 Number of operation levels..46

Table 4.6 Flexibility levels for each machine sizes ..46

Table 4.7 Best makespans over five runs. ..47

Table 4.8 Analysis of Variance for Makespan ...48

Table 5.1 Part-operation plans data ...59

Table 5.2 Machine-operation suitability data ...59

Table 5.3 Processing times distributions for each part ...60

Table 5.4 Operation sequences and machine numbers of best results66

xii

LIST OF FIGURES

LIST OF FIGURES Page

Figure 3.1 A binary chromosome representation ...27

Figure 3.2 An example of uniform crossover operator ...28

Figure 3.3 An example for inversion mutation ..29

Figure 4.1 Chromosome structure of proposed GA ..36

Figure 4.2 Machine and processing time matrix used in decoding process37

Figure 4.3 An example Gantt chart to set the operation into the idle time.38

Figure 4.4 An example Gantt chart to set the operation to the end of the machine. ..38

Figure 4.5 Illustration of crossover operations ...42

Figure 4.6 Illustration of mutation operation which selects a machine with a shorter

processing time ...43

Figure 4.7 Illustration of mutation operation for machine selection and operation

sequence parts ...43

Figure 4.8 Comparison between random strategy and combined strategy.48

Figure 4.9 Interaction Effect of Part Number, Machine Number, and Flexibility

Level on Makespan ...50

Figure 4.10 Interaction Effect of Part Number, Operation Number, and Flexibility

Level on Makespan ...51

Figure 4.11 Interaction Effect of Machine Number, Operation Number, and

Flexibility Level on Makespan ..52

Figure 4.12 Interaction Effect of Part Number and Flexibility Level on Makespan ..53

Figure 4.13 Interaction Effect of Operation Number and Flexibility Level on

Makespan ...54

Figure 4.14 Interaction Effect of Part Number, Machine Number, Operation Number,

and Flexibility Level on Makespan ...55

Figure 5.1 Illustration of the proposed chromosome representation60

xiii

Figure 5.2 An illustration of crossover operator...61

Figure 5.3 An illustrative of mutation operator ..62

Figure 5.4 Optimization via Simulation Methodology ...64

Figure 5.5 Total of average flow times obtained with full flexibility........................67

Figure 5.6 Total of average flow times results obtained with partial flexibility67

xiv

ABBREVIATIONS

JSSP Job Shop Scheduling Problem

FJSSP Flexible Job Shop Scheduling Problem

GA Genetic Algorithm

PSO Part Swarm Optimization

ACO Ant Colony Optimization

BA Bee Algorithm

AIS Artificial Immune Systems

VNS Variable Neighbourhood Search

POX Precedence preserving order based crossover

MC Monte Carlo

FIFO First in First Out

SPT Shortest Processing Time

MST Minimum Slack Time

SIRO The Service in Random Order

ERD The Earliest Release Date First

EDD The Earliest Due Date First

WSPT The Weighted Shortest Processing Time First

AL Approach by Localization

ANOVA Analysis of Variance

1

CHAPTER 1

INTRODUCTION

1.1. Introduction

Scheduling is an important process in the planning and managing of manufacturing

and service systems which deals with allocation of resources to tasks in a limited

time period. Pinedo (2008) explains the scheduling in manufacturing systems as

“Orders that are released in a manufacturing setting have to be translated into jobs

with associated due dates. These jobs often have to be processed on the machines in

a workcenter in a given order or sequence”.

One of the most well known and studied problem is Job Shop Scheduling Problem

(JSSP) in which finding optimum solution is still a challenging problem. JSSP deals

with sequencing operations of a set of jobs on a set of machine which one is specific

for an operation. If an operation can be processed at more than one machine, the

problem converts to Flexible Job Shop Scheduling problem (FJSSP). FJSSP deals

with two sub-problems. One of them is assigning operations to machines selected out

of alternative machines and the other one is sequencing of operations on each

machine. So, FJSSP becomes more difficult to find a feasible solution due to

consider these two sub-problems (Zhang, et al., 2011).

JSSPs and FJSSPs are handled with different forms of parameters and in varied

scheduling environments. Scheduling environments can be classified into two main

categories as static and dynamic. In the static scheduling environment, all shop

parameters are predetermined and already known. All jobs are released to the shop

floor at once and, jobs’ processing times are known at the beginning. In the static

scheduling environment, jobs’ processing times can be defined either deterministic or

2

stochastic. In the dynamic scheduling environment, jobs are released to the shop

floor constantly. Processing times are to be uncertain and unexpected events such as

machine breakdowns and/or preemptions can occur at an arbitrary point in time.

Numerous methods has been proposed to cope with sequencing and scheduling

problems to date. These methods can be classified into two main categories: (1)

Exact and (2) Approximation methods (Bondal, 2008). Exact methods, such as

branch and bound, linear programming and integer programming have been

developed to small-sized problem and guarantee global optimum. However,

analytical methods cannot find the optimum when the problem size increased.

Therefore, a large part of studies pay attention to approximation methods such as

heuristics and artificial intelligence techniques to cope with large-sized problems.

They could produce reasonably good schedules in a reasonable computational time,

and could get near optimal solution easily (Zhang, et al., 2011). The intelligent

optimization algorithms such as genetic algorithm (GA), particle swarm optimization

(PSO) and ant colony (ACO) are relatively easy to implement and they could

conveniently be adapted for different kinds of scheduling problems. For this reason,

they become progressively popular in recent years (Zhang, et al., 2010).

GA is one of the most used meta-heuristic algorithms and has been applied

successfully in the area of scheduling. GA is developed by John Holland in 1960s,

and David Goldberg who is the one of his student, is applied a GA to the control of

gas-pipeline transmission successfully (Yamada, 2003). In recent years, GA is

applied to the FJSSP successfully with different GA procedures and hybrid

approaches (Kacem, et al., 2002, Pezzella, et al., 2008, Zhang, et al., 2011).

In spite of being a powerful method to solve wide range of scheduling problems,

GA's usage for solving real life problems is inadequate. This inability can mainly

attributed to uncertainties in the structure of real-life problems. In this case, other

approaches which successfully consider the uncertainties of real life problems should

also be taken into account together with meta-heuristics.

In general, real life systems are often said to be probabilistic and models of such

systems are known to be probabilistic models as well. It is well known that

simulation is an indispensible tool for analyzing such complex real life systems.

Also, more recently simulation together with meta-heuristics is an appropriate tool

3

optimizing such complex systems. Fu (2002) reported that optimization and

simulation is become more popular and there is a large body of research literature

relevant to combining them. Simulation optimization helps to find the values for the

input parameters while optimizing the performance of the considered system

(Medaglia, 2000).

1.2. Aim of the Thesis

The main purpose of this study is to develop an effective methodology for

minimizing total average flow time of all parts in a dynamic and stochastic FJSSP.

Achieving an optimal or near optimal solution is a challenging problem when

considered system dynamic and stochastic. While meta-heuristic algorithms have

been applied for static scheduling problems successfully, the complexity of the

problem increases as the size of the problem increases. This thesis proposes a

simulation optimization methodology to cope with the solution complexity of the

dynamic and stochastic FJSSP regardless of the size of the problem. As the name

suggests, the proposed methodology is composed of two consecutive stages; (1)

Simulation, and (2) Optimization. Owing to simulation stage the complexity of the

real life problem can be easily modelled. Besides, owing to optimization stage,

various combinations of input variables can be generated to be tested in simulation

model of the real system. By this way, obtaining high quality solutions in a

reasonable solution time is aimed.

In optimization stage, a GA is needed for optimization phase of the proposed

method. For this purpose, a GA is developed for static stochastic FJSSP. The

processing times are considered to be stochastic to make the problem more realistic.

A full factorial design is utilized to evaluate the performance of the stochastic

flexible job shop and investigate relationship between the considered factors (parts,

jobs, operations, and flexibility). 81 experiments are generated to investigate all

factor level combinations.

Finally, the GA is adopted to dynamic and stochastic FJSSP and integrated with

simulation. The integration of GA and simulation can be considered the most

important part of the study. GA accounts for optimization phase of the simulation

optimization methodology. Then the outputs of the GA are fed into the simulation as

inputs to estimate the performance of the system.

4

1.3. Outline of the Thesis

In the context of this thesis, different types of FJSSP is considered. First, a GA is

adapted to solve the general FJSSP and then adapted for use in different type of

scheduling environments. The detailed explanation is given below.

First, a GA is proposed to solve static deterministic FJSSP. Initial population is

generated by mixed initial strategies and, various crossover and mutation procedures

are applied. The algorithm is tested with most used benchmark problems in the

literature.

Then, static deterministic FJSSP is converted to static stochastic FJSSP type. Here,

processing time is sampled from predetermined probability distribution. An

experimental design is composed to evaluate the impact of flexibility level to the

shop performance.

Finally, the system considered as dynamic stochastic FJSSP. The operation

processing times are considered to be random in order to represent real life problems

more closely which is the same as in the second section. Additionally, to provide the

system being dynamic, jobs arrive to the shop constantly. Thesis outline is organized

as follows:

A literature review of JSSPs and FJSSPs and background of scheduling problems are

given in chapter 2. Applied methods and problem types are emphasized briefly. The

problem definitions of JSSP and FJSSP are provided here. Shop configurations and

scheduling environments are explained and the most commonly used objective

functions are given. The most commonly used scheduling approximations in the

literature and the general information about the methodologies used in our study is

given chapter 3.

In chapter 4, the FJSSP is solved by using GA. The detailed explanations of the

main framework of the GA and the procedures for GA are given. The algorithm is

tested with well known benchmark problems from the literature and the results are

given in this section. Afterwards, an experimental design is utilized for stochastic

FJSSP. The problem statement and the GA are explained and the results of the

analysis are given in this section.

Finally, simulation optimization methodology for dynamic FJSSP is presented in

chapter 5. System characteristics and problem definition together with the

5

methodologies for simulation optimization is given. Computational results are also

given in this section.

Chapter 6 contains the conclusions and the recommendations for future studies.

6

CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

JSSP is studied in a great number of researches for several decades. Due to large

number of studies, studies after millennium are reviewed. Therefore, the most recent

methods, problem types and problem environments were taken into consideration. In

this respect, a comprehensive review of JSSP and FJSSP literature are given,

respectively.

2.1. Review of Job Shop Scheduling

Most of the JSSPs are handled in a static environment with known processing times,

and ignored machine breakdowns or unexpected events.

Chong, et al. (2006) handled the JSSP as deterministic JSSP. There are a set of

machines and a set of jobs. Each job has a pre-determined operation sequence. And,

each operation can be processed on a determined machine within a processing time

period. The objective function is to minimize the makespan (Cmax) and a disjunctive

graph is used to represent the JSSP. They proposed a honey bee colony algorithm to

solve JSSP. The honey bee colony algorithm is tested on 82 benchmark problems.

They used Ant Colony (ACO) and Tabu Search (TS) algorithm to compare their

algorithm. Their algorithm is found to be comparable to ACO, but TS is found to be

more efficient.

Sha, et al. (2006) used a hybrid PSO for deterministic JSSP. They used Giffler and

Thompson's heuristic to decode a particle position into a schedule. TS is also applied

for comparison purposes. All considered heuristics are applied to same set of

benchmark problems. The computational results showed that the hybrid PSO

performs better than the general PSO and the other traditional meta-heuristics.

7

Lian, et al. (2006) is used PSO to solve deterministic JSSP with some new algorithm

operators. Makespan (Cmax) is used as objective function. They used simulation to

evaluate the algorithm with three instances. The results are compared with traditional

GA. The results revealed that their algorithm is more efficient than the traditional

GA.

Zhang, et al. (2007) proposed a TS with a new enhanced neighbourhood structure for

JSSP. This neighbourhood structure can obtain a new set of neighbour solutions by a

small mutation to a given solution. The objective is to find a solution with a

minimum makespan. The computational results show that their proposed TS gives

better solutions than an estimation approach and an exact evaluation approach.

Geyik, et al. (2004) investigated the parameters and strategies of tabu search such as

initial solution, neighbourhood structure, tabu list, aspiration criterion, elite solutions

lists, intensification, diversification and the number of iteration. Benchmark

problems are solved with tabu search to test the parameters and strategies.

Essafi, et al. (2008) solved deterministic JSSP using a genetic algorithm combined

with an iterated local search heuristic. The minimization of the total weighted

tardiness considered as objective function. Their study proved that using an iterative

local search considerably enhanced the quality of genetic algorithms and decrease the

role of the schedule builder.

Lei (2008) proposed a Pareto archive particle swarm optimization and, the objective

of the study is to minimize both makespan and total tardiness of jobs simultaneously.

Pareto is an archive system which maintains optimal solutions to a multi-objective

problem. Their proposed algorithm is tested on 18 benchmark problems and results

showed that the algorithm performs better than a multi-objective particle swarm

optimization.

Zhang, et al. (2008) and Pan, et al. (2009) proposed a hybrid GA. Zhang, et al.

(2008) constructed a schedule using a new full active schedule procedure based on

the operation-based representation. A local search heuristic is used to improve the

obtained schedules while getting away from local optimum. In the study, a new

crossover operator, called the precedence operation crossover (POX) is used which

maintains feasibility of schedule after the crossover. Pan, et al. (2009) used a hybrid

GA and determined their problem to be no-wait JSSP. No-wait JSSP is a job shop

8

with a constraint that a job cannot wait between operations. A local search is applied

to solve no-wait JSSP as a sub-problem in GA. Both studies’ results showed that

hybrid GA performs better than general GAs.

Roshanaei, et al. (2009) proposed a local search-based algorithm called variable

neighbourhood search (VNS). In the study, set-up times are also considered which

makes JSSP with sequence-dependent set-up times. Besides, the objective is to

minimize makespan. VNS uses three advanced neighbourhood search techniques.

The VNS achieved effective results in terms of computational time and solution

quality than any other well known algorithms.

Fığlalı, et al. (2009) proposed an ACO algorithm to solve general JSSP. ACO

parameters are set by an experimental design on different sized and randomly

generated JSSPs. The effect of ACO parameters to the job shop performance is

investigated by the results. The results revealed that, ACO parameters have a

significant effect on makespan value.

Manikas, et al. (2009) used GA to solve multi-criteria sequence-dependent JSSP.

Apart from the literature, sequence-dependent setup times, staggered release dates

(i.e., all jobs are not release to the system at the same time) and recirculation are

included to JSSP. They used three criteria for objective function: makespan,

earliness, tardiness and costumer and/or job rank. The fitness function is evaluated

by using weights which are determined for each criterion. These weights are

determined according to a manufacturer's needs. Due to being a novel problem in the

literature, they did not have the chance to compare their solution quality with

benchmark problems. Thus, an experimental design is used to test the different levels

of the factors considered in the study.

A hybrid immune simulated annealing algorithm is proposed by Zhang, et al. (2010)

in which the objective is to minimize total weighted tardiness. This study focused on

the bottleneck jobs which processing sequence have a significant effect on the job

performance and these jobs needs more intensive optimization. A fuzzy inference

system is designed for evaluating the bottleneck level to determine the bottleneck job

distribution. The main logic behind using the fuzzy inference system is to take

variety in job shops into account where critical jobs can be changed. Simulated

annealing is used to determine solution space and the immune mechanism is applied

9

to increase the solution quality. Computational results showed that the proposed

approach is effective and robust.

Hybrid algorithms are studied in recent years progressively. Lian (2010) combined a

local and global search while using PSO and to minimize the makespan. A local

search is used to determine best position with the lowest fitness particle in the swarm

in a particle (local search) and to find the best position of the whole colony (global

search). Meeran, et al. (2011) combined GA and TS to solve a real life JSSP. First

GA starts with a set of initial solutions and TS improves these solutions. Then, GA

continues with the solutions obtained from TS. Cheng, et al. (2011) solved the multi-

objective JSSP with a two stage algorithm which combines a dispatching rule based

memetic algorithm in the first stage and a re-optimization procedure of shifting

bottleneck in the second stage. Zhang, et al. (2012) used a hybrid artificial bee

algorithm where a tree-based local search procedure is embedded into bee algorithm

to enhance the solution quality. All these studies showed that hybrid algorithms are

much more effective than the pure ones.

As clear from the above discussion, considerable amount of studies considered the

JSSP as being static. In these studies, all jobs are ready at the beginning and random

events are ignored. However, there are always random and unexpected events in real

life systems (Fang, et al., 1997). To analyze real life problems accurately and

reasonably these uncertainties should be considered.

Yoshitomi, et al. (2003) used a GA and the Monte Carlo (MC) method for stochastic

JSSP. Job processing times are considered to be random variables that have

stochastic distribution functions and the objective functions. Thus, the objective

function is specified as expected value of makespan. First, GA is applied to

stochastic JSSP. Crossover operator based on Giffler & Thompson's algorithm

(Giffler & Thompson, 1960) is applied. Then, the solutions with higher frequencies

are selected as best solutions and, MC is applied to find optimum schedule among

these best solutions. Results showed that this GA-MC method needs less time than

MC. Similarly, Lei, et al. (2008) solved JSSP with stochastic processing time using

GA. Processing times are sampled from normal distribution. A new permutation-

based representation method is used and the objective function is to minimize the

makespan.

10

Gu, et al. (2009) proposed a new Quantum GA to solve stochastic JSSP with the

objective of minimizing the expected value of makespan. The processing times of

each job is sampled from normal distribution. Gu, et al. (2009) proposed a new

parallel quantum GA. This new scheduling algorithm provides high convergence

performance to either optimum or near optimum for stochastic JSSP. Gu, et al.

(2010) proposed a competitive co-evolutionary quantum GA. New strategies called

competitive hunter, cooperative surviving and the big fish eating small fish are

developed in population growth process. The results revealed that this algorithm

provides better performance than both quantum based GA and standard GA.

Fuzzy processing time and fuzzy due date are studied by Hu, et al. (2011) using

differential evolution algorithm. A special fuzzy number defined for processing times

and due dates. Then, the analytical formulas are determined for these objective

functions. A fuzzy ranking concept is used to investigate the relation between fuzzy

completion time and fuzzy due date. According to the experimental design results,

this method is found comparable with state-of-the-art methods. The smallest

makespan found in this study is not the best but reasonable for due dates of each

jobs.

Lei (2011a) and Lei (2012) used interval theory (a special fuzzy number) to

determine processing times for JSSP. Lei (2011a) applied a population based

neighbourhood search (PNS) to find minimum interval makespan. It is reported that

sometimes it can be difficult to determine an appropriate membership function or a

probability distribution. That is why, interval theory is used in this study. The

proposed algorithm is compared with particle swarm optimization with genetic

operators (GPSO) and Simulated Annealing (SA). The results showed that the PNS is

better than GPSO and SA. Lei (2012) used operation-based GA with interval theory.

These studies claimed that interval theory is more easier to obtain interval processing

time and to build schedule.

Lei (2011b) dealt with stochastic JSSP considering random breakdowns and repairs.

GA is used to solve this problem and the objective is to minimize the stochastic

makespan. Processing times and machine breakdowns are assumed to be random

variables with exponential distribution. Random key representation is used to cope

11

with random events. It is reported that the proposed GA gives successful results for

stochastic JSSP.

A multi-objective stochastic JSSP with exponential distribution is investigated by Lei

(2011c). The study deals with two objective function: makespan and total tardiness.

An effective ordered operation-based GA is proposed. Successful results are obtained

with adopting a simplified external archive updating strategy and an efficient

crossover.

A hybrid differential evolution algorithm Zhang, et al. (2012) and a two stage hybrid

PSO Zhang, et al. (2012) used for stochastic JSSP with expected total tardiness

objective function. Both of these studies, at first stage, applied meta-heuristics to

stochastic JSSP with independent random variables with known expectation (E(pjk))

and variance (var(pjk)) where j denotes to jobs and k denotes to machines. At second

stage, simulation is used to find optimum solution among a set of best solution

obtained from the first stage.

The studies mentioned above are all related to static and/or stochastic JSSP. Besides

them, some studies are handled dynamic and/or stochastic JSSP to represent real life

problems more closely. Zhou, et al. (2009) studied ACO to measure it's performance

in a dynamic JSSP. Processing times, release dates and the job routes are generated

randomly with different ranges. ACO is tested in different levels of machine

utilization, different processing time distributions and different performance

measures. These performance measures are determined as mean flow time, mean

tardiness and total throughput. Different dispatching rules are applied to compare

each other. These are FIFO, SPT and MST (minimum slack time). The

computational results showed that ACO can perform well when the machine

utilization is low and, when the variation of processing times is small.

