
 أ

UNIVERSITY OF GAZİANTEP

GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

SIMULATION OF QUANTUM COMPUTERS ON CLASSICAL

COMPUTERS BY USING MATHEMATICA

M.SC. THESIS

IN

PHYSIC ENGINEERING

BY

SHAKHAWAN S. ABDULLAH AL-BALAKY

OCTOBER 2012

 ب

Simulation of Quantum Computers on Classical Computers by

Using Mathematica

M.Sc. Thesis

In

Physic Engineering

University of Gaziantep

Supervisor

Prof. Dr. Ramazan KOÇ

By

Shakhawan S. Abdullah AL-BALAKY

October 2012

 ج

©2012 [Shakhawan Salih

 Abdullah]

 د

 ه

 و

ABSTRACT

SIMULATION OF QUANTUM COMPUTERS ON CLASSICAL

COMPUTERS BY USING MATHEMATICA

ABDULLAH, Shakhawan

M.Sc. in Physic Engineering

Supervisor: Prof. Dr. Ramazan KOÇ

October 2012

76 pages

The main objective of this study is simulation of some quantum algorithms on a

classical computer using the Mathematica program. Classical computation has been

thoroughly discussed at the beginning to important for achieving a significant part of

our work.

The crucial part of this study is basic principles of quantum computation, particularly

qubit statistics, quantum algorithms, quantum gates and quantum circuits are

discussed in details. Moreover, much light has been shed on CNOT Gate, since it

constitutes the core of this work. By using CNOT Gate quantum half-adder circuit

and quantum full-adder Circuit, are constructed and they are both a factor for

arriving at n-qubit adder quantum circuit. In this thesis as a special case, addition of

4-qubit number on a Mathematica is simulated.

One more section of this study is the use of Mathematica program for designing and

obtaining the results of Quantum Circuits, particularly 4-qubit adder. Therefore,

many calculating operations have been conducted for this circuit by using this

program. Finally, it is logical to argue that Adder/Subtractor Algorithm is the basis

of all Algorithms in the Quantum Computation science.

Key Words: Digital System, Logic Gates, Qubit, Quantum Gates, Full Adder.

 ز

ÖZ

MATHEMATICA KULLANARAK, KUANTUM KOMPUTER’IN, KLASIK

BIR KOMPUTERDE SIMULASYONUNUN YAPILMASI

ABDULLAH, Shakhawan

Yüksek Lisans Fizik Müh. Bölümü

Tez Yöneticisi(leri): Prof. Dr. Ramazan KOÇ

Ekim 2012

76 sayfa

Bu tezin temel amacı, bazı kuantum algoritmaların Mathematica program kullanara

klasik bilgisayarlar üzerinde simülasyonunu yapmaktır. Bu simülasyonu başarılı bir

şekilde yapabilmek için, tezin başlangıcında klasik hesaplama tartışılmıştır.

Kuantum hesaplamanın temelini oluşturan, özellikle, qubitler, kuantum algoritmalar,

kuantum kapılar ve kuantum devreler detaylı olarak tartışılmıştır. Simulasyon

devresinin çekirdeğini oluşturan CNOT kuantum kapısının özelliklerine daha çok

ışık tutulmuştur. CNOT kapısı kullanılarak yarı toplayıcı ve tam toplayıcı devreler

elde edilmiş ve devre n-qubit sayıları toplayacak şekilde genelleştirilmiştir. Bu tezde

özel bir durum olarak 4-qubit iki sayının toplanması Mathematica programı

yardımıyla simüle edilmiştir.

Bunlara ek olarak, ilave bir bölümde Mathematica programının, quantum başta 4-

qubit sayıların toplanması olmak üzere, devre tasarımında kullanımı ele alınmıştır.

Böylece birçok kuantum hesaplamanın Mathematica kullanarak simulasyonun

yapılabileceği basit bir yol gösterilmiştir. Sonuç olarak, pek çok quantum devrenin

temelini oluşturan tam yoplama/çıkarma devresinin çalışılması ve tartışılmasının

yerinde olduğu açıktır.

Anahtar Kelimeler: Dijital Sistem, Mantık Kapılar, Qubit, Kuantum kapılarte, Tam

toplama devresi.

 ح

To the soul of my great father. And to my

mother, sisters, brothers and my wife

viii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor Prof. Dr. Ramazan KOÇ

for his guidance, advice, criticism, encouragements and insight throughout the

writing of this research work.

My great thanks to go to Dr. Saman Salah Balaky in the UK for his kind assistance

with editing the language and structure of some selected parts of my work. I also

express my sincere thanks to Mr. Samir Mustafa Ahmad, a PhD student in the USA,

and Hayder Mahmud , for their help and support. I am similarly indebted to all my

friends and those who have helped me in one way or another.

I am particularly grateful for the constant moral support I received from my family

during the course of writing and conducting this research. They were the source of

inspiration and continued enthusiasm for me with this study and made me always

feel positive with the future of my work.

Finally, my best acknowledgments for those hidden helpers whom I regrettably fail

to remember them now and have given support on various levels.

ix

TABLE OF CONTENTS

Page CONTENTS

V ABSTRACT……………………………………………………………………

Vi ÖZ……………………………………………………………………………...

viii ACKNOWLEDGMENTS……………………………………………………..

Ix CONTENTS……………………………………………………………………

Xii LIST OF TABLES …………………………………………………………….

Xiv LIST OF FIGURES ……………………………………………………............

xvii LIST OF SYMBOLS/ABBREVIATION ………………………………..........

1 CHAPTER 1: INTRODUCTION……………………………………………...

5 CHAPTER TWO: CLASSICAL AND QUANTUM COMPUTATION……...

6 2.1 Classical Computation…………………………………….........................

7 2.1.1 Digital Systems…………………………….…………………………

7 2.1.1.1 Number System…………………………...................................

8 2.1.1.2 The Decimal system…………………………….……………...

9 2.1.1.3 The Binary System……………………………….…………….

9 2.1.1.4 Counting in the Binary System……………………..…………..

10 2.1.1.5 Binary Addition and Subtraction…………………..…………...

11 2.1.1.6 Converting Decimal Numbers to Binary…………..…………...

12 2.1.2 Logic gates……………………….…………………...........................

15 2.1.2.1 AND gate……………………….………………….…………...

x

16 2.1.2.2 OR gate……………………………….…………….…………..

16 2.1.2.3 NOT gate………………………………………….……………

17 2.1.2.4 NAND gate…………………………...………….…………….

18 2.1.2.5 NOR gate…………………………...…………….……………

18 2.1.2.6 XOR gate…………………………...…………….…...……….

19 2.1.2.7 XNOR gate………………………………………......….……..

21 2.1.3 Boolean Operators………...………………….………………………

21 2.1.4 Boolean Algebra…………….……………...………….……………..

23 2.2 Classical Computation……………………………….…...………………

23 2.2.1 Background…………….……………………………………………..

26 2.2.2 Properties of Quantum Computation….……….….……...…………..

27 2.2.3 Quantum Bit…………………….……………...…………………….

28 2.2.4 Qubit states…………………….……………………………...……...

29 2.2.5 Bloch Sphere…………………….……………………………………

30 2.2.6 Quantum Gates…………….…………………………………………

30 2.2.6.1 Hadamard gate…………………………………..……………...

31 2.2.6.2 Pauli-X gate…………………………….………………………

31 2.2.6.3 Pauli-Y gate……………………………..………………………

32 2.2.6.4 Pauli-Z gate…………………………….……………...……….

32 2.2.6.5 Phase shift gates……………….……….………..……………..

32 2.2.6.6 Swap gate………………………………..……..……………….

33 2.2.6.7 Controlled gates………………………..………..……………...

35 2.2.6.8 Toffoli gate……………………………..………..……………..

36 2.2.6.9 Fredkin gate……………………………..…………..………….

37 2.2.7 Matrix Representations…….…………………………………………

xi

39 2.2.8 Quantum Circuits……………….…………………………………….

43 CHAPTER 3: CLASSICAL AND QUANTUM FULL ADDER CIRCUIT…..

43 3.1 Background…….………….…………………...……...………………….

46 3.2 Classical Addition…………………………………….....………………..

46 3.2.1 The Half-Adder………………………….……………………………

48 3.2.2 The Full-Adder………………………….…………...……………….

51 3.3 Quantum Addition……………………………………..…...……………..

55

CHAPTER 4: SIMULATION OF 4-QUBITS FULL ADDER CIRCUIT BY

MATHEMATICA…………………………………………………………..….

55 4.1 Installation Program on Micro-Soft Windows…………..……...………...

58 4.2 Mathematica add-on Program…………………………..………………...

59 4.3 Quantum Circuit Simulator and result…………….........………………...

59 4.3.1 Simulation Half-Adder………………………..………...…………….

61 4.3.2 Simulation Full-Adder………………………..……………………….

63 4.3.2 Simulation 4-Qubit Full Adder…………………….…....…….………

70 CHAPTER 4: CONCLUSION…………………………………………………

72 REFERENCES…………………………..…………….……………………….

xii

LIST OF TABLES

Page TABLES

10 Table 2.1. Decimal and Binary numbers …………………………………….

13 Table 2.2. Logic symbol……………………………………………………...

15 Table 2.3. Truth Table of 2 Input AND gate…………………………………

16 Table 2.4. Truth Table of 2 Input OR gate……………………………………

17 Table 2.5. Truth Table of NOT gate………………………………………….

17 Table 2.6. Truth Table of 2 Input NAND gate……………………………….

18 Table 2.7. Truth Table of 2 Input NOR gate………………………………….

19 Table 2.8. Truth Table of XOR gate………………………………………….

19 Table 2.9. Truth Table of XNOR gate………………………………………..

20 Table 2.10. Summary of Digital logic gates………………………………….

22 Table 2.11. Logic Basic Rules and Boolean algebra laws……………………

36 Table 2.12. Truth table of Toffoli gate……………………………………….

37 Table 2.13. Truth table of Fredkin gate………………………………………

47 Table 3.1. Half adder truth table……………………………………………...

48 Table 3.2. Full-Adder truth table……………………………………………..

xiii

54

Table 3.3. Input combinations that produce the same output combinations in

full adder circuit (shown shaded)……………………………………………..

