
 

 

 

 

UNIVERSITY OF GAZİANTEP  

GRADUATE SCHOOL OF  

NATURAL & APPLIED SCIENCES 
 

 

 
 

 

 

 

HEURISTIC OPTIMIZATION THROUGH 

NEGOTIATION 
 

 

 

 

 

 

 

 

 

 

 

 

INDUSTRIAL ENGINEERING 

PhD THESIS 

 

 

 

 

 

 
ZEYNEP DİDEM UNUTMAZ DURMUŞOĞLU 

JUNE 2012



 

 

 

 

 

 

Heuristic Optimization through Negotiation 

 

 

 

 

PhD Thesis 
in 

Industrial Engineering 

University of Gaziantep 

 

 

 

 

 

 

 

Supervisor 

Prof. Dr. Adil Baykasoğlu 

 

 

 

 

 

 
 

 

by 

Zeynep Didem UNUTMAZ DURMUŞOĞLU 

June 2012 

 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

©2012 [Zeynep Didem UNUTMAZ DURMUŞOĞLU]. 



i 

 

 

 



i 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 

                                                            

 

 Zeynep Didem UNUTMAZ DURMUŞOĞLU 

 



i 

 

ABSTRACT 
 

HEURISTIC OPTIMIZATION THROUGH NEGOTIATION 
 
 

UNUTMAZ DURMUŞOĞLU, Zeynep Didem 

PhD in Industrial Engineering 

Supervisor: Prof. Dr. Adil BAYKASOĞLU 

June 2012,157 pages 

 

 
 
 

Finding realistic and express solutions to several problems has been a fundamental 

requirement in this rapidly changing conditions and environment. Conventional 

approaches, which are solving dynamic problems, “as they are static” or reinventing 

their models after each corresponding change, have all expired. In this respect, it has 

been understood that, the most effective solution strategies have been the agent-

based strategies. These strategies, which are mostly constructed upon a heuristic, are 

capable to provide parallel and distributed solutions and furthermore they let agents 

to take autonomous decisions that can add value to the objectives of the problem. 

This PhD thesis aims both 1) setting up a representation scheme for agent-based 

approaches and 2) providing solutions to dynamic variants of Travelling Salesman 

Problem (TSP), which has been solved by static approaches up to now. 

 

Classical TSP consists of “n number of cities” where, each city is visited once using 

an optimal route. Similarly, Generalized Travelling Salesman Problem (GTSP) 

covers “c number clusters” where, each cluster is visited exactly once by visiting one 

of cities of the clusters using an optimal route. However, in some specific cases, 

assumptions of classical TSP and GTSP may not be satisfactorily enough to reflect 

physical reality and dynamism of actual systems. During solution of those problems, 

some cities are added to city domain or some disappear from the system. Thereby, 

the assumption of keeping the number of cities constant fails. Consequently, “a 

solution provided for a specific to state defined for a time” may lose its superiority 

immediately after these unexpected changes. In this respect, these dynamic types of 

TSP and GTSP may not be modeled with the conventional research methods since 

much time and memory spaces are required to setup novel models and solve them 

repeatedly. With those considerations in mind, this thesis covers different agent-

based solution policies/strategies for providing promising solutions to different 

problems in domain of dynamic TSP. In this respect, two main solution strategies are 

proposed for the solution of the defined problem types in this PhD thesis. One of 

these is competition of agents without a heuristic and the other is competition of 

agents using Great Deluge Algorithm (GDA). All those strategies have proved 

themselves competed with other findings in literature. 

 

 

Key Words: Dynamic Travelling Salesman Problem (DTSP), Great Deluge 

Algorithm (GDA), agent-based modelling.  

 



ii 

 

ÖZ 
 

MÜZAKERE ARACILIĞIYLA SEZGİSEL ENİYİLEME 

 

 

UNUTMAZ DURMUŞOĞLU, Zeynep Didem 

Doktora Tezi, Endüstri Müh. Bölümü 

Tez Yöneticisi:  Prof. Dr. Adil BAYKASOĞLU 

Haziran 2012, 157 sayfa 

 
 

 

Hızla değişen koşullar ve çevre, dinamik problemlerin gerçekçi ve hızlı şekilde 

çözümünü gerekli kılmıştır. Dinamik problemleri; statik problemler gibi ele almak 

veya her değişim sonrasında yeniden model kurmak ve çözüm için uzun süreler 

beklemek gibi yaklaşımlar geçerliliğini yitirmeye başlamıştır. Bu bağlamda en etkili 

çözüm yaklaşımlarının; paralel ve dağıtık çözümler yapabilen, otonom kararlarla 

genel çözüme katkıda bulunabilen ve genellikle sezgisel yöntemleri içeren etmen 

tabanlı çözümler olduğu anlaşılmıştır. Bu bağlamda bu tez ile amaçlanan; 1) Gerek 

etmen tabanlı çözüm stratejileri için ortak bir gösterim şemasının oluşturulması 2) 

Gerekse bugüne kadar statik çözümler aranan Gezgin Satıcı Problemi’nin (GSP), 

dinamik türevlerine etmen tabanlı etkin çözümler bulunmasını içermektedir.  

 

Klasik GSP; her şehir bir kez ziyaret edilecek şekilde “n sayıdaki şehrin” en uygun 

rota kullanılarak dolaşılmasını içermektedir. Benzer şekilde; klasik Genelleştirilmiş 

Gezgin Satıcı Problemi (GGSP) de “c sayıdaki bölgenin” her bir bölgesinden en az 

bir şehir ziyaret edilecek şekilde en uygun rota kullanılarak dolaşılmasıdır. Ancak 

bazı özel durumlarda, klasik GSP ve GGSP’nin sabit şehir ve/veya bölge 

varsayımları sistemlerin fiziki gerçekliğini ve dinamikliğini yansıtmada tatmin edici 

nitelikte değildir. Problem çözümü esnasında, şehir listesine yeni şehirler 

eklenebilmekte veya bazı şehirler sistemden ayrılabilmektedir. Bu nedenle, gerçek 

sistemlerde, şehir sayısını sabit tutma varsayımı geçerliliğini yitirmektedir. Netice 

olarak, “belirli bir an veya durum için bulunmuş sonuç” beklenilmeyen değişiklikler 

nedeniyle geçerliliğini yitirebilmektedir. Bu bağlamda dinamik GSP ve dinamik 

GGSP’nin geleneksel yöntemlerle modellenmesi oluşacak maliyet ve hafıza 

nedeniyle uygun olmayacaktır. Bu sebeplerden dolayı; bu tez kapsamında, dinamik 

GSP ve türevleri olan çeşitli problemler değişik ajan tabanlı stratejileri/politikaları ile 

çözülmektedir. Tanımlanan problemlerin çözümü için etmen tabanlı iki temel strateji 

sunulmaktadır. Bu stratejilerden biri; ajanların sezgisel kullanmadan; diğeri ise 

Büyük Kara Delik (BKD) sezgiselini kullanarak birbirleriyle rekabet etmesini 

içermektedir.   

 
 

Anahtar Kelimeler: Dinamik Gezgin Satıcı Problemi (DTSP), Büyük Kara Delik 

Algoritması (BKD), etmen tabanlı modelleme. 

 



vii 

 

ACKNOWLEDGEMENTS 
 

 

My studies through this PhD research, has been an informative journey for me and it 

has been a remarkable part of my both personal and academic experience. I have had 

great opportunity to work with many interesting, intelligent and helpful people. I 

would like to thank all the people who have accompanied me and supported me. 

 

First, I would like to express my sincere thanks to my supervisor Professor Dr. Adil 

BAYKASOĞLU for his time, guidance, invaluable feedback and vital comments 

throughout my PhD research studies. I am also thankful to him for assigning me to 

one of his most vital and exciting research studies. I am also very grateful to our 

department chair Professor Dr. Türkay DERELİ. He provided motivation and both 

personal and academic support several times through my studies.  

 

I would like to address my special thanks to my husband, Alptekin DURMUŞOĞLU. 

He delivered heartfelt support and unfailing patience during my doctoral study. My 

mother, my brother, my brother’s wife and their little daughter Nevin Eda 

UNUTMAZ, have also provided motivation for me. Therefore, I should appreciate 

their limitless helps and endless love. 

 

I should not also forget Professor Wayne Wakeland for his guidance during my 

research visit to Portland State University.  

 

Finally, I would like to dedicate this dissertation to my dear father whom we lost 

very early. He loved me and thought me to be honest and respectful to my job.    

 



viii 

 

CONTENTS 

 

 

ABSTRACT ................................................................................................................. v 

ÖZET  ......................................................................................................................... vi 

ACKNOWLEDGEMENTS ....................................................................................... vii 

CONTENTS .............................................................................................................. viii 

LIST OF FIGURES ..................................................................................................... x 

LIST OF TABLES ...................................................................................................... xi 

LIST OF SYMBOLS/ABBREVIATIONS ................................................................ xii 

CHAPTER 1: INTRODUCTION ................................................................................ 1 

     1.1.   General Remarks ............................................................................................ 1 

     1.2.   Thesis Lay-Out and Organization .................................................................. 2 

     1.3.   Concluding Remarks ...................................................................................... 3 

CHAPTER 2: LITERATURE REVIEW ON DYNAMIC OPTIMIZATION PROBLEMS  5 

     2.1.   Introduction .................................................................................................... 5 

     2.2.   Literature Review ........................................................................................... 8 

     2.3.   Concluding Remarks .................................................................................... 19 

CHAPTER 3: CLASSIFICATION OF DYNAMIC OPTIMIZATION PROBLEMS  ...... 21 

     3.1.   Statement of Purpose.................................................................................... 21 

     3.2.   Problem Specific Features: Atypical Dynamic Optimization Problem ....... 23 

     3.3.   Solutions for DOPs by ABM ....................................................................... 29 

     3.4.   Agents and Their Features ........................................................................... 31 

      3.4.1.  Number of agent types and agents ............................................................ 32 

      3.4.2.  Communication type ................................................................................. 33 

      3.4.3.  Coordination type  ..................................................................................... 34 

      3.4.4.  Optimization mechanisms   ....................................................................... 35 

                 3.4.4.1. Heuristics    .................................................................................. 35 

                 3.4.4.2. Mathematical Methods ................................................................. 35 

                 3.4.4.3. Market Based Approaches   ......................................................... 36 

     3.5.   Introduction to ABDOPSS ........................................................................... 36 

     3.6.   Sample applications of the ABDOPSS ........................................................ 37 

     3.7.   Concluding Remarks .................................................................................... 51 

CHAPTER 4:  AGENT-BASED MODELING  ........................................................ 52 

     4.1.   Introduction .................................................................................................. 52 

     4.2.   Is It Worth to Use Agent Technology .......................................................... 52 

     4.3.   AnyLogic ..................................................................................................... 54 

     4.4.   NetLogo ....................................................................................................... 59 

     4.5.   Concluding Remarks .................................................................................... 61 

CHAPTER 5: SYSTEM DESCRIPTION .................................................................. 62 

     5.1.   Introduction .................................................................................................. 62 

     5.2.   Problem Statement ....................................................................................... 63 

     5.3.   Problem Types and Initial Setups  ............................................................... 66 

     5.4.   Problem Input Settings ................................................................................. 72 

     5.5.   Agent Competition Strategy  ........................................................................ 72 

     5.6.   Heuristic-Based Agent Competition Strategy  ............................................. 74 



ix 

 

     5.7.   New City Arrivals  ....................................................................................... 76 

     5.8.   City Deletion ................................................................................................ 79 

     5.9.   Region Determination Strategies ................................................................. 80 

     5.10. Results and Findings .................................................................................... 84 

          5.10.1 Basics and assumptions of the compared models ................................. 85 

          5.10.2 Findings of problem Type 1 .................................................................. 86 

          5.10.3 Findings of problem Type 2 and Type 3 ............................................... 90 

          5.10.4 Findings of problem Type 4 and Type 5 ............................................... 92 

     5.11. Concluding Remarks .................................................................................... 95 

CHAPTER 6: CONCLUSION  .................................................................................. 96 

     6.1.   Introduction .................................................................................................. 96 

     6.2.   Thesis Findings  ........................................................................................... 96 

     6.3.   Closure ......................................................................................................... 97 

REFERENCES  .......................................................................................................... 99  

APPENDIX A  ......................................................................................................... 106 

CV  ........................................................................................................................... 154 
 

 



x 

 

 LIST OF FIGURES  

 

 
                                                                                                                                                            page 

 
Figure 3.1. Dynamic and uncertainty characteristics of  DOPs ................................. 28 

Figure 3.2. Type of environmental uncertainty  ......................................................... 29 

Figure 3.3. Taxonomy of coordination for agent-based modeling ............................ 34 

Figure 4.1. Abstraction levels of Anylogic  ............................................................... 54 

Figure 4.2. Stock and flow diagram from Anylogic  ................................................. 55 

Figure 4.3. State charts of Anylogic  ......................................................................... 56 

Figure 4.4. Action charts of Anylogic  ....................................................................... 57 

Figure 4.5. Process flow chart of Anylogic ............................................................... 58 

Figure 4.6. An example to interface of NetLogo  ...................................................... 60 

Figure 5.1. Different modeling approaches in reaching optimum  ............................ 63 

Figure 5.2.  Figurative illustration problem type 4 and problem type 5 .................... 69  

Figure 5.3.  State chart of GMA defining the tasks to do .......................................... 70 

Figure 5.4.  Determination of region number ............................................................ 71 

Figure 5.5 AnyLogic interface of the software for input settings .............................. 72 

Figure 5.6. A figurative illustration of agent competition for GTSP  ........................ 73 

Figure 5.7. The pseudo code for the implemented GDA ........................................... 75 

Figure 5.8. Competition of the agents when new city arrives to the system ............. 77 

Figure 5.9. Statechart defining the tasks to be performed.......................................... 78 

Figure 5.10 Figurative illustration of range calculation  ............................................ 81 

Figure 5.11. Circles in case of homogenous distribution of circles  .......................... 82 

Figure 5.12. Marginal cases for modified distance option ......................................... 83 

Figure 5.13. An example of clustering via modified distance option  ....................... 84 



xi 

 

LIST OF TABLES 

                          

          

                                                 page 

Table 2.1. Summary of the articles listed in the literature  ........................................ 12 

Table 3.1. Change types for a dynamical environment  ............................................. 27 

Table 3.2. Representation of ABDOPSS ................................................................... 37 

Table 3.3. Examples of ABDOPSS ........................................................................... 49 

Table 4.1. Agent Technology Platforms .................................................................... 53 

Table 5.1. Problem types and their properties  .......................................................... 68 

Table 5.2. Comparision of AB-GDA with frozen GDA for initial 20 cities  ............. 87 

Table 5.3. Comparision of AC with frozen GDA for initial 20 cities  ....................... 87 

Table 5.4. Comparision of AB-GDA with frozen GDA for initial 40 cities  ............. 87 

Table 5.5. Comparision of AC with frozen GDA for initial 40 cities  ....................... 88 

Table 5.6. Comparision of AB-GDA with frozen GDA for initial 40 cities  ............. 88 

Table 5.7. Comparision of AC with frozen GDA for initial 60 cities  ....................... 88 

Table 5.8 Results of paired T-test .............................................................................. 90 

Table 5.9 Total cost comparisions for GTSP with known regions # cities=20 ......... 90 

Table 5.10 Total cost comparisions for GTSP with known regions # cities=40 ....... 91 

Table 5.11 Total cost comparisions for GTSP with known regions # cities= 60 ...... 91 

Table 5.12 Total cost comparisions for GTSP with region determin. # cities= 20 .... 91 

Table 5.13 Total cost comparisions for GTSP with region determin. # cities= 40 .... 92 

Table 5.14 Total cost comparisions for GTSP with region determ. # cities= 60 ....... 92 

Table 5.15 Total cost comparisions for GTSP+TSP wt knwn regions # cities=20 ... 93 

Table 5.16 Total cost comparisions for GTSP+TSP wt knwn regions # cities= 40 .. 93 

Table 5.17 Total cost comparisions for GTSP+TSP wt knwn regions # cities= 60 .. 93 

Table 5.18 Total cost comparisions for GTSP+TSP wt region determ. # cities=20 .. 94 

Table 5.19 Total cost comparisions for GTSP+TSP wt region deter. # cities=40 ..... 94 

Table 5.20 Total cost comparisions for GTSP+TSP wt region determ. # cities=60 .. 94 

 

 

 

 



xii 

 

LIST OF SYMBOLS / ABBREVIATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

DVRP Dynamic Vehicle Routing Problem  

ABDOPSS Agent-Based Dynamic Optimization Problem Solution 

Strategy) ABMS Agent-Based Modeling and Simulation  

APSO Agent-Based Particle Swarm Optimization  

CmOPs Combinatorial Optimization Problems 

CSP Constraint Satisfaction Problems  

DBSCAN Density Based Spatial Clustering of Applications with Noise 

DOPs Dynamic Optimization Problems 

DPOP Distributed Pseudotree Optimization Procedure  

DTSP Dynamic Travelling Salesman Problem 

EAs Evolutionary Algorithms Problems 

GTSP Generalized Travelling Salesman Problem 

MAEA-CSP Multi-Agent Evolutionary Algorithm for Constraint 

Satisfaction Problems  

MAGA Multi-Agent Genetic Algorithm  

MBA Market Based Algorithm 

OR Operations Research 

PSO Particle Swarm Optimization 

RFQ Request for Quotes  

SA Simulated Annealing  

SBDO Support Based Distributed Optimization  

SGA Standard Genetic Algorithm  

SOA System Optimal Agent  

TS Tabu Search 

TSP Travelling Salesman Problem 

VE Variable Elimination  



1 

 

CHAPTER 1 

 

INTRODUCTION 

  

 

1.1. General Remarks 

Dynamism is an attempt to clarify the phenomena of the universe against to several 

instant changes. All scientists dealing with the systems and phenomena of the 

universe have unsurprisingly faced with a variety of different change. Therefore, they 

are usually obligated to ignore more than one variable changing simultaneously. 

However, with the storm of global change, it has been difficult to understand the 

increasing nature of dynamism and the uncertainty with the existing approaches. 

Providentially, new computing and programming utilities like agent-based 

technologies have enabled more realistic modeling abilities. In this respect, a typical 

operations research problem including constraints, objective functions and variables 

could have been altered with the more realistic ones where constraints, objective 

functions and domains of variables can also be a matter of any kind of change at any 

time. 

 

To cope with such dynamism, there have been several efforts to adapt some of the 

meta-heuristics to work in a harmony and in integrity without ignoring the 

objective(s) of modeling. This usually requires agent-based approaches letting the 

elements (such as ants, bees or gens) to communicate and negotiate with each other 

in order to adapt themselves with respect to the changes in domain of variables, 

constraints and objective functions.  

 

In parallel to those changes, several difficult problems have been solved through use 

of agent-based modeling. However, some dynamic problems still have not been 



2 

 

studied with agents. Therefore, it is not wrong to state that, there is still a wide 

research space in the area.  

 

This PhD thesis, also attempts fulfill two vacancies in the area. One is about the all 

agent-based applications that have lied in a wide range of area. Although some 

dynamic optimization problems have common features, there is not a systematic 

scheme that represents similarities and differences of those applied solution 

strategies. Therefore, a researcher studying and focusing on a specific DOP may 

have many troubles to classify existing studies and their solution approaches. 

Systematic observations on several practical applications in the area have inspired a 

solution regarding the development of such a scheme that is capable to indicate 

features of a problem and solution strategy that is followed. Several sample problems 

were also used to test usability of this scheme. 

 

The second vacancy that this PhD thesis focuses is application of agent-based 

modeling approaches to dynamic travelling salesman problem where number of 

cities can immediately change. In this respect several new variant of TSP are 

introduced and solved via different agent-based strategies. Promising solution have 

be obtained and statistically analyzed.   

 

Details of the proposed solution approaches that are regarding both of the described 

vacancies in the area can be found in next section. 

 

 

1.2 Thesis Lay-Out and Organization 

In the light of the declarations given in the previous section, this research study 

within this PhD thesis focuses on agent-based modeling and dynamic optimization 

problems.  

 

In this respect, in Chapter 2, DOPs that are solved via agent-based modeling are 

discussed with details. This chapter attempts to be a warm-up chapter for the people 

who are not familiar with DOPs, agent-based modeling and the fundamental 

concepts of them.  



3 

 

 

In Chapter 3, a new representation scheme called ABDOPSS, which is constructed 

for standard representation and classification of agent-based solution approaches 

employed for DOPs, is presented. ABDOPSS is also exemplified to present different 

applications in the area. 

 

Since there are numerous software packages that are widely used for agent-based 

modeling it has been a necessity to introduce them. Therefore Chapter 4 is devoted to 

those software packages. 

  

Chapter 5 presents five different types of Dynamic Travelling Salesman Problems 

(DTSP) that are highly dynamic due to random change in number of cities. In those 

defined problems, new cities arrive to the system and sometimes they disappear from 

it. In this respect, two main agent-based solution strategies are proposed for the 

solution of the defined problem. One is competition of agents without a heuristic and 

the other is competition of agents using Great Deluge Algorithm (GDA).  

 

Chapter 6 finally discusses the possible benefits and handicaps of the solutions 

provided by this PhD study.  Future study extensions for new students and the people 

studying in the area, is also declared in that final chapter. 

 

1.3 Concluding Remarks 

The proposed solutions in this PhD thesis are all novel to the literature. They have 

been presented in several conferences and published in several different journals. 

These solutions are also expected to be useful in the industrial area. It is also 

anticipated that, some ideas and implementations presented in this thesis can create 

new research directions for other researchers.  

The contribution of this thesis can be summarized in two folds: 

1) The classification scheme (ABDOPPS: Agent Based Dynamic Optimization 

Problem Solution Strategy) for agent-based approaches is new to the literature and it 

is expected to be beneficial to researchers in many ways. Similarities of the features 



4 

 

located in ABDOPPS can be used to define classes of solution strategies by their 

descriptions. In this regard, classes of the problems may orient researchers to focus 

on certain strategies. Using the dynamism related features of the corresponding 

DOPs presented in ABDOPPS, unpredictability levels of certain problems can be 

determined and be used to reclassify problems. These representation forms can also 

be used to discover the role of presented features and their importance for solution 

quality.  

 

2) Thesis is the provision and extension of knowledge on how to analyze and design 

new computational models for travelling salesman integrating the city addition and 

deletion at any time during the visits.  



5 

 

CHAPTER 2 

 

LITERATURE REVIEW ON 

DYNAMIC OPTIMIZATION PROBLEMS 

 

 

2.1 Introduction 

Tendencies such as the increasing spread of market globalization, new technological 

developments, the reduction of product life cycles and aggressive competition, are 

generating high levels of environmental changes and uncertainty for organizations of 

all types (Volberda, 1997 and Sanchez, 1997). In this regard, in today’s competitive 

environment, managers in various industries face with complex problems with the 

increasing uncertainty where they are not familiar too much. Therefore, resource 

scarcity, increasing costs, shorter response times are the main factors which creates 

necessities for novel solution approaches for those complex problems.  

 

In this perspective, operations research as being a scientific approach has already 

attempted to deal with these complex problems by providing several techniques and 

approaches. On the other hand, most of the researchers studying operations research 

(OR) have just focused on the well-known traditional optimization techniques like 

linear programming, integer programming and ignored the novel approaches which 

are capable of dealing with much more uncertainty. Although, these traditional 

techniques and the approaches guarantee the optimality, their applicability for the 

real life problems have been limited in some cases. There have been numerous 

examples of traditional OR techniques applied in the literature, which has many 

impractical assumptions letting some factors to be accepted as constant. Those 

assumptions like limiting the number of variables, handling the problem as static 

etc… could only provide partial solutions for these problems. However, most of the 

real world problems are large-sized, complex and thereby it is not realistic to keep 



6 

 

some factors as constant. In addition to that, in most of the real cases, solving such 

much difficult problems with classical optimization techniques is almost impossible.  

 

On the other hand, in the last decade, various heuristic techniques have evolved that 

facilitate solving optimization problems, which were previously difficult or 

impossible to solve. It is known that, heuristic techniques are the solution 

approaches, which mimic the successful strategies found in nature. Solving the 

complex problems with heuristic optimization techniques has offered two main 

advantages for solutions: speed and size of instances that can be handled. Although, 

several benefits are obtained with the heuristics optimization, some of the difficulties 

are not still released. As well known, most of the real-world industrial problems are 

dynamic and they are all subject to the several changes, unfortunately, most of the 

heuristic optimization techniques treat these problems as being static.  

 

As stated by Allmendinger and J. Knowles (2011), problems that are subject to 

changes, belongs to the class of dynamic optimization problems. Therefore, many 

real world problems should be handled as dynamic optimization problem (DOP) to 

have realistic modeling. DOPs are defined as “optimization problems whose optimal 

solution changes over time during the optimization, which could result from change 

of environmental parameters, change of constraints, change of objectives and 

change of problem settings (representations)” by Yaochu (2004). As stated by 

vandenBergh and Engelbrecht (2004), there has been a growing research interest on 

the resolution of Dynamic Optimization Problems (DOPs), due to its closeness to 

real-world situations.  

 

Nevertheless, addressing DOPs has been a difficult task, since it is necessary to find 

new techniques\approaches\algorithms, which can handle the problem correctly and 

adapt to changes easily. As indicated by Yan et al. (2010) for DOPs, the goal of an 

algorithm is no longer to find an optimal solution but to track the moving optima in 

the search space. In this respect, classical heuristic optimization techniques need to 

be adapted to DOPs. With the advances in computer (i.e. hardware and software) and 

communication technology, researchers have been searching for new paradigms such 

as multi-agent systems in order to solve distributed and\or DOPs. In this regard, 

reusable agents have provided many opportunities, they saved researchers from 



7 

 

moving beyond reinventing, representing, and re-implementing the problem, and 

thereby they have decreased the cost of providing solutions (Neches et al., 1991). 

Agent-based modeling and simulation (ABMS) has also been a relatively new 

approach to modeling complex systems, composed of interacting, autonomous 

‘agents’ (Macal and North, 2010).  

 

Multi-agent system, also called ‘self-organized system’ is a computational system in 

which multiple interacting intelligent agents work together to solve difficult 

problems, which may be impossible for an individual agent (Yan et al., 2010). In 

order words, multi-agent systems are computational systems in which several agents 

interact or work together to achieve some purpose (Liu et al., 2010). Therefore, 

cooperation and communication have been the most important features of agent-

based approach for solving DOPs.  

 

As anticipated, agent based system has generated lots of excitement in recent 

environments since it has been suggested as a promising technique for 

conceptualizing and solving various optimization problems (Yan et al., 2010). 

 

There have been also some studies that employed classical optimization techniques 

with agent-based approach in the literature. Persson (2005) compared the agent 

approaches with classical optimization techniques and concluded that classical 

optimization techniques and agent-based approaches are the complements of each 

other. In another study, performed by Jian (2003), evolutionary soft agents were used 

to solve integer programming. There are also some researchers who have used meta-

heuristic techniques with agent-based systems in order to solve complex problems. 

For example, Xu and Liu, (2006) and Ahmad et al., (2007) combined the Particle 

Swarm Optimization (PSO) algorithm with multi-agent based approach. 

 

All of the mentioned approaches defined above for DOPs can be applied for a wide-

range of application area. The problems, which have been attempted to be solved by 

multi-agent systems, are expected to contain high uncertainty, unpredictability and 

thereby high dynamism. Although, some problems like scheduling problem, 

production planning problem and travelling salesman problem have been previously 

solved with the classical OR techniques, indeed these problems are not fully static 



8 

 

problems due to the nature. Consider for example scheduling and production-

planning problems where new machines with advanced capacities are required to be 

included to the systems or some machines are required to be removed from the 

system frequently and/or new products are frequently introduced to the system etc. 

This challenging dynamism is apparently a technology management problem and it 

can only be effectively handled by using more advanced approaches like multi-

agents. In this regard, dynamism in technological environments requires the 

technology-managers to be knowledgeable on techniques, which can be used to 

model and optimize dynamic systems more effectively.   

 

Although meta-heuristic approaches for the solution of dynamic optimization 

problems are relatively novel to the literature, in this chapter it is intended to review 

and analyze existing studies that is available in the literature. 

 

 

2.2 Literature Review 

Agent based computing has often been suggested as a promising technique for 

problem domains that are distributed, complex and heterogeneous (Persson, 2005). 

As it is known, DOPs are complex in nature. Beside this, many real-world problems 

are not only dynamic but also distributed. Tsui and Liu, (2003) indicated that 

distributed problem solving by a multi-agent system represents a promising approach 

to solving complex computational problems. 

  

Nowadays, in order to solve DOPs, researchers have been seeking for cooperative 

strategies. The natural correspondence between autonomous entities and meta-

heuristics and problem solving with an optimization problem, paves the way for the 

development of nature-inspired cooperative strategies for optimization (Pelta et al, 

2009). Pelta et al. (2009) stated that, the fundamental part of cooperative strategies 

for optimization is the use of a population of elements which may be solutions to the 

problem at hand, “gens”, “antigens”, “ants”, ”particles” etc... As indicated by Pelta et 

al. (2009), when those elements used adequately, they form the basis of successful 

meta-heuristics for problem solving.  

 



9 

 

The summary of the articles, which are handled for this part of thesis, is presented at 

Table 2.1. In order to solve dynamic and distributed optimization problems, 

Wangermann and Stengel, (1999) studied the principled negotiation, which 

effectively coordinates distributed optimization in multi-agent systems. Generally, in 

principled negotiation, agents proposed options for mutual gain. It was implemented, 

unless other agents disagree to the proposal. However, under certain conditions an 

agent could search for options for individual gain without affecting other agents. In 

these cases, the agent could negotiate with a coordinator, rather than obtain an 

agreement from all other agents. Researchers pointed out the theory of principled 

negotiation and represented it mathematically. In order to answer the following 

questions, two examples were presented. ”How good is the action profile developed 

by principled negotiation compared to that created by centralized system?” “What is 

the effect of agent knowledge on negotiation?” and “How does principled negotiation 

perform in constrained and unconstrained situations?”  In the first example, there 

was no coupling between the agent actions if coordination criteria were met. The 

second one was highly coupled, constraining each agent’s available set of actions. It 

was based on the air-traffic management problem of negotiating arrival slots. Results 

revealed that principled negotiation worked well in both constrained and 

unconstrained situations.  

 

Researchers indicated that the optimization performance of multi-agent systems 

using principled negotiation was as good as that of a centralized system that used the 

same optimization method and perfect knowledge about other agents. It was 

concluded that, principled negotiation offers great advantages for Aircraft/Airspace 

systems since it would increase the freedom of system users to optimize their 

operations while maintaining safety.   

 

In the literature, there are many papers, which combined the multi-agent approach 

with heuristic techniques such as Tabu Search (TS), Ant Colony Optimization 

(ACO), Particle Swarm Optimization (PSO), etc… in order to solve the dynamic 

problems more effectively.   

 

For example, Shigehiro et al. (2002) considered a new optimization method for 

combinatorial optimization problems based on many autonomous agents. The 



10 

 

proposed method was a multi-point search method, where many agents explore in the 

solution space concurrently. These agents carry out local search method and the 

action of each agent can be controlled by software (algorithm), not by parameters. 

Therefore, the process of optimization can be controlled directly. In this study, two 

kinds of agents namely; “searcher agent” and “manager agent” were employed. 

These agents worked cooperatively. Many searcher agents explored in the solution 

space by means of local search method and several manager agents controlled 

searcher agents. Two or more neighbors were given and each manager agent 

corresponded to each neighbor. Each searcher agent applied the neighbor 

corresponding to the manager agent by which the searcher agent was controlled. In 

order to improve searcher agents, two operations were applied: the searcher agent 

was transferred to another manager agent. The position of the searcher agent in the 

solution space was not changed. The searcher agent was transported to another 

solution. The position of the searcher agent in the solution space was moved. The 

best solution in all solutions stored in searcher agents, who were under control of the 

manager agent was searched. Then, the searcher agent was moved to a solution 

“near” the best solution searched.  

 

The proposed method has been programmed in Ruby language. Each searcher agent 

runs on separate “ruby thread”. The proposed method applied to a TSP 

“HOKKAIDO62” with 62 cities. The Simulated Annealing (SA) method has been 

also programmed and applied to the same problem. In the early stage of the 

exploration, researchers observed that the cost by the proposed method was much 

better than the one by SA method. In the later stage of the exploration, it was 

monitored that costs of two methods were almost same. Results revealed that ability 

of proposed method was not inferior to one of the SA method.  

 

Xu and Liu, (2006) presented a multi-agent based particle swarm optimization 

framework HMAS. The main idea is to add intelligence in the effective searching of 

traditional particle swarm optimization (PSO) technique. In this framework, particles 

were represented as agents and a swarm was composed of agents. Each agent had the 

following features; flying actions, self-locating action, communication, learning 

action, local search space analysis, autonomous self-population maintenance and life 

cycle. Thanks to these features, an agent would add intelligence into the swarm. 



11 

 

Agents form agent groups called subpopulations. A mechanism was assigned to each 

sub-population, which was implemented by an agent. These agents formed one of the 

two models: the master-slave model and the island model. In the master- slave 

model, one special agent has been defined as master agent. Each subpopulation has 

been assigned a slave agent. 

 

The master agent has supervised the whole population assigned tasks and operations. 

In addition, the master agent has chosen good individuals from the whole population 

and migrate the seeds to all subpopulations. However, in the island model, one agent 

has been assigned to each sub-population. Agent has supervised the evolution 

process of its sub-population. Sub-populations have exchanged good individuals as a 

certain time interval mutually. A test application in cluster analysis was given. Based 

on the results of this application, the researchers indicated that the multi-agent based 

particle-swarm optimization framework was a promising new searching model.  

 

 

 



12 

 

Ref. Strategy Agent Behavior The problem 

(Wangermann et al., 

1999) 

Principled Negotiation Agents propose options for mutual gain. In some cases, an agent could search for individual gain. In individual gain cases, the 

agent negotiates with a coordinator. 

Aircraft\Airspace traffic 

systems  

(Shigehiro et al., 2002) Autonomous agents with 

simulated annealing 

Agents explore in the solution space concurrently. Searcher agents use local search method and the action of each agent is 

controlled by an algorithm. The best solution in all solutions stored in searcher agents, which are under control of the manager 

agent.  

Travelling sales person 

problems 

 

(Xu and Liu, 2006) Multi-agent based particle 

swarm optimization 

 

Master slave model: One agent is defined as master agent. Each subpopulation is assigned to a slave agent. The master agent 

supervises the whole population assigned tasks and operations. In addition, the master agent chooses good individuals from the 

population and migrate the seeds to all subpopulations.   

Island model: One agent is assigned to each sub-population. Agent supervises the evolution process of its sub-population. Sub-

populations have exchanged good individuals as a certain time interval mutually. 

Cluster analysis 

(Ahmad et al., 2007) Combination of Particle 

Swarm Optimization 

technique with multi agent 

system  

The environment is modeled as an agent for providing information about the problem space to the agents. A Boolean value is 

attached with each point to identify whether that point has been already visited by an agent. As in the original PSO, particles 

search for the optimal solution by traveling through the problem space in a multi-dimensional environment. 

N/A 

(Persson, 2005) Comparison of agent based 

approaches with 

optimization techniques.  

For the agent-based approach it is assumed that control is distributed and concurrent. For optimization techniques, researchers 

focused on methods using a central node which has the entire responsibility of computing the optimal (near optimal) solution to 

the problem. 

Dynamic distributed 

resource allocation 

(Zhong et al., 2004) Multi-agent systems and 

genetic algorithms 

A candidate solution to the optimization problem in hand is represented by an agent. All agents lived in a lattice like environment, 

with each agent fixed on a lattice-point. Agents competed or cooperated with their neighbors and used their knowledge in order to 

increase their energies.  

Numerical optimization 

problems 

(Liu et al., 2006) Multi-agent evolutionary 

algorithm 

According to characteristics of each problem type, several behaviors are defined for agents in order to give the ability of agents to 

sense and act to the environment. The behaviors are controlled by evolution. The minimum conflict encoding was employed to 

eliminate the shortcomings of the general encoding methods. 

Constraint satisfaction 

problems 

(Liu et al., 2010) Multi-agent systems 

integrated with 

evolutionary algorithms 

Competition behavior and self-learning behaviors are defined for minimizing the objective function value. These behaviors are 

controlled evolution so that the agent lattice can evolve in each generation. At each generation, the competitive behavior is first 

performed by agents. This behavior cleaned the agents with low energy from the lattice so there was more space developed for the 

agents with high energy. After this process, self-learning behavior is performed iteratively, until the stopping conditions were 

satisfied.   

Combinatorial 

optimization problems 

(Pelta et al, 2009) Multi-agent decentralized 

strategy 

A population of cooperative agents moved over a grid containing solutions. The basic decentralized optimization strategy used is 

based on the joint of two populations. Cooperation through the environment, peer to peer cooperation, mixed strategy mechanisms 

is used. Two mechanisms are also employed for diversity. First, the grid of solutions is per se an implicit diversity mechanism. 

Second, a specific diversification mechanism in two stages, which are perturbation of solutions and random repositioning.  

Different configurations of 

the moving peaks 

benchmark problems  

(Hadeli et al., 2004) Multi-agent system with 

indirect communication 

The coordination between agents is done by using food foraging mechanism of an ant. Thereby, information is spread and global 

information is made available locally. Intentions of the agents are forecasted in short-term. 

Flexible manufacturing 

system  

(Boughaci and Drias, 

2005) 

An evaluator agent based 

on taboo search 

First of all a plan is generated randomly. The desired number of tasks and relation precedence are created. In addition, different 

values for duration are specified by customer agent. Then bids are generated for random sets of contiguous tasks within the 

request for quotes (RFQ) by the vendor agent. Finally, bids are evaluated. Once the bidding deadline is past, the customer agent 

evaluates the sets of bids received. The evaluation based on Taboo Search and the goal is to find a combination of bids that 

provides coverage of all tasks and minimizes costs and risks. 

Complex bid (bundled bid) 

with scheduling constraints 

Table 2.1- Summary of the articles listed in the literature



13 

 

Another study that combined the PSO with agent-based approach was carried out by 

Ahmad et al., (2007). In their paper, researchers proposed agent-based Particle 

Swarm Optimization (APSO), which combined the optimization technique with the 

feature set of a multi agent system. Similar to Xu and Liu (2006), particle has been 

termed as an agent. By introducing autonomy and learning to PSO, particles become 

more intelligent and autonomous and could achieve performance that is more 

effective and use of resource. In addition to particle, the environment was modeled as 

an agent and was responsible for providing extra information about the problem 

space to the agents. A Boolean value was attached with each point in the problem 

space to identify whether an agent has already visited that point. As in the original 

PSO, particles search for the optimal solution by traveling through the problem space 

in a multi-dimensional environment. Based on this methodology, the points in the 

problem space were being continuously tagged by particles after they visit them for 

the first time therefore the environment was transformed from a static one to a 

dynamic version. The environment agent applied a density based cluster algorithm 

(DBSCAN-Density Based Spatial Clustering of Applications with Noise) to discover 

clusters of the tagged points. Those clusters could then be utilized by an agent to 

areas in the problem space that it could possibly away. If a particle agent has arrived 

at a visited point, which meant this point has been evaluated before and not found 

optimal, the agent could skip the fitness evaluation and request its neighbors’ 

positions and cluster information to update its own position. Besides tagging points 

in problem space, each particle inquire the current best solution from its neighbors to 

calculate the global best location, return its personal best solution to its neighbors, 

and to request information regarding the surrounding clusters  from the environment 

agents. The algorithm terminated either maximum iteration was reached or minimum 

error criteria was fulfilled. This technique not only reduces the chance that a particle 

agent visits non-optimal points in the problem space but also accelerates the 

optimization process by preventing unnecessary fitness evaluation.  

 

Differently from Xu and Liu, (2006) and Ahmad et al., (2007), Persson (2005) 

compared the strengths and weakness of agent based approaches and classical 

optimization techniques. They evaluated their appropriateness for a special class of 

resource allocation problems, namely dynamic distributed resource allocation. The 

purpose was to find hybrid approaches, which capitalize on the strengths of two 



14 

 

approaches. In the class of problems studied, information and\or resources are 

distributed and the exact conditions; e.g. the demand and availability of resources are 

not known in advance and changing. They compared the two approaches with respect 

to how they were able to handle some important properties of the problem domain. 