Zandieh, et al. (2010) proposed a variable neighbourhood search (VNS) to solve

dynamic JSSP with random job arrivals and machine breakdowns. The objective of

the study is to minimize the mean flow time. The time between arrivals, mean time

between failure and the mean time to repair are set as exponential distribution. The

parameters of VNS are adjusted at any rescheduling point by Artificial Neural

Network to increase efficiency and effectiveness. The proposed method compared

with the SPT, FIFO and LIFO dispatching rules via simulation. And the results

12

showed that the proposed method performs better than the dispatching rules. Adibi,

et al. (2010) studied an extended version of Zandieh, et al. (2010)'s study. A multi-

objective scheduling in a dynamic JSSP is presented and a VNS is used. A multi-

objective function composed of weighted makespan and tardiness is proposed.

2.2. Review of Flexible Job Shop Scheduling

Kacem, et al. (2002) applied two approaches to solve machine assignment problem

and scheduling problem to minimize both makespan and total workload. First, they

proposed an approach to assign each operation to a suitable machine while

considering processing times and machine workloads called approach by localization

(AL). Two assignment procedures are proposed for machine assignment. Assignment

1 is proposed to select a job with minimum processing time. At the end of this search

step, found processing time is added to each machine workload. Assignment 2 is

implemented in the same way as in the Assignment 1 procedure jobs are selected at

random. Therefore, different solutions could be obtained in each run of the

algorithm. Initial solutions are obtained with mixing these assignment procedures.

Second, a GA is applied to generate new solutions from initial solutions obtained by

AL. The results showed that using AL with GA enables better solutions. Another

study which uses Kacem, et al. (2002)'s AL algorithms is Pezzella, et al. (2008). The

AL is used to find initial solutions. The Most Work Remaining, the Most Operation

Remaining and random selection is used to sequence these initial solutions.

Afterwards, they solved the problems by using GA with different crossover and

mutation operators. Computational results, revealed that their algorithms perform

better than the others.

A combination of evolutionary algorithms and fuzzy logic is used to solve a Pareto

optimality approach for FJSSP by Kacem, et al. (2002). Pareto optimality is a well

known concept which related with multi-objective problems. Fuzzy logic is used to

find a final set of near optimal solutions for selecting Pareto optimal solutions. After

this step, AL and the controlled GA is used for resolution of the problem. The

approach is tested with different problems by using simulation. The results showed

that the proposed approach provides high quality solutions but does not guarantee the

optimality.

13

Baykasoğlu, et al. (2004) presents a tabu search and grammars method to solve

multi-objective FJSSP. The FJSSP data (part process plans, processing requirements

and machine tool capabilities etc.) are represented by using context-free grammars.

Later, the controls of the grammar is determined. Dispatching rules (Giffler &

Thompson algorithm) are used to find feasible schedules. A selection probability is

assigned to each machine according to processing times. FJSSP is solved by using

tabu search algorithm. The authors claimed that using grammars simplifies solution

complexity of the scheduling problems.

PSO and SA are combined to solve multi-objective FJSSP by Xia, et al. (2005). PSO

is used to assign operations to machines and SA is used to schedule operations on

each machine. The objectives of the study are determined to be minimizing

makespan, the total workload of machines and the workload of the critical machine.

Each particle's fitness is evaluated by SA, which makes SA a sub-algorithm. The

algorithm is compared with other studies' algorithms and the results showed that the

proposed method is effective for FJSSP.

Gao, et al. (2007) proposed a hybrid GA with multi-objective FJSSP. A local search

procedure: bottleneck shifting is embedded to GA. The local search investigates

neighbour solutions to improve each individual before added into the population. A

two vector representation composed of machine assignment vector and operation

sequence vector is used. The algorithm is tested by using simulation and, it is

reported that according to the several computational results the proposed algorithm

has superior performance than the other methods.

Liouane, et al. (2007) proposed ant systems and local search for FJSSP. Initial

solutions are obtained by mixing dispatching rules (SPT, FIFO, etc.) and random

solutions. Tabu search is used to improve solution quality. The results proved that ant

systems and tabu search hybridization can find optimal solutions in FJSSPs.

Saidi-Mehrabad, et al. (2007) solved the FJSSP with sequence-dependent setup times

by a two stage tabu search algorithm. Sequence-dependent setup time means that the

setup depends on the previous processed operation on the machine. The first stage

deals with the sequencing of operations and the second stage is related to selection of

machines from alternative machine sets. Proposed algorithm is compared with

branch and bound algorithm, and the computational results show that the proposed

14

algorithm dominates the branch and bound algorithm in terms of solution quality and

time.

Ant colony optimization method is used to solve FJSSP with routing flexibility and

separable setup times by Rossi, et al. (2007). Each operation has a setup time period

with two independent activities: (1) sequence-dependent setup, (2) sequence-

independent setup. The setup time which depends on the previous processed

operation is called sequence-dependent setup time. However, the setup time which

depends on the previous operation in the job routing is called sequence-independent

setup time. First a disjunctive graph model and local search algorithm is applied to

FJSSP with transportation and setup times, and combined them with selection of

machines from alternative machine set. Afterwards, ACO is used to improve solution

quality. The proposed method is found to be effective according to the benchmark

problems.

Fattahi, et al. (2007) modelled a mixed integer linear programming for small-sized

FJSSP. This mathematical formulas are coded in a software which uses branch and

bound algorithm. The small-sized problems can be solved by this model and good

solutions are achieved. But, it is reported that it can be hard to reach optimum

solutions for medium and large-sized problems with branch and bound algorithm.

Consequently, the upper and lower bounds of medium and large-sized problems

obtained by mathematical model. Afterwards, heuristics are used to solve medium

and large-sized problems considering pre-found upper and lower bounds. An

integrated approach (integrated approach with simulated annealing, ISA and

integrated approach with tabu search, ITS) is applied. These integrated approaches

consider the assignment and sequencing problems together. Four hierarchical

approaches are applied to FJSSPs in the study. These are HSA/SA, HSA/TS,

HTS/TS and HTS/SA. These hierarchical approaches solve the assignment and

sequencing problems separately. HSA/SA solves the assignment problem with

hierarchical approach and SA, and solves the sequencing problem with SA. HSA/TS

solves the assignment problem with hierarchical approach and SA, and solves the

sequencing problem with TS. HTS/TS is used for the assignment problem with

hierarchical approach and TS, and solves the sequencing problem with TS. HTS/SA

is applied to the assignment problem with hierarchical approach and TS, and solves

the sequencing problem with SA. As a result, hierarchical approaches are found to be

15

better than integrated approaches; however none of these algorithms can found

optimum solutions for medium and large scale size problems. Both HSA/SA and

HSA/TS can reach optimum solutions for all small size problems and HSA/TS is

found better than the others. For medium and large-sized problems, HTS/SA and

HTS/TS perform better than the others.

Zhang, et al. (2009) proposed PSO assigning operations to machines and sequencing

of operations, and applied TS algorithm to schedule the problem according to the

findings obtained from PSO. The objective is to minimize the makespan, the

workload of the critical machine and the total workload of machines simultaneously.

The PSO algorithm is hybridized by using GA procedures. A crossover is applied to

update each particle. Additionally, a mutation procedure is also applied to enhance

the diversity of each particle. An effective GA is proposed with different initial

strategies by Zhang, et al. (2011). Global Selection (GS) where sum of the

processing times of each machine are recorded and Local Selection (LS) where a

machine with minimum processing time for each operation is selected are used to

generate high quality solutions. Zhang, et al. (2009) and Zhang, et al. (2011) show

that both the hybrid algorithms and local selections improve the solution quality.

Zhang, et al. (2012) expanded the FJSSP with transportation constraints and bounded

processing times. In the problem, transportation resources supposed to be available to

transport a job from one machine to another machine. All the loaded/empty

transportation times are defined as machine dependent. The objective of the study is

to minimize the makespan and the storage time which is the total waiting time before

and after each machine during the production. Earliest and latest starting times are

defined as bounds. A GA with TS is used to solve this problem. GA is used to solve

the assignment problem with transportation and TS is used for both finding and

improving the appropriate sequence on each machine.

As in JSSPs, FJSSPs can be defined as dynamic and stochastic FJSSPs. Gholami, et

al. (2009) considered the breakdowns in FJSSP. An integration of GA and simulation

is proposed for finding minimum expected makespan and minimum expected mean

tardiness. GA is used for machine assignment problem and sequencing of operations.

A simulator is used to evaluate the results obtained by GA. A breakdown algorithm

where breakdowns are generated by exponential random numbers is embedded in

16

simulator algorithm. Al-Hinai, et al. (2011) used a hybrid GA for FJSSP with

random breakdowns. The objective of the study is to minimize the effect of

breakdowns on job shop performance. A two stage hybrid GA is proposed where at

the first stage the makespan optimized with no expected disruptions and at the

second stage the multi-objective optimized and the machine assignments and

operations sequencing are integrated with the expected machine breakdowns.

Rajabinasab, et al. (2011) proposed a multi-agent based approach in a dynamic

FJSSP with alternative process plans. Each job has alternative process plans and each

job can be processed on a set of alternative machines. Random job arrivals and

random machine breakdowns considered. Several objective functions are considered

for measurement of the performance such as flow time based performance measures

and due date based performance measures. Two types of agents (job agents and

machine agents) are considered in the study. Machine assignment and operation

sequencing are performed through negotiation and coordination between these two

agents. A manager agent is used to make the coordination between job agent and

machine agent easier. This multi-agent based approach is compared with common

dispatching rules by using simulation. The proposed approach performs better than

the common dispatching rules.

From the literature, it is apparent that FJSSP is much more complicated than the

JSSP. Thus, FJSSP is studied less than JSSP. One of the main reasons for such

complexity is FJSSP have to deal with both machine assignment and operations

sequencing problems simultaneously. If a system is said to be flexible then it

definitely becomes more complicated and difficult to solve. To tackle with this

problem, both hybrid approaches and simulation-based approaches are found to be

more useful and effective. Hybrid meta-heuristics are applied to static and stochastic

problems generally. Simulation-based approaches with hybrid algorithms are

encountered when the considered system dynamic.

2.3. Shop Configurations and Scheduling Environments

Shop configurations vary according to the machine types and their characteristics,

production flow and number of resources. The most well known configurations

defined in Pinedo (2008) are given in this section.

17

Single Machine Shop: There are only one machine to processed all jobs in the shop.

Single machine is the simplest case of all possible machine environments and is a

specific form of all other more complicated shop configurations.

Parallel Machine Shop: Parallel machine is a generalization of the single machine

model. Jobs can be processed on any one of the parallel machines. These machines

are assumed to be identical.

Flow Shop: There are m machines in series. Each job has to be processed on each

one of the m machines. All jobs have to visit machines in the same order. If there are

multiple parallel machines in one stage, the flow shop converts to flexible flow shop.

In flexible flow shop, a job can visit one of these parallel machines.

 Job Shop: There are m machines and each job has to be processed on each one of the

m machines. In job shop, jobs can visit the machines in different orders. Therefore,

there is a distinction between flow shop and job shop. A flow shop is a job shop in

which each job visits the machines in the same order.

Flexible Job Shop: Flexible job shop is a generalization of job shop. Each job can be

processed on one of the alternative machines. Alternative machine set consists of

identical parallel machines.

In scheduling problems different type of scheduling environments are considered in

the literature. These scheduling environments are classified into two main categories:

static environment and dynamic environment.

In static environments, all jobs release at the same time to the shop and all

parameters are known in advance (Büyükköprü, 2005). Static scheduling problems

can be handled with deterministic or stochastic parameters. In stochastic scheduling

problem, some parameters can be defined as random with a probabilistic distribution.

By this way, the problem reflects real life problems more closely.

In dynamic environments, jobs arrive to the system constantly and, the finished jobs

are moved out of the system as their completion of all operations. Similar to the

static environments, dynamic environment can be considered to be either

deterministic or stochastic. In static ones, job release times are known in advance.

But in stochastic one, job release times sampled from a probabilistic distribution.

18

Random events such as machine breakdowns, repairs and due date changes may

occur in dynamic environments (Ouelhadj, et al., 2009). Some characteristics are

given in Table 2.1.

Table 2.1 Characteristics of static and dynamic environment

 Static

Environment

Dynamic

Environment

All jobs arrive at the same time *

Jobs arrive continuously *

Deterministic processing times * *

Random processing times * *

Machine breakdowns and repairs *

Unexpected events (i.e., Due date changes) *

Scheduling problems vary according to shop configurations and scheduling

environments. One of the most well known problems is JSSP in the literature. JSSP

and, an extension version of it, the FJSSP is handled in the next section.

2.4. Problem Definition

Scheduling is a decision-making process that is used on a regular basis in many

manufacturing and services industries. It deals with the allocation of resources to

tasks and sequencing tasks over given time periods. The goal of the scheduling

problems is to optimize one or more objectives (Pinedo, 2008).

In manufacturing systems, tasks usually refer to “jobs” and resources correspond to

“machines”. In some cases, jobs have elementary tasks which are called “operations”

(Baker, et al., 2009). Each job which has a known processing time has to be

processed on a predefined machine in a given sequence.

2.4.1 Job Shop Scheduling Problem

Job shop scheduling problem is a well known and most studied problem in literature.

In general, JSSP is denoted by n×m where n represents jobs and m corresponds to

machines. Job j can be processed on machine i and, job i has its own predetermined

route. The processing of job j on machine i is referred to as operation (i,j) and its

processing time denoted by pij. General assumptions can be given as follows:

 There are N jobs J={J1, J2,…,Jn} indexed by j.

 There are M machines M={M1,M2,…,Mm} indexed by i.

19

 Operations {Oi1, Oi2,…,OiN} indexed by (i,j) can be processed on more

than one machine.

 Each job must be processed on each machine in a predefined

operation route.

 A machine cannot perform more than one operation at a time.

 Pre-emption is not allowed. (Operation Oij can be processed on

machine i without any interruption)

 All jobs arrive at the same time t to the system. (t=0)

 Consecutive operations of parts can be processed on the same

machine.

 The objective of JSSP is to find a feasible schedule with a desired

objective function (i.e., minimization of makespan).

Table 2.2 gives an example of JSSP which shows the allocated machines of each

operation and operations’ processing times. For example, job 1 goes through

machine 1, machine 3 and then machine 2,and the processing times of each operation

is 4,5 and 3 respectively.

Table 2.2. An example of JSSP

Jobs Operations Machines Processing times

1 1 1 4

2 3 5

3 2 3

2 1 4 5

 2 1 6

 3 3 4

2.4.2 Flexible Job Shop Scheduling

FJSSP is a generalization of JSSP which represents real world manufacturing

systems more closely. The main difference between JSSP and FJSSP is that one has

to select a machine from a set of alternative machines for each operation in FJSSP.

The other assumptions are similar to JSSP.

FJSSP has n jobs and m machines. There are a number of operations for each job

which are allowed to be processed on a set of alternative machines. Therefore, FJSSP

deals with two sub-problems: one of them is selecting a machine for each operation

from the alternative machine set and the other one is sequencing operations.

20

Table 2.3 gives an example which has 3 jobs and 5 machines, and the operations

column shows all of the operations of each job Ji. Note that, each operation can be

processed at one of the two alternative machines among five machines. From Table

2.3, it is apparently seen that if an operation cannot be processed at a machine (i.e.,

infeasible), its processing time is represented by an asterisk. The other cells in Table

2.3 represent the processing times for all feasible operation & machine pairings.

Table 2.3. An example of FJSSP

Jobs Operations Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

1 1 2 * 4 * *

2 * 5 * * 7

2 1 7 * 3 * *

2 * 10 * * 8

3 * 6 * * 4

3 1 * * 1 3 *

2 8 * * 11 *

2.5. Objective Functions in Scheduling

The goal of manufacturing systems is scheduling of jobs on machines while

achieving its objectives. The objectives can be defined by a manager or a researcher

according to the problem types, shop configurations, etc.

Most used objective functions are given as follows (Pinedo, 2008):

Makespan: The makespan denoted by Cmax and is defined as the time when the last

job leaves the system, i.e.,

where Cj is the completion time of job j and n is the total number of jobs. The

scheduler deals with minimizing the makespan. If each job has predetermined

weights, where the weight of job j is wj, the objective is converted to total weighted

completion time. Total weighted completion time is given as follows:

21

Flow time: The flow time for job j, Fj, is given by the time span between the

completion time Cj and the ready time rj. The weighted completion time is

corresponds to the weighted flow time (Metta, 2008).

Mean flow time: The average of flow time of all jobs in a system is defined as the

mean flow time (Metta, 2008). Number of jobs is denoted as n.

Maximum Lateness: It measures the worst violation of the due dates. The objective

of the schedule is to minimize the maximum lateness. The lateness of job j, Lj, can be

found as,

Where Cj is the completion time of job j and, dj is the due date of job j. The

maximum lateness, Lmax is defined as,

Total Tardiness: The tardiness of job j, Tj, is defined as

and the objective function is

Suppose that different jobs have weights, where the weight of job j is wj. And, the

total weighted tardiness can be given as

22

Number of tardy jobs, Uj, or weighted number of tardy jobs can be considered as

objective function which is given as follows:

 Number of tardy jobs:

Weighted number of tardy jobs:

23

CHAPTER 3

METHODOLOGY

In this study a GA is used for FJSSP. First, GA is adapted to solve static FJSSP and

tested with benchmark problems from the literature. Generated problems are solved

by using proposed GA to analyze the shop performance with respect to the

considered factors. Finally, optimization via simulation by GA is used to solve the

dynamic and stochastic FJSSP. Here with dynamic it is meant that jobs arrive to the

shop constantly, and with stochastic it is meant that the processing times are sampled

form a probability distribution. Therefore, different approaches are used in the study.

The general information about the most commonly used methods in the literature and

the methodologies of the study are given in subsections.

3.1. Scheduling Approximations

Various scheduling methods have been applied to the JSSPs and FJSSPs in the

literature. Scheduling methods can be classified as exact methods and approximation

methods.

Exact methods include some Operations Research methods such as Linear and

Integer programming. These approaches were never accepted applicable for real life

problems due to their failure to solve large size problems. Most successful results

were obtained by Lagrangian Relaxation and branch and bound in this category

(Martinis, 2003). Branch and bound finds exact value first by finding a feasible

solution space in which the solution exists and then narrow down the search in the

feasible solution space.

Heuristics methods such as dispatching rules and neighbourhood search are found to

be more useful for dynamic scheduling environments. These methods are common in

24

real life applications which determine the sequence of jobs to be processed when the

machines become available. Simulation can be used to evaluate the performance of

dispatching rules. Pinedo (2005) gives the most common dispatching rules as

follows:

The Service in Random Order (SIRO) rule: The next job is selected randomly from

jobs waiting for processing when a machine is become available.

The Earliest Release Date first (ERD) rule: This rule minimizes the variation in the

waiting times of the jobs at a machine which is known as First Come First Served

rule.

The Earliest Due Date first (EDD) rule: The job with the earliest due date is selected

to be processed next when a machine become available. This rules’ objective is to

minimize the maximum lateness.

The Weighted Shortest Processing Time first (WSPT) rule: The job with the highest

ratio of weight (wj) over processing time (pj) is scheduled next when a machine

become available. This rules’ objective is to minimize the weighted sum of the

completion times, i.e.,

 . If the all weights are equal, the WSPT rule

converts to the Shortest Processing Time first (SPT) rule.

Other dispatching rules are summarized in Table 3.1.

Table 3.1 Summary of other dispatching rules

Rule Abbreviation Objectives

The Longest Processing Time

first

LPT Load Balancing over Parallel

Machines

The Shortest Setup Time first SST Makespan and Throughput

The Least Flexible Job first LFJ Makespan and Throughput

The Critical Path CP Makespan

The Largest Number of

Successors

LNS Makespan

The Shortest Queue at the Next

Operation

SQNO Machine Idleness

TS and SA are the heuristic methods which are known as neighbourhood search

methods. These algorithms start with an initial schedule and try to obtain a better

schedule with small changes among neighbours. Afterwards, the algorithm accepts or

rejects the new schedule depending on an objective function. This procedure

25

continues to find the best schedule iteratively. Schedule representation,

neighbourhood design, search process and acceptance/rejection criterion are the

most important processes (Pinedo, 2008).