60 Table 4.1. Synthesis of input and output Quantum Half-Adder………………

62 Table 4.2. Synthesis of input and output Quantum Full-Adder………………

63 Table 4.3. Input and Output result for example 1…………………………….

65 Table 4.4. Synthesis of input and output 4-qbit Adder……………………….

67 Table 4.5. Input and Output result for example 2…………………………….

69 Table 4.6. Input and Output result for example 3…………………………….

xiv

LIST OF FIGURES

Pages FIGURES

14 Figure 2.1. Electric circuit representation AND gate……………………...…

14 Figure 2.2. Electric circuit representation OR gate…………………………..

15 Figure 2.3. Electric circuit representation NOT gate………………………...

15 Figure 2.4. Block diagram representation AND gate………………………...

16 Figure 2.5. Block diagram representation OR gate………………...………...

16 Figure 2.6. Figure (a, b and c) block diagram representation NOT gate…….

17 Figure 2.7. Block diagram representation NAND gate……………..………..

18 Figure 2.8. Block diagram representation NOR gate………………………...

18 Figure 2.9. Block diagram representation XOR gate………………………...

19 Figure 2.10. Block diagram representation XNOR gate……………………..

27 Figure 2.11. Spin Up and Spin Down representation Quantum Bit………….

28 Figure 2.12. Possible state of Classical Bit and Quantum Bit………………..

29 Figure 2.13. Bloch sphere representation of a qubit…………………………

31 Figure 2.14. Circuit representation of Hadamard gate……………………….

33 Figure 2.15. Circuit representation of SWAP gate……………...……………

http://en.wikipedia.org/wiki/Bloch_sphere

xv

33
Figure 2.16. A SWAP gate is three back to back CNOT gates with control

 and target qubits alternating…………………….………………

34 Figure 2.17. Circuit representation of controlled NOT gate…………………

34 Figure 2.18. Circuit representation of controlled-U gate…………………….

35 Figure 2.19. Circuit representation of Toffoli gate…………………………..

36 Figure 2.20. Circuit representation of Fredkin gate………………………….

38 Figure 2.21. The quantum circuit represintation of 3-qbit…………………..

39 Figure 2.22. The simple of quantum circuit…………...……………………..

44 Figure 3.1. Basic quantum gates……………………………………………..

45 Figure 3.2. A compound gate constructed from an identity and a NOT gate..

45
Figure 3.3. Cascading quantum gates to construct a quantum circuit and its

 QMatrix…………………………………………………………..

48 Figure 3.4. Half adder: (a) Block diagram, (b) Logic diagram……………....

49 Figure 3.5. Classical full-adder circuit…………………………………...…..

50 Figure 3.6. Parallel 4-bit binaryAdder…………………………………...…..

52 Figure 3.7. Reversible 1-bit half-adder………………………………..……..

52 Figure 3.8. Reversible 1-bit full-adder……………………………...………..

53 Figure 3.9. Reversible n-bit Full adder………………………………..……..

56 Figure 4.1. First step shown Installation Mathematica Add-On Program…...

57 Figure 4.2. Final step shown Installation Mathematica Add-On Program…...

58 Figure 4.3. The main page of Mathematica add-on program………………...

xvi

60 Figure 4.4. Simulation Quantum Half-Adder with result by Mathematica…..

61 Figure 4.5. Simulation Quantum Full-adder with result by Mathematica…...

64 Figure 4.6. Simulation 4-qbit Adder by Mathematica…………………..…...

xvii

LIST OF SYMBUL/ABBREVIATION

FULL TEXT ABBRE.

Quantum Computation QC

Not AND NAND

Not OR NOR

Exclusive OR XOR

Exclusive Not OR XNOR

Control NOT CNOT

Control-Control NOT CCNOT

Control SWAP CSWAP

(CNOT, NOT, TOFFOLI, and SWAP) gate library CNTS

Quantum Bit Qubit

Quantum Matrix QMatrix

Matrix M

Identity Matrix MI

SWAP Matrix MSWAP

Control NOT Matrix MCNOT

Half Adder HA

Full Adder FA

Carry Out Co /Cout

Carry In Ci /Cin

xviii

Sum S

Garbage G

Categorical Abstract Machine Language CaML

Matrix Laboratory MATLAB

xix

PERSONAL INFORMATION

Name and Surname: Shakhawan S. Abdullah AL-BALAKY

Nationality: Iraqi

Birth place and date: Erbil/ 01.01.1974

Mariel status: Marred

Phone number: Iraq Mob.: +964 750 448 9550

 Turkey Mob.: +90 539 599 0570

Fax: ------

Email:Shakhybarz@yahoo.com, Shakhawan74@hotmail.com

EDUCATION

 Graduate school Year

Master ----------- -------

High Diploma Duhok University 2006-2007

Bachelor Salahadden University 1999-2000

High School Soran preparatory School 1994-1995

WORK EXPERIENCE

 Place Enrollment

2007-Present Soran Technical Institute /SORAN Teaching

2001-2006 Soran Technical Institute /SORAN Administrative

2000-2001 Syako Company/ERBIL Accountant

PUBLICATIONS

S. A. Shakhawan, and R. KOÇ “Simulation of 4-qubit full-adder circuit by

Mathematica” International Journal of Computer Science and Network Security

(IJCSNS), under review

xx

FOREIGN LANGUAGE

 English

 Arabic

 Kurdish

 Few of Turkish

HOBBIES

 Studying

 Reading

 Sports

 Travelling

1

Chapter 1

INTRODUCTION

Quantum computation is going to be a successful project, based on theory of

quantum mechanics as well as mathematics, group theory, electronic engineering,

quantum information theory and computer science [1]. Theoretically, it has been

shown that, various problems which cannot be efficiently solved on a classical

computer have efficient solution on a quantum computer [2, 3]. This property can be

proven by presenting an algorithm based on superposition principles of the states [4,

5, 16, 41]. Recently Shor invented an algorithm to factor large numbers by using

quantum computers much faster than any classical computer do it [5]. This type

developments providing motivation to researchers and they are racing to create a

practical quantum computer. Recent experiments are promising that a working model

of quantum computer could be manufactured in near future [16, 42-45].

Meanwhile, let us explain basic principles of quantum computation: in a classical

computer operations are done on bits, can only exist as “0” or “1”. In quantum

computation the rule is based on superposition. Fundamental building blocks of a

quantum computer are qubits that is represented by quantum mechanical states [1-3].

According to the theory of quantum mechanics the states can be expressed as linear

combinations of these quantum states, also called superposition, is the most

significant property that leads to speed up of a quantum computation.

Mathematically, the state of a qubit | can be written as | = |0+ |1where and

 are related to probability of the state and 2
 + 2

 =1. This implies that by

2

performing a single operation on the state | , two qubits can be effected at the same

time. Similarly a two qubits system, | = |00+ |01+ |10+ |11can perform

operation on four qubits, three qubits system can perform operation on eight qubits

and n qubits system can perform the operation on 2
n
 qubits. This is known as

quantum parallelism and by a correct algorithm one can use this property to increase

speed of the quantum computer exponentially when compared to a classical

computer [41].

It is indicated that quantum entanglement also plays a crucial role in quantum

algorithms. For instance Grover’s search algorithm for two qubits case involves

entanglement. Entanglement naturally appears in the Deutsch-Jozsa algorithm for

single and two qubits and in the Shor algorithm. Use of entanglement in an algorithm

increases speed of computation on quantum computer. Role of the entanglement in

quantum computation has not yet been clarified and some questions still unanswered.

In fact entanglement takes place at the origin of the quantum information theory.

If a problem can be solved by using quantum computer, it is also solved by using

classical computers. Quantum algorithms provide solution of problem on quantum

computer is faster than solution of the same problem on classical problem. For

example Shor’s algorithm based on, Quantum Fourier Transform; factorize a number

in a polynomial time [4]. The same problems have been solved on a classical

computer in super polynomial time. Grover’s algorithm search an unsorted list

including N data using O(√) queries. The same search can be done on a classical

computer using O(N) queries [5].

Consequently quantum parallelism, based on superposition and entanglement, allow

possibility of performing a large number of operations in parallel. Therefore this

property has led to the development of new algorithms which run by using nature of

3

quantum mechanical devices manufactured for this purpose (quantum gates) and they

cannot be run on a classical computer [26]. As it is well known, a quantum algorithm

can be run by a quantum circuit to achieve its processing power.

One of the purposes of this thesis is to simulate quantum algorithms on a classical

computer by using Mathematica program [40]. We also investigate behavior of

quantum algorithm. Obviously, simulation of quantum computations on classical

computers will improve our understanding of quantum mechanics and construction

of quantum computers [7-16]. We focus our attention to simulate 4-qubits full adder

circuits on Mathematica.

Various quantum algorithms can be written by using their classical algorithms too. In

usual, addition algorithms generated for a quantum computer by using analogy of full

adder classical algorithms [4, 22]. In this thesis we presented simulation of the four

qubits full adder circuit by using a Mathematica package developed by J. L. Gómez-

Muñoz and F. Delgado [40]. Although a considerable attention has been paid to

present quantum algorithm for full adder circuit, the study of this problem from

different point of view leads to the progress of quantum algorithm and simulation

techniques. Theoretically and experimentally various quantum gates and circuits

have been designed. Especially Hadamard and CNOT gates have attracted widely

attentions in the construction of quantum circuits for a given algorithm [6] and our

algorithms include CNOT-based quantum circuits. We also mention here, as a part of

the improvement of quantum computing, it is necessary to find efficient ways to

design a quantum circuit [17-33]. According to the quantum theory quantum logic

circuit can be represented by a unitary matrix. Then unitary transformations of the

state qubits are gives relation between input and output qubits of the circuit. These

4

circuits are modeled by connecting one or more quantum logic gates represented by a

unitary transformation matrix [41].

The theory of quantum computing leads to understanding of quantum circuits

including quantum gates. Quantum computers include quantum gates represented by

transformation of the quantum states. The transformation is unitary and therefore the

quantum gates are reversible. Simulation of quantum computing on a classical

computer can be modeled by using the unitary transformation properties of gates that

can be represented by unitary matrices. As in the classical computers, quantum

circuits are constructed by using quantum gates.

In this thesis simulation of a quantum full adder circuit is presented, because a full

adder circuit is a fundamental unit of both quantum and classical computers. We will

use a Mathematica [40] package provides a simulation of a Quantum computation.

Consequently, this thesis will describe the connection between future quantum

computers and today’s simulations of quantum computers. Let us begin with a

demonstration of the framework we have constructed in the high-level program

language Mathematica; this will probably be used for future algorithms [8].

The thesis is organized as follows. Chapter 2 provides a brief theory of quantum and

classical computation. This chapter include an overview of classical and quantum

computation, involve classical and quantum gates, quantum circuit and matrix

representations of quantum gates. In chapter 3, we have discussed the classical and

quantum addition circuit structure in detail. We have given an algorithm and a

classical and quantum circuit in this chapter. Chapter 4 is presented to illustrate

simulation of 4-qubit full adder quantum circuit on classical computer. The results

are given in this chapter. Finally, the results are discussed and concluded in chapter5.

5

Chapter 2

CLASSICAL AND QUANTUM COMPUTATION

A classical computer is a science depends to bit, where each bit represents either a

one or a zero; together quantum computer is a science depends to qubit. A single

qubit can represent a one a zero or superposition state of the two qubit; the, for two

qubit can be 4 superposition states, and three qubits in any superposition of 8 states.

In general, with n qubits in quantum computer can be 2
n
 different states in an

superposition state up to simultaneously. Quantum computer works by appointment

qubits in a controlled state which represents the initial problem at hand by

manipulating those qubits with a specific sequence of quantum logic gates. The

quantum algorithm is obtained by sequence of gates. After measuring all states

obtained at the calculation of final, the outcome can be at most n classical bits of

information, if collapsing each qubit into one of the two pure states [2, 16-17].