For the agent-based approach, it was assumed that the control was distributed and 

concurrent. On the other hand, for the optimization techniques, researchers focused 

on methods using a central node which has the entire responsibility of computing the 

optimal (or near optimal) solution\allocation to the problem. Further, they focused on 

methods that have the potential to provide solutions of guaranteed good quality.  

 

According to the preliminary analysis, they stated that agent based approaches tend 

to be preferable when; the size of the problem is large, communication and 

computational stability is low, the time scale of domain is short, the domain is 

modular in nature, the structure of the domain changes frequently (i.e., high 

changeability), there is sensitive information that should be kept locally; and 

classical optimization techniques when: the cost of communication is high, the 

domain is monolithic in nature, the quality of solution is important, it is important 

that the quality of the solution can be guaranteed. They pointed out that, the 

properties of agent-based approaches and optimization techniques complement each 

other. Further, they investigated two hybrid approaches and particularly focused on 

aspects related to time scale, quality of solution and cost of communication. One of 

them was “using an optimization technique for coarse planning and agents for 

operational re-planning” (i.e., for performing local adjustments of the initial plan in 

real time to handle the actual conditions when the plan is executed), other was 

“embedded optimization in an agent. A case study, which concerned the planning 

and allocation of resource in combined production and transportation, was examined.  

The case study was based on a real world case within the food industry. The problem 

was to determine how much to produce and how much to send to different customers 

each time. The problem is dynamic since one often has to plan based on forecast, 

which may be rather uncertain; and there are uncertainties associated with the 

availability of resources. Four different approaches namely; Pure Agent Approach, 

Embedded Optimization, Pure Optimization and Tactical\Operational Hybrid 

Approach, were tested. The results showed that, when the problem size increases 

significantly, guaranteed optimal solutions to the formulations are unlikely to be 



15 

 

obtained within reasonable time using of-the shelf optimization software. The result 

for the approaches Pure Agent and Pure Optimization are compatible with the results 

of the theoretical analysis with respect to time, quality and communication 

properties. Further, by comparing objective values between approach Pure Agent, 

Embedded Optimization and Tactical\Operational Hybrid Approach, the results 

indicated that adding optimization to agents, improves the agents’ decision making 

with respect to the quality of solution. Beside this, in Tactical\Operational Hybrid 

Approach and Pure Optimization approaches the quality of the decisions might 

depend on what time period that is considered.  

 

Zhong et al., (2004) integrated multi-agent systems and genetic algorithms to 

construct a new algorithm, which is named as multi-agent genetic algorithm 

(MAGA). This algorithm was employed for solving the global numerical 

optimization problem. In MAGA a candidate solution, to the optimization problem in 

hand is represented by an agent. All agents lived in a lattice like environment, with 

each agent fixed on a lattice-point. Agents competed or cooperated with their 

neighbors and used their knowledge in order to increase their energies. By using the 

agent-agent interactions, MAGA tried to minimize the value of objective function. In 

theoretical analysis, researchers observed that MAGA converged to the global 

optimum. For the first part of the experiment, ten benchmark functions were selected 

in order to test the performance of MAGA. It was revealed that MAGA 

accomplished good performances when the dimensions of the problem rose from 20 

to 10,000. In addition to this, MAGA could find the high quality solutions with low 

computational cost when the dimensions were as high as 10,000. This result proved 

that MAGA has good scalability and is a competent algorithm for solving large-

dimensional optimization problems. Researchers stated that, this paper was the first 

study, which optimized the functions with 10,000 dimensions by means of evolution. 

Further, MAGA was applied for the approximation of linear systems as a practical 

case. MAGA also gave satisfactory results for this case.  

 

Following the work of Zhong et al., (2004), Liu et al., (2006) considered the 

constraint satisfaction problems (CSP). They divided the problem into two types 

which were named as permutation CSPs and non-permutation CSPs. According to 

characteristics of each type, several behaviors were defined for agents in order to 



16 

 

give the ability of agents to sense and act to the environment. These behaviors were 

controlled by evolution, which results Multi-Agent Evolutionary Algorithm for 

Constraint Satisfaction Problems (MAEA-CSPs). The minimum conflict encoding 

was employed to eliminate the shortcomings of the general encoding methods. It was 

observed by the theoretical analysis that, MAEA-CSP had a linear space complexity 

and converged to the global optimum. For the first part of the problem 250 

benchmark binary CSPs and 79 graph coloring problems were employed in order to 

analysis the performance of the proposed algorithm for non-permutation CSPs. For 

comparison purpose, six well-defined algorithms were selected and the effect of 

parameters analyzed systematically. For the second part of the experiment, the 

performance of MAEA-CSPs for permutation CSPs was tested by using a classical 

CSP, n-queue problems, and more practical case job shop scheduling problems 

(JSPs). For both n-queue problems and JSPs, MAEA-CSPs were demonstrated good 

performance.   

 

Subsequent to Zhong et al., (2004) and Liu et al., (2006), Liu et al., (2010) integrated 

multi-agent systems and Evolutionary Algorithms (EAs) in order to solve 

Combinatorial Optimization Problems (CmOPs). A new algorithm, which was called 

as multi-agent EA for CmOPs (MAEA-CmOPs), was proposed. Two agent 

behaviors, namely competition behavior and self-learning behavior, were defined for 

minimizing the objective function value. These behaviors were controlled by means 

of evolution so that the agent lattice could evolve generation by generation. At each 

generation, each agent first performed the competitive behavior. This behavior 

cleaned the agents with low energy from the lattice so there was more space 

developed for the agents with high energy. After this process, self-learning behavior 

was performed iteratively, until the stopping conditions were satisfied.  In the 

proposed algorithm, each agent could only sense its local environment so its 

behaviors can only take place between it and its neighbors. Therefore, global 

selection was not required. By transferring the information between neighbors, the 

information was diffused to the whole agent lattice. Researchers indicated that, the 

evolutionary mechanism based on the agent lattice used in MAEA-CmOPs was 

closer to the real evolutionary mechanism in nature than that based on the population 

model used in traditional EAs.  

 



17 

 

The common point between this study and the work in Zhong et al., (2004) and Liu 

et al., (2006) was to combine multi-agent systems with EAs. However, each of them 

was proposed to solve different type of problems because of this; different types of 

agent behaviors were employed. Researchers stated the core of each algorithm was 

the agent behaviors, which showed that three algorithms were completely different 

both implementation and application fields. In addition, each work was tested by 

using benchmark problems in each field. To validate the performance of the MAEA-

CmOPs, deceptive problems with strong linkage, overlapping linkage and 

hierarchical tree problems with tree like structures were employed. Similar to the 

result of previous studies (i.e. (Zhong et al., 2004) and (Liu et al., 2006)), by 

theoretical analysis, it was revealed that MAEA-CmOPs converged to global 

solutions. In contrast to EAs which has the slow convergence property, MAEA-

CmOPs showed fast convergence rate and obtained a good performance even for 

large-dimensions hierarchical problems. Researchers pointed out that, MAEA-CmOP 

obtained a polynomial time complexity for all test problems and the parameters of 

MAEA-CmOPs were simple and easy to be tuned. They concluded that MAEA-

CmOPs was a competent algorithm for practical applications.  

 

Pelta et al, (2009) presented a multi-agent decentralized strategy (MADCOS) for 

dynamic optimization problems. Researchers aimed to test and analyze different 

communication schemes for the agents in MADCOS and to test and analyze the real 

need of an explicit diversity preserving mechanism in MADCOS. In this strategy, a 

population of cooperative agents moved over a grid containing solutions. Different 

configurations of the moving peaks benchmark problems were employed in order to 

test the performance of MADCOS. They focused on cooperation and diversity 

mechanisms, and they studied how different alternatives affect the performance of 

the strategy. The basic decentralized optimization strategy used in this paper was 

based on the joint of two populations. Three basic mechanisms, namely cooperation 

through the environment, peer-to-peer cooperation, mixed strategy, were used. In 

order to handle the diversity two mechanisms were employed. First, the grid of 

solutions was per se an implicit diversity mechanism. Second, a specific and simple 

diversification mechanism in two stages, which were perturbation of solutions and 

random repositioning, was implemented. A set of computational experiments were 

done in order to asses: how different communication strategies affect the search; and 



18 

 

the usefulness of having explicit and implicit diversity mechanisms. Accuracy and 

error were selected in order to measure the performance. Results showed that having 

an adaptive probability of cooperation should lead to better results than the ones 

achieved there. Researchers indicated that regarding diversity, the implicit 

mechanism provided by their multi-agent model seems to be enough for the 

scenarios tested. However, it was stated that the explicit mechanism proposed, based 

on randomization, did not perform as expected.  

 

Hadeli et al., (2004) studied the concept of multi-agent system where agent used an 

indirect communication mechanism, called stigmergy. The design used in this paper 

aimed at handling changes and distributions. The coordination between agents was 

achieved by using a technique, which was used by food foraging ant. This 

mechanism ensured that the information was spread and global information was 

made available locally. In order to determine whether it was possible to create short-

term forecasts based on the intentions of the agents, a prototype implementation of 

this design for manufacturing control system was realized. The prototype involved a 

flexible manufacturing system model, which had dynamic order arrival, probabilistic 

processing time, and some general perturbations such as machine breakdowns. 

Results showed that it was possible to generate and use short-term forecasts based on 

intentions of the order agents in relatively simple systems by using stigmergic 

approach. It was also revealed that it was possible to build a system in which 

individual agents had limited exposure, permitting them to operate in a wide range of 

situations and conditions. In other words, the proposed manufacturing control system 

adequately reacts to change and disturbance. By using the coordination and control 

mechanism, the congestion in the manufacturing plant could be handled easily.   

 

Boughaci and Drias (2005) proposed an evaluator agent; based on taboo search 

methodology. The work considered complex bid (bundled bid) with scheduling 

constraints. In particular, the bid specified a set of tasks (items), a price and resources 

availability data that included task durations and early and late start limits. Different 

from the previous works, where classical methods such as linear or dynamic 

programming were employed to solve bid evaluation for small set of bids, this study 

focused on meta-heuristics. Researchers stated that this work was the first one 

dealing with taboo search based meta-heuristic for bid evaluation in e-commerce. 



19 

 

Researchers tried to find an assignment of plan tasks to bids including the task that 

provides coverage of all tasks, minimize a cost and risk and allows for feasible 

schedule. In order to generate a problem for implementation of the proposed 

methodology, first a plan was generated randomly. The desired number of tasks was 

generated and relation precedence was created. In addition, different values for 

duration were specified by customer agent. Then bids were generated for random sets 

of contiguous tasks within the request for quotes (RFQ) by the vendor agent. Finally, 

bids were evaluated. Once the bidding deadline was past, the customer agent 

evaluates the sets of bids received. The evaluation based on Taboo Search meta-

heuristic and the goal was to find a combination of bids that provides coverage of all 

tasks and minimizes costs and risks.  

 

This implementation was performed by using JAVA programming language. 

Researchers indicated the scientific contribution of this study as:  proposition of an 

agent treating the bid evaluation using taboo search, conception of the clients\server 

model using such agent, utilization of a randomization strategy to create a 

combination of bids, proposition of context-dependent moves to create neighborhood 

combinations, adding a feasibility strategy to the taboo search algorithm to ensure the 

temporal constraints of all the tasks., and adding a convergence test into taboo search 

algorithm ensuring convergence of all the tasks to achieve the overall goal.  

 

 

2. 3 Concluding Remarks 

In this chapter, previous studies that employed agent-based approaches to solve 

dynamic optimization problems are investigated. As it was indicated before, solving 

DOPs are more difficult than solving static problems since optimal solution changes 

over time in DOPs. Therefore, the techniques used for this type of problems should 

be adapted to the moving optima.  

 

As stated by Montoro et al. (2007) nowadays, multi-agent paradigm has become one 

of the most active research fields in computer science. The 

communication\negotiation and coordination abilities of agent-based systems are 

very useful for handling DOPs. 



20 

 

 

In the next chapter, more research papers in the literature are presented and these 

studies are classified by answering some questions such as “Is the number of 

decision variable changes among time”, “Is the search space change with time?” “Is 

the structure of the objective function dynamic?” “Is the problem distributed or 

not?”…etc.  In addition, previous studies will be classified according to type of study 

such as approach, model, application etc... 



21 

 

CHAPTER 3 

CLASSIFICATION OF DYNAMIC OPTIMIZATION PROBLEMS 

 

 

3.1 Statement of Purpose 

Optimization efforts through system modeling have been one of the most convenient 

approaches employed by many researchers to obtain promising solutions for several 

problems. Nonetheless, optimizing the dynamic systems enclosing continuous 

change including the change in objective function(s), constraint/restriction(s) and 

parameter(s) has been a difficult task for the researchers (Baykasoğlu and U. 

Durmuşoğlu, 2012).  

 

On the other hand, some of the researchers studying Operations Research (OR) have 

attempted to solve these problems by using the well-known traditional optimization 

techniques like linear programming and integer programming (Baykasoğlu and U. 

Durmuşoğlu, 2011). However, solutions obtained for a certain time that is desirable 

or optimal for that time slot, often have not be preferable for another time slot. 

Furthermore, obtaining exact solutions using mathematical methods for each time 

slot has been unaffordable or even sometimes has not ended-up with feasible 

solutions. Therefore, notwithstanding its widespread use, the static optimization 

approach has increasingly approached its limits (Borst et al., 2005). This fact 

certainly inspired many researchers to employ agent-based modeling for the 

optimization of dynamic systems. As indicated by Jung et al. (2011), the agent 

paradigm has been shown to be a promising approach to develop intelligent, 

heterogeneous, and open systems, because of its features, such as autonomy, 

flexibility, and cooperative problem solving behavior (Jung et al., 2011). Agent-

based models contain the agent(s), which are capable of behaving in an adaptive, 

flexible and autonomous manner in accordance with the objectives defined. In this 

regard, reusable agents have provided many opportunities, they saved researchers 



22 

 

from moving beyond reinventing, representing, and re-implementing the problem, 

and thereby the cost of providing solutions has been decreased (Neches et al., 1991).  

 

Agent-based models addressing Dynamic Optimization Problems (DOPs) has also 

allowed several optimization mechanisms to track the moving optima in the search 

space. This fact certainly inspired many researchers to employ agent-based modeling 

for the optimization of dynamic systems (Baykasoğlu and U. Durmuşoğlu, 2012). 

 

Even though, there have been several papers in the literature employing agent-based 

modeling approach to provide significant solutions for DOPs, each of these existing 

studies employs different agent-based modeling approaches having different 

strategies and agent features. Therefore, currently, we do not have a common 

successful methodology for the design of agents (Corchado et al., 2008). With 

dependability and safety in mind, it is vital that the mechanisms for representing and 

implementing agents are clear and consistent (Fisher et al., 2007). In this regard, it is 

certain that there is a vacancy in the standard representation and classification of 

agent-based solution approaches employed for DOPs.  

 

A previously developed scheme (Calégari et al., 1999) for evolutionary algorithms 

for combinatorial optimization has also inspired us to prepare a standard 

representation format. In this perspective, one of the objectives of this chapter is to 

present the fundamental features/ingredients of DOPs solved by agent-based 

modeling. The features positioned in a standard scheme provide an opportunity to 

present DOPs in a standard way. It can succeed further and in future studies, these 

representation forms can be used to study the role of these features and their 

importance for solution quality. Thereby, this chapter provides a basis to analyze the 

best ways of implementing agent-based approaches to the DOPs. In this perspective, 

this chapter presents an attempt to develop a notion for DOPs solved by agent-based 

approach. It also shows how solution strategies with agent-based approach for DOPs 

can be summarized in a concise manner by informing about the agents employed and 

the key elements of DOP’s. A classification scheme is introduced and presented in a 

tabular form called Agent Based Dynamic Optimization Problem Solution Strategy 

(ABDOPSS). ABDOPSS distinguishes between different classes of agent-based 

algorithms (via communication type, cooperation type, dynamism domain and etc.) 



23 

 

by enumerating the fundamental ingredients of each of these agent-based approaches. 

At the end, possible uses of the ABDOPSS are illustrated and exemplified for some 

agent-based approaches. 

 

This chapter is organized as follows. Section 3.2 and Section 3.3 introduces the 

features listed as the ingredients of ABDOPSS. Section 3.2 specifically focuses on 

the features of typical DOPs. Subsequently, Section 3.3 introduces the generic 

features of agent-based approaches. In Section 3.4, some typical agent-based solution 

approaches that are implemented for DOPs are described by using the ABDOPSS. 

Section 3.5 illustrates the application of ABDOPSS for 18 relevant articles collected 

from the literature. Finally, Section 3.6 presents concluding remarks with the 

possible benefits of the proposed classification scheme. 

 

 

3.2 Problem Specific Features: A Typical Dynamic Optimization Problem  

A dynamic problem is considered to be a problem that changes some or all of its 

characteristics in time (Lung and Dumitrescu, 2009). Thereby, optimization 

problems that are subject to changes, belongs to the class of dynamic optimization 

problems (DOPs) (Allmendinger and Knowles, 2010). In other words; DOPs are 

“optimization problems whose optimal solution changes over time during the 

optimization, which could result from change of environmental parameters, change 

of constraints, change of objectives and change of problem settings 

(representations)” (Jin, 2004).  

 

All of the changes that are mentioned above take place in the dynamic environment 

and these changes create unpredictability even chaos in some situations. These 

changes can be opportunities improving the solutions or sometimes they can be 

threats decreasing level of desirability of a solution (Baykasoğlu and U. Durmuşoğlu, 

2012).  

 

There are different approaches in the literature that is classifying these changes in the 

dynamic environments.  Yang (2007) defines environmental change as: cyclic and 

random. In cyclic change of environments, with the time going, an old environment 



24 

 

reappears exactly (Yang, 2007). A cyclic change covers the same fixed length 

sequence of contraction and/or growth is repeated over time (Abbass et al., 2004). 

The pattern repeats itself indefinitely (Abbass et al., 2004). However, in random 

change, there is no information about the structure of change. Random chance is also 

called as acyclic and in random change there are no repeated patterns over the 

period; that is, there is an indefinite random sequence of contractions, growths, and 

random changes (Abbass et al., 2004).  

 

All of these changes in dynamic environment cause significant changes in model’s 

structure, objective function, restrictions/constraints, parameters, and in the decision 

variables. Bui et al. (2011) describe three of these changes through the examples as 

presented below. 

 

1- Time-varying objective functions: For example, enemy units arrive at a 

location, making some parts of the objective more difficult. The objective function is 

not constant over time. Therefore, the objective value of a solution can be different at 

different times. This usually causes the occurrence of new optima (Bui et al. 2011).  

 

2- Time-varying variables: An example problem of this category is dynamic 

machine scheduling where unexpected new jobs arrive. A time-varying variable can 

be used for determination of the objective value, but can be a late addition or change 

(Bui et al. 2011).  

 

3- Time-varying constraints: For example the precedence relationship of tasks. 

The objective function and variables do not change for this category; however, the 

constraints may change over time. This category of change does not change the 

fitness landscape driven by the objective function, but it will affect the areas of 

feasibility. It is interesting to note that this category of change has not been analyzed 

in detail in comparison to the other two categories (Bui et al. 2011). 

 

 Cruz et al. (2010) provides a valuable survey of research done on optimization in 

dynamic environments over the past decade. In addition to the content of their paper, 

they provide a web site (www.dynamicoptimization.org) and present characteristics 

of the DOPs with respect to objective function or the restrictions change with time.  

http://www.dynamicoptimization.org/


25 

 

 

We have considered the study of Abbass et al. (2004) to illustrate correspondence 

between the change types and the changes in the modeling components. Abbass et al. 

(2004) defines six common kinds of changes for a typical system having certain data 

flow structure. These changes are change in the model, change in the number of 

concepts, change in the number of features, change in the level of noise, change in 

the class distribution, and change in the sample bias (Baykasoğlu and U. 

Durmuşoğlu, 2012). 

 

Table 3.1 both summarizes the change states defined by Abbass et al. (2004) and 

their corresponding change in a typical mathematical model which is similar to the 

one defined by Cruz et al. (2010). Examples of each change categories have also 

been provided through the possible changes in a dynamic production facility. 

According to the example case, a typical production facility that is operating in a 

dynamic environment faces with several expected and unexpected changes with the 

above given change states (Baykasoğlu and U. Durmuşoğlu, 2012).   

 

Change 1- Change in the model: Change in objectives of a system may lead a 

significant “change in the model”. Think of the production facility trying to minimize 

the cycle time and adjusting all of its production strategy with respect to cycle time 

minimization. If the cost of tardy job increases significantly and the managers will be 

obligated to change their objective as the minimization of the number of tardy jobs. 

In this case, objective function, constraints and the number of decision variables 

along with the type of parameters may change.  

 

Change 2- Change in the number of concepts: Sometimes, concept classes may not 

be as clear-cut as initially thought so that additional classes may arise or old classes 

may vanish over time (Abbass et al., 2004). In case of change in the number of 

concepts, resources used by the system can increase or decrease. New machines can 

arrive to the system or some machines can be removed from the system because of 

the oldness or in functionality. This change can affect the model by changing the 

variables used in objective function and constraints. This type of change is not 

expected to create structural change. It is a kind of reconsideration of the model with 

added/removed variables that is significant for decisions.  



26 

 

 

Change 3- Change in the number of features: In some problems, the number of 

available features characterizing a problem instance may vary over time. Additional 

information may become available or new tools may be developed that allow more 

accurate classification (Abbass et al., 2004). Orders received for new product types 

are a typical example of this change. In case of such a change, production facility 

may face with new operations required and this can lead changes in objective 

function, constraints and the number of decision variables.  

 

Change 4- Change in the level of noise: The noisiness of the data may change as well 

(Abbass et al., 2004). This type of change is particularly common when dealing with 

data coming from sensors. For example, acoustic data collected in an open area can 

have different noise levels based on the state of the environment (Abbass et al. 

2004). In this respect, in the production facility example, if some customers broke 

the deal and cancel their orders for a production facility, the plans unfortunately 

changes and it may cause change in objective function and constraints. 

 

Change 5- Change in the class distribution: Abbass et al. (2004) exemplifies the 

change in the class distribution with SARS virus. When the SARS outbreak took 

place, the class distribution changed almost every day with more healthy people 

becoming infected effectively increasing the proportion of positive cases. Similar to 

SARS example, in case of an economic boom, arrival of some certain jobs to the 

system can be more frequent and this leads change in parameters. 

 

Change 6- Change in the sample bias: Since system parameters like processing times 

for machines are estimated by the sampling of several actual processes, an 

unexpected sampling error can end up with the change in actual processing times 

and/or system arrival times. 

 

All those changes defined above also directly effects the unpredictability of the 

problem domain.  Level of unpredictability is vital to determine a proper agent-based 

solution strategy. Although there are several efforts to match the corresponding 

changes with the unpredictability, they are still in their infancy. Therefore, there is a 



27 

 

serious need for measuring the level of unpredictability of the DOPs (Baykasoğlu 

and U. Durmuşoğlu, 2012).  

 

The relation between the corresponding changes in constraints, objective function 

and the both with uncertainty and dynamism has been previously presented by (Cruz 

et al. 2010) in the web site (www.dynamicoptimization.org) as shown in Figure 3.1. 

While their framework as shown in Figure 3.1 does not cover the variability in 

parameters and variables, it can still be a good reference for future studies. 

Considering parameter variability and variability in the number of decision variables 

will certainly increase the complexity of such an analysis (Baykasoğlu and U. 

Durmuşoğlu, 2012).  

 

Table 3.1 Change types for a dynamical environment and their corresponding affects 

in the mathematical model (Baykasoğlu and U. Durmuşoğlu, 2012) 

Change 

State 

Changes defined by 

(Abbass et al. 2004) 

Corresponding change in the 

model 

An example from  

dynamic production facility  

Change 1 Change in the model Objective function change, 

Constraint change, 

Number of decision variables, 

Type of parameters 

Objective of the system can 

be altered from minimizing 

the cycle time to 

minimizing number of 

tardy jobs 

Change 2 Change in the 

number of concepts 

Objective function change, 

Constraint change, 

Number of decision variables 

New machines can arrive to 

the system or some 

machines can be removed 

from the system. 

Change 3 Change in the 

number of features 

Constraint change, 

Objective function change, 

Number of decision variables  

New product orders can 

arrive to the system 

requiring different 

operations 

Change 4 Change in the level 

of noise 

Objective function change, 

Constraint change 

Some customers can broke 

the deal and cancel their 

orders 

Change 5 Change in the class 

distribution 

Parameter change In case of economic boom, 

arrival of jobs to the system 

can be more frequent 

Change 6 Change in the sample 

bias 

Parameter change Since processing times for 

machines are estimated 

using sampling, an 

unexpected sampling error 

can end up with the change 

in actual processing times 

 

http://www.dynamicoptimization.org/


28 

 

 

 

Figure 3.1 Dynamic and uncertainty characteristics of a Dynamic Optimization 

Problems (www.dynamicoptimization.org) 

 

It is also remarkable that dynamism is one of the components of environmental 

uncertainty. Indeed, as presented in Figure 3.2, environmental uncertainty has three 

dimensions: dynamism, heterogeneity, and hostility (Newkirk and Lederer, 2006). 

Dynamism, as being the one dimension of the environmental change, (Teo and King, 

1997) found to have two dimensions. The dimensions are referred to here as 

changeability (i.e., concerned with the rate of obsolescence and of technology 

change) and unpredictability (i.e., concerned with competitors’ moves and demand 

changes). The rigor of that study and relative recency of the findings motivated the 

use of those two dimensions in the current research (Newkirk and Lederer, 2006). In 

this regard, the above-defined six different changes cover different level of 

changeability and unpredictability. Categorizing changes into these two dimensions 

appears as a future research opportunity to perform (Baykasoğlu and U. Durmuşoğlu, 

2012).   

Uncertainty Dynamism Uncertainty + 
Dynamism 

Objective 
Function 

Constraint

s 

Constrains+ 
Objective 
Function 

Applications 

Methods 

Models 

http://www.dynamicoptimization.org/


29 

 

Figure 3.2 Type of environmental uncertainty (Baykasoğlu and U. Durmuşoğlu, 

2012) 

 

Different DOPs tried to be solved in the literature for different scopes by using 

various approaches. Some of the existing studies on DOPs via agent-based modeling 

propose only frameworks some other studies also present applications. It is 

remarkable to state that a framework is not a detailed hypothesis or set of 

hypotheses; rather, it is a suggested point of view for an attack on a scientific 

problem, often suggesting testable hypotheses (Aggestam and Söderström, 2005). 

Therefore, studies covering solely the frameworks do not provide comparable 

outputs. Some of the applications cover real-life instances and some have 

hypothetical data obtained via simulation. Some of the studies attempting solve 

DOPs by using agent-based modeling use test problems that has been previously 

presented in the literature. Thereby, they compare their findings with the best-known 

results in the literature. Some other studies compare the results with themselves by 

providing different methodologies to solve the problems. Examples of these cases 

will be discussed in the applications section (Baykasoğlu and U. Durmuşoğlu, 2012).  

 

3.3 Solutions for DOPs by ABS  

Although some problems like scheduling, production planning and travelling 

salesman have been previously solved as they are static problems, indeed these 

problems are not totally static problems due to the nature of the real life. Consider an 

example of scheduling and production planning problems where new machines with 

advanced capacities are required to be included to the systems or some machines are 

required to be removed from the system and/or new products are can also be 



30 

 

introduced to the system etc. Another example is for a more real life oriented 

travelling salesman problem (TSP) has been defined by (Homayounfar et al., 2003). 

 They defined three different types of changes for TSP: 

 

* Changing the distances (time) between the cities (due traffic congestion, road 

repair etc.) 

* Changing the number of the cities (i.e. adding or deleting some cities) 

* Swapping the cities  

 

A distance (e.g. the distance between the first and second cities) is changed after a 

specific time or specific generation, determined by Dynamic Frequency. The amount 

of change is referred to as the dynamic rate. These two parameters are set prior to the 

test. After each period of time, which is after a generation specified by Dynamic 

Frequency, dynamic rate is added to the specified cost value (i.e. distance between 

city 1 and 2). This shifts the peak (optimum cost) to another location, so a new global 

solution can be found (Homayounfar et al., 2003). 

 

Numerous examples can be considered for real-life oriented versions of these well-

known problems. The distinction between these conventional problems and real-life 

oriented ones can be performed as follows.  If during the solving of an optimization 

problem, parameters of the system (i.e. objective and constraint functions) do not 

change due to nature of the problem then optimization is static, otherwise it is 

considered to be dynamic (Homayounfar et al,. 2003). 

 

In such environments, optimization process can never be terminated. In the real 

world, a function to be optimized may vary from time to time and the optima have to 

be found in time (Guan et al., 2005). Therefore, it is very difficult to optimize such 

type of dynamic optimization problems with conventional methods, which are 

developed to deal with non-stationary environments. Moreover, it is also quite hard 

to define dependencies or correlations between the solutions obtained at a time slot 

and in another time slot. As stated by O’Hare et al. (2008), the real world is both 

unpredictable and unforgiving. Decisions often need to be made where the 

contributory evidence is uncertain, incomplete, contradictory and highly dynamic 



31 

 

(O’Hare et al., 2008). Therefore, performing design of experiment may not end up 

with significant findings. 

 

Since finding a feasible solution to the static problem is NP-hard, we must make 

certain assumptions about the input. Intuitively, if the input is such that even finding 

a static solution is hard we cannot expect to find a good solution with respect to the 

dynamic objective function. Thus, the problem instance must be “easy enough” that a 

relatively straightforward agent can find a feasible solution at each time step. In 

practical terms, this means there must be enough resources to satisfy easily the 

demand if we ignore the quality of the solution in the sense of the dynamic objective 

function. In the worst case, we can fall back on the heuristic to find a feasible 

solution. In fact, agent-based algorithm will degrade gradually to this extreme, but 

should perform much better in the common case. This challenging dynamism was 

apparently a significant problem for researchers and it could only be effectively 

handled by using more advanced approaches like agent-based modeling (Baykasoğlu 

and U. Durmuşoğlu, 2012). 

 

3.4 Agents and their features 

Although there is no universal agreement in the literature on the precise definition of 

agent, their property of being autonomous has been common to all definitions 

(Kulkarni and Tai, 2010). An agent is an encapsulated computer system that is 

situated in some environment and that is capable of flexible, autonomous action in 

that environment in order to meet its design objectives (Jennings et al., 2001).  

 

Agents that act in an autonomous fashion to perform delegated tasks have aroused 

much attention over the last decade (Liu et al., 2006) which is named as intelligent 

agents. An intelligent agent performs interactive tasks tailored to a user’s needs 

without humans or other agents telling it what to do (Máhr et al., 2010). The 

intelligent agent has been proposed as a software design paradigm, which is different 

from the sequential, the structural and the object-oriented approaches by its 

autonomy in deciding when to invoke its action (Parunak, 1997). 

 



32 

 

The fundamental approach of agent-based system is to simulate real-world systems 

with a group of interacting autonomous agents modeled as computer programs (Zhou 

et al, 2009). Since agent based modeling is a consideration that is developed 

according to system requirement, it is expected that they have several common and 

distinguishing characteristics. In fact, in spite of the growing interest in multi-agent 

systems, there is no agreement on what actually constitutes agent hood, that is, what 

are the fundamental characteristics of agents (Garcia et al., 2004). On the other hand, 

Jou and Kao (2002) defined the characteristics of an agent based on agent’s 

behaviors: fundamental, auxiliary, implicit and application oriented (role based). The 

first one is fundamental characteristics. As a goal is state of affairs to be achieved in 

the environment, an agent must perceive and process the environment changes (Jou 

and Kao, 2002). The second one is auxiliary characteristics. An agent also needs 

information from users and other agents through communication mechanisms such as 

user interfaces and agent communication language to complete the delegated tasks 

(Jou and Kao, 2002). In addition to fundamental and auxiliary characteristics, some 

implicit characteristics with presumptive feature exist within an agent (Jou and Kao, 

2002). Trustworthiness (veracity and benevolence), perceptibility, rationality, 

persistence, flexibility, and competence are some examples (Jou and Kao, 2002). The 

final characteristics are related to specific applications, e.g., the surfing behaviors of 

cyberspace, the facial expressions attached to entertainment, and so forth (Jou and 

Kao, 2002). All these features make agent technology an interesting approach for a 

wide set of applications (Garcia-Montoro et al., 2007). 

 

3.4.1 Number of agent types and agents 

An agent-based model has a set of agents defined by the model creator. Number of 

agents can be variable or constant. Their types or functions may also vary or they can 

be assigned for repetitive tasks. In meta-heuristics based agents, number of agents 

can directly be proportional (or the same) with the population/colony size. Both 

“number of agent types and number of agents” should be considered in the design of 

agent-based modeling for DOPs since they can affect the solution space directly. In 

his study, Tan (1993), claims that, as the number of agents is increased, state space 

exponentially increases in terms of the number of agents. A large state space means 



33 

 

more state exploration for the model that Tan (1993) considers, and this yields 

slower learning. 

 

3.4.2 Communication type 

Multi-agent system, also called ‘self-organized system’ is a computational system in 

which multiple interacting intelligent agents work together to solve difficult 

problems, which may be impossible for an individual agent (Yan et al., 2010). Multi-

agent based modeling allows complex natural behavior of various interacting entities 

to emerge from a set of simple individual rules (Razavi et al., 2010). Communication 

is the most common means of interaction among intelligent agents. Any observable 

behavior and its consequences can be interpreted as a form of communication 

(Mataric, 1995). Two different approaches have been defined for communication 

(Genesereth and Ketchpel, 1994). Direct communication covers the agents handling 

their own coordination.  Designer of an agent-based system can consider direct 

communication with respect to problem domain. The cost of communication and 

availability of obtaining qualified solutions are the factors to be considered for 

employing direct communication mechanisms in the models. 

 

On the other hand, assisted/indirect coordination covers the systems in which agents 

rely on special system programs to achieve coordination (Genesereth and Ketchpel 

1994). One of extensively employed indirect communication method is stigmergy. 

Stigmergy is a class of mechanisms that mediate animal-animal interactions. It 

consists of indirect communication that is taking place between individuals of an 

insect society by local modifications induced by these insects on their environment 

(Hadeli et al., 2004).  

 

Although communication is essential for agent-based modeling, it may not be perfect 

as expected. In most of the current research on multi-agent systems, people assume 

that communication of agents is guaranteed (Satoh et al., 2000). However, 

communication can be broken, suspended or delayed depending on the flow of data 

or information. In this regard, research of problem solving under incomplete 

communication is very important (Satoh et al., 2000).    

 



34 

 

3.4.3 Coordination type 

Since DOPs may have varying objectives, constraints/restrictions and parameters; 

agents cannot be informed on the global state of the system by themselves. 

Therefore, in order to achieve global objectives, coordination is essential to allow the 

agents to adjust their local states or conditions. Communication provides channels 

for coordination. Coordination is a property of a system of agents performing some 

activity in a shared environment (Huhns and Stephens, 1999). The degree of 

coordination is the extent to which they avoid extraneous activity by reducing 

resource contention, avoiding livelock and deadlock, and maintaining applicable 

safety conditions (Huhns and Stephens 1999). Figure 3.3 illustrates the taxonomy for 

the types of coordination defined by Huhns and Stephens (1999). Panzarasa et al. 

(2001) prefer to use the generic term “interaction” instead of “coordination”. They 

(Panzarasa et al., 2001) define cooperation as working together to achieve a common 

objective and they also define negotiation as coming to a mutually acceptable 

agreement on some matter (Panzarasa  et al., 2001). In other words, cooperation is 

coordination among nonantagonistic agents, while negotiation is coordination among 

competitive or simply self-interested agents (Huhns and Stephens, 1999).  

 

 

 

Figure 3.3 Taxonomy of coordination for agent-based modeling (Huhns and 

Stephens 1999) 

Coordination 

Competition 

Planning 

Cooperation 

Centralized Planning 
Distributed Planning 

Negotiation 



35 

 

 

However, perhaps the most fundamental and powerful mechanism for managing 

inter-agent dependencies at run time is negotiation- the process by which a group of 

agents come to a mutually acceptable agreement on some matter (Jennings et al. 

2001). Negotiation underpins attempts to cooperate and coordinate (both between 

artificial and human agents) and is required both when the agents are self-interested 

and when they are cooperative (Jennings et al. 2001).  

 

3.4.4 Optimization mechanisms 

There are different approaches used as optimization mechanism in the agent-based 

systems for DOPs. These methods can be classified as: heuristic based approaches, 

exact mathematical methods, and market based approaches. Heuristic based 

approaches cover, evolutionary based approaches and other techniques like: particle 

swarm optimization, immune-based algorithms ant colony optimization etc 

(Baykasoğlu and U. Durmuşoğlu, 2012). 

 

3.4.4.1 Heuristics  

For large size problems, it is hard to obtain the optimal solution due to the large size 

of the problem files. In order to reduce the computational time, heuristic approaches 

can be used for obtaining solutions (Baykasoglu et al. 2011). Heuristics includes 

some set of procedures for obtaining acceptable solutions to the problems by 

decreasing the time requirements. There is a natural correspondence between 

autonomous entities and meta-heuristics, and problem solving with an optimization 

problem (Pelta et al., 2009). In the literature, agents are sometimes defined as 

individuals, particles etc. (Wang and Shixin, 2010) which is the main actors for 

heuristics.  If one looks at natural process like bird flocks or fish schools a strong 

similarity to multi-agent systems can be found very quickly (Wagner et al., 2003). In 

this regard, there are many studies adapting heuristic approaches to agent-based 

systems (Baykasoğlu and U. Durmuşoğlu, 2012). 

 

3.1.4.2 Mathematical Methods  

Although it is too complex to deal with DOPs using classical mathematical methods, 

increasing power of computer technologies let some researchers to use mathematical 



36 

 

methods. Change frequency and the response time of the mathematical methods 

directly affect the solution’s availability at the desired time. In this regard, the 

preferability of mathematical methods appears to be less when compared with the 

other methodologies (Baykasoğlu and U. Durmuşoğlu, 2012). 

 

3.4.4.3 Market Based Approaches  

For an optimization approach to be considered as market oriented, it must at least 

fulfill the following basic requirements (Karlsson et al., 2007): 

 

 There must be a well-defined market mechanism, which includes some notion 

of prices (which often are expressed in terms of some monetary unit). The market 

mechanism regulates how negotiations and trade are performed among the 

participating agents and hence determines how certain commodities can be traded for 

certain other commodities (Karlsson et al. 2007). 

 

 There must be some arguments for why the agent strategies are reasonably 

realistic, given the market model. That is, assume we have some model of 

information available for the different agents and a well-defined model for how they 

interact (the market mechanism). Then the strategies must be consistent with the 

agents' attempt to maximize utility, given bounded rationality (Karlsson et al. 2007). 

 

3.5 Introduction to agent-based dynamic optimization problem solution strategy 

(ABDOPSS)   

The first generic step of developing a solution strategy for any optimization problem 

is to define specifying class of the problem (Baykasoğlu and U. Durmuşoğlu, 2012). 

Class of the problem is an important factor that is affecting the required solution 

approach. Therefore, the ingredients that characterize an agent-based modeling 

approach for a DOP must somehow possess a presentation scheme to provide a 

solution strategy and a basis for comparison of one with another. Therefore, this 

presents how solution strategies with agent-based approach can be summarized in a 

concise manner. In this regard, a classification scheme is designed and presented in a 

tabular form called ABDOPSS (Agent Based Dynamic Optimization Problem 

Solution Strategy).  



37 

 

 

ABDOPSS distinguishes different classes of agent based algorithms applied to DOPs 

(via agent-related features like: communication type, cooperation type and problem 

related features like: dynamism of objective functions, parameters etc.) by 

enumerating the fundamental ingredients of each of these algorithms with respect to 

problem domain. The ingredients that have been considered for ABDOPSS have 

been discussed in the previous sections. 

