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ABSTRACT 
 

SIMULATION OF QUANTUM COMPUTERS ON CLASSICAL 

COMPUTERS BY USING MATHEMATICA 
 

ABDULLAH, Shakhawan 

M.Sc. in Physic Engineering 

Supervisor: Prof. Dr. Ramazan KOÇ 

October 2012 

76 pages 

 

 

The main objective of this study is simulation of some quantum algorithms on a 

classical computer using the Mathematica program. Classical computation has been 

thoroughly discussed at the beginning to important for achieving a significant part of 

our work. 

The crucial part of this study is basic principles of quantum computation, particularly 

qubit statistics, quantum algorithms, quantum gates and quantum circuits are 

discussed in details. Moreover, much light has been shed on CNOT Gate, since it 

constitutes the core of this work. By using CNOT Gate quantum half-adder circuit 

and quantum full-adder Circuit, are constructed and they are both a factor for 

arriving at n-qubit adder quantum circuit. In this thesis as a special case, addition of 

4-qubit number on a Mathematica is simulated. 

One more section of this study is the use of Mathematica program for designing and 

obtaining the results of Quantum Circuits, particularly 4-qubit adder. Therefore, 

many calculating operations have been conducted for this circuit by using this 

program.  Finally, it is logical to argue that Adder/Subtractor Algorithm is the basis 

of all Algorithms in the Quantum Computation science. 
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ÖZ 
 

MATHEMATICA KULLANARAK, KUANTUM KOMPUTER’IN, KLASIK 

BIR KOMPUTERDE SIMULASYONUNUN YAPILMASI 
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Ekim 2012 

76 sayfa 

 

 

Bu tezin temel amacı, bazı kuantum algoritmaların Mathematica program kullanara 

klasik bilgisayarlar üzerinde simülasyonunu yapmaktır. Bu simülasyonu başarılı bir 

şekilde yapabilmek için, tezin başlangıcında klasik hesaplama tartışılmıştır. 

Kuantum hesaplamanın temelini oluşturan, özellikle, qubitler, kuantum algoritmalar, 

kuantum kapılar ve kuantum devreler  detaylı olarak tartışılmıştır. Simulasyon 

devresinin çekirdeğini oluşturan CNOT kuantum kapısının özelliklerine daha çok 

ışık tutulmuştur. CNOT kapısı kullanılarak yarı toplayıcı ve tam toplayıcı devreler 

elde edilmiş ve devre n-qubit sayıları toplayacak şekilde genelleştirilmiştir. Bu tezde 

özel bir durum olarak 4-qubit iki sayının toplanması Mathematica programı 

yardımıyla simüle edilmiştir. 

Bunlara ek olarak, ilave bir bölümde Mathematica programının, quantum başta 4-

qubit sayıların toplanması olmak üzere, devre tasarımında kullanımı ele alınmıştır. 

Böylece birçok kuantum hesaplamanın Mathematica kullanarak simulasyonun 

yapılabileceği basit bir yol gösterilmiştir. Sonuç olarak, pek çok quantum devrenin 

temelini oluşturan tam yoplama/çıkarma devresinin çalışılması ve tartışılmasının 

yerinde olduğu açıktır. 

 

 

Anahtar Kelimeler: Dijital Sistem, Mantık Kapılar, Qubit, Kuantum kapılarte, Tam 

toplama devresi.  
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Chapter 1 

INTRODUCTION 

Quantum computation is going to be a successful project, based on theory of 

quantum mechanics as well as mathematics, group theory, electronic engineering, 

quantum information theory and computer science [1]. Theoretically, it has been 

shown that, various problems which cannot be efficiently solved on a classical 

computer have efficient solution on a quantum computer [2, 3]. This property can be 

proven by presenting an algorithm based on superposition principles of the states [4, 

5, 16, 41]. Recently Shor invented an algorithm to factor large numbers by using 

quantum computers much faster than any classical computer do it [5]. This type 

developments providing motivation to researchers and they are racing to create a 

practical quantum computer. Recent experiments are promising that a working model 

of quantum computer could be manufactured in near future [16, 42-45]. 

Meanwhile, let us explain basic principles of quantum computation: in a classical 

computer operations are done on bits, can only exist as “0” or “1”. In quantum 

computation the rule is based on superposition. Fundamental building blocks of a 

quantum computer are qubits that is represented by quantum mechanical states [1-3]. 

According to the theory of quantum mechanics the states can be expressed as linear 

combinations of these quantum states, also called superposition, is the most 

significant property that leads to speed up of a quantum computation. 

Mathematically, the state of a qubit |  can be written as | = |0+ |1where   and 

  are related to probability of the state and  2
 +  2

 =1. This implies that by 
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performing a single operation on the state | , two qubits can be effected at the same 

time. Similarly a two qubits system, | = |00+ |01+  |10+ |11can perform 

operation on four qubits, three qubits system can perform operation on eight qubits 

and n qubits system can perform the operation on 2
n
 qubits. This is known as 

quantum parallelism and by a correct algorithm one can use this property to increase 

speed of the quantum computer exponentially when compared to a classical 

computer [41]. 

It is indicated that quantum entanglement also plays a crucial role in quantum 

algorithms. For instance Grover’s search algorithm for two qubits case involves 

entanglement. Entanglement naturally appears in the Deutsch-Jozsa algorithm for 

single and two qubits and in the Shor algorithm. Use of entanglement in an algorithm 

increases speed of computation on quantum computer. Role of the entanglement in 

quantum computation has not yet been clarified and some questions still unanswered. 

In fact entanglement takes place at the origin of the quantum information theory. 

If a problem can be solved by using quantum computer, it is also solved by using 

classical computers. Quantum algorithms provide solution of problem on quantum 

computer is faster than solution of the same problem on classical problem. For 

example Shor’s algorithm based on, Quantum Fourier Transform; factorize a number 

in a polynomial time [4]. The same problems have been solved on a classical 

computer in super polynomial time. Grover’s algorithm search an unsorted list 

including N data using O(√ ) queries. The same search can be done on a classical 

computer using O(N) queries [5]. 

Consequently quantum parallelism, based on superposition and entanglement, allow 

possibility of performing a large number of operations in parallel. Therefore this 

property has led to the development of new algorithms which run by using nature of 



3 
 

quantum mechanical devices manufactured for this purpose (quantum gates) and they 

cannot be run on a classical computer [26]. As it is well known, a quantum algorithm 

can be run by a quantum circuit to achieve its processing power. 

One of the purposes of this thesis is to simulate quantum algorithms on a classical 

computer by using Mathematica program [40]. We also investigate behavior of 

quantum algorithm. Obviously, simulation of quantum computations on classical 

computers will improve our understanding of quantum mechanics and construction 

of quantum computers [7-16].  We focus our attention to simulate 4-qubits full adder 

circuits on Mathematica.  

Various quantum algorithms can be written by using their classical algorithms too. In 

usual, addition algorithms generated for a quantum computer by using analogy of full 

adder classical algorithms [4, 22]. In this thesis we presented simulation of the four 

qubits full adder circuit by using a Mathematica package developed by J. L. Gómez-

Muñoz and F. Delgado [40]. Although a considerable attention has been paid to 

present quantum algorithm for full adder circuit, the study of this problem from 

different point of view leads to the progress of quantum algorithm and simulation 

techniques. Theoretically and experimentally various quantum gates and circuits 

have been designed. Especially Hadamard and CNOT gates have attracted widely 

attentions in the construction of quantum circuits for a given algorithm [6] and our 

algorithms include CNOT-based quantum circuits. We also mention here, as a part of 

the improvement of quantum computing, it is necessary to find efficient ways to 

design a quantum circuit [17-33]. According to the quantum theory quantum logic 

circuit can be represented by a unitary matrix. Then unitary transformations of the 

state qubits are gives relation between input and output qubits of the circuit. These 



4 
 

circuits are modeled by connecting one or more quantum logic gates represented by a 

unitary transformation matrix [41].  

The theory of quantum computing leads to understanding of quantum circuits 

including quantum gates. Quantum computers include quantum gates represented by 

transformation of the quantum states.  The transformation is unitary and therefore the 

quantum gates are reversible. Simulation of quantum computing on a classical 

computer can be modeled by using the unitary transformation properties of gates that 

can be represented by unitary matrices. As in the classical computers, quantum 

circuits are constructed by using quantum gates.  

In this thesis simulation of a quantum full adder circuit is presented, because a full 

adder circuit is a fundamental unit of both quantum and classical computers. We will 

use a Mathematica [40] package provides a simulation of a Quantum computation.  

Consequently, this thesis will describe the connection between future quantum 

computers and today’s simulations of quantum computers. Let us begin with a 

demonstration of the framework we have constructed in the high-level program 

language Mathematica; this will probably be used for future algorithms [8]. 

The thesis is organized as follows. Chapter 2 provides a brief theory of quantum and 

classical computation. This chapter include an overview of classical and quantum 

computation, involve classical and quantum gates, quantum circuit and matrix 

representations of quantum gates. In chapter 3, we have discussed the classical and 

quantum addition circuit structure in detail. We have given an algorithm and a 

classical and quantum circuit in this chapter. Chapter 4 is presented to illustrate 

simulation of 4-qubit full adder quantum circuit on classical computer. The results 

are given in this chapter. Finally, the results are discussed and concluded in chapter5. 
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Chapter 2 

CLASSICAL AND QUANTUM COMPUTATION 

A classical computer is a science depends to bit, where each bit represents either a 

one or a zero; together quantum computer is a science depends to qubit. A single 

qubit can represent a one a zero or  superposition state of the two qubit; the, for two 

qubit can be 4 superposition states, and three qubits in any superposition of 8 states. 