The numbers of qubit in quantum computer is Substantial different from the same

number of bit in classical computer. For example, require the storage of 2
n
 complex

coefficients by explain n-qubit state on classical computer system. At the indeed, the

qubit can be hold information more exponentially from classical computation [16].

http://en.wikipedia.org/wiki/Quantum_superposition
http://en.wikipedia.org/wiki/Pure_qubit_state
http://en.wikipedia.org/wiki/Quantum_algorithm
http://en.wikipedia.org/wiki/Quantum_algorithm

6

2.1 Classical Computation

Classical computing is Consists of logic gate, any piece of hardware that described

by logic gate, it is performs a logical process on one or more logical input to take out

a single logical value. The circuits in classical computation consist of logic gates and

wires. Information around and substituting in circuit by wires, and operations

perform on information by logic gates. Moreover, memory is part of circuit; it is

store the value of various bits. [8].

The classical computation includes essential Digital system. Digital system is a

branch of electronics in which all the devices, components and circuitry operate only

at two predefined levels of voltages, currents or any other quantity. These levels are

represented by 1 and 0 and usually called high and low. In digital electronic systems

every information in the world numerals, alphabets, signs, characters or commands -

anything and everything - is converted to or interpreted by sequences (strings) of

binary digits (bits) of 0’s and 1’s. A binary sequence is also referred as to binary

[18].

The most important in digital systems is the binary number system; also others have

will be important. Like, quantities outside digital system is represented by decimal

system, also decimal system is important because it is universal used. This means

that before situations are entered in a digital system, where you must convert decimal

values to binary values. For example, when you punch a decimal number into your

hand calculator (or computer), the circuitry inside the machine converts the decimal

number to a binary value [21].

7

2.1.1 Digital Systems

Digital systems have such a prominent role in everyday life that we refer to the

present technological period as the digital age. Digital systems are used in

communication, business transaction, traffic control, space guidance, medical

treatment, weather monitoring, the Internet, and many other commercial, industrial,

and scientific enterprises [18, 22].

One characteristic of digital systems is their ability to manipulate discrete elements

of information. Any set or group number that is restricted to a limited number of

elements contains separate information. Examples of discrete sets are the 10 decimal

digits.

Discrete elements of information are represented with groups of bits called binary

codes. For example, the decimal digits 0 through 9 are represented in a digital system

with a code of four bits. By using different techniques, can make a group of bits to

represent the separate symbols, which are then used to develop the system in a digital

format. Thus, a digital system is a system that manipulates discrete elements of

information that is represented internally in binary form.

2.1.1.1 Number Systems

Actually, number system contents of the many deferent systems, such as decimal,

binary, octal, and hexadecimal system, all this are used in digital technology, but

decimal system is clearly

Many types of number system are used in digital technology. The most used are the

decimal, binary, octal, and hexadecimal systems. Decimal system it is more common

because used in all areas of daily living.

8

The decimal system for counting has been so widely adopted throughout our present

civilization that we rarely consider the possibilities of other number systems.

Nevertheless, it is not reasonable to expect a system based on the number of fingers

we possess to be the most efficient number system for machine construction. The

fact is that a little used but very simple system, binary system has proven that the

system is more common and efficient use of the device

2.1.1.2 The Decimal System

Decimal system consists of 10 different numbers. These 10 numbers are 0, 1, 2, 3, 4,

5, 6, 7, 8, and 9; can express any quantity using these symbols as digits. The base of

decimal system is a 10, because it has consists of 10 digits, also called the base-10.

The following rule is the general rule to representation decimal system:

a110
n-1

+ a210
n-2

+ … + an

Where (a1,a2... an) are the value of digit number (left to right), and (n) is the number

of digits to the left of the decimal point.

The radix or base of a number system is defined by different digits number. The

radix or base of decimal number system is a 10. Because this system it have 10

different numbers (0, 1, 2, 9), any one of them can used in every position in a

number. Use a several other number systems is recording by history.

9

2.1.1.3 The Binary System

The binary system is contains only two symbols or possible digit values, 0 and 1. The

base of binary system is 2
n
, this base is used to represent any binary numbers.

Switches and relays are basic elements in early computers. The switch and relay are

nature essential operation in binary system; that is, the switch is either on or off

(on=1 and off=0). Transistors are principal elements in circuit to modern computers,

similar to those used in radios and television sets. The desire for reliability led

designers to use these devices so that they were essentially in one of two states, fully

conducting or no conducting.

2.1.1.4 Counting in the Binary System

The same type of positional notation is used in the binary number system as in the

decimal system. Table (2.1) perform list of the first 20 numbers from binary number

versus decimal numbers, the decimal system uses 10
n
, and the binary system 2

n
. As

was previously explained, the number 120 actually means (110
2
) + (2 10

1
) +

(010
0
). In the binary system, the same number (120) is represented as 1111000,

meaning (1 2
6
) + (1 2

5
) + (1 2

4
) + (1 2

3
) + (0 2

2
) + (0 2

1
) + (0 2

0
).

To express the value of a binary number, therefore, a12
n-1

+ a22
n-2

+…+ an, is

represented as a1a2…an, where (a=0 or a=1), and n is the digits number to the left of

the binary radix point.

10

Table (2.1) The first 20 numbers of the decimal and binary systems

Decimal Binary Decimal Binary

1 00001 11 01011

2 00010 12 01100

3 00011 13 01101

4 00100 14 01110

5 00101 15 01111

6 00110 16 10000

7 00111 17 10001

8 01000 18 10010

9 01001 19 10011

10 01010 20 10100

2.1.1.5 Binary Addition and Subtraction

Operation way to addition in a binary system is the same way the decimal system.

Actually, binary arithmetic is much simpler to learn. The following operations are

performing all (operation addition) in binary system.

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 with carry 1 to over

The carryovers in binary system are same operation with decimal arithmetic. Since in

the binary system 1 is the largest digit, if any sum greater then 1, the operation is

requires that a digit be carried over.

11

The easiest way of performing subtracting is to negate the subtrahend and add it to

the minuend this is done by finding the 2’s complement of the subtraction and then

performing the addition. For simplifying the subtraction operation and logical

manipulation in digital computers using complements operation. Complements are

consists of two types in binary system, there are one’s (1’s) complement and two's

(2’s) complement.

The 1’s complement of a binary number is the number that results when each 0 in the

number is changed to a 1 and each 1 is changed to 0. The 2’s complement of a binary

number is the number results by adding 1 to the 1’s complement (i.e. 2’s complement

= 1’s complement + 1). The 2’s complement can be used to form the binary

subtraction. (i.e. add its 2’s complement to the subtraction and disregard the cast

carry)

2.1.1.6 Converting Decimal Numbers to Binary

There are several methods for converting a decimal number to a binary number. The

process of dividing the decimal number by 2 repeatedly, it is first and most obvious

method, and after each division it have remainder (0 or 1), this remainder is used to

indicate the coefficients of the binary number to be formed. Notice to obtain the

result reading the remainder (down to up) and writing (left to right).

12

The binary representation of 120 is therefore 1111000. Checking this result gives

 1 2
6
 = 64

1 2
5
 = 32

 1 2
4
 = 16

1 2
3
 = 8

0 2
2
 = 0

0 2
1
 = 0

0 2
0
 = 0

 120

2.1.2 Logic Gate

In [20-21, 45], majority of the digital circuits and systems irrespective of how much

complex the circuit may be and performing any kind of function like mathematical

operations, control operations, digital data transfer, data processing, data selection,

coding, decoding, etc. at the innermost levels, there are only three basic logic

operations going on. These basic logic operations are:

1. AND 2. OR and 3. NOT.

Decimal No.2 Result Remainder

120 60 0

60 30 0

30 15 0

15 7 1

7 3 1

3 1 1

1 0 1

13

Electronic circuits assembled from diodes, resistors, transistors etc. performing these

basic logic operations are called logic gates. AND and OR gates can each have two

or more number of binary inputs and one binary output. NOT gate which is often

also referred as inverting or complementing gate has only one input and one output.

Input to logic gates are always binary variables. Binary variable means it has only

two values high or low, on or off, 1 or 0. Thus each input or output can assume only

one of these values. In reality, usually one value of the variable is an upper level of

voltage the other value is a lower voltage.

By using logic gates can be construction digital systems. Logic Gates are electric

circuits, consisting of transistors, diodes, and resistors. Logic gates process input

signals and one or more logical manner. Depending on the input value (0 or 1), the

logic gate will either output a value of (1ON) or a value of (0OFF).

Some of the following terms represent logic 0 and 1, is shown in the table (2.2).

Table (2.2) Logic symbol

Logic 0 Logic 1

Off On

False True

No Yes

Low High

Open Switch Close Switch

Logic gates are the electronic circuits which perform the basic logic operations. They

are building blocks of majority of the digital systems.

Logic gates consists of seven different gates, there are identified by their function:

NOT, AND, NAND, OR, NOR, X-OR and X-NOR.

http://www.kpsec.freeuk.com/gates.htm#not#not
http://www.kpsec.freeuk.com/gates.htm#and#and
http://www.kpsec.freeuk.com/gates.htm#nand#nand
http://www.kpsec.freeuk.com/gates.htm#or#or
http://www.kpsec.freeuk.com/gates.htm#nor#nor
http://www.kpsec.freeuk.com/gates.htm#exor#exor
http://www.kpsec.freeuk.com/gates.htm#exnor#exnor

14

AND gate is like two or more series switches. All the switches have to be closed

(ON) in order to make the lamp (output) turn on. If all inputs are not ON, the output

is OFF.

Figure (2.1) Electric circuit representation AND gate

An OR gate is like two or more parallel switches. Only one switch needs to be closed

(ON) in order to make the lamp (output) turn ON.

Figure (2.2) Electric circuit representation OR gate

An NOT gate is like one switch and lamp in parallel. Switch needs to be closed (ON)

in order to make the (output) turn OFF, but switch is open (OFF) in order to make

the (output) turn ON.

S1

S1

S2

S2

Battery

Battery

Lamp

Lamp

15

Figure (2.3) Electric circuit representation NOT gate

2.1.2.1 AND gate

Figure (2.4) Block diagram representation AND gate

The AND Gate is an electronic circuit consists of two Inputs or more and one output,

gives a “1” of the output only if all its inputs are “1”. A dot (.) is used to show the

AND operation, If one input variable is X, the other input variable is Y, and the

output variable is F, then the Boolean expression is .

Table (2.3) Truth Table of 2 Input AND gate

2 Input AND gate

X Y

0 0 0

0 1 0

1 0 0

1 1 1

1= HIGH, 0=LOW

S

R (low) Battery Lamp

16

2.1.2.2 OR gate

Figure (2.5) Block diagram representation OR gate

The OR Gate is an electronic circuit consists of two Inputs or more and one output,

gives a “1” of the output if one or more inputs are “1”. A plus (+) is used to show

the OR operation, If one input variable is X, if the other input variable is Y, and if the

output variable is F, then the Boolean expression is .

Table (2.4) Truth Table of 2 Input OR gate

2 Input OR gate

X Y F=X+Y

0 0 0

0 1 1

1 0 1

1 1 1

1= HIGH, 0=LOW

2.1.2.3 NOT gate

The OR Gate is an electronic circuit consists of only one input and one output; the

property for this gate is reversed input value. It is also known as an inverter, if the

input variable is called A and the output variable is called ̅, then (̅), where ̅

is inverse A value, if (A=0 ̅=1 and A=1 ̅=0).