 

The main structure of the table consists two rows (row 1, row 2 as illustrated in Table 

2), indicating the problem related features (row 1) and agent related features (row 2), 

respectively. At each corresponding column of a row, an entry, gives the necessary 

indication for the corresponding criteria. Table 3.2 shows such an empty table and 

corresponding values for the table (Baykasoğlu and U. Durmuşoğlu, 2012).  

 

Table 3.2  Representation of ABDOPSS (Baykasoğlu and U. Durmuşoğlu, 2012) 

PROBLEM RELATED FEATURES (ROW 1) 

Search 
Space/  

Solution 
Environment 

Objective 
Function 

Dynamism 

Restriction/ 
Constraint 
Dynamism 

Parameter 
Dynamism 

Performance 
Measure 

Benchmarked 
Applied/ 

Framework 

Real Life/          

  Test 
Problem/   

Simulation 

 AGENT RELATED FEATURES (ROW 2) 

Number of 
Agents 

Number of 
Agent Types 

Communication 
Type 

Coordination 
Coordination 

Type 
Population 

Type 
Optimization 
Mechanism 

If dynamic: D 

If Multiple: M 

If directly 
related with 
population 

size: PS 

Any numeric 
value 

If direct: D  

If indirect: I 

If exists: 1; 

else: 0 

Cooperation, 
Data Sharing, 
Decision Aid 

N/A, Static,                      
Population,  

Dynamic 
Population 

Size 

If Heuristics: H 

If Mathematical 
Methods: MM 

If Market Based 
Algorithm: MBA 

 

3.6  Sample applications of the ABDOPSS  

Since it takes a considerable time to determine features listed by ABDOPSS, 18 

articles are exemplified within the contents of this chapter. It is remarkable to state 

here that, this chapter does not seek to find all publications on DOPs and represent 



38 

 

those using ABDOPSS, but it is rather sought for exemplification of the proposed 

ABDOPSS. In this regard, typical versions of different approaches have been tried to 

be illustrated in Table 3.3. Two rows are merged into one for easiness of readability. 

The studies covered here are roughly classified and some unclear parts made it 

relatively difficult to prepare ABDOPSS. It is certain that those 18 papers could be 

better presented by their developers (Baykasoğlu and U. Durmuşoğlu, 2012). 

 

Wang and Liu (2010) presented an agent-based evolutionary search algorithm (AES) 

for solving dynamic travelling salesman problem (DTSP). In their study, the term 

agent indicated a candidate position in the search space. Agents resided in a lattice-

like environment and a collection of such agents were termed as population. They 

applied a recombination and local updating procedure to the fittest agent referring to 

a predefined neighborhood. They also combined the perturbation learning strategy to 

further reinforce the performance of the local updating rule and hope to seek the 

global optimum rapidly under changing environments. Dynamic version of KroA100 

TSP was selected as the case of implementation. Offline performance which was the 

best of generation fitness averaged over 100 runs and then averaged over the data 

gathering period. Experimental result and relevant t-test result indicated that the 

performance of AES was excellent. Researchers indicated that the superiority of AES 

lie in its faster convergence and optimum tracking ability in dynamic environments. 

It is concluded that AES algorithm had a more quickly and robust convergence 

capability than standard genetic algorithm (SGA) on dynamic problem. 

 

Billiau and Ghose (2008) proposed a new algorithm for solving Distributed 

Constrained Optimization Problems (DCOPs). The proposed algorithm, which has 

been called as Support Based Distributed Optimization (SBDO), has used agent level 

objectives instead of weighted or soft constraints that have been used by other DCOP 

algorithms. In DCOPs, constraints/ objectives of the problem change over time by 

adding or removing constraints/objectives. Researchers compared the performance of 

this algorithm with Asynchronous Distributed Optimization (ADOPT) and 

Distributed Pseudotree Optimization Procedure (DPOP) by using 120 meeting 

scheduling problem. Result showed that, although SBDO algorithm has not 

guaranteed to find the optimal solution, it reliably found solutions within two percent 



39 

 

of the optimal solution. Results also revealed that SBDO was able to find near 

optimal results significantly faster than ADOPT and in a comparable time to DPOP.  

 

Máhr et al. (2010) compared two structurally different planning approaches, which 

were agent-based solution and on-line optimization approach, for drayage operations 

in an uncertain environment.  The structurally differentiating feature of the two 

solution approaches was the level of control: centralized (on-line optimization) and 

decentralized (agent-based solution). Dynamic vehicle routing problem (DVRP) with 

two types of uncertainty, arrival time and service time, was employed in order to 

compare the performance of agent-based solution and on-line optimization approach. 

Moreover, scenarios were developed under different arrival time and service time. In 

their study, containers and truckers were defined as agent. Each container agent sold 

itself on an auction to the truck agents. Researchers concluded that when the online 

optimization approach performed better, it was by capitalizing the optimal (or near 

optimal) balance between routing and rejection cost. When agents performed better, 

their flexibility provided by their distributed nature was the competitive advantage.    

 

Voos (2009) focused on dynamic resource allocation problems especially in 

continuous systems. In this study, resource allocation was expressed as an 

optimization problem, which could be decomposed into single optimization 

problems, under certain constraints. Researchers proposed to solve this optimization 

problem in a distributed fashion by using multiple agents. These agents have acted as 

local optimizer and coordinated their local solutions to an overall consistent solution. 

In this study, market based interaction mechanism was employed and the agents have 

calculated and negotiated complete supply and demand trajectories using model 

based predictions. In order to test the performance of the proposed approach, 

researcher employed this approach to three technical examples. Results revealed that 

this approach could be used to cope with resource allocation in dynamic 

environments (Baykasoğlu and U. Durmuşoğlu, 2012).   

 

Li and Li (2009) proposed a multi-agent coordination and integration method which 

has been called intercommunication job-sharing hybridization, for solving complex 

problems. These complex problems could be decomposed into smaller separate sub-

problems, with communications/exchange between sub-problems identified, human 



40 

 

decision-makers’ roles clearly defined and managerial judgment incorporated. With 

the proposed method, the overall problem was divided into distinct jobs which were 

then assigned to relatively independent and distributed agents. These agents have 

shared data, information knowledge and carried out different tasks synchronously or 

asynchronously in the context of Internet/intranets/extranets to produce solutions. In 

addition, these agents have linked human participants’ judgments and intuition 

together for joint problem solving. The architecture of the Internet-enabled multi-

agent-based hybrid support system for international marketing planning was 

exemplified. Researchers constructed a prototype, which has been called Agent 

International, of the proposed multi-agent hybrid framework. This prototype covered 

some key features of the conceptual framework and its architecture. The potential 

and value of the prototype was evaluated by a questionnaire, which was prepared and 

delivered to the corresponding firms in London. According to the responses, 

researchers concluded that the prototype system was rated somewhat moderately in 

helping understand pertinent marketing decision making factors, exploring various 

alternatives, performing analysis, coping with uncertainty, incorporating managers’ 

judgment an improving the confidence and quality of international marketing 

decision-making. 

 

Tang et al. (2004) presented an auction based dynamic optimization decision support 

system. The presented decision support system was applied in solving an automobile 

load makeup-planning problem. The proposed system included three types of agents. 

These were the yard agents, representing the shipping yard, the truck scheduler 

agent, representing the transportation company who sold trucks and executed 

transportation and load agent representing a truck during the planning state. Each 

type of agent had its own behaviors. In order to solve the static load make up 

problem, researchers implemented 3 heuristics which were empirical (EM), 

minimum spanning tree (MST), vehicle routing optimization (VRO). In addition to 

these heuristics, a virtual market enabled by auction mechanism was employed to 

solve dynamic optimization problem. Researchers developed the mixture of static 

optimization with MST algorithm and dynamic optimization with the auction 

mechanism, MST Dyn, at the beginning of the day, they apply static optimization on 

the guaranteed information, and then they apply the dynamic optimization until the 

loads are fixed at the beginning of lining up. In order to test the performance of the 



41 

 

algorithms, same scenario was used and each algorithm has run for 120 days. 

Transportation cost and dwell time were selected as the performance measures. 

Results showed that, EM algorithm produced the worst performance and MST Dyn 

the best. The MST algorithm produced the worst performance and EM algorithm the 

best based on the transportation cost. Researchers indicated that MST Dyn algorithm 

produced a little bit more transportation cost than EM algorithm. Therefore, it was 

concluded that MST Dyn algorithm produced the best comprehensive performance 

(Baykasoğlu and U. Durmuşoğlu, 2012).  

 

Berro and Duthen (2001) presented an optimization method in dynamic environment. 

The proposed method, using software agents, tried to provide accurate solutions and 

react quickly to changes in the state of the problem. In this method, software agents 

were randomly created and they try to colonize an optimum of the function. The 

system composed of two parts namely control system and agent. An agent has not 

communicated but it perceived the presence of other agents. When the functions to 

optimize and the dimensions of the search space have been defined, the user must 

specify two parameters namely FORCE which would influence the searching speed 

and EPSILON, which calculated precision of the optimal points. In order to test the 

proposed method, 2 cases of optimization problems, multimodal function and multi-

objective function, were used. The test results were compared with the Genetic 

algorithm based approaches. Researchers concluded that the first tests result of the 

proposed method were satisfactory in particular for the computing speed and 

precision. 

 

Jiang and Han, (2008) presented a Simulated Annealing (SA) based algorithm to 

solve real time multi-agent decision-making problem. In this study, the SA algorithm 

was implemented in a centralized version and performed by the agents in parallel, 

without assuming the availability of communications. Since there was no standard 

benchmark to evaluate multi-agent decision algorithm, a random generator was used 

to generate all test sets. The SA algorithm was tested by comparing it, with other 

algorithms, especially with variable elimination (VE) algorithm with respect to the 

scalability and relative payoff. Results revealed that, the proposed method was 

almost optimal with a small fraction of the time that VE took to compute the policy 

of the same coordination problem. In addition, researchers indicated two main 



42 

 

benefits of this approach as follows: the time taken by the algorithm has grown 

polynomial with the number of agents and the algorithm could report a near-optimal 

answer at any time. Researchers concluded that, SA was a feasible approach for 

action selection in large complex cooperative autonomous systems (Baykasoğlu and 

U. Durmuşoğlu, 2012). 

 

Zhou et al. (2008) proposed a model combining discrete event systems and Multi 

Agent Systems (MAS) to simulate a real time job shop. All entities of the generic job 

shop were modeled as autonomous agents namely job agent, machine agent, work-

center agent, shop floor agent, controller agent and job releaser agent. All agents 

pursued their own interest with unique functions. All communications in the MAS 

were realized through message passing. Proportion machines busy (work-center), 

average number in queue (work-center), maximum number in queue (work-center), 

average daily throughput (shop floor), average time in system (shop floor), average 

total time in queues (shop floor), maximal size of work in process (shop floor) were 

selected as performance indicators. Results of the case study demonstrated the 

advantage of distributed data collection and analysis. It was indicated that, the case 

study also validated the proposed system by statistical analysis and comparison to 

existing simulation results in similar test case. 

 

González et al. (2010) presented a new centralized cooperative strategy based on 

trajectory methods (tabu/taboo search) for solving DOPs.  The proposed strategy was 

compared with two methods namely a multi-QPSO and Agents. The multi-QPSO is a 

Particle Swarm Optimization (PSO) variant with multiple swarms and different types 

of particles where there exists an implicit cooperation within each swarm and 

competition among different swarms. On the other hand, agents are an explicit 

decentralized cooperation scheme where multiple agents cooperate to improve a grid 

of solutions. Researchers tried to assess the possibilities of trajectory methods in the 

context of DOPs and to draw attention on explicitly including cooperation schemes 

in methods. A set of solver\threads were consisted in the proposed strategy. Each 

solver could implement the same of a different resolution algorithm for the problem 

at hand. The coordinator was responsible for processing the information received 

from the solver and producing subsequent adjustments of their behavior by sending 

“orders”. Exchange of data was achieved by using a blackboard model, with two 



43 

 

blackboards.  One of them was written by the solvers that wrote the reports of their 

performances and read by the coordinator; and another was written by the 

coordinator that wrote the orders and read by the solvers. The information flow in the 

proposed strategy was achieved by using the following three steps: firstly, 

performance information was sent from the solvers to the coordinator, and then this 

information was processed and stored by the coordinator and finally, the coordinator 

sent directives to the solvers. A set of rule, based on Reactive Search Ideas, was 

employed to control the solvers. In order to test compare the performance of the 

proposed strategy, moving peaks benchmark problem and three commonly used 

multimodal real test functions were selected. To emphasize the importance of 

dynamism and optimal tracking, and to reduce the number of variables to control in 

the experiments, only the position of the peaks was altered. Proposed strategy and the 

other two methods were compared according to offline error. Just before a change, 

offline error of each algorithm was recorded and this value was averaged over all 

changes, for all independent runs. Therefore, Mean Fitness Error was calculated. 

Researchers indicated that the proposed strategy could consistently outperform the 

results of the two other methods. They concluded that the cooperation included in 

agents provided some benefits over multi-QPSO on the easier problems, but since the 

optimization done in agents relied only on using simple random perturbations of 

solutions it may be enough to cope with more difficult problems, even with the help 

of the cooperation. 

 

Lepagnot et al. (2010) presented a new method called multi agent dynamic 

optimization (MADO) to solve dynamic optimization problems. In MADO, a 

population of agent has explored the search space. Three modules namely, memory 

module, agent manager and coordinator were employed. The number of agents in the 

system may have varied temporarily, but the number of agents along the whole 

search process tended to be equal to the predetermined value. This could be achieved 

by the coordination who would send a delete instruction if the number of agents was 

higher than a predetermined value. To test the performance of the MADO, Moving 

Peaks Benchmark problem was employed. Offline error and standard deviation were 

selected as performance measure. Different variants of MADO were compared with 

the proposed one. Results indicated that MADO was better than all the simpler 



44 

 

variants. Researchers concluded that the proposed MADO was a promising method 

for solving dynamic optimization problems.  

 

Yan et al. (2010) proposed an agent based evolutionary search (AES) search method. 

In AES, a population of agents has represented potential solutions. Similar to EAs, 

AES gradually converged in the search space during the run, especially when the 

environment has been stationary for some time. In order to improve the performance 

of AES for DOPs, two diversity maintaining mechanisms, random immigrants and 

adaptive dual mapping were employed. Dynamic 0-1 optimization problems which 

were generated from static optimization problems by using XOR generator were 

investigated. Nine different dynamic test problems were constructed. The 

environment was periodically changed every predetermined number of generations. 

Different change severities were employed to test the performance of AES. The 

performance of AES was compared with traditional SGA, the primal dual GA and 

the GA with random immigrant, where the worst 10% individuals were replaced with 

random individuals every generation. Mean best of generation fitness was selected as 

performance measurements. According to the mean best of generation fitness, 

researchers indicated that AES could always outperform other EAs on almost all 

problems. Researchers stated that the competitive and learning behaviors of agents 

could always help AES to obtain a better performance than the peer GAs could do. 

They concluded that some dynamic characteristics of the environments might affect 

the performance of the algorithm. 

 

Hanna and Cagan (2009) presented an evolutionary multi-agent system (EMAS) for 

adaptive optimization. EMAS which has employed the evolution of design strategies 

within a cooperative virtual team has evolved as conditions change and as new 

solution states were discovered during the optimization process. A set of strategies 

for creating solutions were represented by population of agents. In EMAS, the 

strategies for generating solutions have been recombined, altered, and removed by 

applying genetic operators that are in typical genetic and evolutionary algorithms. 

However, researchers have made EMAS different from genetic and evolutionary 

programming techniques by adding cooperation dimension. Cooperation was 

employed to combat the problem of not knowing which strategy to use in an 

unknown but static design space. It has been provided by embodying each strategy in 



45 

 

an autonomous agent and allowing the population of agents to communicate. 

Researchers used the well-known combinatorial optimization problem of travelling 

salesman. Researchers tried to illustrate that the proposed framework was capable of 

increasing the effectiveness of individual solution strategies by evolving and 

coordination them a decentralized manner.  Three simple heuristic construction 

algorithms called nearest insertion, farthest insertion and arbitrary insertion were 

employed. Beside these, three heuristics based algorithms, 2-Opt, 3-Opt and simple 

mutation were also used. Two basic reduction algorithms, random reduction and best 

partial reduction were employed. Different from the typical genetic algorithms, gene 

strings represented agent strategies for generating solutions, not the solutions 

themselves. The design architecture used in this study was similar to asynchronous 

team architecture. In this study fitness was based on the ability of the agent to make 

positive changes in its destination memory. First of all researchers selected a 48-city 

problem to compare the resulting tours generated by EMAS with those generated by 

both individual algorithms on their own as well as priori determined hybrid 

algorithms. When the results of EMAS were compared with the results from running 

construction algorithms from each starting city and then running improvement 

algorithms on the resultant tour, researchers found that trials that correlated more 

strongly with the average patterns had better final values in terms of distance from 

the optimal value of the average solution quality. In addition to the 532-city problem 

and 48-city problem, researchers applied these patterns to a team solving a Euclidean 

237-city problem modeled on a very large scale integration layout problem. 

Researchers has seen that the cooperative teams of individual strategies evolved to 

generate better solutions than both individual strategies alone and a priori set hybrid 

strategies. It was indicated that the strength of the EMAS algorithm lies in its ability 

to evolve the best team of agent dynamically. It was also stated that, one of the 

strength of the EMAS algorithm was as a predictive or learning guide for which set 

of algorithms or strategies should or should not employed and when. Researchers 

concluded that, utilizing EMAS in the proposed way has been shown to lower 

computation time while maintaining or even improving solution quality.  

 

Pelta et al. (2009) investigated if the type of rules employed previously in 

cooperative systems for static optimization problems have had sense when applied to 

DOPs. The proposed strategy was based on the joint use of a population of solutions 



46 

 

and optimizers (agents). Researchers analyzed the roles that diversity and 

decentralized cooperation mechanisms in the performance of the methods. 

Researchers aimed to propose and compare two kinds of control rules to update the 

solution’s set. These rules were a simple frequency based re-sampling (probabilistic) 

rule and a fuzzy-set based rule. Researchers also tried to understand the behavior of 

both rules in order to develop more efficient cooperative strategies for DOPs. In this 

study, cooperation was understood as a mechanism for information sharing.  The 

population of solutions had two purposes, which were to serve as an implicit memory 

that has evolved by means of the action of agents and to be a communication channel 

for them. An explicit cooperation mechanism was proposed. This mechanism, which 

was not always triggered, was based on a simple idea. In order to test the 

performance of the proposed strategy, a set of experiments were developed by using 

Moving peaks benchmark problem. The main aim of the experiments was to evaluate 

the behavior of both rules, which may trigger the explicit cooperation mechanisms. 

Offline error was used as performance measurement. The performance of the 

cooperative system for different setting of each rule and the system’s dynamic 

behavior were also investigated. The results of the proposed strategy were compared 

with some published results. Researchers stated that the fuzzy-based rule has been 

better than the frequency rule. As a conclusion, researchers indicated that both rules 

have been competitive when compared with a state-of-the art of the algorithm.  

 

Xiang and Lee (2008) proposed an agent-based dynamic scheduling approach, which 

employs Ant Colony Intelligence (ACI) with local agent coordination. The goal of 

their study was to represent a dynamic manufacturing system through an MAS. They 

also used ACI to improve the global performance of the system. In the proposed 

system, entities were modeled as intelligent agents with related knowledge of their 

own functions and goals. MAS was used to provide parallel execution of commands. 

Beside this, MAS had the intelligence of negotiation to enhance system performance. 

The agent coordination mechanism used in the study was inspired by both foraging 

and division of labor of ant colony in MAS. There were five types of agents in the 

proposed MAS. They were order agents, job agents, machine agents, work center 

agents and shop floor agents. Researchers indicated that, different from the previous 

studies, a more generic manufacturing model with less unrealistic assumptions was 

considered. Furthermore, ACI was integrated with both machine agents and job 



47 

 

agents to solve both task allocation and task scheduling problems. Two types of 

disturbances were introduced. One of them was resource related disturbance 

including machine break down and machine recovery. The impact of integrating ACI 

in agent coordination was investigated by simulating a realistic shop as a multi-agent 

manufacturing system. In this disturbance, unreality was expressed in terms of mean 

time between failure and the mean time to repair. Another was source related 

disturbance including new order\job arrival and existing order\job cancellation. To 

types of agent coordination, namely coordination based on ACI (MAS + ACI) and 

coordination using FIFO dispatching rule (MAS + FIFO) were compared. Mean flow 

time, mean tardiness, throughput, buffer size and machine utilization was employed 

to measure the performance of the proposed approach. Results showed that a MAS 

+ACI reduced buffer size, max queue number, mean flow time and tardiness. 

Researchers concluded that a MAS+ACI were outperformed MAS + FIFO.   

 

Wang and Usher (2002) presented an agent-based job shop model which employed 

the contract-net protocol as an agent’s negotiation mechanism. In this study, two 

types of agents, named as job agents and machine cell agents, were used with pure 

hierarchical control structure. Researchers considered routing flexibility to provide 

more options for job agents. Average flow time and average queue time were 

selected as performance measurement. In order to measure the impact of the 

collaborative factor that was incorporated into the contract-net protocol on the 

performance, a job shop with five different loading levels were simulated. According 

to the findings, the collaborative factor did not have much effect on mean flow time 

when the system load is light, but a significant decrease was observed when the 

system was heavily loaded.  When they examined the average queue time for jobs at 

each machine cell, they observed that the negotiation scheme with the proposed 

factor reduced the WIP levels of the bottleneck machine cells when the system was 

under heavy load. Based on the simulation results, researchers concluded that the 

collaborative factor could improve the performance of the contract net-based 

negotiation scheme in agent-based scheduling problems. 

 

Wang et al. (2008) proposed a multi-agent approach to study the dynamic scheduling 

problem in a flexible manufacturing system (FMS) shop floor. The proposed 

approach was combined with a filtered beam search (FBS). Researchers aimed to 



48 

 

show the feasibility of the proposed approach and to evaluate the approach via 

computational experiments.  Dynamisms in this system were provided by new job 

arrivals. Minimization of a weighted quadratic tardiness function was selected as the 

objective function. There were two types of agents, a system optimal agent (SOA) 

and several cell-coordinated agents (CCAs). Cooperation and coordination among 

distributed CCAs and SOA were employed to realize the scheduling goal. Five 

modules, which were called as communication, cooperation and coordination, FBS-

based algorithm for decision making, execution and monitoring, human interface, 

were used. In addition to these modules, one local knowledge base and one capacity 

database were also included. FIPA CNIP-based negotiation protocol was selected. 

FBS was performed by filtering phase and beam selection phase. A prototype system 

was built to show the practicability of the proposed approach. The performance of 

the proposed scheduling scheme on the prototype system was compared to two 

dispatching rule combinations. Two dispatching rules were used for cell selection, 

named as dispatching by objective function value and dispatching by make-span, one 

dispatching rule for routing assignment, named as modified shortest processing time 

in the selected cell and one dispatching rule for determination of starting time of an 

operation on the selected machine. When the results on the performance of the 

average number of jobs tardy were investigated, researchers indicated that the quality 

of the global schedules generated with the proposed scheduling scheme was better 

than those of two dispatching-rue combinations. In addition, researchers sought the 

time required for a complete process of scheduling negotiation. They concluded that 

the proposed scheduling scheme was promising for real world implementation in 

multiple manufacturing cells of size.  



49 

 

Table 3.3  Examples of ABDOPSS (Baykasoğlu and U. Durmuşoğlu, 2012) 
 
 PROBLEM RELATED FEATURES (ROW 1) AGENT RELATED FEATURES (ROW 2) 

A
u

th
o

rs
 

T
it

le
 

S
ea

rc
h

 S
p

a
ce

 

O
b

je
ct

iv
e 

F
u

n
ct

io
n

 

D
y

n
a
m

is
m

 

C
o

n
st

ra
in

t 

D
y

n
a
m

is
m

 

P
a

ra
m

et
er

 

D
y

n
a
m

is
m

 

P
er

fo
rm

a
n

ce
 

M
ea

su
re

 

B
en

ch
m

a
rk

ed
 

A
p

p
li

ed
/ 

F
ra

m
ew

o
rk

 

R
ea

l 
L

if
e/

  
  
  

  
  

 

T
es

t 
P

ro
b

le
m

/ 
  

S
im

u
la

ti
o

n
 

N
u

m
b

er
 o

f 
A

g
en

ts
 

N
u

m
b

er
 o

f 
A

g
en

t 

T
y

p
es

 

C
o

m
m

u
n

ic
a

ti
o

n
 

T
y

p
e 

C
o

o
rd

in
a

ti
o
n

 

C
o

o
rd

in
a

ti
o
n

 

T
y

p
e 

P
o

p
u

la
ti

o
n

 T
y

p
e 

O
p

ti
m

iz
a

ti
o

n
 

M
ec

h
a

n
is

m
 

Pelta et al. (2009) 
A Study on Diversity and Cooperation 
in a Multi-agent Strategy for Dynamic 

Optimization Problems 

 

D 1 1 1 
OE 
Relative Error 

S B TP M 1 Direct 1 Cooperation S H 

Wang and Liu  (2010) 
An Agent Based Evolutionary Search to 
Dynamic Traveling Salesman Problem 

 

D 0 1 1 
Offline 
performance 

OM B TP PS 1 Direct 1 Collaborative S H 

Billiau and Ghose (2008) 

Robust, Flexible Multi-agent 

Optimization Using SBDO 
 

D 1 1 1 

Solution time 

Avg # iteration 
Quality 

OM B TP NA NA Direct 1 Data sharing NA H 

Máhr et al. (2010) 

Can agents measure up? A comparative 

study of an agent-based and on-line 
optimization approach for a drayage 

problem with uncertainty 

 

D 0 1 1 Total cost OM B R M 2 Direct 1 Data sharing NA 
MM 

H 

Voos (2009) 

Agent-Based Distributed Resource 

Allocation in Continuous Dynamic 

Systems 
 

S 0 1 1 
Allocated 
amounts of steam 

in the simulation 

NA B R M 3 Direct 1 Data sharing S MBA 

Li and Li (2009) 

A Multi-Agent Based Hybrid 

Framework for International Marketing 
Planning under Uncertainty 

 

D 0 1 1 - NA B P M 10 Direct 1 Data sharing NA Other 

Tang et al. (2004) 

Wireless-based Dynamic Optimization 

for Load Makeup Using Auction 
Mechanism 

 

D 0 1 1 
Transportation 
cost 

Dwell time  

OM B HS M 3 Direct 1 Decision aid S H 

Berro and Duthen (2001) 
Search for optimum in dynamic 
environment: a efficient agent-based 

method 

 

D 1 1 1 
Value of 
objective function 

 

OM B TP PS 1 Direct 0 - D H 

Jiang and Han (2008) 

Real Time Multi-agent Decision Making 

by Simulated Annealing 

 

D 1 1 1 

Scalability of SA 

algorithm, 

Relative payoff 
comparison 

OM B HS M 1 Indirect 0 - S H 



50 

 

A
u

th
o

rs
 

T
it

le
 

S
ea

rc
h

 S
p

a
ce

 

O
b

je
ct

iv
e 

F
u

n
ct

io
n

 

D
y

n
a
m

is
m

 

C
o

n
st

ra
in

t 

D
y

n
a
m

is
m

 

P
a

ra
m

et
er

 

D
y

n
a
m

is
m

 

P
er

fo
rm

a
n

ce
 

M
ea

su
re

 

B
en

ch
m

a
rk

ed
 

A
p

p
li

ed
/ 

F
ra

m
ew

o
rk

 

R
ea

l 
L

if
e/

  
  

  
  

  
 

T
es

t 
P

ro
b

le
m

/ 
  

S
im

u
la

ti
o

n
 

N
u

m
b

er
 o

f 
A

g
en

ts
 

N
u

m
b

er
 
o

f 
A

g
en

t 

T
y

p
es

 

C
o

m
m

u
n

ic
a

ti
o

n
 

T
y

p
e 

C
o

o
rd

in
a

ti
o
n

 

C
o

o
rd

in
a

ti
o
n

 

T
y

p
e 

P
o

p
u

la
ti

o
n

 T
y

p
e 

O
p

ti
m

iz
a

ti
o

n
 

M
ec

h
a

n
is

m
 

Zhou et al. (2008) 

Simulating the Generic Job Shop as a 

Multi-Agent System 
 

D 0 1 1 

M. Flow Time 

 WIP 

Buffer size 
Resource 

Utilization 

OM B HS M 6 Direct 1 Data sharing S MM 

González et al. (2010) 
A cooperative strategy for solving 

dynamic optimization problems 
 

D 1 1 1 
OE, 

M. Fitness Error 
OM B TP D 1 Direct 1 Centralized S H 

Lepagnot et al. (2010) 
A new multi-agent algorithm for 
dynamic Continuous optimization 

 

D 1 1 1 
OE, 
standard 

deviations 

OM B TP D 2 Indirect 1 Coordination D H 

Yan et al. (2010) 
Agent based Evolutionary Dynamic 

Optimization 

 

D 0 0 1 OE OM B TP PS 1 NA  Competition S H 

Hanna and Cagan (2009) 

Evolutionary Multi-Agent Systems: An 
Adaptive and Dynamic Approach  to 

Optimization 

 

0/1 0/1 0/1 0/1 - NA F - PS 1 NA 1 
Data sharing, 

decision aid 
S H 

Pelta et al. (2009) 

Simple control rules in a cooperative 

system for dynamic optimization 

problems 
 

D 1 1 1 OE OM B TP M 1 Direct 1 Data sharing S H 

Xiang and Lee (2008) 

Ant colony intelligence in multi-agent 

dynamic manufacturing scheduling 
 

D 0 1 1 

M. flow time, 

M. tardiness, 
throughput, 

buffer size 

machine 
utilization 

S B HS M 4 Indirect 1 Data sharing S H 

Wang and Usher (2002) 

An Agent-Based Approach for Flexible 

Routing in Dynamic Job Shop 
Scheduling 

 

D 0 1 1 M. flow time S B HS M 2 
Negotia

tion 
1 

Contract Net 

(negotiation) 
NA 

Bidding 
mechani

sm 

Wang et al. (2008) 

FBS-enhanced agent-based dynamic 

scheduling in FMS 

 

D 0 1 1 

Avr. 
value of system 

objective function 

Avr. 
#  jobs tardy 

S B 
HS 

(Protoype) 
M 2 

Negotia
tion 

1 Negotiation NA H 



 51 

3.7 Concluding Remarks  

This chapter proposes a classification scheme (ABDOPPS: Agent Based Dynamic 

Optimization Problem Solution Strategy) for agent-based approaches which are 

employed for solving Dynamic Optimization Problems (DOPs). In this chapter, 18 

typical articles providing agent-based solutions to the DOPs are scanned through the 

literature and represented using the ABDOPPS.  

 

The ABDOPPs is expected to be beneficial to researchers in many ways. Similarities 

of the features located in ABDOPPS can be used to define classes of solution 

strategies by their descriptions. In this regard, classes of the problems may orient 

researchers to focus on certain strategies. Using the dynamism related features of the 

corresponding DOPs presented in ABDOPPS, unpredictability levels of certain 

problems can be determined and be used to reclassify problems. These representation 

forms can also be used to discover the role of presented features and their importance 

for solution quality.  



 52 

CHAPTER 4 

 

AGENT-BASED MODELING 

 

 

4.1 Introduction 

Several applications and theoretical approaches, which utilize agent-based modeling 

methodologies, have been discussed through Chapter 2 and Chapter 3. Being 

different then the Chapter 2 & Chapter 3, this chapter will discuss two popular 

software/platform, AnyLogic and NetLogo (used for agent-based modeling) and their 

pros and cons separately. Although those platforms are evolving by the time, current 

versions will be issued in this chapter. For the easiness of reading, it is worth to state 

that, that software which is structured to perform agent-based modeling will be called 

as “agent technology” throughout this chapter. 

 

 

4.2 Is It Worth to Use Agent Technology? 

Agent-based modeling has been a purely academic topic up to now. However, the 

increasing demand for business optimization caused leading modelers looking at 

combined approaches to gain a deeper insight into complex interdependent processes 

having very different natures. Therefore, agent-based modeling using agent 

technology is expected to beneficial for many of the dynamical cases. However, 

there are some concerns that should be taken into account to take full benefits of 

agent-based modeling. Its computational affordability and easiness of developing 

models and some other relevant factors should be carefully considered before the use 

of agent-based modeling. A cost-benefit can be performed to see if it is vital to used 

agent technology. Sometimes it can very difficult and challenging to model 

sophisticated systems. As Wilensky (1999), states that even using something as 

simple as NetLogo can be challenging for those with little programming skill. 

Although some commercial solutions are provided via software packages like 

http://jasss.soc.surrey.ac.uk/13/4/7.html#wilensky1999


 53 

AnyLogic, NetLogo, StarLogo, Simpack, AgentBuilder, JADE, JAS, and SEAS 

etc…, it is crucial to know the programming language behind those packages since 

some adjustments may be very critical to model the real system. Table 4.1 lists some 

of those software packages, their domain and the programming language behind 

them. Table 4.1 has been gathered and abstracted from Wikipedia 

(http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software)  

 

Table 4.1 Agent Technology Platforms 

Platform Primary Domain Programming Language 

AgentBuilder  
General purpose multi-

agent systems 

Knowledge Query and 

Manipulation Language 

(KQML); Java; C; C++ 

AnyLogic 

Agent-based general 

purpose;  

Distributed simulations 

Java; UML-RT (UML for 

real time) 

JADE 

Distributed applications 

composed of autonomous 

entities 

Java 

JAMEL (Java Agent-

based MacroEconomic 

Laboratory)  

Building agent-based 

macroeconomic 

simulations 

No programming required 

JAS  
General purpose agent 

based 
Java 

JASA (Java Auction 

Simulator API)  

Computational economics;  

Agent-based 

computational economics 

Java 

jES (Java Enterprise 

Simulator)  

A single enterprise or a 

system of enterprises 
Java 

SEAS (System 

Effectiveness Analysis 

Simulation)  

The US Air Force's Multi-

Agent Theater Operations 

Simulation 

Tactical Programming 

Language (TPL) 

Jade’s sim++ 

Parallel simulation; 

Applied simulations; 

Network planning; 

Electronic CAD;  

Real time communication 

simulation 

C++ 

SimAgent  

Research and teaching 

related to the development 

of interacting agents in 

environments of various 

degrees and kinds of 

complexity 

Pop-11, like Common Lisp, 

is a powerful extendable 

multi-purpose programming 

language supporting multiple 

paradigms.  

http://en.wikipedia.org/wiki/Java_Agent_Development_Framework
http://en.wikipedia.org/w/index.php?title=Java_Agent-based_MacroEconomic_Laboratory&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Java_Auction_Simulator_API&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Java_Auction_Simulator_API&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Java_Enterprise_Simulator&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Java_Enterprise_Simulator&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=System_Effectiveness_Analysis_Simulation&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=System_Effectiveness_Analysis_Simulation&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=System_Effectiveness_Analysis_Simulation&action=edit&redlink=1


 54 

Platform Primary Domain Programming Language 

StarLogo 

Social and natural 

sciences; educators; for 

students to model the 

behavior of decentralized 

systems 

StarLogo (extension of 

Logo) 

NetLogo 

Social and natural 

sciences; help beginning 

users get started authoring 

models 

NetLogo 

 

 

4.3 AnyLogic 

AnyLogic has been a commercial solution introduced as a simulation-modeling tool. 

It was developed by XJ Technologies. It
 
has been agent-modeling software with 

numerous advantages differentiating it from the others. With the solution provided 

by AnyLogic; different simulation approaches system dynamics (SDs), discrete 

events (DEs) and agent-based simulation (ABS) has been in use in the same model 

(this feature is named as multi-method modeling by XJ Technologies) as 

demonstrated in Figure 4.1.  

 

 

Figure 4.1 Abstraction levels of AnyLogic (http://en.wikipedia.org/wiki/AnyLogic) 

 

Thereby, it is avoided to consider all models in a single approach. With the visual 

environment utilities of AnyLogic, development cost and time has correspondingly 



 55 

decreased. On the other hand, AnyLogic makes it available to use and insert JAVA 

code to any place of the program, which gives the flexibility to user to adapt their 

models for their needs. Beside this facility, it has been possible to create a JAVA 

applet for all working models and thereby it can run anywhere without depending on 

the operating system.  

 

The latest major version, AnyLogic 6.8, was released in 2012. The platform for 

AnyLogic 6.8 model development environment is Eclipse. AnyLogic 6.8 is cross-

platform simulation software as far as it works on Windows, Mac OS and Linux. 

AnyLogic 6.8 covers the fundamental elements listed below: 

 

Stock and Flow Diagrams are used for System Dynamics modeling. It is possible 

define stock and flow variables one by one or using a flow tool. Shadow variables 

can also be added for easiness of readability of the models. Table functions can be 

employed to see interpolation between variables. Array variables with an arbitrary 

number of dimensions can also be used. One of the notable features of AnyLogic 

stock and flow diagram is that the dependency arrows are always synchronized with 

the actual formulas; that is, the dependency arrow from A to B appears automatically 

if you type A in the formula of B and disappear when you exclude A. For flow 

arrows, it also works the other way around; if you delete the arrow, A will be 

excluded from the formula of B (XJ Technologies, 2012). Figure 4.2 illustrates view 

of stock and flow diagram from Anylogic. 

 

 

Figure 4.2 Stock and flow diagram from Anylogic. 

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Eclipse_(software)


 56 

 

State charts are used mostly in Agent Based modeling to define agent behavior. 

They are also often used in Discrete Event modeling, e.g. to simulate machine 

failure. State represents a location of control with a particular set of reactions to 

conditions and/or events. A state can be either simple or, if it contains other states, 

composite. Control always resides in one of simple states, but the current set of 

reactions is a union of those of the current simple state and of all composite states 

containing it -i.e., a transition exiting any of these states may be taken (XJ 

Technologies, 2012). Figure 4.3 illustrates view of State Charts from Anylogic. 

 

 

Figure 4.3 State charts of Anylogic. 

 

Action charts are the charts that are employed to define algorithms. They may be 

used in discrete event modeling, e.g. for call routing, or in agent-based modeling, e.g. 

for agent decision logic. Complex simulation modeling cannot go without algorithms 

that usually perform some data processing or calculations. Action charts are very 

helpful since using them you can define algorithms even if you are not familiar with 

syntax of Java operators. In fact, action chart visually defines a function and it can be 

used for ordinary AnyLogic functions. However, using action charts gives one 



 57 

benefit that is more evident: it visualizes the implemented algorithm, making it more 

intuitive to other users. Figure 4.4 illustrates view of action charts from Anylogic. 

 

 

Figure 4.4 Action charts of Anylogic. 

 



 58 

Process flowcharts are the basic construction used to define process in discrete 

event modeling. Looking at this flowchart you may see why discrete event style is 

often called Process Centric. 

 

The language also includes low level modeling constructions (variables, equations, 

parameters, events etc.), presentation shapes (lines, polylines, ovals etc.), analysis 

facilities (datasets, histograms, plots), connectivity tools, standard images, and 

experiments frameworks. Figure 4.5 illustrates view of process flow chart of 

Anylogic. 

 

 

Figure 4.5 Process flow chart of Anylogic 

 

AnyLogic includes a graphical modeling language and allows the user to extend 

simulation models with Java code. The Java nature of AnyLogic lends itself to 

custom model extensions via Java coding as well as the creation of Java applets, 

which can be opened with any standard browser. These applets make AnyLogic 

models very easy to share or place on websites. In addition to Java applets the 

Professional version allows for the creation of Java runtime applications which can 

be distributed to users. These pure Java applications can be a base for decision 

support tools. 

 



 59 

4.4 NetLogo 

NetLogo is a multi-agent programmable modeling environment. It has become very 

popular in recent years (Wilensky, 1999). It is used by different interest groups like 

students, instructors and researchers. NetLogo was first created in 1999 by Uri 

Wilensky at the Center for Connected Learning and Computer-Based Modeling, then 

at Tufts University in the Boston area. NetLogo grew out of StarLogoT, which was 

authored by Wilensky in 1997. In 2000, the CCL moved to Northwestern University, 

in the Chicago area. NetLogo 1.0 came out in 2002, 2.0 in 2003, 3.0 in 2005, 4.0 in 

2007, 4.1 in 2009, and 5.0 in 2012. NetLogo is written mostly in Scala, with some 

parts in Java. Scala code compiles to Java byte code and is fully interoperable with 

Java and other JVM languages. NetLogo does include a compiler that generates Java 

byte code. However, this compiler does not yet support the entire language, so some 

parts of user code are interpreted. We are working on expanding the compiler to 

support the entire language. Note that our compiler generates Java byte code, and 

Java virtual machines have "just-in-time" compilers that in turn compile Java byte 

code all the way to native code, so much user code is ultimately translated to native 

code. 