Simulated annealing and tabu search algorithms together with notations are given as

follows:

Sk: a current schedule in k
th

iteration

S0: best schedule found so far

G(Sk): objective function value of Sk

G(S0): objective function value of S0

Sc: a candidate schedule selected from the neighborhood

 : probability of a move from Sk to Sc

βk: cooling parameter

Simulated Annealing

1. For i= 1 to N

 1.1. Select an initial schedule S1 and β1

 Set S0 = S1

 1.2. Select a candidate schedule Sc from the neighbourhood

 1.2.1. if G(S0)< G(Sc)< G(Sk) then Sk+1 = Sc and go to step 1.3

 1.2.2. if G(Sc)< G(S0) then S0 = Sk+1 = Sc and go to step 1.3

 1.2.3. if G(Sc)< G(Sk) then generate a random number Uk from a

Uniform(0,1) distribution

 1.2.3.1. if Uk ≤ then Sk+1 = Sc else Sk+1 = Sk and go to

step 1.3

1.3. Select βk+1 ≤ βk

 1.3.1. k = k + 1

 1.3.2. if k = N then STOP else go to Step 1.2

Tabu Search

1. For i= 1 to N

 1.1. Select an initial schedule S1 and β1

 Set S0 = S1

 1.2. Select a candidate schedule Sc from the neighbourhood

 1.2.1. if the move Sk → Sc is prohibited by a mutation on tabu list then

set Sk+1 = Sk and go to step 1.4

 1.2.2. if the move Sk → Sc is not prohibited by a mutation on tabu list

then set Sk+1 = Sc and enter reverse mutation at the top of the tabu list

 1.2.3. Push all other entries in the tabu list one position down and

delete the entry at the bottom of the tabu list

 1.3. if G(Sc)< G(S0) then S0 = Sc and go to step 1.4

 1.4. k = k + 1

 1.4.1. if k = N then STOP else go to Step 1.2

26

In recent years meta-heuristics become more popular for solving sequencing and

scheduling problems. Meta-heuristic algorithms inspired by natural life (i.e., ACO,

BA, Artificial Immune System (AIS) and PSO).

One of the most common meta-heuristic, GA which is inspired by Darwin’s

evolutionary theory is used in this study. The details of the general GA is given in

subsection 3.1.1.

3.1.1 Genetic Algorithm

GA is a population-based algorithm which consists of individuals. Each individual

corresponds to a chromosome which holds genes. Each individual is evaluated by its

fitness. Selection, crossover and mutation are the most important procedures of GA.

These procedures apply iteratively and each iteration called generation. New

generation consist of offspring (children) using two parents selected from current

generation (Pinedo, 2008). General GA pseudo codes are given as follows.

General Genetic Algorithm

1. For i= 1 to N

 Generate initial schedules S1…..Sn

 Evaluate fitness of each individual (fi)

2. For i= 1 to N

 2.1. Select two parents S1 and S2 form current generation

 2.1.1. Apply crossover and set the changes as offspring (C1 and C2)

 2.1.2. Apply mutation to offspring and set the changes as offspring

3. For i= 1 to N

 Evaluate fitness of each offspring (fi)

4. Select the best m new individual and place with worst m individual in the current

generation

4.1. k=k+1

 if k=max iteration then STOP else go to Step 1.2

3.1.1.1 Representation

Deciding how the problem will be represented with a string of symbols known as

genes is the first step in GA. This string itself is the information about the solution.

The representation is usually formed with binary, real-valued or integer-valued

arrays. Binary encoding occurs by 1-0 strings and needs more memory space while

computing (Figure 3.1). Integer encoding contains real values that represent the

solution. For example, a string can be composed of job numbers or operation

27

numbers. The most important thing in the representation is construction of a structure

that maintains the feasibility after the generation of new individuals. Most of the

studies used integer encoding for combinatorial optimization problems (Innani,

2004).

1 1 0 1 0 0 1 1 0 1

Figure 3.1 A binary chromosome representation

3.1.1.2 Fitness Function

Each individual’s fitness is evaluated by an objective function, i.e. makespan, which

is used for comparison purpose with other individuals. According to the this

comparison results an individual survives or deaths. The objective function is

converted into each individual’s fitness.

3.1.1.3 Selection

Selection is an important procedure to choose individuals for reproduction according

to their fitness. All selected, select all but protect the best individuals, select the

worst individuals, select the best individuals, roulette wheel selection, ranking and

the tournament selection are some of the selection strategies. All individuals are

selected for reproduction in all selected strategy. Select all, but protect the best

individuals strategy selects the all individuals except the best individuals for

reproduction. The best individuals are transferred to the new generation directly.

Select the worst individuals strategy selects the worst individuals for reproduction

and tries to improve them. Best individuals are protected. The worst individuals are

selected according to a threshold value which is calculated from the fitness values of

all individuals. Select the best individuals are similar to the select the worst ones. It

selects the best individuals for reproduction (Chen, et al., 1999). The roulette wheel

strategy selects the individuals according to a proportional to their fitness. Selection

probability is determined according to the ratio of its fitness value to the total

population fitness. The individual with high fitness has a high selection chance

(Innani, 2004). Tournament selection selects n individuals randomly from the

population and selects the best individual among these n individuals. Ranking

28

method orders the individuals according to its fitness and assigns a rank to each

individual. Individual is selected according to its rank (Pezzella, et al., 2008).

3.1.1.4 General Crossover Procedures

After selecting the individuals for reproduction, crossover procedure begins.

Crossover is applied using two individual by a crossover operator to generate new

offspring (child). Crossover procedure can be applied as one-point crossover or

multiple-point crossover. In one-point crossover, a point is selected randomly. From

starting to this point of the chromosome is copied to the first offspring and remaining

part of the chromosome is copied to the second offspring. And the vice versa is done

for the second chromosome. In the two-point crossover procedure, the string between

the two points is copied to the first offspring, and the remaining parts are copied to

the second offspring.

Uniform crossover operator (Figure 3.2) creates the offspring by selecting a gene

from the parent chromosome randomly.

There exist variety of crossover operators in the literature such as partially mapped

crossover, order based crossover, cycle crossover, precedence preserving order based

crossover (POX). Crossover operators must be selected according to the form of the

representation.

Parent 1 Parent 2

1 0 0 0 1 1 0 1 1 1

Offspring

Figure 3.2 An example of uniform crossover operator

3.1.1.5 General Mutation Procedures

Mutation procedure is applied to create variability in the population and to keep

diversity of the population. Mutation is usually applied to a single chromosome by

exchanging a string position or a value of a string with a small probability. There are

several mutation types such as insertion, displacement, reciprocal exchange and

1 1 0 1 0 0 1 1 0 1

1 1 0 0 0 1 1 1 1 1

29

scramble mutation. For example, the inversion mutation (Figure 3.3) selects two

positions randomly and exchanges these two positions (Innani, 2004).

Before mutation

After mutation

Figure 3.3 An example for inversion mutation

3.2. Simulation Optimization

Simulation is a powerful tool when integrated with other approaches in a wide range

of application areas. In this study, an optimization model integrated with simulation

is proposed for dynamic and stochastic FJSSP. Details of the proposed approach are

given in Section 5.

Simulation is used to model of the operation of a real world process or system over

time. Simulation helps to analyze the effects of changes to the existing system or to

predict the performance of a new system (Banks, et al., 2010). It is easy to model the

system more close to the real system without simplifying assumptions (i.e.,

deterministic processing times, deterministic interarrival times). Simulation enables

to compare the different alternative strategies and analyzes the effect of these

strategies to the system performance.

A system considered to study is represented by a simulation model. Entities,

attributes and activities are the components of a model.

Simulation models can be classified mainly as static or dynamic, deterministic or

stochastic, and discrete or continuous. Static simulation model represents a system at

a certain point in time. Dynamic simulation model represents a system that changes

over time. If simulation model doesn't contain random variables, it is called

deterministic simulation model. The stochastic simulation model possessed one or

more random variables as input. State variables change only at a discrete set of points

in time in discrete simulation model. And, in the continuous simulation model, state

variables change continuously over time (Banks, et al., 2010).

Many real life problems do incorporate uncertainty and result in uncertain solutions.

This type of systems are said to be probabilistic and models of such systems are

1 1 0 1 0 0 1 1 0 1

1 1 1 1 0 0 1 0 0 1

30

known to be probabilistic models as well. Simulation is an indispensable tool for

analyzing such systems. One of the limitations of simulation models in general is that

they basically act as “black boxes” — they can only evaluate the model for the

decision variables that are pre-specified. Thus, to use a simulation model for

evaluating the performance of a process, one must first set the values of decision

variables and then run a simulation to forecast the performance of that particular

configuration. Adjusting true values of decision variables manually to get optimality

gives rise to boredom and dissipation of time even for small problems. Moreover, it

is often not clear how to adjust the decision variables from one simulation run to the

next. In such cases, finding an optimal solution for a simulation model generally

requires that you search in a heuristic or ad hoc fashion. This usually involves

running a simulation for an initial set of decision variables, analyzing the results,

changing one or more variables, re-running the simulation, and repeating this process

until a satisfactory solution is obtained. As implicitly mentioned above, simulation

itself can not automatically adjust the decision variables so as to reach an optimum

solution. This was one of the main problems of simulation which left large scale

models unresolved in the past.

Simulation modelling can require too many trial and error processes in many

complex and uncertain systems. Therefore, using simulation can be very time

consuming and it can be hard to achieve robust and efficient results. Using an

optimization method with simulation experiments can be very challenging to cope

with complex and uncertain systems (Paris, et al., 2001).

In parallel with the developments in simulation world, the techniques of optimization

have evolved in a dizzying speed since 1990s. Particularly, after millennium,

developments in the area of optimization have allowed for the creation of intelligent

search methods capable of finding optimal or near optimal solutions to complex

problems involving elements of uncertainty. Often, optimal solutions can be found

among large sets of possible solutions even when exploring only a small fraction of

them. But, it must be stated that increasing the number of decision variables

increases the solution complexity of optimization via simulation methodology. Even

with limited number of decision variables optimization via simulation is much more

difficult than deterministic optimization setting due to inherent stochastic nature of

simulation. For details readers can refer to (Banks, et al., 2010).

31

Although “simulation” and “optimization” each have distinguishing characteristics

and are regarded as different disciplines in some cases it is a requirement that

“simulation” and “optimization” should operate simultaneously. Until the end of the

last millennium, optimization and simulation were kept pretty much separate in

practice, even though there was a large body of research literature relevant to

combining them (Fu, 2002). But, recent developments in both disciplines already

herald a marriage between these two distinct disciplines. Moreover, in time, it

already became a necessity to work hand in hand for these versatile disciplines (e.g.,

integration of optimization techniques into simulation practice). In the last decade,

such cooperation appeared between well known optimization routines and simulation

software packages. Nowadays, successful cooperations are made between

commercial optimization routines (e.g., OptQuest, optimization technologies, Inc)

and simulation software packages (e.g., Simio/Simio LLC, Arena/Rockwell software

Inc.). The reader can refer to (Law, et al., 2000) for a list of other cooperation.

OptQuest is known to be a standalone optimization routine that can be bundled with

a number of commercial simulation languages. Briefly, OptQuest enhances the

optimization capabilities of commercial simulation languages by searching optimal

solutions to simulation models.

In simulation optimization terminology different keywords for the terms related to

inputs and outputs are used. They all express the same meaning either intentionally

or inadvertently used. For convenience some favourite sample naming for inputs and

outputs from literature is given and then our naming convention in this study is

given. The terms related to the inputs and outputs of a simulation optimization

problem is well defined in Fu (2002) as follows:

“In the literature, there is a wide variety of terms used in referring to the inputs and

outputs of a simulation optimization problem. Inputs are called (controllable)

parameter settings, values, variables, (proposed) solutions, designs, configurations,

or factors (in design of experiments terminology). Outputs are called performance

measures, criteria, or responses (in design of experiments terminology). Some of the

outputs are used to form an objective function, and there is a constraint set on the

inputs.”

In his study Fu (2002) follows deterministic optimization common usage, and

adopted “variables” and “objective function”, with the latter comprised of

32

performance measures estimated from simulation (consistent with discrete-event

simulation common usage). In addition, he called “configuration” or a “design” as a

particular setting of the variables. In this study, we adopt “decision variables” in

referring to inputs and “objective function” in referring to outputs. In this respect,

decision variables are to be process plan alternatives and alternative machines for

each operation and objective function is to be total of average flow times.

3.3. Experimental Design

Experimental design provides a better understanding on experiment results. Factors

are the input parameters and structural assumptions composed a model, and the

responses are the output performance measures. The main issue is to determine

which parameters and structural assumptions will be fixed aspects and which

experimental factors are (Law, 2007).

Experimental design methods are useful for evaluation and comparison the basic

design configurations and selecting the design parameters. The factorial

experimental design is useful when there are two or more factors. In general, all

combinations of factor levels are taken into account. The analysis of variance

(ANOVA) is the primary tool for statistical data analysis. Detailed information can

be found in (Montogomery, et al., 2002).

In the study, a four full factorial analysis is used to measure the effect of flexibility

level on shop performance. The factorial design enables testing hypotheses

concerning the effects of various levels of a factor and detection of interactions

between factors by using ANOVA. The details of experimental design and results of

analysis are given in section 4.4.

33

CHAPTER 4

SOLVING THE FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY

USING GENETIC ALGORITHM

JSSP deals with sequencing operations of a set of jobs on a set of machine which is

specific for an operation. Thus, JSSP is one of the most difficult optimization

problems that are known to be NP-Hard (Garey, et al., 1976). FJSSP is an extension

of the classical JSSP which makes the problem much more complex even NP-Hard.

Each operation can be processed at more than one machine and operations can be

processed in any order in FJSSP. FJSSP can be divided into two sub-problems: (1)

the routing sub-problem that assigns each operation to a machine selected out of

available machines set which is determined for each operation. (2) Scheduling sub-

problem deals with sequencing the assigned operations on all machines to achieve a

feasible schedule (Zhang, et al., 2011).

4.1. Problem Notification

The problem is composed of N jobs Ji (i=1,2...,N) and M machines (k=1,.....,M).

Each job Ji composed of a number of operations Oij. FJSSP is formulated as follows:

N Number of jobs

M Number of machines

T Number of total operations

Pijk Processing time of operation Oij on machine k

i Job index (i=1,.....,N).

k Machine index (k=1,.....,M)

j Operation index

Oij The jth operation of job i.

Ĵ The set of jobs

Â The set of machines

34

Âij The set of alternative machines on which operation Oij can be

processed (Âij Â)

Sk The start time of the idle time interval on machine k

Ek The end time of the idle time interval on machine k

Tbi The end time of ith job’s last operation processed

Tmk The end time of the last operation on machine k

Assumptions of FJSSP are given as follows:

 All jobs are released at time 0,

 All machines are available at time 0,

 Each part has more than one operation,

 Each operation can be processed on more than one machine.

 Operations can be processed according to the precedence constraints. Oi(j+1)

cannot be processed before Oij.

 Operations’ processing times can be defined as deterministic or stochastic.

 Pre-emption is not allowed. A machine cannot perform more than one

operation at a time.

 Consecutive operations of parts can be processed on the same machine.

 The setup times and transportation times are not considered.

The problem consist of two sub-problems: one of them is the selection of a machine

from a set of alternative machines Âij for each job Ji and, the other one is sequencing

operations Oij on the machines to obtain a feasible schedule.

The objective is to find a schedule with minimum makespan, maximum completion

time of jobs, Cmax={Ci | i=1,...,n.}.

To explain the problem briefly, a small example is given in the Table 4.1. There are 3

jobs and 5 machines, and the operation column shows all of the operations of each

job Ji. Note that, each operation can be processed at one of the two alternative

machines among five machines. From Table 4.1, it is apparently seen that if an

operation cannot be processed at a machine (i.e., infeasible), its processing time is

represented by an asterisk. The other cells in Table 4.1 represent the processing time

for all feasible operation & machine pairings.

35

Table 4.1 Operation processing time table with deterministic times of FJSSP

Job Operation Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

J1 O11 4 * 6 * *

O12 * 7 * * 5

J2 O21 3 * 5 * *

O22 * 10 * * 14

O23 * 8 * * 4

J3 O31 * * 8 11 *

O32 7 * * 4 *

Table 4.2 shows an example of FJSSP with stochastic times. Stochastic times are

sampled from a probabilistic distribution. Triangular distribution is used in our

analysis in order to represent real life problems more closely which is ignored to

simplify the problem in most of the past studies.

Table 4.2 Operation processing times with stochastic times

Job Operation Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

J1 O11 Tria(2,4,6) * Tria(2,4,6) * *

O12 * Tria(5,7,9) * * Tria(5,7,9)

J2 O21 Tria(3,5,7) * Tria(3,5,7) * *

O22 * Tria(10,12,14) * * Tria(10,12,14)

O23 * Tria(4,6,8) * * Tria(4,6,8)

J3 O31 * * Tria(8,10,12) Tria(8,10,12) *

O32 Tria(6,8,10) * * Tria(6,8,10) *

4.2. Proposed GA for FJSSP

GA is a suitable and applicable method for scheduling problems. GAs start with an

initial set of (random) solutions. Primarily, a suitable chromosome structure must be

constructed to represent a solution, that is, a schedule for the given FJSSP. The

chromosomes evolve through successive iterations called generations (Moon, et al.,

2008). A GA is adapted to select the machines among alternative machine sets for

each operations and sequencing operations in a suitable order for determined FJSSP.

4.2.1. Chromosome Representation

Representation of a problem solution is the first but the most significant step in GA.

An individual can consist of more than one chromosome and a chromosome

composed of genes. In the study of (Chen, et al., 1999), individuals consist of two

chromosomes. The first part of the individual illustrates the routing policy of the

problem and the second one illustrates the operation sequence on each machine.

36

(Gao, et al., 2008) divided chromosome into two strings which represents machine

assignment and operation sequencing, respectively. In the study of (Zhang, et al.,

2011), the chromosome structure composed of two components where one of them

stands for machine selection and the other one stand for operation sequencing,

separately.

In a great deal of studies it is emphasized that integer encoding is more effective than

binary (0-1) encoding, because binary encoding needs more memory space and

increases the computational time. Thus, an integer based coding system is adopted to

represent the problem solution. The chromosome structure is considered to be

composed of two parts: (1) machine assignment and (2) operation sequencing parts.

The first part of the individual consists of an array of integer values which represents

selected machine numbers for each operation. These machines are selected from a

certain machine set which are specific for each operation. The second one depicts the

sequence of operations which consist of job index i. Thus, total number of i’s placed

on the operations sequence part of the individual should be equal to the total number

of operations of job i (see Figure 4.1). Chromosome representation is depicted over a

small example in Figure 4.1.

Chromosome:

 Machine selection Operation sequence

 O11 O12 O21 O22 O23 O31 O32 J3 J1 J1 J2 J3 J2 J2

 1 5 3 2 5 4 1 + 3 1 1 2 3 2 2

 O31 O11 O12 O21 O32 O22 O23

 M1 M3

O11 alternative machine set

 M2 M5

 O22 alternative machine set

Figure 4.1 Chromosome structure of proposed GA

37

4.2.2. Decoding process

The decoding process evaluates the objective function of each individual using the

information obtained by each chromosome and generates a schedule. The makespan

(maximum completion time of jobs) is determined to be the objective function and

active schedule is taken into account while calculating the makespan. The steps for

decoding a chromosome to a feasible schedule are given step by step as follows:

Step 1:

Generate a machine matrix and processing time matrix. Record machine numbers of

each operations of each job from machine selection part of the chromosome to the

machine matrix. And record processing times of each operation to the processing

time matrix. In each matrix, rows correspond to jobs, and columns correspond to

operations of each job (Figure 4.2).

Machine matrix:

 Processing time matrix:

Figure 4.2 Machine and processing time matrix used in decoding process

Step 2:

Starts with reading the operation sequence part of the chromosome and in this way

determine Oij. First, find the corresponding machine k for operation Oij from machine

matrix. Then, find corresponding processing time Pijk from the processing time

matrix for Oij at machine k. Next, find the ith job’s last operation’s Oi(j-1) ending time

Tbi and determine the last operation’s ending time Tmk on machine k.

If Tbi > Tmk then record an idle time interval. Assign Sk = Tmk and Ek= Tbi, update

Tbi = Tbi + Pijk and Tmk = Tbi.

Else if Tbi ≤ Tmk then look for an appropriate idle time for Oij . If there is an

appropriate idle time and if Sk ≥ Tbi, assign Sk = Sk + Pijk and update Tbi and Ek

(Figure 4.3). If there is not an appropriate idle time then assign Oij to the end of the

last operation at machine k. Update Tbi as Tbi = Tmk + Pijk and also update Tmk

(Figure 4.4). Note that this procedure applies for each gene placed on the operation

sequence part of the chromosome.

