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ABSTRACT 

APPLICATION OF SOFT COMPUTING TECHNIQUES  

TO CONTROL OF A FLEXIBLE MECHANICAL SYSTEM 

HAYTA, Ünal 

M.Sc. in Mechanical Engineering 

Supervisor:  Prof. Dr. Sadettin KAPUCU 

September 2013, 70 pages 

 

Robotic manipulators play an important role in industry. Nowadays most company 

needs more productivity with less energy consumption. For reasons like these 

flexible link manipulators in other words flexible link systems are used more widely 

in several applications. Although flexible systems have several advantages, they have 

some disadvantages. The most vital disadvantage is residual vibration at the end of 

motion. This vibration is undesirable in industry. So different type of control 

schemes have been applied to eliminate or reduce this residual vibration. In the 

content of this thesis four different control techniques are applied to the single link 

flexible manipulator. Among these controllers PID controller (see chapter 4) and 

command shaping controller (see chapter 5) are classical type of controllers and they 

are designed for comparison of classical controller with soft computing types. The 

control techniques are proportional-integral-derivative control, command shaping 

control, fuzzy logic control and neural network control. These four controllers are 

applied separately to the system and results are discussed. Proposed controllers are 

designed by considering by considering quick response and small overshoot. 

 

Key Words: flexible manipulators, PID control, command shaping control, fuzzy 

logic control, neural network control 

 

 



 
 

 

 

ÖZET 

BİLİŞSEL HESAPLAMA TEKNİKLERİNİN ELASTİK MEKANİK  

BİR SİSTEMİN KONTROLÜNDE KULLANILMASI  

HAYTA, Ünal 

Yüksek Lisans, Makine Müh. Bölümü 

Tez Yöneticisi: Prof. Dr. Sadettin KAPUCU 

Eylül 2013, 70 sayfa 

 

Robot manipülatörler endüstride önemli roller oynamaktadır. Günümüzde çoğu şirket 

az enerji tüketimiyle yüksek üretim gücü istemektedirler. Bunu gibi nedenlerden 

dolayı esnek uzuvlu manipülatörler başka bir değişle esnek uzuvlu sistemler daha 

yaygın kullanılmaya başlamıştır. Esnek uzuvlu sistemlerin birçok avantajı olmasına 

rağmen önemli dezavantajları da bulunmaktadır. Bunlardan en önemlisi de hareket 

sonundaki artık titreşimlerdir. Bu titreşimler endüstride istenmeyen özelliklerdendir. 

Bu yüzden değişik kontrol yöntemleri bu artık titreşimleri yok etmek ya da azaltmak 

için kullanılır. Bu çalışmada dört farklı kontrol tekniği tek uzuvlu esnek 

manipülatörün pozisyon kontrolünde kullanılmıştır. Bu kontrol yöntemleri ise 

şunlardır: PID kontrol, girdi şekillendirme ile kontrol, bulanık mantık ile kontrol ve 

yapay sinir ağları ile kontrol. Bu kontrolörler sisteme ayrı ayrı uygulanmış ve 

sonuçları tartışılmıştır. Önerilen kontrol yöntemleri hızlı cevap ve düşük sapma 

karakteristiği düşünülerek oluşturulmuştur. 

Anahtar Kelimeler: esnek manipülatörler, PID kontrol, girdi şekillendirme ile 

kontrol,  bulanık mantık ile kontrol, yapay sinir ağları ile kontrol
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

In many industrial applications robotic manipulators have key roles in different 

operations. Until last decades robotic manipulators are designed to have high 

stiffness due to get rid of vibrations. Because of this high stiffness, manipulators 

would become more heavy and bulky. Afterwards it is seen that these types of 

robotic manipulators were not satisfactory. Because of their heavy design 

manipulators were consuming high power and operating with a low speed with 

respect to the operating payload. Also there is dynamical deflection which is the 

source of residual vibration when the operation is completed. Besides in some 

industries high speed operation and high accuracy become vital requirement. 

Especially in space industry applications manipulators are designed as light weight 

and slender due to low energy and weight requirements. In order to improve 

industrial productivity and satisfy other necessities flexible mechanical systems 

(FMSs) undertake a crucial task. Main advantages of FMSs are lower cost, larger 

work volume, higher operational speed, greater payload-to-manipulator weight ratio, 

smaller actuators, lower energy consumption, better manoeuvrability, better 

transportability, and safer operation due to reduced inertia. 

 

Besides these FMSs have important drawbacks like end point accuracy and residual 

vibration due to flexibility of the manipulator. For these reasons control system 

should be designed for eliminating vibrations. 

 

In the cause of complex nonlinear partial differential equations for dynamical 

equation of motion, it is a real challenge to design a controller. For this reason there 
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are many type of controllers proposed like input/output linearization via state 

feedback, PD control, adaptive control, neural network control, fuzzy logic control, 

lead-lag controller, output redefinition, singular perturbation, sliding mode control, 

stable inversion in the frequency domain, stable inversion in the time domain, pole 

placement, input shaping, optimal and robust control. 