 60 

 

Figure 4.6 An example to interface of NetLogo 

 

The NetLogo software is made up of agents. Agents are the utilities that can 

understand instructions and obey the defined rules. A NetLogo model consists of 

four types of agents, which are turtles, patches, links, and the observer. Turtles are a 

kind of agents that move around in the environment. The environment is two-

dimensional and is divided up into a grid of patches. Each patch is a square piece of 

"ground" over which turtles can move. Links are agents that connect two turtles. The 

observer does not have a certain location and it only observes the environment form 

an overall view.  On the other hand, it remarkable to state that, the observer does not 

witness the events just inactively, it also coaches to the other agents. When NetLogo 

is started up, no turtle exist in the system. The observer is able to create new turtles 

for the designed system. Patches are also able to create new turtles. Patches cannot 

move, but otherwise they are just as "alive" as turtles. Patches have coordinates. The 

patch at coordinates (0, 0) is called the origin and the coordinates of the other patches 

are the horizontal and vertical distances from this one. Turtles have coordinates too: 

xcor and ycor. A patch's coordinates are always integers, but a turtle's coordinates 



 61 

can have decimals. This means that a turtle can be positioned at any point within its 

patch; it does not have to be in the center of the patch. Links do not have coordinates. 

Every link has two ends, and each end is a turtle. A link is represented visually as a 

line connecting the two turtles. If a turtle dies, the corresponding link dies 

immediately too.  

 

4.4 Concluding Remarks 

There are a numerous tools and commercial solutions provided for agent-based 

modeling. All of those tools and software have both different advantages and 

disadvantages changing by the objectives of their developers. Therefore, it is usually 

very difficult prefer one to the other where one may not provide all of the desired 

facilities and utilities. It is also remarkable to state that all of those platforms are still 

in improvement and it is still certain which will be functioning much in near future. 

Existing’s platforms most important lack appears to deficiency of examples and good 

documentation about the defined classes. 



 62 

CHAPTER 5 

SYSTEM DESCRIPTION 

 

 

5.1 Introduction 

Travelling Salesman Problem (TSP) is one of the classical operation research 

problems, which consists of “n number of cities” where, each city is visited once 

using an optimal route. Similarly, Generalized Travelling Salesman Problem (GTSP) 

covers “c number clusters” where, each cluster is visited once by visiting one of city 

of the each cluster using an optimal route. These definitions of TSP and GTSP cover 

typical and classical versions of their types. However, in some specific cases, 

assumptions of classical TSP and GTSP may not be satisfactorily enough to reflect 

physical reality and dynamism of actual systems. During solution of those problems, 

some cities may be added to city domain or some may leave the system. In those 

circumstances, the assumption of keeping the number of cities constant fails. 

Consequently, “a solution provided for a specific to state defined for a time” may 

lose its superiority immediately after these unexpected changes.  

 

In this respect, these dynamic types of TSP and GTSP may not be modeled with the 

conventional research methods since much time and memory spaces are required to 

setup novel models and solve them repeatedly. Multi agent-based systems, a 

relatively new area of distributed artificial intelligence, provide strategies that are 

more effective for the management of such dynamic environments. With those 

considerations in mind, this chapter covers different agent-based solution 

policies/strategies for providing promising solutions to different problems in domain 

of TSP. It is remarkable to state here that, promising solutions mentioned here do not 

equally mean the optimal solutions, it is rather the feasible solutions obtained in 

affordable time and in an acceptable level as demonstrated in Figure 5.1.   

 



 63 

 

Figure 5.1 Different modeling approaches in reaching optimum in dynamic situations 

(http://www.whitestein.com/library/company-and-product-resources). 

 

A continuous agent based simulation approach was used to simulate TSP and its 

variants and was programmed using AnyLogic by XJ Technologies. As a final 

product, user-friendly software with adjustable parameters has been developed 

(Codes of this developed software can be found in Appendix A).  

 

Two main solution strategies are proposed for the solution of the defined problem 

types in this chapter. One is competition of agents without a heuristic and the other is 

competition of agents using Great Deluge Algorithm (GDA). Results obtained via 

those strategies have been compared with the solutions provided for static snapshots 

of certain time slots. It has been understood that, agents-based adaptable and 

continuous strategies outperforms the conventional approaches. 

 

5.2 Problem Statement 

For many companies, only a subset of customers require a pickup or delivery each 

day (Campbell, 2006). Therefore, number cities to be visited by a delivery company 

may change on daily base. Some new deliveries can also be received from the visited 

addresses. Thereby, some new destinations are added to the current visit plan. In this 

respect, solving a classical travelling salesman problem (TSP), which has constant 

number of cities to be visited, may not provide satisfactory solutions for this real 

case. As Chang et. al, (2009) state, improper application of routing or scheduling 

http://www.whitestein.com/library/company-and-product-resources


 64 

policy on any such stochastic and dynamic service network often results in 

dissatisfied customers for late service.  

 

In this respect, handling classical TSP problem as Dynamic TSP (DTSP) may avoid 

such customer dissatisfactions and inefficiencies. These unexpected changes in the 

number of cities transform a TSP into a Dynamic TSP (DTSP). One of the simplest 

ways to react to environmental changes in such dynamic problems is to consider each 

change as the arrival of a new problem and restart the algorithm to solve it from 

scratch (Raman and Talbot, 1993). However, remodeling and resolving of a problem 

repeatedly may consume too much time and resource.  

 

With or without time windows, traveling salesman problem (TSP) is already NP-hard 

in deterministic settings (Savelsbergh, 1984). For small instances, it may be no 

problem to generate all solutions and pick the shortest, but when the number of cities 

increases the number of possible solutions ‘explodes’ (Eyckelhof and Snoek, 2002). 

Within this domain, heuristics that find acceptable solutions using an acceptable 

amount of resources are necessary (Eyckelhof and Snoek, 2002). Since, we can 

always wait longer for a solution in static optimization problems; in dynamic 

optimization problems, the trade-off between performance and time complexity is 

determined by the problem difficulty and the relationship between the rate of change 

and the available computing resources (Kang et al., 2004). In this respect, most cost, 

too much time to gain good solutions, so the general algorithms are inefficient (Li et 

al., 2006).  

 

However, multi agent-based systems can provide strategies that are more effective 

than those conventional approaches. Intelligent agents, which are capable of 

informing each other and negotiating some decisions about path selection, can 

effectively modify existing solution in their hand, without remodeling and resolving 

the problem. Thus, considerable amount of time and memory space can be saved 

using agent-based modeling. 

 

There is limited number of studies on DTSP. One of these studies was performed by 

Eyckelhof and Snoek (2002). In their paper, dynamism occurs due to change in travel 



 65 

times between the cities and they present a new “ant system approach” for solution 

of DTSP. 

 

Huang et al. (2001) considers a DTSP where the relative position between each other 

city is indefinite and there can be changes in the connecting relations of some cities. 

They present a framework providing differences between TSP and DTSP. 

Mavrovouniotis and Yang (2010), define a problem type where cities are replaced by 

new ones during the execution of an algorithm. They investigate a hybridized Ant 

Colony Optimization (ACO) with local search, called Memetic ACO (M-ACO)  

 

Takahashi (1998) also developed a mathematical framework for solving DTSP with 

adaptive networks and provided a particular example of solving DTSP method. In his 

DTSP, distance between any pair of cities in the TSP is extended into a time variable. 

 

Wang and Liu (2010) presented an agent-based evolutionary search algorithm (AES) 

for solving dynamic travelling salesman problem (DTSP). In their study, the term 

agent indicates a candidate position in the search space. Agents reside in a lattice-like 

environment and a collection of such agents is termed as population. They apply a 

recombination and local updating procedure to the fittest agent referring to a 

predefined neighborhood. They also combine the perturbation learning strategy to 

further reinforce the performance of the local updating rule and hope to seek the 

global optimum rapidly under changing environments. Dynamic version of KroA100 

TSP is selected as the case of implementation. 

 

Psaraftis (1988) stated that DTSP is in the preliminary stages and many open 

questions need to be discussed. Although there have several studies conducted on 

different types of DTSP, his claim still appears to be valid. As discussed through the 

previous studies, variability in number of cities has not been considered much yet.  

 

This chapter provides different agent-based solution approaches for one dynamic 

TSP and four different types of dynamic Generalized Travelling Salesman Problem 

(DGTSP). In these variants of TSPs, a salesman with a vehicle starts transporting the 

deliveries from their pick-up locations to their delivery locations. Consequently, this 

salesman visits certain number of cities at different coordinates (geographical 



 66 

coordinates) and returns to the initial city at the end of tour. Existing customers can 

be lost or new customers can arrive to the system thereby new cities can appear or 

disappear in the visit plan. This arrivals and departures from problem set occur with 

known statistical distributions that change with the time in the problem horizon. 

Customers can be served in any sequence. However, final objective is to minimize 

the total touring/routing time. Each processing sequence of customers defines a route 

of the vehicle. On each route, the vehicle moves from one customer to another, just 

spending time in traveling among customers at their locations. The vehicle(s) travel 

according to the Euclidean metric and their velocity is constant.  

 

The rest of this chapter is organized as follow; in Section 5.3, problem types and 

initial setups for them are introduced; Section 5.4 presents the test study and its 

structure. Section 5.5 provides agent-based simulation results, and finally in Section 

5.6 conclusions are drawn. 

 

 

5.3 Problem Types and Initial Setups 

In this section, problem types are formally defined. Within the content of this PhD 

thesis, one dynamic TSP and four different types of dynamic GTSP are issued for 

testing and comparing purposes. Before introducing these dynamic variants of TSPs 

it will be better to define their classical forms.  

 

Given a list of cities and their pairwise distances, the traveling salesman problem 

(TSP) is to find the shortest tour that visits each city once and returns to its original 

city (Flood, 1995). 

 

The generalized traveling salesman problem (GTSP) is a generalization of the 

traveling salesman problem (TSP), one of the outstanding intractable combinatorial 

optimization problems. In the GTSP problem, we are given n cities that are grouped 

into mutually disjoint districts (clusters) and nonnegative distances between the cities 

in different districts. A traveling salesman has to find the shortest tour that visits 

exactly one city in each district (Dimitrijević and Šarić, 1997). 

 



 67 

Features of TSP variants considered in this thesis are as tabularized in Table 5.1. TSP 

and GTSPs that are within content of this chapter are all dynamic optimization 

problems (DOPs) where cities can be added or removed from the system at any time. 

Since there is high dynamism, all solution approaches are based on agent-based 

modeling where this dynamism is handled much easily. 

 

In problem type 1, where Dynamic TSP is considered, objective function is to 

minimize the total cost of tour. With that purpose in mind, each city is modeled as an 

agent. Those city agents are authorized to communicate with general-manager agent 

(GMA). GMA is a central agent that is responsible to initialize auctions, create other 

city agents and make final decisions about the routes. Whenever GMA requires 

initializing an auction, it informs city agents and asks for their bids. There is also a 

vehicle agent, which is responsible from the delivery and transportation of loads.  

 

Problem type 2 and problem type 3 cover Dynamic GTSP where a city from each 

region/cluster must be visited while trying to minimize the total cost of a tour. GTSP 

is a generalization of the well-known Traveling Salesman Problem (TSP) (Bontoux 

et al., 2010). In these types, there are regional agents (RAs), which are responsible 

from all activities about the cities located in their regions. Whenever GMA initializes 

an auction, GMA informs all RAs and asks for their bids. RAs evaluate the 

possibilities within their regions and provide bids for the open auctions.  

 

Difference of type 2 and type 3 problems is only the region determination strategies 

that they employ. These region determination strategies are discussed in section 5.8 

with details. 

 

 

 

 

 

 

 

 

 



 68 

Table 5.1 Problem types and their properties 

Problem 

Type: 

Type 1 Type 2 Type 3 Type 4 Type 5 

Problem 

Name: 

Dynamic TSP GTSP where 

regions are 

predefined 

GTSP where 

regions are 

defined via a 

clustering 

algorithm 

Total cost of TSP 

& GTSP where 

regions are 

predefined 

Total cost of TSP 

& GTSP where 

regions are 

defined via a 

clustering 

algorithm 

Objective 

Function: 

Minimize tour 

cost 

Minimize tour 

cost 

Minimize tour 

cost 

Minimize sum of 

main tour 

(GTSP) costs and 

local tour (TSP) 

costs  

Minimize sum of 

main tour 

(GTSP) costs and 

local tour (TSP) 

costs 

Agents: City Agents, 

General 

Manager Agent,  

Vehicle Agent 

Region Agents, 

General Manager 

Agent,  

Vehicle Agent 

Region Agents, 

General Manager 

Agent,  

Vehicle Agent 

Region Agents, 

General Manager 

Agent,  

Vehicle Agent, 

Local Vehicle 

Agents  

Region Agents, 

General Manager 

Agent,  

Vehicle Agent, 

Local Vehicle 

Agents 

Initial tour 

determinatio

n strategies: 

*Agent 

competition if 

home city is 

predetermined 

 

** Great 

Deluge 

Determines 

*Agent 

competition if 

home city is 

predetermined 

 

** Great Deluge 

Determines 

 

*Agent 

competition if 

home city is 

predetermined 

 

** Great Deluge 

Determines 

 

*Agent 

competition if 

home city is 

predetermined 

 

** Great Deluge 

Determines 

 

*Agent 

competition if 

home city is 

predetermined 

 

** Great Deluge 

Determines 

 

Clustering 

Strategies 

N/A Location of 

clusters is 

already defined.  

Therefore, 

location of a 

created city 

determines the 

cluster of that 

city. 

 Two different 

clustering 

algorithms are 

employed. 

Location of 

clusters is 

already defined. 

Therefore, 

location of a 

created city 

determines the 

cluster of that 

city. 

Two different 

clustering 

algorithms are 

employed. 

 

Problem type 4 and problem type 5 cover both Dynamic GTSP and Dynamic TSP as 

described in Figure 5.1. Objective function in these types include total cost that is 

generated by the grand tour (tour of GTSP where a city from each region is visited 

by vehicle agent- Cost A in Figure 5.2) and by the local tour (where vehicle agents 

visit all cities within a region- Cost B, C, D in Figure 5.2). Difference of these type 4 

and type 5 problems is only the region determination strategies that they employ. 

These region determination strategies are discussed in section 5.8 with details. 

 



 69 

 

Figure 5.2 Figurative illustration problem type 4 and problem type 5 

 

All tasks of agents are defined with the state charts in AnyLogic. The state chart of 

GMA is as illustrated in Figure 5.3. 

 

 



 70 

 

Figure 5.3 State chart of GMA defining the tasks to do 

 

5.4 Problem Input Settings 

There are some common and user defined initialization features and fundamental 

principles regarding the all problem kinds. These features and principles are very 

crucial to understand solution strategies. One is about naming and generating cities 

and regions. In all of problem types, initial number of cities is determined by the 

user. Cities are then created randomly in a user-defined environment (that has 1000 

unit of width and 1000 unit of length maximum). Creation order of cities is used as 

the city id (the fifth randomly selected city is named as City 5).  

 

For the problem types where regions are predetermined (type 2, type 4), regions are 

also named consecutively according to the row and column that they are located. If a 

city is in k
th

 row and j
th

 column then the cluster/region of that city is [(j-1)* number 

of rows +k] as illustrated in Figure 5.4. 

 



 71 

 

Figure 5.4 Determination of region number 

 

If regions are not predetermined (problem type 3 and type 5) and then the region 

having the City 1 is named as Region 1 and then the new regions are named 

consecutively based on distance to center of Region 1.   

 

For home-city and home-region selection, users have three options to select. Home 

city/region is determined by using one of the methods listed below: 

 

1- The first city that is randomly created is accepted as the home city / region of 

the first randomly created city is accepted as the home region 

 

2- User can select the home city/ user can select home region from the existing 

regions. Since user may not have idea about total number of regions that will 

be generated, he/she may select a non-existing region number. If that is the 

case, then the region having the biggest id is selected.  

 

3- Any city can be home city that is decreasing the total cost; any region can be 

home region that is decreasing the total cost. 

 

All of these initial settings are performed via a user-friendly interface with adjustable 

buttons as illustrated in Figure in 5.5. 

 



 72 

 

Figure 5.5 AnyLogic interface of the software for input settings 

 

There are two main solution strategies employed for all of problem types that are 

defined for this section. One is competition of agents without a heuristic and the 

other is competition of agents using Great Deluge Algorithm (GDA). 

 

5.5 Agent Competition Strategy 

In agent competition strategy, where home city is defined, for dynamic TSP 

(Problem Type 1), each city agent delivers a bid to be connected to the home city. 

The agent offering the best bid (having the minimum cost) is then linked to the home 

city. After remaining agents delivers bid to be connected to the next agent (the agent 

that was connected to the home city). This process is followed until all cities are 

visited. Home city is automatically added to the last city of tour to obtain a 

completed tour. The agent competition strategy does not include the case where 

“home city can be any city” option.  

 

In dynamic GTSP problems (in type 2 and type 3), if home region is determined but 

home city is not determined yet; then the first city of the region (having the smallest 

ID) is considered as the first candidate home city. General-manager agent asks all 

other region agents to offer their bids to be connected to candidate home city. 

Regional agents check all cities in their region to be connected to the candidate home 

city and they deliver their minimum bids to General Manager Agent (GMA). The 

region agent (RA) giving the best bid (suggesting the minimum cost to be connected) 

becomes winner agent. Suggested city of the winner agent is assumed as the city to 

be visited after the first candidate home city. Similarly, all unassigned remaining 



 73 

RAs provide their bids to be added to the subsequent home city candidate (winner of 

the previous competition). Figure 5.6 represents the corresponding flow. This 

procedure is repeated until a complete tour is obtained. GMA keeps the best 

alternative for the state where the first city in the home region is candidate of being 

home-city.  

 

Subsequently the second city in the home region is assumed as the second candidate 

of being home city and the same procedure is applied. After all those applied, at final 

step, GMA have different tour arrangement alternatives where each is the best for 

different home city alternatives. In this respect, GMA selects the alternative with 

minimum cost. Too many alternatives have been tested with the defined 

methodology. However, solution of the problem is expected to have less time 

compared to conventional methods since RAs evaluate their alternatives parallel to 

each other (simultaneously) and this helps to save time.  The agent competition 

strategy does not include the case where “home region can be any region” option. 

 

 

Figure 5.6 A figurative illustration of agent competition for GTSP 

 

In problem type 4 and type 5, there are two tours to be performed. The first is the 

grand tour where exactly one city is visited from each region. The second is the 

regional tour where each city of the region is visited once and home city is visited at 



 74 

the end.  Here each RAs performs different regional tour alternatives using GDA and 

keep the best tours each starting with different cities of that region to report the 

GMA. If home region is determined but home city is not determined yet; then the 

first city of the region (having the smallest ID) is considered as the first candidate 

home city. Then, GMA asks all other region agents to offer their bids to be connected 

to candidate home city. Different from problem type 2 and problem type 3, each RA 

produce their alternative bids, including both total cost of their regional tours and the 

grant tours. However, RAs only deliver the alternative that has the smallest cost. The 

procedure is followed until several full-length tour alternatives are determined.   

 

5.6 Heuristic-Based Agent Competition Strategy 

Due to their characteristics, ABMs have been recently using as a promising heuristic 

techniques to solve problems whose domains are distributed, complex and 

heterogeneous (Barbati et. al, 2012). TSP has been a popular problem where various 

local search algorithms have been suggested for (Cowling and Keuthen, 2005). In 

this respect Great Deluge Algorithm has been adapted to solve the defined TSP 

variants. GDA is a heuristic first introduced by Dueck in 1993. It has been relatively 

a novel and simple algorithm applied to optimization problems. Since it needs only 

one basic parameter to setup, it is very attractive for solving optimization problems 

(Baykasoğlu, 2012). It has also several similarities with the simulated annealing 

algorithm (SA). As in case of SA; GDA may accept worse candidate solutions (than 

the current one) during its run (Burke et al., 2004). Great Deluge Algorithm (GDA) 

is employed for the searches of the difficult problems, where it can be too difficult to 

obtain exact and optimal solutions early such as dynamic problems like TSP. 

 

The pseudo-code of a variant of GDA employed for this work is given in Figure 5.7. 

In implementation of the GDA, the algorithm is initialized with a random solution s. 

A numerical value of initial cost/badness is computed for s and thereby it is 

undesirability is measured. The higher the value of cost/badness ((f(s)) the more 

undesirable is the initial random solution. Another numerical value called the 

tolerance (B) is included as being equal to the initial cost.  

 



 75 

 

 

 

 

 

 

 

Figure 5.7 The pseudo code for the implemented GDA 

The worse solutions are accepted if its fitness is less than or equal to some given 

upper limit B (in the paper by Dueck (1993) it was called a “level”).  If s* is worse 

than tolerance/upper limit B, a different neighbors* of S is chosen and the process 

repeated. If all the neighbors of s produce approximate solutions beyond tolerance 

(B), then the algorithm is terminated and s* is put forward as the best approximate 

solution obtained. 

 

Initial tour determination strategy: For dynamic TSP (problem type 1) using Great 

Deluge Algorithm (GDA), is fully random. Random numbers are produced to 

determine the next city for a tour. Since double visiting is not allowed for TSP, 

random numbers that are corresponding to an existing city in the visit plan, it is 

reproduced until a new city is added. 

 

If problem type is GTSP (type 2, type 3, type 4 and type 5) then a random floating 

number is produced such as 3.5. First part of this number (it is 3 in the given 

example) indicates the region to be selected. According to the number of cities in that 

region (assumed as 4 for the given example) a random city is selected by multiplying 

the floating part with the number of cities in that cluster/region (0.5*4=2 then City 2 

is selected)  

 

Neighborhood generation strategy: There are two strategies to generate 

neighborhood. One is swapping where two randomly selected cities are interchanged. 

Set the initial solution s 

Calculation initial cost function f(s) 

Initial level B=f(s) 

Specify input parameter ∆B 

While further improvements is impossible 

      Define neighborhood N(s) 

      Randomly select the candidate solution s* ε N(s) 

      Calculate f(s
*
) 

      If  f(s
*
) ≤ f(s) 

      Then accept s* 

      Else if  f(s
*
) ≤ B 

             Then accept s* 

      Lower the level  B = B - ∆B 



 76 

In this strategy, two random numbers are generated to determine the order of the 

cities to be changed.  

 

In the second strategy, a random number is generated and all the cities that are 

following the selected city is taken from its location and added to home city.  

 

Beside those two neighborhood generation strategies, user interface also presents an 

option to change of cities without changing the order of clusters/regions. There is 

also an option to avoid having same solutions in the solution set defined for GDA. 

 

There are two options for stopping the iterations. One is defining the consecutive 

number of non-improving solutions and the other is maximum number of iterations. 

 

Being different then the “agent competition strategy” here agents offer their bids 

according to the findings of GDA. Other mechanisms are very similar to the agent 

competition strategy. 

 

5.7 New City Arrivals 

In case of new city arrival for dynamic TSP (problem type 1), general manager agent 

(GMA) informs all city agents about the new city and asks them to possibility of 

adding that new city to their existing paths. As demonstrated in Figure 5.8., each city 

agent calculates the possible increase in the total cost of that tour if that new city is 

added to its route as the follower city. City agents then deliver the calculated cost 

value to the GMA. GMA selects the minimum bid, which is equivalent to selection 

of the agent giving the least cost increase.  

 

 



 77 

Those calculated “cost differences” may be calculated for an already visited city or 

for an unvisited city. Thereby, two strategies exist here. If the option “next tour is 

selected” all agents deliver their bids but if “same tour option” is selected then only 

unvisited agents deliver a bid. If the winner of bids is an already visited agent for 

“next tour is selected” option, then the city is planned to be added in the next tour. 

Otherwise, city is added to existing tour. Thereby an agent is created and assigned 

for that city and the vehicle agent is informed about this newly added agent.  

Figure 5.8 Competition of the agents when new city arrives to the system 

 

In case of new city arrival, for dynamic GTSP where regions are predefined 

(problem type 2), then region of the city is found. If that city is the unique city in its 

region, then that city is added to visit plan and a region agent is created for that 

cluster. If that city is not the unique city for that region which has not been visited 

yet, then possibility of planning that new city to be visited is calculated. If total cost 

for the tour decreases then, new city is added as planned city, otherwise no change is 

required for the visit plan. 

 



 78 

 

 

Figure 5.9 Statecharts defining the tasks to be performed for new city arrival to 

GTSP 

 

If a new city appears in the case where, grand tours and regional tours are both 

considered and regions are predefined (problem type 4), then region of the city is 

found. If that city is the unique city in its region, then that city is added to visit plan 

and a region agent is created for that cluster.  

 

If that city is not the unique city for that unvisited region, then firstly; home city of 

that region is kept constant and possibility of adding it behind the other cities is 

calculated. The minimum total cost found among those possible additions are saved 



 79 

as COST A. Subsequently, possibility of assigning that new city as a home city (if 

existing home-city has not been visited yet) is searched. For that purpose, Great 

Deluge Algorithm (GDA) is asked to determine the regional tour cost if that new city 

becomes the home city for that region. This possibility also changes the grand tour 

cost. New total cost is saved as COST B. COST A and COST B are compared and 

the smaller one is selected as the new visit plan.    

 

If regions are not known for the new coming city (problem types 3 and 5), all RAs 

are informed about it (coordinates of it is transmitted). All RAs check whether they 

can consider this new city in their region or not. This decision is taken upon two 

measures: average total distance of cities to region center (ATDC), and their standard 

deviation of distances of cities in that region (SDD). If new city’s distance to a 

region agent is less than ATDC+SDD, then that city can be accepted for that region. 

Since having less deviation, from the average is preferable, if there are several 

regions that are able to accept that city to their region, then new city is added to the 

region where deviation is the least.  If the city is added to one of the existing clusters 

then exactly same procedure is applied as described for problem type 4 and type 2. 

 

5.8 City Deletion 

In case of city deletion/disappearance, following procedures are applied with respect 

to the selected problem type.  

 

If a city is already visitied, deletion of that city will have no influence in the system. 

If the problem type is 2 or 3, it is first checked if the deleted city is planned in the 

grant tour or not. If deleted city is a part of grant tour and if there is at least two cities 

remaining after deletion, RA delivers the second best alternative (having the same 

city order) in its list to be considered by GMA. If the deleted city is unique city in its 

region, then it is deleted and corresponding RA is destroyed (even if the region 

determination strategy is “intelligent clustering”, no auction is performed for the 

mergergy of regions). If the deleted city is not in the visit plan of the grant tour, then 

the city is deleted only from the regional tour.  

 



 80 

It should also be noticed that in TSP and its variants; if a planned delivery is 

cancelled and a vehicle is routed to that city, the already passed distance is also 

included in the total cost.  

 

5.9 Region Determination Strategies 

Cities in the problem domain are divided into regions (regions describe a part of 

physical environment where cities with similar coordinates are gathered) using a 

different algorithms described in this section. Each region is controlled by RAs and 

thereby solutions are searched simultaneously in each of regions. 

 

There exist two strategies for region determination. One is the predetermined 

regions. In this type region determination (problem type 2 and problem type 4), user 

defines a unit area for a unit region. Subsequently, environment is divided into 

regions by that unit of area. For instance; if environment is 1000x1000 units and a 

region is defined, as 10x10 then, 100 regions is created. Thereby, it gets easier to 

determine a city’s region just by checking its coordinates, corresponding rows and 

columns as illustrated in Figure 5.10.  

 

In the second option, intelligent region determination policies are applied (problem 

type 3 and problem type 5). In those intelligent region determination policies, 

average distance (AD) has been used as the base measure. A city to be clustered is 

checked whether its distance is to region center is less or more then AD. 

 

For calculation of AD, maximum and minimum values of X and Y should be found 

for the created cities. Difference between “maximum of X coordinate values” and 

“minimum of X coordinate values” determines the horizontal range of cities. 

Similarly, the difference between “maximum of Y coordinate values” and “minimum 

of Y coordinate values” determine the vertical range of cities (Figure 5.10).  

 



 81 

 

Figure 5.10 Figurative illustration of range calculation 

 

Subsequently, AD is calculated upon the option selected by the user. Options are; 

Euclidian AD and circle diameter AD. Euclidian distance is calculated using 

Equation 5.1.  

 

 

                        (Equation 5.1) 

 

If circular-diameter option is selected, following procedure is applied. If number of 

cities were and they would be homogenously distributed there should n circles with 

radios r where total area of them should be equal to .  From this equation, 

“ideal r value” is computed (Figure 5.11). Circle diameter AD is calculated using 

Equation 5.2. 

 

                                           (Equation 5.2) 

 



 82 

 

Figure 5.11 Circles in case of homogenous distribution of circles 

 

After AD is calculated according to the user preference, following intelligent region 

determination options are presented: 

 

1- Equal Distance Option: In this region determination option, City 1 is selected 

as the center of Region 1. Cities having at most “AD” much distance to City 1 is 

clustered in the same region (Region 1). After determination of all cities in 

region 1, the nearest city to City 1 (which has not been clustered yet) is found 

and accepted as the center of the second region. This policy is continued until all 

cities have been clustered. 

  

2- Modified Equal Distance Option: In this option, equal distance option is 

performed first. The distance between the first city of Region 1 and the first city 

of Region 2 is calculated and called as “Modified Equal Distance (MED)”. In 

this procedure cities having distance less than AD is clustered like “equal 

distance option”. If there is only one city in region then the cities having less 

distance then MED is clustered at the same region (excluding the Region 1 and 

Region 2). After determination of all cities in a region, the nearest city to center 

city (which has not been clustered yet) is found and accepted as the center of the 

next region. There can be marginal cases for Modified Equal Distance Option. If 

some cities are accepted to a cluster due to having less distance then MED, next 



 83 

region’s center city may be closer to previous region as illustrated in Figure 

5.12. In that case, that city is added to next region. 

 
 

 

Figure 5.12 Marginal cases for modified distance option 

 

 



 84 

 

Figure 5.13 An example of clustering via modified distance option 

 

 

5.10 Results and Findings 

 

In this section, results of agent-based solution strategies that are developed to solve 

variants of dynamic TSP are discussed. These strategies allow local and parallel 

search, which actually helps to save from time and memory requirements that are 

source of effective solution of those in NP hard problem class. This section discusses 

findings of specific agent-based solution policies/strategies that are providing 

promising solutions dynamic TSP and its variants. It is remarkable to state one more 

time that, promising solutions mentioned here may not equally mean the optimal 

solutions, it is rather the feasible solutions obtained in affordable time with 

affordable costs and in an acceptable level. In addition to all of those remarks, all 



 85 

combinations provided via the prepared software are not run, only the selected ones 

are run. 

 

5.10.1 Basics and assumptions of the compared models 

 

For comparison purposes, findings of the proposed agent-based strategies are 

compared with static heuristic solutions obtained via GDA. Those comparisons are 

performed when the total number of cities are (becomes) equal 0 in mode 5 by the 

time. GDA that has exactly the same parameters within agent-based GDA is used for 

solving above defined states and solutions are recorded. Since solutions obtained via 

GDA, are only valid for certain states, they will be named as “frozen solutions” 

through this chapter. Thereby solutions obtained with continuous agent-based system 

are compared with the frozen solutions.  

 

It is remarkable to state here that, “frozen solutions” are the results obtained for 

hypothetic cases where change is not considered for awhile and the model is rebuilt 

and solved from the beginning like a new problem. It is also a known fact that, it is 

not an easy task to setup a model (like finding the suitable parameters) and resolve it 

using heuristics. Furthermore, obtaining solutions via heuristics in dynamic 

environment has no practical value since “stopping delivery process until a good 

solution is obtained” may be very difficult and costly in real life.  

 

There is also one more crucial difference between the hypothetic case and the 

continous agent-based models. In the frozen solutions; all information is assumed to 

in hand (that is called as perfect information), on the other hand; in agent-based 

continuous systems, number of cities are dynamic and information is inperfect which 

is much realistic indeed.  

 

Normally “frozen results” is expected to be better since GDA handle the problem 

from the beginning and looks for different combinations that are creating less cost. 

As Barbati et. al, (2012) state from the point of view of the quality of solution, since 

agent-based approaches are distributed, they do not have a global view of the state of 

the system, which is often necessary in order to find a truly good solution. Therefore, 

the quality of the solution provided by a classical heuristic could be better. On the 



 86 

other hand, a heuristric like GDA may loose its capability to produce good results 

when parameters are kept constant as performed in this study. Total number of 

iterations terminating the search of a heuristic for a 50 city problem may not be 

adequate to search a 100 city problem. This is also an evidence of the certain 

advantage of ABM through negotiation. Providentially, in the proposed agent-based 

strategies, parameter setting have no considerable effect after the obtaining the first 

solution since other solutions are obtained via negotiation of agents. This feature can 

be accepted as the superiority of obtaining agent-based solutions to highly dynamic 

types of TSP. As Angelelli (2011) state, lack of information on future events creates 

the need for algorithms able to take quick decisions on the basis of current 

information possibly making some guess on future. 

 

In this respect, comparisions given in the next sections can be read as follows. 

Heuristic based approaches is normally expected to produce promising results 

compared to agent-based negotiation strategies, while they may require unaffordable 

amount of resources. However, if the cost of parameter setting is waived/omitted 

(other costs remaining as they are) agent-based negotiation strategies  even produce 

better results.  

The results are presented in figures and tables in the subsequent sections, as averages 

from 100 runs of algorithms. 

 

5.10.2 Findings of problem Type 1 

 

Since there are several input setting that is possible to perform GDA, after several 

trials, it has been understood that, TSP perform better where beta=0.001 and 

neighborhood as 30 for 20 cities. Total number of 1000 iterations and 800 non-

improving iterations have been considered as the terminating criteria. As it is 

mentioned in problem assumptions, these set of parameters are kept constant for 40 

and 60 city problems. New event creation ratio is defined as 0.002. 

 

Table 5.2 and Table 5.3 represent the comparison table for n=20 cities where cities 

lay in a wide environment (1000*1000). Frozen GDA, outperforms Agent-Based 

GDA until total number of cities are equal to 25. When total number of cities are 

equal to 25, Frozen GDA looses its cabability to produce promising results with the 



 87 

given parameter set. Frozen GDA outperforms agent-competion in all of the given 

cases. 

Table 5.2 Comparision of AB-GDA with frozen GDA for initial 20 cities  

Number of 

City 

Agent-Based 

GDA 

 

Frozen 

Solutions 

of GDA 

Initial (20) 3329.57 3329.57 

20 3335.19 3318.49 

25 4315.28 4722.51 

30 4521.15 4743.18 

30 4583.99 4765.45 

 

Table 5.3 Comparision of AC with frozen GDA for initial 20 cities 

 

 

 

 

 

 

Table 5.4 and Table 5.5 represent the comparison table for n=40 cities where cities 

lay in a large environment (1000*1000). Frozen GDA, outperforms Agent-Based 

GDA until total number of cities are equal to 45. When total number of cities are 

equal to 45, Frozen GDA looses its cabability to produce promising results with the 

given parameter set. Agent-competion strategy outperforms Frozen GDA for all of 

the given cases.  

 

Table 5.4 Comparision of AB-GDA with frozen GDA for initial 40 cities 

Number of 

City 

Agent-Based 

GDA 

 

Frozen 

Solutions 

of GDA 

Initial (40) 6248.12 6248.12 

40 6094.70 6077.82 

45      6541.00 6803.76 

50 6639.25 7497.71 

55 6914.30 8071.90 

60 6919.78 8690.65 

 

 

 

Number of 

City 

Agent 

Competition 

 

Frozen 

Solutions 

of GDA 

Initial (20) 3755.99 3329.57 

20 3746.98 3678.97 

25 5042.73 4354.83 

30 5200.01 4783.33 

30 5100.69 4788.61 



 88 

Table 5.5 Comparision of AC with frozen GDA for initial 40 cities 

 

 

 

 

 

 

 

 

 

Table 5.6 and Table 5.7 represent the comparison table for n=60 cities. Frozen GDA, 

outperforms Agent-Based GDA until total number of cities are equal to 75. When 

total number of cities are equal to 75, Frozen GDA looses its cabability to produce 

promising results with the given parameter set. Agent-competion strategy 

outperforms Frozen GDA for all of the given cases. 

 

Table 5.6 Comparision of AB-GDA with frozen GDA- initial number of cities: 60 

Number of 

City 

Agent-Based 

GDA 

 

Frozen 

Solutions 

of GDA 

Initial (60) 9656.18 9656.18 

60 9706.94 8918.42 

65 9886.77 9805.00 

70 10189.93 10182.00 

75 10272.52 11084.79 

75 10215.71 11447.47 

 

Table 5.7 Comparision of AC with frozen GDA for initial 60 cities 

Number of 

City 

Agent 

Competition 

 

Frozen 

Solutions 

of GDA 

Initial (60) 7295.15 9656.18 

60 7227.51 8861.89 

65        7519.06 10032.27 

70 7854.76 11167.52 

75 8070.52 11529.68 

 

  

Number of 

City 

Agent 

Competition 

 

Frozen 

Solutions 

of GDA 

Initial (40) 5370.02 6248.12 

40 5191.64 5972.94 

45        5570.30 6883.92 

50 5676.59 7908.72 

55 6028.38 8071.96 

60 6248.71 9061.53 

60 6315.86 8307.60 



 89 

 

Figure 5.14 Comparision of agent-based model with ideal case 

 

As it is demonstrated in Figure 5.14, increasing the number cities make the results 

better for agent-based strategies that are proposed in this thesis. This state can also be 

linked with the use of constant GDA parameters and adaptation ability of the agent-

based solutions to the dynamism. 

 

To test the significiance of the differences between agent-based GDA solution 

strategy and Frozen GDA results, Paired-T test is performed and the findings are as 

described in Table 5.8. The performances of the strategies are compared separately, 

as a paired t-test experiment. Since the p-value for the experiment is almost equal to 

zero (0.03), we can conclude that there is a statistically significant difference 

between the results of these strategies. Since the average of the total cost of the 

Agent-Based GDA is lower than the Frozen GDA, we can conclude that the Agent-

Based GDA has a better performance compared to the Frozen GDA strategy. 

 

 

 



 90 

Table 5.8 Results of paired T-test 

  Group 
  Agent Based 

GDA   

  Frozen 

GDA   

Mean 7021.7871 7374.2953 

SD 2521.9774 2631.7870 

SEM 611.6694 638.3021 

N 17       17       
 

Paired t test results  

P value and statistical significance:  
  The two-tailed P value equals 0.0332 

  By conventional criteria, this difference is considered 

to be statistically significant.  

 

Confidence interval: 
  The mean of Agent Based GDA minus Frozen GDA 

equals -352.5082 

  95% confidence interval of this difference: From -

673.1769 to -31.8395  

 

 

 
 

5.10.3 Findings of problem Type 2 and Type 3 

These problem types were defined in Section 5.2. In these defined types, target is 

finding sutiable the cities from each region to minimize the grant tour. Problems 

have high dynamism due random addition and deletion of cities. In this regard, total 

costs are computed and found as illustrated in Table 5.9 and Table 5.10. In the 

problem type 2,type 3, type 4 and type 5, agent-based competition has not been 

considered due to its relative failure to compete with frozen solutions for type 1 and 

type 2 problems. 