 (a) (b) (c)

Figure (2.6) Figure (a, b and c) block diagram representation NOT gate

17

The figure (2.6)-b and (2.6)-c show two ways that the NAND logic gate can be

configured to produce a NOT gate. Also can be done using NOR logic gates in the

same way.

 Table (2.5) Truth Table of NOT gate

Input Output

A A
0 1

1 0

1= HIGH, 0=LOW

2.1.2.4 NAND gate

Figure (2.7) Block diagram representation NAND gate

The NAND gate structure of AND and NOT gates, It's consists only two inputs and

one output, the outputs of all NAND gates are high if any of the inputs are low. The

symbol of NAND gate is the same symbol of AND gate with a small circle on the

output. The small circle represents inversion, The Boolean expression for the output

of a 2-input NAND gate is: ̅̅ ̅̅ ̅̅

.Table (2.6) Truth Table of NAND gate

2 Input NAND gate

X Y ̅̅ ̅̅ ̅̅

0 0 1

0 1 1

1 0 1

1 1 0

1= HIGH, 0=LOW

18

2.1.2.5 NOR gate

Figure (2.8) Block diagram representation NOR gate

The NOR gate structure of OR and NOT gates, It's consists only two inputs and one

output, the outputs of all NOR gates are low if any of the inputs are high. The symbol

of NOR gate is the same symbol of OR gate with a small circle on the output. The

small circle represents inversion, The Boolean expression for the output of a 2-input

NOR gate is: ̅̅ ̅̅ ̅̅ ̅̅

Table (2.7) Truth Table of NOR gate

2 Input NOR gate

X Y ̅̅ ̅̅ ̅̅ ̅̅

0 0 1

0 1 0

1 0 0

1 1 0

1= HIGH, 0=LOW

2.1.2.6 XOR gate

Figure (2.9) Block diagram representation XOR gate

The XOR (Exclusive-OR) gate structure of five gates (2-AND, 2-NOT and 1-OR)

gates, It's consists only two inputs and one output. It will give a "1" output if both

inputs are different value, but if the two inputs are same value the output give a "0".

19

An encircled plus sign () is used to show the XOR operation, The Boolean

expression for the output of XOR gate is .

Table (2.8) Truth Table of XOR gate

Exclusive XOR gate

X Y

0 0 0

0 1 1

1 0 1

1 1 0

1= HIGH, 0=LOW

2.1.2.7 XNOR gate

Figure (2.10) Block diagram representation XNOR gate

The XNOR gate circuit does the opposite to the XOR gate. It will give a "1" output if

both inputs are same value, but if the two inputs are different value the output give a

"0". The symbol is an XOR gate with a small circle on the output. The small circle

represents inversion, The Boolean expression for the output of XNOR gate is:

 ̅̅ ̅̅ ̅̅ ̅.

Table (2.9) Truth Table of XNOR gate

Exclusive XNOR gate

X Y

0 0 1

0 1 0

1 0 0

1 1 1

1= HIGH, 0=LOW

20

Table (2.10) Summary of Digital logic gates

No. Name Graphic symbol Algebraic function Truth table

1 AND

YXF

2 OR

YXF

3 Inverter

XF

4 NAND

YXF

5 NOR

YXF

6

Exclusive-

OR (X-OR)

YXF

YXYXF

7

Exclusive-

NOR (X-

NOR)
YXF

YXYXF

X Y F

0 0 0

1 0 0

0 1 0

1 1 1

X Y F

0 0 0

1 0 1

0 1 1

1 1 1

X F

0 1

1 0

X Y F

0 0 1

1 0 1

0 1 1

1 1 0

X Y F

0 0 1

1 0 0

0 1 0

1 1 0

X Y F

0 0 0

1 0 1

0 1 1

1 1 0

X Y F

0 0 1

1 0 0

0 1 0

1 1 1

21

2.1.3 Boolean Operators

Signs for basic operations of AND, OR and NOT are termed as Boolean operators.

These are (•), (+) and X where x is the binary variable and the bar above it is the

NOT operator also known as complement. Hence A (AND) B is normally written as

BA or also sometimes simply AB. In the latter case, the dot between A and B is

understood.

Since in normal mathematics the dot (•) stands for product, BA is also many times

termed as product form. In fact Y= A (AND) B comes out to be the same as Y = A

B in mathematics. But hear (A) and (B) are the binary numbers only.

Similarly A (OR) B is normally written as A + B. In normal mathematics + sign

stands for summation. Therefore this is the sum form of the variables A and B. But

Y=A (OR) B in Boolean form does not always give the same result as in normal

mathematics A plus B gives.

The third Boolean operation which is called the NOT operation or complement

operation and is given by AY , which is usually pronounced as A bar. That is, if

A=1, Y=0 and if A=0, Y=1

2.1.4 Boolean Algebra

The algebra which deals with binary variables and the logic operators AND (•), OR

(+) and NOT (X) is called Boolean algebra. Boolean algebra also follows the

commutative, associative and distributive laws of the common algebra.

22

Table (2.11) Logic Basic Rules and Boolean algebra laws

Type of laws No. Result

Basic Rules

1 A • 0 = 0

2 A • 1 = A

3 A • A = A

4 A • A = 0

5 A + 0 = A

6 A + 1 = 1

7 A + A = A

8 A + A = 1

9 AA

Commutative laws
10 A • B = B • A

11 A + B = B + A

Association laws
12 (A•B)•C=A•(B•C)=A•B•C

13 (A+B)+C=A+(B+C)=A+B+C

Distribution laws
14 A• (B+C)=(A•B)+(A•C)

15 A+(B•C)=(A+B) • (A+C)

Absorption laws
16 A• (A+B)=A

17 A+(A•B)=A

De Morgan’s laws
18 BABA

19 BABA

Above identities can be easily proved either by using basic rules and laws and other

identities or by taking the value of each variable once 0 and then 1. Every time it will

be found that left hand side of the equation is equal to right hand side.

23

2.2 Quantum Computation

Quantum computation and information are currently of crucial importance for

computer and physical sciences, mathematics and engineering. They will probably

lead to a new era of technological innovations in communication, computation and

cryptography. It is argued that quantum information and quantum bits will become

the forerunner of a 21
st
 century technological breakthrough as classic information

and bits were to the 20
th

 century. As quantum physics theory is basically stochastic,

randomness and uncertainty are deeply ingrained in quantum computation, quantum

simulation and quantum information [23, 41].

2.2.1 Background

Since time immemorial, man has constantly been looking for tools to assist them

with carrying out tasks which require calculations. Such as land computing, calculate

the stresses on the rails in the bridges, or to find the shortest route between two

places. It is structure that interlinks all these tasks:

Input Computation Output

The dynamical physical system can be perform the inevitably computation part of the

process, evolving in time [24].

The lack of a machine model is a theoretical obstacle ahead of quantum computing.

Must be developed describe and formalize the process for this new model and it must

be based on applied mathematics or physics in order to more accurately give insight

into the quantum computational process. The quantum computer can no longer be

24

thought of as a tape head and an endlessly long tape. In accordance with quantum

mechanics, we must look at the tape as a system described by the state function

that evolves by the passage of time to implement the calculation.

The classical computer systems perform computation by sending an electrical signal

through a circuit in conjunction with the signal timing. This signal dependent on

itself and it does not need interaction with any other signals to do its calculation.

It is through a gradual control of the memory evolution that a quantum computer

system performs its calculations. At the beginning must be prepared a quantum

computation in an initial state, which would correspond to input. This input is then

transitioned to other quantum states by one of a variety of methods. The transition of

input to a general quantum computation is now more than just the concatenation of

its bits, because each input bit can be entangled with its neighbor and each bit is in a

superposition of states.

It has been considered as essential to supply sufficient background on quantum

physics to clearly explain the substance that follows, “braket” is a notation in

quantum physics; it's used to describe a quantum state, this portion is used to indicate

inner product of two states “braket” ⟨ ⟩. The left side of notation ⟨ is described

the “bra”, while the right side of notation ⟩ is described “ket”. The part "ket" at the

notation is used to represent a quantum state, In the situation of quantum logic, there

are two distinct quantum states, “one” and “zero”. These are represented by

 ⟩ and ⟩. For the rest of this thesis, the quantum state ⟩ will be used to represent

which is a superposition of the two distinct quantum states [25].

 ⟩+ ⟩

In this case α and β represent the probability of each of the quantum states. Since the

Hilbert space is a vector space, a quantum state can also be expressed in vector

25

notation. For example, in the equation ⟩= ⟩+ ⟩, ⟩ could also be expressed

as the vector [

].

Due to the work of Dirac in quantum mechanics, the use of the “braket” notation

seems to be common.

For instance, consider the only single input, single output, classical logic gate and the

NOT gate. The NOT gate basically accepts a logic input and provides the negation of

this input as the output of the circuit. Alternatively, the gate interchanges the 0 and 1

states of classical bits. The best possible way to start with is to show how a quantum

NOT gate is constructed. Recall that quantum bits can represent the zero state (⟩),

the one state (⟩), or any superposition of states in between. These states can also be

expressed in vector notation. The following definitions describe how the zero and

one states are expressed in vector notation.

 ⟩ [

] ⟩ [

]

To implement a quantum NOT, a gate is required that will turn the probabilities of

each quantum state the other way round. As it is possible to represent quantum gates

as unitary matrices, the quantum NOT gate can be represented by the following

matrix:

[

]

So as to ensure the functional operation of this gate, the following example is given.

The quantum state ⟩+ ⟩written in vector notation is [

], to compute the output

of the quantum gate, a matrix-vector product is generated. For example if α=0 and

β=1, it can be seen that

26

[

] [

] [

]

Thus, the quantum NOT gate has finally been realized. It is similarly essential to note

that this quantum gate (side by side with all other quantum gates) is totally

reversible. Obviously, the original quantum vector would be the result if the output

of the former equation were to be replaced with the input [6, 8].

2.2.2 Properties of Quantum Computation

A computational equivalency exists between this model and a quantum computer.

The computation in both cases is regarded to be generated by the time evolution of a

computer memory from an initial to a final state. In a quantum computer, it is not the

state of the memory but the probability of measuring a state that is propagated in

time. However, this is only the elementary phase. The big difference between

classical computation and quantum computation is non-existence of the following

properties in classical computation.

 Superposition

 Entanglement

 Logical/physical reversibility

 Coherency

 Time independence

 Output interrogation

27

2.2.3 Quantum Bit

Qubit is the smallest unit of information in a quantum computer and the main part of

a quantum computer, whose states are manipulated by a series of quantum logic

gates. Unlike bits in classical systems, which are in one of two possible states labeled

1 and 0, a quantum bit exists in a superposition of these two states, settling on one or

the other only when a measurement of the state is made [26-27].

 Spin up Spin down

Figure (2.11) Spin Up and Spin down representation Quantum Bit

A qubit of data is represented by a single atom that is in one of two states denoted by

 ⟩ and ⟩.

The figure below performs the state of bit in classical computation, and state of qubit

in quantum computation.