 

1.2 Structure of Thesis 

In this study a single link flexible manipulator (SLFM) is chosen. This system will be 

mathematically modelled (see chapter 3). Afterwards different types of control 

techniques will be applied in order to eliminate or at least reduce the residual 

vibrations which exist at the end of motion and control the position of the arm. In this 

study main objective is designing controller using soft computing techniques. Four 

types of techniques will be applied in this thesis. Among these controllers PID 

controller (see chapter 4) and command shaping controller (see chapter 5) are 

classical type of controllers and they are designed for comparison of classical 

controller with soft computing types. From many soft computing controller types 

fuzzy logic (see chapter 6) and neural network (see chapter 7) controllers are chosen 

for controlling the system. In last chapter all of controller types, which are applied in 

this thesis, will be compared. 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 Modeling of System 

There are different type of models for modelling of the system such as the basic 

spring-mass discrete models, linear Euler-Bernoulli partial differential equation, 

generalized Newton-Euler algorithms, Lagrangian equations, associated to a 

Rayleigh-Ritz elastic field decomposition method, finite element decomposition and 

modal decomposition method [1]. In this thesis linear Euler- Bernoulli PDE model is 

chosen for modelling the system. Application of mode summation method to this 

model and using Lagrange’s equation, equation of motion of single link flexible 

manipulator is achieved [2].  In the most of studies about control of FMS, it is seen 

that this model is very useful and easy to understand [3-7]. For equation of motion, 

generally, first three natural modes of link is calculated [8]. 

 

2.2 Control of Systems 

In the following three sections, literature survey of control techniques, which are 

used in this thesis, are presented. 

 

2.2.1 Command Shaping Control 

Mohamed and Tokhi [9] have proposed and compared input shaping, low-pass and 

band-stop filtered input techniques on the level of vibration reduction at resonance 

modes, speed of response, robustness, and computational complexity. Cuccio et al. 

[10] have discussed preshaped input laws using a limited number of acceleration 

steps of equal duration in order to reduce the residual vibration of point-to-point 

moving elastic systems. To obtain smother trajectory, the number of steps is 

increased. Aspinwall [11] has presented a shaping input function method for 

generating torque trajectories which involves adding harmonics of a sine series. 
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Meckl and Seering [12] have constructed input force functions from either ramped 

sinusoids or versine functions. This approach involves tuning of these template 

functions by adding up its harmonics with coefficients chosen to minimize the 

energy of the resulting function. However, main problem with these methods is that 

exact knowledge of the system frequencies is required. K. Alnefaie et al. [13] have 

considered a triangular velocity profile to minimize the residual vibration of the 

rotating flexible beam by selecting proper rise time. Residual vibration amplitudes 

are strongly depended on the ratio of rise time to beam vibration period. Shina and 

Brennan [14] have analyzed two acceleration shaping methods based on transient 

response of the system for controlling the residual vibrations of a translating or 

rotating Euler-Bernoulli cantilever beam. Identical result to the input shaping method 

has been obtained by their proposed method. Mentioned methods, which are in the 

case of K. Alnefaie et al. [13] study, require proper motion time selection. T. Önsay, 

A. Akay [15] proposed multi-switch bang–bang functions that produce a time-

optimal motion. Depending on the dynamic model of the system, accurate selection 

of switching times is needed. A well-known command generation is based on 

filtering the desired trajectory by a finite impulse filter that obtains the command 

reference by convolving the desired trajectory with a sequence of impulses [16]. One 

or the main drawback of this method is to deal with system uncertainties. This 

problem is solved by using more impulses sequence to become the shaped signal 

more robust to uncertainties, but this will result in a longer delay in the system 

response [16-17]. Alıcı et al. [18] have suggested a robust motion design method 

which is based on convolution of a cycloid-plus-ramp function with two impulse 

sequences. The proposed hybrid input shaping technique is insensitive to the 

uncertainties of the system parameters and does not lengthen the time delay.  

 

2.2.2 Fuzzy Logic Control 

Sreenatha et al. [19] have controlled position of the AC servo motor driven flexible 

link manipulator with fuzzy logic controller. They have compared results with 

respect to different reference inputs. In their results it is easily seen that there is 

overshoot when the motion is completed. Subudhi et al. [20] have suggested PD type 

fuzzy logic controller and presented that their method has better performance than 

conventional PD and LQR controllers. Also they suggested a neuro-fuzzy control for 
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payload variability. Renno [21] has provide a method which has a concept of 

dividing fuzzy logic controller two sub-controllers. One of these controllers for tip 

point vibration control and the other one is hub position of the link. Each controller 

produces a torque signal and these torque signals are summed. This summation is 

used as the control signal. Ranges of each controller are found from inverse 

dynamics of system. Hasan et al. [22] have used fuzzy logic controller to control 

single link flexible manipulator. In this study steady state error, settling time, 

overshoot and rise time are tried to estimate for different reference inputs. They 

compared the proposed method results with LQR controller results. 