 

 

Table 5.9 Total cost comparisions for GTSP with known regions initial number of 

cities: 20 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Cost of 

Frozen GDA 

20 3552.49 3552.49 

20 3538.13 3717.66 

25 4695.97 4391.74 

30 4711.85 5131.36 

30 4755.15 5248.07 

35 5122.64 5763.65 

40 5719.49 6869.67 

40 5578.37 6770.17 

 

 

 

 

 

 



 91 

Table 5.10 Total cost comparisions for GTSP with known regions initial number of 

cities: 40 

 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Cost of Frozen 

GDA 

40 7411.17 7411.17 

40 7201.71 7043.80 

45 7777.42 7452.53 

50 7721.08 7627.40 

55 8139.78 7917.90 

60 8344.11 8320.25 

60 8279.17 8543.28 

60 8379.82 8725.38 

60 8528.95 8751.76 

 

Table 5.11 Total cost comparisions for GTSP with known regions initial number of 

cities: 60 

 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Cost of 

Frozen GDA 

60 10371.31    10371.31 

60 10118.48 9920.52 

65 10192.72 10867.99 

70 10353.81 11327.04 

75 9984.31 11759.15 

75 10064.20 12129.93 

75 10094.63 11672.39 

 

Table 5.12 Total cost comparisions for GTSP with region determination initial 

number of cities: 20 

 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Cost of 

Frozen GDA 

20 3588.48 3588.48 

20 3616.50 3291.10 

25 4855.06 5378.51 

30 5409.92 5487.89 

30 5466.38 6605.12 

35 5790.43 7118.21 

40 6201.27 8601.07 

40 6104.20 7743.94 

40 5824.13 7166.22 

 



 92 

Table 5.13 Total cost comparisions for GTSP with region determination initial 

number of cities: 40 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Cost of 

Frozen GDA 

40 8250.17 8250.17 

40 8103.70 8476.14 

45 8699.32 9854.63 

50 8966.07 10818.85 

55 9372.36 11853.76 

60 9653.06 12911.16 

60 9437.73 13472.45 

60 9644.53 13816.87 

 

Table 5.14 Total cost comparisions for GTSP with region determination initial 

number of cities: 60 

 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Cost of 

Frozen GDA 

60 13108.52 13108.52 

60 13108.32 12868.68 

65 13209.13 15471.39 

70 13381.71 16835.49 

75 13484.00 16535.39 

75 13053.38 18278.45 

75 13030.01 18339.81 

80 13163.28 17969.45 

 

5.10.4 Findings of problem Type 4 and Type 5 

These problem types were defined with details in Section 5.2. In these defined types, 

target is finding sutiable the cities from each region to complete the grant tour and 

the local tours to be visited through the visit of each city of each region by another 

vehicle to minimize the total cost. Problems have high dynamism due random 

addition and deletion of cities. In this regard, total costs are computed and found as 

illustrated in Table 5.15 through Table 5.20. 

 

 

 

 

 

 

 



 93 

Table 5.15 Total cost comparisions for GTSP+TSP with known regions initial 

number of cities: 20 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Local Tour Grand Cost 

of Agent-

Based GDA 

Grand Tour 

Cost of 

Frozen 

GDA 

20 4344.80 792.30 3552.50 3552.49 

20 4273.28 792.30 3480.98 3470.24 

25 5649.61 1093.72 4555.89 5154.03 

30 5573.61 1093.72 4479.89 4764.19 

35 6071.71 1282.46 4789.25 4505.00 

35 6341.36 1282.46 5058.90 5197.44 

40 7494.91 972.87 6522.04 5608.32 

45 10262.7 972.87 9289.79 6861.55 

 

 

Table 5.16 Total cost comparisions for GTSP+TSP with known regions initial 

number of cities: 40 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Local Tour Grand Cost 

of Agent-

Based GDA 

Grand Tour 

Cost of 

Frozen 

GDA 

40 23508.3 16097.1 7411.17 7411.17 

40 23429.8 16162.6 7267.19 6454.43 

45 24412.4 16378.4 8034.01 7361.59 

 

Table 5.17 Total cost comparisions for GTSP+TSP with known regions initial 

number of cities: 60 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Local Tour Grand Cost 

of Agent-

Based GDA 

Grand Tour 

Cost of 

Frozen GDA 

60 45741.7 35370.4 10371.3 9728.42 

60 45541.8 35208.1 10333.7 9278.14 

65 45938.1 35371.7 10566.4 10559.7 

65 45979.3 35549.9 10429.4 11424.8 

70 45893.7 35447.6 10446.1 11702.4 

70 46030.4 35619.3 10411.1 12145.5 

75 46030.4 35619.3 10411.1 11552.5 

75 46713.6 35924.1 10789.5 12721.2 

80 46555.2 35840.8 10714.4 12260.5 

 

 

 

 



 94 

Table 5.18 Total cost comparisions for GTSP+TSP with region determination initial 

number of cities: 20 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Local Tour Grand Cost 

of Agent-

Based GDA 

Grand Tour 

Cost of 

Frozen GDA 

20 6138.66 2550.18 3588.48 3588.48 

20 6141.72 2550.18 3591.54 3540.15 

25 6470.07 2474.87 3995.20 4013.17 

30 6517.25 2474.87 4042.38 4002.16 

35 6517.15 2474.87 4042.28 3953.89 

 

Table 5.19 Total cost comparisions for GTSP+TSP with region determination initial 

number of cities: 40 

Total # of 

cities 

Cost of Agent-Based 

GDA 

Local Tour Grand Cost 

of Agent-

Based GDA 

Grand Tour 

Cost of 

Frozen 

GDA 

40 10459.9 2209.72 8250.17 8250.17 

45 10687.4 2209.72 8477.64 8506.86 

50 10896.8 2209.72     8687.10 9965.62 

55 10919.8 2209.72 8710.08 9310.65 

 

Table 5.20 Total cost comparisions for GTSP+TSP with region determination initial 

number of cities: 60 

Total # 

of cities 

Cost of Agent-Based 

GDA 

Local Tour Grand Cost 

of Agent-

Based GDA 

Grand Tour 

Cost of 

Frozen GDA 

60 17386.7 4278.14 13108.5 12494.4 

60 17363.5 4278.14 13085.3 12781.9 

65 17573.7 4278.14 13295.6 13292.5 

65 17651.9 4278.14 13373.8 15087.2 

70 17802.3 4252.07 13550.2 17241.3 

70 17697.2 4252.07 13445.1 15385.2 

75 17541.0 4252.07 13288.9 19411.5 

75 17490.9 4252.07 13238.8 18220.9 

80 17607.6 4252.07 13355.6 17874.1 

 

As it is demonstrated through all of the given figures, increasing the number cities 

make the results better for agent-based strategies that are proposed in this thesis. This 

state is linked with the use of constant GDA parameters and adaptation ability of the 

agent-based solutions to the dynamism. 

 

 

 



 95 

5.11 Concluding Remarks 

 

A solution strategy has been developed that is allowing local and parallel search, 

which actually helps to save from time and memory requirements. Cities in the 

problem domain are divided into regions (regions describe a part of physical 

environment where cities with similar coordinates are gathered) using a special 

algorithm and thereby solutions are searched in each of regions parallel to each other 

and simultaneously. For this purpose, in addition to the vehicle agent, a manager 

agent and several region agents are created which can make autonomous decisions 

for their own regions and for the whole domain of the problem. 

 

As it is demonstrated in all given results, increasing the number cities make the 

results better for agent-based strategies that are proposed in this thesis. This state can 

also be linked with the use of constant GDA parameters and adaptation ability of the 

agent-based solutions to the dynamism. 

 

The performances of the strategies are compared separately, as a paired t-test 

experiment. Since the p-value for the experiment is almost equal to zero (0.03), we 

can conclude that there is a statistically significant difference between the results of 

these strategies. Since the average of the total cost of the Agent-Based GDA is lower 

than the Frozen GDA, we can conclude that the Agent-Based GDA has a better 

performance compared to the Frozen GDA strategy. 

 

 

 

 



 96 

CHAPTER 6 

CONCLUSION 

 

6.1 Introduction 

 

This PhD thesis, attempted to fulfill two vacancies in the area of agent-based 

modeling. One is about the all agent-based applications that have lied in a wide range 

of area. Although some dynamic optimization problems have common features, there 

is not a systematic scheme that represents similarities and differences of those 

applied solution strategies. Therefore, a researcher studying and focusing on a 

specific DOP may have many troubles to classify existing studies and their solution 

approaches. Systematic observations on several practical applications in the area 

have inspired a solution regarding the development of such a scheme that is capable 

to indicate features of a problem and solution strategy that is followed. Several 

sample problems were also used to test usability of this scheme. 

 

The second vacancy that this PhD thesis focuses is application of agent-based 

modeling approaches to dynamic travelling salesman problem where number of 

cities can immediately change. In this respect several new variant of TSP are 

introduced and solved via different agent-based strategies. Promising solution have 

be obtained and statistically analyzed.   

 

Details of the proposed solution approaches that are regarding both of the described 

vacancies in the area can be found in next section. 

 

6.2 Thesis Findings  

In the light of the adjustments discussed in the several chapter of thesis, this research 

study within this PhD thesis focuses on agent-based modeling and dynamic 

optimization problems.  

 



 97 

In this respect, six chapters were presented. In Chapter 2, DOPs that are solved via 

agent-based modeling were discussed with details. The chapter attempted to be a 

warm-up chapter for the people who are not familiar with DOPs, agent-based 

modeling and the fundamental concepts of them.  

 

In Chapter 3, a new representation scheme called ABDOPSS, which was constructed 

for standard representation and classification of agent-based solution approaches 

employed for DOPs, was presented. ABDOPSS was also exemplified to present 

different applications in the area. 

 

Since there are numerous software packages that are widely used for agent-based 

modeling it has been a necessity to introduce them. Therefore, Chapter 4 was 

devoted to those software packages. 

  

Chapter 5 presented five different types of Dynamic Travelling Salesman Problems 

(DTSP) that are highly dynamic due to random change in number of cities. In those 

defined problems, new cities arrive to the system and sometimes they disappear from 

it. In this respect, two main agent-based solution strategies were proposed for the 

solution of the defined problem. One is competition of agents without a heuristic and 

the other is competition of agents using Great Deluge Algorithm (GDA).  

 

Finally, this chapter, Chapter 6 discusses the possible benefits and handicaps of the 

solutions provided by this PhD study.  Future study extensions for new students and 

the people studying in the area, is also declared in the next section of this chapter. 

 

6.3 Closure 

The proposed solutions in this PhD thesis are all novel to the literature. They have 

been presented in several conferences and published in several different journals. 

These solutions are also expected to be useful in the industrial area. It is also 

anticipated that, some ideas and implementations presented in this thesis can create 

new research directions for other researchers.  



 98 

The contribution of this thesis can be summarized in two folds: 

1) The classification scheme (ABDOPPS: Agent Based Dynamic Optimization 

Problem Solution Strategy) for agent-based approaches is new to the literature and it 

is expected to be beneficial to researchers in many ways. Similarities of the features 

located in ABDOPPS can be used to define classes of solution strategies by their 

descriptions. In this regard, classes of the problems may orient researchers to focus 

on certain strategies. Using the dynamism related features of the corresponding 

DOPs presented in ABDOPPS, unpredictability levels of certain problems can be 

determined and be used to reclassify problems. These representation forms can also 

be used to discover the role of presented features and their importance for solution 

quality.  

 

2) Thesis is the provision and extension of knowledge on how to analyze and design 

new computational models for travelling salesman integrating the city addition and 

deletion at any time during the visits. TSP variants defined through the thesis are also 

new to literature. 

 

Several feature studies can also be performed as continuum of this PhD thesis. First, 

ABDOPSS can be enriched with the addition of several different factors and features. 

Some abstraction mechanisms can also be used make it much easier to be used. For 

extending the use of it, authors using agent-based approaches for DOPs can be asked 

to use it for their problems. Some experimental designs can be performed check 

whether similar problems use similar features or not.  

 

Future extensions of DTSP can also be produced using several different agent-based 

heuristics. Those modeled TSP versions are unsolved problem from industry was 

investigated in this thesis. Those new variants of DTSP can also be search topic for 

many other researchers. Existing TSP models can also be converted into vehicle 

routing problems easily and some other conclusions can be extracted.  



 99 

REFERENCES 

 

Abbas, H. A., Bacardit, J., Butz, V. M., LLorà, X. (2004). Online adaptation in 

learning classifier systems: stream data mining. Illinois Genetic Algorithms 

Laboratory, University of Illinois at Urbana-Champaign, IlliGAL Report No. 

2004031. 

Aggestam, L., Söderström, E. (2005). Managing critical success factors in a B2B 

Setting. In: Proceedings of the IADIS International Conference e-Commerce. 

101-108. 

Ahmad, R., Lee, Y. C., Rahimi, S., Gupta, B. (2007). A Multi-Agent Based 

Approach for Particle Swarm Optimization. Integration of Knowledge 

Intensive Multi-Agent Systems, KIMAS 2007. 267-271. 

Allmendinger, R., Knowles, J. (2010). Evolutionary optimization on problems 

subject to changes of variables. In: Schaefer RC, Kolodziej J, Rudolph G 

(eds) Parallel Problem Solving from Nature-PPSN XI, 6239. Springer, Berlin, 

Heidelberg. 151-160. 

Angelelli, E., Mansini, R., & Vindigni, M. (2011). Look-ahead heuristics for the 

dynamic traveling purchaser problem. Computers & Operations Research. 

38(12), 1867-1876. 

Barbati, M., Bruno, G., Genovese, A. (2012). Applications of agent-based models for 

optimization problems: A literature review. Expert Systems with Applications. 

39 (5), 6020-6028.  

Baykasoğlu, A. (2012). Design optimization with chaos embedded great deluge 

algorithm. Applied Soft Computing. 12(3), 1055-1067.  

Baykasoğlu, A., U. Durmuşoğlu, Z. D. (2012). A classification scheme for agent 

based approaches to dynamic optimization. Artificial Intelligence Review, 1-

26. doi:10.1007/s10462-011-9307-x (Article in Press).  

Baykasoğlu, A., U. Durmuşoğlu, Z. D., Görkemli, L. (2011). Etmen tabanlı 

benzetim: ANYLOGIC
TM

 yazılımı ve örnek bir uygulama. Endüstri 

Mühendisliği Yazılımları ve Uygulamaları Kongresi, İzmir, 30 Eylül-01/02 

Ekim, TMMOB Makina Mühendisleri Odası Yayın No: E/2011/559, 197-

204. 

Baykasoğlu, A., U. Durmuşoğlu, Z. D. (2011). Dynamic optimization in a dynamic 

and unpredictable world. In: Proceedings of Portland International 

Conference on Management of Technology (PICMET’11), Portland, Oregon, 

USA. 2312-2319.  

Baykasoğlu, A., U. Durmuşoğlu, Z. D., Görkemli, L. (2011). Solving vehicle 

deployment planning problem by using agent based simulation modeling. In: 

Proceedings of 2nd International Symposium on Computing in Science & 

Engineering, Kuşadası, Aydın, Turkey. 338-340. 



 100 

Berro, A., Duthen, Y. (2001). Search for optimum in dynamic environment: An 

efficient agent-based method. In: Genetic and Evolutionary Computation 

Conference. Workshop Program, San Francisco, California. 51-54. 

Billiau, G., Ghose, A. K (2008). Robust, flexible multi-agent optimization using 

SBDO. Ins.l., Decision Systems Lab /Center for Software Engineering. 

Bontoux, B., Artigues, C., & Feillet, D. (2010). A Memetic Algorithm with a large 

neighborhood crossover operator for the Generalized Traveling Salesman 

Problem. Computers & Operations Research. 37(11), 1844-1852.  

Borst, S. C., Buvaneswari, A., Drabeck, L. M, Flanagan, J. M et al. (2005). Dynamic 

optimization in future cellular networks. Bell Labs Technical Journal. 10(2), 

99-119. 

Boughaci, D., Drias, H. (2005). Taboo search as an intelligent agent for bid 

evaluation. International Journal of Internet and Enterprise Management. 3, 

170-186. 

Bui, L. T, Michalewicz, Z., Parkinson, E., Abello, E. M. (2011). Adaptation in 

dynamic environments: a case study in mission planning. IEEE Transactions 

on Evolutionary Computation (Accepted Manuscript) 

Burke, E. Bykov, Y. Newall, J., Petrovic, S. (2004). A time-predefined local search 

approach to exam timetabling problems. IIE Transactions. 36, (6) 509-528. 

Calégari, P., Coray, G., Hertz, A., Kobler, D., Kuonen, P. (1999). A taxonomy of 

evolutionary algorithms in combinatorial optimization. Journal of Heuristics. 

5(2), 145-158. 

Campbell, A. M. (2006). Aggregation for the probabilistic traveling salesman 

problem. Computers & Operations Research. 33 (9), 2703-2724. 

Chang, T.S. Wah Wan Y., OOI, W. T (2009). A stochastic dynamic traveling 

salesman problem with hard time Windows. European Journal of 

Operational Research. 198 (3), 748-759. 

Corchado, J. M., Glez-Bedia, M., De Paz, Y., Bajo, J., De Paz, J. F. (2008). 

Replanning mechanism for deliberative agents in dynamic changing 

environments. Computational Intelligence. 24(2), 77-107. 

Cowling, P. I., Keuthen, R. (2005). Embedded local search approaches for routing 

optimization. Computers & Operations Research. 32(3), 465–490.  

Cruz, C., Gonzá J. R, Pelta, D. A., (2010). Optimization in dynamic environments: a 

survey on problems, methods and measures. Soft Computing. 15(7), 1427-

1448. 

Dimitrijević, V., Šarić, Z. (1997). An efficient transformation of the generalized 

traveling salesman problem into the traveling salesman problem on digraphs. 

Information Sciences. 102(1-4), 105-110.  

Dueck, G. (1993). New optimization heuristics. The great deluge algorithm and the 

record-to-record travel. Journal of Computational Physics. 104, 86-92.  

Eyckelhof, C. J., Snoek, M. (2002). Ant Systems for a Dynamic TSP-Ants caught in 

a traffic jam. In3rd International Workshop on Ant Algorithms.In M. Dorigo, 

G. Di Caro, & M. Sampels (Eds.), Ant Algorithms, Lecture Notes in 

Computer Science (2463, 88–99). Springer Berlin / Heidelberg.  



 101 

Fisher, M., Bordini, R. H, Hirsch, B., Torroni, P. (2007). Computational logics and 

agents: a road map of current technologies and future trends. Computational 

Intelligence. 23(1), 61-91. 

Flood, M. M. (1995). The traveling salesman problem. Operation Research. 4, 61-

78. 

Garcia, A. F., De Lucena, C. J. P., Cowan, D. D. (2004). Agents in object-oriented 

software engineering. Software Practice and Experience. 34(5), 489-521. 

García-Montoro, C., Vivancos, E., García-Fornes, A. and Botti, V. J. (2007). A 

Software Architecture-Based Taxonomy of Agent-Oriented Programming 

Languages. Languages, Methodologies and Development Tools for Multi-

Agent Systems. 128-142. 

Genesereth, M. R, Ketchel, S. P. (1994). Software agents. Communication of the 

ACM. 37(7), 48-53. 

González, J. R, Masegosa, A. D, García, I. (2010). A cooperative strategy for solving 

dynamic optimization problems. Memetic Computing.  3(1), 3-14. 

Guan, S. U, Chen, Q., Mo, W. (2005). Evolving dynamic multi-objective 

optimization problems with objective replacement. Artificial Intelligence 

Review. 23, 267-293. 

Hadeli, P., Valckenaers, P., Kollingbaum, M., Van Brussel, H. (2004). Multi-agent 

coordination and control using stigmergy. Computers in Industry. 53(1), 75-

96. 

Hanna, L., Cagan, J. (2009). Evolutionary multi-agent systems: an adaptive and 

dynamic approach to optimization. Journal Mechanical Design. 131(1), 

011010-1-011010-8. 

Homayounfar, H., Areibi, S., Wang, F. (2003). An advanced island based GA for 

optimization problems. In Proceedings of the International DCDIS 

Conference on Engineering Applications and Computations. 46-51. 

http://en.wikipedia.org/wiki/AnyLogic 

http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software. 

http://www.dynamic-optimization.org. Accessed 30 August 2011. 

Huang, Z. C., Hu, X. L., Chen, S. D. (2001). Dynamic traveling salesman problem 

based on evolutionary computation. Evolutionary Computation, 2001. 

Proceedings of the 2001 Congress on. 2, 1283-1288.  

Huhns, M. N, Stephens, L. M (1999). Multi-agent systems and societies of agents. 

G.Weiss (ed.), Multi-Agent Systems. MIT Press. 

Jennings, N. R, Faratin, P., Lomuscio, A. R, Parsons, S., Sierra, C., Wooldridge, M. 

(2001). Automated negotiation: prospects, methods and challenges. Group 

Decision and Negotiation. 10(2), 199-215.  

Jian, Y. (2003). Solving integer programming by evolutionary soft agent. Wuhan 

University Journal of Natural Sciences. 8, 283-286. 

Jiang, D., Han, J. (2008). Real time multi-agent decision making by simulated 

annealing. In TechOpen, Simulated Annealing. 

http://www.dynamic-optimization.org/


 102 

Jin, Y. (2004). A tutorial on evolutionary computation in dynamic and uncertain 

environments. In CEC’04, Portland, USA. 

Jou, S. H, Kao, S. J (2002). Agent-based infrastructure and an application to internet 

information gathering. Knowledge and Information Systems. 4(1), 80-95. 

Jung, Y., Kim, M., Masoumzadeh, A., Joshi, J. B. D. (2011). A survey of security 

issue in multi-agent systems. Artificial Intelligence Review. 

doi:10.1007/s10462-011-9228-8. 

Kang, L., Zhou, A., McKay, B., Li, Y., Kang, Z. (2004). Benchmarking algorithms 

for dynamic travelling salesman problems. Evolutionary Computation, 

CEC2004. 2, 1286 -1292. 

Karlsson, M., Ygge, F., Andersson, A. (2007). Market-based approaches to 

optimization. Computational Intelligence. 23(1), 92-109. 

Kulkarni, A. J, Tai, K. (2010). Probability Collectives: A multi-agent approach for 

solving combinatorial optimization problems. Applied Soft Computing. 10(3), 

759-771. 

Lepagnot, J., Nakib, A., OulHadj, H., Siarry, P. (2010). A new multi-agent algorithm 

for dynamic continuous optimization. International Journal of Applied 

Metaheuristic Computing.  1(1), 16-38. 

Li, C., Yang, M., Kang, L. (2006). A New Approach to Solving Dynamic Traveling 

Salesman Problems. In T. D. Wang, X. Li, S.-H. Chen, X. Wang, H. Abbass, 

H. Iba, G.-L. Chen, et al. (Eds.), Simulated Evolution and Learning, Lecture 

Notes in Computer Science (4247, 236-243). Springer Berlin / Heidelberg.  

Li, S., Li, J. Z. (2009). A multi-agent-based hybrid framework for international 

marketing planning under uncertainty. International Journal of Intelligent 

Systems in Account and Finance Management. 16, 231-254. 

Liu, J. Zhong, W., Jiao, L. (2006). A multiagent evolutionary algorithm for 

constraint satisfaction problems, IEEE Transactions on Systems, Man, and 

Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man, 

and Cybernetics Society. 36, 54-73. 

Liu, J., Zhong, W. and Jiao, L. (2010). A multi-agent Evolutionary Algorithm for 

Combinatorial Optimization Problems. Systems, Man, and Cybernetics, Part 

B: Cybernetics, IEEE Transactions on. 40, 229-240. 

Liu, X., Xu. K., Liu, H. (2006). A multi-agent particle swarm optimization 

framework with applications. In Proceeding of 1st International Symposium 

on Pervasive Computing and Applications. 1-6. 

Lung, R. I, Dumitrescu, D. (2009). Evolutionary swarm cooperative optimization in 

dynamic environments. Natural Computing. 9(1), 83-94. 

Macal, C. M., North, M. J. (2010). Tutorial on agent-based modelling and 

Simulation. Journal of Simulation. 4, 151-162. 

Máhr, T., Srour, J., De Weerdt, M., Zuidwijk, R. (2010). Can agents measure up? A 

comparative study of an agent-based and on-line optimization approach for a 

drayage problem with uncertainty. Transportation Research Part C: 

Emerging Technology. 18(1), 99-119. 



 103 

Mataric, M. J. (1995). Issues and approaches in the design of collective autonomous 

agents. Robotics and Autonomous System. 16 (2-4), 321-331. 

Mavrovouniotis, M., Yang, S. (2010). A memetic ant colony optimization algorithm 

for the dynamic travelling salesman problem. Soft Computing. 15(7), 1405-

1425.  

Neches, R., Fikes R., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout, W. R. 

(1991). Enabling technology for knowledge sharing. Artificial Magazine. 

12(3), 36–56. 

Newkirk, H. E., Lederer, A. L. (2006). Incremental and comprehensive strategic 

information systems planning in an uncertain environment. IEEE Trans on 

Engineering Management. 53(3), 380-394. 

O’Hare, G. M. P., O’Grady, M. J, Tynan, R., Muldoon, C., Kolar, H. R., Ruzzelli, A. 

g., Diamond, D., Sweeney, E. (2007). Embedding intelligent decision making 

within complex dynamic environments. Artificial Intelligence Review. 27, 

189-201. 

Panzarasa, P., Jennings, N. R., Norman, T. J. (2001). Social mental shaping: 

modeling the impact of sociality on the mental states of autonomous agents. 

Computational Intelligence. 17(4), 738-782. 

Parunak, H. V. D. (1997). Go to the ant: Engineering principles from natural multi-

agent systems. Annals of Operations Research. 75, 69-101. 

Pelta, D., Cruz, C., Verdegay, J. L. (2009). Simple control rules in a cooperative 

system for dynamic optimization problems. International Journal Genetic 

Systems. 38, 701-717. 

Pelta, D., Cruz, C., González, J. R. (2009). A study on diversity and cooperation in a 

multi-agent strategy for dynamic optimization problems. International 

Journal Intelligent Systems. 24(7), 844-861. 

Persson, J. A., Davidsson, P., Johansson, S. J., Wernstedt, F., Center, S., Ronneby, S. 

(2005). Combining agent-based approaches and classical optimization 

techniques. Third European Workshop on Multi-Agent Systems. 

Psaraftis, H.N. (1988). Dynamic vehicle routing problems. In Vehicles Routing: 

Methods and Studies, B. L. Golden and A. A. Assad (eds), Elsevier Science 

Publishers. 

Raman, N., Talbot, F. B. (1993). The job shop tardiness problem: a decomposition 

approach. European Journal of Operations Research. 69(2), 187-199. 

Razavi, S. N., Gaud, N., Mozayani, N., Koukam, A. (2001). Multi-agent based 

simulations using fast multipole method: application to large scale 

simulations of flocking dynamical systems. Artificial Intelligence Review. 35, 

53-72. 

Sanchez, R. (1997). Preparing for an Uncertain Future: Managing Organizations for 

Strategic Flexibility. International Studies of Management & Organization. 

27, 71-94. 

Satoh, K., Inoue, K., Iwanuma, K., Sakama, C. (2000). Speculative computation by 

abduction under incomplete communication environments. In: Proceedings of 

Fourth International Conference on Multi-Agent Systems. 263-270. 



 104 

Savelsbergh, M. (1984). Local Search in Routing Problems with Time Windows. 

Report OS-R8409, Centre for Mathematics and Computer Science. 

Shigehiro, Y., Kumura, N., Masuda, T. (2002). An agent-based method for 

combinatorial optimization problems. SICE 2002. Proceedings of the 41st 

SICE Annual Conference. 2, 1309-1312. 

Takahashi, Y. (1998). A mathematical framework for solving dynamic optimization 

problems with adaptive networks. Systems, Man, and Cybernetics, Part C: 

Applications and Reviews, IEEE Transactions on. 28(3), 404-416.  

Tan, M. (1993). Multi-agent reinforcement learning: independent vs. cooperative 

agents. In: Proceedings of the Tenth International Conference on Machine 

Learning. 330-337. 

Tang, K., Kumara, S. R. T, Yee, S. T, Tes, J. (2004). Wireless-based dynamic 

optimization for load makeup using auction mechanism. Industrial 

Engineering Research Conference (IERC). 

Teo, T. S. H, King, W. R. (1997). Integration between business planning and 

information systems planning: an evolutionary-contingency perspective. 

Journal of Management Information System. 14(1), 185-214. 

Tsui, K. C., Liu, J. (2003). Multi-agent diffusion and distributed optimization. 

Proceedings of the second international joint conference on Autonomous 

agents and multiagent systems, New York, NY, USA: ACM, 169–176. 

Vanden Bergh, F., Engelbrecht, P. A. (2004). A Cooperative Approach to Particle 

Swarm Optimization. IEEE Transactions on Evolutionary Computation. 8, 

225-239. 

Volberda, H. W. (1997). Building flexible organizations for fast-moving markets. 

Long Range Planning. 30, 169-183. 

Voos, H. (2009). Agent-based distributed resource allocation in continuous dynamic 

systems. InTechOpen. Multi-agent Systems. 

Wagner, S., Affenzeller, M., Ibrahim, I. K. (2003). Agent-based problem solving: the 

ant colonies metaphor. In Proceedings of the Fifth International Conference 

on Information Integration and Web-Based applications & Services. 317-323. 

Wang, D., Shixin, L. (2010). An agent-based evolutionary search for dynamic 

travelling salesman problem. In: Proceedings of WASE International 

Conference on Information Engineering. 111-114. 

Wang, S., Xi, L., Zhou, B. (2008). FBS-enhanced agent-based dynamic scheduling in 

FMS. Engineering Applications Artificial Intelligence. 21(4), 644–657. 

Wang, Y. C, Usher, J. M. (2002). An agent-based approach for flexible routing in 

dynamic job shop scheduling. In: Proceedings of the 11
th

 Industrial 

Engineering Research Conference. 

Wangermann, J. P., Stengel, R. F. (1999). Optimization and coordination of 

multiagent systems using principled negotiation. Journal of guidance control 

and dynamics. 22, 43-50. 

Wilensky, U. (1999), NetLogo, Center for Connected Learning and Computer-Based 

Modeling, Northwestern University, Evanston, IL. 

http://ccl.northwestern.edu/netlogo. 

http://jasss.soc.surrey.ac.uk/13/4/7.html#wilensky1999
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=13648152&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fccl.northwestern.edu%252Fnetlogo


 105 

Xiang, W., Lee, H. P. (2008). Ant colony intelligence in multi-agent dynamic 

manufacturing scheduling. Journal Engineering Applications of Artificial 

Intelligent. 21(1), 73–85. 

XJ Technologies (2012). AnyLogic home page. http://www.xjtek.com/. 

Yan, Y., Yang, S., Wang, D., Wang, D. (2010). Agent based evolutionary dynamic 

optimization. In: Sarker, RA, Ray T (Eds) Agent-Based Evolutionary Search, 

Chapter 5, Springer, Heidelberg. 97-116. 

Yang, S. (2007). Explicit memory schemes for evolutionary algorithms in dynamic 

environments. In: Yang S, Ong YS, Jin Y (eds), Evolutionary Computation in 

Dynamic and Uncertain Environments, Studies in Computational 

Intelligence, 51, Springer, Heidelberg, 3-28. 

Zhong, W., Liu, J., Xue, M., Jiao, L. (2004). A multiagent genetic algorithm for 

global numerical optimization. IEEE Transactions on Systems, Man, and 

Cybernetics. Part B, Cybernetics. 34, 1128-1141. 

Zhou, R., Lee, H. P., Nee, A. Y. C. (2008). Simulating the generic job shop as a 

multi-agent system. International Journal of Intelligent System Technology 

and Applications. 4, 5-33. 

Zhou, Z., Chan, W. K., Chow, J. H. (2009). Agent-based simulation of electricity 

markets: a survey of tools. Artificial Intelligence Review. 28 (4), 305-342. 

http://www.xjtek.com/


 106 

 

APPENDIX A 
 

package dtsp; 

import java.sql.Connection; 

import java.sql.SQLException; 

import java.util.ArrayList; 

import java.util.Arrays; 

import java.util.Calendar; 

import java.util.Collection; 

import java.util.Collections; 

import java.util.Comparator; 

import java.util.Currency; 

import java.util.Date; 

import java.util.Enumeration; 

import java.util.HashMap; 

import java.util.HashSet; 

import java.util.Hashtable; 

import java.util.Iterator; 

import java.util.LinkedList; 

import java.util.List; 

import java.util.ListIterator; 

import java.util.Locale; 

import java.util.Map; 

import java.util.Random; 

import java.util.Set; 

import java.util.SortedMap; 

import java.util.SortedSet; 

import java.util.Stack; 

import java.util.Timer; 

import java.util.TreeMap; 

import java.util.TreeSet; 

import java.util.Vector; 

import java.awt.Color; 

import java.awt.Font; 

import java.awt.Graphics2D; 

import java.awt.geom.AffineTransform; 

import static java.lang.Math.*; 

import static com.xj.anylogic.engine.presentation.UtilitiesColor.*; 

import static com.xj.anylogic.engine.presentation.UtilitiesDrawing.*; 

import static com.xj.anylogic.engine.HyperArray.*; 

import com.xj.anylogic.engine.*; 

import com.xj.anylogic.engine.analysis.*; 

import com.xj.anylogic.engine.connectivity.*; 

import com.xj.anylogic.engine.connectivity.ResultSet; 

import com.xj.anylogic.engine.connectivity.Statement; 

import com.xj.anylogic.engine.presentation.*; 

import java.awt.geom.Arc2D; 

public class Main extends ActiveObject{ 

  // Plain Variables 

  /** 

   * Maximum of   X coordinates of initial cities 

   */ 

public double maxX; 

  /** 

   * Maximum of Y coordinates of initial cities 

   */ 

public double maxY; 

  /** 

   * Range of X coordinates of the cities at the beginning<br> 

   * If regions are known it represents the width of the each cell adjusted 

to presentation area 

   */ 

  public double rangeX; 

  /** 



 107 

   * Range of Y coordinates of the cities at the beginning<br> 

   * If regions are known it represents the height of the each cell adjusted 

to presentation area 

   */ 

  public double rangeY; 

  /** 

   * City id is written. If you call this element from the linked list make 

necessary calculations 

   */ 

  public String maxXCity; 

  /** 

   * City id is written. If you call this element from the linked list make 

necessary calculations 

   */ 

  Public String maxYCity; 

  /** 

   * City id is written. If you call this element from the linked list make 

necessary calculations 

   */ 

  public String minXCity; 

  /** 

   * City id is written. If you call this element from the linked list make 

necessary calculations 

   */ 

  public String minYCity; 

  /** 

   * Calculated after initial cities are created. It is used to determine 

region elements when region numbers are not known in advance. 

   */ 

  public double avgDistBtwCities; 

  /** 

   * Do not delete but you can make it invisible. It is used to initialize 

cities' locations 

   */ 

  public double rndXCord; 

  /** 

   * Do not delete but you can make it invisible. It is used to initialize 

cities' locations 

   */ 

  public double rndYCord; 

  /** 

   * A temporary integer variable used for intermediate assigments or 

calculations 

   */ 

  public int tempInt; 

  /** 

   * A temporary double variable used for intermediate assigments or 

calculations 

   */ 

 public double tempDouble; 

  /** 

   * Sum of X coordinates of the cities at the beginning 

   */ 

 public double sumX; 

  /** 

   * Sum of Y coordinates of the cities at the beginning 

   */ 

  public double sumY; 

  /** 

   * Stores x coordinate of the home city 

   */ 

  public double xCordOfHomeCity; 

  /** 

   * Stores Y coordinate of the home city 

   */ 

  public double yCordOfHomeCity; 

  /** 

   * A temporary string variable used for intermediate assigments   



 108 

   */ 

  public String tempString; 

  public double deltaB; 

  static public double simStartTime; 

  static public int totNumbOfCityInTour; 

  /** 

   * When a new city arrives, this variable temporary stores its X 

coordinate 

   */ 

  static public double newCityXCord; 

  /** 

   * When a new city arrives, this variable temporary stores its Y 

coordinate 

   */ 

  static public double newCityYCord; 

  /** 

   * When a new city arrives, this variable temporary stores its name 

   */ 

static public String newCityName; 

public double tempX;public  

double tempY; 

public int dispIndex; 

public int neighType; 

static public double regCenterPInitialX; 

static public double regCenterPInitialY; 

public int allCitiesIndex; 

public int cellXCord; 

public int cellYCord; 

static public String cityOrRegion; 

static public int allRegionsIndex; 

  /** 

   * Used to change the text "Initial number of city" to "Number of city: ".  

   */ 

public String infCity; 

  /** 

   * Minimum of   X coordinates of initial cities<br> 

   * If regions are known it represents the origin of the X cord for 

presentation window 

   */ 

public double minX; 

  /** 

   * Minimum of   Y coordinates of initial cities<br> 

   * If regions are known it represents the origin of the X cord for 

presentation window 

   */ 

public double minY; 

  /** 

   * Total number of regions currently 

   */ 

public int totNumbOfReg; 

  /** 

   * Represents the number of current tour 

   */ 

static public int tourCounter = 1 ; 

  /** 

   * Simplify to get X coordinate of the necessary city. If any element is 

added between city and x coordinate in the linked list, do not forget to<br> 

   * adjust value of this variable 

   */ 

static public final int xCordIndexL = 1 ; 

  /** 

   * Simplify to get Y coordinate of the necessary city 

   */ 

static public final int yCordIndexL = xCordIndexL+1 ; 

  /** 

   * Represents the current number of city .  

   */ 

public int numbOfCity; 



 109 

  /** 

   * This variable is used to separete initial  X cord value and initial Y 

cord value in the linked list.  

   */ 

static public final int increaseFac = 2 ; 

  /** 

   * Used to write city id in the linked lists 

   */ 

static public final String cityIdString = "City " ; 

  /** 

   * Used to write region id in the linked lists 

   */ 

static public finalStringregionIdString = "Region " ; 

  /** 

   * Used to write tour id in the linked lists 

   */ 

static public final String tourIdString = "Tour " ; 

  /** 

   * This is used to represent unvisited cities 

   */ 

static public final String unVisitedString = "Unvisited" ; 

  /** 

   * This is used to representvisited cities 

   */ 

static public final String visitedString = "Visited" ; 

  /** 

   * This is used to deleted cities 

   */ 

static public final String deletedString = "Deleted" ; 

  /** 

   * Stores the home city of the dynamic TSP 

   */ 

public int homeCity; 

public boolean startToCreateEvent; 

static public int neighborType = 1 ; 

static public final int numbOfAttributes = 3 ; 

  /** 

   * =0 if dtsp is selected<br> 

   * =1 other problem type 

   */ 

static public int constant1Or0 = 0 ; 

  /** 

   * = true for DTSP<br> 

   * = false for others 

   */ 

static public boolean partial = false ; 

static public int count = 0 ; 

public String numbOfRegOptString; 

public String initialSolStrategyGMAString; 

static public final String costString = "Cost " ; 

  // Collection Variables 

  /** 

   * Sequence of elements finally<br> 

   * First element : region ID<br> 

   * Second :  City id of region center (If city center is calculated after 

cities are regioned and there is no city at this point,City -1 is written as 

center city id)<br> 

   * Third:  Xcord of region center<br> 

   * Fourth:Y cord of region center<br> 

   * Fifth:City id of following city <br> 

   * Sixth: Xcord of following city <br> 

   * Seventh: Y cord of following city  

   */ 

public java.util.LinkedList < Object > RegionsAndCities = new 

java.util.LinkedList<Object>(); 

  /** 

   * Stores all cities up to know including deleted cities. <br> 



 110 

   * All distance calculations are made using the lements of this linked 

list<br> 

   * <br> 

   * First elment:City ID<br> 

   * Second: City X cord<br> 

   * Third: City Y Cord<br> 

   * ... 

   */ 

public java.util.LinkedList <Object > CitiesDataBase = new 

java.util.LinkedList<Object>(); 

  /** 

   * Region name<br> 

   * # of city in this region<br> 

   * First city of this region<br> 

   * Second city of this region<br> 

   * .... 