28

 Figure (2.12) possible state of Classical Bit and Quantum Bit

2.2.4 Qubit States

The linear superposition of the basis states is the pure qubit state. According to this

meaning the linear combination of ⟩ and ⟩ can be represented by qubit:

 ⟩ ⟩ ⟩

Where and are probability amplitudes and can generally be both complex

numbers. When this qubit is measured in the standard basis, the probability of

outcome ⟩is and the probability of outcome ⟩is . Because the probabilities

equal to absolute squares of the amplitudes, where and contacted to each other

by the following equation:

Simply because this ensures you must measure either one state or the other [16, 28].

http://en.wikipedia.org/wiki/Probability_amplitude
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Complex_number

29

2.2.5 Bloch Sphere

By using Bloch sphere can be visualized a possible states for a single qubit (see

diagram). Represented on such a sphere, a classical bit could only be at the "North

Pole" or the "South Pole", in the locations where ⟩ and ⟩ are respective The rest

of the surface of the sphere is inaccessible to a classical bit, but a pure qubit state can

be represented by any point on the surface. For example the pure qubit state
 ⟩ ⟩

√

would lie on the equator of the sphere, on the positive y axis.

Figure (2.13) Bloch sphere representation of a qubit

The surface of the block sphere is consisting of a two-dimensional space, which

represents the state space of the pure qubit states. This state space owns two

local degrees of freedom. It is likely that at first look it appears that there must be

four degrees of freedom, as and are complex numbers with two degrees of

freedom for each. Nevertheless, one degree of freedom is taken away by the

constraint.

||
2
+ | |

2
=1

http://en.wikipedia.org/wiki/Bloch_sphere
http://en.wikipedia.org/wiki/State_space_(physics)
http://en.wikipedia.org/wiki/Degrees_of_freedom_(physics_and_chemistry)
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/File:Bloch_sphere.svg

30

2.2.6 Quantum Gates

In quantum computing and especially the quantum circuit model of quantum

computation, a quantum gate is essential and a basic quantum circuit operating on a

small number of qubits. By classical logic gates and conventional digital circuits,

they can build blocks of quantum circuits.

Many classical logic gates are Dissimilar, but quantum logic gates are reversible.

However, classical computing can be performed using only reversible gates. For

example, the reversible Toffoli gate can implement all Boolean functions. Showing

that quantum circuits are capable of implementing all operations performed by

classical circuits [29, 28].

Quantum logic gates are expressed in the form of unitary matrices. The most

common quantum gates operate on spaces of one or two qubits, just like the common

classical logic gates operate on one or two bits. Quantum gates can be described by

2×2 or 4×4 unitary matrices, like means of matrices.

Quantum gates represent by normally Matrices, a gate which acts on k qubits is

represented by a 2
k
 × 2

k
 unitary matrix. The number of qubits in the input and output

of the gate has to be equal. The action of the quantum gate is worked out by

multiplying the matrix representing the gate with the vector which represents the

quantum state [16, 30].

2.2.6.1 Hadamard gate

The Hadamard gate consists on a single qubit. The most important process of

Hadamard gate is convert state ⟩ to
 ⟩ ⟩

√
 and ⟩ to

 ⟩ ⟩

√
 . Hadamard gate

http://en.wikipedia.org/wiki/Unitary_matrix

31

represents a rotation of π about the x and z axes. The following matrix is the

representing a Hadamard gate.

√
[

]

Since the rows of the matrix are orthogonal, H is indeed a unitary matrix.

Figure (2.14) Circuit representation of Hadamard gate

2.2.6.2 Pauli-X gate

The Pauli-X gate consists on a single qubit. It is the quantum equivalent of a NOT

gate. It equates to a rotation of the Bloch Sphere around the x-axis by π radians. The

most important process of Pauli-X gate is convert state ⟩ to ⟩ and ⟩ to ⟩. The

following matrix is representing a Pauli-X gate.

 [

]

2.2.6.3 Pauli-Y gate

The Pauli-Y gate consists on a single qubit. It equates to a rotation around the Y-axis

of the Bloch Sphere by π radians. It is convert state ⟩ to ⟩ and ⟩ to - ⟩ . The

following matrix is representing a Pauli-Y gate.

 [

]

http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Bloch_Sphere
http://en.wikipedia.org/wiki/File:Hadamard_gate.svg

32

2.2.6.4 Pauli-Z gate

The Pauli-Z gate consists on a single qubit. It equates to a rotation around the Z-axis

of the Bloch Sphere by π radians. Thus, it is a special case of a phase shift gate with

θ=π. It leaves the basis state ⟩ unchanged and maps ⟩ to ⟩. The following

matrix is representing a Pauli-Y gate.

 [

]

2.2.6.5 Phase shift gates

This is a family of single-qubit gates that leave the basis state ⟩ unchanged and

map ⟩ to ⟩. The probability of measuring a ⟩ or ⟩ is unchanged after

applying this gate; however it modifies the phase of the quantum state. This is

equivalent to tracing a horizontal circle (a line of latitude) on the Bloch Sphere

by θ radians.

 [

]

Where θ is the phase shift, some common examples:

θ = π,

 and

2.2.6.6 Swap gate

The most important characteristics of this gate are the output value equal to the value

of mutual input. If the input value of first line equal to (A) and the input value of

second line equal to (B), then the output vale of first line equal to (B) and the output

value of second line equal to (A).

http://en.wikipedia.org/wiki/Quantum_gate#Phase_shift_gates

33

Figure (2.15) Circuit representation of SWAP gate

The swap gate swaps two qubits. It is represented by matrix bellow:

 [

]

The SWAP gate synthesis and combination in three Control Not gate (CNOT), the

following figure representation of SWAP gate:

Figure (2.16) A SWAP gate is three back to back CNOT gates with control and

target qubits alternating.

2.2.6.7 Controlled gates

The Controlled gate consists on a double qubits, where one or more qubits act as a

control for some operation. For example, the controlled NOT gate (or CNOT) acts on

2 qubits, and performs the NOT operation on the second qubit only when the first

qubit is ⟩, and otherwise leaves it unchanged.It is represented by the matrix:

 [

]

http://en.wikipedia.org/wiki/Controlled_NOT_gate
http://en.wikipedia.org/wiki/File:Swap_gate.svg

34

In this gate the value of input and output of the first line is equal, but value of output

in the second line is dependent on expression rule of X-OR gate.

If the input value of first line equal to (A) and the input value of second line equal to

(A), then the output vale of first line equal to (B) and the output value of second line

equal to (A B).

Figure (2.17) Circuit representation of controlled NOT gate

More generally if U is a gate that operates on single qubits with matrix representation

 [

], then the controlled-U gate is a gate that operates on two qubits in

such a way that the first qubit serves as a control. It maps the basis states as follows.

Figure (2.18) Circuit representation of controlled-U gate

http://en.wikipedia.org/wiki/File:Controlled_gate.svg

35

The matrix representing the controlled U is

When U is one of the Pauli matrices, , , or , the respective terms "controlled-

X", "controlled-Y", or "controlled-Z" are sometimes used.

2.2.6.8 Toffoli gate

The block diagram of Toffoli gate is consist of three lines, the first two lines its

Control line and the last line it’s a NOT gate, the following figure is representation

Toffoli gate.

Figure (2.19) Circuit representation of Toffoli gate

The Toffoli gate, also CCNOT gate, is a 3-bit gate, which is universal for classical

computation. The quantum Toffoli gate is the same gate, defined for 3 qubits, the

Toffoli gate swaps three qubits. It is represented by matrix bellow:

[

]

http://en.wikipedia.org/wiki/Pauli_matrices
http://en.wikipedia.org/wiki/Functional_completeness
http://en.wikipedia.org/wiki/File:Toffoli_gate.svg

36

 If the first two bits are in the state ⟩, it applies a Pauli-X on the third bit, else it

does nothing. It is an example of a controlled gate. Since it is the quantum analog of

a classical gate, it is completely specified by its truth table.

Table (2.12) Truth table of Toffoli gate

INPUT OUTPUT

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

It can be also described as the gate which maps ⟩ to ⟩.

2.2.6.9 Fredkin gate

The block diagram of Fredkin gate is consist of three lines, the first upper line its

Controlled line and the other lines it’s SWAP gate, the following figure is

representation Fredkin gate.

Figure (2.20) Circuit representation of Fredkin gate

The Fredkin gate (also CSWAP gate) is a 3-bit gate that performs a controlled swap,

it is represented by matrix bellow:

http://en.wikipedia.org/wiki/Quantum_gate#Controlled_gates
http://en.wikipedia.org/wiki/Quantum_gate#Swap_gate
http://en.wikipedia.org/wiki/File:Fredkin_gate.svg

37

[

]

It is universal for classical computation. It has the useful property that the numbers of

0s and 1s are conserved throughout, which in the billiard ball model means the same

number of balls are output as input. This matches agreeably to the conservation of

mass in physics, and helps to show that the model is not wasteful.

Table (2.13) Truth table of Fredkin gate

INPUT OUTPUT

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1

It can be also described as the gate which maps ⟩to ̅ ̅ ⟩.

2.2.7 Matrix Representations

The ability of quantum gates to be represented by a transformation matrix is a special

quality. A quantum gate that operates on n qubits can be represented by a

2
n
×2

n
unitary matrix. A cascade of gates forming a quantum logic circuit can also be

represented by a single matrix formed by the direct multiplication of the matrices

representing the individual gates [8, 31]. As an example, the matrix below shows the

http://en.wikipedia.org/wiki/Functional_completeness
http://en.wikipedia.org/wiki/Billiard-ball_computer
http://en.wikipedia.org/wiki/Conservation_of_mass
http://en.wikipedia.org/wiki/Conservation_of_mass

38

matrix representation of the 3-qubit in the figure (2.21). In this example, the qubits

labeled x0 and x2 are the control qubits, while the qubit marked x1 is the target. This

particular gate is denoted T(x2, x0;x1) because x2 represents the most important qubit

and x0 being the least important qubit. All gates mentioned in this thesis are denoted

in a similar fashion.

[

]

The representation of a quantum gate with a unitary matrix gives way to many

complex operations to be performed through linear algebraic methods. For instance,

by using matrix-vector multiplication, it is possible to produce the output vector from

aspecific input vector representing the quantum states of the qubits provided as

inputs to aquantum gate.

Figure (2.21) The quantum circuit representation of 3-qbit

39

2.2.8 Quantum Circuits

A combinational quantum-logic circuit consists of quantum gates, interconnected by

quantum wires which carry qubits. It is simply a circuit which is comprised of one or

more quantum gates. Multiple quantum gates may be cascaded together to form a

quantum circuit [8, 32]. As each quantum gate has similar number of inputs and

outputs, any cut through the circuit crosses the same number of wires. A quantum

circuit can be identified as representing the sequence of quantum-logic operations on

a quantum register.

The circuit needs to be read from left-to-right; however, the transformation may also

be read in the opposite direction because all quantum gates are reversible. Each line

in the circuit acts as a wires in the quantum circuit. This wire is not necessarily a

physical wire; it may correspond instead to the passage of time, or perhaps to a

physical particle such as a photon - a particle of light - moving from one location to

another through space. It is conventional to assume that the state input to the circuit

is a computational basis state, usually the state consisting of all ⟩s. This rule is

broken frequently in the literature on quantum computation and quantum

information, but it is considered polite to inform the reader when this is the case [8,

33].