 

Tokhi et al. [23] have used fuzzy logic algorithm for control of flexible link 

manipulators. Different type of fuzzy logic controller types are applied to system and 

results are discussed. Jang et al. [24] have explained MATLAB fuzzy logic toolbox. 

Generally, fuzzy logic algorithm theory and program interface is shown. Also there 

are some applications and demos for understanding the usage of this toolbox. 

Nguyen et al. [25] have explained fuzzy logic theory and its control application very 

briefly. He gives an application of fuzzy logic controller to inverted pendulum. The 

theory is easily understandable and design procedures are explained clearly. 

 

2.2.3 Neural Network Control 

There are different types of neural network control. Some of them are based on 

imitating of existing controller besides these others are based on creating controller 

from neural network own structure. In this thesis main focus of use of neural network 

is creating neural network controller. 

 

Tang et al. [26] have proposed a neural network controller for controlling tip position 

of a flexible link manipulator. Error is used to construct neural network. For 

comparative study filtered and unfiltered tracking error are used for designing neural 

network controller. Talebi et al. [27] have designed neural network controller for tip 

position tracking of flexible link manipulators based on modified output re-

definition. This approach needs prior knowledge about the system. There are four 

neural network structure proposed by Talebi et al. Two of them are created by using 

modified feedback-error-learning approach for learning the inverse dynamics of the 
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system. Third one is based on main criteria for designing the controller is hub 

position while eliminating tip vibration. The last one consists of two neural networks. 

First one is responsible for generating appropriate output for minimum phase 

behavior. The second one is used for implementing inverse dynamics of controller. 

Su et al. [28] have designed a controller based on inverse dynamics of rigid 

manipulators. The proposed neural network learns nonlinearities of the flexible link 

from the inverse dynamics. No prior knowledge is needed for nonlinearities. The 

adjustment of the network gains are based on the tracking error. Öke et al. [29] have 

proposed a method which is uses neural network to compute incremental changes for 

the reference values of the joint angle to achieve successful tip tracking. To minimize 

the tip deflection neural network cost function is used. Joint angle control is achieved 

by PD controller.  

 

Nguyen et al. [25] have explained neural network for control briefly. There are also 

some examples like PI control simulation with neural network, instantaneous 

linearization with neural network. Also Tokhi et al [23] have discussed modular 

neural network technique. 
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CHAPTER 3 

 

MODELING OF SLFM 

 

 

3.1 Introduction 

In the vibration point of view SLFMs are generally described as continuous systems. 

So it is beneficial to define continuous and discrete systems. Sometime a system can 

be thought as discrete and modeled as ordinary differential equations (ODEs), 

another time the same system can be thought as continuous and modeled by partial 

differential equations (PDEs). So it is easy to understand that discrete and continuous 

systems are related. The continuous systems can be modeled as infinite numbers of 

mass and springs. So there will be infinite numbers of natural frequencies. Besides, 

the response of discrete systems depends on time and initial condition. In continuous 

systems vibration depends on position and time. In discrete system ordinary 

differential equation is converted to matrix algebra with eigenvalue problem. The 

eigenvalues are natural frequencies of the system. In continuous systems, boundary 

and initial conditions are important because response depends on coordinate and 

time. There are two types of boundary conditions: 

 

1. Geometric boundary conditions: Displacement and slope 

2. Natural boundary conditions: Force and moment 

3.2 Dynamical equation of motion of the system 

3.2.1 The Flexible Mechanical System 

In this thesis Euler- Bernoulli beam theory is chosen for the modeling single link 

flexible manipulator. Theory has two important assumptions [30]: 

1. The material is linear elastic according to Hooke’s law 

2. Plane sections remain plane and perpendicular to the neutral axis. 
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The length of link is assumed as constant and shear deformation effect of axial forces 

neglected [23]. 

There are some constants for modeling manipulator such as, n  natural frequency of 

the SLFM, w cross sectional width, h cross sectional height, E modulus of elasticity, 

m weight per unit length, J moment of inertia of SLFM.  

 

Figure 3.1: SLFM model [4] 

For   angular position input, u  is the elastic deformation,  txy , is the total 

displacement of a point on the manipulator at the distance x from the hub (base). So

 txy , is the function of rigid body motion   and elastic deformationu .  

     txutxtxy ,,                                   (3.1) 

In the next section derivation of PDE of SLFM is presented by using Hamilton’s 

principle. With application of mode summation method to PDE equation of motion 

will be derived. 
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3.2.2 Derivation of Equation of Motion 

3.2.2.1 Derivation of PDE 

For derivation of PDE of SLFM a link is subjected to purely bending moment as 

shown in figure 3.2. 