   */ 

public java.util.LinkedList <Object > RegionsSequence = new 

java.util.LinkedList<Object>(); 

public java.util.LinkedList < 

String > InstCityNames = new java.util.LinkedList<String>(); 

// Events 

public EventRate newEvent = new EventRate(this); 

@Override 

public String getNameOf( EventRate _e ) { 

     if ( _e == newEvent) return "newEvent"; 

     return super.getNameOf( _e );} 

  @Override 

  public double evaluateRateOf( EventRate _e ) { 

    if ( _e == newEvent) return 0.05 ; 

    return super.evaluateRateOf( _e );} 

@Override 

public void executeActionOf( EventRate _e ) { 

if ( _e == newEvent) { 

int randIntNumb=0; 

double randDouble=0; 

String sendThis=""; 

boolean acceptNewCord=true; 

if(startToCreateEvent==true) 

{randDouble=(2*rndm.nextDouble()-1); 

 if(randDouble<0){//Delete city 

  do{randIntNumb=rndm.nextInt(InstCityNames.size());} 

 while((generalManager.BestFeasibleTourGMA.indexOf(InstCityNames.get(r

andIntNumb))==1)||(InstCityNames.get(randIntNumb).toString()==generalManager

.BestFeasibleTourGMA.get(constant1Or0).toString())); 

  newCityName=InstCityNames.get(randIntNumb); 

  System.out.println("aaa"+InstCityNames.get(randIntNumb)); 

System.out.println("bbb"+generalManager.BestFeasibleTourGMA.get(constant1Or0

)); 

  sendThis="Delete city ";} 

else{ 

do{ 

   rndXCord=rndm.nextInt(((int) 

widthOfEnvironment.getValue())); 

   rndYCord=rndm.nextInt(((int) 

lengthOfEnvironment.getValue())); 

  if(cityP.contains((int)rndXCord,(int)rndYCord)){ 

 if(cityP.get((Integer.parseInt(CitiesDataBase.get(CitiesDataBase.inde

xOf((int)rndXCord)-1).toString().substring(cityIdString.length())))-

1).getFillColor()!=darkTurquoise){acceptNewCord=false;}}} 

  while(acceptNewCord=false); 

//Addassign x cord, y cord and name of the newcity to corresponding 

variables 

  allCitiesIndex++; 

  newCityXCord=rndXCord; 

  newCityYCord=rndYCord; 

  newCityName=cityIdString+(allCitiesIndex); 

//Presentation of the new city and its attributes 



 111 

cityP.get(allCitiesIndex1).setX((setPresent.setXYCordOfRMAPres((int)newCityX

Cord,cityArea.getWidth(),((int) 

widthOfEnvironment.getValue()),cityArea.getX()))); 

  cityP.get(allCitiesIndex-

1).setY((setPresent.setXYCordOfRMAPres((int)newCityYCord,cityArea.getHeight(

),((int) lengthOfEnvironment.getValue()),cityArea.getY()))); 

  cityP.get(allCitiesIndex-1).setLineColor(black); 

  cityP.get(allCitiesIndex-1).setFillColor(black); 

 dispAgentNumber.get(allCitiesIndex-1).setX(cityP.get(allCitiesIndex-

1).getX()); 

dispAgentNumber.get(allCitiesIndex-1).setY(cityP.get(allCitiesIndex-

1).getY()); 

dispAgentNumber.get(allCitiesIndex-1).setText(newCityName); 

  for(int i=0; i<CitiesDataBase.size();i=i+numbOfAttributes){

 

 generalManager.DistanceLinkedList.add(CitiesDataBase.get(i).toString(

)+newCityName); 

 generalManager.DistanceLinkedList.add(necessaryCalculations.calculate

EucDist(Double.parseDouble(CitiesDataBase.get((i+xCordIndexL)).toString()),n

ewCityXCord,Double.parseDouble(CitiesDataBase.get((i+yCordIndexL)).toString(

)),newCityYCord));//In order to simplify readability} 

  print.writeToTxtFile("X cord of new city "+newCityXCord+"Y 

cord of new city "+newCityYCord); 

  print.writeToTxtFile("Distance between new city and others are 

given below:"); 

 print.printLinkedListToTxt(generalManager.DistanceLinkedList.subList(

(CitiesDataBase.size()/numbOfAttributes),generalManager.DistanceLinkedList.s

ize())); 

 //************************************************************ 

  //Add new city to the cities database 

  CitiesDataBase.add(newCityName); 

  InstCityNames.add(newCityName); 

  CitiesDataBase.add((int)newCityXCord); 

  CitiesDataBase.add((int)newCityYCord); 

 //************************************************************ 

sendThis="New city ";} 

print.writeToTxtFile("New event ("+sendThis+")"+newCityName); 

print.writeToTxtFile("Received at  "+time()); 

startToCreateEvent=false; 

generalManager.newEventReceived=true; 

generalManager.send((sendThis+ newCityName),generalManager);}; 

return ;} 

super.executeActionOf( _e );} 

  // Embedded Objects 

  public GeneralManagerAgent generalManager; 

  public VehicleAgent vehicle; 

  public String getNameOf( ActiveObject ao ) { 

    if ( ao == generalManager ) return "generalManager"; 

    if ( ao == vehicle ) return "vehicle"; 

    return null;} 

  public ActiveObjectArrayList<RegionManagerAgents> regionManagerAgents = 

new ActiveObjectArrayList<RegionManagerAgents>(); 

  public ActiveObjectArrayList<LocalVehicle> localVehicle = new 

ActiveObjectArrayList<LocalVehicle>(); 

  public String getNameOf( ActiveObjectCollection<?> aolist ) { 

    if( aolist == regionManagerAgents ) return "regionManagerAgents"; 

    if( aolist == localVehicle ) return "localVehicle"; 

    return null;} 

  /** 

   * This method creates and adds new embedded object in the replicated 

embedded object collection regionManagerAgents<br> 

   * @return newly created embedded object 

   */ 

  public RegionManagerAgents add_regionManagerAgents() { 

    int index = regionManagerAgents.size(); 

    RegionManagerAgents object = instantiate_regionManagerAgents_xjal( index 

); 

    setupParameters_regionManagerAgents_xjal( object, index ); 



 112 

    create_regionManagerAgents_xjal( object, index ); 

    object.start(); 

    return object;} 

  /** 

   * This method removes the given embedded object from the replicated 

embedded object collection regionManagerAgents<br> 

   * The given object is destroyed, but not immediately in common case. 

   * @param object the active object - element of replicated embedded object 

regionManagerAgents - which should be removed 

   * @return <code>true</code> if object was removed successfully, 

<code>false</code> if it doesn't belong to regionManagerAgents 

   */ 

  public boolean remove_regionManagerAgents( RegionManagerAgents object ) { 

    if( ! regionManagerAgents._remove( object ) ){ 

      return false;} 

    object.setDestroyed(); 

    return true;} 

  /** 

   * This method creates and adds new embedded object in the replicated 

embedded object collection localVehicle<br> 

   * @return newly created embedded object 

   */ 

  public LocalVehicle add_localVehicle() { 

    int index = localVehicle.size(); 

    LocalVehicle object = instantiate_localVehicle_xjal( index ); 

    setupParameters_localVehicle_xjal( object, index ); 

    create_localVehicle_xjal( object, index ); 

    object.start(); 

    return object;} 

  /** 

   * This method removes the given embedded object from the replicated 

embedded object collection localVehicle<br> 

   * The given object is destroyed, but not immediately in common case. 

   * @param object the active object - element of replicated embedded object 

localVehicle - which should be removed 

   * @return <code>true</code> if object was removed successfully, 

<code>false</code> if it doesn't belong to localVehicle 

   */ 

  public boolean remove_localVehicle( LocalVehicle object ) { 

    if( ! localVehicle._remove( object ) ){ 

      return false;} 

    object.setDestroyed(); 

    return true;} 

  /** 

   * Creates an embedded object instance<br> 

   * <i>This method should not be called by user</i> 

   */ 

  private GeneralManagerAgent instantiate_generalManager_xjal() { 

    GeneralManagerAgent object = new GeneralManagerAgent( getEngine(), this, 

null ); 

    return object;} 

  /** 

   * Setups parameters of an embedded object instance<br> 

   * This method should not be called by user 

   */ 

  private void setupParameters_generalManager_xjal(GeneralManagerAgent 

object ) {} 

  /** 

   * Setups an embedded object instance<br> 

   * This method should not be called by user 

   */ 

private void create_generalManager_xjal(GeneralManagerAgent object){ 

object.setEnvironment( negotiationEnvCont);object.create();} 

  /** 

   * Creates an embedded object instance and adds it to the end of 

replicated embedded object list<br> 

   * <i>This method should not be called by user</i> 

   */ 



 113 

  private RegionManagerAgents instantiate_regionManagerAgents_xjal( final 

int index ) { 

    RegionManagerAgents object = new RegionManagerAgents( getEngine(), this, 

regionManagerAgents ); 

     regionManagerAgents._add(object); 

    return object;} 

  /** 

   * Setups parameters of an embedded object instance<br> 

   * This method should not be called by user 

   */ 

  private void setupParameters_regionManagerAgents_xjal(RegionManagerAgents 

object, final int index ) { 

  } 

  /** 

   * Setups an embedded object instance<br> 

   * This method should not be called by user 

   */ 

  private void create_regionManagerAgents_xjal(RegionManagerAgents object, 

final int index ) { 

    object.setEnvironment(  

negotiationEnvCont ); 

    object.create(); 

    // Port connections 

  } 

  /** 

   * Creates an embedded object instance<br> 

   * <i>This method should not be called by user</i> 

   */ 

  private VehicleAgent instantiate_vehicle_xjal() { 

    VehicleAgent object = new VehicleAgent( getEngine(),this,null) 

    return object;} 

  /** 

   * Setups parameters of an embedded object instance<br> 

   * This method should not be called by user 

   */ 

  private void setupParameters_vehicle_xjal(VehicleAgent object ) {} 

  /** 

   * Setups an embedded object instance<br> 

   * This method should not be called by user 

   */ 

  private void create_vehicle_xjal(VehicleAgentobject){object.create(); } 

  /** 

   * Creates an embedded object instance and adds it to the end of 

replicated embedded object list<br> 

   * <i>This method should not be called by user</i> 

   */ 

  private LocalVehicle instantiate_localVehicle_xjal( final int index) { 

    LocalVehicle object = new LocalVehicle( getEngine(), this, localVehicle 

); 

    localVehicle._add(object); 

    return object; } 

  /** 

   * Setups parameters of an embedded object instance<br> 

   * This method should not be called by user 

   */ 

  private void setupParameters_localVehicle_xjal(LocalVehicle object, final 

int index ) {} 

  /** 

   * Setups an embedded object instance<br> 

   * This method should not be called by user 

   */ 

  private void create_localVehicle_xjal(LocalVehicle object, final int index 

) { 

    object.create(); 

    // Port connections 

}void  generate() {  

    for ( int i = 1 ; i <= numbOfCity ; i++  ) { // generateCities 

{ // initialLocOfCities 



 114 

// InitializationOfEnvironment: Generate location for predetermined 

numbOfCity     

rndXCord= rndm.nextInt((int) widthOfEnvironment.getValue()); 

rndYCord= rndm.nextInt((int) lengthOfEnvironment.getValue()) ; 

//rndXCord=necessaryCalculations.roundTwoDecimals((rndm.nextDouble()*((int) 

widthOfEnvironment.getValue()))); 

//rndYCord=necessaryCalculations.roundTwoDecimals((rndm.nextDouble()*((int) 

lengthOfEnvironment.getValue()))); 

RegionsAndCities.add((cityIdString+i)); 

RegionsAndCities.add((int)rndXCord); 

RegionsAndCities.add((int)rndYCord); 

CitiesDataBase.add(cityIdString+i); 

InstCityNames.add(cityIdString+i); 

CitiesDataBase.add((int)rndXCord); 

CitiesDataBase.add((int)rndYCord); 

cityP.get(I1).setX((setPresent.setXYCordOfRMAPres((int)rndXCord,cityArea.  

getWidth(),((int) widthOfEnvironment.getValue()),cityArea.getX()))); 

cityP.get(i-1). 

setY((setPresent.setXYCordOfRMAPres((int)rndYCord,cityArea.getHeight(),((int

) lengthOfEnvironment.getValue()),cityArea.getY()))); 

cityP.get(i-1).setLineColor(red);  

      } // initialLocOfCities 

      if (problemType.getValue().toString().contains("Regions are 

known")==true ) { // DecRegionsAreKnown 

        { // RegionsAreKnown 

          // Regions are known   

cellXCord=(int)ceil((Double.parseDouble(RegionsAndCities.get(RegionsAndCitie

s.size()-2).toString()))/rangeX); 

cellYCord=(int)ceil((Double.parseDouble(RegionsAndCities.getLast().toString(

))/rangeY)); 

tempInt=((cellXCord-1)*((int)numbOfRow.getValue()))+cellYCord; 

tempString=regionIdString+tempInt; 

if(RegionsAndCities.indexOf(tempString)==-1){ 

 totNumbOfReg++; 

 RegionsAndCities.add((RegionsAndCities.size()-

numbOfAttributes),(tempString));  

 RegionsSequence.add(tempString); 

 RegionsSequence.add(cityIdString+i);} 

else{ 

 tempInt=necessaryCalculations.findStOccurenceOfSubStringFirstToLast(R

egionsSequence,(RegionsSequence.indexOf(tempString)+1),RegionsSequence.size(

),1,1,regionIdString); 

 tempInt=(tempInt==-1?RegionsSequence.size():tempInt); 

 RegionsSequence.add(tempInt,cityIdString+i); 

 tempInt=necessaryCalculations.findIndexOfSubStringFirstToLast(Regions

AndCities,(RegionsAndCities.indexOf(tempString)+1),RegionsAndCities.size(),n

umbOfAttributes,regionIdString); 

 if(tempInt!=-1){ 

 RegionsAndCities.addAll(tempInt,RegionsAndCities.subList((RegionsAndC

ities.size()-numbOfAttributes),RegionsAndCities.size())); 

  RegionsAndCities.subList((RegionsAndCities.size()-

numbOfAttributes),RegionsAndCities.size()).clear();}} 

        } // RegionsAreKnown 

      } // DecRegionsAreKnown 

    } // generateCities 

    { // code1 

InstCityNames.removeFirst(); 

    } // code1 

    if ( 

problemType.getValue().toString().contains("Regions are known")==true ) { // 

DecRegionsAreKnown2 

      { // citiesWereAssignedToPredeterminedReg 

        // Print Regions and Cities 

allCitiesIndex=numbOfCity; 

if(homeCityOpt.getValue()==1){ 

 print.writeToTxtFile("Home region is region" 

+(Integer.parseInt(homeCityVal.getText()))+"and this region with its 

elements will be written at the begining of the region sequence"); 



 115 

 int 

frstIn=necessaryCalculations.findStOccurenceOfSubStringFirstToLast(RegionsSe

quence,0,RegionsSequence.size(),1,(Integer.parseInt(homeCityVal.getText())),

regionIdString); 

 int 

lst=(necessaryCalculations.findStOccurenceOfSubStringFirstToLast(RegionsSequ

ence,0,RegionsSequence.size(),1,(Integer.parseInt(homeCityVal.getText())+1),

regionIdString)==-1 

?RegionsSequence.size():(necessaryCalculations.findStOccurenceOfSubStringFir

stToLast(RegionsSequence,0,RegionsSequence.size(),1,(Integer.parseInt(homeCi

tyVal.getText())+1),regionIdString))); 

  RegionsSequence.addAll(0,RegionsSequence.subList(frstIn,lst)); 

  RegionsSequence.subList(frstIn+(lst-frstIn),lst+(lst-frstIn)).clear();} 

print.writeToTxtFile("Regions and Cities linked list for GTSP (Regions are 

known)"); 

print.writeToTxtFile("Region centers are calculated by using center of 

gravity.If there is not any city at the region center, City -1 is written"); 

print.printLinkedListToTxt(RegionsAndCities); 

necessaryCalculations.findCenterByCG(RegionsAndCities,numbOfAttributes); 

print.printLinkedListToTxt(RegionsAndCities); 

print.writeToTxtFile("Regions Sequences"); 

print.printLinkedListToTxt(RegionsSequence); 

      } // citiesWereAssignedToPredeterminedReg 

    } else { // DecRegionsAreKnown2 

      { // ifNecChangeHomeCity 

        // Make Initial Calculations 

allCitiesIndex=numbOfCity; 

switch (homeCityOpt.getValue())                             

{case  0: xCordOfHomeCity= (Double.parseDouble 

((RegionsAndCities.get(xCordIndexL)).toString()) ); 

 yCordOfHomeCity=(Double.parseDouble((RegionsAndCities.get(yCordIndexL

)).toString()) );    

 break;      

case 1:tempInt=(homeCity-1)*(numbOfAttributes); 

 RegionsAndCities.addAll(0,RegionsAndCities.subList(tempInt,tempInt+(n

umbOfAttributes))); 

 RegionsAndCities.subList(tempInt+numbOfAttributes,tempInt+2*numbOfAtt

ributes).clear(); 

 xCordOfHomeCity=(Double.parseDouble((RegionsAndCities.get(xCordIndexL

)).toString()) ); 

 yCordOfHomeCity=(Double.parseDouble((RegionsAndCities.get(yCordIndexL

)).toString()) );  

 break; 

 default: 

     xCordOfHomeCity=0; 

  yCordOfHomeCity=0; 

 break; }  

      } // ifNecChangeHomeCity 

      if (problemType.getValue().contains("Dynamic TSP") ) { // ProblemType 

        { // DynamicTSPbranch 

          // Dynamic TSP 

print.writeToTxtFile("Cities linked list"); 

print.printLinkedListToTxt(RegionsAndCities);  

        } // DynamicTSPbranch 

      } else { // ProblemType 

        { // makeNecCalculations 

          // Calculations for GTSP 

int frstCity=1; 

//totNumbOfCityInTour=numbOfCity; 

 // Max and max of X and Y cord************0 x cord, 1 y cord.  

RegionsAndCities=necessaryCalculations.findMaxElOfLinkedList(RegionsAndCitie

s,frstCity,numbOfAttributes); 

maxXCity=RegionsAndCities.get((Integer.parseInt(RegionsAndCities.getLast().t

oString())-frstCity)).toString(); 

RegionsAndCities.removeLast(); 

maxX=(Double.parseDouble((RegionsAndCities.getLast()).toString()) ); 

RegionsAndCities.removeLast(); 



 116 

RegionsAndCities=necessaryCalculations.findMinElOfLinkedList(RegionsAndCitie

s,frstCity,numbOfAttributes); 

minXCity=RegionsAndCities.get((Integer.parseInt(RegionsAndCities.getLast().t

oString())-(frstCity))).toString(); 

RegionsAndCities.removeLast(); 

minX=(Double.parseDouble((RegionsAndCities.getLast()).toString()) ); 

RegionsAndCities.removeLast(); 

frstCity=1; 

RegionsAndCities=necessaryCalculations.findMaxElOfLinkedList(RegionsAndCitie

s,frstCity+1,numbOfAttributes); 

maxYCity=RegionsAndCities.get((Integer.parseInt(RegionsAndCities.getLast().t

oString())-(frstCity+1))).toString(); 

RegionsAndCities.removeLast(); 

maxY=(Double.parseDouble((RegionsAndCities.getLast()).toString())) ; 

RegionsAndCities.removeLast(); 

RegionsAndCities=necessaryCalculations.findMinElOfLinkedList(RegionsAndCitie

s,frstCity+1,numbOfAttributes); 

minYCity=RegionsAndCities.get((Integer.parseInt(RegionsAndCities.getLast().t

oString())-(frstCity+1))).toString(); 

RegionsAndCities.removeLast(); 

minY=Double.parseDouble((RegionsAndCities.getLast()).toString()) ; 

RegionsAndCities.removeLast(); 

//Range of x coordinate and y coordinate 

sumX=necessaryCalculations.sumOfLinkedList(RegionsAndCities,1,numbOfAttribut

es); 

sumY=necessaryCalculations.sumOfLinkedList(RegionsAndCities,2,numbOfAttribut

es); 

//Range of x coordinate and y coordinate 

rangeX=abs(maxX -minX); 

rangeY=abs(maxY -minY); 

        } // makeNecCalculations 

        if (numbOfRegOpt.getValue()==1 ) { // GTSPType 

          { // GTSPNumberOfRegionsAreKnown 

            // GTSP Number of Region is Known 

          } // GTSPNumberOfRegionsAreKnown 

        } else { // GTSPType 

          { // code5 

          } // code5 

          if (avgDistOpt.getValue()=="User defined" ) { // avgDistUserDefDec 

            { // avgDistUser 

              // User defined average distance 

avgDistBtwCities=avgDistInput.getValue(); 

print.writeToTxtFile("Average distance: "+avgDistBtwCities);  

            } // avgDistUser 

          } else { // avgDistUserDefDec 

            { // code4  

            } // code4 

            if (avgDistOpt.getValue()=="Circle diameter" ) { // avgDistDec 

              { // circleDia 

                // Circle diameter distance 

necessaryCalculations.updateConstructor(rangeX,rangeY,numbOfCity); 

avgDistBtwCities=necessaryCalculations.findAvgDist(1); 

              } // circleDia 

            } else { // avgDistDec 

              { // code 

                // Euclidean distance    

necessaryCalculations.updateConstructor(rangeX,rangeY,numbOfCity); 

avgDistBtwCities=necessaryCalculations.findAvgDist();  

              } // code 

            } // avgDistDec 

            { // code2 

print.writeToTxtFile("Average distance: "+avgDistBtwCities);  

            } // code2 

            if (regDistOpt.getValue()=="Modified equal distance (Next 

minimum)"||regDistOpt.getValue()=="Modified equal distance (Multiply 

constant)" ) { // modOrEqDec 

              { // code3 

              } // code3 



 117 

              if ( 

regDistOpt.getValue()=="Modified equal distance (Next minimum)" ) { // 

nextMinOrMultConstDec 

                { // nextMinDist 

                  // Modified equal distance (Next minimum)              

FindRegionsOfAgents findRegions = new 

FindRegionsOfAgents(numbOfCity,avgDistBtwCities,RegionsAndCities); 

if(changeReportFileLocation.isSelected()==true){ 

 findRegions.print.updatePath(fileLocation.getText());}  

//CalculateRegionCenter calculateReg= new 

CalculateRegionCenter(RegionsAndCities); 

RegionsAndCities=findRegions.findInitialRegModifiedEqNextMin(); 

//Convert number of region to integer 

totNumbOfReg=(Integer.parseInt((RegionsAndCities.getLast()).toString()) ); 

RegionsAndCities.removeLast();  

                } // nextMinDist 

              } else { // nextMinOrMultConstDec 

                { // multConst 

                  // Modified equal distance (Multiply constant) 

FindRegionsOfAgents findRegions = new 

FindRegionsOfAgents(numbOfCity,avgDistBtwCities,RegionsAndCities); 

if(changeReportFileLocation.isSelected()==true){ 

 findRegions.print.updatePath(fileLocation.getText());}  

//CalculateRegionCenter calculateReg= new 

CalculateRegionCenter(RegionsAndCities); 

RegionsAndCities=findRegions.findInitialRegModifiedEqMultConst(numbOfReg.get

Value()); 

//Convert number of region to integer 

totNumbOfReg=(Integer.parseInt((RegionsAndCities.getLast()).toString()) ); 

RegionsAndCities.removeLast();  

                } // multConst 

              } // nextMinOrMultConstDec 

            } else { // modOrEqDec 

              { // eqDist 

                // Equal distance        

FindRegionsOfAgents findRegions = new 

FindRegionsOfAgents(numbOfCity,avgDistBtwCities,RegionsAndCities); 

if(changeReportFileLocation.isSelected()==true){ 

 findRegions.print.updatePath(fileLocation.getText());}  

RegionsAndCities=findRegions.findInitialRegEqDist(); 

//Convert number of region to integer 

totNumbOfReg=(Integer.parseInt((RegionsAndCities.getLast()).toString()) ); 

RegionsAndCities.removeLast();  

              } // eqDist 

            } // modOrEqDec 

          } // avgDistUserDefDec 

        } // GTSPType 

        if ( 

regCenterOpt.getValue()=="Center of gravity" ) { // regCenterDec 

          { // regCenterCOfGrav 

            // Region Center (Center of Gravity)         

necessaryCalculations.findCenterByCG(RegionsAndCities,numbOfAttributes); 

print.writeToTxtFile("Regions and cities linked list.If there is not ant 

city at the region center, City -1 is written"); 

print.printLinkedListToTxt(RegionsAndCities);  

          } // regCenterCOfGrav 

        } // regCenterDec 

      } // ProblemType 

    } // DecRegionsAreKnown2 

    return; // returnStatement} 

  // View areas 

  public ViewArea createInitialCities = new ViewArea( this, "Create Initial 

Cities", 1080, 10, ViewArea.TOP_LEFT, ViewArea.NONE, 1.0, 1480, 100 ); 

  public ViewArea inputFromUser = new ViewArea( this, "Input from user", 20, 

30, ViewArea.TOP_LEFT, ViewArea.SHRINK_TO_FIT, 1.0, 1050, 350 ); 

  public ViewArea cityArea = new ViewArea( this, "Cities", -3200, 2, 

ViewArea.TOP_LEFT, ViewArea.SHRINK_TO_FIT, 1.0, 1320, 1000 ); 



 118 

  public ViewArea agentsObjectsView = new ViewArea( this, "Agents objects 

view", 0, -400, ViewArea.TOP_LEFT, ViewArea.NONE,1.0,100,100); 

  static final Color _regCenterP_FillColor = purple; 

  static final int _determineRegions = 1; 

  static final int _initNumbOfCity = 2; 

  static final int _lengthOfEnvironment = 3; 

  static final int _widthOfEnvironment = 4; 

  static final int _numbOfReg = 5; 

  static final int _convertCord = 6; 

  static final int _createAgentsButton = 7; 

  static final int _numbOfRegOpt = 8; 

  static final int _avgDistOpt = 9; 

  static final int _regDistOpt = 10; 

  static final int _regionDetAlg = 11; 

  static final int _homeCityOpt = 12; 

  static final int _homeCityVal = 13; 

  static final int _setInitialParameters = 14; 

  static final int _searchAlgorithms = 15; 

  static final int _searchAlgP = 16; 

  static final int _maxNumbOfIter = 17; 

  static final int _maxNumbOfNonImp = 18; 

  static final int _numbOfBestCan = 19; 

  static final int _neighOpt = 20; 

  static final int _regCenterOpt = 21; 

  static final int _avgDistInput = 22; 

  static final int _numbOfNeg = 23; 

  static final int _initialSolStrategyGMA = 24; 

  static final int _problemType = 25; 

  static final int _numbOfRow = 26; 

  static final int _numbOfCol = 27; 

  static final int _optStrategies = 28; 

  static final int _changeReportFileLocation = 29; 

  static final int _fileLocation = 30; 

  static final int _avoidSameMembers = 31; 

  static final int _maxNumbOfIterSGS = 32; 

  static final int _maxNumbOfNonImpSGS = 33; 

  static final int _dispLOfEnv = 34; 

  static final int _dispWOfEnv = 35; 

  static final int _dispNumbOfCityR = 36; 

  static final int _dispNumbOfReg = 37; 

  static final int regionManagerAgents_Presentation = 38; 

  static final int vehicle_presentation = 39; 

  static final int _cityP = 40; 

  static final int _xCordCity = 41; 

  static final int _xCordLabel = 42; 

  static final int _yCordLabel = 43; 

  static final int _yCordCity = 44; 

  static final int _dispSearchAlgP = 45; 

  static final int _dispMaxNOfIter = 46; 

  static final int _dispMaxNOfNonImp = 47; 

  static final int _dispMaxNOfBestCanSol = 48; 

  static final int _dispMultConst = 49; 

  static final int _dispAvgDist = 50; 

  static final int _dispNumbOfNeg = 51; 

  static final int _dispNumbOfRow = 52; 

  static final int _dispNumbOfCol = 53; 

  static final int _dispAgentNumber = 54; 

  static final int _dispRegName = 55; 

  static final int _dispMaxNumbOfIterSGS = 56; 

  static final int _dispMaxNumbOfNonImpSGS = 57; 

  static final int localVehicle_presentation = 58; 

  static final int _regCenterP = 59; 

  /** 

   * Top-level presentation group id 

   */   

  static final int _presentation = 0; 

  /** 

   * Top-level icon group id 



 119 

   */   

  static final int _icon = -1; 

  @Override 

  public boolean onShapeClick( int _shape, int index, double clickx, double 

clicky ){ 

    switch( _shape ){ 

      case _cityP: 

        if (true) {for(int i=1; i<=numbOfCity;i++){  

 xCordLabel.get(i).setX(cityP.get(i).getX()+12); 

 xCordLabel.get(i).setY(cityP.get(i).getY()-20); 

 yCordLabel.get(i).setX(cityP.get(i).getX()+12); 

 yCordLabel.get(i).setY(cityP.get(i).getY()-3); 

 xCordLabel.get(i).setText("Modified X"); 

 yCordLabel.get(i).setText("Modified Y"); 

 xCordCity.get(i).setX(cityP.get(i).getX()+12); 

 xCordCity.get(i).setY(cityP.get(i).getY()-12); 

 yCordCity.get(i).setX(cityP.get(i).getX()+12); 

 yCordCity.get(i).setY(cityP.get(i).getY()+5); 

 xCordCity.get(i).setText(cityP.get(i).getX()); 

 yCordCity.get(i).setText(cityP.get(i).getY());} } 

        break; 

      default: return super.onShapeClick(_shape,index,clickx, clicky); 

  }return false;} 

  @Override 

  public void executeShapeControlAction( int _shape, int index ) { 

    switch( _shape ) { 

      case _determineRegions: { 

cityOrRegion=regionIdString; 

if(changeReportFileLocation.isSelected()==true){ 

 print.updatePath(fileLocation.getText()); 

 generalManager.print.updatePath(fileLocation.getText()); 

 generalManager.searchAlg.printTxt.updatePath(fileLocation.getText()); 

 generalManager.print.updatePath(fileLocation.getText()); 

 vehicle.print.updatePath(fileLocation.getText());} 

determineRegions.setEnabled(false); 

infCity = "Number of city: "; 

if(problemType.getValue().toString().contains("Regions are known")==true){ 

 rangeX=cityArea.getWidth()/((int)numbOfCol.getValue()); 

 rangeY=cityArea.getHeight()/((int)numbOfRow.getValue());}  

if(problemType.getValue()=="Dynamic GTSP (Regions are not 

known"||problemType.getValue()=="Dynamic GTSP with TSP (Regions are not 

known)"){ 

  regCenterPInitialX=regCenterP.get(0).getX(); 

 regCenterPInitialY=regCenterP.get(0).getY();} 

if(problemType.getValue()=="Dynamic TSP"){ 

 partial=true; 

 totNumbOfReg=numbOfCity; 

 cityOrRegion=cityIdString;} 

//About region selection algorithm 

print.writeToTxtFileUsedElements(regDistOpt.isVisible(),("Region distance 

option: "+regDistOpt.getValue())); 

print.writeToTxtFileUsedElements(dispMultConst.isVisible(),dispMultConst.get

Text()); 

print.writeToTxtFileUsedElements(avgDistOpt.isVisible(),("Average distance 

option: "+avgDistOpt.getValue())); 

print.writeToTxtFileUsedElements(dispAvgDist.isVisible(),dispAvgDist.getText

());  

print.writeToTxtFileUsedElements(regCenterOpt.isVisible(),("Region center: 

"+regCenterOpt.getValue())); 

//About algorithm 

print.writeToTxtFileUsedElements(searchAlgorithms.isVisible(),("Search 

algorithm: "+searchAlgorithms.getValue())); 

print.writeToTxtFileUsedElements(dispSearchAlgP.isVisible(),(dispSearchAlgP.

getText()+searchAlgP.getText())); 

print.writeToTxtFileUsedElements(dispMaxNumbOfIterSGS.isVisible(),dispMaxNum

bOfIterSGS.getText()); 

print.writeToTxtFileUsedElements(dispMaxNumbOfNonImpSGS.isVisible(),dispMaxN

umbOfNonImpSGS.getText()); 



 120 

print.writeToTxtFileUsedElements(dispMaxNOfIter.isVisible(),dispMaxNOfIter.g

etText()); 

print.writeToTxtFileUsedElements(dispMaxNOfNonImp.isVisible(),dispMaxNOfNonI

mp.getText()); 

print.writeToTxtFileUsedElements(dispNumbOfNeg.isVisible(),dispNumbOfNeg.get

Text()); 

print.writeToTxtFileUsedElements(avoidSameMembers.isSelected(),"Same members 

in the population is not allowed"); 

print.writeToTxtFileUsedElements(neighOpt.isVisible(),("Neighborhood option: 

"+neighOpt.getValue())); 

print.writeToTxtFileUsedElements(dispMaxNOfBestCanSol.isVisible(),dispMaxNOf

BestCanSol.getText()); 

 if(searchAlgP.isVisible()==false){ 

 searchAlgP.setText("1");} 

generate();;} 

        break; 

      case _convertCord: { 

double doubleVal=0; 

String convert; 

String befComma; 

String afterComma; 

int j=0; 

for(int i=1; i<=numbOfCity;i++){ 

 if(xCordLabel.get(i).getText()=="Modified X"){ 

 xCordLabel.get(i).setText("Original X"); 

 yCordLabel.get(i).setText("Original Y"); 

 convert=xCordCity.get(i).getText(); 

 j=convert.indexOf(","); 

 System.out.println("j " +j); 

 befComma=convert.substring(0,j); 

 afterComma=convert.substring(j+1); 

 convert=befComma+afterComma; 

 System.out.println("Burda ne yazıyor " +befComma + "afer " 

+afterComma); 

 doubleVal=Double.parseDouble(convert); 

 doubleVal=setPresent.setXYCordOfRMAOrg(doubleVal,cityArea.getWidth(),

((int) widthOfEnvironment.getValue()),cityArea.getX()); 

 convert=Double.toString(doubleVal); 

 xCordCity.get(i).setText(convert); 

 convert=yCordCity.get(i).getText(); 

 doubleVal=Double.parseDouble(convert); 

 doubleVal=setPresent.setXYCordOfRMAOrg(doubleVal,cityArea.getHeight()

,((int) lengthOfEnvironment.getValue()),cityArea.getY()); 

 convert=Double.toString(doubleVal); 

 yCordCity.get(i).setText(convert);}};} 

        break; 

      case _createAgentsButton: { 

//Agent part 

generalManager.send("Create initial region agents",generalManager);//Manager 

agent is created;} 

        break; 

      default: 

        super.executeShapeControlAction( _shape, index ); 

        break;}} 

  @Override 

  public void executeShapeControlAction( int _shape, int index, boolean 

value ) { 

    switch( _shape ) { 

      case _setInitialParameters: { 

determineRegions.setEnabled(true); ;} 

        break; 

      case _changeReportFileLocation: { 

if (changeReportFileLocation.isSelected()==true){ 

 fileLocation.setVisible(true)} 

else{fileLocation.setVisible(false);} ;} 

        break; 

      default: 

        super.executeShapeControlAction( _shape, index, value ); 



 121 

        break;}} 

  @Override 

  public void executeShapeControlAction( int _shape, int index, int value ) 

{ 

    switch( _shape ) { 

      case _numbOfRegOpt: { 

if(numbOfRegOpt.getValue()==0){ 

 totNumbOfReg=0; 

 numbOfRegOptString="Number of region is known"; 

 numbOfReg.setVisible(false); 

 dispNumbOfReg.setVisible(false); 

 avgDistOpt.setVisible(true); 

 regDistOpt.setVisible(true); 

 regionDetAlg.setVisible(false);} 

if(numbOfRegOpt.getValue()==1){ 

 numbOfRegOptString="Number of region is not known"; 

 numbOfReg.setVisible(true); 

 dispNumbOfReg.setText((int)numbOfReg.getValue()); 

 dispNumbOfReg.setVisible(true); 

 avgDistOpt.setVisible(false); 

 regDistOpt.setVisible(false); 

 regionDetAlg.setVisible(true);};} 

      break; 

      case _homeCityOpt: { 

if(homeCityOpt.getValue()==0){ 

 homeCityVal.setVisible(false); 

 homeCityVal.setText("1"); 

 homeCity=1;} 

else if(homeCityOpt.getValue()==1){ 

 homeCityVal.setVisible(true);} 

else{homeCityVal.setVisible(false); 

 homeCity=0;} ;} 

      break; 

      case _initialSolStrategyGMA: { 

if(initialSolStrategyGMA.getValue()==0){ 

 initialSolStrategyGMAString="Best tour or each agent"; 

 if(problemType.getValue().contains("Dynamic TSP")){ 

 searchAlgorithms.setVisible(false); 

 dispNumbOfNeg.setVisible(false); 

 maxNumbOfNonImp.setVisible(false); 

 maxNumbOfIter.setVisible(false); 

 dispMaxNOfNonImp.setVisible(false); 

 dispMaxNOfIter.setVisible(false); 

 dispMaxNOfBestCanSol.setVisible(false); 

 numbOfBestCan.setVisible(false); 

 neighOpt.setVisible(false); 

 dispSearchAlgP.setVisible(false); 

 searchAlgP.setVisible(false); 

numbOfNeg.setVisible(false); 

avoidSameMembers.setVisible(false); 

searchAlgP.setText("1");} 

 else{ 

  searchAlgorithms.setVisible(true); 

  avoidSameMembers.setVisible(true); 

 dispNumbOfNeg.setVisible(true); 

 maxNumbOfNonImp.setVisible(true); 

 maxNumbOfIter.setVisible(true); 

 dispMaxNOfNonImp.setVisible(true); 

 dispMaxNOfIter.setVisible(true); 

 dispMaxNOfBestCanSol.setVisible(true); 

 numbOfBestCan.setVisible(true); 

 neighOpt.setVisible(true); 

 dispSearchAlgP.setVisible(true); 

 searchAlgP.setVisible(true); 

numbOfNeg.setVisible(true); 

 }} 

if (initialSolStrategyGMA.getValue()==1){ 

 initialSolStrategyGMAString="GMA determines"; 



 122 

  searchAlgorithms.setVisible(true); 

 dispNumbOfNeg.setVisible(true); 

 maxNumbOfNonImp.setVisible(true); 

 maxNumbOfIter.setVisible(true); 

 dispMaxNOfNonImp.setVisible(true); 

 dispMaxNOfIter.setVisible(true); 

 dispMaxNOfBestCanSol.setVisible(true); 

 numbOfBestCan.setVisible(true); 

 neighOpt.setVisible(true); 

 dispSearchAlgP.setVisible(true); 

 searchAlgP.setVisible(true); 

numbOfNeg.setVisible(true); 

avoidSameMembers.setVisible(true);} ;} 

        break; 

      default: 

        super.executeShapeControlAction( _shape, index, value ); 

        break;}} 

  @Override 

  public void executeShapeControlAction( int _shape, int index, double value 

) { 

    switch( _shape ) { 

      case _initNumbOfCity: 

        numbOfCity = (int) value; 

        break; 

      case _numbOfReg: 

        totNumbOfReg = (int) value; 

        break; 

      default: 

        super.executeShapeControlAction( _shape, index, value ); 

        break;}}    

  @Override 

  public void executeShapeControlAction( int _shape, int index, String value 

) { 

    switch( _shape ) { 

      case _avgDistOpt: { 

regCenterOpt.setVisible(true); 

if (avgDistOpt.getValue()=="Euclidean distance"){ 

 avgDistInput.setVisible(false); 

 dispAvgDist.setVisible(false);} 

if (avgDistOpt.getValue()=="Circle diameter"){ 

 avgDistInput.setVisible(false); 

 dispAvgDist.setVisible(false)}  

if(avgDistOpt.getValue()=="User defined"){ 

avgDistInput.setVisible(true); 

dispAvgDist.setVisible(true);} ;} 

        break; 

      case _regDistOpt: { 

if(regDistOpt.getValue()=="Equal distance"){ 

 avgDistOpt.setVisible(true); 

 regionDetAlg.setVisible(false);  

 numbOfReg.setVisible(false); 

 dispMultConst.setVisible(false);} 

if(regDistOpt.getValue()=="Modified equal distance (Next minimum)"){ 

 avgDistOpt.setVisible(true); 

 regionDetAlg.setVisible(false); 

 numbOfReg.setVisible(false);  

 dispMultConst.setVisible(false);} 

if(regDistOpt.getValue()=="Modified equal distance (Multiply constant)"){ 

 avgDistOpt.setVisible(true); 

 regionDetAlg.setVisible(false);  

 dispMultConst.setVisible(true); 

 numbOfReg.setVisible(true);};} 

        break; 

      case _homeCityVal: { 

 homeCity=Integer.parseInt(homeCityVal.getText()); ;} 

        break; 

      case _searchAlgorithms: { 

dispMaxNOfIter.setVisible(true); 