Figure (2.22) the sample of quantum circuit

40

As an example, the circuit in Figure 2.22 is a simple quantum circuit. In this

particular circuit, the (q1, q2 and q3) three qubits input represents and (b1, b2 and b3)

the qubit output represents.

Individual quantum gates have the special property that they can be represented by a

single unitary matrix. Similarly, a quantum circuit can be represented by a single

unitary matrix. This property of quantum circuits is used extensively when designing

a quantum circuit simulator.

This example illustrates how a unitary matrix representing an entire quantum circuit

is built. The circuit shown in Figure 2.22 will be utilized for this example. The first

step in generating the representational matrix is to build the unitary matrix for each

individual gate. Since the rightmost Controlled-NOT gate involves two qubits, the

representational matrix will be of size 2
2
×2

2
, or 4×4. Since this example is

considering only the ⟩ and ⟩ states, the matrix can be thought of as a permutation

matrix. The matrix below is the representational matrix for this gate.

 [

]

However, this matrix cannot be used to build the matrix representing the entire

circuit. Since the entire circuit has four qubits, it is necessary to “extend” this matrix

to the size of 2
3
×2

3
. To perform the extension, the Kronecker operation is used. The

Kronecker operation is defined in [8] as the following:

 [

]

41

In order to properly extend the matrix, a Kronecker operation is performed on the

representational matrix with an identity matrix. If the unused qubit lies above the

target qubit, the identity matrix is placed on the right side of the representational

matrix; otherwise it is place on the left. For example, to extend the matrix mentioned

before, a Kronecker operation is performed on the left and right sides of the

representational matrix.

 ;

√
[

] [

] [

]

√

[

]

This process can be continued until all four gates have individual representational

matrices; the matrices for the gates in the circuit in Figure (2.22) can be seen below.

[

]

42

[

]

Finally, in order to generate the representational matrix for the entire circuit, the

matrices are multiplied together to obtain the following product using traditional

matrix multiplication.

 ;

√

[

]

This matrix is the representational matrix for the entire quantum circuit. This same

procedure can be used to build the representational matrices for any quantum circuit.

43

Chapter 3

CLASSICAL AND QUANTUM FULL ADDER CIRCUIT

3.1 Background

Quantum computation based on principles of quantum mechanics. In quantum

mechanics a quantum state (or qubit) can be typically obtained from the state of a

two-level quantum system. As an example ground state and excited state of an atom

or the vertical and horizontal polarizations of a single photon are represented as

qubits. The qubits are denoted by using Dirac notation such as one of these states as

and the other as

According to the theory of quantum mechanics the states can be written as linear

combinations of these pure states, also called superposition, is the most significant

property that leads to speed up of a quantum computation. In other words, the state of

a qubit can be written as = |0+ |1where and are complex numbers and

 2
 + 2

 =1. This implies that by performing a single operation on the state , two

qubits can be effected at the same time. Similarly a two qubit system can perform

operation on four qubit, three qubit systems can perform operation on eight qubits

and n qubit system can perform the operation on 2
n
 qubits. This is known as quantum

parallelism and by a correct algorithm one can use this property to increase speed of

the quantum computer exponentially when compared to a classical computer.

Now, we will briefly discuss various quantum gates with different functionalities and

useful to construct a quantum circuit.

44

These are, identity I, NOT, CNOT, C
2
NOT and SWAP gates. Icons of the gates are

given in the figure 3.1. In the figure, the symbols , and | are used for control,

target and contact qubits respectively. Let us summarize action of each gate:

identity gate (I) with matrix MI no action on the qubits. Its icon is a horizontal wire.

NOT gate inverts the working qubit and its action is given by the matrix MNOT.

CNOT gate, which act on a qubit as follows: if the control qubit is |1, then the

target qubit is inverted. Otherwise it remains unchanged. It is action on qubits can be

obtained by using the matrix MCNOT.

 SWAP gate exchanges the values of input qubits.

 C
2
NOT gate is controlled-CNOT gate, also known as Toffoli gate. Its action can

be described as follows: if both control qubits are |1, the target is inverted; otherwise

it is remains the same [4].

Figure (3.1) Basic quantum gates

45

We also mention here quantum gates are represented by unitary matrices and the

circuits are also represented by unitary matrices. Such circuits are called unitary

stabilizer circuits [6]. For example, in figure 3.2, NOT gate combined with identity

gate. Matrix representation of combined gates can be obtained by direct product of

MI and MNOT.

Figure (3.2) A compound gate constructed from an identity and a NOT gate.

Figure (3.3) Cascading quantum gates to construct a quantum circuit and its QMatrix

46

3.2 Classical Addition

A binary Adder-Subtractor is a combinational circuit that performs the arithmetic

operations of addition and subtraction with binary numbers. We will develop this

circuit by means of a hierarchical design. The half adder design is carried out first

from which we develop the full adder. Connecting n full adders in cascade produces

a binary adder for two n-bit numbers. The subtraction circuit is included by

providing a 2’s complement circuit [44].

The most basic arithmetic operation is the addition of two binary digits. This simple

addition consists of four possible elementary operations: 0+0=0, 0+1=1, 1+0=1, and

1+1=10. The first three operations produce a sum of one digit, but when both augend

and addend bits are equal to 1. The binary sum consists of two digits. The higher

significant bit of this result is called a carry. When the augend and addend numbers

contain more significant digits, the carry obtained from the addition of two bits is

added to the next higher order pair of significant bits. A combinational circuit that

performs the addition of two bits is called a half adder. Other act that performs the

addition of three bits (two significant bits and a previous carry) is a full adder. The

names of the circuits stem from the fact that two half adders can be employed to

implement a full adder.

3.2.1 The Half-Adder

The half-adder (HA) accepts two binary digits on its inputs and produces two binary

digits on its outputs, a sum bit and a carry bit. A half-adder is represented by the

logic symbol in Figure (3.4.b).

47

From the operation of the half-adder as stated in Table 1, expressions can be derived

for the sum and the output carry as functions of the inputs. Notice that the output

carry (Cout) is a 1 only when both A and B are 1s; therefore, Cout can be expressed

as the AND of the input variables.

Cout = AB ------- (1)

Now observe that the sum output (∑) is a 1 only if the input variables, A and B, are

not equal. The sum can therefore be expressed as the exclusive-OR of the input

variables.

 BA ------- (2)

From Equations (1) and (2), the logic implementation required for the half-adder

function can be developed. The output carry is produced with an AND gate with A

and B on the inputs, and the sum output is generated with an Exclusive-OR gate, as

shown in Figure (3.4.b). Remember that the Exclusive-OR is implemented with

AND gates, an OR sate, and inverters.

Table (3.1) Half adder truth table

INPUT OUTPUT

A B ∑ Co

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Binary digits to

be added

Sum
Carry

out

XOR AND

48

Figure (3.4) Half adder: (a) Block diagram

 (b) Logic diagram

3.2.2 The Full-Adder

A classical full adder (FA) operates with an input of two addend bits, “A” and “B”,

and a carry bit, “Cin”. (See Figure 3.5) In figure 4, S and Cout are the output sum and

the carry-over, respectively. The sum, S, can be easily expressed as

(where is an addition modulo 2). One can easily obtain an expression for

 [34-35].

Table (3.2) Full-Adder truth table

INPUT OUTPUT

A B Cin ∑ Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Carry + A + B Sum
Carry

out

Half

adder

A

B

∑ (sum)

Co (Carry out)

(a)

A

B
∑ (sum)

Co (Carry out)

(b)

49

A binary adder is a digital circuit that produces the arithmetic sum of two binary

numbers. It can be constructed with full adders connected in cascade, in order to

construct a full adder circuit for the numbers more than 1 binary digit we connect

classical full adder circuit in cascade as in the figure 3.6. The interconnection of four

full-adder (FA) circuits to provide a four-bit binary ripple carry adder.

Figure (3.5) Classical full-adder circuit

The augend bits of A and the addend bits of B are designated by subscript numbers

from right to left , with subscript 0 denoting the least significant bit. The carries are

connected in a chain through the full adders. The input carry to the adder is Co. and it

ripples through the full adders to the output carry C4. The S outputs generate the

required sum bits. An n-bit adder requires n full adders, with each output carry

connected to the input carry of the next higher order full adder.

To demonstrate with a specific example, consider the two binary numbers A = 1011

and B = 0011. Their sum S = 1110 is formed with the four-bit adder as follows:

BA

inCBA)(

inCBA)(

BA

inout CBAABC)(

A

B

inC

50

Subscript i: 3 2 1 0

Input carry 0 1 1 0 Ci

Augend 1 0 1 1 Ai

Addend 0 0 1 1 Bi

Sum 1 1 1 0 Si

Output carry 0 0 1 1 Ci+1

The bits are added with full adders, starting from the least significant position

(subscript 0), to form the sum bit and carry bit. The input carry Co in the least

significant position must be 0. The value of Ci+1 in a given significant position is the

output carry of the full adder. This value is transferred into the input carry of the full

adder that adds the bits one higher significant position to the left. The sum bits are

thus generated starting from the rightmost position and are available as soon as the

corresponding previous carry bit is generated. All the carries must be generated for

the correct sum bits to appear at the outputs.

Figure (3.6) Parallel 4-bit binary Adder

The four-bit adder is a typical example of a standard component [19]. The circuit in

the figure (3.6) performs calculation of two binary numbers of digits and

 Initial carry

51

3.3 Quantum Addition

Obviously, we can’t directly implement carry-save adders with quantum gates, since

the classical version of this element is clearly not unitary. It doesn’t have as many

outputs as inputs, so it can’t be reversible. It’s easy to see that even adding a third

output isn’t enough to make the full adder reversible. The truth table for the classical

full adder (see above) has 3 inputs which map to a sum and carry of 1 and 0

respectively, and 3 inputs which map to a sum and carry of 0 and 1 respectively.

Adding one bit obviously can’t distinguish among 3 values. So we have to add two

outputs, making the quantum equivalent of the classical full adder a 4-input, 4-output

device [36, 42].

Binary adders are a key element in any arithmetic logic unit. It is therefore important

to have test reversible binary adder. This section shows a complete set of reversible

adders for 1-bit and n-bit binary numbers constructed from n-bit CNOT gates.

The following terminology is used in this paper where number denotes either a

binary number. A full-adder is a logic circuit that takes as input two numbers A and

B and a carry Cin and produces as output their sum S and a carry-out Cout. An adder

that takes only A and B as input is called half-adder.

A 1-bit half-adder takes two binary digits (A, B) as input and is described by the

logic equations

Sum=A B

Cout=AB

Therefore we can construct a reversible half-adder (Figure 3.7) by using two

reversible gates. This gate combination corresponds to a Peres gate.

52

Figure (3.7) Reversible 1-bit half-adder

A 1-bit full-adder takes two binary digits (A, B) and a carry-in (Cin) as input is

described by equations:

Sum=A B Cin

Cout=AB (A B)Cin

A reversible full-adder (Fig. 3.8) can be constructed from four gates (two Toffoli

gates and two Feynman gates) and has two garbage bits. The gate combination can

be replaced by two Peres as indicated in the figure (the input line of the second Peres

gate are permuted to avoid a cross-over of lines). Between the first use of Cin and Cout

is only one Toffoli gate. This property can be used to construct a fast n-bit adder by

immediately propagating the carry-out [36-37].