 

Figure 3.2: Euler-Bernoulli beam model 

Considering the infinitesimal segment of the beam model, which has dimension dx  

at distance x  from zero, has displacement u, the kinetic and potential energies 

becomes respectively: 

 

ll

dxumumdxT
0

22

0
2

1

2

1
                    (3.2) 

 

ll

dv
E

dvV
0

2

0
2

1

2

1 
                    (3.3) 

where u  is the time derivative of the elastic displacement,  is the bending stress, 

is strain, v is the volume. 

The cross section of beam is depicted in figure 3.3. The beam cross section is in 

rectangular shape and uniform along the length. Potential energy of the beam can be 

written as: 
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Figure 3.3: Cross-section of beam 

dx
EI

M
dxdAy

EI

M
bdxdy

EI

yM
bdxdy

E
V  

2
2

2

2

2

222

2

1
)(

2

1

2

1

2

1 
            (3.4) 

where I is the inertia, y is the distance from the neutral axis, A is the cross sectional 

area. 

Note that ratio of normal stress at a section to distance from neutral axis is given as 

I

M

y



                        (3.5) 

and this is equal to; 

R

E

I

M

y



                     (3.6) 

where R is the Radius of curvature. Simplified curvature of a line is given as; 

2

21

dx

ud

R
                           (3.7) 

Substituting equations (3.6) and (3.7) into equation (3.4) potential energy becomes; 

dx
dx

ud
EIV

l 2

0

2

2

2

1
 








                     (3.8) 

While driving the equation of motion of elastic bodies, use of Hamilton principle is 

more effective than the other methods. Hamilton principle is given as; 
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0
2

1


t

t

Ldt                      (3.9) 

where L is the difference from kinetic energy to potential energy. So it can be written 

as: 

VTL                                (3.10) 

Substituting equations (3.2), (3.8) and (3.10) into equation (3.9) Hamilton principle 

equation becomes; 

0
2

1

2

12

1

2

0

2

2

0

2

































 
t

t

ll

dtdx
dx

ud
EIdx

dt

du
m               (3.11) 

The solution of equation (3.11) is; 

0
),(),(

2

2

4

4


dt

txud
m

dx

txud
EI                 (3.12) 

This equation is known as Euler-Bernoulli partial differential equation. 

3.2.2.2 Mode Summation Method 

When the mode summation method is used for solution of equation (3.12), 

displacement ),( txu can be written as: 


i

ii tqxtxu )()(),(                     (3.13) 

If equation (3.13) puts into equation (3.12): 













)(
)(

)(
)(

0)(
)(

)(
)(

4

4

2

2

2

2

4

4

x
dx

xd

m

EI
tq

dt

tqd

x
dt

tqd
mtq

dx

xd
EI







                       (3.14) 

In the case of simple harmonic motion, ratio of acceleration to displacement is equal 

to square of natural frequency. 
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2

2

2

)(
)(

tq
dt

tqd
    0)(

)( 2

2

2

 tq
dt

tqd
                      (3.15) 

If you want to solve equation (3.14), Laplace transform has to be done to equation 

(3.14). Generalized coordinate )(tqi  is: 

)sin()cos()( tBtAtq iii                   (3.16) 

For the normal modes of vibration of such a cantilever beam )(xi second part of 

equation (3.14) must be solved. In figure 3.4 cantilever Euler-Bernoulli beam is 

shown [8]. 

)(
)( 2

4

4

x
EI

m

dx

xd



                  (3.17) 

 

Figure 3.4: Cantilever Euler-Bernoulli beam 

Let us take 

4
2





EI

m
  

4

22

ml

EI
l                 (3.18) 

 So equation (3.17) becomes: 

0)(
)( 4

4

4

 x
dx

xd



                  (3.19) 

In order to solve equation (3.19), Laplace transform should be taken. Result is: 

)cos()sin()cosh()sinh()( xDxCxBxAx iiiii                (3.20) 

In the case of cantilever beam, there are four boundary equations. 
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Displacement at x=0: 0),0( tu                 (3.21) 

Slope at x=0: 0
),(

0


xdx

txdu
                 (3.22) 

Shear force at x=L: 0
),(

3

3



Lx
dx

txud
EI                (3.23) 

Bending moment at x=L: 0
),(

2

2



Lx
dx

txud
EI               (3.24) 

By using these four boundary conditions we can obtain frequency equation: 

1)cos()cosh( LL                  (3.25) 

When we solve this frequency equation numerically we can find infinite number of

i . It means that SLFM has infinite numbers of natural frequencies. 