 123 

maxNumbOfIter.setVisible(true); 

maxNumbOfNonImp.setVisible(true); 

dispMaxNOfNonImp.setVisible(true); 

numbOfBestCan.setVisible(true); 

dispMaxNOfBestCanSol.setVisible(true); 

neighOpt.setVisible(true); 

if (searchAlgorithms.getValue()=="GDA"){ 

 dispSearchAlgP.setText("Write initial Delta B value (-1 if formula is 

used)"); 

 dispSearchAlgP.setVisible(true); 

 searchAlgP.setVisible(true); 

 dispNumbOfNeg.setVisible(true); 

 avoidSameMembers.setVisible(true); 

 numbOfNeg.setVisible(true);} ;} 

        break; 

      case _searchAlgP: { 

if (searchAlgorithms.getValue()=="GDA"){ 

 if (dispSearchAlgP.getText()=="Write initial Delta B value (-1 if 

formula is used)"){ 

 deltaB=Double.parseDouble(searchAlgP.getText());}} ;} 

        break; 

      case _neighOpt: { 

if(neighOpt.getValue()=="Change two cities"){ 

 neighborType=1;} 

else if (neighOpt.getValue()=="CrossOver(Point)"){ 

 neighborType=2;} ;} 

      break; 

      case _problemType: { 

if(problemType.getValue()=="Dynamic TSP"){ 

 numbOfRegOpt.setVisible(false); 

 regDistOpt.setVisible(false); 

 avgDistOpt.setVisible(false); 

 regCenterOpt.setVisible(false); 

 dispMultConst.setVisible(false); 

 dispNumbOfReg.setVisible(false); 

 numbOfReg.setVisible(false); 

 avgDistInput.setVisible(false); 

 regionDetAlg.setVisible(false);  

 optStrategies.setVisible(true); 

 numbOfRow.setVisible(false); 

 dispNumbOfRow.setVisible(false); 

 numbOfCol.setVisible(false); 

 dispNumbOfCol.setVisible(false); 

 constant1Or0=0;} 

else if(problemType.getValue().toString().contains("Regions are 

known")==true){ 

 numbOfRegOpt.setVisible(false); 

 regDistOpt.setVisible(false); 

 avgDistOpt.setVisible(false); 

 regCenterOpt.setVisible(false); 

 dispMultConst.setVisible(false); 

 dispNumbOfReg.setVisible(false); 

 numbOfReg.setVisible(false); 

 avgDistInput.setVisible(false); 

 regionDetAlg.setVisible(false);  

 optStrategies.setVisible(true); 

 numbOfRow.setVisible(true); 

 dispNumbOfRow.setVisible(true); 

 numbOfCol.setVisible(true); 

 dispNumbOfCol.setVisible(true); 

 constant1Or0=1;} 

else if(problemType.getValue().toString().contains("are not known")){ 

 numbOfRegOpt.setVisible(true); 

 regDistOpt.setVisible(true); 

 avgDistOpt.setVisible(true); 

 regCenterOpt.setVisible(true); 

 dispMultConst.setVisible(true); 

 dispNumbOfReg.setVisible(true); 



 124 

 numbOfReg.setVisible(false); 

 avgDistInput.setVisible(true); 

 regionDetAlg.setVisible(false);  

 optStrategies.setVisible(true); 

 numbOfRow.setVisible(false); 

 dispNumbOfRow.setVisible(false); 

 numbOfCol.setVisible(false); 

 dispNumbOfCol.setVisible(false); 

 constant1Or0=1;} 

else{constant1Or0=1;} 

if(problemType.getValue().contains("GTSP")){ 

 searchAlgorithms.setVisible(true); 

 dispMaxNumbOfIterSGS.setVisible(true); 

 maxNumbOfIterSGS.setVisible(true); 

 maxNumbOfNonImpSGS.setVisible(true); 

 dispMaxNumbOfNonImpSGS.setVisible(true);} 

else{dispMaxNumbOfIterSGS.setVisible(false); 

 maxNumbOfIterSGS.setVisible(false); 

 maxNumbOfNonImpSGS.setVisible(false); 

 dispMaxNumbOfNonImpSGS.setVisible(false);} ;} 

      break; 

      default: 

      super.executeShapeControlAction( _shape, index, value ); 

        break;}}  

  @Override 

  public double getShapeControlMinimum( int _shape, int index ) { 

    switch( _shape ) { 

      case _initNumbOfCity: return 0 ; 

      case _lengthOfEnvironment: return 0 ; 

      case _widthOfEnvironment: return 0 ; 

      case _numbOfReg: return 0 ; 

      case _maxNumbOfIter: return 0 ; 

      case _maxNumbOfNonImp: return 0 ; 

      case _numbOfBestCan: return 0 ; 

      case _avgDistInput: return 0 ; 

      case _numbOfNeg: return 0 ; 

      case _numbOfRow: return 0 ; 

      case _numbOfCol: return 0 ; 

      case _maxNumbOfIterSGS: return 0 ; 

      case _maxNumbOfNonImpSGS: return 0 ; 

      default: return super.getShapeControlMinimum( _shape, index)}} 

  @Override 

  public double getShapeControlMaximum( int _shape, int index ) { 

    switch( _shape ) { 

      case _initNumbOfCity: return 100 ; 

      case _lengthOfEnvironment: return 1000 ; 

      case _widthOfEnvironment: return 1000 ; 

      case _numbOfReg: return 100 ; 

      case _maxNumbOfIter: return 1000 ; 

      case _maxNumbOfNonImp: return 1000 ; 

      case _numbOfBestCan: return 50 ; 

      case _avgDistInput: return 10000 ; 

      case _numbOfNeg: return 100 ; 

      case _numbOfRow: return 100 ; 

      case _numbOfCol: return 100 ; 

      case _maxNumbOfIterSGS: return 10000 ; 

      case _maxNumbOfNonImpSGS: return 10000 ; 

      default: return super.getShapeControlMaximum(_shape,index );}} 

  @Override 

  public boolean getShapeControlDefaultValueBoolean( int _shape, int index ) 

{ 

    switch(_shape) { 

      case _setInitialParameters: return false ; 

      case _changeReportFileLocation: return false ; 

      default: return super.getShapeControlDefaultValueBoolean( _shape, 

index );}} 

  @Override 

  public double getShapeControlDefaultValueDouble( int _shape, int index ) { 



 125 

    switch(_shape) { 

      case _initNumbOfCity: return numbOfCity ; 

      case _lengthOfEnvironment: return 100 ; 

      case _widthOfEnvironment: return 100 ; 

      case _numbOfReg: return totNumbOfReg ; 

      case _maxNumbOfIter: return 250 ; 

      case _maxNumbOfNonImp: return 100 ; 

      case _numbOfBestCan: return 0 ; 

      case _avgDistInput: return 0 ; 

      case _numbOfNeg: return 10 ; 

      case _numbOfRow: return 0 ; 

      case _numbOfCol: return 0 ; 

      case _maxNumbOfIterSGS: return 0 ; 

      case _maxNumbOfNonImpSGS: return 0 ; 

      default: return super.getShapeControlDefaultValueDouble( _shape, index 

);} 

  @Override 

  public String getNameOfShape( int _shape ) { 

    switch( _shape ) { 

      case regionManagerAgents_Presentation: return 

"regionManagerAgents_Presentation"; 

      case vehicle_presentation: return "vehicle_presentation"; 

      case localVehicle_presentation: return "localVehicle_presentation"; 

      default: return super.getNameOfShape( _shape ); 

    }     

  } 

 

  @Override 

  public int getShapeType( int _shape ) { 

    switch( _shape ) { 

      case regionManagerAgents_Presentation: return SHAPE_EMBEDDED_OBJECT; 

      case vehicle_presentation: return SHAPE_EMBEDDED_OBJECT; 

      case localVehicle_presentation: return SHAPE_EMBEDDED_OBJECT; 

      default: return super.getShapeType( _shape ); 

    } 

  } 

  @Override 

  public int getShapeReplication( int _shape ) { 

    switch( _shape ) { 

      case regionManagerAgents_Presentation: return  

regionManagerAgents.size() ; 

      case localVehicle_presentation: return  

localVehicle.size() ; 

      default: return super.getShapeReplication( _shape ); 

    } 

  } 

   

  @Override 

  public double getShapeX( int _shape, int index ) { 

    switch( _shape ) { 

      case regionManagerAgents_Presentation: return 0; 

      case vehicle_presentation: return 0; 

      case localVehicle_presentation: return 0; 

      default: return super.getShapeX( _shape, index ); 

    } 

  } 

 

  @Override 

  public double getShapeY( int _shape, int index ) { 

    switch( _shape ) { 

      case regionManagerAgents_Presentation: return 0; 

      case vehicle_presentation: return 0; 

      case localVehicle_presentation: return 0; 

      default: return super.getShapeY( _shape, index ); 

    } 

  } 

  @Override 

  public Object getShapeEmbeddedObject( int _shape ) { 



 126 

    switch( _shape ) {       

      case regionManagerAgents_Presentation: return regionManagerAgents;       

      case vehicle_presentation: return vehicle;       

      case localVehicle_presentation: return localVehicle;       

      default: return super.getShapeEmbeddedObject( _shape ); 

    }} 

  ShapeButton determineRegions; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _initNumbOfCity_SetDynamicParams_xjal( ShapeSlider shape ) { 

    boolean _visible; 

    shape.setEnabled( 

true ); 

    shape.setRange( getShapeControlMinimum( _initNumbOfCity ), 

getShapeControlMaximum( _initNumbOfCity ) );} 

  ShapeSlider initNumbOfCity; 

   

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _lengthOfEnvironment_SetDynamicParams_xjal( ShapeSlider shape 

) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _lengthOfEnvironment ), 

getShapeControlMaximum( _lengthOfEnvironment ) );} 

  ShapeSlider lengthOfEnvironment; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _widthOfEnvironment_SetDynamicParams_xjal( ShapeSlider shape 

) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _widthOfEnvironment ), 

getShapeControlMaximum( _widthOfEnvironment ) );} 

  ShapeSlider widthOfEnvironment; 

    /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _numbOfReg_SetDynamicParams_xjal( ShapeSlider shape ) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _numbOfReg ), 

getShapeControlMaximum( _numbOfReg ) );} 

  ShapeSlider numbOfReg; 

  ShapeButton convertCord; 

  ShapeButton createAgentsButton; 

  ShapeRadioButtonGroup numbOfRegOpt; 

  ShapeComboBox avgDistOpt; 

  ShapeComboBox regDistOpt; 

  ShapeComboBox regionDetAlg; 

  ShapeRadioButtonGroup homeCityOpt; 

  ShapeTextField homeCityVal; 

  ShapeCheckBox setInitialParameters; 

  ShapeComboBox searchAlgorithms; 

  ShapeTextField searchAlgP; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _maxNumbOfIter_SetDynamicParams_xjal( ShapeSlider shape ) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _maxNumbOfIter ), 

getShapeControlMaximum( _maxNumbOfIter ) );} 

  ShapeSlider maxNumbOfIter; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _maxNumbOfNonImp_SetDynamicParams_xjal( ShapeSlider shape ) { 

    boolean _visible; 



 127 

    shape.setRange( getShapeControlMinimum( _maxNumbOfNonImp ), 

getShapeControlMaximum( _maxNumbOfNonImp ) );} 

  ShapeSlider maxNumbOfNonImp; 

   

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _numbOfBestCan_SetDynamicParams_xjal( ShapeSlider shape ) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _numbOfBestCan ), 

getShapeControlMaximum( _numbOfBestCan ) );} 

  ShapeSlider numbOfBestCan; 

  ShapeComboBox neighOpt; 

  ShapeComboBox regCenterOpt; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _avgDistInput_SetDynamicParams_xjal( ShapeSlider shape ) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _avgDistInput ), 

getShapeControlMaximum( _avgDistInput ) );} 

  ShapeSlider avgDistInput; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _numbOfNeg_SetDynamicParams_xjal( ShapeSlider shape ) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _numbOfNeg ), 

getShapeControlMaximum( _numbOfNeg ) )} 

  ShapeSlider numbOfNeg; 

  ShapeRadioButtonGroup initialSolStrategyGMA; 

  ShapeComboBox problemType; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _numbOfRow_SetDynamicParams_xjal( ShapeSlider shape ) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _numbOfRow ), 

getShapeControlMaximum( _numbOfRow ) );} 

  ShapeSlider numbOfRow; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _numbOfCol_SetDynamicParams_xjal( ShapeSlider shape ) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _numbOfCol ), 

getShapeControlMaximum( _numbOfCol ) ); 

  } 

  ShapeSlider numbOfCol; 

  ShapeRadioButtonGroup optStrategies; 

  ShapeCheckBox changeReportFileLocation; 

  ShapeTextField fileLocation; 

  ShapeCheckBox avoidSameMembers; 

   

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _maxNumbOfIterSGS_SetDynamicParams_xjal( ShapeSlider shape ) 

{ 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _maxNumbOfIterSGS ), 

getShapeControlMaximum( _maxNumbOfIterSGS ) );} 

  ShapeSlider maxNumbOfIterSGS; 

   

  /** 

   * <i>This method should not be called by user</i> 

   */ 



 128 

  private void _maxNumbOfNonImpSGS_SetDynamicParams_xjal( ShapeSlider shape 

) { 

    boolean _visible; 

    shape.setRange( getShapeControlMinimum( _maxNumbOfNonImpSGS ), 

getShapeControlMaximum( _maxNumbOfNonImpSGS ) );} 

  ShapeSlider maxNumbOfNonImpSGS 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispLOfEnv_SetDynamicParams_xjal( ShapeText shape ) { 

    boolean _visible; 

    shape.setText( 

"Length of environment: " +(int) lengthOfEnvironment.getValue()  

);} 

  ShapeText dispLOfEnv; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispWOfEnv_SetDynamicParams_xjal( ShapeText shape ) { 

    boolean _visible; 

    shape.setText( 

"Width of environment: " + (int)widthOfEnvironment.getValue() );} 

  ShapeText dispWOfEnv; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispNumbOfCityR_SetDynamicParams_xjal( ShapeText shape ) { 

    boolean _visible; 

    shape.setText( 

infCity + (int) initNumbOfCity.getValue()   );} 

  ShapeText dispNumbOfCityR; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispNumbOfReg_SetDynamicParams_xjal( ShapeText shape) { 

    boolean _visible; 

    shape.setText( 

(int)numbOfReg.getValue() );} 

  ShapeText dispNumbOfReg; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  public ShapeOval _cityP_createShapeWithStaticProperties( final int _index 

) { 

    ShapeOval shape = new ShapeOval( 

       true,54, -211, 0.0,  

       black, white, 

    6, 5,  

    1, LINE_STYLE_SOLID) { 

      @Override 

      public boolean onClick( double clickx, double clicky ) { 

        return onShapeClick( _cityP, _index, clickx, clicky );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1323105401836L;}; 

    return shape;} 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private int _cityP_Replication() { 

    return 1000 ;} 

   ReplicatedShape<ShapeOval> cityP; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  public ShapeText _xCordCity_createShapeWithStaticProperties( final int 

_index ) { 



 129 

    ShapeText shape = new ShapeText(true,108,-216,0.0, black,"text", 

        _xCordCity_Font, ALIGNMENT_LEFT); 

    return shape;} 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private int _xCordCity_Replication() { 

    return 1000 ;} 

  ReplicatedShape<ShapeText> xCordCity; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  public ShapeText _xCordLabel_createShapeWithStaticProperties( final int 

_index ) { 

    ShapeText shape = new ShapeText( 

        true,138, -216, 0.0,  

        black,"text", 

        _xCordLabel_Font, ALIGNMENT_LEFT); 

    return shape;} 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private int _xCordLabel_Replication() { 

    return 1000 ;} 

   ReplicatedShape<ShapeText> xCordLabel; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  public ShapeText _yCordLabel_createShapeWithStaticProperties( final int 

_index ) { 

    ShapeText shape = new ShapeText( 

        true,168, -216, 0.0,  

        black,"text", 

        _yCordLabel_Font, ALIGNMENT_LEFT 

    );return shape;} 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private int _yCordLabel_Replication() {return 1000 ;} 

   ReplicatedShape<ShapeText> yCordLabel; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  public ShapeText _yCordCity_createShapeWithStaticProperties( final int 

_index ) { 

    ShapeText shape = new ShapeText( 

        true,198, -216, 0.0,  

        black,"text", 

        _yCordCity_Font, ALIGNMENT_LEFT); 

    return shape;} 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private int _yCordCity_Replication() { 

    return 1000 ;} 

  ReplicatedShape<ShapeText> yCordCity; 

  ShapeText dispSearchAlgP; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispMaxNOfIter_SetDynamicParams_xjal( ShapeText shape ) { 

    boolean _visible; 

    shape.setText( 

"Maximum number of iterations: " +(int) maxNumbOfIter.getValue()  

);} 

  ShapeText dispMaxNOfIter; 

  /** 

   * <i>This method should not be called by user</i> 



 130 

   */ 

  private void _dispMaxNOfNonImp_SetDynamicParams_xjal( ShapeText shape ) { 

    boolean _visible; 

    shape.setText( 

"Maximum number of non improved solutions: " +(int) 

maxNumbOfNonImp.getValue() );} 

  ShapeText dispMaxNOfNonImp; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispMaxNOfBestCanSol_SetDynamicParams_xjal( ShapeText shape 

) { 

    boolean _visible; 

    shape.setText( 

"Number of best candidate solutions stored: " +(int)numbOfBestCan.getValue() 

);} 

  ShapeText dispMaxNOfBestCanSol;  

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispMultConst_SetDynamicParams_xjal( ShapeText shape) { 

    boolean _visible; 

    shape.setText( 

"Multiply by "+numbOfReg.getValue() );} 

  ShapeText dispMultConst; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispAvgDist_SetDynamicParams_xjal( ShapeText shape ) { 

    boolean _visible; 

    shape.setText( 

"Average distance between cities "+avgDistInput.getValue() );} 

  ShapeText dispAvgDist; 

    /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispNumbOfNeg_SetDynamicParams_xjal( ShapeText shape) { 

    boolean _visible; 

    shape.setText( 

"Number of neighbours (population size)"+(int)numbOfNeg.getValue() );} 

  ShapeText dispNumbOfNeg; 

    /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispNumbOfRow_SetDynamicParams_xjal( ShapeText shape) { 

    boolean _visible; 

    shape.setText( 

(int)numbOfRow.getValue() );} 

  ShapeText dispNumbOfRow;  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispNumbOfCol_SetDynamicParams_xjal( ShapeText shape) { 

    boolean _visible; 

    shape.setText( 

(int)numbOfCol.getValue() );} 

  ShapeText dispNumbOfCol; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  public ShapeText _dispAgentNumber_createShapeWithStaticProperties( final 

int _index ) { 

    ShapeText shape = new ShapeText( 

        true,50, 530, 0.0,  

        black,"",_dispAgentNumber_Font, ALIGNMENT_LEFT); 

    return shape;} 

  /** 

   * <i>This method should not be called by user</i> 

   */ 



 131 

  private int _dispAgentNumber_Replication() { 

    return 1000 ;} 

   ReplicatedShape<ShapeText> dispAgentNumber; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  public ShapeText _dispRegName_createShapeWithStaticProperties( final int 

_index ) { 

    ShapeText shape = new ShapeText( 

        true,70, 560, 0.0,  

        black," ", 

        _dispRegName_Font, ALIGNMENT_LEFT); 

    return shape; } 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private int _dispRegName_Replication() { 

    return 1000 ;} 

   ReplicatedShape<ShapeText> dispRegName; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispMaxNumbOfIterSGS_SetDynamicParams_xjal( ShapeText shape 

) { 

    boolean _visible; 

    shape.setText( 

"Maximum number of iterations for the same group sequence (GTSP): " +(int) 

maxNumbOfIterSGS.getValue() );} 

  ShapeText dispMaxNumbOfIterSGS; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private void _dispMaxNumbOfNonImpSGS_SetDynamicParams_xjal( ShapeText 

shape ) { 

    boolean _visible; 

    shape.setText( 

"Maximum number of non improved solutions for the same group sequence 

(GTSP): " +(int) maxNumbOfNonImpSGS.getValue() );} 

  ShapeText dispMaxNumbOfNonImpSGS; 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  public ShapeArc _regCenterP_createShapeWithStaticProperties( final int 

_index ) { 

    ShapeArc shape = new ShapeArc( 

     true,300, -197, 2.0943951023931953, magenta, _regCenterP_FillColor,8, 

7, 0.5235987755982988, 4.1887902047863905, 

   1, LINE_STYLE_SOLID ); 

    return shape} 

  /** 

   * <i>This method should not be called by user</i> 

   */ 

  private int _regCenterP_Replication() { 

    return 10000 ;} 

  ReplicatedShape<ShapeArc> regCenterP; 

  // Static initialization of persistent elements 

  {determineRegions = new ShapeButton( 

   Main.this, true, 940, 340,  

   120, 30, 

            controlDefault, controlDefault, 

            _determineRegions_Font,  

   "START") { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _determineRegions, 0 ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 



 132 

       */  

     private static final long serialVersionUID = 1318380781150L;}; 

    initNumbOfCity = new ShapeSlider(Main.this, true,170, 60,100, 40,silver, 

false, getShapeControlMinimum( _initNumbOfCity ), getShapeControlMaximum( 

_initNumbOfCity ), ShapeControl.TYPE_INT) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _initNumbOfCity_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly ); } 

      @Override 

      public void action(){ 

        executeShapeControlAction( _initNumbOfCity, 0, value )} 

      @Override 

      public void setValueToDefault() { 

 setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_initNumbOfCity, 0 ), getMax() ));}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1318380781156L;}; 

    lengthOfEnvironment = new ShapeSlider(Main.this, true,30,160,  

   100, 40,transparent, false, getShapeControlMinimum( 

_lengthOfEnvironment ), getShapeControlMaximum( _lengthOfEnvironment ), 

ShapeControl.TYPE_DOUBLe) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _lengthOfEnvironment_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );} 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_lengthOfEnvironment, 0 ), getMax() ) );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1318380781162L;}; 

    widthOfEnvironment = new ShapeSlider(Main.this, true,30, 70,  

  100, 40,transparent,  

            false, getShapeControlMinimum( _widthOfEnvironment ), 

getShapeControlMaximum( _widthOfEnvironment ), ShapeControl.TYPE_DOUBLE) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _widthOfEnvironment_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly )} 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_widthOfEnvironment, 0 ), getMax() ) );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1318380781166L;}; 

    numbOfReg = new ShapeSlider( 

      Main.this, true,340, 220, 100, 30, 

            transparent,  

            false, getShapeControlMinimum( _numbOfReg ), 

getShapeControlMaximum( _numbOfReg ), ShapeControl.TYPE_INT)  

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _numbOfReg_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly )} 

      @Override 

      public void action(){ 

        executeShapeControlAction( _numbOfReg, 0, value )} 



 133 

      @Override 

      public void setValueToDefault() {setValue( limit( getMin(), 

getShapeControlDefaultValueDouble( _numbOfReg, 0 ), getMax() ) );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1318380781170L;}; 

    convertCord = new ShapeButton( 

   Main.this, true, -1798, 118,  

   198, 82, 

            controlDefault, controlDefault, 

            _convertCord_Font,  

   "Convert to Original") { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _convertCord, 0 );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1318876894058L;}; 

    createAgentsButton = new ShapeButton(Main.this, true, -1800, 6,  

   340, 74, 

            controlDefault, controlDefault, 

            _createAgentsButton_Font,  

   "Create Agents") { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _createAgentsButton, 0 );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1322324803457L;}; 

    numbOfRegOpt = new ShapeRadioButtonGroup(Main.this, true,160, 150, 360, 

41,transparent, controlDefault,_numbOfRegOpt_Font, false,  

            new String[]{"Number of region is not known", "Number of region 

is known", } ) { 

      @Override 

      public void action(){executeShapeControlAction( _numbOfRegOpt, 0, 

value );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324128531373L;}; 

    avgDistOpt = new ShapeComboBox(Main.this, true, 160, 220,  

   130, 20,controlDefault, controlDefault, 

            _avgDistOpt_Font,  

            new String[]{"Euclidean distance", "Circle diameter", "User 

defined", }, false, ShapeControl.TYPE_STRING 

    ) { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _avgDistOpt, 0, value );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324129533183L;}; 

    regDistOpt = new ShapeComboBox( 

      Main.this, true, 160, 190,  

   130, 20, 

            controlDefault, controlDefault, 

            _regDistOpt_Font,  

            new String[]{"Equal distance", "Modified equal distance (Next 

minimum)", "Modified equal distance (Multiply constant)", }, false, 

ShapeControl.TYPE_STRING 

    ) { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _regDistOpt, 0, value ); 



 134 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324132415422L;}; 

    regionDetAlg = new ShapeComboBox(Main.this, true, 570, 190,  

   100, 20, 

            controlDefault, controlDefault, 

            _regionDetAlg_Font,  

            new String[]{"K-Means", }, false, ShapeControl.TYPE_STRING 

    ); 

    homeCityOpt = new ShapeRadioButtonGroup( 

      Main.this, true,300, 40,  

   200, 100, 

            transparent, controlDefault, 

            _homeCityOpt_Font, true,  

            new String[]{"Home city (or region) is the first city(or 

region)", "Home city (or region) is the given city(or region)", "Home city 

(or region) can be any city (or region)", } 

    ) { 

 

      @Override 

      public void action(){ 

        executeShapeControlAction( _homeCityOpt, 0, value ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324135076149L; 

    }; 

    homeCityVal = new ShapeTextField( 

   Main.this, true,480, 70,  

   30, 20, 

            controlDefault, controlDefault, _homeCityVal_Font 

    ) { 

 

      @Override 

      public void action(){ 

        executeShapeControlAction( _homeCityVal, 0, value ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324135152641L; 

    }; 

    setInitialParameters = new ShapeCheckBox( 

  Main.this,true,950, 310,  

  100, 30, 

            transparent, controlDefault, 

            _setInitialParameters_Font, 

   "Initialization is completed" 

    ) { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _setInitialParameters, 0, value)} 

      @Override 

      public void setValueToDefault() { 

  setSelected( getShapeControlDefaultValueBoolean( 

_setInitialParameters, 0 ) ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324137324661L;}; 

    searchAlgorithms = new ShapeComboBox( 

      Main.this, true, 800, 40,  

   100, 20, 

            controlDefault, controlDefault, 



 135 

            _searchAlgorithms_Font,  

            new String[]{"GDA", }, false, ShapeControl.TYPE_STRING 

    ) { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _searchAlgorithms, 0, value ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324138032347L;}; 

    searchAlgP = new ShapeTextField(Main.this, true,1040, 90,  

   30, 20, 

            controlDefault, controlDefault, _searchAlgP_Font) { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _searchAlgP, 0, value );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324140230696L;}; 

    maxNumbOfIter = new ShapeSlider(Main.this, true,700, 270,  

   100, 30,transparent,  

            false, getShapeControlMinimum( _maxNumbOfIter ), 

getShapeControlMaximum( _maxNumbOfIter ), ShapeControl.TYPE_DOUBLE) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _maxNumbOfIter_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly ); 

      } 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_maxNumbOfIter, 0 ), getMax() ) );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324141052419L; 

    }; 

    maxNumbOfNonImp = new ShapeSlider( 

      Main.this, true,700, 320,  

   100, 30, 

            transparent,  

            false, getShapeControlMinimum( _maxNumbOfNonImp ), 

getShapeControlMaximum( _maxNumbOfNonImp ), ShapeControl.TYPE_DOUBLE 

    ) { 

 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _maxNumbOfNonImp_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly ); 

      } 

 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_maxNumbOfNonImp, 0 ), getMax() ) );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324141250357L;}; 

    numbOfBestCan = new ShapeSlider( 

      Main.this, true,700, 220,  

   110, 30, 

            transparent,  



 136 

            false, getShapeControlMinimum( _numbOfBestCan ), 

getShapeControlMaximum( _numbOfBestCan ), ShapeControl.TYPE_DOUBLE) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _numbOfBestCan_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );} 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_numbOfBestCan, 0 ), getMax() ) );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324141319810L;}; 

    neighOpt = new ShapeComboBox(Main.this, true, 800, 150,  

   100, 20,controlDefault, controlDefault, 

            _neighOpt_Font,  

            new String[]{"Change two cities", "CrossOver(Point)", "2-Opt", 

}, false, ShapeControl.TYPE_STRING 

    ) { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _neighOpt, 0, value );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324142068495L;}; 

    regCenterOpt = new ShapeComboBox( 

      Main.this, true, 160, 250,  

   130, 20, 

            controlDefault, controlDefault, 

            _regCenterOpt_Font,  

            new String[]{"First selected city", "Center of gravity",}, 

false, ShapeControl.TYPE_STRING 

    ); 

    avgDistInput = new ShapeSlider( 

      Main.this, true,340, 260,  

   100, 30, 

            transparent,  

            false, getShapeControlMinimum( _avgDistInput ), 

getShapeControlMaximum( _avgDistInput ), ShapeControl.TYPE_DOUBLE 

    ) { 

 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _avgDistInput_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly ); 

      } 

 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_avgDistInput, 0 ), getMax() ) ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324455560451L; 

    }; 

    numbOfNeg = new ShapeSlider( 

      Main.this, true,690, 100,  

   100, 30, 

            transparent,  

            false, getShapeControlMinimum( _numbOfNeg ), 

getShapeControlMaximum( _numbOfNeg ), ShapeControl.TYPE_DOUBLE 

    )  



 137 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _numbOfNeg_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );} 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_numbOfNeg, 0 ), getMax() ) );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324999383894L;}; 

    initialSolStrategyGMA = new ShapeRadioButtonGroup( 

      Main.this, true,510, 50,  

   150, 50, 

            transparent, controlDefault, 

            _initialSolStrategyGMA_Font, true,  

            new String[]{"Best tour of each agent", "GMA determines", }) { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _initialSolStrategyGMA, 0, value );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1325150525975L; 

    }; 

    problemType = new ShapeComboBox( 

      Main.this, true, 30, 250, 120, 20, 

            controlDefault, controlDefault, 

            _problemType_Font,  

            new String[]{"Dynamic TSP", "Dynamic GTSP (Regions are known)", 

"Dynamic GTSP (Regions are not known)", "Dynamic GTSP with TSP (Regions are 

known)", "Dynamic GTSP with TSP (Regions are not known)", }, false, 

ShapeControl.TYPE_STRING 

    ) { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _problemType,0,value);}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1326893828651L;}; 

    numbOfRow = new ShapeSlider( 

      Main.this, true,150, 310,  

   100, 30, 

            transparent,  

            false, getShapeControlMinimum( _numbOfRow ), 

getShapeControlMaximum( _numbOfRow ), ShapeControl.TYPE_DOUBLE 

    ) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _numbOfRow_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );} 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_numbOfRow, 0 ), getMax() ) );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1326897296522L;}; 

    numbOfCol = new ShapeSlider(Main.this, true,150, 340,  

   100, 30,transparent, false, getShapeControlMinimum( 

_numbOfCol ), getShapeControlMaximum( _numbOfCol ), 

ShapeControl.TYPE_DOUBLE) { 

      @Override 



 138 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _numbOfCol_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );} 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_numbOfCol, 0 ), getMax() ) );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1326897307841L; 

    };optStrategies = new ShapeRadioButtonGroup( 

      Main.this, true,490, 230,  

   150, 50, 

            transparent, controlDefault, 

            _optStrategies_Font, true,  

            new String[]{"Strategy1(NextTour)", "Strategy2(SameTour)", }); 

    changeReportFileLocation = new ShapeCheckBox( 

  Main.this,true,900, 200,  

  160, 50, 

            transparent, controlDefault, 

            _changeReportFileLocation_Font, 

   "Change Report File Location) { 

      @Override 

      public void action(){ 

        executeShapeControlAction( _changeReportFileLocation, 0, value ); 

      } 

 

      @Override 

      public void setValueToDefault() { 

  setSelected( getShapeControlDefaultValueBoolean( 

_changeReportFileLocation, 0 ) ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1331837354227L}; 

    fileLocation = new ShapeTextField( 

   Main.this, true,910, 240,  

   100, 30, 

            controlDefault, controlDefault, _fileLocation_Font); 

    avoidSameMembers = new ShapeCheckBox( 

  Main.this,true,690, 120,  

  100, 30, 

            transparent, controlDefault, 

            _avoidSameMembers_Font, 

   "Avoid same members"); 

    maxNumbOfIterSGS = new ShapeSlider( 

      Main.this, true,500, 310,  

   100, 20, 

            transparent,  

            false, getShapeControlMinimum( _maxNumbOfIterSGS ), 

getShapeControlMaximum( _maxNumbOfIterSGS ), ShapeControl.TYPE_DOUBLE 

    ) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _maxNumbOfIterSGS_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );} 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_maxNumbOfIterSGS,0 ), getMax()));}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1333550299348L; 



 139 

    }; 

    maxNumbOfNonImpSGS = new ShapeSlider( 

      Main.this, true,500, 360, 100, 20, 

            transparent,  

            false, getShapeControlMinimum( _maxNumbOfNonImpSGS ), 

getShapeControlMaximum( _maxNumbOfNonImpSGS ), ShapeControl.TYPE_DOUBLE) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _maxNumbOfNonImpSGS_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly ); 

      @Override 

      public void setValueToDefault() { 

  setValue( limit( getMin(), getShapeControlDefaultValueDouble( 

_maxNumbOfNonImpSGS, 0 ), getMax() ) ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1333550408108L;}; 

    dispLOfEnv = new ShapeText( 

        true,40, 130, 0.0,  

        black," ", 

        _dispLOfEnv_Font, ALIGNMENT_LEFT) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispLOfEnv_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly )}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1317258193986L; 

    }; 

    dispWOfEnv = new ShapeText( 

        true,40, 50, 0.0,  

        black," ", 

        _dispWOfEnv_Font, ALIGNMENT_LEFT 

    ) { 

 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispWOfEnv_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1317258488278L; 

    }; 

    dispNumbOfCityR = new ShapeText( 

        true,170, 110, 0.0,  

        black,"", 

        _dispNumbOfCityR_Font, ALIGNMENT_LEFT 

    ) { 

 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispNumbOfCityR_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1318380781140L; 

    }; 



 140 

    dispNumbOfReg = new ShapeText( 

        true,340, 190, 0.0, black,"", 

        _dispNumbOfReg_Font, ALIGNMENT_LEFT) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispNumbOfReg_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly )}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1318380781145L;}; 

    cityP = new ReplicatedShape<ShapeOval>() { 

      @Override 

      public int getReplication() { 

        return _cityP_Replication()}    

      @Override 

      public ShapeOval createShapeWithStaticProperties( int index ) {return 

_cityP_createShapeWithStaticProperties( index )}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1323105401836L;}; 

    xCordCity = new ReplicatedShape<ShapeText>() { 

      @Override 

      public int getReplication() { 

      return _xCordCity_Replication(); 

      @Override 

      public ShapeText createShapeWithStaticProperties( int index ) {return 

_xCordCity_createShapeWithStaticProperties( index );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1323105401841}; 

    xCordLabel = new ReplicatedShape<ShapeText>() { 

      @Override 

      public int getReplication() { 

        return _xCordLabel_Replication();} 

          @Override 

      public ShapeText createShapeWithStaticProperties( int index ) {    

return _xCordLabel_createShapeWithStaticProperties( index ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1323105401845L;}; 

    yCordLabel = new ReplicatedShape<ShapeText>() { 

      @Override 

      public int getReplication() { 

      return _yCordLabel_Replication();} 

      @Override 

      public ShapeText createShapeWithStaticProperties( int index ){ 

        return _yCordLabel_createShapeWithStaticProperties( index )}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1323105401850L;}; 

    yCordCity = new ReplicatedShape<ShapeText>() { 

      @Override 

      public int getReplication() { 

        return _yCordCity_Replication();} 

      @Override 

      public ShapeText createShapeWithStaticProperties( int index ) {return 

_yCordCity_createShapeWithStaticProperties( index );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1323105401854L;}; 



 141 

    dispSearchAlgP = new ShapeText(true,790, 100, 0.0, black,"", 

        _dispSearchAlgP_Font, ALIGNMENT_LEFT); 

    dispMaxNOfIter = new ShapeText(true,710, 260, 0.0, black," ", 

        _dispMaxNOfIter_Font, ALIGNMENT_LEFT) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispMaxNOfIter_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324140991129L;}; 

    dispMaxNOfNonImp = new ShapeText( 

        true,710, 300, 0.0,  

        black," ", 

        _dispMaxNOfNonImp_Font, ALIGNMENT_LEFT 

    ) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispMaxNOfNonImp_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly ); }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324141226890L}; 

    dispMaxNOfBestCanSol = new ShapeText( 

        true,710, 210, 0.0,  

        black," ", 

        _dispMaxNOfBestCanSol_Font, ALIGNMENT_LEF) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispMaxNOfBestCanSol_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324141303954L;}; 

    dispMultConst = new ShapeText( 

        true,340, 200, 0.0,  

        black,"", 

        _dispMultConst_Font, ALIGNMENT_LEFT) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispMultConst_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324219125336L}; 

    dispAvgDist = new ShapeText(true,350, 240, 0.0,  

        black," ", 

        _dispAvgDist_Font, ALIGNMENT_LEFT) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispAvgDist_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1324455490027L;}; 

    dispNumbOfNeg = new ShapeText( 

        true,690, 70, 0.0,  

        black,"", 



 142 

        _dispNumbOfNeg_Font, ALIGNMENT_LEFT) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispNumbOfNeg_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1325003240274L;}; 

    dispNumbOfRow = new ShapeText( 

        true,50, 320, 0.0,  

        black,"dispNumOfRow", 

        _dispNumbOfRow_Font, ALIGNMENT_LEFT 

    ) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispNumbOfRow_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1326897207291L; 

    }; 

    dispNumbOfCol = new ShapeText( 

        true,50, 350, 0.0,  

        black,"dispNumbOfCol", 

        _dispNumbOfCol_Font, ALIGNMENT_LEFT) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ){ _dispNumbOfCol_SetDynamicParams_xjal( this 

);super.draw( panel, graphics, xform, publicOnly ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1326897254648L;}; 

    dispAgentNumber = new ReplicatedShape<ShapeText>() { 

      @Override 

      public int getReplication() { 

        return _dispAgentNumber_Replication(); 

      } 

     

      @Override 

      public ShapeText createShapeWithStaticProperties( int index ) { 

        return _dispAgentNumber_createShapeWithStaticProperties( index );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1329148420294L;}; 

    dispRegName = new ReplicatedShape<ShapeText>() { 

      @Override 

      public int getReplication() { 

        return _dispRegName_Replication();} 

      @Override 

      public ShapeText createShapeWithStaticProperties( int index ){ 

        return _dispRegName_createShapeWithStaticProperties( index );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1330793590639L;}; 

    dispMaxNumbOfIterSGS = new ShapeText(true,500, 290, 0.0,  

        black," ", 

        _dispMaxNumbOfIterSGS_Font, ALIGNMENT_LEFT 

    ) { 

      @Override 



 143 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispMaxNumbOfIterSGS_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly ); 

      }       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1333550892905L; 

    }; 

    dispMaxNumbOfNonImpSGS = new ShapeText(true,500, 350, 0.0,  

        black," ", 

        _dispMaxNumbOfNonImpSGS_Font, ALIGNMENT_LEFT) { 

      @Override 

      public void draw( Panel panel, Graphics2D graphics, AffineTransform 

xform, boolean publicOnly ) { 

        _dispMaxNumbOfNonImpSGS_SetDynamicParams_xjal( this ); 

        super.draw( panel, graphics, xform, publicOnly );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1333551022584L;}; 

    regCenterP = new ReplicatedShape<ShapeArc>() { 

      @Override 

      public int getReplication() { 

        return _regCenterP_Replication();} 

      @Override 

      public ShapeArc createShapeWithStaticProperties( int index ) { 

      return _regCenterP_createShapeWithStaticProperties( index );}       

      /** 

       * This number is here for model snapshot storing purpose 

       */  

      private static final long serialVersionUID = 1336304804382L; 