In general, with n qubits in quantum computer can be 2
n
 different states in an 

superposition state up to simultaneously. Quantum computer works by appointment 

qubits in a controlled state which represents the initial problem at hand by 

manipulating those qubits with a specific sequence of quantum logic gates. The 

quantum algorithm is obtained by sequence of gates. After measuring all states 

obtained at the calculation of final, the outcome can be at most n classical bits of 

information, if collapsing each qubit into one of the two pure states [2, 16-17]. 

The numbers of qubit in quantum computer is Substantial different from the same 

number of bit in classical computer. For example, require the storage of 2
n
 complex 

coefficients by explain n-qubit state on classical computer system. At the indeed, the 

qubit can be hold information more exponentially from classical computation [16]. 

 

 

 

http://en.wikipedia.org/wiki/Quantum_superposition
http://en.wikipedia.org/wiki/Pure_qubit_state
http://en.wikipedia.org/wiki/Quantum_algorithm
http://en.wikipedia.org/wiki/Quantum_algorithm
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2.1 Classical Computation 

Classical computing is Consists of logic gate, any piece of hardware that described 

by logic gate, it is performs a logical process on one or more logical input to take out 

a single logical value. The circuits in classical computation consist of logic gates and 

wires. Information around and substituting in circuit by wires, and operations 

perform on information by logic gates. Moreover, memory is part of circuit; it is 

store the value of various bits. [8]. 

The classical computation includes essential Digital system. Digital system is a 

branch of electronics in which all the devices, components and circuitry operate only 

at two predefined levels of voltages, currents or any other quantity. These levels are 

represented by 1 and 0 and usually called high and low. In digital electronic systems 

every information in the world numerals, alphabets, signs, characters or commands - 

anything and everything - is converted to or interpreted by sequences (strings) of 

binary digits (bits) of 0’s and 1’s. A binary sequence is also referred as to binary 

[18]. 

The most important in digital systems is the binary number system; also others have 

will be important. Like, quantities outside digital system is represented by decimal 

system, also   decimal system is important because it is universal used. This means 

that before situations are entered in a digital system, where you must convert decimal 

values to binary values. For example, when you punch a decimal number into your 

hand calculator (or computer), the circuitry inside the machine converts the decimal 

number to a binary value [21]. 
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2.1.1 Digital Systems 

Digital systems have such a prominent role in everyday life that we refer to the 

present technological period as the digital age. Digital systems are used in 

communication, business transaction, traffic control, space guidance, medical 

treatment, weather monitoring, the Internet, and many other commercial, industrial, 

and scientific enterprises [18, 22]. 

One characteristic of digital systems is their ability to manipulate discrete elements 

of information. Any set or group number that is restricted to a limited number of 

elements contains separate information. Examples of discrete sets are the 10 decimal 

digits.  

Discrete elements of information are represented with groups of bits called binary 

codes. For example, the decimal digits 0 through 9 are represented in a digital system 

with a code of four bits. By using different techniques, can make a group of bits to 

represent the separate symbols, which are then used to develop the system in a digital 

format. Thus, a digital system is a system that manipulates discrete elements of 

information that is represented internally in binary form. 

 

2.1.1.1 Number Systems 

Actually, number system contents of the many deferent systems, such as decimal, 

binary, octal, and hexadecimal system, all this are used in digital technology, but 

decimal system is clearly    

Many types of number system are used in digital technology. The most used are the 

decimal, binary, octal, and hexadecimal systems. Decimal system it is more common 

because used in all areas of daily living. 
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The decimal system for counting has been so widely adopted throughout our present 

civilization that we rarely consider the possibilities of other number systems. 

Nevertheless, it is not reasonable to expect a system based on the number of fingers 

we possess to be the most efficient number system for machine construction. The 

fact is that a little used but very simple system, binary system has proven that the 

system is more common and efficient use of the device 

 

2.1.1.2 The Decimal System 

Decimal system consists of 10 different numbers. These 10 numbers are 0, 1, 2, 3, 4, 

5, 6, 7, 8, and 9; can express any quantity using these symbols as digits. The base of 

decimal system is a 10, because it has consists of 10 digits, also called the base-10. 

The following rule is the general rule to representation decimal system:  

a110
n-1 

+ a210
n-2 

+ … + an 

Where (a1,a2... an) are the value of digit number (left to right), and (n) is the number 

of digits to the left of the decimal point. 

The radix or base of a number system is defined by different digits number. The 

radix or base of decimal number system is a 10. Because this system it have 10 

different numbers (0, 1, 2, ...... 9), any one of them can used in every position in a 

number. Use a several other number systems is recording by history. 
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2.1.1.3 The Binary System 

The binary system is contains only two symbols or possible digit values, 0 and 1. The 

base of binary system is 2
n
, this base is used to represent any binary numbers. 

Switches and relays are basic elements in early computers. The switch and relay are 

nature essential operation in binary system; that is, the switch is either on or off 

(on=1 and off=0). Transistors are principal elements in circuit to modern computers, 

similar to those used in radios and television sets. The desire for reliability led 

designers to use these devices so that they were essentially in one of two states, fully 

conducting or no conducting. 

 

2.1.1.4 Counting in the Binary System 

The same type of positional notation is used in the binary number system as in the 

decimal system. Table (2.1) perform list of the first 20 numbers from binary number 

versus decimal numbers, the decimal system uses 10
n
, and the binary system 2

n
. As 

was previously explained, the number 120 actually means (110
2
) + (2  10

1
) + 

(010
0
). In the binary system, the same number (120) is represented as 1111000, 

meaning (1  2
6
) + (1  2

5
) + (1  2

4
) + (1  2

3
) + (0  2

2
) + (0  2

1
) + (0  2

0
). 

To express the value of a binary number, therefore, a12
n-1 

+ a22
n-2 

+…+ an, is 

represented as a1a2…an, where (a=0 or a=1), and n is the digits number to the left of 

the binary radix point. 
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Table (2.1) The first 20 numbers of the decimal and binary systems 

Decimal Binary Decimal Binary 

1 00001 11 01011 

2 00010 12 01100 

3 00011 13 01101 

4 00100 14 01110 

5 00101 15 01111 

6 00110 16 10000 

7 00111 17 10001 

8 01000 18 10010 

9 01001 19 10011 

10 01010 20 10100 

 

2.1.1.5 Binary Addition and Subtraction 

Operation way to addition in a binary system is the same way the decimal system. 

Actually, binary arithmetic is much simpler to learn. The following operations are 

performing all (operation addition) in binary system. 

0 + 0 = 0 

0 + 1 = 1  

1 + 0 = 1 

1 + 1 = 0  with carry 1 to over  

 

The carryovers in binary system are same operation with decimal arithmetic. Since in 

the binary system 1 is the largest digit, if any sum greater then 1, the operation is 

requires that a digit be carried over. 
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The easiest way of performing subtracting is to negate the subtrahend and add it to 

the minuend this is done by finding the 2’s complement of the subtraction and then 

performing the addition. For simplifying the subtraction operation and logical 

manipulation in digital computers using complements operation. Complements are 

consists of two types in binary system, there are one’s (1’s) complement and two's 

(2’s) complement.  

The 1’s complement of a binary number is the number that results when each 0 in the 

number is changed to a 1 and each 1 is changed to 0. The 2’s complement of a binary 

number is the number results by adding 1 to the 1’s complement (i.e. 2’s complement 

= 1’s complement + 1). The 2’s complement can be used to form the binary 

subtraction. (i.e. add its 2’s complement to the subtraction and disregard the cast 

carry)       

 

2.1.1.6 Converting Decimal Numbers to Binary 

There are several methods for converting a decimal number to a binary number. The 

process of dividing the decimal number by 2 repeatedly, it is first and most obvious 

method, and after each division it have remainder (0 or 1), this remainder is used to 

indicate the coefficients of the binary number to be formed. Notice to obtain the 

result reading the remainder (down to up) and writing (left to right). 
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The binary representation of 120 is therefore 1111000. Checking this result gives 

 1  2
6
 = 64 

1  2
5
 = 32 

 1  2
4
 = 16 

1  2
3
 = 8 

0  2
2
 = 0 

0  2
1
 = 0 

0  2
0
 = 0 

 120 

 

2.1.2 Logic Gate  

In [20-21, 45], majority of the digital circuits and systems irrespective of how much 

complex the circuit may be and performing any kind of function like mathematical 

operations, control operations, digital data transfer, data processing, data selection, 

coding, decoding, etc. at the innermost levels, there are only three basic logic 

operations going on. These basic logic operations are: 

1. AND  2. OR         and          3. NOT. 

Decimal No.2 Result Remainder 

120  60 0 

60  30 0 

30  15 0 

15  7 1 

7  3 1 

3  1 1 

1  0 1 
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Electronic circuits assembled from diodes, resistors, transistors etc. performing these 

basic logic operations are called logic gates. AND and OR gates can each have two 

or more number of binary inputs and one binary output. NOT gate which is often 

also referred as inverting or complementing gate has only one input and one output. 