38

Figure 4.3 An example Gantt chart to set the operation into the idle time.

Figure 4.4 An example Gantt chart to set the operation to the end of the machine.

4.2.3. Initial Population

In literature, it is recognized that mixed strategies increases the quality of the

solution. (Zhang, et al., 2011) tested two different mixed strategies; 1)Global

Selection, 2)Local Selection and also considered the random selection to account for

randomness. They reported that these strategies improve the quality of the initial

solutions.

Due to the structure of the problem, proposed algorithm evaluates two sub-problems

separately. First, it selects machines for each operation and then sequences the

operations at each selected machine. In order to obtain more qualified solutions

different strategies are combined while selecting machines. In this study, in addition

to (Zhang, et al., 2011)’s strategies a new strategy which selects the machine with the

39

minimum workload is included. The motivation for including this strategy is to

improve the quality of the initial solutions. The strategies and their details are given

as follows:

Strategy 1:

Selecting a machine with minimum total processing time (Global Selection, (Zhang

et. al., 2011))

1. For k=1 to M

 // Set total processing times of machines equal to 0

 end

2. For j=1 to T

 // Check alternative machines’ total processing times

 2.1. If alternative machines’ total processing times are all equal

 // Select a machine randomly among them

 else

 // Select a machine with minimum total processing times

 2.2. // Add the operation’s processing time to the selected machine’s total

processing times

 end

end

Strategy 2:

Selecting a machine with minimum processing time (Local Selection, (Zhang et. al.,

2011))

1. For j=1 to T

 // Check alternative machines’ processing times

1.1. If alternative machines’ processing times are all equal

 // Select a machine randomly among them

 else

 // Select a machine with minimum processing times

 end

end

40

Strategy 3:

Selecting a machine with minimum workload (number of jobs)

1. For k=1 to M

 // Set workload of each machine equal to 0

 End

2. For j=1 to T

 // Check alternative machines’ number of workload

 2.1. If alternative machines’ number of workload are all equal

 // Select a machine randomly among them

 else

 // Select a machine with minimum number of workload

 2.2. Assign Workload of selected machine = Workload of selected

machine + 1

 end

end

Strategy 4:

Selecting a machine randomly

1. For j=1 to T

 // Select a machine randomly for an operation

 end

4.2.4. Generation of new candidate solutions

After generating initial solutions GA jumps to other steps. First, makespans of the

initial solutions are evaluated. Hereafter, individuals are chosen for reproduction

among the current population. And, chosen individuals are translated to the mating

pool. In the literature, tournament approach is found to be more successful than other

selection strategies (Pezzella, et al., (2008), Zhang, et al., (2011)). For this reason a

tournament approach is utilized in this study as well. Two individuals are chosen

randomly from current generation, and the best one among them is translated to the

mating pool.

4.2.5. Crossover

Several crossover operators have been proposed for permutation representation, such

as single-point crossover, cycle crossover, order crossover, and so on. (Gao, et al.,

2007) proposed a two vector permutation representation which considers the

operations’ precedence constraint. (Gao, et al., 2008) applied order crossover to

operation sequence chromosomes and used extended order crossover and uniform

crossover to machine assignment chromosomes. (Zhang, et al., 2011) used two-point

41

crossover and uniform crossover for machine selection part and, precedence POX

crossover for operation sequence part.

Crossover operator is applied to machine selection part and sequencing part of the

chromosome separately. POX crossover is used for sequencing part of the crossover

(Figure 4.5). The steps of POX crossover is given as follows:

POX

1. Select two individual from mating pool randomly and set them as parent1 and

parent2

2. Determine two chromosomes as child1 and child2

3. Generate a random number p[0,1] for each chromosome and determine a crossover

probability pr

 3.1. If p < pr then

 //Copy the gene to the child1 from parent1 in the same position

 Else

 //Copy the gene to the child2 from parent1 in the same position

 3.2. Copy the genes that are not found in child1 from parent2 and do the

same for child2

The uniform crossover is used for machine selection part (Figure 4.5). The steps of

uniform crossover are given as follows:

Uniform Crossover

1. Select two individual from mating pool randomly and set them as parent1 and

parent2

2. Determine two chromosomes as child1 and child2

3. Generate a random number p[0,1] for each chromosome and determine a crossover

probability pr

 3.1. If p < pr then

 //Copy the gene to the child1 from parent1 in the same position

 Else

 //Copy the gene to the child2 from parent1 in the same position

 3.2. Fill the empty genes in child1 and child2 from parent2

42

Parent 1 Parent 1

O11 O12 O21 O22 O23 O31 O32

 J3 J1 J1 J2 J3 J2 J2

1 5 3 2 5 4 1

3 1 1 2 3 2 2

 O11 O12 O21 O22 O23 O31 O32

 J3 J1 J1 J2 J3 J2 J2

3 5 1 5 5 3 4

3 1 2 2 3 1 3

 O11 O12 O21 O22 O23 O31 O32

 J1 J2 J2 J3 J1 J3 J3

3 2 1 5 2 3 4

1 2 2 3 1 3 3

Parent 2 Parent 2

Crossover for machine selection part Crossover for operation sequence part

Figure 4.5 Illustration of crossover operations

4.2.6. Mutation

Mutation operator exchanges one gene at a time according to a mutation probability

pm to increase the variety of population. The decision whether to exchange each gene

of the chromosome is dependent upon mutation probability.

Two mutation operators are used in the study. One of the mutation operators changes

a gene with another machine if there is a machine with shorter processing time than

selected machine’s processing time in the alternative machine set. Otherwise, the

gene should not be mutated. If there is more than one machine with shorter

processing time, one of them is selected randomly (Figure 4.6).

43

Alternative

machine set

Before mutation

O11 O12 O21 O22 O23 O31 O32

 1 5 3 2 5 4 1

M2 M5

 Processing time 6 7

 O11 O12 O21 O22 O23 O31 O32

 1 2 3 2 5 4 1

After mutation

Mutation for machine selection part

Figure 4.6 Illustration of mutation operation which selects a machine with a shorter

processing time

In other mutation operator, the machine is exchanged with another machine from

alternative machine set if a gene of the chromosome is determined to be exchanged

according to the mutation probability. While doing this, alternative machine set

should be taken into account carefully (Figure 4.7).

In operation sequence part, two genes are selected randomly and their positions are

exchanged (Figure 4.7). The crossover and mutation procedures save the feasibility

of the chromosomes. Therefore, new chromosomes do not need to control the

feasibility. They are also ready for the decoding procedure.

Before mutation Before mutation

O11 O12 O21 O22 O23 O31 O32

 J3 J1 J1 J2 J3 J2 J2

1 5 3 2 5 4 1

3 1 1 2 3 2 2

1 3

 O11 O12 O21 O22 O23 O31 O32

 J3 J1 J2 J1 J3 J2 J2

1 5 1 2 5 4 1

3 3 1 2 1 2 2

After mutation After mutation

Mutation for machine selection part Mutation for operation sequence part

Figure 4.7 Illustration of mutation operation for machine selection and operation

sequence parts

44

4.3. Applying the proposed GA to Benchmark Problems and Computational

Results

The GA is tested with the Brandimerte's problem data set from literature

(http://www.idsia.ch/~monaldo/fjsp.html) to understand how it works. The proposed

GA is coded in Visual Basic® for Applications by Microsoft®. For convenience, the

problem data sets are given in APPENDIX A.

The initial population is generated by mixing of strategy1, strategy2, strategy3 and

strategy4. As shown in Zhang, et al. (2011)'s study, mixed strategy gives the near

optimal solution more quickly than the single ones. According to the preliminary

runs, an initial population with 40% strategy1, 20% strategy2, 30% strategy3 and

10% strategy4 gives the best solutions. Operations sequencing is selected randomly

by considering the precedence constraint. After generating the initial solutions,

predetermined number of individual is selected for reproduction. This parameter is

determined as select size and, given in Table 4.3 for each problem instance. After

reproduction, predetermined number of individual among new population, which is

called number of exchanges, is translated to the current population. By the way, the

population size for each problem instance is given in the same table. Other

parameters of the GA is given in the below. The algorithm is run for five times for

each instance and the best results among them are taken into account.

Parameters of the GA

Rate of initial strategy 1: 40%

Rate of initial strategy 2: 20%

Rate of initial strategy 3: 30%

Rate of initial strategy 4: 10%

Mutation probability: 0.01

Number of iteration: 100-300

The Brandimerte's problem data set (BRdata) consist of number of jobs between 10

and 20 and the number of operations of each job changes between 5 and 15. Number

of machines ranges between 4 and 15.

Table 4.3 gives the computational results and the results of comparisons with other

studies from literature. n×m column gives the number of jobs & number of machines

http://www.idsia.ch/~monaldo/fjsp.html

45

for each problem instance. Flex gives the average number of machines per operation.

(LB, UB) column gives the best known solution, if it is known, otherwise, the lower

and upper bound found so far. The maximum completion time, Cmax (makespan), is

considered as the measure of comparison. If the best known solution is found, an

asterisk (i.e., *) is indicated near the solution. The results are compared with three

studies from the literature. M&G column is the results of the study of Mastrolilli, et

al. (2000), GENACE is the results of Ho, et al. (2004)'s study and the eGA is the

results of Zhang, et al. (2011).

Table 4.3 Computational results and comparisons

Results of Brdata

M&G GENACE eGA
Computational Results and

parameters

Problem nxm T0 Flex LB, UB Cm Cm Cm
Best
Results

Pop
Size

Select
Size

Num of
Exchange

Mk01 10x6 55 2,09 36, 42 40* 40* 40* 40* 100 50 20

Mk02 10x6 58 4,01 24, 32 26* 32 26* 27 200 50 20

Mk03 15x8 150 3,01 204, 211 204* N/A 204* 204* 50 20 10

Mk04 15x8 90 1,91 48, 81 60* 67 60* 61 300 200 100

Mk05 15x4 106 1,71 168, 186 173* 176 173* 176 300 100 100

Mk06 10x15 150 3,27 33, 86 58* 67 58* 70 300 100 50

Mk07 20x5 100 2,83 133, 157 144* 147 144* 144* 200 100 20

Mk08 20x10 225 1,43 523 523* 523* 523* 523* 50 10 10

Mk09 20x10 240 2,53 299, 369 307* 320 307* 315 300 100 100

Mk10 20x15 240 2,98 165, 296 198* 229 198* 247 300 100 100

From Table 4.3, the GA obtained the best known solutions in problems Mk01, Mk03,

Mk07 and Mk08. However, in Mk02, Mk04, Mk06 and Mk09 approximate solutions

to the best known solutions are obtained. The algorithm cannot achieve the best

known solution for the Mk10 problem since it is being the most challenging problem.

As a result, from Table 4.3, it is apparently seen that not best but promising solutions

obtained with proposed GA. It should be mentioned that the solutions are obtained

with small GA parameters. Therefore, it can achieve the near optimal solutions in a

limited time which is important for integrated systems.

4.4. Experimental Design and Analysis

An experimental design is utilized to analyze the main and the interaction effects of

the factors considered (i.e., Part number, machine number, operation number, and

flexibility levels) by using GA which is specifically designed for FJSSP. Stochastic

processing times sampled from triangular distribution are considered in the problem.

46

A four full factorial design is utilized to evaluate the performance of the shop and

investigate relationships between the considered factors. The design includes three

level of each number of parts, number of jobs, number of operations, and level of

flexibility. Thus, 81 experiments are necessary (i.e., 3*3*3*3=81) to investigate all

factor level combinations. Table 4.4 gives part × machine groups used in the

experiments. Three levels of number of operations determined and are defined as

low, medium, and high. Number of operations for each part is generated from

uniform distribution. Parameters of uniform distribution are given in Table 4.5.

Flexibility levels are adjusted according to the number of machines (Table 4.6).

Table 4.4 Part × Machine Groups

Table 4.5 Number of operation levels

Table 4.6 Flexibility levels for each machine sizes

Flexibility levels

machines 1 2 3

5 2 3 5

10 4 6 10

15 6 9 15

Data is collected on one performance measure to evaluate the performance of the

stochastic flexible job shop. The selected performance measure is makespan. The

parts # machines

10 5

10 10

10 15

20 5

20 10

20 15

30 5

30 10

30 15

Operation levels Ranges

low [3,5]

medium [6,8]

high [8,10]

47

experiments are performed using 20 replications of each treatment, thus minimizing

the variability in the results. In addition, common random numbers are used between

each experiment as another variance reduction technique.

The main and interaction effects of all factors will be discussed for the performance

measure considered (i.e., makespan) in subsequent section. α=0.05 was used in

evaluating statistical significance.

4.4.1. Framework of the proposed GA for the Experimental Design

GA starts with an initial solution. As mentioned before, three different initial

strategies and random selection is used. Individuals are generated by using these four

strategies with a fixed percentage of population size. Initial population is generated

by 30% strategy 1 and 20% strategy 2, 30% strategy 3, and 20% strategy 4. Note

that, strategy 1 and 3 have much percentage in the population because they can give

different solutions in each run and help reaching better solutions more quickly

(Figure 4.8). Strategy 2 finds solutions by selecting a machine with minimum

processing time from alternative machine set of jobs. And the random selection

(strategy 4) is added because it keeps up randomness and more general solutions. In

Table 4.7, the best makespan values together with iteration number for each strategy

are summarized. And, the GA parameters are adjusted according to the problem size.

Table 4.7 Best makespans over five runs.

Strategy Best makespan

Iteration

number

1 47 30

2 54 8

3 44 80

4 44 84

Combined 44 16

48

0

10

20

30

40

50

60

1 7
13

19

25

31

37

43

49

55

61

67

73

79

85

91

97

Average makespan of five runs

Combined strategies

Random

Figure 4.8 Comparison between random strategy and combined strategy.

Other GA parameters are given as follows:

Population size: 100-250

Number of iteration: 200-300

Mutation probability: 0.01

Selection type: Tournament approach

4.5. Results of Analysis

The analysis of variance results reported in Table 4.8 suggest that makespan

performance of the shop is significantly affected by factors and some factor

interactions.

According to Table 4.8, it is seen that all main factors have significant effect on

makespan performance at 0.05 significance level. It is interesting to observe some of

the factor interactions do not have significant effect on makespan (i.e., Part Number

* Machine Number * Flexibility Level, Part Number * Operation Number *

Flexibility Level, Machine Number * Operation Number * Flexibility Level, Part

Number * Flexibility Level, Operation Number * Flexibility Level, Part Number *

Machine Number * Operation Number * Flexibility Level). Below a detailed

analysis of these insignificant interaction effects will be given with their interaction

plots, respectively.

49

Table 4.8 Analysis of Variance for Makespan

Source

Type III Sum

of Squares df Mean Square F Sig.

Corrected Model 13179375,067 80 164742,188 1311,185 ,000

Intercept 35739734,193 1 35739734,193 284452,869 ,000

Part Number (A) 3910127,201 2 1955063,600 15560,369 ,000

Machine Number (B) 3633461,242 2 1816730,621 14459,376 ,000

Operation Number (C) 4057699,119 2 2028849,559 16147,632 ,000

Flexibility level (D) 14392,624 2 7196,312 57,276 ,000

AB 824532,732 4 206133,183 1640,616 ,000

AC 384669,226 4 96167,307 765,396 ,000

AD 416,988 4 104,247 ,830 ,506

BC 293598,844 4 73399,711 584,189 ,000

BD 3638,585 4 909,646 7,240 ,000

CD 943,042 4 235,760 1,876 ,112

ABC 54243,198 8 6780,400 53,965 ,000

ABD 292,050 8 36,506 ,291 ,969

ACD 323,958 8 40,495 ,322 ,958

BCD 409,322 8 51,165 ,407 ,917

ABCD 626,936 16 39,184 ,312 ,996

Error 193365,780 1539 125,644

Total 49112475,040 1620

Corrected Total 13372740,847 1619

a. R Squared = ,986 (Adjusted R Squared = ,985)

50

Figure 4.9 Interaction Effect of Part Number, Machine Number, and Flexibility

Level on Makespan

Interaction Effect of Part Number, Machine Number, and Flexibility Level on

Makespan is given in Figure 4.9. From Figure 4.9, it is noticeable that the interaction

between flexibility level and the other two factors (i.e., Machine number and part

number) has no significant effect on makespan performance of the shop. From

flexibility level&machine number and flexibility level&part number interaction

graphs it is clearly seen that as the level of the flexibility increases only marginal

improvements gained on makespan performance at different levels of other factors

which makes part number, machine number, and flexibility level interaction effect on

makespan insignificant. A wide range of insights can be gained by looking into

machine number and part number interaction graphs. For example, by looking into

machine number interaction graphs it is clearly seen that makespan performance of

the shop improves as the level of machine number increases. Also, by looking into

machine number and part number interaction graph it is seen that at low level of

machine number the makespan performances of the shop significantly differ for each

level of part number whereas for higher levels of machine number it is observed that

the difference between makespan performances for each level of part number get

much more closed. Another significant insight can be gained by analyzing part

number and machine number interaction graph. In this graph it is observed that

Part Number

300

200

100

Machine Number

Flexibility Level

321

321

300

200

100

321

300

200

100

Part

3

Number

1

2

Machine

3

Number

1

2

Flexibility

3

Level

1

2

Interaction Effect of Part Number, Machine Number, and Flexibility Level on Makespan

51

setting the machine number at its low level makes the makespan performance of the

shop much more sensitive to different levels of part number. Further insights can be

gained by analyzing Figure 4.9 thoroughly. As a result, from the Figure 4.9, it is

obvious that the best makespan performance can be gained for high levels of

machine number together with low level of part number regardless of the flexibility

level.

Figure 4.10 Interaction Effect of Part Number, Operation Number, and Flexibility

Level on Makespan

Interaction effect of part number, operation number, and flexibility level on

makespan is given in Figure 4.10. From Figure 4.10, it is noticeable that the

interaction between flexibility level and the other two factors (i.e., Part number and

operation number) has no significant effect on makespan performance of the shop.

From flexibility level&operation number and flexibility level&part number

interaction graphs it is clearly seen that as the level of the flexibility increases only

marginal improvements gained on makespan performance at different levels of other

factors which makes part number, machine number, and flexibility level interaction

effect on makespan insignificant. A wide range of insights can be gained by looking

into machine number and part number interaction graphs. For example, by looking

into operation number interaction graphs it is clearly seen that makespan

Part Number

300

200

100

Operation Number

Flexibility Level

321

321

300

200

100

321

300

200

100

Part

3

Number

1

2

Operation

3

Number

1

2

Flexibility

3

Level

1

2

Interaction Effect of Part Number, Operation Number, and Flexibility Level on Makespan

52

performance of the shop deteriorates as the level of operation number increases. In

addition to this, as the level of the part number increases, the makespan performance

of the shop gets much more deteriorated for each level of operation number. Note

that, as the level of part number increases, the gap between the makespan

performances of the shop gets larger as the level of the operation numbers increases.

Further insights can be gained by analyzing Figure 4.10 thoroughly. As a result, from

the Figure 4.10, it is obvious that the best makespan performance can be gained for

low levels of operation number and part number regardless of the flexibility level.

Figure 4.11 Interaction Effect of Machine Number, Operation Number, and

Flexibility Level on Makespan

Interaction effect of machine number, operation number, and flexibility level on

makespan is given in Figure 4.11. From Figure 4.11, it is noticeable that the

interaction between flexibility level and the other two factors (i.e., Machine number

and operation number) has no significant effect on makespan performance of the

shop. From flexibility level&operation number and flexibility level&machine

number interaction graphs it is clearly seen that as the level of the flexibility

increases only marginal improvements gained on makespan performance at different

levels of other factors which makes machine number, operation number, and

flexibility level interaction effect on makespan insignificant. By looking into

operation number interaction graphs it is clearly seen that makespan performance of

Machine Number

300

200

100

Operation Number

Flexibility Level

321

321

300

200

100

321

300

200

100

Machine

3

Number

1

2

Operation

3

Number

1

2

Flexibility

3

Level

1

2

Interaction Effect of Machine Number, Operation Number, and Flexibility Level on Makespan

53

the shop deteriorates as the level of operation number increases. Also, it is apparently

seen that at low level of machine number the makespan performances of the shop

significantly deteriorates while increasing the level of operation number from low to

high whereas for higher levels of machine number it is observed that the difference

between makespan performances for each level of part number get much more

closed. Further insights can be gained by analyzing Figure 4.11 thoroughly. As a

result, from the Figure 4.11, it is obvious that the best makespan performance can be

gained for high levels of machine number together with low level of operation

number regardless of the flexibility level.