    };} 

  ShapeGroup presentation; 

  ShapeGroup icon;  

  @Override 

  public Object getPersistentShape( int _shape ) { 

    switch(_shape){ 

      case _presentation: return presentation; 

      case _icon: return icon; 

      case _determineRegions: return determineRegions; 

      case _initNumbOfCity: return initNumbOfCity; 

      case _lengthOfEnvironment: return lengthOfEnvironment; 

      case _widthOfEnvironment: return widthOfEnvironment; 

      case _numbOfReg: return numbOfReg; 

      case _convertCord: return convertCord; 

      case _createAgentsButton: return createAgentsButton; 

      case _numbOfRegOpt: return numbOfRegOpt; 

      case _avgDistOpt: return avgDistOpt; 

      case _regDistOpt: return regDistOpt; 

      case _regionDetAlg: return regionDetAlg; 

      case _homeCityOpt: return homeCityOpt; 

      case _homeCityVal: return homeCityVal; 

      case _setInitialParameters: return setInitialParameters; 

      case _searchAlgorithms: return searchAlgorithms; 

      case _searchAlgP: return searchAlgP; 

      case _maxNumbOfIter: return maxNumbOfIter; 

      case _maxNumbOfNonImp: return maxNumbOfNonImp; 

      case _numbOfBestCan: return numbOfBestCan; 

      case _neighOpt: return neighOpt; 

      case _regCenterOpt: return regCenterOpt; 

      case _avgDistInput: return avgDistInput; 

      case _numbOfNeg: return numbOfNeg; 

      case _initialSolStrategyGMA: return initialSolStrategyGMA; 

      case _problemType: return problemType; 

      case _numbOfRow: return numbOfRow; 

      case _numbOfCol: return numbOfCol; 



 144 

      case _optStrategies: return optStrategies; 

      case _changeReportFileLocation: return changeReportFileLocation; 

      case _fileLocation: return fileLocation; 

      case _avoidSameMembers: return avoidSameMembers; 

      case _maxNumbOfIterSGS: return maxNumbOfIterSGS; 

      case _maxNumbOfNonImpSGS: return maxNumbOfNonImpSGS; 

      case _dispLOfEnv: return dispLOfEnv; 

      case _dispWOfEnv: return dispWOfEnv; 

      case _dispNumbOfCityR: return dispNumbOfCityR; 

      case _dispNumbOfReg: return dispNumbOfReg; 

      case _cityP: return cityP; 

      case _xCordCity: return xCordCity; 

      case _xCordLabel: return xCordLabel; 

      case _yCordLabel: return yCordLabel; 

      case _yCordCity: return yCordCity; 

      case _dispSearchAlgP: return dispSearchAlgP; 

      case _dispMaxNOfIter: return dispMaxNOfIter; 

      case _dispMaxNOfNonImp: return dispMaxNOfNonImp; 

      case _dispMaxNOfBestCanSol: return dispMaxNOfBestCanSol; 

      case _dispMultConst: return dispMultConst; 

      case _dispAvgDist: return dispAvgDist; 

      case _dispNumbOfNeg: return dispNumbOfNeg; 

      case _dispNumbOfRow: return dispNumbOfRow; 

      case _dispNumbOfCol: return dispNumbOfCol; 

      case _dispAgentNumber: return dispAgentNumber; 

      case _dispRegName: return dispRegName; 

      case _dispMaxNumbOfIterSGS: return dispMaxNumbOfIterSGS; 

      case _dispMaxNumbOfNonImpSGS: return dispMaxNumbOfNonImpSGS; 

      case _regCenterP: return regCenterP; 

      default: return null; }} 

  @Override 

  public void drawModelElements(Panel _panel, Graphics2D _g, boolean 

_publicOnly ) { 

    if (!_publicOnly) {drawEvent( _panel, _g, 2220, 270, -20, 10, 

"newEvent", newEvent );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2070, 30, 10, 0, 

"maxX", maxX, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2070, 60, 10, 0, 

"maxY", maxY, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2190, 80, 10, 0, 

"rangeX", rangeX, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2190, 110, 10, 0, 

"rangeY", rangeY, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2070, 90, 10, 0, 

"maxXCity", maxXCity, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2070, 120, 10, 0, 

"maxYCity", maxYCity, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 1970, 90, 10, 0, 

"minXCity", minXCity, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 1970, 120, 10, 0, 

"minYCity", minYCity, false );} 

    if (!_publicOnly){drawPlainVariable( _panel, _g, 1970, 150, 10, 0, 

"avgDistBtwCities", avgDistBtwCities, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 1610, 160, 10, 0, 

"rndXCord", rndXCord, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 1610, 130, 10, 0, 

"rndYCord", rndYCord, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2190, 30, 10, 0, 

"sumX", sumX, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2190, 50, 10, 0, 

"sumY", sumY, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 1970, 200, 10, 0, 

"xCordOfHomeCity", xCordOfHomeCity, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 1970, 230, 10, 0, 

"yCordOfHomeCity", yCordOfHomeCity, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 380, 700, 10, 0, 

"deltaB", deltaB, false );} 



 145 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2460, 210, 10, 0, 

"simStartTime", simStartTime, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2570, 210, 10, 0, 

"totNumbOfCityInTour", totNumbOfCityInTour, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2330, 240, 10, 0, 

"newCityXCord", newCityXCord, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2430, 240, 10, 0, 

"newCityYCord", newCityYCord, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2530, 240, 10, 0, 

"newCityName", newCityName, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 380, 780, 10, 0, 

"tempX", tempX, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 380, 800, 10, 0, 

"tempY", tempY, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 380, 830, 10, 0, 

"dispIndex", dispIndex, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2350, 130, 10, 0, 

"neighType", neighType, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 100, 890, 10, 0, 

"regCenterPInitialX", regCenterPInitialX, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 100, 920, 10, 0, 

"regCenterPInitialY", regCenterPInitialY, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 260, 900, 10, 0, 

"allCitiesIndex", allCitiesIndex, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2190, 160, 10, 0, 

"cellXCord", cellXCord, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2190, 190, 10, 0, 

"cellYCord", cellYCord, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 1980, 260, 10, 0, 

"cityOrRegion", cityOrRegion, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2660, 130, 10, 0, 

"allRegionsIndex", allRegionsIndex, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 1970, 30, 10, 0, 

"minX", minX, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 1970, 60, 10, 0, 

"minY", minY, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2350, 110, 10, 0, 

"tourCounter", tourCounter, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2350, 80, 10, 0, 

"numbOfCity", numbOfCity, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 90, 750, 10, 0, 

"unVisitedString", unVisitedString, true );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 90, 770, 10, 0, 

"visitedString", visitedString, true );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 90, 790, 10, 0, 

"deletedString", deletedString, true );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 310, 30, 10, 0, 

"homeCity", homeCity, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2330, 210, 10, 0, 

"startToCreateEvent", startToCreateEvent, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 90, 820, 10, 0, 

"neighborType", neighborType, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 380, 720, 10, 0, 

"numbOfAttributes", numbOfAttributes, true );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 260, 870, 10, 0, 

"constant1Or0", constant1Or0, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 2350, 150, 10, 0, 

"partial", partial, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 100, 950, 10, 0, 

"count", count, false );} 

    if (!_publicOnly) {drawPlainVariable( _panel, _g, 280, 930, 10, 0, 

"numbOfRegOptString", numbOfRegOptString, false );} 

    if (!_publicOnly){drawPlainVariable( _panel,_g, 280, 950, 10,  

0, "initialSolStrategyGMAString",initialSolStrategyGMAString,false );} 

   if (!_publicOnly) {drawPlainVariable( _panel, _g, 2350, 40, 10, 0, 

"costString", costString, true );} 

   if (!_publicOnly) {drawCollection( _panel, _g, 2480, 80, 10, 0, 

"RegionsAndCities", RegionsAndCities );} 



 146 

    if (!_publicOnly) {drawCollection( _panel, _g, 2480, 30, 10, 0, 

"CitiesDataBase", CitiesDataBase );} 

    if (!_publicOnly) {drawCollection( _panel, _g, 2480, 60, 10, 0, 

"RegionsSequence", RegionsSequence );} 

    if (!_publicOnly) {drawCollection( _panel, _g, 2490, 110, 10, 0, 

"InstCityNames", InstCityNames );} 

    if (!_publicOnly) {drawActionChart( _panel, _g, 1790, 20, 20, 20, -30, -

10, null, null ); 

      drawActionChartLink( _panel, _g, 1790, 40, 70 ); 

      drawLoopArea( _panel, _g, 1680, 85,250, 235 );  

      drawActionChartLink( _panel, _g, 1790, 300, 320 ); 

      drawLoopBlock( _panel, _g, 1790, 70, 160, 30, "for ( int i = 1; i <= 

numbOfCity; i++ )", false, null ); 

      drawActionChartLink( _panel, _g, 1790, 100, 120 ); 

      drawCodeBlock( _panel, _g, 1790, 120, 180, 60, 

"InitializationOfEnvironment:\nGenerate location for\npredetermined 

numbOfCity", true, null ); 

      drawActionChartLink( _panel, _g, 1790, 180, 200 ); 

      drawDecisionBlock( _panel, _g, 1790, 200, 100, 40, 

"Regions\nare\nknown\nor not", true, null, true, 70, 80, true, -70, 20, 100, 

0 ); 

      drawActionChartLink( _panel, _g, 1860, 220, 250 ); 

      drawCodeBlock( _panel, _g, 1860, 250, 100, 30, "Regions are\nknown", 

true, null ); 

      drawActionChartLink( _panel, _g, 1790, 320, 340 ); 

      drawCodeBlock( _panel, _g, 1790, 340, 100, 30, 

"InstCityNames.removeFirst();\r\n", false, null ); 

      drawActionChartLink( _panel, _g, 1790, 370, 390 ); 

      drawDecisionBlock( _panel, _g, 1790, 390, 100, 40, 

"Skip\nunnecessary\ncalculations", true, null, true, 70, 80, true, -130, 

970, 990, 0 ); 

      drawActionChartLink( _panel, _g, 1860, 410, 440 ); 

      drawCodeBlock( _panel, _g, 1860, 440, 100, 30, "Print Regions\nand 

Cities", true, null ); 

      drawActionChartLink( _panel, _g, 1660, 410, 440 ); 

      drawCodeBlock( _panel, _g, 1660, 440, 100, 30, "Make 

Initial\nCalculations", true, null ); 

      drawActionChartLink( _panel, _g, 1660, 470, 490 ); 

      drawDecisionBlock( _panel, _g, 1660, 490, 100, 40, "Problem\nType", 

true, null, true, 70, 80, true, -180, 850, 870, 0); 

      drawActionChartLink( _panel, _g, 1730, 510, 540 ); 

      drawCodeBlock( _panel, _g, 1730, 540, 100, 30, "Dynamic TSP", true, 

null ); 

      drawActionChartLink( _panel, _g, 1480, 510, 540 ); 

      drawCodeBlock( _panel, _g, 1480, 540, 100, 30, "Calculations 

for\nGTSP", true, null ); 

      drawActionChartLink( _panel, _g, 1480, 570, 590 ); 

      drawDecisionBlock( _panel, _g, 1480, 590, 100, 40, "GTSP\nType", true, 

null, true, 70, 80, true, -130, 610, 630, 0 ); 

      drawActionChartLink( _panel, _g, 1550, 610, 640 ); 

      drawCodeBlock( _panel, _g, 1550, 640, 100, 30, "GTSP Number of\nRegion 

is Known", true, null ); 

      drawActionChartLink(_panel, _g, 1350, 610, 640 ); 

      drawCodeBlock(_panel,_g,1350, 640, 100, 30, "", false, null); 

      drawActionChartLink( _panel, _g, 1350, 670, 690 ); 

      drawDecisionBlock( _panel, _g, 1350, 690, 100, 40, 

"Average\nDistance\nuser\ndefined", true, null, true, 70, 80, true, -260, 

490, 510, 0 ); 

      drawActionChartLink( _panel, _g, 1420, 710, 740 ); 

      drawCodeBlock( _panel, _g, 1420, 740, 100, 30, "User 

defined\naverage\ndistance", true, null ); 

      drawActionChartLink( _panel, _g, 1090, 710, 740 ); 

      drawCodeBlock( _panel, _g, 1090, 740, 100, 30, "", false, null); 

      drawActionChartLink( _panel, _g, 1090, 770, 790 ); 

      drawDecisionBlock( _panel, _g, 1090, 790, 100, 40, 

"Average\ndistance\noption", true, null, true, 70, 80, true, -70, 80, 100, 0 

); 

      drawActionChartLink( _panel, _g, 1160, 810, 840 ); 



 147 

      drawCodeBlock( _panel, _g, 1160, 840, 100, 30, "Circle 

diameter\ndistance", true, null ); 

      drawActionChartLink( _panel, _g, 1020, 810, 840 ); 

      drawCodeBlock( _panel, _g, 1020, 840, 100, 30, "Euclidean\ndistance", 

true, null ); 

      drawActionChartLink( _panel, _g, 1090, 890, 910 ); 

      drawCodeBlock( _panel, _g, 1090, 910, 100, 30, 

"print.writeToTxtFile(\"Average distance: \"+avgDistBtwCities);", false, 

null ); 

      drawActionChartLink( _panel, _g, 1090, 940, 960 ); 

      drawDecisionBlock( _panel, _g, 1090, 960, 100, 40, "Modified\n 

or\nequal\ndistance", true, null, true, 130, 200, true, -70, 80, 220, 0 ); 

      drawActionChartLink( _panel, _g, 1220, 980, 1010 ); 

      drawCodeBlock( _panel, _g, 1220, 1010, 100, 30, "", false, null ); 

      drawActionChartLink( _panel, _g, 1220, 1040, 1060 ); 

      drawDecisionBlock( _panel, _g, 1220, 1060, 100, 40, 

"Next\nminimum\ndistance\nor\nmultiply\nconstant", true, null, true, 70, 80, 

true, -70, 80, 100, 0 ); 

      drawActionChartLink( _panel, _g, 1290, 1080, 1110 ); 

      drawCodeBlock( _panel, _g, 1290, 1110, 100, 30, "Modified 

equal\ndistance (Next\nminimum)", true, null ); 

      drawActionChartLink( _panel, _g, 1150, 1080, 1110 ); 

      drawCodeBlock( _panel, _g, 1150, 1110, 100, 30, "Modified 

equal\ndistance\n(Multiply\nconstant)", true, null ); 

      drawActionChartLink( _panel, _g, 1020, 980, 1010 ); 

      drawCodeBlock( _panel, _g, 1020, 1010, 100, 30, "Equal distance", 

true, null ); 

      drawActionChartLink( _panel, _g, 1480, 1220, 1240 ); 

      drawDecisionBlock( _panel, _g, 1480, 1240, 100, 40, 

"Region\nCenter\nDecision",true,null,true,90,80,true,-70,20,100,0 ); 

      drawActionChartLink( _panel, _g, 1570, 1260, 1290 ); 

      drawCodeBlock( _panel, _g, 1570, 1290, 160, 30, "Region Center (Center 

of\nGravity)", true, null ); 

      drawActionChartLink( _panel, _g, 1790, 1380, 1400 ); 

      drawReturnBlock(_panel,_g,1790,1400,80,30,null,false,null )} 

    // Embedded object "generalManager" 

    if (!_publicOnly) { 

      drawEmbeddedObjectModelDefault( _panel, _g, 60 ,-320 ,-52,-21, 

"generalManager", this.generalManager );} 

    // Embedded object "regionManagerAgents" 

    if (!_publicOnly) { 

      drawEmbeddedObjectModelDefault(_panel,_g,190,-320,-71,-21, 

"regionManagerAgents", this.regionManagerAgents )} 

    // Embedded object "vehicle" 

    if (!_publicOnly) { 

      drawEmbeddedObjectModelDefault(_panel, _g,60 ,-260 , -24, -21, 

"vehicle", this.vehicle );} 

    // Embedded object "localVehicle" 

    if (!_publicOnly) { 

      drawEmbeddedObjectModelDefault( _panel, _g, 190 , -270 , -40, -21, 

"localVehicle", this.localVehicle );} 

    if (!_publicOnly) { 

      drawEnvironment( _panel, _g, 50, -130, 10, 0, "negotiationEnvCont", 

negotiationEnvCont );} 

  } 

  @Override 

  public boolean onClickModelAt( Panel panel, double x, double y, int 

clickCount, boolean publicOnly ) { 

    if( !publicOnly && modelElementContains(x, y, 2070, 30) ) { 

      panel.addInspect( 2070, 30, this, "maxX" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2070, 60) ) { 

      panel.addInspect( 2070, 60, this, "maxY" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2190, 80) ) { 

      panel.addInspect( 2190, 80, this, "rangeX" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2190, 110) ) { 



 148 

      panel.addInspect( 2190, 110, this, "rangeY" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2070, 90) ) { 

      panel.addInspect( 2070, 90, this, "maxXCity" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2070, 120) ) { 

      panel.addInspect( 2070, 120, this, "maxYCity" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1970, 90) ) { 

      panel.addInspect( 1970, 90, this, "minXCity" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1970, 120) ) { 

      panel.addInspect( 1970, 120, this, "minYCity" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1970, 150) ) { 

      panel.addInspect( 1970, 150, this, "avgDistBtwCities" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1610, 160) ) { 

      panel.addInspect( 1610, 160, this, "rndXCord" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1610, 130) ) { 

      panel.addInspect( 1610, 130, this, "rndYCord" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2190, 30) ) { 

      panel.addInspect( 2190, 30, this, "sumX" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2190, 50) ) { 

      panel.addInspect( 2190, 50, this, "sumY" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1970, 200) ) { 

      panel.addInspect( 1970, 200, this, "xCordOfHomeCity" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1970, 230) ) { 

      panel.addInspect( 1970, 230, this, "yCordOfHomeCity" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 380, 700) ) { 

      panel.addInspect( 380, 700, this, "deltaB" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2460, 210) ) { 

      panel.addInspect( 2460, 210, this, "simStartTime" );  

      return true; } 

    if( !publicOnly && modelElementContains(x, y, 2570, 210) ) { 

      panel.addInspect( 2570, 210, this, "totNumbOfCityInTour" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2330, 240) ) { 

      panel.addInspect(2330, 240, this, "newCityXCord" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2430, 240) ) { 

      panel.addInspect(2430, 240, this, "newCityYCord" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2530, 240) ) { 

      panel.addInspect(2530, 240, this, "newCityName" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 380, 780) ) { 

      panel.addInspect( 380, 780, this, "tempX" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 380, 800) ) { 

      panel.addInspect( 380, 800, this, "tempY" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 380, 830) ) { 

      panel.addInspect( 380, 830, this, "dispIndex" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2350, 130) ) { 

      panel.addInspect( 2350, 130, this, "neighType" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 100, 890) ) { 

      panel.addInspect( 100, 890, this, "regCenterPInitialX" );  

      return true;} 



 149 

    if( !publicOnly && modelElementContains(x, y, 100, 920) ) { 

      panel.addInspect( 100, 920, this, "regCenterPInitialY" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 260, 900) ) { 

      panel.addInspect( 260, 900, this, "allCitiesIndex" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2190, 160) ) { 

      panel.addInspect( 2190, 160, this, "cellXCord" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2190, 190) ) { 

      panel.addInspect( 2190, 190, this, "cellYCord" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1980, 260) ) { 

      panel.addInspect( 1980, 260, this, "cityOrRegion" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2660, 130) ) { 

      panel.addInspect( 2660, 130, this, "allRegionsIndex" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1970, 30) ) { 

      panel.addInspect( 1970, 30, this, "minX" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 1970, 60) ) { 

      panel.addInspect( 1970, 60, this, "minY" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2350, 110) ) { 

      panel.addInspect( 2350, 110, this, "tourCounter" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2350, 80) ) { 

      panel.addInspect( 2350, 80, this, "numbOfCity" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 90, 750) ) { 

      panel.addInspect( 90, 750, this, "unVisitedString" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 90, 770) ) { 

      panel.addInspect( 90, 770, this, "visitedString" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 90, 790) ) { 

      panel.addInspect( 90, 790, this, "deletedString" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 310, 30) ) { 

      panel.addInspect( 310, 30, this, "homeCity" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2330, 210) ) { 

      panel.addInspect( 2330, 210, this, "startToCreateEvent" );  

      return true; } 

    if( !publicOnly && modelElementContains(x, y, 90, 820) ) { 

      panel.addInspect( 90, 820, this, "neighborType" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 380, 720) ) { 

      panel.addInspect( 380, 720, this, "numbOfAttributes" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 260, 870) ) { 

      panel.addInspect( 260, 870, this, "constant1Or0" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2350, 150) ) { 

      panel.addInspect( 2350, 150, this, "partial" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 100, 950) ) { 

      panel.addInspect( 100, 950, this, "count" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 280, 930) ) { 

      panel.addInspect( 280, 930, this, "numbOfRegOptString" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 280, 950) ) { 

      panel.addInspect( 280, 950, this, "initialSolStrategyGMAString" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2350, 40) ) { 

      panel.addInspect( 2350, 40, this, "costString" );  



 150 

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2480, 80) ) { 

      panel.addInspect( 2480, 80, this, "RegionsAndCities" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2480, 30) ) { 

      panel.addInspect( 2480, 30, this, "CitiesDataBase" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2480, 60) ) { 

      panel.addInspect( 2480, 60, this, "RegionsSequence" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2490, 110) ) { 

      panel.addInspect( 2490, 110, this, "InstCityNames" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 2220, 270) ) { 

      panel.addInspect( 2220, 270, this, "newEvent" );  

      return true;} 

    if( !publicOnly && modelElementContains(x, y, 50, -130) ) { 

      panel.addInspect( 50, -130, this, "negotiationEnvCont" );  

      return true; } 

    if ( modelElementContains(x, y, 60, -320) ) { 

      if ( clickCount == 2 ) { 

        panel.browseEmbeddedObject(60,-320, this, "generalManager"); 

      } else { 

        panel.addInspect( 60, -320, this, "generalManager" ); 

      } 

      return true;} 

    if ( !regionManagerAgents.isEmpty() && modelElementContains(x, y, 190, -

320) ) { 

      if ( clickCount == 2 ) { 

        panel.browseEmbeddedObject( 190, -320, this, "regionManagerAgents" 

); 

      } else { 

        panel.addInspect( 190, -320, this, "regionManagerAgents" ); 

      }return true;} 

    if ( modelElementContains(x, y, 60, -260) ) { 

      if ( clickCount == 2 ) { 

        panel.browseEmbeddedObject( 60, -260, this, "vehicle" ); 

      } else { 

        panel.addInspect( 60, -260, this, "vehicle" ); 

      } 

      return true; 

    } 

    if ( !localVehicle.isEmpty() && modelElementContains(x, y, 190, -270) ) 

{ 

      if ( clickCount == 2 ) { 

        panel.browseEmbeddedObject( 190, -270, this, "localVehicle"); 

      } else { 

        panel.addInspect( 190, -270, this, "localVehicle" ); 

      } 

      return true; 

    }return false;} 

  // Environments 

public final Environment negotiationEnvCont = new Environment( this ); 

  /** 

   * Constructor 

   */ 

  public Main( Engine engine, ActiveObject owner, ActiveObjectCollection<? 

extends Main> collection ) { 

    super( engine, owner, collection );} 

  @Override 

  public void create() { 

    // Creating embedded object instances 

    generalManager = instantiate_generalManager_xjal(); 

    for ( int i = 0; i < 0 ; i++ ) { 

      instantiate_regionManagerAgents_xjal( i );} 

    vehicle = instantiate_vehicle_xjal(); 

    for ( int i = 0; i < 0 ; i++ ) { 

      instantiate_localVehicle_xjal( i );} 



 151 

    // Assigning initial values for plain variables 

    infCity = "Initial number of city: " ; 

    minX = 10000000 ; 

    minY = 10000000 ; 

    totNumbOfReg = 0 ; 

    numbOfCity = 0 ; 

    homeCity = 1 ; 

    startToCreateEvent = false ; 

    numbOfRegOptString = "" ; 

    initialSolStrategyGMAString = "" ; 

    // Dynamic initialization of persistent elements 

    presentation = new ShapeGroup( Main.this, true, 0, 0, 0, 

determineRegions, initNumbOfCity, lengthOfEnvironment, widthOfEnvironment, 

numbOfReg, convertCord, createAgentsButton, numbOfRegOpt, avgDistOpt, 

regDistOpt, regionDetAlg, homeCityOpt, homeCityVal, setInitialParameters, 

searchAlgorithms, searchAlgP, maxNumbOfIter, maxNumbOfNonImp, numbOfBestCan, 

neighOpt, regCenterOpt, avgDistInput, numbOfNeg, initialSolStrategyGMA, 

problemType, numbOfRow, numbOfCol, optStrategies, changeReportFileLocation, 

fileLocation, avoidSameMembers, maxNumbOfIterSGS, maxNumbOfNonImpSGS, 

dispLOfEnv, dispWOfEnv, dispNumbOfCityR, dispNumbOfReg, 

regionManagerAgents_Presentation, vehicle_presentation, cityP, xCordCity, 

xCordLabel, yCordLabel, yCordCity, dispSearchAlgP, dispMaxNOfIter, 

dispMaxNOfNonImp, dispMaxNOfBestCanSol, dispMultConst, dispAvgDist, 

dispNumbOfNeg, dispNumbOfRow, dispNumbOfCol, dispAgentNumber, dispRegName, 

dispMaxNumbOfIterSGS, dispMaxNumbOfNonImpSGS, localVehicle_presentation, 

regCenterP ); 

    icon = new ShapeGroup( Main.this, true, 0, 0, 0 );                                                                                                                                                         

    // Creating contents for replicated shapes 

    cityP.createShapes(); 

    xCordCity.createShapes(); 

    xCordLabel.createShapes(); 

    yCordLabel.createShapes(); 

    yCordCity.createShapes(); 

    dispAgentNumber.createShapes(); 

    dispRegName.createShapes(); 

    regCenterP.createShapes(); 

    // Environments setup 

    negotiationEnvCont.disableSteps(); 

    negotiationEnvCont.setSpaceContinuous(  

((int) widthOfEnvironment.getValue()) ,  

((int) lengthOfEnvironment.getValue())  ); 

    negotiationEnvCont.setNetworkUserDefined(); 

    negotiationEnvCont.setLayoutType( Environment.LAYOUT_USER_DEFINED ); 

    // Creating non-replicated embedded objects 

    setupParameters_generalManager_xjal( generalManager ); 

    create_generalManager_xjal( generalManager ); 

    setupParameters_vehicle_xjal( vehicle ); 

    create_vehicle_xjal( vehicle ); 

    // Port connectors with non-replicated objects 

    // Creating replicated embedded objects 

    for ( int i = 0; i < regionManagerAgents.size(); i++ ) { 

       setupParameters_regionManagerAgents_xjal( regionManagerAgents.get(i), 

i ); 

create_regionManagerAgents_xjal(regionManagerAgents.get(i),i)} 

    for ( int i = 0; i < localVehicle.size(); i++ ) { 

       setupParameters_localVehicle_xjal( localVehicle.get(i), i ); 

       create_localVehicle_xjal( localVehicle.get(i), i );} 

    assignInitialConditions(); 

    initNumbOfCity.setValueToDefault(); 

    lengthOfEnvironment.setValueToDefault(); 

    widthOfEnvironment.setValueToDefault(); 

    numbOfReg.setValueToDefault(); 

    setInitialParameters.setValueToDefault(); 

    maxNumbOfIter.setValueToDefault(); 

    maxNumbOfNonImp.setValueToDefault(); 

    numbOfBestCan.setValueToDefault(); 

    avgDistInput.setValueToDefault(); 

    numbOfNeg.setValueToDefault(); 



 152 

    numbOfRow.setValueToDefault(); 

    numbOfCol.setValueToDefault(); 

    changeReportFileLocation.setValueToDefault(); 

    maxNumbOfIterSGS.setValueToDefault(); 

    maxNumbOfNonImpSGS.setValueToDefault(); 

    onCreate();} 

@Override 

  public void start() { 

    newEvent.start(); 

    generalManager.start(); 

    for (ActiveObject embeddedObject : regionManagerAgents){ 

      embeddedObject.start(); 

      }vehicle.start(); 

    for (ActiveObject embeddedObject : localVehicle){ 

      embeddedObject.start();} 

    onStartup();} 

  public void onStartup() { 

    super.onStartup();   

determineRegions.setEnabled(false); 

avgDistOpt.setVisible(false); 

numbOfReg.setVisible(false); 

regDistOpt.setVisible(false); 

dispNumbOfReg.setVisible(false); 

regionDetAlg.setVisible(false);  

homeCityVal.setVisible(false); 

searchAlgP.setVisible(false); 

dispSearchAlgP.setVisible(false); 

dispMaxNOfIter.setVisible(false); 

maxNumbOfIter.setVisible(false); 

maxNumbOfNonImp.setVisible(false); 

dispMaxNOfNonImp.setVisible(false); 

maxNumbOfNonImpSGS.setVisible(false); 

dispMaxNumbOfNonImpSGS.setVisible(false); 

maxNumbOfIterSGS.setVisible(false); 

dispMaxNumbOfIterSGS.setVisible(false); 

numbOfBestCan.setVisible(false); 

dispMaxNOfBestCanSol.setVisible(false); 

neighOpt.setVisible(false); 

dispMultConst.setVisible(false); 

regCenterOpt.setVisible(false); 

avgDistInput.setVisible(false); 

dispAvgDist.setVisible(false); 

dispNumbOfNeg.setVisible(false); 

avoidSameMembers.setVisible(false); 

numbOfNeg.setVisible(false); 

dispNumbOfRow.setVisible(false); 

dispNumbOfCol.setVisible(false); 

numbOfRow.setVisible(false); 

numbOfCol.setVisible(false); 

optStrategies.setVisible(false); 

fileLocation.setVisible(false); 

searchAlgorithms.setVisible(false); } 

  public List<Object> getEmbeddedObjects() { 

    LinkedList<Object> list = new LinkedList<Object>(); 

    list.add( generalManager ); 

    list.add( regionManagerAgents ); 

    list.add( vehicle ); 

    list.add( localVehicle ); 

    return list;} 

  // Reaction on changes ------------------------------------- 

  public void onChange() { 

    newEvent.onChange();} 

  public void onDestroy() { 

    super.onDestroy(); 

    newEvent.onDestroy(); 

    negotiationEnvCont.onDestroy(); 

    generalManager.onDestroy(); 

    for (ActiveObject embeddedObject : regionManagerAgents) { 



 153 

      embeddedObject.onDestroy()} 

    vehicle.onDestroy(); 

    for (ActiveObject embeddedObject : localVehicle) { 

      embeddedObject.onDestroy(); 

    }} 

  // Additional class code 

Random rndm = new Random(2); 

Print print=new Print(true); 

SetPresentations setPresent= new SetPresentations(); 

NecessaryCalculations necessaryCalculations = new 

NecessaryCalculations(rangeX,rangeY,numbOfCity);  

  // End of additional class code   

  /** 

   * This number is here for model snapshot storing purpose 

   */  

  private static final long serialVersionUID = 1319105663276L; 

  private void writeObject(java.io.ObjectOutputStream _stream) throws 

java.io.IOException { 

    _stream.defaultWriteObject(); 

    _stream.writeObject( generalManager.getConnections() ); 

    _stream.writeObject( vehicle.getConnections() ); 

 writeCustomData( _stream );} 

  @SuppressWarnings("unchecked") 

  private void readObject(java.io.ObjectInputStream _stream) throws 

java.io.IOException, ClassNotFoundException { 

    _stream.defaultReadObject(); 

    generalManager.restoreOwner( this ); 

    regionManagerAgents.restoreOwner( this ); 

    vehicle.restoreOwner( this ); 

    localVehicle.restoreOwner( this ); 

    negotiationEnvCont.restoreOwner( this ); 

    newEvent.restoreOwner( this ); 

    createInitialCities.restoreOwner( this ); 

    inputFromUser.restoreOwner( this ); 

    cityArea.restoreOwner( this ); 

    agentsObjectsView.restoreOwner( this ); 

    generalManager.restoreConnections_xjal( (LinkedList<Agent>) 

_stream.readObject() ); 

    vehicle.restoreConnections_xjal( (LinkedList<Agent>) 

_stream.readObject() ); 

 finishReadObject_xjal( _stream, Main.class ); }} 



 154 

CURRICULUM VITAE 

 

PERSONAL INFORMATION 

 

Surname, Name: Unutmaz Durmuşoğlu, Zeynep Didem 

Nationality: Turkish (TC) 

Date and Place of Birth: 13 January 1984, Malatya 

Marital Status: Married 

Phone: +90 342 3172614 

Fax: +90 342 3604383 

email: unutmaz@gantep.edu.tr 

 

EDUCATION 

Degree Institution 

MS University of Gaziantep 

BS University of Gaziantep 

High School Adıyaman Anatolian High School 

 

 

WORK EXPERIENCE 

Year Place Enrollment 

2007- Present University of Gaziantep Research Assistant 

 

 

 

FOREIGN LANGUAGES  
ENGLISH (Advanced) 

GERMAN (Basic) 
 
 
 

PUBLICATIONS 

 

In International Journals: 

1. Baykasoglu, A., Durmuşoğlu, Z. (2012). A classification scheme for agent based 

approaches to dynamic optimization. Artificial Intelligence Review. 1-26. 

doi:10.1007/s10462-011-9307-x (Article in Press) 

2. Baykasoglu, A., Durmuşoğlu, Z.D.U. (2012). Flow time analyses of a simulated 

flexible job shop by considering jockeying, International Journal of Advanced 

Manufacturing Technology, 58(5-8), 693-707. 



 155 

3. Dereli, T., Baykasoğlu, A., Durmuşoğlu, A., Durmuşoğlu, Z. D. U. (2011). 

Enhancing technology clustering through heuristics by using patent counts, Expert 

Systems with Applications. 38(12), 15383-15391. 

4. Baykasoğlu, A., Durmuşoğlu, Z. D. U., Kaplanoğlu, V. (2011). Training fuzzy 

cognitive maps via extended great deluge algorithm with applications. Computers in 

Industry. 62(2), 187-195. 

5. Baykasoğlu, A., Göçken, M., Unutmaz, Z. D. (2008). New approaches to due date 

assignment in job shops, European Journal of Operational Research, 187, 31-45. 

6. Baykasoğlu, A., Göçken, M., Unutmaz, Z. D. (2008). Due date assignment using 

ADRES and simulated annealing, International Journal of Industrial and Systems 

Engineering, 3(3), 277-297. 

 

In International Conferences: 

  

1. Baykasoğlu, A., Durmuşoğlu, Z.D.U. (2011). Dynamic optimization in a 

dynamic and unpredictable world, 2011 Proceedings of PICMET '11: 

Technology Management In The Energy-Smart World (PICMET), July 31-

August 4, Hilton Portland and Executive Tower, Portland, Oregon, USA, pp. 

2312-2319. 

2. Baykasoğlu, A., Durmuşoğlu, Z.D.U., Görkemli, L. (2011). Solving vehicle 

deployment planning problem by using agent based simulation modeling, 2nd 

International Symposium on Computing in Science & Engineering, June, 1-4, 

Gediz University Publications, editor: M. Güneş, ISBN:978-605-61394-2-0, 338-

340, Kuşadası, Aydin, Turkey. 

3. Baykasoğlu, A., Kaplanoğlu, V., Durmuşoğlu, Z.D.U., Şahin, C. (2011). A 

fuzzy TOPSIS approach to truck selection, FUZZYSS'11: 2nd International 

Fuzzy Systems Symposium, (ed., Gokceoglu C., Aladag HC., Akgun A) 

Hacettepe University, Cultural Center, November 17-18, Ankara, Turkey, pp. 

142-145. 



 156 

4. Baykasoğlu, A., Durmuşoğlu, Z. D. U, Kaplanoğlu, V. (2009). Training fuzzy 

cognitive maps by extended great deluge algorithm, FUZZYSS’09: 1st 

International Fuzzy Systems Symposium, TOBB Economy and Technology 

University, October 1-2, Ankara, Turkey, 110-117. 

5. Baykasoğlu, A., Unutmaz, Z. D., Kaplanoğlu, V. (2007). A truck load 

consolidation approach for a logistics company, International Logistics & Supply 

Chain Congress, 8-9 November, İstanbul, Turkey, 606-613. 

 

 

In National Conferences: 

 

1. Baykasoğlu, A., Durmuşoğlu, Z. D. U., Görkemli, L. (2011). Etmen tabanlı 

benzetim: ANYLOGIC
TM

 yazılımı ve örnek bir uygulama, Endüstri Mühendisliği 

Yazılımları ve Uygulamaları Kongresi, İzmir, 30 Eylül-01/02 Ekim, TMMOB 

Makina Mühendisleri Odası Yayın No: E/2011/559, 197-204. 

 

2. Baykasoğlu, A., Durmuşoğlu, Z. D. U. (2010). Özel İlköğretim Okulu seçimi için 

çok kriterli karar destek modeli, YA/EM 2010: Yöneylem Araştırması/Endüstri 

Mühendisliği Kongresi 30. Ulusal Kongresi, Sabancı Üniversitesi, 30 Haziran-2 

Temmuz 2010, İstanbul, Bildiriler Özeti Kitabında, 101. 

 

3. Baykasoğlu, A., Durmuşoğlu, Z. D. U (2009). Kuyruk Atlama Mekanizmalarının 

Esnek Atölyelerde Akis Suresine Etkisi, YA/EM 2009: Yöneylem 

Araştırması/Endüstri Mühendisliği Kongresi 29. Ulusal Kongresi, Bilkent 

Üniversitesi, 22-24 Haziran 2009, Ankara, Bildiriler Kitabı CD'sinde. 

 

4. Baykasoğlu, A., Unutmaz, Z. D. (2008). Atölye tipi üretim sistemlerinde 

esnekliğin akis süresine etkisi, YA/EM’2008: Yöneylem Araştırması/ Endüstri 

Mühendisliği Kongresi XXVIII. Ulusal Kongresi, Galatasaray Üniversitesi, 30 

Haziran-2 Temmuz 2008, İstanbul, Bildiriler Kitabı CD’sinde. 

 



 157 

5. Baykasoğlu, A., Kaplanoğlu, V., Unutmaz, Z.D. (2008). An agent based 

framework for truck load consolidation, YA/EM’2008: Yöneylem Araştırması / 

Endüstri Mühendisliği Kongresi XXVIII. Ulusal Kongresi, Galatasaray Üniversitesi, 

30 Haziran-2 Temmuz 2008, İstanbul, Bildiriler Kitabı CD’sinde. 

 

6. Baykasoğlu, A., Göçken, M., Unutmaz, Z. D. (2007). Atölye tipi üretim 

sisteminde girdi kontrolü etkilerinin araştırılması, YAEM’07, Yöneylem Araştırması 

ve Endüstri Mühendisliği Kongresi, 02-04 Temmuz, İzmir. 

 

7.  Baykasoğlu, A., Kaplanoğlu, V., Unutmaz, Z. D. (2007). Lojistik firmalarında 

yük konsolidasyonu için bir model önerisi, YAEM’07, Yöneylem Araştırması ve 

Endüstri Mühendisliği Kongresi, 02-04 Temmuz, İzmir. 

 

8.  Baykasoğlu, A., Göçken, M., Unutmaz, Z. D. (2006), Atölye tipi üretimde akış 

süresi tahmini ve teslim tarihi belirlenmesi için yeni bir yaklaşım, GAP V. 

Mühendislik Kongresi, 26-28 Nisan, Şanlıurfa. 

 

 

National Journal Papers: 

 

1. Dereli, T., Baykasoğlu, A., Durmuşoğlu, A., Unutmaz, Z. D., Sönmez, A. (2007). 

Futbol endüstrisi: Seyirci Sayısı ve Takımların Forma Renkleri, Çağ Üniversitesi 

Sosyal Bilimler Dergisi, ISSN 1304-8392, 4(1), 13-25. 

 

 

HOBBIES 

She is interested in reading mathematics, puzzles, theater plays and she enjoys 

cooking.  

 

 

 

 