Input to logic gates are always binary variables. Binary variable means it has only 

two values high or low, on or off, 1 or 0. Thus each input or output can assume only 

one of these values. In reality, usually one value of the variable is an upper level of 

voltage the other value is a lower voltage. 

By using logic gates can be construction digital systems. Logic Gates are electric 

circuits, consisting of transistors, diodes, and resistors. Logic gates process input 

signals and one or more logical manner. Depending on the input value (0 or 1), the 

logic gate will either output a value of (1ON) or a value of (0OFF). 

Some of the following terms represent logic 0 and 1, is shown in the table (2.2). 

 

Table (2.2) Logic symbol 

Logic 0 Logic 1 

Off  On  

False  True 

No Yes 

Low High 

Open Switch Close Switch 

 

Logic gates are the electronic circuits which perform the basic logic operations. They 

are building blocks of majority of the digital systems. 

Logic gates consists of seven different gates, there are identified by their function: 

NOT, AND, NAND, OR, NOR, X-OR and X-NOR.  

http://www.kpsec.freeuk.com/gates.htm#not#not
http://www.kpsec.freeuk.com/gates.htm#and#and
http://www.kpsec.freeuk.com/gates.htm#nand#nand
http://www.kpsec.freeuk.com/gates.htm#or#or
http://www.kpsec.freeuk.com/gates.htm#nor#nor
http://www.kpsec.freeuk.com/gates.htm#exor#exor
http://www.kpsec.freeuk.com/gates.htm#exnor#exnor
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AND gate is like two or more series switches. All the switches have to be closed 

(ON) in order to make the lamp (output) turn on. If all inputs are not ON, the output 

is OFF. 

 

Figure (2.1) Electric circuit representation AND gate 

 

An OR gate is like two or more parallel switches. Only one switch needs to be closed 

(ON) in order to make the lamp (output) turn ON. 

 

Figure (2.2) Electric circuit representation OR gate 

 

An NOT gate is like one switch and lamp in parallel. Switch needs to be closed (ON) 

in order to make the (output) turn OFF, but switch is open (OFF) in order to make 

the (output) turn ON. 

S1 

S1 

S2 

S2 

Battery 

Battery 

Lamp 

Lamp 
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Figure (2.3) Electric circuit representation NOT gate 

2.1.2.1 AND gate  

 

 

Figure (2.4) Block diagram representation AND gate 

 

The AND Gate is an electronic circuit consists of two Inputs or more and one output, 

gives a “1” of the output only if all its inputs are “1”.  A dot (.) is used to show the 

AND operation, If one input variable is X, the other input variable is Y, and the 

output variable is F, then the Boolean expression is      . 

 

Table (2.3) Truth Table of 2 Input AND gate 

2 Input AND gate 

X Y       

0 0 0 

0 1 0 

1 0 0 

1 1 1 

1= HIGH, 0=LOW 

 

 

S 

R (low)  Battery Lamp 
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2.1.2.2 OR gate  

 

Figure (2.5) Block diagram representation OR gate 

The OR Gate is an electronic circuit consists of two Inputs or more and one output, 

gives a “1” of the output if one or more inputs are “1”.  A plus (+) is used to show 

the OR operation, If one input variable is X, if the other input variable is Y, and if the 

output variable is F, then the Boolean expression is      . 

Table (2.4) Truth Table of 2 Input OR gate 

2 Input OR gate 

X Y F=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

1= HIGH, 0=LOW 

 

2.1.2.3 NOT gate  

The OR Gate is an electronic circuit consists of only one input and one output; the 

property for this gate is reversed input value.  It is also known as an inverter, if the 

input variable is called A and the output variable is called   ̅, then (   ̅), where  ̅ 

is inverse A value, if (A=0    ̅=1 and A=1    ̅=0).    

 

            (a)                                              (b)                                        (c)                  

Figure (2.6) Figure (a, b and c) block diagram representation NOT gate 
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The figure (2.6)-b and (2.6)-c show two ways that the NAND logic gate can be 

configured to produce a NOT gate. Also can be done using NOR logic gates in the 

same way. 

   Table (2.5) Truth Table of NOT gate 

Input Output 

A A  
0 1 

1 0 

1= HIGH, 0=LOW 
 

 

2.1.2.4 NAND gate 

 

 

Figure (2.7) Block diagram representation NAND gate 

 

The NAND gate structure of AND and NOT gates, It's consists only two inputs and 

one output, the outputs of all NAND gates are high if any of the inputs are low. The 

symbol of NAND gate is the same symbol of AND gate with a small circle on the 

output. The small circle represents inversion, The Boolean expression for the output 

of a 2-input NAND gate is:      ̅̅ ̅̅ ̅̅  

 

.Table (2.6) Truth Table of NAND gate 

2 Input NAND gate 

X Y      ̅̅ ̅̅ ̅̅  

0 0 1 

0 1 1 

1 0 1 

1 1 0 

1= HIGH, 0=LOW 
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2.1.2.5 NOR gate   

 

Figure (2.8) Block diagram representation NOR gate 

 

The NOR gate structure of OR and NOT gates, It's consists only two inputs and one 

output, the outputs of all NOR gates are low if any of the inputs are high. The symbol 

of NOR gate is the same symbol of OR gate with a small circle on the output. The 

small circle represents inversion, The Boolean expression for the output of a 2-input 

NOR gate is:      ̅̅ ̅̅ ̅̅ ̅̅  

 

Table (2.7) Truth Table of NOR gate 

2 Input NOR gate 

X Y      ̅̅ ̅̅ ̅̅ ̅̅  

0 0 1 

0 1 0 

1 0 0 

1 1 0 

1= HIGH, 0=LOW 

 

2.1.2.6 XOR gate  

 
Figure (2.9) Block diagram representation XOR gate 

 

The XOR (Exclusive-OR) gate structure of five gates (2-AND, 2-NOT and 1-OR) 

gates, It's consists only two inputs and one output. It will give a "1" output if both 

inputs are different value, but if the two inputs are same value the output give a "0". 
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An encircled plus sign ( ) is used to show the XOR operation, The Boolean 

expression for the output of XOR gate is      . 

Table (2.8) Truth Table of XOR gate 

Exclusive XOR gate 

X Y       

0 0 0 

0 1 1 

1 0 1 

1 1 0 

1= HIGH, 0=LOW 

 

2.1.2.7 XNOR gate 

 

Figure (2.10) Block diagram representation XNOR gate 

 

The XNOR gate circuit does the opposite to the XOR gate. It will give a "1" output if 

both inputs are same value, but if the two inputs are different value the output give a 

"0". The symbol is an XOR gate with a small circle on the output. The small circle 

represents inversion, The Boolean expression for the output of XNOR gate is: 

      ̅̅ ̅̅ ̅̅ ̅. 

 

Table (2.9) Truth Table of XNOR gate 

Exclusive XNOR gate 

X Y       

0 0 1 

0 1 0 

1 0 0 

1 1 1 

1= HIGH, 0=LOW 
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Table (2.10) Summary of Digital logic gates 

No. Name Graphic symbol Algebraic function Truth table 

1 AND 

 

YXF   

 

2 OR 

 

YXF   

 

3 Inverter 

 

XF   

 

4 NAND 

 

YXF   

 

5 NOR 

 

YXF   

 

6 

Exclusive-

OR (X-OR) 
 

YXF

YXYXF




 

 

7 

Exclusive-

NOR (X-

NOR)  
YXF

YXYXF




 

 

X Y F 

0 0 0 

1 0 0 

0 1 0 

1 1 1 

 

X Y F 

0 0 0 

1 0 1 

0 1 1 

1 1 1 

 

X F 

0 1 

1 0 

 

X Y F 

0 0 1 

1 0 1 

0 1 1 

1 1 0 

 

X Y F 

0 0 1 

1 0 0 

0 1 0 

1 1 0 

 

X Y F 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

 

X Y F 

0 0 1 

1 0 0 

0 1 0 

1 1 1 
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2.1.3 Boolean Operators 

Signs for basic operations of AND, OR and NOT are termed as Boolean operators. 

These are (•), (+) and X   where x is the binary variable and the bar above it is the 

NOT operator also known as complement. Hence A (AND) B is normally written as 

BA  or also sometimes simply AB. In the latter case, the dot between A and B is 

understood. 

Since in normal mathematics the dot (•) stands for product, BA  is also many times 

termed as product form. In fact Y= A (AND) B comes out to be the same as Y = A

B in mathematics. But hear (A) and (B) are the binary numbers only. 

Similarly A (OR) B is normally written as A + B. In normal mathematics + sign 

stands for summation. Therefore this is the sum form of the variables A and B. But 

Y=A (OR) B in Boolean form does not always give the same result as in normal 

mathematics A plus B gives. 