Figure 4.12 Interaction Effect of Part Number and Flexibility Level on Makespan

Interaction effect of flexibility level and part number on makespan performance is

given in Figure 4.12. From figure 4.12 it is clearly seen that as the level of the

flexibility increases only marginal improvements gained on makespan performance

at different levels of part number which makes flexibility level and part number

interaction effect on makespan insignificant.

Part Number

Flexibility Level

321

200

175

150

125

100

321

200

175

150

125

100

Part

3

Number

1

2

Flexibility

3

Level

1

2

Interaction Effect of Part Number and Flexibility Level on Makespan

54

Figure 4.13 Interaction Effect of Operation Number and Flexibility Level on

Makespan

Interaction effect of flexibility level and operation number on makespan performance

is given in Figure 4.13. From figure it is clearly seen that as the level of the

flexibility increases only marginal improvements gained on makespan performance

at different levels of operation number which makes operation number and flexibility

level interaction effect on makespan insignificant.

Operation Number

Flexibility Level

321

200

150

100

321

200

150

100

Operation

3

Number

1

2

Flexibility

3

Level

1

2

Interaction Effect of Operation Number and Flexibility Level on Makespan

55

Figure 4.14 Interaction Effect of Part Number, Machine Number, Operation

Number, and Flexibility Level on Makespan

Figure 4.14 summarizes all of the discussions made above. It is apparently seen from

the figure that flexibility level has negligible effect on makespan performance of the

shop. Makespan performance of the shop deteriorates as the level of operation

number and part number increases. Also, makespan performance of the shop

improves as the level of machine number increases.

Part Number

Operation Number

Flexibility Level

Machine Number

321 321

300

200

100

300

200

100

300

200

100

321

300

200

100

321

Part

3

Number

1

2

Machine

3

Number

1

2

Operation

3

Number

1

2

Flexibility

3

Level

1

2

Interaction Effect of Part Number, Machine Number, Operation Number, and Flexibility Level on Makespan

56

CHAPTER 5

APPLICATION OF SIMULATION OPTIMIZATION BY USING GA TO

DYNAMIC FJSSP

This part of the study presents an optimization via simulation approach to solve

dynamic FJSSPs. The study deals with both determining the best process plan for

each part and then finding the best machine for each operation in a dynamic FJSSP

environment. In this respect, a GA is adapted to determine best part processing plan

for each part and then select appropriate machines for each operation of each part

according to the determined part processing plan. Genetic algorithm solves the

optimization phase of solution methodology. Then these machine-operation pairings

are utilized by discrete-event system simulation model to estimate their

performances. These two phases of the study follow each other iteratively. The goal

of methodology is to find the solution that minimizes total of average flow times for

all parts.

5.1. System Characteristics and Problem Definition

Having flexibility option enables job shops to respond faster to various changes such

as machine breakdowns, demand fluctuation and product mix. Due to its great

flexibility on the shop floor and the efficiency of large volume production, the

production scheduling and control in flexible manufacturing systems becomes very

complex as the number of jobs, operations, parts and machines increases

(Siwamogsatham, et al., 2004). System characteristics and definition of such a

challenging problem is given below.

57

5.1.1. System Characteristics

General job shop scheduling assumptions are applied here for the purpose of model

standardization (Baker, 1974). The required parameters of the model are as follows:

 Parts dynamically arrive to the shop and the arrival rate is exponentially

distributed with a mean of 130 unit of time.

 At each arrival only one part arrives at the system (i.e., no batches

considered).

 Jobs are released to the shop as soon as they arrive to the system.

 FIFO dispatching rule considered in front of all machine queues.

 There are N parts P={p1, p2,…,pN} indexed by j.

 There are M machines M={m1,m2,…,mM} indexed by k.

 Alternative process plans are predetermined for each part.

 Operations {Oi1, Oi2,…,OiN} indexed by i can be processed on more than

one machine.

 Operations’ processing times are sampled from triangular distribution.

 Pre-emption is not allowed.

 A machine cannot perform more than one operation at a time.

 Consecutive operations of parts can be processed on the same machine.

 The warm-up period for the shop is determined to be 20% of the total

simulation run after preliminary runs. The data are then collected for the

remaining 80% of the total simulation run.

 Common random numbers are used within each replication as a variance

reduction technique, i.e., for each replication we use the same stream of

random numbers for both system configurations we wish to compare. By

this way, comparison of different methods under similar experimental

conditions enabled.

 The objective is to find a solution with minimum total of average flow

times which is represented by Eq. (5.2).

 The setup times and transportation times assumed to be zero and are

excluded from the model.

 Machine breakdowns are neglected.

58

Fj can be calculated by using Eq. (5.1). For more details the reader should refer to

Baykasoglu, et al. (2008).

where

Fj: Flowtime of each part.

j: Part type

m: Station no

pjm: Processing time of part j at station m.

sjm: Setup time needed by part j at station m.

tjm: Transportation time necessary for moving part j from station m to the next station

on its route.

wjm: Queue waiting time of part j at station m’s queue.

S{j}: The set of stations which are placed on part j’s route.

where

N: Number of parts to be produced.

5.1.2. Problem Definition of dynamic FJSSP

The FJSSP is addressed in two phases; (1) Optimization, (2) Simulation.

Optimization phase composed of two consecutive stages; (1) Selection of appropriate

process plan for each part by using GA, and then (2) Matching the most suitable

machine-operation pairs by using GA. In the simulation phase, new sets of values for

decision variables (i.e., obtained machine-operation pairings for all parts) are

generated by GA from the first phase evaluated by running the discrete-event

simulation model of dynamic FJSS. This is an iterative process that successively

generates new sets of values for the decision variables, not all of them improving, but

which, over time, provides a highly efficient trajectory to the best solutions. The

process continues until some termination criterion is satisfied — usually stopping

after a number of simulations or when the GA determines the objective value has

stopped improving. Its ultimate goal is to find the solution that optimizes (maximizes

or minimizes) the value of the model’s objective. By this way finding the best

59

process plan for each part and then machine-operation pairs that minimizes the total

of average flow times achieved in an iterative manner.

Meanwhile, it should be noted that while obtaining the total of average flow times,

the system (i.e., flexible job shop) dynamics (i.e., random arrivals, random operation

processing times) are taken into account. In related literature, limited number of

studies handled both of “dynamic” and “stochastic” FJSSP. Most of these studies are

applied optimization techniques and simulation separately. In our study, an effective

optimization tool (GA) and simulation are integrated to solve and to evaluate FJSSP.

From this point of view, to our best knowledge this study is a premier one that solves

“dynamic” and “stochastic” FJSSP simultaneously (i.e., iterative process).

A sample instance which takes place in the study of Baykasoglu, et al. (2008) is

utilized with minor modifications as a test bed for the proposed approach in this

study. In its modified form, the problem includes random interarrival times and

random processing times to further reflect stochastic nature that real world problems

inherent. The process plans for each part is given in the Table 5.1 and appropriate

machine sets for each operation is given in Table 5.2. Processing time distributions

for each part is shown in Table 5.3.

Table 5.1 Part-operation plans data

Parts Process

Plans

Process plans and processing

sequences

1 1 Op1, Op2, Op3

2 Op1, Op3, Op2

2 1 Op2, Op3, Op1

2 Op3, Op2, Op1

3 1 Op1, Op3

 2 Op1, Op2

Table 5.2 Machine-operation suitability data

Machines Operation1 Operation2 Operation3

M1 *

 M2 *

*

M3

*

 M4

*

M5 *

60

Table 5.3 Processing times distributions for each part

 Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

Part 1 Tria(7,9,11) Tria(10,12,14) Tria(8,10,13) Tria(10,15,17) Tria(6,8,10)

Part 2 Tria(10,12,14) Tria(12,14,16) Tria(10,12,14) Tria(12,15,18) Tria(4,9,13)

Part 3 Tria(8,10,13) Tria(13,15,17) Tria(7,9,11) Tria(10,15,20) Tria(7,10,12)

5.2. Proposed GA for dynamic FJSSP

GA is developed to select the appropriate process plan for each part and then to

match the most appropriate machine-operation pairs among machine sets,

respectively.

5.2.1. Chromosome Representation for the Considered FJSSP

An integer based coding system is adopted to represent the problem solution. The

chromosome structure is considered to be composed of two parts: (1) Process plan

selection denoted by circles in Figure 5.1 and (2) machine-operation matching

denoted by squares in Figure 5.1 (i.e., operation sequence). The first part of the

chromosome locates integer coding for the selection of process plan for each part.

Then, the second part of the chromosome locates integer coding for the machines.

The proposed chromosome representation is depicted in Figure 5.1.

Figure 5.1 Illustration of the proposed chromosome representation

5.2.2. Initial Population Generation for the Considered FJSSP

The algorithm begins with the selection of process plans for each part. Then,

according to the selected process plan corresponding machine is assigned to each

operation. Plans and machines are assigned randomly for the initial population. Then,

the initial population is fed into the simulation model to be evaluated. Note that,

61

simulation model takes these values as a control (since they control the inputs to the

model) and after completion of the simulation run the responses sent (i.e., outputs) to

GA. The GA module evaluates the responses from the simulation run, analyzes and

integrates these with responses from previous simulation runs, and determines a new

set of values for the controls which are then evaluated by running the simulation

model etc. Intermediate steps of the evaluation process of GA are given in

subsequent sections.

As mentioned before, chromosomes are translated to the mating pool by tournament

approach. Two individual are selected from the population and, the best one among

them is translated to the mating pool.

5.2.3. Crossover for the proposed GA

Crossover operator designed to take features from both parents and it’s performed in

two stages. In the first stage, crossover operation is related to the first three genes of

chromosomes (i.e., process plan selection). In the second stage crossover operation is

related to the rest of genes (i.e., machine-operation assignment). First of all, process

plans selected randomly for each part from both selected parents. In machine-

operation assignment section, for each part type, genes are replaced according to the

process plan section. Genes are randomly exchanged between individuals having

same process plan sequence. This is implemented for each part separately. A sample

crossover operator is depicted in Figure 5.2.

Figure 5.2 An illustration of crossover operator

62

5.2.4. Mutation for the Proposed GA

In general, mutation is applied with small probability because large probability may

disorder the good individuals (Zhang, et al., 2011). Mutation probability is usually

determined to be 0.05. A probability value for each gene in the chromosome is

generated and compared with the mutation probability value. If the mutation

probability value bigger than the gene’s probability value, the gene is changed

accordingly. See Figure 5.3 for how this mechanism works.

Figure 5.3 An illustration of a mutation operator

5.3. The methodology of Optimization via Simulation

As mentioned before, the aim of this study is to determine the best process plan for

each part and then determine the best machine-operation pairing along the part’s

routing while minimizing the total of average flow times. In this respect, the problem

can be interpreted as optimizing part routing in a FJSSP. For this purpose a computer

model of dynamic FJSS is coded in ARENA. Note that this model will be evaluated

in simulation stage of the proposed methodology. Furthermore, a problem specific

GA is coded for the optimization stage of the proposed methodology. It should be

emphasized that this is a “specific” optimization routine like other optimization

tools. Then, this optimization routine is linked with simulation model. By this way

(1) the problem transformed into resolvable format and (2) the user given the

capability of managing his/her optimization routine easily.

5.3.1. Problem Formulation

There has been many optimization formulations offered in literature. Their common

purpose is to find a “configuration” or “design” that minimizes the objective

function. We adopted Fu (2002)’s notation to represent our “objective function” or

“fitness function” (in GA terminology). As mentioned, the total of average flow

63

times is considered as objective function to be minimized. In equation (5.3) objective

function is given:

 (5.3)

Where θ Θ represents the (vector of) input variables, J(θ) is the objective function,

w represents a sample path (simulation replication), and L is the sample performance

measure. We will use to represent an estimate for J(θ), e.g., L[θ,] would provide

one such estimator that is unbiased. The constraint set Θ defined to be finite (e.g., an

operation of any part can be processed on a certain number of machines).

 θ Θ: A representation of a problem solution (i.e., the vector of decision variables)

which is called as chromosome in this study.

Θ: All possible chromosomes.

L[θ,2]: Response of simulation model after replication 2 with chromosome

representation θ.

Once the optimization problem is described (by means of selecting decision

variables, the objective, and possibly imposing constraints), simulation model is

called every time a different set of decision variables’ values needed to be evaluated.

The GA module (e.g., optimization routine) evaluates the responses from the current

simulation run, analyzes and integrates these with responses from previous

simulation runs, and determines a new set of values for the decision variables which

are then fed into the simulation model to be evaluated. This is a multi stage iterative

process that successively generates new sets of values for the decision variables, not

all of them improving, but which, over time, provides a highly efficient trajectory to

the best solutions. The process continues until some termination criterion is satisfied

— usually stopping after a number of simulations or when the GA module

determines the objective value has stopped improving. Its ultimate goal is to find the

solution that optimizes (maximizes or minimizes) the value of the model’s objective.

This somewhat complex process is depicted in Figure 5.4 to increase its

intelligibility.

64

Figure 5.4 Optimization via Simulation Methodology

5.4. Computational Results and Discussions

The GA coded using Visual Basic® for Applications by Microsoft®. A Pseudo code

of GA is given in APPENDIX B. After preliminary runs, the parameter of the GA is

determined to be as follows:

Population size (Ps): 10

Number of generations (Gmax): 20

Mutation probability (pm): 0.05

Chromosome length (Cl: number of total parts + number of total operations): 11

Selection type: Tournament approach

The hypothetical simulation model coded using ARENA. A Pseudo code of

simulation model is given in APPENDIX B. In simulation experiments two levels of

flexibility taken into account to show the efficiency of the GA. (1) Full flexibility

(i.e., all machines are considered to be available for each operation to be chosen as

alternatives), (2) partial flexibility (i.e., for each operation a machine has to be

chosen from among several “available alternatives”). It should be noted that

increasing the level of the flexibility increases the number of alternatives which

complicates the job of GA.

Our solution approach starts up with five different initial solutions determined by

GA, for each level of flexibility, to guarantee to obtain near optimal solutions. For

each generation of all initial solutions final machine-operation pairings are fed into

simulation model. Then, ten independent replications are conducted for one

simulation run. At the end of each simulation run an average of ten replications fed

into GA as an objective function. This iterative procedure repeats itself until 20

65

iterations completed. Note that, common random numbers (i.e., the same random

number streams) are used for each simulation run to improve estimates of differences

in performance.

Figure 5.5 shows an average “total of average flow times” of 5 runs with different

initial solutions and the best “total of average flow times” among 5 runs with full

flexibility. Figure 5.6 shows an average “total of average flow times” of 5 runs with

different initial solutions and the best “total of average flow times” among 5 runs

with partial flexibility.

Figure 5.4 shows the selected machine-operation pairings of the best results. From

figure 5.4, note that all operations of part 1 are processed on only machine 5 with full

flexibility. This is a result of system characteristics which enable process of

consecutive operations of a part on the same machine. In this case, GA strives only

for coming up with a solution for the system that specifies optimal machine-

operation pairs (i.e., part routings) while minimizing the objective function.

66

Table 5.4 Operation sequences and machine numbers of best results

Full Flexibility

Total average part

flow times

 Part 1

Operation

Sequence

Machine

Sequence

 O11 O12 O13 5_5_5

 Part2 96

Operation

Sequence

Machine

Sequence

 O23 O22 O21 1_5_5

 Part3

 O31 O33 3_3

Operation

Sequence

Machine

Sequence

Partial Flexibility

Total average part

flow times

 Part 1

Operation

Sequence

Machine

Sequence

 O11 O12 O13 1_5_2

 Part2

Operation

Sequence

Machine

Sequence 106

 O22 O23 O21 5_2_1

 Part3

Operation

Sequence

Machine

Sequence

 O31 O32 1_3

GA achieves the best when “total of average flow times” is equal to 96, at 4th

generation in the fifth run with full flexibility. And with the partial flexibility, our

algorithm improves the best “total of average flow times” very quickly, that the best

“total of average flow times”, equal to 106, is achieved at 2nd generation in first run.

The very early convergence to optimum can be explained by limited choice of

alternative machines with partial flexibility (see Table 5.2 for alternative machines

with partial flexibility).

67

Figure 5.5 Total of average flow times obtained with full flexibility

Figure 5.6 Total of average flow times results obtained with partial flexibility

90

92

94

96

98

100

102

104

106

1 3 5 7 9 11 13 15 17 19

To
ta

l o
f

av
er

ag
e

p
ar

t
fl

o
w

ti
m

es

Number of generations

Average

Best

102

104

106

108

110

112

114

1 3 5 7 9 11 13 15 17 19

To
ta

l o
f

av
e

ra
ge

 p
ar

t
fl

o
w

ti
m

es

Number of generations

Average

Best

68

CHAPTER 6

CONCLUSION

FJSSP is handled as static, stochastic and dynamic scheduling problem within the

context of this study. FJSSP deals with two sub problems: (1) selecting a machine

from alternative machine set for each operation, and (2) sequencing the operations on

all machines to achieve a feasible schedule. First, the GA is adapted to static FJSSP.

In static FJSSP, all jobs and machines are ready at time 0. And, the processing times

of all operations are already known. The maximum completion times of jobs, Cmax

(makespan), is determined as the objective function to be minimized. Initial

population is generated with a mixed initial strategy. Four strategies are used to

generate initial population. This mixed strategy helps achieving near optimal

solution more quickly. The algorithm is tested with Brandimerte's data set (BRdata)

(Brandimerte, 1993). Ten problem instances are run for five times and the best

results among them are selected. The proposed GA obtains the best known solution

in problems of Mk01, Mk03, Mk07 and Mk08. Besides, the proposed GA can find

the solutions with small parameter size as well. Therefore the algorithm can be

considered a promising candidate for further studies.

An experimental design is generated for static stochastic FJSSPs to measure the

impact of flexibility on shop performance by using an efficient GA. A four full

factorial design is utilized to evaluate the performance of the shop and investigate

relationships between the considered factors. Three levels of each number of parts,

number of jobs, number of operations, and level of flexibility are included to the

experimental design. A total of 81 experiments performed to investigate all factor

level combinations. The algorithm is run within 20 replications of each experiment to

evaluate the performance of the static stochastic flexible job shop. Results revealed

that makespan performance of the shop is significantly affected by the considered

69

factors and some factor interactions. It is seen that all main factors have significant

effect on makespan performance at 0.05 significance level. Makespan performance

of the shop improves as the level of machine number increases. It is observed that

setting the machine number at its low level makes makespan performance of the shop

becomes much more sensitive to different levels of part number. The best makespan

performance observed for high levels of machine number together with low level of

part number regardless of the flexibility level. As the level of the flexibility increases

only marginal improvements gained on makespan performance at different levels of

part number which makes flexibility level and part number interaction effect on

makespan insignificant. It is apparently seen that flexibility level has negligible

effect on makespan performance of the shop. Makespan performance of the shop

deteriorates as the level of operation number and part number increases. Also,

makespan performance of the shop improves as the level of machine number

increases.

In Section 5 an optimization via simulation methodology is proposed to solve a

dynamic stochastic FJSSP which inherents considerable complexity. By the proposed

approach the best process plan for each part and then the best machine-operation

pairing along the part’s routing is determined while minimizing the total of average

flow times. By this aim, an optimization via simulation approach is adopted to a

dynamic stochastic FJSSP with random inter-arrivals and processing times. The GA

module is used as an optimization routine and it is iterated by the objective function

obtained from simulation. This synergic integration is aimed at tackling two common

challenges in designing and optimizing complex, dynamic, and stochastic real-world

production systems. This includes problem formulation/representation in terms of

objective function and constraints (i.e., simulation phase of the methodology),

searching the often complex and large problem domain (i.e., optimization phase of

the methodology). Note that, in most cases it is impractical to search complex and

large problem domain.

70

One of the most important findings of the study is that the objective function (i.e.,

total of average flow times) improves as the level of flexibility increases. Also, it is

shown that good solutions can be obtained using GA as a tool for systematically

guiding the recursive process towards convergence to an optimum solution by

considering only a limited number of alternative configurations of the system.

Without the help of GA it would be impractical to evaluate all possible system

configurations resulting from the combination of design factors, as the number of

possibilities could be in thousands and in many cases in millions.