So natural modes equation becomes: 

        xxLLxxLLAx iiiiiiiiii  coshcoscoshcossinhsinsinhsin 

        i=1,2…          (3.26) 

For the first three modes, L values are: 

1
st
 mode: 875.1L  

2
nd

 mode: 694.4L  

3
rd

 mode: 855.7L  
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First three natural modes are shown in figure 3.5: 

 

Figure 3.5: First three mode shapes 

Also mode summation method can be used for converting partial differential 

equation to ordinary differential equation [2]. Let us take equation (3.12) and forced 

it with a torque  tmx  . 

 tmx
dt

txud
m

dx

txud
EI 

2

2

4

4 ),(),(
                  (3.27) 

If we want to write energy equation in terms of generalized co-ordinate, the kinetic 

energy is: 

 2

2

1
iiqMT                   (3.28) 

where iM  is generalized mass: 

   
l

ii dxxmxM
0

2
                  (3.29) 
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The potential energy is: 

 2

2

1
iiqKU                    (3.30) 

where iK  generalized stiffness matrix: 

  dxxEIK

l

ii

2

0

 



 

                   (3.31) 

Work done by applied force for virtual displacement iq is: 

    

l

i

i dxxtmxqW
0

                 (3.32) 

From equation (3.32) generalized force can be easily found: 

   

l

i dxxxtmQ
0

                 (3.33) 

If we put T, U and Q into Lagrange equation (3.34) and solve it for iq , ordinary 

differential equation (3.35) can be derived. 

i

iii

Q
q

U

q

T

q

T

dt

d

























                (3.34) 

       tMtqtq iiiii    2                 (3.35) 

where i  is the mode participation factor for mode i : 

 

l

ii dxxxm
0

                   (3.36) 

and iM  is generalized mass: 

   
l

ii dxxmxM
0

2                    (3.37) 
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3.2.3 State Space and Transfer Function of the Model 

In order to simulate the system, ordinary differential equations must be converted to 

state space or transfer function. In the simulations first mode of vibration is only 

taken into account because biggest amplitude of vibration occurs in first mode. The 

amplitude of the other mode is too small with respect to first mode. 

The result of equation (3.35) is only vibration of tip point of SLFM. In order to add 

rigid body motion the following equations have to be solved at the same time. 

 

       t
JM

tqtqtq

t
J

i

i
iiiii 












 




22

1





 

where torque  t  is used input for both equations. Also damping coefficient  is 

added into equation (3.35). 

In the case of state space, states of system are: 

qx

qx

x

x













4

3

2

1





                   (3.38) 

So state space matrices are: 

 

  3

2

141

1

1
4

43

2

21

2

1

xxt
JM

x

xx

t
J

x

xx























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























1

2

1 200

1000

0000

0010



A ,

































JM

J
B

1

1

0

1

0

,  010LC  ,  0D     (3.39) 

CXY

BuAXX




                    (3.40) 

By substituting equation (3.39) to (3.40), state space form of system can be written:

 

 

















































































































4

3

2

1

1

1

4

3

2

1

1

2

14

3

2

1

010

0

1

0

200

1000

0000

0010

x

x

x

x

LY

t

JM

J

x

x

x

x

x

x

x

x











             (3.41) 

For simulation studies values, which are presented in table 3.1, will be used.  

 

Table 3.1 Values of system characteristics 

 Symbol Value 

Length of SLFM L(m) 0.7 

Cross-sectional width w(m) 0.002 

Cross-sectional height h(m) 0.0255 

Modulus Elasticity E(GPa) 71 

Mass per unit length m(kg/m) 0.1382 

First mode frequency 
1 (rad/s) 21 

Damping coefficient   0.02 

 



18 
 

Using the equation (3.42) system will be represented by transfer function. 

  BAsICsG 1)(                   (3.42) 

 
)2( 2

11

2

1

1

2  




ssJMJs

L
sG                   (3.43) 
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CHAPTER 4 

 

PID CONTROL OF SLFM 

 

4.1 Introduction 

PID controller is one of the mostly used controller types. Its popularity comes from 

its simplicity. Error, which is difference between desired set point and the real 

output, exists in all systems. Controller’s main aim is minimizing this error. PID 

controller performs this function in three steps. First one is proportional controller 

action. It is denoted as P. Proportional controller action depends on present error. It 

takes this present error multiply a constant value pK . In this way, steady state error is 

eliminated. Second one is integral action. Its abbreviation is I and it is depends on 

accumulation of past errors. In this step integral of error is multiplied by a constant

iK . Thus integral controller is also eliminates the steady state error more precisely, but it 

can be lead to decrease stability characteristics. The last controller action is derivative. It is a 

prediction of future errors. By taking derivative of error and multiplying it with constant dK

derivative control action is achieved. Derivative control action increases the stability of the 

system like a damper effect. If it is too big dK value, derivative action can cause steady state 

error. Block diagram representation of controller is shown in figure (4.1). 
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Figure 4.1: PID controller block diagram representation. 

In this representation e is the error, u is the control signal. Relation between e and u 

is: 

         sEsK
s

K
KssETKsE

sT

K
sEKsU d

i
pdp

i

p

p 







                   (4.1) 

For tuning gains Zeigler-Nichols suggested a method [31]. This tuning method gives us an 

educated guess for the parameter values and provides a starting point for the fine tuning. But 

in this section gain values will be found by trial and error. 

4.2 Simulations and Results 

In this section position control of SLFM is aimed with PID controller. For the 

simulation MATLAB, Simulink software will be used.   