The third Boolean operation which is called the NOT operation or complement 

operation and is given by AY  , which is usually pronounced as A bar. That is, if 

A=1, Y=0 and if A=0, Y=1 

 

2.1.4 Boolean Algebra 

The algebra which deals with binary variables and the logic operators AND (•), OR 

(+) and NOT ( X ) is called Boolean algebra. Boolean algebra also follows the 

commutative, associative and distributive laws of the common algebra. 
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Table (2.11) Logic Basic Rules and Boolean algebra laws 

Type of laws  No. Result 

Basic Rules 

1 A • 0 = 0 

2 A • 1 = A 

3 A • A = A 

4 A • A = 0 

5 A + 0 = A 

6 A + 1 = 1 

7 A + A = A 

8 A + A = 1 

9 AA   

Commutative laws 
10 A • B = B • A 

11 A + B = B + A 

Association laws  
12 (A•B)•C=A•(B•C)=A•B•C 

13 (A+B)+C=A+(B+C)=A+B+C 

Distribution laws  
14 A• (B+C)=(A•B)+(A•C) 

15 A+(B•C)=(A+B) • (A+C) 

Absorption laws  
16 A• (A+B)=A 

17 A+(A•B)=A 

De Morgan’s laws 
18 BABA   

19 BABA   

 

Above identities can be easily proved either by using basic rules and laws and other 

identities or by taking the value of each variable once 0 and then 1. Every time it will 

be found that left hand side of the equation is equal to right hand side.        
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2.2 Quantum Computation 

Quantum computation and information are currently of crucial importance for 

computer and physical sciences, mathematics and engineering. They will probably 

lead to a new era of technological innovations in communication, computation and 

cryptography. It is argued that quantum information and quantum bits will become 

the forerunner of a 21
st
 century technological breakthrough as classic information 

and bits were to the 20
th

 century. As quantum physics theory is basically stochastic, 

randomness and uncertainty are deeply ingrained in quantum computation, quantum 

simulation and quantum information [23, 41]. 

 

2.2.1 Background 

Since time immemorial, man has constantly been looking for tools to assist them 

with carrying out tasks which require calculations. Such as land computing, calculate 

the stresses on the rails in the bridges, or to find the shortest route between two 

places. It is structure that interlinks all these tasks: 

 

Input Computation Output 

 

The dynamical physical system can be perform the inevitably computation part of the 

process, evolving in time [24]. 

The lack of a machine model is a theoretical obstacle ahead of quantum computing. 

Must be developed describe and formalize the process for this new model and it must 

be based on applied mathematics or physics in order to more accurately give insight 

into the quantum computational process. The quantum computer can no longer be 
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thought of as a tape head and an endlessly long tape. In accordance with quantum 

mechanics, we must look at the tape as a system described by the state function      

that evolves by the passage of time to implement the calculation. 

The classical computer systems perform computation by sending an electrical signal 

through a circuit in conjunction with the signal timing. This signal dependent on 

itself and it does not need interaction with any other signals to do its calculation. 

It is through a gradual control of the memory evolution that a quantum computer 

system performs its calculations. At the beginning must be prepared a quantum 

computation in an initial state, which would correspond to input. This input is then 

transitioned to other quantum states by one of a variety of methods. The transition of 

input to a general quantum computation is now more than just the concatenation of 

its bits, because each input bit can be entangled with its neighbor and each bit is in a 

superposition of states. 

It has been considered as essential to supply sufficient background on quantum 

physics to clearly explain the substance that follows, “braket” is a notation in 

quantum physics; it's used to describe a quantum state, this portion is used to indicate 

inner product of two states “braket” ⟨   ⟩. The left side of notation ⟨   is described 

the “bra”, while the right side of notation   ⟩ is described “ket”. The part "ket" at the 

notation is used to represent a quantum state, In the situation of quantum logic, there 

are two distinct quantum states, “one” and “zero”. These are represented by 

  ⟩ and   ⟩. For the rest of this thesis, the quantum state  ⟩ will be used to represent 

which is a superposition of the two distinct quantum states [25]. 

   ⟩+    ⟩ 

In this case α and β represent the probability of each of the quantum states. Since the 

Hilbert space is a vector space, a quantum state can also be expressed in vector 
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notation. For example, in the equation   ⟩=   ⟩+   ⟩,   ⟩ could also be expressed 

as the vector [
 
 ].  

Due to the work of Dirac in quantum mechanics, the use of the “braket” notation 

seems to be common. 

For instance, consider the only single input, single output, classical logic gate and the 

NOT gate. The NOT gate basically accepts a logic input and provides the negation of 

this input as the output of the circuit. Alternatively, the gate interchanges the 0 and 1 

states of classical bits. The best possible way to start with is to show how a quantum 

NOT gate is constructed. Recall that quantum bits can represent the zero state (  ⟩), 

the one state (  ⟩), or any superposition of states in between. These states can also be 

expressed in vector notation. The following definitions describe how the zero and 

one states are expressed in vector notation. 

  ⟩  [
 
 
]        ⟩  [

 
 
] 

To implement a quantum NOT, a gate is required that will turn the probabilities of 

each quantum state the other way round. As it is possible to represent quantum gates 

as unitary matrices, the quantum NOT gate can be represented by the following 

matrix: 

[
  
  

] 

So as to ensure the functional operation of this gate, the following example is given. 

The quantum state    ⟩+    ⟩written in vector notation is [
 
 ], to compute the output 

of the quantum gate, a matrix-vector product is generated. For example if α=0 and 

β=1, it can be seen that 
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[
  
  

] [
 
 
]  [

 
 
] 

Thus, the quantum NOT gate has finally been realized. It is similarly essential to note 

that this quantum gate (side by side with all other quantum gates) is totally 

reversible. Obviously, the original quantum vector would be the result if the output 

of the former equation were to be replaced with the input [6, 8]. 

 

2.2.2 Properties of Quantum Computation 

A computational equivalency exists between this model and a quantum computer. 

The computation in both cases is regarded to be generated by the time evolution of a 

computer memory from an initial to a final state. In a quantum computer, it is not the 

state of the memory but the probability of measuring a state that is propagated in 

time. However, this is only the elementary phase. The big difference between 

classical computation and quantum computation is non-existence of the following 

properties in classical computation. 

 Superposition  

 Entanglement  

 Logical/physical reversibility  

 Coherency 

 Time independence  

 Output interrogation  
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2.2.3 Quantum Bit 

Qubit is the smallest unit of information in a quantum computer and the main part of 

a quantum computer, whose states are manipulated by a series of quantum logic 

gates. Unlike bits in classical systems, which are in one of two possible states labeled 

1 and 0, a quantum bit exists in a superposition of these two states, settling on one or 

the other only when a measurement of the state is made [26-27]. 

 

 
                                                Spin up                                   Spin down 

Figure (2.11) Spin Up and Spin down representation Quantum Bit 

 

A qubit of data is represented by a single atom that is in one of two states denoted by 

  ⟩ and   ⟩. 

The figure below performs the state of bit in classical computation, and state of qubit 

in quantum computation. 
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  Figure (2.12) possible state of Classical Bit and Quantum Bit 

 

2.2.4 Qubit States 

The linear superposition of the basis states is the pure qubit state. According to this 

meaning the linear combination of   ⟩ and  ⟩ can be represented by qubit:  

  ⟩     ⟩     ⟩ 

Where   and   are probability amplitudes and can generally be both complex 

numbers. When this qubit is measured in the standard basis, the probability of 

outcome  ⟩is      and the probability of outcome  ⟩is    . Because the probabilities 

equal to absolute squares of the amplitudes, where   and     contacted to each other 

by the following equation: 

            

Simply because this ensures you must measure either one state or the other [16, 28]. 

http://en.wikipedia.org/wiki/Probability_amplitude
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Complex_number
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2.2.5 Bloch Sphere 

By using Bloch sphere can be visualized a possible states for a single qubit (see 

diagram). Represented on such a sphere, a classical bit could only be at the "North 

Pole" or the "South Pole", in the locations where   ⟩ and   ⟩  are respective The rest 

of the surface of the sphere is inaccessible to a classical bit, but a pure qubit state can 

be represented by any point on the surface. For example the pure qubit state 
  ⟩    ⟩

√ 
 

would lie on the equator of the sphere, on the positive y axis.  

 

Figure (2.13) Bloch sphere representation of a qubit 

 

The surface of the block sphere is consisting of a two-dimensional space, which 

represents the state space of the pure qubit states. This state space owns two 

local degrees of freedom. It is likely that at first look it appears that there must be 

four degrees of freedom, as  and   are complex numbers with two degrees of 

freedom for each. Nevertheless, one degree of freedom is taken away by the 

constraint. 

||
2 
+ | |

2 
=1 

http://en.wikipedia.org/wiki/Bloch_sphere
http://en.wikipedia.org/wiki/State_space_(physics)
http://en.wikipedia.org/wiki/Degrees_of_freedom_(physics_and_chemistry)
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/File:Bloch_sphere.svg
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2.2.6 Quantum Gates 

In quantum computing and especially the quantum circuit model of quantum 

computation, a quantum gate is essential and a basic quantum circuit operating on a 

small number of qubits. By classical logic gates and conventional digital circuits, 

they can build blocks of quantum circuits. 

Many classical logic gates are Dissimilar, but quantum logic gates are reversible. 

However, classical computing can be performed using only reversible gates. For 

example, the reversible Toffoli gate can implement all Boolean functions. Showing 

that quantum circuits are capable of implementing all operations performed by 

classical circuits [29, 28]. 

Quantum logic gates are expressed in the form of unitary matrices. The most 

common quantum gates operate on spaces of one or two qubits, just like the common 

classical logic gates operate on one or two bits. Quantum gates can be described by 

2×2 or 4×4 unitary matrices, like means of matrices. 