Figure (3.8) Reversible 1-qubit full-adder

53

Appropriate combinations of the 1-bit half and full-adder, provides a reversible n-bit

half and full-adders.

Figure (3.9) Reversible n-qubit full adder

54

Table (3.3) Input combinations that produce the same output combinations in full

adder circuit (shown shaded).
Input Output

A B Cin C1 S Cout G1 G2

0 0 1 0 1 0 0 0

0 1 0 0 1 0 0 1

1 0 0 0 1 0 1 0

We have shown that a reversible full adder circuit can be constructed by using

CNOT and Controlled CNOT gates represented by a unitary matrix.

55

Chapter 4

SIMULATION OF 4-QUBITS FULL ADDER CIRCUIT BY

MATHEMATICA

In fact, possible to use many different ways or different programs to simulation

quantum computation, such (C/C
++

, CaML, Java, MATLAB/Octave, Maple,

Mathcad, Maxima and Mathematica..... etc.), we choose the Mathematica because it

is easiest and quickest way to simulate this thesis [47].

A Mathematica for Dirac Notation, Non-commutative Algebra of Operators and

commutations, Quantum Computing and Plotting of Quantum Circuits [41].

Without the ability to simulate quantum circuits, the states of qubits in quantum

circuits would have to be determined by hand or through a physical quantum circuit.

In order to fully utilize all that quantum circuits have to offer, it is necessary to

design a circuit simulator that is both efficient and accurate [8].

4.1 Installation Program on Micro-Soft Windows:

After installation Mathematica program in [40], Files must be located in the proper

file location in order to be able to load the Quantum packages with the Needs

command and to have the documentation in Mathematica's Documentation Center.

All the files will be located inside the directory specified by the value of

Mathematica's variable $UserBaseDirectory. In the computer were this document

was generated, this is the value of $UserBaseDirectory (when you write

$UserBaseDirectory and press the at the same time the keys {SHIFT – ENTER} in

http://homepage.cem.itesm.mx/lgomez/quantum/

56

your Mathematica, you will get the $UserBaseDirectory in your computer, which

will be different from the one shown in this example):

Like the figure (4.1) you can see the Windows Explorer opened in the

$UserBaseDirectory of my computer. Remember that in your computer it will be a

different location, the one that you obtain when you evaluate $UserBaseDirectory in

your Mathematica. Important: In order to be able to see some of the folders, you

might have to select "Tools", "Folder Options", "View", "Show Hidden Files and

Folders"

Figure (4.1) First step shown Installation Mathematica Add-On Program

Inside your $UserBaseDirectory there must be an Applications directory, and inside

the Applications directory you must unzip the file Quantum.zip, so that a Quantum

directory is created. Once the unzip procedure is finished, inside the Quantum

directory there must be the files Computing.m and Notation.m, which contain the

57

programs of this Add-On, the file PacletInfo.m, which is necessary to incorporate

documentation in Mathematica's help system, and the directories (folders)

Documentation and FrontEnd. You can see the Quantum directory in your computer

like the figure (4.2):

Figure (4.2) Final step shown Installation Mathematica Add-On Program

After having all the files in the proper directories you must quit and restart

Mathematica. If the directory (folder) structure is the correct one, then you will

obtain the "welcome" message after writing Needs ["Quantum`Notation`"] and

pressing at the same time the keys {SHIFT – ENTER} to evaluate (the welcome

message only appears the first time you execute Needs ["Quantum`Notation`"] in a

fresh Mathematica session).

58

4.2 Mathematica add-on Program

 This is a Mathematica add-on; this program is used to design and draw all

different Quantum circuits and test their results operation. So this program is used for

two purposes:

1. To draw the detailed circuit of the design

2. To test the design and make sure that the circuit working properly

The main page of the program looks like figure (4.3).

Figure (4.3) the main page of Mathematica add-on program

In [40] explain all parts of program, how to use and details explanation program.

59

4.3 Quantum Circuit Simulator and result

Our task is now to simulate four bit quantum full adder circuit my Mathematica. A

Mathematica Add-On package is presented for Dirac Notation, Noncommutative

Algebra of Operators and Commutators, Quantum Computing and Plotting of

Quantum Circuits [40]. In this paper we have simulated full adder circuit using the

Mathematica Add-On package.

In order to fully utilize all that quantum circuits have to offer, it is necessary to

design a circuit simulator that is both efficient and accurate [15]. We begin to design

a half adder circuit.

4.3.1 Simulation Half-Adder

It is easy to use the program to construct a unitary circuit. Figure of the quantum

circuit can be drawn by using the command QuantumPlot[]. Operation of the circuit

on the qubits can be tabulated by using the command QuantumTableForm[].

60

Figure (4.4) Simulation Quantum Half-Adder with result by Mathematica

The half adder circuit and its operation are illustrated in figure (4.4). In the figure,

lines 1, 2 and 3 represents input and output of the circuit. Synthesis of input-output

relation of the circuit is summarized in table (4.1).

Table (4.1) Synthesis of input and output Quantum Half-Adder

Input Output

Line 1 = First Input bit (A) Line 1 = Garbage

Line 2 = Second Input bit (B) Line 2 = Sum

Line 3 = 0 Line 3 = Cout

61

4.3.2 Simulation Full-Adder

Similar to the design of half-adder circuit we can construct a full adder circuit. In the

circuits input qubits are applied to lines 1 and 2. Input of the line 3 is always 0 and

carry input is applied to line 4. Sum of the numbers are appears on output part of line

4 and carry appears on output line 3. Input and output relations are given in the table

(4.2).

 Figure (4.5) Simulation Quantum Full-adder with result by Mathematica

In order to evaluate action of the circuit on a given input state one can use the

command QuantumEvaluate[]. Action of the full adder circuit on various states

(qubits) is given in figure (4.5)

62

Table (4.2) Synthesis of input and output Quantum Full-Adder

Input Output

Line 1 = First Input bit (A) Line 1 = Garbage

Line 2 = Second Input bit (B) Line 2 = Garbage

Line 3 = 0 Line 3 = Cout

Line 4 = Cin Line 4 = Sum

Example 1:

 If addition two binary bit, Consider (A=1, B=1 and Cin=0) in quantum full-adder by

using Mathematica Add-on.

1. Manually Solution:

 1 A

 1 B

+ 0 Cin

 1 0
 Cout Sum

2. Programing Solution:

The following Mathematica line illustrates summation of qubits (1) and (1) with (0)

carry input. The sum is obtained by measuring the output 4 and carry can be

determined by measuring output 3.

63

Table (4.3) Input and Output result for example 1

Input Result Output Line

Line 1 = 1 1 garbage

Line 2 = 1 0 garbage

Line 3 = 0 1 Cout

Line 4 = 0 0 Sum

4.3.3 Simulation 4-Qubit Full Adder

Using the full adder circuit we can design 4 qubit quantum full adder circuits by

writing the following code in Mathematica Add-On program.

The following code is writing to simulation of 4-qbit Adder plot the same figure (4.6)

in mathematica Add-On program.

64

Figure (4.6) Simulation 4-qbit Adder by Mathematica

Output of the Mathematica code represented by figure of the quantum full adder

circuit and it is given in figure 11. Actions of the circuit on input qubits are

summarized in table (4.4).

65

Table (4.4) Synthesis of input and output 4-qbit Adder

Input Output

Line 1 = First bit Input (A0) Line 1 = Garbage

Line 2 = Second bit Input (B0) Line 2 = Garbage

Line 3 = 0 Line 3 = Cout

Line 4 = Cin Line 4 = Sum0

Line 5 = First bit Input (A1) Line 5 = Garbage

Line 6 = Second bit Input (B1) Line 6 = Garbage

Line 7 = 0+Cout(Output line 3) Line 7 = Cout

Line 8 = Cin Line 8 = Sum1

Line 9 = First bit Input (A2) Line 9 = Garbage

Line 10 = Second bit Input (B2) Line 10 = Garbage

Line 11 = 0+Cout(Output line 7) Line 11 = Cout

Line 12 = Cin Line 12 = Sum2

Line 13 = First bit Input (A3) Line 13 = Garbage

Line 14 = Second bit Input (B3) Line 14 = Garbage

Line 15= 0+Cout(Output line 11) Line 15 = Cout

Line 16 = Cin Line 16 = Sum3

66

Example 2:

If (1
st
 No. = 1101) and (2

nd
 No. = 0110),

find (1
st
 +2

nd
 =?).

1. Manual Solution:

1
st
 No. = 1101 A0 = 1, A1 = 1, A2 = 0 and A3 = 1

2
nd

 No. = 0110 B0 = 0, B1 = 1, B2 = 1 and B3 = 0

 3 2 1 0

 1 1 0 1 A

+ 0 1 1 0 B

1 0 0 1 1 Result

Cout S3 S2 S1 S0

2. Programing Solution:

The following Mathematica line illustrates summation take value of qubits. Then

obtain Output result.

67

Table (4.5) Input and Output result for example 2

Input Output Result Output

Line 1 = First bit Input (A0) 1 Line 1 = Garbage

Line 2 = Second bit Input (B0) 1 Line 2 = Garbage

Line 3 = 0 0 Line 3 = Cout

Line 4 = Cin 1 Line 4 = Sum0

Line 5 = First bit Input (A1) 0 Line 5 = Garbage

Line 6 = Second bit Input (B1) 1 Line 6 = Garbage

Line 7 = 0+Cout(Output line 3) 0 Line 7 = Cout

Line 8 = Cin 1 Line 8 = Sum1

Line 9 = First bit Input (A2) 1 Line 9 = Garbage

Line 10 = Second bit Input (B2) 0 Line 10 = Garbage

Line 11 = 0+Cout(Output line 7) 1 Line 11 = Cout

Line 12 = Cin 0 Line 12 = Sum2

Line 13 = First bit Input (A3) 1 Line 13 = Garbage

Line 14 = Second bit Input (B3) 1 Line 14 = Garbage

Line 15= 0+Cout(Output line 11) 1 Line 15 = Cout

Line 16 = Cin 0 Line 16 = Sum3

68

Example 3:

If (1
st
 No. = 1011) and (2

nd
 No. = 1110),

find (1
st
 +2

nd
 =?).

1. Manually Solution:

1
st
 No. = 1011 A0 = 1, A1 = 1, A2 = 0 and A3 = 1

2
nd

 No. = 1110 B0 = 0, B1 = 1, B2 = 1 and B3 = 1

 3 2 1 0

 1 0 1 1 A

+ 1 1 1 0 B

1 1 0 0 1 Result

Cout S3 S2 S1 S0

2. Programing Solution:

The following Mathematica line illustrates summation take value of qubits. Then

obtain Output result.