The main contribution of this study is that the optimization via simulation

methodology is used in an iterative manner automatically. Thus, this methodology

can be modified and used for most of the other industrial and service problems. For

further studies, the methodology must be extended and compared with other

methods. Furthermore, some production constraints or other performance measures

together with machine breakdowns and other random events can be included in this

problem.

Other meta-heuristic algorithms, such as simulated annealing, artificial immune

systems, differential evolution, bee algorithms etc., can be used in optimization phase

of the methodology.

It would be interesting to use this methodology for other similar problem types in

this area, i.e., shop configuration problems, part-machine grouping etc. Also, it is

possible to apply this methodology to many real life problems exist in service and

manufacturing systems.

71

REFERENCES

Adibi, M. A., Zandieh, M., & Amiri, M. (2010). Multi-objective scheduling of

dynamic job shop using variable neighborhood search. Expert Systems with

Applications , 37, 282-287.

Al-Hinai, N., & ElMekkaway, T. Y. (2011). Robust and stable flexible job shop

scheduling with random machine breakdowns using a hybrid genetic algorithm. Int J

Production Economics , 132, 279-291.

Baker, K. R. (1974). Introduction the theory of scheduling. New York: Wiley.

Baker, K. R., & Trietsch, D. (2009). Principles of Sequencing and Scheduling (1st

ed.). Hoboken, New Jersey: John Wiley & Sons.

Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. M. (2010). Discrete Event

Systems Simulation (3rd ed.). Englewood Cliffs, NJ: Prentice Hall.

Baykasoğlu, A., & Ozbakir, L. (2008). Analysing the effect of flexiblity on

manufacturing systems performance. Journal of Manufacturing Technology

Management , 19 (2), 172-193.

Baykasoğlu, A., Göçken, M., & Unutmaz, Z. D. (2008). New approaches to due date

assignment in job shops. European Journal of Operational Research , 187, 31-45.

Baykasoğlu, A., Özbakır, L., & Sönmez, A. İ. (2004). Using multiple objective tabu

search and grammars to model and solve multi-objective flexible job shop scheduling

problems. Journal of Intelligent Manufacturing , 15, 777-785.

Bondal, A. A. (2008). Artificial Immune Systems Applied to Job Shop Scheduling.

Ohio: Ohio University.

72

Brandimerte, P. (1993). Routing and scheduling in a flexible job shop by taboo

search. Annals of Operations Research , 41, 157-183.

Büyükköprü, E. (2005). Flexible Job Shop Scheduling via Simulation under sequence

dependent setup times. İzmir: Dokuz Eylül University.

Chen, H., Ihlow, J., & Lehmann, C. (1999). A Genetic Algorithm for flexible job

shop scheduling. International Conference on Robotics & Automation (s. 1120-

1125). Detroit, Michigan: Proceedings of the 1999 IEEE.

Cheng, H.-C., Chiang, T.-C., & Fu, L.-C. (2011). A two-stage hybrid memetic

algorithm for multiobjective job shop scheduling. 38, 10983-10998.

Chong, C. S., Low, M. Y., Sivakumar, A. I., & Gay, K. L. (2006). A Bee colony

optimization algorithm to job shop scheduling. Proceedings of the 2006 Winter

Simulation Conference, (s. 1954-1961).

Essafi, I., Mati, Y., & Dauzere-Peres, S. (2008). A genetic local search algorithm for

minimizing total weighted tardiness in the job shop scheduling problem. Computers

& Operations Research , 35, 2599-2616.

Fang, J., & Xi, Y. (1997). A rollling horizon job shop rescheduling staretgy in the

dynamic environment. Int J Adv Manuf Technol , 13, 227-232.

Fattahi, P., Mehrabad, M. S., & Jolai, F. (2007). Mathematical modeling and

heuristic approaches to flexible job shop scheduling problems. J Intell Manuf , 18,

331-342.

Fığlalı, N., Özkale, C., Engin, O., & Fığlalı, A. (2009). Investigation of Ant System

parameter interactions by using design of experiments for job-shop scheduling

problems. Computers & Industrial Engineering , 56 , 538-559.

Fu, M. C. (2002). Optimization for Simulation: Theory vs. Practice . INFORMS

Journal on Computing , 3 (14), 192–215.

Gao, J., Gen, M., Sun, L., & Zhao, X. (2007). A hybrid of genetic algorithm and

bottleneck shifting for multiobjective flexible job shop scheduling problems.

Computers & Industrial Engineering , 53, 149-162.

73

Gao, J., Sun, L., & Gen, M. (2008). A Hybrid genetic and variable neighborhood

descent algorithm for flexible job shop scheduling problems. Computers &

Operations Research , 35, 2892-2907.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flow shop and

job shop scheduling. 1, 117-129.

Geyik, F., & Cedimoğlu, İ. H. (2004). The strategies and parameters of tabu search

for job shop scheduling. Journal of Intelligent Manufacturing , 15, 439-448.

Gholami, M., & Zandieh, M. (2009). Integrating simulation and genetic algorithm to

schedule a dynamic flexible job shop. J Intell Manuf , 20, 481-498.

Giffler, J. & Thompson, G.L. (1960). Algorithms for solving production scheduling

problems, Operations Research, 8, 487-503.

Gu, J., Gu, M., Cao, C., & Gu, X. (2010). A novel competitive co-evolutionary

quantum genetic algortihm for stochastic job shop scheduling problem. Computers &

Operations Research , 37, 927-937.

Gu, J., Gu, X., & Gu, M. (2009). A novel parallel quantum genetic algorithm for

stochastic job shop scheduling. J Mathematical analysis and applications , 355, 63-

81.

Ho, N. B., & Tay, J. C. (2004). GENACE: an efficient cultural algorithm for solving

the flexible job shop problem. IEEE international conference on robotics and

automation, (s. 1759-1766).

Hsueh-Chien Cheng, T.-C. C.-C. (2011). A two-stage hybrid memetic algorithm for

multiobjective job shop scheduling. 38, 10983-10998.

Hu, Y., Yin, M., & Li, X. (2011). A novel objective function for job shop scheduling

problem with fuzzy processing time and fuzzy due date using differential evolution

algorithm. Int J Adv Manuf Technol , 56, 1125-1138.

Innani, A. D. (2004). Applying data mining to job shop scheduling using regression

analysis. Ohio: Ohio University.

74

Kacem, I., Hammadi, S., & Borne, P. (2002). Approach by localization and

multiobjective evolutionary optimization for flexible job shop scheduling problems.

IEEE transactions on systems,Man, And Cybernetics , 1-12.

Kacem, I., Hammadi, S., & Borne, P. (2002). Pareto-optimality approach for flexible

job-shop scheduling problems:hybridization of evolutionary algortihms and fuzzy

logic. Mathematics and Computers in Simulation , 60, 245-276.

Law, A. M. (2007). Simulation Modelling and Analysis (4th ed.). New York: Mc

Graw Hill.

Law, A. M., & Kelton, W. D. (2000). Simulation Modelling and Analysis (3rd ed.).

New York: McGraw Hill.

Lei, D. (2008). A Pareto archive particle swarm optimization for multi objective job

shop scheduling. Computers & Industrial Engineering , 54, 960-971.

Lei, D. (2012). Interval job shop scheduling problems. Int J Adv Manuf Technol , 60,

291-301.

Lei, D. (2011a). Population based neighbourhood search for job shop scheduling

with interval processing time. Computers & Industrial Engineering , 61, 1200-1208.

Lei, D. (2011b). Scheduling stochastic job shop subject to random breakdown to

minimize makespan. Int J Adv Manuf Technol , 55, 1183-1192.

Lei, D. (2011c). Simplified multi-objective genetic algorithms for stochastic job shop

scheduling. Applied Soft Computing , 11 , 4991-4996.

Lei, D., & Xiong, H. (2008). Job Shop Scheduling with Stochastic Processing Time

Through Genetic Algorithm. Proceedings of the Seventh International Conference on

Machine Learning and Cybernetics, (s. 941-946). Kunming.

Lian, Z. (2010). A Local and Global Search Combine Particle Swarm Optimization

Algorithm for Job Shop Scheduling to Minimize Makespan. Discrete Dynamics in

Nature and Society , 1-11.

75

Lian, Z., Jiao, B., & Gu, X. (2006). A similar particle swarm optimization algorithm

for job shop scheduling to minimize makespan. Applied Mathematics and

Computation , 183, 1008-1017.

Liouane, N., Saad, I., Hammadi, S., & Borne, P. (2007). Ant systems & Local Search

Optimization for flexible job shop scheduling production. Int. J. Computers,

Communication & Control , 2, 174-184.

Manikas, A., & Chang, Y.-L. (2009). Multi-criteria sequence-dependent job shop

scheduling using genetic algorithms. Computers & Industrial Engineering , 56, 179-

185.

Martinis, P. (2003). A hybrid method for selecting scheduling schemes in a

manufacturing environment. Knoxville: The University of Tennessee.

Mastrolilli, M., & Gambardella, L. (2000). Effective neighborhood functions for the

flexible job shop problem. Journal of Scheduling , 3, 3-20.

Medaglia, A. L. (2000). Simulation Optimization using soft computing. North

Carolina State University.

Meeran, S., & Morshed, M. S. (2011). A Hybrid genetic tabu search algorithm for

solving job shop scheduling problems a case study. J Intell Manuf , DOI

10.1007/s10845-011-0520-x.

Metta, H. (2008). Adaptive, Multi-Objective Job Shop Scheduling Using Genetic

Algorithms. Kentucky: University of Kentucky.

Montogomery, D. C., & Runger, G. C. (2002). Applied Statistics and Probability for

Engineers (3 ed.). New York: Wiley.

Moon, I., Cha, B. C., & Bae, H. C. (2006). Hybrid genetic algorithm for group

technology economic lot scheduling problem. International Journal of Production

Research , 44 (21), 4551-4568.

Moon, I., Lee, S., & Bae, H. (2008). Genetic Algorithms for job shop scheduling

problems with alternative routings. International Journal of Production Research ,

2695-2705.

76

Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in

manufacturing systems. J Sched , 12, 417-431.

Pan, J. C.-H., & Huang, H.-C. (2009). A Hybrid genetic algorithm for no-wait job

shop scheduling problems. Expert Systems with Applications , 36, 5800-5806.

Paris, J. L., Tautou-Guillaume, L., & Pierreval, H. (2001). Dealing with design

options in the optimization of manufacturing systems: An evolutionary approach. Int

Journal of Production Research , 39 (6), 1081-1094.

Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A Genetic Algorithm for the

flexible job shop scheduling problem. Computers & Operations Research , 35, 3202-

3212.

Pinedo, M. L. (2005). Planning and Scheduling in Manufacturing and Services. New

York: Springer.

Pinedo, M. L. (2008). Scheduling: Theory, Algorithms, and Systems (3th ed.). New

York: Prentice Hall.

Rajabinasab, A., & Mansour, S. (2011). Dynamic flexible job shop scheduling with

alternative process plans: an agent based approach. Int J Adv Manuf Technology , 54,

1091-1107.

Roshanaei, V., Naderi, B., Jolai, F., & Khalili, M. (2009). A variable neighborhood

search for job shop scheduling with set-up times to minimize makespan. Future

Generation Computer Systems , 25, 654-661.

Rossi, A., & Dini, G. (2007). Flexible job shop scheduling with routing flexibility

and separable setup times using ant colony optimisation method. Robotics and

Computer-Integrated Manufacturing , 23, 503-516.

Rui Zhang, S. S. (2012). A two-stage hybrid particle swarm optimization algorithm

for stochastic job shop scheduling. Knowledge-Based Systems , 27, 393-406.

S Meeran, M. S. (2011). A Hybrid genetic tabu search algorithm for solving job shop

scheduling problems a case study. J Intell Manuf , DOI 10.1007/s10845-011-0520-x.

77

Saidi-Mehrabad, M., & Fattahi, P. (2007). Flexible job shop scheduling with tabu

search algorithms. Int.J.Advance Manufacturing Technology , 32, 563-570.

Sha, D. Y., & Hsu, C.-Y. (2006). A hybrid particle swarm optimization for job shop

scheduling problem. Computers & Industrial Engineering , 51 , 791- 808.

Siwamogsatham, T., & Saygin, C. (2004). Auction-based distributed scheduling and

control scheme for flexible manufacturing system. International Journal of

Production Research , 42 (3), 542-572.

Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-

objective flexible job-shop scheduling problems. Computers & Industrial

Engineering , 48, 409-425.

Yamada, T. (2003). Studies on metaheuristics for job shop and flow shop scheduling

problems. Kyoto: Kyoto University.

Yoshitomi, Y., & Yamaguchi, R. (2003). A genetic algorithm and the monte carlo

method for stochastic job shop scheduling. International Transactions in

Operational Research , 10, 577-596.

Zandieh, M., & Adibi, M. A. (2010). Dynamic job shop scheduling using variable

neighbourhood search. Int J Production Research , 48, 2449-2458.

Zhang, C. Y., Li, P., Guan, Z., & Rao, Y. (2007). A tabu search algorithm with a new

neighborhood structure for the job shop scheduling problem. Computers &

Operations Research , 34, 3229-3242.

Zhang, C. Y., Rao, Y., & Li, P. (2008). An effective hybrid genetic algorithm for the

job shop scheduling problem. Int J Adv Manuf Technol , 39, 965-974.

Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible

job-shop scheduling problem. Expert Systems with Applications , 38, 3563-3573.

Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm

optimization algortihm for multi-objective flexible job shop scheduling problem.

Computers & Industrial Engineering , 56, 1309-1318.

78

Zhang, Q., Manier, H., & Manier, M. A. (2012). A genetic algorithm with tabu

search procedure for flexible job shop scheduling with transportation constraints and

bounded processing times. Computers & Operations Research , 39, 1713-1723.

Zhang, R., & Wu, C. (2010). A Hybrid immune simulated annealing algorithm for

the job shop scheduling problem. Applied Soft Computing , 10 , 79-89.

Zhang, R., Song, S., & Wu, C. (2012). Applied Soft Computing ,

doi:10.1016/j.asoc.2012.02.024.

Zhang, R., Song, S., & Wu, C. (2012). A Hybrid artificial bee colony algorithm for

the job shop scheduling problem. Int J Production Economics ,

http://dx.doi.org/10.1016/j.ijpe.2012.03.035.

Zhang, R., Song, S., & Wu, C. (2012). A hybrid differential evolution algorithm for

job shop scheduling problems with expected total tardiness criterion. Applied Soft

Computing , doi:10.1016/j.asoc.2012.02.024.

Zhang, R., Song, S., & Wu, C. (2012). A two-stage hybrid particle swarm

optimization algorithm for stochastic job shop scheduling. Knowledge-Based Systems

, 27, 393-406.

Zhou, R., Nee, A. Y., & Lee, H. P. (2009). Performance of an ant colony

optimisation algorithm in dynamic job shop scheduling problems. Int J Production

Research , 47 , 2903-2920.

79

APPENDIX A

Data set explanations:

In the first line there are (at least) 2 numbers: the first is the number of jobs and the second the number of machines (the 3rd is not necessary, it is

the average number of machines per operation)

Every row represents one job: the first number is the number of operations of that job, the second number (let's say k>=1) is the number of

machines that can process the first operation; then according to k, there are k pairs of numbers (machine, processing time) that specify which are

the machines and the processing times; then the data for the second operation and so on...

Example: Fisher and Thompson 6x6 instance, alternate name (mt06)

6 6 1

6 1 3 1 1 1 3 1 2 6 1 4 7 1 6 3 1 5 6

6 1 2 8 1 3 5 1 5 10 1 6 10 1 1 10 1 4 4

6 1 3 5 1 4 4 1 6 8 1 1 9 1 2 1 1 5 7

6 1 2 5 1 1 5 1 3 5 1 4 3 1 5 8 1 6 9

6 1 3 9 1 2 3 1 5 5 1 6 4 1 1 3 1 4 1

6 1 2 3 1 4 3 1 6 9 1 1 10 1 5 4 1 3 1

first row = 6 jobs and 6 machines 1 machine per operation

second row: job 1 has 6 operations, the first operation can be processed by 1 machine that is machine 3 with processing time 1.

80

Table A1: Mk01 problem data

10 6 2
 6 2 1 5 3 4 3 5 3 3 5 2 1 2 3 4 6 2 3 6 5 2 6 1 1 1 3 1 3 6 6 3 6 4 3

5 1 2 6 1 3 1 1 1 2 2 2 6 4 6 3 6 5 2 6 1 1

5 1 2 6 2 3 4 6 2 3 6 5 2 6 1 1 3 3 4 2 6 6 6 2 1 1 5 5

5 3 6 5 2 6 1 1 1 2 6 1 3 1 3 5 3 3 5 2 1 2 3 4 6 2

6 3 5 3 3 5 2 1 3 6 5 2 6 1 1 1 2 6 2 1 5 3 4 2 2 6 4 6 3 3 4 2 6 6 6

6 2 3 4 6 2 1 1 2 3 3 4 2 6 6 6 1 2 6 3 6 5 2 6 1 1 2 1 3 4 2

5 1 6 1 2 1 3 4 2 3 3 4 2 6 6 6 3 2 6 5 1 1 6 1 3 1

5 2 3 4 6 2 3 3 4 2 6 6 6 3 6 5 2 6 1 1 1 2 6 2 2 6 4 6

6 1 6 1 2 1 1 5 5 3 6 6 3 6 4 3 1 1 2 3 3 4 2 6 6 6 2 2 6 4 6

6 2 3 4 6 2 3 3 4 2 6 6 6 3 5 3 3 5 2 1 1 6 1 2 2 6 4 6 2 1 3 4 2

81

Table A2: Mk02 problem data

10 6
 6 6 3 3 4 5 1 3 6 6 2 2 5 3 2 6 5 3 4 6 1 1 5 6 3 3 4 3 2 6 6 5 1 2 6 2 6 3 5 6 3 3 2 2 1 5 4

6 5 6 1 5 6 1 3 2 4 4 2 2 6 3 5 6 1 5 2 2 2 4 3 3 3 3 2 2 1 5 4 6 3 3 4 5 1 3 6 6 2 2 5 3

6 6 1 1 5 6 3 3 4 3 2 6 6 5 6 5 3 4 6 2 4 6 6 3 6 1 2 3 3 2 2 1 5 4 5 3 5 1 4 2 3 6 3 5 2 6 4

 1 1 5 2 4 5 5 3 3 6 3 5 6 3 1 4 4 6 3 6 5 3

6 5 3 5 1 4 2 3 6 3 5 2 5 6 1 5 6 1 3 2 4 4 2 1 2 6 6 1 1 5 6 3 3 4 3 2 6 6 5 5 1 4 4 5 2 3 6

 3 5 4 6 4 1 1 5 2 4 5 5 3 3 6 3

6 6 5 3 4 6 2 4 6 6 3 6 1 2 5 1 4 4 5 2 3 6 3 5 4 1 4 3 5 6 3 1 4 4 6 3 6 5 3 5 6 1 5 6 1 3 2 4 4 2 2 2 4 3 3

6 5 6 3 1 4 4 6 3 6 5 3 2 6 5 3 4 5 3 5 1 4 2 3 6 3 5 2 6 5 3 4 6 2 4 6 6 3 6 1 2 1 2 6 5 6 1 5 6 1 3 2 4 4 2

5 6 4 1 1 5 2 4 5 5 3 3 6 3 1 5 2 6 5 3 4 6 2 4 6 6 3 6 1 2 6 3 3 4 5 1 3 6 6 2 2 5 3 5 6 3 1 4 4 6 3 6 5 3

6 2 2 4 3 3 5 3 5 1 4 2 3 6 3 5 2 6 5 3 4 6 2 4 6 6 3 6 1 2 5 6 3 1 4 4 6 3 6 5 3 5 1 4 4 5 2

 3 6 3 5 4 5 6 1 5 6 1 3 2 4 4 2

5 1 2 6 2 6 5 3 4 5 6 1 5 6 1 3 2 4 4 2 5 1 4 4 5 2 3 6 3 5 4 2 2 4 3 3

6 1 4 3 6 5 3 4 6 2 4 6 6 3 6 1 2 5 6 3 1 4 4 6 3 6 5 3 6 4 1 1 5 2 4 5 5 3 3 6 3 2 6 3 5 6 5 6 1 5 6 1 3 2 4 4 2