Quantum gates represent by normally Matrices, a gate which acts on k qubits is 

represented by a 2
k
 × 2

k
 unitary matrix. The number of qubits in the input and output 

of the gate has to be equal. The action of the quantum gate is worked out by 

multiplying the matrix representing the gate with the vector which represents the 

quantum state [16, 30]. 

 

2.2.6.1 Hadamard gate 

The Hadamard gate consists on a single qubit. The most important process of 

Hadamard gate is convert state   ⟩ to  
  ⟩   ⟩

√ 
  and    ⟩ to  

  ⟩   ⟩

√ 
 . Hadamard gate 

http://en.wikipedia.org/wiki/Unitary_matrix
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represents a rotation of π about the x and z axes. The following matrix is the 

representing a Hadamard gate. 

  
 

√ 
[
  
   

] 

Since the rows of the matrix are orthogonal, H is indeed a unitary matrix. 

 

Figure (2.14) Circuit representation of Hadamard gate 

 

2.2.6.2 Pauli-X gate 

The Pauli-X gate consists on a single qubit. It is the quantum equivalent of a NOT 

gate. It equates to a rotation of the Bloch Sphere around the x-axis by π radians. The 

most important process of Pauli-X gate is convert state   ⟩ to   ⟩  and   ⟩ to   ⟩. The 

following matrix is representing a Pauli-X gate. 

  [
  
  

] 

2.2.6.3 Pauli-Y gate 

The Pauli-Y gate consists on a single qubit. It equates to a rotation around the Y-axis 

of the Bloch Sphere by π radians. It is convert state   ⟩ to    ⟩ and   ⟩ to -   ⟩ . The 

following matrix is representing a Pauli-Y gate. 

   [
   
  

] 

http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Bloch_Sphere
http://en.wikipedia.org/wiki/File:Hadamard_gate.svg
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2.2.6.4 Pauli-Z gate 

The Pauli-Z gate consists on a single qubit. It equates to a rotation around the Z-axis 

of the Bloch Sphere by π radians. Thus, it is a special case of a phase shift gate with 

θ=π. It leaves the basis state   ⟩ unchanged and maps   ⟩ to    ⟩. The following 

matrix is representing a Pauli-Y gate. 

   [
  
   

] 

2.2.6.5 Phase shift gates 

This is a family of single-qubit gates that leave the basis state   ⟩ unchanged and 

map   ⟩ to      ⟩. The probability of measuring a   ⟩ or   ⟩ is unchanged after 

applying this gate; however it modifies the phase of the quantum state. This is 

equivalent to tracing a horizontal circle (a line of latitude) on the Bloch Sphere 

by θ radians. 

   [
  
    ] 

Where θ is the phase shift, some common examples: 

θ = π,   
 

 
 and   

 

 
  

 

2.2.6.6 Swap gate 

The most important characteristics of this gate are the output value equal to the value 

of mutual input. If the input value of first line equal to (A) and the input value of 

second line equal to (B), then the output vale of first line equal to (B) and the output 

value of second line equal to (A).  

http://en.wikipedia.org/wiki/Quantum_gate#Phase_shift_gates
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Figure (2.15) Circuit representation of SWAP gate 

 

The swap gate swaps two qubits. It is represented by matrix bellow: 

     [

    
    
 
 

 
 

  
  

] 

The SWAP gate synthesis and combination in three Control Not gate (CNOT), the 

following figure representation of SWAP gate:   

 

Figure (2.16) A SWAP gate is three back to back CNOT gates with control and 

target qubits alternating. 

 

2.2.6.7 Controlled gates 

The Controlled gate consists on a double qubits, where one or more qubits act as a 

control for some operation. For example, the controlled NOT gate (or CNOT) acts on 

2 qubits, and performs the NOT operation on the second qubit only when the first 

qubit is  ⟩, and otherwise leaves it unchanged.It is represented by the matrix: 

     [

    
    
 
 

 
 

  
  

] 

http://en.wikipedia.org/wiki/Controlled_NOT_gate
http://en.wikipedia.org/wiki/File:Swap_gate.svg
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In this gate the value of input and output of the first line is equal, but value of output 

in the second line is dependent on expression rule of X-OR gate. 

If the input value of first line equal to (A) and the input value of second line equal to 

(A), then the output vale of first line equal to (B) and the output value of second line 

equal to (A   B). 

 

Figure (2.17) Circuit representation of controlled NOT gate 

 

More generally if U is a gate that operates on single qubits with matrix representation 

  [
      

      
], then the controlled-U gate is a gate that operates on two qubits in 

such a way that the first qubit serves as a control. It maps the basis states as follows. 

 

Figure (2.18) Circuit representation of controlled-U gate 

 

http://en.wikipedia.org/wiki/File:Controlled_gate.svg
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The matrix representing the controlled U is 

 

When U is one of the Pauli matrices,   ,  , or   , the respective terms "controlled-

X", "controlled-Y", or "controlled-Z" are sometimes used.  

 

2.2.6.8 Toffoli gate 

The block diagram of Toffoli gate is consist of three lines, the first two lines its 

Control line and the last line it’s a NOT gate, the following figure is representation 

Toffoli gate. 

 
Figure (2.19) Circuit representation of Toffoli gate 

 

The Toffoli gate, also CCNOT gate, is a 3-bit gate, which is universal for classical 

computation. The quantum Toffoli gate is the same gate, defined for 3 qubits, the 

Toffoli gate swaps three qubits. It is represented by matrix bellow: 

[
 
 
 
 
 
 
 
  
  
  

   
   
   

   
   
   

  
  
  

   
   
   

   
   
   

  
  

   
   

   
   ]

 
 
 
 
 
 
 

 

http://en.wikipedia.org/wiki/Pauli_matrices
http://en.wikipedia.org/wiki/Functional_completeness
http://en.wikipedia.org/wiki/File:Toffoli_gate.svg
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 If the first two bits are in the state  ⟩, it applies a Pauli-X on the third bit, else it 

does nothing. It is an example of a controlled gate. Since it is the quantum analog of 

a classical gate, it is completely specified by its truth table. 

Table (2.12) Truth table of Toffoli gate 

INPUT OUTPUT 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 1 1 1 

1 1 1 1 1 0 

It can be also described as the gate which maps       ⟩ to         ⟩. 

 

2.2.6.9 Fredkin gate 

The block diagram of Fredkin gate is consist of three lines, the first upper line its 

Controlled line and the other lines it’s SWAP gate, the following figure is 

representation Fredkin gate. 

 
Figure (2.20) Circuit representation of Fredkin gate 

 

The Fredkin gate (also CSWAP gate) is a 3-bit gate that performs a controlled swap, 

it is represented by matrix bellow: 

http://en.wikipedia.org/wiki/Quantum_gate#Controlled_gates
http://en.wikipedia.org/wiki/Quantum_gate#Swap_gate
http://en.wikipedia.org/wiki/File:Fredkin_gate.svg
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[
 
 
 
 
 
 
 
  
  
  

   
   
   

   
   
   

  
  
  

   
   
   

   
   
   

  
  

   
   

   
   ]

 
 
 
 
 
 
 

 

It is universal for classical computation. It has the useful property that the numbers of 

0s and 1s are conserved throughout, which in the billiard ball model means the same 

number of balls are output as input. This matches agreeably to the conservation of 

mass in physics, and helps to show that the model is not wasteful. 

Table (2.13) Truth table of Fredkin gate 

INPUT OUTPUT 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 1 0 

1 1 0 1 0 1 

1 1 1 1 1 1 

It can be also described as the gate which maps       ⟩to     ̅      ̅    ⟩. 

 

2.2.7 Matrix Representations 

The ability of quantum gates to be represented by a transformation matrix is a special 

quality. A quantum gate that operates on n qubits can be represented by a 

2
n
×2

n
unitary matrix. A cascade of gates forming a quantum logic circuit can also be 

represented by a single matrix formed by the direct multiplication of the matrices 

representing the individual gates [8, 31]. As an example, the matrix below shows the 

http://en.wikipedia.org/wiki/Functional_completeness
http://en.wikipedia.org/wiki/Billiard-ball_computer
http://en.wikipedia.org/wiki/Conservation_of_mass
http://en.wikipedia.org/wiki/Conservation_of_mass
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matrix representation of the 3-qubit in the figure (2.21). In this example, the qubits 

labeled x0 and x2 are the control qubits, while the qubit marked x1 is the target. This 

particular gate is denoted T(x2, x0;x1) because x2 represents the most important qubit 

and x0 being the least important qubit. All gates mentioned in this thesis are denoted 

in a similar fashion. 

[
 
 
 
 
 
 
 
  
  
  

   
   
   

   
   
   

  
  
  

   
   
   

   
   
   

  
  

   
   

   
   ]

 
 
 
 
 
 
 

 

The representation of a quantum gate with a unitary matrix gives way to many 

complex operations to be performed through linear algebraic methods. For instance, 

by using matrix-vector multiplication, it is possible to produce the output vector from 

aspecific input vector representing the quantum states of the qubits provided as 

inputs to aquantum gate. 