Firstly it is beneficial to see uncontrolled response of the system. In order to do this, 

system should be represented by state space Simulink block and this block should be 

connected step forcing function. 

 

Figure 4.2: State space of SLFM with step input function. 
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The result is shown in figure (4.3): 

 

Figure 4.3: Result of step forcing function 

It is easily seen that system is uncontrolled. Because of big scale, oscillation tip of 

the link is not seen from the figure 4.3.  So it is necessary to use a controller to this 

system. From Simulink toolbox proportional-integral-derivative controller block is 

connected to the plant. Input of the controller is position error and output is control 

signal which will be used for input of the plant. 

 

Figure 4.4: Block diagram of the PID control of SLFM 

Firstly only proportional controller will be used and its gain will be tuned by trial and 

error. The other control action gains (derivative-integral gains) will be zero. For the 

beginning pK  is taken 1 and result is: 
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Figure 4.5: Response of system at 1pK  

It is seen that system output is oscillating around the 1. So 
pK should be increased. 

Let’s take 10pK : 

 

Figure 4.6: Response of system at 10pK  
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Oscillation is still continuing, but it decreases with respect time. At last take

100pK : 

 

Figure 4.7: Response of system at 100pK  

It is seen that when proportional gain increases response time decreases. At the same 

time oscillation amplitude increases. So another control action is needed. This is 

derivative control action. Derivative control action eliminates the oscillations as 

previously said. So let’s take 1dK : 
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Figure 4.8: Response of system at 100pK and 1dK  

As a result of adding derivative gain as 1, system’s response time is faster. Settling 

time is approximately is 0.25 seconds. Also peak oscillation value decreases to below 

of 1.6 radians. 

By increasing the derivative gain settling time can decrease. Take 10dK : 

 

Figure 4.9: Response of system at 100pK and 10dK  
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In this case response time decreased to 0.1 seconds. Also peak value is less than 1.4 

radians. This result is sufficient in most cases. So there is no need to add integral 

gain to the controller. But if you insist on adding integral gain, it will be easily seen 

that there is no change in response. 

 

Figure 4.10: Response of system at 100pK , 10dK  and 100iK  

Adding integral gain has not given any advantage.  

As a result for this plant only proportional-derivative controller is sufficient. By 

taking gains as 100pK and 10dK , response time is 0.1 and peak value is less than 

1.4 radians. These controller’s results will be compared other controller results in the 

following sections. 
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CHAPTER 5 

 

COMMAND SHAPING CONTROL OF SLFM 

 

5.1 Introduction 

There are two main classes to control flexible link manipulators. These are open-loop 

control and closed loop control. In the case of open loop control system is controlled 

by generating a control input by considering characteristics of the system. 

Accordingly systems most effective vibrations can be eliminated. In open loop 

systems there is no need of any feedback of any state. So this control system does not 

require any sensor. In contrast with open loop, close loop controllers uses feedback 

of states which are required to control. Because of this reason, close loop controllers 

are also named as feedback controllers. They use measurements and estimations for 

controlling action. If there is any uncertainty, feedback controller must be used. But 

in the case of open loop control, there should not be any uncertainty in the system. 

Because controlled input is designed by using characteristics of system. 

As mentioned in chapter two, there are various open loop control strategies like input 

shaping, Fourier expansion of forcing function, computed torque control and etc. In 

the next section a four piece acceleration motion profile is proposed. This 

acceleration profile will be used as input function to the system. 

5.2 Generation of Shaped Command 

In order to eliminate residual vibration of links which are rotated from point to point, 

acceleration and deceleration periods are used as motion profile. In this section an 

acceleration profile is generated by using another study which is presented in 

reference [32]. The motion profile is formed by superimposing of three functions, a 

cycloid, a ramped versine and a ramp. By using total displacement, transportation 

time and system parameters the amplitudes of the three functions are calculable. 
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A schematic drawing of the proposed profile of displacement, velocity, acceleration 

and jerk is depicted in figure 5.1. 

 

(a) Position 

 

(b) Velocity 
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(c) Acceleration 

 

(d) Jerk 

Figure 5.1: Proposed motion profile's (a) displacement, (b) velocity, (c) acceleration 

and (d) jerk 

For a given total travel time rt , the motion profile consists two phase; acceleration 
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sector further divided into two sub sector; acceleration rise at half of acceleration 

period 2rarar tt  , and   acceleration return at half of acceleration period 2rarare tt  . 

Similarly, the deceleration phase also divided into two sub phases; deceleration rise 

at half of deceleration period 2rdrdr tt  , and   deceleration return at half of 

deceleration period 2rdrdre tt  . The velocity and displacement curves are obtained 

by integrating. Here the following conditions should be held for shaping and 

combining the curves: the sum of the duration times of the phases shall be equal to 

total 22 rdra ttt  , the velocities at each sector junctions shall be equal, and the 

jerk at each sector junctions shall have no infinite jerk value. The motion profile is 

derived from a cycloid, a ramped versine, and a ramp curve for each sector to obtain 

smooth acceleration. 