82

Table A3: Mk03 problem data

15 8 3
 10 4 7 15 8 11 4 5 5 19 2 3 18 4 5 4 8 18 7 3 6 11 3 16 4 5 7 2 1 7 2 3 19 2 5 6 6 3 3 4

 5 5 2 8 18 1 5 2 1 1 17 5 5 10 2 10 1 12 8 5 3 14 3 7 15 6 2 8 19

10 4 8 18 7 3 6 11 3 16 1 1 17 2 2 1 4 13 5 5 10 2 10 1 12 8 5 3 14 5 4 11 1 9 2 18 6 18 3 13

 2 6 15 7 13 4 7 15 8 11 4 5 5 19 4 5 7 2 1 7 2 3 19 4 4 11 1 7 6 13 8 3 3 7 15 6 2 8 19

10 2 3 3 5 5 4 5 7 2 1 7 2 3 19 2 3 18 4 5 2 5 6 6 3 4 4 11 1 7 6 13 8 3 3 7 15 6 2 8

 19 5 4 11 1 9 2 18 6 18 3 13 3 4 5 5 2 8 18 1 1 17 2 2 1 4 13

10 2 3 18 4 5 2 3 3 5 5 5 4 11 1 9 2 18 6 18 3 13 4 4 11 1 7 6 13 8 3 2 6 15 7 13 4 5 7 2

 1 7 2 3 19 1 5 2 4 8 18 7 3 6 11 3 16 1 1 17 2 5 6 6 3

10 2 6 15 7 13 3 7 15 6 2 8 19 1 5 2 4 7 15 8 11 4 5 5 19 5 4 11 1 9 2 18 6 18 3 13 4 5 7 2

 1 7 2 3 19 3 4 5 5 2 8 18 2 5 6 6 3 2 3 3 5 5 5 5 10 2 10 1 12 8 5 3 14

10 2 2 1 4 13 2 6 15 7 13 2 3 18 4 5 4 8 18 7 3 6 11 3 16 5 4 11 1 9 2 18 6 18 3 13 5 5 10 2

 10 1 12 8 5 3 14 4 4 11 1 7 6 13 8 3 4 7 15 8 11 4 5 5 19 2 5 6 6 3 2 3 3 5 5

10 5 5 10 2 10 1 12 8 5 3 14 4 4 11 1 7 6 13 8 3 2 2 1 4 13 1 1 17 2 6 15 7 13 4 5 7 2 1 7

 2 3 19 1 5 2 5 4 11 1 9 2 18 6 18 3 13 2 3 18 4 5 3 7 15 6 2 8 19

10 3 7 15 6 2 8 19 1 1 17 4 7 15 8 11 4 5 5 19 2 6 15 7 13 5 5 10 2 10 1 12 8 5 3 14 4 4 11 1

 7 6 13 8 3 5 4 11 1 9 2 18 6 18 3 13 2 2 1 4 13 2 3 18 4 5 2 3 3 5 5

10 1 1 17 5 5 10 2 10 1 12 8 5 3 14 4 8 18 7 3 6 11 3 16 3 7 15 6 2 8 19 2 6 15 7 13 4 4 11 1

 7 6 13 8 3 1 5 2 2 2 1 4 13 5 4 11 1 9 2 18 6 18 3 13 4 7 15 8 11 4 5 5 19

10 1 1 17 2 6 15 7 13 3 4 5 5 2 8 18 5 4 11 1 9 2 18 6 18 3 13 4 4 11 1 7 6 13 8 3 2 3 18 4

 5 2 5 6 6 3 3 7 15 6 2 8 19 4 8 18 7 3 6 11 3 16 5 5 10 2 10 1 12 8 5 3 14

10 2 2 1 4 13 3 7 15 6 2 8 19 4 8 18 7 3 6 11 3 16 2 3 18 4 5 2 5 6 6 3 1 1 17 2 3 3 5 5

 3 4 5 5 2 8 18 5 5 10 2 10 1 12 8 5 3 14 5 4 11 1 9 2 18 6 18 3 13

10 4 4 11 1 7 6 13 8 3 3 4 5 5 2 8 18 4 8 18 7 3 6 11 3 16 1 1 17 5 4 11 1 9 2 18 6 18 3 13

 3 7 15 6 2 8 19 1 5 2 2 3 3 5 5 4 7 15 8 11 4 5 5 19 2 2 1 4 13

83

Table A3 (Continued)

10 5 5 10 2 10 1 12 8 5 3 14 1 5 2 2 3 18 4 5 4 5 7 2 1 7 2 3 19 2 6 15 7 13 4 8 18 7 3 6

 11 3 16 4 7 15 8 11 4 5 5 19 5 4 11 1 9 2 18 6 18 3 13 2 5 6 6 3 4 4 11 1 7 6 13 8 3

10 4 8 18 7 3 6 11 3 16 3 4 5 5 2 8 18 2 2 1 4 13 4 5 7 2 1 7 2 3 19 2 5 6 6 3 2 3 18 4

 5 2 6 15 7 13 1 5 2 5 4 11 1 9 2 18 6 18 3 13 1 1 17

10 5 5 10 2 10 1 12 8 5 3 14 2 5 6 6 3 2 6 15 7 13 4 7 15 8 11 4 5 5 19 4 8 18 7 3 6 11 3 16

 1 1 17 5 4 11 1 9 2 18 6 18 3 13 3 4 5 5 2 8 18 2 3 18 4 5 4 5 7 2 1 7 2 3 19

84

Table A4: Mk04 problem data

15 8 2
 8 1 1 6 2 1 6 7 9 2 6 7 3 1 2 4 2 7 5 3 1 8 3 9 8 9 3 2 3 4 8 3 2 2 5 5 6 7 2 6 1 4 7

7 1 6 1 2 6 1 4 7 1 1 6 2 6 7 3 1 3 2 3 4 8 3 2 1 6 2 1 7 2

6 1 6 1 3 2 3 4 8 3 2 3 3 2 7 1 4 4 2 4 2 7 5 2 1 7 3 7 2 4 4 3 1

5 1 7 2 1 1 6 2 1 6 7 9 2 6 7 3 1 2 4 5 5 7

7 1 7 2 2 1 6 7 9 2 4 4 3 1 3 1 8 3 9 8 9 2 1 7 3 7 3 2 3 4 8 3 2 2 4 5 5 7

9 1 6 2 2 4 4 3 1 3 3 2 7 1 4 4 2 6 1 4 7 2 4 5 5 7 3 1 8 3 9 8 9 2 1 7 3 7 1 6 1 2 1 6 7 9

5 2 5 5 6 7 2 1 7 3 7 2 6 1 4 7 1 6 2 2 6 7 3 1

6 2 4 5 5 7 2 5 5 6 7 3 2 3 4 8 3 2 1 6 2 1 6 1 2 1 6 7 9

9 1 1 6 2 1 6 7 9 2 4 4 3 1 3 1 8 3 9 8 9 2 4 2 7 5 2 6 1 4 7 1 7 2 2 1 7 3 7 3 2 3 4 8 3 2

5 2 5 5 6 7 1 1 6 1 7 2 2 4 5 5 7 2 1 6 7 9

4 3 1 8 3 9 8 9 1 1 6 3 2 3 4 8 3 2 2 4 2 7 5

6 2 4 2 7 5 1 6 1 1 1 6 2 1 7 3 7 3 1 8 3 9 8 9 1 7 2

4 1 6 2 2 6 7 3 1 2 6 1 4 7 2 5 5 6 7

3 2 5 5 6 7 1 6 1 2 4 2 7 5

6 2 4 5 5 7 1 7 2 3 1 8 3 9 8 9 3 2 3 4 8 3 2 3 3 2 7 1 4 4 1 1 6

85

Table A5: Mk05 problem data

15 4 1,5
 6 2 3 5 2 7 2 1 8 4 8 2 1 6 2 5 1 3 7 2 4 5 2 6 2 4 5 1 5

5 1 3 7 2 1 6 2 5 1 4 6 2 4 5 2 6 2 1 8 2 6

8 2 4 7 3 9 2 3 5 2 7 2 4 5 1 5 2 1 8 4 8 2 1 6 2 5 1 4 6 2 1 8 2 6 2 4 9 3 6

7 2 4 5 1 5 2 4 7 3 9 2 1 8 4 8 1 4 8 2 1 8 2 6 2 4 5 2 6 1 4 6

6 2 3 7 1 5 2 4 6 2 7 2 4 7 3 9 1 3 8 2 3 5 2 7 2 1 8 2 6

9 1 4 6 2 4 5 2 6 1 3 8 2 3 7 1 5 2 4 6 2 7 1 4 8 2 1 8 2 6 2 1 8 4 8 2 4 5 1 5

5 1 3 8 2 4 7 3 9 2 1 6 2 5 2 4 6 2 7 1 3 7

8 2 3 7 1 5 1 3 8 2 4 7 3 9 2 4 5 1 5 1 3 7 1 4 8 2 4 9 3 6 2 1 6 2 5

9 2 3 5 2 7 1 4 8 2 4 5 2 6 2 1 6 2 5 1 4 6 2 1 8 4 9 2 1 8 4 8 2 1 8 2 6 1 3 7

9 2 1 8 2 6 2 1 8 4 8 2 1 8 4 9 2 4 9 3 6 2 1 6 2 5 1 3 8 1 3 7 1 4 6 2 4 5 2 6

7 2 1 8 2 6 2 1 8 4 8 2 1 6 2 5 1 3 7 1 4 6 1 3 8 2 4 9 3 6

6 1 4 8 1 3 7 2 4 7 3 9 2 1 6 2 5 1 3 8 2 1 8 4 8

7 1 4 8 2 4 9 3 6 2 1 8 4 8 2 4 6 2 7 2 4 6 2 7 2 1 8 2 6 2 3 7 1 5

7 2 1 6 2 5 2 3 7 1 5 2 1 8 4 8 2 1 8 2 6 2 4 5 1 5 2 4 6 2 7 1 4 6

7 1 3 8 2 1 8 4 9 2 4 9 3 6 1 3 7 2 4 5 2 6 2 1 8 2 6 2 1 6 2 5

86

Table A6: Mk06 problem data

10 15
 15 4 2 8 6 3 7 2 9 5 2 9 7 1 2 5 7 4 1 4 9 1 2 7 10 4 2 1 1 8 2 3 7 5 3 8 5 8 5 1 3

 8 8 2 5 3 8 10 9 3 5 6 1 1 6 2 5 2 5 1 9 9 1 5 7 4 6 2 10 6 1 2 2 7 9 5 6 2 4 8 7

 2 5 2 1 5 8 4 2 1 8 3 7 3 10 2 8 9 4 5 3 7 5 3 7 9 3 3 9 4 5 8 1 1

15 5 1 3 8 8 2 5 3 8 10 9 5 7 4 1 4 9 1 2 7 10 4 3 5 6 1 1 6 2 5 2 1 5 8 4 2 1 8 3 7

 2 4 8 7 2 2 10 6 1 2 3 10 2 8 9 4 5 2 7 9 5 6 3 7 5 3 7 9 3 3 7 5 3 8 5 8 3 9 4 5

 8 1 1 2 9 7 1 2 2 1 1 8 2 4 2 8 6 3 7 2 9 5 5 2 5 1 9 9 1 5 7 4 6

15 2 1 1 8 2 2 7 9 5 6 2 10 6 1 2 2 4 8 7 2 5 2 1 5 8 4 2 1 8 3 7 3 9 4 5 8 1 1 2 9

 7 1 2 3 7 5 3 7 9 3 5 7 4 1 4 9 1 2 7 10 4 4 2 8 6 3 7 2 9 5 5 1 3 8 8 2 5 3 8 10

 9 3 10 2 8 9 4 5 5 2 5 1 9 9 1 5 7 4 6 3 5 6 1 1 6 2 3 7 5 3 8 5 8

15 3 5 6 1 1 6 2 5 2 5 1 9 9 1 5 7 4 6 5 1 3 8 8 2 5 3 8 10 9 5 2 1 5 8 4 2 1 8 3 7

 2 4 8 7 2 2 10 6 1 2 3 7 5 3 8 5 8 2 9 7 1 2 3 7 5 3 7 9 3 3 9 4 5 8 1 1 4 2 8 6

 3 7 2 9 5 2 1 1 8 2 5 7 4 1 4 9 1 2 7 10 4 2 7 9 5 6 3 10 2 8 9 4 5

15 3 10 2 8 9 4 5 2 1 1 8 2 3 9 4 5 8 1 1 2 9 7 1 2 3 7 5 3 8 5 8 5 2 1 5 8 4 2 1 8

 3 7 3 5 6 1 1 6 2 3 7 5 3 7 9 3 4 2 8 6 3 7 2 9 5 2 10 6 1 2 5 7 4 1 4 9 1 2 7 10

 4 2 7 9 5 6 5 2 5 1 9 9 1 5 7 4 6 5 1 3 8 8 2 5 3 8 10 9 2 4 8 7 2

15 3 7 5 3 8 5 8 5 1 3 8 8 2 5 3 8 10 9 2 7 9 5 6 3 5 6 1 1 6 2 5 2 5 1 9 9 1 5 7 4

 6 2 4 8 7 2 2 9 7 1 2 5 2 1 5 8 4 2 1 8 3 7 5 7 4 1 4 9 1 2 7 10 4 4 2 8 6 3 7 2

 9 5 2 1 1 8 2 3 7 5 3 7 9 3 2 10 6 1 2 3 9 4 5 8 1 1 3 10 2 8 9 4 5

15 3 5 6 1 1 6 2 3 10 2 8 9 4 5 3 7 5 3 8 5 8 5 1 3 8 8 2 5 3 8 10 9 2 1 1 8 2 2 9 7

 1 2 5 2 1 5 8 4 2 1 8 3 7 3 7 5 3 7 9 3 5 7 4 1 4 9 1 2 7 10 4 3 9 4 5 8 1 1 2 10

 6 1 2 4 2 8 6 3 7 2 9 5 2 7 9 5 6 2 4 8 7 2 5 2 5 1 9 9 1 5 7 4 6

15 5 7 4 1 4 9 1 2 7 10 4 3 7 5 3 7 9 3 3 7 5 3 8 5 8 2 1 1 8 2 3 5 6 1 1 6 2 5 2 5

 1 9 9 1 5 7 4 6 3 10 2 8 9 4 5 3 9 4 5 8 1 1 2 9 7 1 2 4 2 8 6 3 7 2 9 5 5 1 3 8

 8 2 5 3 8 10 9 2 4 8 7 2 2 10 6 1 2 5 2 1 5 8 4 2 1 8 3 7 2 7 9 5 6

87

Table A6 (Continued)

15 4 2 8 6 3 7 2 9 5 3 9 4 5 8 1 1 3 7 5 3 8 5 8 5 7 4 1 4 9 1 2 7 10 4 5 2 1 5 8 4

 2 1 8 3 7 2 4 8 7 2 2 9 7 1 2 3 10 2 8 9 4 5 5 1 3 8 8 2 5 3 8 10 9 2 10 6 1 2 5 2

 5 1 9 9 1 5 7 4 6 3 7 5 3 7 9 3 2 7 9 5 6 2 1 1 8 2 3 5 6 1 1 6 2

15 2 1 1 8 2 4 2 8 6 3 7 2 9 5 3 10 2 8 9 4 5 3 7 5 3 8 5 8 3 7 5 3 7 9 3 2 10 6 1 2

 2 7 9 5 6 3 9 4 5 8 1 1 5 7 4 1 4 9 1 2 7 10 4 5 2 5 1 9 9 1 5 7 4 6 5 1 3 8 8 2

 5 3 8 10 9 3 5 6 1 1 6 2 5 2 1 5 8 4 2 1 8 3 7 2 4 8 7 2 2 9 7 1 2

88

Table A7: Mk07 problem data

20 5 3
 5 2 2 4 1 15 2 3 18 1 15 1 2 4 1 4 18 5 3 8 5 2 4 5 1 7 2 7

5 2 1 3 5 13 5 3 8 5 2 4 5 1 7 2 7 2 2 4 1 15 3 1 8 5 1 2 5 3 1 3 5 13 3 2

5 5 2 18 5 1 4 19 1 9 3 3 1 4 18 2 4 11 3 9 1 2 4 3 5 12 3 14 4 19

5 2 2 4 1 15 4 4 10 3 10 2 17 5 8 4 5 18 3 13 2 2 1 5 5 4 10 5 15 1 2 3 9 2 16 2 3 15 1 6

5 3 1 3 5 13 3 2 2 3 18 1 15 5 2 18 5 1 4 19 1 9 3 3 3 5 12 3 14 4 19 1 4 5

5 5 3 8 5 2 4 5 1 7 2 7 2 3 18 1 15 2 1 15 5 7 2 2 7 1 17 2 2 4 1 15

5 1 4 5 2 1 15 5 7 2 2 4 1 15 3 1 3 5 13 3 2 4 4 6 2 17 3 15 5 7

5 4 4 6 2 17 3 15 5 7 3 3 18 1 2 4 15 4 2 14 4 14 3 19 5 15 1 2 4 2 2 7 1 17

5 5 2 18 5 1 4 19 1 9 3 3 4 4 6 2 17 3 15 5 7 3 1 8 5 1 2 5 4 2 14 4 14 3 19 5 15 2 1 17 5 15

5 2 1 15 5 7 4 4 10 3 10 2 17 5 8 2 3 15 1 6 1 4 5 5 3 16 5 17 4 10 2 10 1 7

5 1 4 18 3 1 8 5 1 2 5 5 3 8 5 2 4 5 1 7 2 7 2 1 15 5 7 2 1 17 5 15

5 3 5 12 3 14 4 19 4 4 10 3 10 2 17 5 8 2 3 15 1 6 5 3 8 5 2 4 5 1 7 2 7 5 3 16 5 17 4 10 2 10 1 7

5 2 1 17 5 15 1 4 18 4 2 17 5 19 4 5 3 12 3 3 18 1 2 4 15 3 1 8 5 1 2 5

5 2 5 1 3 5 3 3 18 1 2 4 15 4 4 10 3 10 2 17 5 8 2 3 18 1 15 5 3 8 5 2 4 5 1 7 2 7

5 5 3 8 5 2 4 5 1 7 2 7 2 5 1 3 5 3 5 12 3 14 4 19 5 3 16 5 17 4 10 2 10 1 7 2 1 17 5 15

5 5 4 10 5 15 1 2 3 9 2 16 2 4 11 3 9 1 2 4 2 1 15 5 7 1 4 5

5 5 3 8 5 2 4 5 1 7 2 7 4 2 14 4 14 3 19 5 15 3 3 18 1 2 4 15 2 3 15 1 6 5 2 18 5 1 4 19 1 9 3 3

5 1 2 4 3 1 8 5 1 2 5 2 5 1 3 5 2 3 18 1 15 2 1 15 5 7

5 3 1 3 5 13 3 2 4 4 6 2 17 3 15 5 7 4 5 18 3 13 2 2 1 5 1 4 18 2 1 3 5 13

5 1 4 5 2 2 4 1 15 1 4 18 2 1 15 5 7 5 4 10 5 15 1 2 3 9 2 16

89

Table A8: Mk08 problem data

20 10

10 2 7 18 4 5 2 5 7 7 7 1 3 19 1 7 14 2 4 5 10 12 1 1 10 1 10 18 2 7 10 8 19 2 3 11 8 9 2 3 5 8 12

12 1 2 5 2 7 18 4 5 2 3 5 8 12 1 1 10 1 10 19 2 3 15 4 19 1 7 14 1 5 9 2 5 14 9 5 1 1 19 2 7 10 8 19

 1 1 16

14 2 5 14 9 5 1 1 19 1 1 10 1 3 19 2 7 18 4 5 2 4 5 10 12 2 3 5 8 12 1 10 10 1 5 9 1 1 7 2 7 10 8

 19 1 1 10 1 10 19 1 10 18

10 1 10 10 2 5 7 7 7 1 7 14 1 1 10 1 10 18 2 3 15 7 13 2 10 14 5 7 2 3 11 8 9 1 9 11 1 5 9

12 1 5 9 2 5 14 9 5 2 7 18 4 5 2 3 11 8 9 1 1 10 1 9 11 1 1 7 1 7 14 2 4 5 10 12 2 3 15 4 19 1 8

 18 1 10 19

10 2 3 15 7 13 1 3 19 1 5 9 1 10 19 2 3 5 8 12 2 7 18 4 5 2 8 14 10 9 2 4 5 10 12 1 10 18 1 1 7