 

 

Figure (2.21)  The quantum circuit representation of 3-qbit 
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2.2.8 Quantum Circuits 

A combinational quantum-logic circuit consists of quantum gates, interconnected by 

quantum wires which carry qubits. It is simply a circuit which is comprised of one or 

more quantum gates. Multiple quantum gates may be cascaded together to form a 

quantum circuit [8, 32]. As each quantum gate has similar number of inputs and 

outputs, any cut through the circuit crosses the same number of wires. A quantum 

circuit can be identified as representing the sequence of quantum-logic operations on 

a quantum register. 

The circuit needs to be read from left-to-right; however, the transformation may also 

be read in the opposite direction because all quantum gates are reversible. Each line 

in the circuit acts as a wires in the quantum circuit. This wire is not necessarily a 

physical wire; it may correspond instead to the passage of time, or perhaps to a 

physical particle such as a photon - a particle of light - moving from one location to 

another through space. It is conventional to assume that the state input to the circuit 

is a computational basis state, usually the state consisting of all   ⟩s. This rule is 

broken frequently in the literature on quantum computation and quantum 

information, but it is considered polite to inform the reader when this is the case [8, 

33]. 

            

Figure (2.22) the sample of quantum circuit 
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As an example, the circuit in Figure 2.22 is a simple quantum circuit. In this 

particular circuit, the (q1, q2 and q3) three qubits input represents and (b1, b2 and b3) 

the qubit output represents.  

Individual quantum gates have the special property that they can be represented by a 

single unitary matrix. Similarly, a quantum circuit can be represented by a single 

unitary matrix. This property of quantum circuits is used extensively when designing 

a quantum circuit simulator. 

This example illustrates how a unitary matrix representing an entire quantum circuit 

is built. The circuit shown in Figure 2.22 will be utilized for this example. The first 

step in generating the representational matrix is to build the unitary matrix for each 

individual gate. Since the rightmost Controlled-NOT gate involves two qubits, the 

representational matrix will be of size 2
2
×2

2
, or 4×4. Since this example is 

considering only the   ⟩ and   ⟩ states, the matrix can be thought of as a permutation 

matrix. The matrix below is the representational matrix for this gate. 

     [

    
    
 
 

 
 

  
  

] 

However, this matrix cannot be used to build the matrix representing the entire 

circuit. Since the entire circuit has four qubits, it is necessary to “extend” this matrix 

to the size of 2
3
×2

3
. To perform the extension, the Kronecker operation is used. The 

Kronecker operation is defined in [8] as the following: 

    [
         

   
         

] 
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In order to properly extend the matrix, a Kronecker operation is performed on the 

representational matrix with an identity matrix. If the unused qubit lies above the 

target qubit, the identity matrix is placed on the right side of the representational 

matrix; otherwise it is place on the left. For example, to extend the matrix mentioned 

before, a Kronecker operation is performed on the left and right sides of the 

representational matrix. 

        ; 

   
 

√ 
[
  
   

] [
  
  

] [
   
  

] 

   
 

√ 

[
 
 
 
 
 
 
 
          
        
          
        
         
         
         
         ]

 
 
 
 
 
 
 

 

 

This process can be continued until all four gates have individual representational 

matrices; the matrices for the gates in the circuit in Figure (2.22) can be seen below. 

          

   

[
 
 
 
 
 
 
 
        
        
        
        
        
        
        
        ]
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[
 
 
 
 
 
 
 
  
  
  

   
   
   

   
   
   

  
  
  

   
   
   

   
   
   

  
  

   
   

   
   ]

 
 
 
 
 
 
 

 

Finally, in order to generate the representational matrix for the entire circuit, the 

matrices are multiplied together to obtain the following product using traditional 

matrix multiplication.  

          ; 

  
 

√ 

[
 
 
 
 
 
 
 
         
         
         
         
          
        
          
        ]

 
 
 
 
 
 
 

 

This matrix is the representational matrix for the entire quantum circuit. This same 

procedure can be used to build the representational matrices for any quantum circuit. 
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Chapter 3 

CLASSICAL AND QUANTUM FULL ADDER CIRCUIT 

3.1 Background 

Quantum computation based on principles of quantum mechanics. In quantum 

mechanics a quantum state (or qubit) can be typically obtained from the state of a 

two-level quantum system. As an example ground state and excited state of an atom 

or the vertical and horizontal polarizations of a single photon are represented as 

qubits. The qubits are denoted by using Dirac notation such as one of these states as 

and the other as   

According to the theory of quantum mechanics the states can be written as linear 

combinations of these pure states, also called superposition, is the most significant 

property that leads to speed up of a quantum computation. In other words, the state of 

a qubit   can be written as  = |0+ |1where   and   are complex numbers and 

 2
 +  2

 =1. This implies that by performing a single operation on the state  , two 

qubits can be effected at the same time. Similarly a two qubit system can perform 

operation on four qubit, three qubit systems can perform operation on eight qubits 

and n qubit system can perform the operation on 2
n
 qubits. This is known as quantum 

parallelism and by a correct algorithm one can use this property to increase speed of 

the quantum computer exponentially when compared to a classical computer. 

Now, we will briefly discuss various quantum gates with different functionalities and 

useful to construct a quantum circuit.  
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These are, identity I, NOT, CNOT, C
2
NOT and SWAP gates. Icons of the gates are 

given in the figure 3.1. In the figure, the symbols , and | are used for control, 

target and contact qubits respectively. Let us summarize action of each gate: 

identity gate (I) with matrix MI no action on the qubits. Its icon is a horizontal wire. 

NOT gate inverts the working qubit and its action is given by the matrix MNOT. 

CNOT gate, which act on a qubit as follows: if the control qubit is |1, then the 

target qubit is inverted. Otherwise it remains unchanged. It is action on qubits can be 

obtained by using the matrix MCNOT. 

 SWAP gate exchanges the values of input qubits. 

 C
2
NOT gate is controlled-CNOT gate, also known as Toffoli gate. Its action can 

be described as follows: if both control qubits are |1, the target is inverted; otherwise 

it is remains the same [4]. 

 

 

Figure (3.1) Basic quantum gates  
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We also mention here quantum gates are represented by unitary matrices and the 

circuits are also represented by unitary matrices. Such circuits are called unitary 

stabilizer circuits [6].  For example, in figure 3.2, NOT gate combined with identity 

gate. Matrix representation of combined gates can be obtained by direct product of 

MI and MNOT.  

 

 

Figure (3.2) A compound gate constructed from an identity and a NOT gate. 

 

 

 

Figure (3.3) Cascading quantum gates to construct a quantum circuit and its QMatrix 
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3.2 Classical Addition 

A binary Adder-Subtractor is a combinational circuit that performs the arithmetic 

operations of addition and subtraction with binary numbers. We will develop this 

circuit by means of a hierarchical design. The half adder design is carried out first 

from which we develop the full adder. Connecting n full adders in cascade produces 

a binary adder for two n-bit numbers. The subtraction circuit is included by 

providing a 2’s complement circuit [44]. 

The most basic arithmetic operation is the addition of two binary digits. This simple 

addition consists of four possible elementary operations: 0+0=0, 0+1=1, 1+0=1, and 

1+1=10. The first three operations produce a sum of one digit, but when both augend 

and addend bits are equal to 1. The binary sum consists of two digits. The higher 

significant bit of this result is called a carry. When the augend and addend numbers 

contain more significant digits, the carry obtained from the addition of two bits is 

added to the next higher order pair of significant bits. A combinational circuit that 

performs the addition of two bits is called a half adder. Other act that performs the 

addition of three bits (two significant bits and a previous carry) is a full adder. The 

names of the circuits stem from the fact that two half adders can be employed to 

implement a full adder. 

 

3.2.1 The Half-Adder 

The half-adder (HA) accepts two binary digits on its inputs and produces two binary 

digits on its outputs, a sum bit and a carry bit. A half-adder is represented by the 

logic symbol in Figure (3.4.b). 
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From the operation of the half-adder as stated in Table 1, expressions can be derived 

for the sum and the output carry as functions of the inputs. Notice that the output 

carry (Cout) is a 1 only when both A and B are 1s; therefore, Cout can be expressed 

as the AND of the input variables. 

Cout = AB   ------- (1) 

Now observe that the sum output (∑) is a 1 only if the input variables, A and B, are 

not equal. The sum can therefore be expressed as the exclusive-OR of the input 

variables. 

  BA   ------- (2) 

From Equations (1) and (2), the logic implementation required for the half-adder 

function can be developed. The output carry is produced with an AND gate with A 

and B on the inputs, and the sum output is generated with an Exclusive-OR gate, as 

shown in Figure (3.4.b). Remember that the Exclusive-OR is implemented with 

AND gates, an OR sate, and inverters. 

 

Table (3.1) Half adder truth table 

INPUT OUTPUT 

A B ∑ Co 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

Binary digits to 

be added 

Sum 
Carry 

out 

XOR AND 
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Figure (3.4) Half adder: (a) Block diagram 

                   (b) Logic diagram 

 

     

3.2.2 The Full-Adder 

A classical full adder (FA) operates with an input of two addend bits, “A” and “B”, 

and a carry bit, “Cin”. (See Figure 3.5) In figure 4, S and Cout are the output sum and 

the carry-over, respectively. The sum, S, can be easily expressed as           

(where   is an addition modulo 2). One can easily obtain an expression for       

            [34-35]. 