General form of the acceleration profile is expressed as: 

   )cos(1
22

)sin(
22

3321 Rt
ARtA

RtRt
ARtA

a 


                    (5.1) 

where 1A  is the amplitude of a ramp motion profile, 2A  is the amplitude of  a 

ramped cycloid motion profile, 3A  is the amplitude of a ramped versine motion 

profile, t is time into motion,   is the section time,  /2R . Furthermore, 

maximum acceleration can be written as 321 AAAA  , and arranging equations 

above becomes: 

 )cos(1
2

)sin(
22

32 Rt
A

Rt
AARt

a 


 

In this equation 321 ,, AAA is equal to: 
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where n is the first mode frequency 1  because the vibration amplitude 

contribution of the modes other than first are negligible small as said previously and 

 is the damping ratio. Note that theoretically there is no traveling time rt  restriction 

on the system and this is the main advantages of this new reference command. 

As mentioned previously acceleration profile is consisted of four subsectors. These 

are: 

For the acceleration rise at half of acceleration period  4,0 rrar ttt  : 

 )cos(1
2

)sin(
22

32 Rt
A

Rt
AARt

a 


              (5.2a) 

For the acceleration return at half of acceleration period

 22,4 rrararrrar tttttt  : 

 
      


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
 rarrar

rar ttR
A

ttR
AttAR

Aa cos1
2

sin
22

32


          (5.2b) 

For the deceleration rise at half of deceleration period  43,2 rrra tttt  : 

 
      
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ra ttR
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AttAR

a cos1
2

sin
22

32


           (5.2c) 

For the deceleration return at half of deceleration period  rr ttt ,43 : 
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       (5.2d) 

Since the acceleration and deceleration phase and their subsections durations are 

selected as one fourth of total travelling time therefore 1A , 2A and 3A  for all section 

becomes; 
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5.3 Simulations and Results 

Simulations are performed to verify validity and effectiveness of the proposed 

motion design   to eliminate or reduce residual vibration of the flexible system. The 

flexible link manipulator parameters are given in table 3.1. For simulations, 

MATLAB software is used. In this program plant and forcing function are modeled 

as M-file (see appendix A). In order to solve ordinary differential equation ode45 

command is used. After solving the equation of motion, oscillation of tip point of 

SLFM with respect to acceleration input which is applied by motor shaft, is given in 

figure 5.2. In order to obtain displacement and velocity profiles, acceleration input 

integrals are taken. 

The proposed method results of residual vibration elimination are presented in figure 

5.2 and 5.3 for arbitrary selected two travelling times; eight times and three times 

system period. 
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(b) 

Figure 5.2: Traveling time is equal to eight times of system period. (a)  Proposed 

acceleration profile, (b) tip point deflection of SLFM with respect to input in (a). 
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(b) 

Figure 5.3: Traveling time is equal to three times of system period. (a)  Proposed 

acceleration profile, (b) tip point deflection of SLFM with respect to input in (a). 

As it is seen that from figures 5.2 and 5.3, amplitude of point to point acceleration 

profile increases when travelling time decreases. Besides at the end of the motion 

residual vibration is eliminated. In elastic systems if traveling time of input function 

is equal to period or multiplies of period of system, it is obvious and well known that 

there will be no residual vibration when motion is completed. In order to show 

effectiveness of proposed method in any travelling times, 1.25 times system period 

as travelling time. The result is shown in figure 5.4: 
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(a) 

 

(b) 

Figure 5.4: Traveling time is equal to 1.25 times of system period. (a)  Proposed 

acceleration profile, (b) tip point deflection of SLFM with respect to input in (a). 
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Amplitude of acceleration becomes bigger when compared with long travelling time 

duration as in figure 5.2 and 5.3. But it is easily seen that at the end of the motion 

there is no residual vibration. 

Consequently in this section an open loop control strategy is proposed. In this 

method acceleration profile is generated as input function which eliminates the 

residual vibrations. It is seen that for any travelling time, the proposed method can 

eliminate residual vibrations of tip point without imposing any travelling time 

increase. This method of control will be used in the following chapters to make 

comparison between the controllers. 
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CHAPTER 6 

 

FUZZY LOGIC CONTROL OF SLFM 

 

6.1 Introduction 

In this section question of ‘what is fuzzy logic?’ will be answered and its 

applications will be explained. 

In real world facts are not described sharply like ‘she is tall’ or ‘he is fat’. Always 

there will be an uncertainty. So natural language should not use with sharp 

boundaries. In order to represent these imprecise statements fuzzy logic sets is used 

all around the world.  

Fuzzy logic gives us a chance to describe input and output relations of the statements 

by using human linguistic rules. These linguistic rules consist of human experiences. 

Fuzzy logic theory generates a ‘If …… then….’ relation between input and output by 

using these human experiences. Also linguistic variables like big, small, medium will 

be used to generate this relationship. Usage of these relationships will be explained 

in the following section.  