12 1 1 10 1 10 18 1 1 7 1 5 9 2 8 14 10 9 2 7 10 8 19 2 3 15 4 19 2 10 14 5 7 1 8 18 1 10 19 1 1 19 1

 1 10

11 1 1 10 1 7 14 1 1 10 2 3 15 4 19 2 5 14 9 5 2 7 18 4 5 1 3 19 1 1 19 2 4 5 10 12 1 5 9 1 10 19

14 2 7 10 8 19 2 8 14 10 9 1 1 19 1 10 19 2 10 14 5 7 1 2 5 2 4 5 10 12 2 5 7 7 7 1 1 16 1 1 7 1 9 11

 1 3 19 1 1 10 1 10 18

11 1 10 19 2 10 14 5 7 1 8 18 2 3 11 8 9 1 1 7 1 1 10 2 5 14 9 5 2 3 15 4 19 1 10 18 1 3 19 1 1 19

11 2 5 14 9 5 1 1 10 1 8 18 2 3 15 4 19 2 7 10 8 19 2 3 5 8 12 2 3 11 8 9 2 8 14 10 9 1 10 10 1 9 11 1

 3 19

10 1 10 19 2 3 11 8 9 2 5 7 7 7 1 1 16 1 7 14 2 7 18 4 5 2 4 5 10 12 1 1 10 1 8 18 2 5 14 9 5

11 2 10 14 5 7 1 10 19 2 7 10 8 19 2 3 15 4 19 1 1 19 1 8 18 2 8 14 10 9 2 3 11 8 9 1 10 18 2 5 14 9 5

 1 2 5

11 1 1 10 2 5 7 7 7 1 1 10 1 9 11 1 7 14 2 3 15 7 13 2 8 14 10 9 1 1 16 2 3 5 8 12 2 5 14 9 5 1 2 5

11 2 5 14 9 5 2 5 7 7 7 1 7 14 1 10 10 2 7 10 8 19 2 3 15 4 19 2 7 18 4 5 1 1 7 2 3 11 8 9 1 1 19

 1 8 18

11 1 2 5 2 7 10 8 19 1 10 10 1 9 11 1 8 18 2 10 14 5 7 2 5 14 9 5 1 1 10 1 1 19 2 3 15 7 13 2 8 14 10 9

90

Table A8 (Continued)

13 1 10 10 2 5 14 9 5 1 5 9 1 10 19 1 1 10 2 3 5 8 12 1 2 5 2 10 14 5 7 1 1 10 2 8 14 10 9 2 3 15 7 13

 1 1 16 1 7 14

11 2 3 15 7 13 1 2 5 1 10 19 1 3 19 1 8 18 1 1 7 1 5 9 1 7 14 2 7 18 4 5 1 1 10 2 5 14 9 5

10 2 7 10 8 19 1 2 5 2 3 11 8 9 1 9 11 2 4 5 10 12 1 10 18 2 7 18 4 5 2 8 14 10 9 2 3 5 8 12 1 10 19

10 1 10 18 1 10 10 1 7 14 1 9 11 2 3 15 7 13 1 2 5 2 8 14 10 9 2 3 5 8 12 1 5 9 1 1 16

91

Table A9: Mk09 problem data

20 10

12 2 2 10 1 11 1 8 17 1 8 14 1 1 10 2 2 16 10 18 2 9 6 2 12 4 7 9 4 11 3 10 1 16 2 5 19 1 7 1 9 11 1 4

 16 1 2 5 5 7 9 9 9 4 6 8 14 6 16

13 1 8 17 2 5 6 4 11 2 2 10 1 11 2 5 9 8 8 2 2 16 3 11 4 1 8 5 14 10 15 6 12 4 6 10 8 15 7 5 2 8 2 5

 19 1 7 4 7 9 4 11 3 10 1 16 1 1 10 4 1 16 3 11 7 17 4 7 1 4 16 4 3 11 5 8 7 11 9 17

11 4 6 10 8 15 7 5 2 8 2 5 9 8 8 2 2 16 10 18 2 2 10 1 11 5 7 9 9 9 4 6 8 14 6 16 1 4 16 2 5 19 1 7

 1 1 10 2 5 6 4 11 2 2 16 3 11 1 3 14

11 4 1 8 5 14 10 15 6 12 2 5 19 1 7 4 4 11 8 16 9 15 1 6 1 8 14 1 4 16 1 8 17 4 1 16 3 11 7 17 4 7 4 10

 6 8 13 5 5 2 8 1 3 14 4 7 9 4 11 3 10 1 16 1 1 10

14 1 8 17 1 4 16 1 5 9 4 10 6 8 13 5 5 2 8 4 1 16 3 11 7 17 4 7 2 2 16 10 18 4 6 10 8 15 7 5 2 8 1 8

 14 2 5 6 4 11 4 2 5 7 13 10 10 5 11 5 7 9 9 9 4 6 8 14 6 16 2 5 9 8 8 4 1 8 5 14 10 15 6 12 2 5 19

 1 7

11 4 2 5 7 13 10 10 5 11 2 2 16 10 18 1 1 10 1 3 14 1 5 9 5 7 9 9 9 4 6 8 14 6 16 1 8 17 1 8 14 1 2 5

 4 6 10 8 15 7 5 2 8 4 4 11 8 16 9 15 1 6

14 1 8 14 1 8 17 2 5 9 8 8 1 4 16 1 1 10 4 2 5 7 13 10 10 5 11 1 2 5 2 5 6 4 11 5 7 9 9 9 4 6 8 14

 6 16 4 4 11 8 16 9 15 1 6 5 2 8 1 19 8 13 6 14 10 18 4 6 10 8 15 7 5 2 8 4 1 16 3 11 7 17 4 7 2 2 16

 10 18

13 1 1 10 4 10 6 8 13 5 5 2 8 1 5 9 4 7 9 4 11 3 10 1 16 1 9 11 4 2 5 7 13 10 10 5 11 4 6 10 8 15 7 5

 2 8 1 2 5 5 2 8 1 19 8 13 6 14 10 18 5 7 9 9 9 4 6 8 14 6 16 2 2 10 1 11 4 1 16 3 11 7 17 4 7 2 5

 6 4 11

11 1 8 17 1 2 5 1 1 10 1 4 16 2 5 6 4 11 4 7 9 4 11 3 10 1 16 5 2 8 1 19 8 13 6 14 10 18 1 9 11 2 9 6

 2 12 2 2 10 1 11 2 5 9 8 8

12 1 4 16 4 4 11 8 16 9 15 1 6 1 3 14 4 2 5 7 13 10 10 5 11 1 9 11 5 7 9 9 9 4 6 8 14 6 16 2 5 6 4 11

 4 1 16 3 11 7 17 4 7 2 2 10 1 11 2 2 16 3 11 4 1 8 5 14 10 15 6 12 1 1 10

10 1 9 11 1 5 9 5 2 8 1 19 8 13 6 14 10 18 1 4 16 4 4 11 8 16 9 15 1 6 2 5 9 8 8 4 7 9 4 11 3 10 1 16

92

Table A9 (Continued)

 1 3 14 1 1 10 4 1 16 3 11 7 17 4 7

11 4 10 6 8 13 5 5 2 8 4 4 11 8 16 9 15 1 6 1 4 16 2 9 6 2 12 4 6 10 8 15 7 5 2 8 4 7 9 4 11 3 10 1

 16 1 2 5 1 8 14 5 7 9 9 9 4 6 8 14 6 16 2 5 6 4 11 2 2 16 10 18

11 1 2 5 1 3 14 2 9 6 2 12 1 5 9 4 2 5 7 13 10 10 5 11 4 1 16 3 11 7 17 4 7 2 2 10 1 11 1 8 17 2 5 19

 1 7 1 1 10 4 7 9 4 11 3 10 1 16

10 4 3 11 5 8 7 11 9 17 1 1 10 2 2 16 10 18 2 2 10 1 11 4 6 10 8 15 7 5 2 8 4 4 11 8 16 9 15 1 6 1 4 16

 4 1 16 3 11 7 17 4 7 4 7 9 4 11 3 10 1 16 2 2 16 3 11

12 1 1 10 4 4 11 8 16 9 15 1 6 4 2 5 7 13 10 10 5 11 5 2 8 1 19 8 13 6 14 10 18 2 5 6 4 11 2 9 6 2 12 1

 2 5 4 10 6 8 13 5 5 2 8 1 4 16 2 2 16 3 11 2 2 10 1 11 4 6 10 8 15 7 5 2 8

14 1 8 17 4 4 11 8 16 9 15 1 6 1 3 14 2 9 6 2 12 1 8 14 4 6 10 8 15 7 5 2 8 4 7 9 4 11 3 10 1 16 4 2

 5 7 13 10 10 5 11 4 1 8 5 14 10 15 6 12 2 2 10 1 11 1 4 16 4 3 11 5 8 7 11 9 17 2 5 19 1 7 4 10 6 8 13

 5 5 2 8

13 5 2 8 1 19 8 13 6 14 10 18 1 9 11 4 7 9 4 11 3 10 1 16 1 8 17 4 10 6 8 13 5 5 2 8 2 5 6 4 11 1 1 10

 4 6 10 8 15 7 5 2 8 2 2 10 1 11 2 2 16 10 18 4 1 16 3 11 7 17 4 7 1 3 14 2 5 19 1 7

11 5 2 8 1 19 8 13 6 14 10 18 5 7 9 9 9 4 6 8 14 6 16 2 5 6 4 11 4 10 6 8 13 5 5 2 8 1 3 14 4 3 11 5

 8 7 11 9 17 1 9 11 2 2 10 1 11 4 2 5 7 13 10 10 5 11 1 8 14 4 1 8 5 14 10 15 6 12

13 1 3 14 2 2 10 1 11 4 7 9 4 11 3 10 1 16 2 2 16 10 18 2 2 16 3 11 4 4 11 8 16 9 15 1 6 4 1 16 3 11 7 17

 4 7 4 2 5 7 13 10 10 5 11 4 10 6 8 13 5 5 2 8 2 5 9 8 8 1 2 5 4 6 10 8 15 7 5 2 8 1 5 9

13 4 1 16 3 11 7 17 4 7 4 2 5 7 13 10 10 5 11 4 6 10 8 15 7 5 2 8 1 3 14 2 5 6 4 11 4 4 11 8 16 9 15 1

 6 1 5 9 1 1 10 1 8 17 2 9 6 2 12 5 2 8 1 19 8 13 6 14 10 18 2 2 16 3 11 2 2 16 10 18

93

Table A10: Mk10 problem data

20 15
 12 2 6 5 2 5 2 7 11 6 11 1 2 5 4 8 10 3 18 4 10 9 7 2 7 9 1 7 4 1 8 7 14 9 12 4 7 3 4 13 8

 8 2 6 5 3 8 1 19 9 13 10 19 2 16 5 2 16 10 9 3 12 4 11 5 15 2 9 10 10 5 3 7 5 2 8 4 7 4 1 6

 6 13 5 11 10 7

13 2 7 11 6 11 4 2 16 10 9 5 9 8 16 2 6 5 2 5 2 2 11 1 9 2 3 12 7 15 4 4 11 10 14 5 10 7 15 4 3

 8 1 12 5 5 13 11 5 3 8 1 19 9 13 10 19 2 16 3 4 13 8 8 2 6 4 8 10 3 18 4 10 9 7 4 1 16 5 11 10

 17 3 6 2 9 10 10 5 2 5 11 2 11

11 4 3 8 1 12 5 5 13 11 2 2 11 1 9 2 7 9 1 7 2 6 5 2 5 4 1 6 6 13 5 11 10 7 2 9 10 10 5 5 3

 8 1 19 9 13 10 19 2 16 4 8 10 3 18 4 10 9 7 4 2 16 10 9 5 9 8 16 2 3 12 7 15 2 2 5 9 19

11 4 4 11 10 14 5 10 7 15 5 3 8 1 19 9 13 10 19 2 16 1 5 15 1 2 5 2 9 10 10 5 2 7 11 6 11 4 1 16 5

 11 10 17 3 6 2 10 13 6 11 2 2 5 9 19 3 4 13 8 8 2 6 4 8 10 3 18 4 10 9 7

14 2 7 11 6 11 2 9 10 10 5 4 5 11 7 8 10 11 2 16 2 10 13 6 11 4 1 16 5 11 10 17 3 6 2 7 9 1 7 4 3

 8 1 12 5 5 13 11 1 2 5 4 2 16 10 9 5 9 8 16 3 1 15 2 19 9 9 4 1 6 6 13 5 11 10 7 2 2 11 1 9

 4 4 11 10 14 5 10 7 15 5 3 8 1 19 9 13 10 19 2 16

11 3 1 15 2 19 9 9 2 7 9 1 7 4 8 10 3 18 4 10 9 7 2 2 5 9 19 4 5 11 7 8 10 11 2 16 4 1 6 6 13

 5 11 10 7 2 7 11 6 11 1 2 5 3 7 5 2 8 4 7 4 3 8 1 12 5 5 13 11 1 5 15

14 1 2 5 2 7 11 6 11 2 2 11 1 9 2 9 10 10 5 4 8 10 3 18 4 10 9 7 3 1 15 2 19 9 9 3 7 5 2 8 4

 7 4 2 16 10 9 5 9 8 16 4 1 6 6 13 5 11 10 7 1 5 15 4 7 13 10 19 6 18 4 8 4 3 8 1 12 5 5 13 11

 4 1 16 5 11 10 17 3 6 2 7 9 1 7

13 4 8 10 3 18 4 10 9 7 2 10 13 6 11 4 5 11 7 8 10 11 2 16 3 4 13 8 8 2 6 5 2 16 10 9 3 12 4 11 5

 15 3 1 15 2 19 9 9 4 3 8 1 12 5 5 13 11 3 7 5 2 8 4 7 4 7 13 10 19 6 18 4 8 4 1 6 6 13 5 11

 10 7 2 6 5 2 5 4 1 16 5 11 10 17 3 6 4 2 16 10 9 5 9 8 16

11 2 7 11 6 11 3 7 5 2 8 4 7 4 8 10 3 18 4 10 9 7 2 9 10 10 5 4 2 16 10 9 5 9 8 16 3 4 13 8 8

 2 6 4 7 13 10 19 6 18 4 8 5 2 16 10 9 3 12 4 11 5 15 4 1 8 7 14 9 12 4 7 2 6 5 2 5 2 2 11 1

 9

94

Table A10 (Continued)

12 2 9 10 10 5 1 5 15 2 2 5 9 19 3 1 15 2 19 9 9 5 2 16 10 9 3 12 4 11 5 15 4 1 6 6 13 5 11 10 7

 4 2 16 10 9 5 9 8 16 4 1 16 5 11 10 17 3 6 2 6 5 2 5 2 3 12 7 15 4 4 11 10 14 5 10 7 15 4 8 10

 3 18 4 10 9 7

10 5 2 16 10 9 3 12 4 11 5 15 4 5 11 7 8 10 11 2 16 4 7 13 10 19 6 18 4 8 2 9 10 10 5 1 5 15 2 2 11

 1 9 3 4 13 8 8 2 6 2 2 5 9 19 4 8 10 3 18 4 10 9 7 4 1 16 5 11 10 17 3 6

11 2 10 13 6 11 1 5 15 2 9 10 10 5 4 1 8 7 14 9 12 4 7 4 3 8 1 12 5 5 13 11 3 4 13 8 8 2 6 3 7

 5 2 8 4 7 1 2 5 4 1 6 6 13 5 11 10 7 4 2 16 10 9 5 9 8 16 2 7 9 1 7

11 3 7 5 2 8 4 7 2 2 5 9 19 4 1 8 7 14 9 12 4 7 4 5 11 7 8 10 11 2 16 3 1 15 2 19 9 9 4 1 16

 5 11 10 17 3 6 2 6 5 2 5 2 7 11 6 11 5 3 8 1 19 9 13 10 19 2 16 4 8 10 3 18 4 10 9 7 3 4 13 8

 8 2 6

10 2 5 11 2 11 4 8 10 3 18 4 10 9 7 2 7 9 1 7 2 6 5 2 5 4 3 8 1 12 5 5 13 11 1 5 15 2 9 10 10

 5 4 1 16 5 11 10 17 3 6 3 4 13 8 8 2 6 2 3 12 7 15

12 4 8 10 3 18 4 10 9 7 1 5 15 3 1 15 2 19 9 9 4 7 13 10 19 6 18 4 8 4 2 16 10 9 5 9 8 16 4 1 8

 7 14 9 12 4 7 3 7 5 2 8 4 7 2 10 13 6 11 2 9 10 10 5 2 3 12 7 15 2 6 5 2 5 4 3 8 1 12 5 5

 13 11

14 2 7 11 6 11 1 5 15 2 2 5 9 19 4 1 8 7 14 9 12 4 7 1 2 5 4 3 8 1 12 5 5 13 11 3 4 13 8 8 2

 6 3 1 15 2 19 9 9 4 4 11 10 14 5 10 7 15 2 6 5 2 5 2 9 10 10 5 2 5 11 2 11 5 3 8 1 19 9 13 10

 19 2 16 2 10 13 6 11

13 4 7 13 10 19 6 18 4 8 5 2 16 10 9 3 12 4 11 5 15 3 4 13 8 8 2 6 2 7 11 6 11 2 10 13 6 11 4 2 16

 10 9 5 9 8 16 4 8 10 3 18 4 10 9 7 4 3 8 1 12 5 5 13 11 2 6 5 2 5 2 7 9 1 7 4 1 16 5 11 10

 17 3 6 2 2 5 9 19 5 3 8 1 19 9 13 10 19 2 16

11 4 7 13 10 19 6 18 4 8 4 1 6 6 13 5 11 10 7 4 2 16 10 9 5 9 8 16 2 10 13 6 11 2 2 5 9 19 2 5 11

 2 11 5 2 16 10 9 3 12 4 11 5 15 2 6 5 2 5 3 1 15 2 19 9 9 1 2 5 4 4 11 10 14 5 10 7 15

13 2 2 5 9 19 2 6 5 2 5 3 4 13 8 8 2 6 2 7 9 1 7 2 3 12 7 15 1 5 15 4 1 16 5 11 10 17 3 6 3

 1 15 2 19 9 9 2 10 13 6 11 2 2 11 1 9 3 7 5 2 8 4 7 4 3 8 1 12 5 5 13 11 4 5 11 7 8 10 11 2

95

Table A10 (Continued)

 16

13 4 1 16 5 11 10 17 3 6 3 1 15 2 19 9 9 4 3 8 1 12 5 5 13 11 2 2 5 9 19 4 2 16 10 9 5 9 8 16 1

 5 15 4 5 11 7 8 10 11 2 16 4 8 10 3 18 4 10 9 7 2 7 11 6 11 4 1 8 7 14 9 12 4 7 4 7 13 10 19 6
 18 4 8 2 3 12 7 15 2 7 9 1 7

96

APPENDIX B

Figure B1. The pseudo code of the proposed GA

 Procedure: Genetic Algorithm

Step 1. Initialize the GA parameters: Stopping criterion: (number of generations)

gmax; Population size: Ps; Chromosome length: Cl; Mutation probability: pm

Step 2. for k=1 to Ps

 2.1.for j=1 to N

 // Select a plan for part j and Set into chromosome

 end

 2.2. for i=1 to total number of operation

 // Select a machine for operation Oij and Set into chromosome via

operation sequence

 end

 end

Step 3. g ← 1

 3.1. // Select parents using Tournament approach from population

Step 4. Crossover:

 4.1. // Generate a random number

 4.2. // Select two parent from mating pool for crossover via random number

 4.3. // Generate new individual via crossover operator

Step 5. Mutation:

 5.1. if p< pm then

 5.2. // Mutate the gene

Step 6. // Get new population

Step 7. // Get objective function value for each individual

Step 8. g ← g+1

end

97

Figure B2. Pseudo Code of FJSSP Simulation Model

BEGIN

CREATE Jobs every 130 minutes exponentially

ASSIGN myJobType=DISC(0.26,1,0.74,2,1,3)

 myJobSequence=PartSequences(myJobType)

STATION Order Release

ROUTE Jobs to the imminent station of myJobSequence after

vTransferTime(Order Release, myJobSequence)

// vTransferTime(Order Release, myJobSequence) is

predetermined.

A: PROCESS delay jobs by "ProcessTime" minutes

 //Seize appropriate machine according to the

myJobSequence

 //Delay "ProcessTime"

 //Release the machine

DECIDE if myJobSequence completed

 If false, GoTo A

STATION "Exit System"

Collect Statistics

Send Related Statistics to the Database

DISPOSE

END