69

Table (4.6) Input and Output result for example 3

Input Output Result Output

Line 1 = First bit Input (A0) 1 Line 1 = Garbage

Line 2 = Second bit Input (B0) 1 Line 2 = Garbage

Line 3 = 0 0 Line 3 = Cout

Line 4 = Cin 1 Line 4 = Sum0

Line 5 = First bit Input (A1) 1 Line 5 = Garbage

Line 6 = Second bit Input (B1) 0 Line 6 = Garbage

Line 7 = 0+Cout(Output line 3) 1 Line 7 = Cout

Line 8 = Cin 0 Line 8 = Sum1

Line 9 = First bit Input (A2) 0 Line 9 = Garbage

Line 10 = Second bit Input (B2) 1 Line 10 = Garbage

Line 11 = 0+Cout(Output line 7) 1 Line 11 = Cout

Line 12 = Cin 0 Line 12 = Sum2

Line 13 = First bit Input (A3) 1 Line 13 = Garbage

Line 14 = Second bit Input (B3) 0 Line 14 = Garbage

Line 15= 0+Cout(Output line 11) 1 Line 15 = Cout

Line 16 = Cin 1 Line 16 = Sum3

70

Chapter 5

CONCLUSION

The most important results and achievements of this study are:

 Attentively studying Classical Computation, especially Number Systems and Digital

System for obtaining Half-Adder and Full-Adder. Through Half-Adder and Full-

Adder, 4-bit Parallel Adder is achieved and developed into n-bit Parallel Adder and a

variety of other circuits in different areas.

 Studying the new science of Quantum Computation and all its main components.

Familiarizing with all the Qubit cases, all the properties of Quantum Gates,

particularly the input and output of each one of them, which help with the designing

of many other different quantum circuits.

 Obtaining the output of each quantum circuit through familiarization with the input

and output of quantum gates.

 Designing Quantum Half-Adder and Quantum Full-Adder and achieving the output

of all the cases.

 Designing 4-qubit adder quantum circuit and providing many cases from the input

cases and obtaining the output of the cases.

 Formulating all the above-mentioned processes in Quantum Computation by using

Mathematic program, particularly in the area of Drawing Circuit and achieving

remarkable results.

71

 All these will result in the development of Quantum Computation science and

combining it with Mathematica program. Using this program for all the Algorithms

of this science which have thus far been discovered.

Additionally, The Mathematica add-on presented in this paper utilizes an irreducible

form of output decomposition of a general controlled quantum gate with addition

conditionals and is highly efficient in simulating complex quantum circuit. Another

important application in which large and complex circuit need to be efficiently

simulated is in the area of quantum error correction. This demonstrates a part of a

general framework for simulation of quantum computers on classical computers.

72

REFERENCES

[1] Mades, J. E. (1999). Quantum Computers and their impact on DoD in the 21
st

century, Master thesis, Naval Postgraduate School, Monterey- California.

[2] Bellac, M. L. (2006). A Short Introduction to Quantum Information and

Quantum Computation (English, Cambridge University Press.

[3] Khan, M. (2008). A recursive method for synthesizing quantum/reversible

quaternary parallel adder/subtractor with look-ahead carry, Journal of Systems

Architecture, 54 , 1113–1121.

[4] Grover, L. K. (1996). A Fast Quantum Mechanical Algorithm for Database

Search, Proc. 28th Annual ACM Symposium on the Theory of Computing,

USA, PA, 212-219.

[5] Shor, P. W. (1996). Polynomial Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer, Proc. of the 35th Annual

Symposium on Foundations of Computer Science (IEEE), Santa Fe, NM, 124-

134.

[6] Saeedi, M., Zamani, M., Sedighi, M. (2007). Algebraic Characterization of

CNOT-Based Quantum Circuits with its Applications on Logic Synthesis,

Proc. 10th IEEE Euromicro Conf. on Digital System Design Architectures,

Washington DC, USA, 339-346.

[7] Maity, S., Pal, A., Roy, T., Mandal, S., Chakrabarti, A. (2010). Design of an

Efficient Quantum Circuit Simulator, Proc. 10th IEEE International

http://www.sciencedirect.com/science/journal/13837621
http://www.sciencedirect.com/science/journal/13837621
http://www.sciencedirect.com/science/journal/13837621/54/12

73

Symposium on Electronic System Design, Washington DC, USA, 50-55.

[8] D. Goodman, A Quantum Circuit Simulator Based on Decision Diagrams,

Master thesis, Southern Methodist University, USA, 2007.

[9] Draper, T.G. (2000). Addition on a Quantum Computer, arXiv:quant-

ph/0008033v1.

[10] Miquel, C., Paz, J., Perazzo, R. (1996). Factoring in a dissipative quantum

computer, American Physical Society Journals, 54, 2605–2613.

[11] Mohammadi, M., Eshghi, M., Haghparast, M., Bahrololoom, A. (2008).

Design and Optimization of Reversible BCD Adder/Subtractor Circuit for

Quantum and Nanotechnology Based Systems, World Applied Sciences

Journa, 14, 787-792.

[12] Berman, G., P., Doolen, G., D., Lopez, G., V., Tsifrinovich, V., I. (2001). A

Quantum Full Adder for a Scalable Nuclear Spin Quantum Computer,

arXiv:quant-ph/0105133v1.

[13] Mathematica program Installation. Available at:

http://www.wolfram.com. Accessed 14.05.2012

[14] Julia-Daz, B., Burdis, J., Tabakin, F. (2006). Qdensity-A Mathematica

Quantum Computer Simulation, Computer Physics Communications, 174,

914–934.

[15] Nyman, P. (2008). Representation of Quantum Algorithms with Symbolic

Language and Simulation on Classical Computer, Master Thesis, Vaxjo

University, Sweden.

[16] Quantum computer. Available at:

 http://en.wikipedia.org/wiki/Quantum_computer. Accessed 25.08.2012.

[17] Morris, M. M. (2002) Digital Design. 3
rd

 Edition. USA: Prentice Hall.

http://publish.aps.org/
http://www.sciencedirect.com/science/journal/00104655
http://en.wikipedia.org/wiki/Quantum_computer

74

[18] Ali, S. N. (2003). Digital Electronics: Circuits, Systems and ICs. 3
rd

 Edition.

New Delhi: Galgotia Publication Pvt. Ltd.

[19] Thomas, L. F. (2006). Digital Fundamentals. 9
th

 Edition. USA: Prentice Hall.

[20] Anil, K. M. (2007). Digital Electronics

(Principles, Devices and Applications). England : John Wiley & Sons Ltd.

[21] Thomas, C. B. (2003). Digital Computer fundamentals. 5
th

 Edition. New

York: McGraw-Hill Book Co.

[22] Robert, KD. (2005). Digital Design with CPLD Application and VHDL. 2
nd

Edition. New York: Thomson Delmar Learning.

[23] Wang, Y. (2012). Quantum Computation and Quantum Information, IMS

Journal of Statistical Science, 27, 373-394.

[24] Aharonov, D. (1998). Quantum Computation, arXiv:quant-ph/9812037v1.

[25] Islam, S., Islam, R. (2005). Minimization of Reversible Adder Circuits, Asian

Journal of Information Technology, 4, 1146-1151.

[26] Loke, T., Wang, J. (2011). An Efficient Quantum Circuit Analyser on Qubit

and Qudits, Computer Physics Communications, 182, 2285–2294.

[27] Quantum Bit, Available at: http://www.thefreedictionary.com/quantum+bit.

Accessed 05.08.2012.

[28] Maslov, D., Dueck, G., Miller, D., Negrevergne, C. (2008). Quantum Circuit

Simplification and Level Compaction, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 27, 436-444.

[29] Muthukrishnan, A. (1999). Classical and Quantum Logic Gates, Seminar,

Rochester Center for Quantum Information (RCQI).

[30] Kak, S. (2006). Information Complexity of Quantum Gates, International

Journal of Theoretical Physics, 45, 933-941.

http://arxiv.org/abs/quant-ph/9812037v1
http://scialert.net/asci/author.php?author=Saiful%20Islam&last=
http://scialert.net/asci/author.php?author=Saiful%20Islam&last=
http://www.sciencedirect.com/science/article/pii/S0010465511002104
http://www.sciencedirect.com/science/article/pii/S0010465511002104
http://www.sciencedirect.com/science/journal/00104655
http://www.thefreedictionary.com/quantum+bit

75

[31] D. Goodman, M.A. Thornton, D.Y. Feinstein, and D.M. Miller, Quantum

Logic Circuit Simulation Based on the QMDD Data Structure, Proc. of the

Workshop on Applications of the Reed Muller Expansion in Circuit Design

and Representations and Methodology of Future Computing Technology,16,

99-105.

[32] Shende, V., Bullock, S., Markov, L. (2006). Synthesis of Quantum-Logic

Circuits, IEEE Trans. on Computer-Aided Design, 25, 1000 – 1010.

[34] Ronald, J., Tocci, N., Greg, M. (2007). Digital Systems: Principles and

Applications. 10
th

 Edition. USA: Prentice Hall.

[35] John, H. The Electronics Club/Logic Gates. Available at:

www.kpsec.freeuk.com . Accessed 24.07.2012.

[36] Gossett, P. (1998). Quantum Carry-Save Arithmetic, arXiv:quant-

ph/9808061v2.

[37] Kirkedal, M., Gluck, R. (2008). Optimized reversible binary-coded decimal

adders, Journal of Systems Architecture, 54, 697–706.

[38] Islam, S., Rahman, M., Begum, Z., Hafiz, M. (2010). Realization of a Novel

Fault Tolerant Reversible Full Adder Circuit in Nanotechnology, The

International Arab Journal of Information Technology, 7, 317-323.

[39] Fahdil, M., Al-Azawi, A., Said, S. (2010). Operations Algorithms on

Quantum Computer. International Journal of Computer Science and Network

Security (IJCSNS), 10, 85-95.

[40] Quantum computation –Mathematica Add-on. Available at:

http://homepage.cem.itesm.mx/lgomez/quantum/. 20.08.2012.

[41] Michael, A. N., Chuang, I. L. (2000). Quantum Computation and Quantum

Information, Cambridge, UK: Cambridge University.

http://www.kpsec.freeuk.com/
http://arxiv.org/abs/quant-ph/9808061v2
http://arxiv.org/abs/quant-ph/9808061v2
http://www.sciencedirect.com/science/journal/13837621
http://homepage.cem.itesm.mx/lgomez/quantum/

76

[42] Murali, K. V., Sinha, M. N., Mahesh, T. S., Levitt, M. H., Ramanathan, K.V.,

Kumar, K. A. (2002). Quantum-information processing by nuclear magnetic

resonance: Experimental implementation of half-adder and subtractor

operations using an oriented spin-7/2 system, American Physical Society

(APS), 66, 1050-2947.

[43] Haghparast, M., Navi, K. (2008). A Novel Fault Tolerant Reversible Gate for

Nanotechnology Based Systems, American Journal of Applied Sciences, 5,

519-523.

[44] Peter, J. (2008). Digital Design (Verilog): An Embedded Systems Approach

Using Verilog. Burling MA 01803, USA: Denise E. M. Penrose.

[45] Basic Gates and Functions. Available at:

 http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html. Accessed

02.08.2012.

[46] Quantum computation –Mathematica Add-on. Available at:

 http://www.quantiki.org/wiki/List_of_QC_simulators. Accessed 15.07.2012.

http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html
http://www.quantiki.org/wiki/List_of_QC_simulators