 

Table (3.2) Full-Adder truth table 

INPUT OUTPUT 

A B Cin ∑ Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Carry + A + B Sum 
Carry 

out 

 

Half 

adder 

A 

B 

∑ (sum) 

Co (Carry out) 

(a) 

A 

B 
∑ (sum) 

Co (Carry out) 

(b) 
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A binary adder is a digital circuit that produces the arithmetic sum of two binary 

numbers. It can be constructed with full adders connected in cascade, in order to 

construct a full adder circuit for the numbers more than 1 binary digit we connect 

classical full adder circuit in cascade as in the figure 3.6. The interconnection of four 

full-adder (FA) circuits to provide a four-bit binary ripple carry adder. 

 

 

 

 

 

 

 

Figure (3.5) Classical full-adder circuit 

 

The augend bits of A and the addend bits of B are designated by subscript numbers 

from right to left , with subscript 0 denoting the least significant bit. The carries are 

connected in a chain through the full adders. The input carry to the adder is Co. and it 

ripples through the full adders to the output carry C4. The S outputs generate the 

required sum bits. An n-bit adder requires n full adders, with each output carry 

connected to the input carry of the next higher order full adder. 

To demonstrate with a specific example, consider the two binary numbers A = 1011 

and B = 0011. Their sum S = 1110 is formed with the four-bit adder as follows: 

 

BA

inCBA  )(

inCBA )( 

BA

inout CBAABC )( 

A

B

inC
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Subscript i: 3 2 1 0  

Input carry 0 1 1 0 Ci 

Augend 1 0 1 1 Ai 

Addend 0 0 1 1 Bi 

Sum 1 1 1 0 Si 

Output carry 0 0 1 1 Ci+1 

 

The bits are added with full adders, starting from the least significant position 

(subscript 0), to form the sum bit and carry bit. The input carry Co in the least 

significant position must be 0. The value of Ci+1 in a given significant position is the 

output carry of the full adder. This value is transferred into the input carry of the full 

adder that adds the bits one higher significant position to the left. The sum bits are 

thus generated starting from the rightmost position and are available as soon as the 

corresponding previous carry bit is generated. All the carries must be generated for 

the correct sum bits to appear at the outputs.  

 

Figure (3.6) Parallel 4-bit binary Adder 

 

The four-bit adder is a typical example of a standard component [19]. The circuit in 

the figure (3.6) performs calculation of two binary numbers of digits          and 

          Initial carry        
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3.3 Quantum Addition 

Obviously, we can’t directly implement carry-save adders with quantum gates, since 

the classical version of this element is clearly not unitary. It doesn’t have as many 

outputs as inputs, so it can’t be reversible. It’s easy to see that even adding a third 

output isn’t enough to make the full adder reversible. The truth table for the classical 

full adder (see above) has 3 inputs which map to a sum and carry of 1 and 0 

respectively, and 3 inputs which map to a sum and carry of 0 and 1 respectively. 

Adding one bit obviously can’t distinguish among 3 values. So we have to add two 

outputs, making the quantum equivalent of the classical full adder a 4-input, 4-output 

device [36, 42]. 

Binary adders are a key element in any arithmetic logic unit. It is therefore important 

to have test reversible binary adder. This section shows a complete set of reversible 

adders for 1-bit and n-bit binary numbers constructed from n-bit CNOT gates.  

The following terminology is used in this paper where number denotes either a 

binary number. A full-adder is a logic circuit that takes as input two numbers A and 

B and a carry Cin and produces as output their sum S and a carry-out Cout. An adder 

that takes only A and B as input is called half-adder. 

A 1-bit half-adder takes two binary digits (A, B) as input and is described by the 

logic equations 

Sum=A B 

Cout=AB 

Therefore we can construct a reversible half-adder (Figure 3.7) by using two 

reversible gates. This gate combination corresponds to a Peres gate. 
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Figure (3.7) Reversible 1-bit half-adder 

A 1-bit full-adder takes two binary digits (A, B) and a carry-in (Cin) as input is 

described by equations: 

Sum=A   B   Cin 

Cout=AB   (A   B)Cin 

A reversible full-adder (Fig. 3.8) can be constructed from four gates (two Toffoli 

gates and two Feynman gates) and has two garbage bits. The gate combination can 

be replaced by two Peres as indicated in the figure (the input line of the second Peres 

gate are permuted to avoid a cross-over of lines). Between the first use of Cin and Cout 

is only one Toffoli gate. This property can be used to construct a fast n-bit adder by 

immediately propagating the carry-out [36-37].  

 

Figure (3.8) Reversible 1-qubit full-adder 
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Appropriate combinations of the 1-bit half and full-adder, provides a reversible n-bit 

half and full-adders.  

  

Figure (3.9) Reversible n-qubit full adder 
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Table (3.3) Input combinations that produce the same output combinations in full 

adder circuit (shown shaded). 
Input Output 

A B Cin C1 S Cout G1 G2 

0 0 1 0 1 0 0 0 

0 1 0 0 1 0 0 1 

1 0 0 0 1 0 1 0 

 

We have shown that a reversible full adder circuit can be constructed by using 

CNOT and Controlled CNOT gates represented by a unitary matrix. 
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Chapter 4 

SIMULATION OF 4-QUBITS FULL ADDER CIRCUIT BY 

MATHEMATICA   

In fact, possible to use many different ways or different programs to simulation 

quantum computation, such (C/C
++

, CaML, Java, MATLAB/Octave, Maple, 

Mathcad, Maxima and Mathematica..... etc.), we choose the Mathematica because it 

is easiest and quickest way to simulate this thesis [47].   

A Mathematica for Dirac Notation, Non-commutative Algebra of Operators and 

commutations, Quantum Computing and Plotting of Quantum Circuits [41]. 

Without the ability to simulate quantum circuits, the states of qubits in quantum 

circuits would have to be determined by hand or through a physical quantum circuit. 

In order to fully utilize all that quantum circuits have to offer, it is necessary to 

design a circuit simulator that is both efficient and accurate [8].  

 

4.1 Installation Program on Micro-Soft Windows: 

After installation Mathematica program in [40], Files must be located in the proper 

file location in order to be able to load the Quantum packages with the Needs 

command and to have the documentation in Mathematica's Documentation Center. 

All the files will be located inside the directory specified by the value of 

Mathematica's variable $UserBaseDirectory. In the computer were this document 

was generated, this is the value of $UserBaseDirectory (when you write 

$UserBaseDirectory and press the at the same time the keys {SHIFT – ENTER} in 

http://homepage.cem.itesm.mx/lgomez/quantum/
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your Mathematica, you will get the $UserBaseDirectory in your computer, which 

will be different from the one shown in this example):  

 

                                                                                       

 

Like the figure (4.1) you can see the Windows Explorer opened in the 

$UserBaseDirectory of my computer. Remember that in your computer it will be a 

different location, the one that you obtain when you evaluate $UserBaseDirectory in 

your Mathematica. Important: In order to be able to see some of the folders, you 

might have to select "Tools", "Folder Options", "View", "Show Hidden Files and 

Folders" 

 

 

Figure (4.1) First step shown Installation Mathematica Add-On Program  

 

Inside your $UserBaseDirectory there must be an Applications directory, and inside 

the Applications directory you must unzip the file Quantum.zip, so that a Quantum 

directory is created. Once the unzip procedure is finished, inside the Quantum 

directory there must be the files Computing.m and Notation.m, which contain the 
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programs of this Add-On, the file PacletInfo.m, which is necessary to incorporate 

documentation in Mathematica's help system, and the directories (folders) 

Documentation and FrontEnd. You can see the Quantum directory in your computer 

like the figure (4.2):   

 

Figure (4.2) Final step shown Installation Mathematica Add-On Program  

 

After having all the files in the proper directories you must quit and restart 

Mathematica.  If the directory (folder) structure is the correct one, then you will 

obtain the "welcome" message after writing Needs ["Quantum`Notation`"] and 

pressing at the same time the keys {SHIFT – ENTER} to evaluate (the welcome 

message only appears the first time you execute Needs ["Quantum`Notation`"] in a 

fresh Mathematica session). 
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4.2 Mathematica add-on Program 

 This is a Mathematica add-on; this program is used to design and draw all 

different Quantum circuits and test their results operation. So this program is used for 

two purposes: 

1. To draw the detailed circuit of the design 

2. To test the design and make sure that the circuit working properly  

The main page of the program looks like figure (4.3). 

 

Figure (4.3) the main page of Mathematica add-on program 

In [40] explain all parts of program, how to use and details explanation program.  
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4.3 Quantum Circuit Simulator and result 

 

Our task is now to simulate four bit quantum full adder circuit my Mathematica. A 

Mathematica Add-On package is presented for Dirac Notation, Noncommutative 

Algebra of Operators and Commutators, Quantum Computing and Plotting of 

Quantum Circuits [40]. In this paper we have simulated full adder circuit using the 

Mathematica Add-On package. 

In order to fully utilize all that quantum circuits have to offer, it is necessary to 

design a circuit simulator that is both efficient and accurate [15].  We begin to design 

a half adder circuit. 

 

4.3.1 Simulation Half-Adder 

It is easy to use the program to construct a unitary circuit. Figure of the quantum 

circuit can be drawn by using the command QuantumPlot[]. Operation of the circuit 

on the qubits can be tabulated by using the command QuantumTableForm[].  
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Figure (4.4) Simulation Quantum Half-Adder with result by Mathematica 

 

The half adder circuit and its operation are illustrated in figure (4.4). In the figure, 

lines 1, 2 and 3 represents input and output of the circuit. Synthesis of input-output 

relation of the circuit is summarized in table (4.1). 

 

Table (4.1) Synthesis of input and output Quantum Half-Adder 

Input Output 

Line 1 = First Input bit (A) Line 1 = Garbage 

Line 2 = Second Input bit (B) Line 2 = Sum 

Line 3 = 0 Line 3 = Cout 
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4.3.2 Simulation Full-Adder 

Similar to the design of half-adder circuit we can construct a full adder circuit. In the 

circuits input qubits are applied to lines 1 and 2. Input of the line 3 is always 0 and 

carry input is applied to line 4. Sum of the numbers are appears on output part of line 

4 and carry appears on output line 3. Input and output relations are given in the table 

(4.2). 

 

    Figure (4.5) Simulation Quantum Full-adder with result by Mathematica  

 

In order to evaluate action of the circuit on a given input state one can use the 

command QuantumEvaluate[]. Action of the full adder circuit on various states 

(qubits) is given in figure (4.5) 
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Table (4.2) Synthesis of input and output Quantum Full-Adder 

Input Output 

Line 1 = First Input bit (A) Line 1 = Garbage 

Line 2 = Second Input bit (B) Line 2 = Garbage 

Line 3 = 0 Line 3 = Cout 

Line 4 = Cin Line 4 = Sum 

 

Example 1: 

 If addition two binary bit, Consider (A=1, B=1 and Cin=0) in quantum full-adder by 

using Mathematica Add-on. 

1. Manually Solution: 

  1 A 

  1 B 

+  0 Cin    

 1 0  
 Cout Sum  

 

2. Programing Solution: 

The following Mathematica line illustrates summation of qubits (1) and (1) with (0) 

carry input. The sum is obtained by measuring the output 4 and carry can be 

determined by measuring output 3. 
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Table (4.3) Input and Output result for example 1  

Input Result Output Line 

Line 1 = 1 1 garbage 

Line 2 = 1 0 garbage 

Line 3 = 0 1 Cout 

Line 4 = 0 0 Sum 

 

 

 

4.3.3 Simulation 4-Qubit Full Adder 

Using the full adder circuit we can design 4 qubit quantum full adder circuits by 

writing the following code in Mathematica Add-On program.   

The following code is writing to simulation of 4-qbit Adder plot the same figure (4.6) 

in mathematica Add-On program.  
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Figure (4.6) Simulation 4-qbit Adder by Mathematica 

 

Output of the Mathematica code represented by figure of the quantum full adder 

circuit and it is given in figure 11. Actions of the circuit on input qubits are 

summarized in table (4.4). 
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Table (4.4) Synthesis of input and output 4-qbit Adder 

Input Output 

Line 1 = First bit Input (A0) Line 1 = Garbage 

Line 2 = Second bit Input (B0) Line 2 = Garbage 

Line 3 = 0 Line 3 = Cout 

Line 4 = Cin Line 4 = Sum0 

Line 5 = First bit Input (A1) Line 5 = Garbage 

Line 6 = Second bit Input (B1) Line 6 = Garbage 

Line 7 = 0+Cout(Output line 3) Line 7 = Cout 

Line 8 = Cin Line 8 = Sum1 

Line 9 = First bit Input (A2) Line 9 = Garbage 

Line 10 = Second bit Input (B2) Line 10 = Garbage 

Line 11 = 0+Cout(Output line 7) Line 11 = Cout 

Line 12 = Cin Line 12 = Sum2 

Line 13 = First bit Input (A3) Line 13 = Garbage 

Line 14 = Second bit Input (B3) Line 14 = Garbage 

Line 15= 0+Cout(Output line 11) Line 15 = Cout 

Line 16 = Cin Line 16 = Sum3 
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Example 2: 

If (1
st
 No.   = 1101) and (2

nd
 No.  = 0110),  

find (1
st
 +2

nd
 =?).  

 

1. Manual Solution: 

1
st
 No. = 1101  A0 = 1, A1 = 1, A2 = 0 and A3 = 1 

2
nd

 No. = 0110  B0 = 0, B1 = 1, B2 = 1 and B3 = 0 

 

 3 2 1 0  

 1 1 0 1 A 

+  0 1 1 0 B 

1 0 0 1 1 Result 

Cout S3 S2 S1 S0  

 

2. Programing Solution:   

The following Mathematica line illustrates summation take value of qubits. Then 

obtain Output result. 
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Table (4.5) Input and Output result for example 2  

Input Output Result Output 

Line 1 = First bit Input (A0) 1 Line 1 = Garbage 

Line 2 = Second bit Input (B0) 1 Line 2 = Garbage 

Line 3 = 0 0 Line 3 = Cout 

Line 4 = Cin 1 Line 4 = Sum0 

Line 5 = First bit Input (A1) 0 Line 5 = Garbage 

Line 6 = Second bit Input (B1) 1 Line 6 = Garbage 

Line 7 = 0+Cout(Output line 3) 0 Line 7 = Cout 

Line 8 = Cin 1 Line 8 = Sum1 

Line 9 = First bit Input (A2) 1 Line 9 = Garbage 

Line 10 = Second bit Input (B2) 0 Line 10 = Garbage 

Line 11 = 0+Cout(Output line 7) 1 Line 11 = Cout 

Line 12 = Cin 0 Line 12 = Sum2 

Line 13 = First bit Input (A3) 1 Line 13 = Garbage 

Line 14 = Second bit Input (B3) 1   Line 14 = Garbage 

Line 15= 0+Cout(Output line 11) 1   Line 15 = Cout 

Line 16 = Cin 0 Line 16 = Sum3 

    

 

  



68 
 

Example 3: 

If (1
st
 No.   = 1011) and (2

nd
 No.  = 1110),  

find (1
st
 +2

nd
 =?).  

1. Manually Solution: 

1
st
 No. = 1011  A0 = 1, A1 = 1, A2 = 0 and A3 = 1 

2
nd

 No. = 1110  B0 = 0, B1 = 1, B2 = 1 and B3 = 1 

 3 2 1 0  

 1 0 1 1 A 

+  1 1 1 0 B 

1 1 0 0 1 Result 

Cout S3 S2 S1 S0  

 

2. Programing Solution:  

The following Mathematica line illustrates summation take value of qubits. Then 

obtain Output result. 
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Table (4.6) Input and Output result for example 3 

Input Output Result Output 

Line 1 = First bit Input (A0) 1 Line 1 = Garbage 

Line 2 = Second bit Input (B0) 1 Line 2 = Garbage 

Line 3 = 0 0 Line 3 = Cout 

Line 4 = Cin 1 Line 4 = Sum0 

Line 5 = First bit Input (A1) 1 Line 5 = Garbage 

Line 6 = Second bit Input (B1) 0 Line 6 = Garbage 

Line 7 = 0+Cout(Output line 3) 1 Line 7 = Cout 

Line 8 = Cin 0 Line 8 = Sum1 

Line 9 = First bit Input (A2) 0 Line 9 = Garbage 

Line 10 = Second bit Input (B2) 1 Line 10 = Garbage 

Line 11 = 0+Cout(Output line 7) 1 Line 11 = Cout 

Line 12 = Cin 0 Line 12 = Sum2 

Line 13 = First bit Input (A3) 1 Line 13 = Garbage 

Line 14 = Second bit Input (B3) 0   Line 14 = Garbage 

Line 15= 0+Cout(Output line 11) 1   Line 15 = Cout 

Line 16 = Cin 1 Line 16 = Sum3 
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Chapter 5 

CONCLUSION 

The most important results and achievements of this study are: 

 Attentively studying Classical Computation, especially Number Systems and Digital 

System for obtaining Half-Adder and Full-Adder. Through Half-Adder and Full-

Adder, 4-bit Parallel Adder is achieved and developed into n-bit Parallel Adder and a 

variety of other circuits in different areas.  

 Studying the new science of Quantum Computation and all its main components. 

Familiarizing with all the Qubit cases, all the properties of Quantum Gates, 

particularly the input and output of each one of them, which help with the designing 

of many other different quantum circuits. 

 Obtaining the output of each quantum circuit through familiarization with the input 

and output of quantum gates. 

 Designing Quantum Half-Adder and Quantum Full-Adder and achieving the output 

of all the cases. 

 Designing 4-qubit adder quantum circuit and providing many cases from the input 

cases and obtaining the output of the cases. 

 Formulating all the above-mentioned processes in Quantum Computation by using 

Mathematic program, particularly in the area of Drawing Circuit and achieving 

remarkable results. 
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 All these will result in the development of Quantum Computation science and 

combining it with Mathematica program. Using this program for all the Algorithms 

of this science which have thus far been discovered.      

Additionally, The Mathematica add-on presented in this paper utilizes an irreducible 

form of output decomposition of a general controlled quantum gate with addition 

conditionals and is highly efficient in simulating complex quantum circuit. Another 

important application in which large and complex circuit need to be efficiently 

simulated is in the area of quantum error correction. This demonstrates a part of a 

general framework for simulation of quantum computers on classical computers. 
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