There are a lot of application areas of fuzzy logic. Some of them are: control, 

classification, optimization, and etc. In this chapter application of fuzzy logic 

controller to SLFM will be discussed. 
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6.2 Fuzzy Logic Control 

The use of fuzzy logic to control a system can be explained as describing a controller 

with linguistic rules. Four main modules exist in fuzzy logic controller. These are 

fuzzification, knowledge base, inference engine and defuzzyfication module. Firstly 

input and output variables must be defined. For plant which is used in this thesis has 

one input which is torque and two outputs which are hub position and tip point 

oscillation of the SLFM. So inputs to fuzzy logic controller will be hub position 

error, its time derivative, tip point position error and its time derivative and output 

will be torque as control signal. But in this chapter these two degrees of freedom will 

be controlled by separately. So two controllers will be used. One of them will control 

the hub position and the other one will control the tip point. After defining the 

variables the next step is fuzzification of input variables. The fuzzification process is 

achieved by membership functions. Membership functions are characteristic 

functions which are used for mapping input variables between [0, 1]. In this thesis 

for each variable three triangular membership functions will be used. These are 

negative, zero and positive as shown in figure (6.1). The variables can take values in 

x axis. The interval on x axis is named as universe of discourse. 

 

Figure 6.1: Triangular membership function 

After fuzzification process knowledge base module will be created. In knowledge 

module ‘If… then….’ relations exist. Number of relations can be calculated by 

number of variables and number of membership functions. For first controller there 

are two variables which are position of hub and its derivative and both of them have 

three membership functions. So totally nine ‘If… then….’ relations exist. For the 

first controller relations are given in table 6.1. 
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Table 6.1: ‘If… then….’ relations for controllers 

 error (e) 

 

Time derivative 

 of error 

)(e  

 N Z P 

N NB NS Z 

Z NS Z PS 

P Z PS PB 

 

The third module is inference engine. There are different types of fuzzy inference 

systems. Some of them are Mamdani method, Sugeno method and simplified 

method. For this application Sugeno type fuzzy inference system will be used. 

Biggest characteristic of this inference system, output membership functions are 

linear or constant. Also in ‘If… then….’ relations ‘and’ operator is used. If table 6.1 

is written as sentences, the result will be: 

If input 1 is N and input 2 is N then output is NB 

If input 1 is N and input 2 is Z then output is NS 

If input 1 is N and input 2 is P then output is Z 

If input 1 is Z and input 2 is N then output is NS 

If input 1 is Z and input 2 is Z then output is Z  

If input 1 is Z and input 2 is P then output is PS 

If input 1 is P and input 2 is N then output is Z 

If input 1 is P and input 2 is Z then output is PS 

If input 1 is P and input 2 is P then output is PB 
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So the output surface is plotted in figure 6.2: 

 

Figure 6.2: Output surface 

The last step will be defuzzyfication module. This module transforms inference 

engine’s results to crisp value. In this project weighted average defuzzyfication 

function is used. It is valid for symmetrical membership functions. It calculates the 

final crisp value by taking weighted average of maximum output membership 

function values. The output membership function is: 

 

Figure 6.3: Output membership function 

6.3 Simulations and Results 

In this section application fuzzy logic controller to SLFM, which is coupled to a DC 

motor, will be studied. So equations of motion of SLFM and motor must be coupled. 

Differential equations of DC motor and SLFM are: 



40 
 

 tVKRi
dt

di
L e                     (6.1) 

iKBJ t                      (6.2) 

 
i

i
ii

M
qqq


 22                   (6.3) 

Where L  inductance constant, B is damping coefficient, te KKK  is 

electromotor force constant, R is resistance,  tV  is input voltage and   is hub 

position of the SLFM. The parameters in equation (6.3) are mentioned previously in 

chapter 3.  

It is previously said that there are two degrees of freedom. These are controlled by 

two fuzzy logic controllers. For simulations state space form of the system will be 

created. The outputs of this state space are hub position and tip point deflection. The 

input is voltage. 

In order to represent these equations in state space format, firstly the state variables 

must be specified. The states are: 
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The differential equations become: 
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The state space matrices with respect to these states: 
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In these equations values of the parameters are given in table 6.2: 

Table 6.2: Values which are will be used in simulations 

 Symbol Value 

Length of manipulator L(m) 0.7 

Cross-sectional width w(m) 0.002 

Cross-sectional height h(m) 0.0255 

Modulus of elasticity E(GPa) 71 

Weight per unit length m(kg/m) 0.1382 

First mode frequency 
1 (rad/s) 21 

Mass moment of inertia of motor J( 2kgm ) 3.2284e-6 

Damping coefficient of motor B(Nms) 3.5077e-6 

Electromotor force constant K(Nm/Amp) 0.0274 

Resistant R(ohm) 4 

Inductance L(H) 2.75e-6 
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The control application will be simulated in SIMULINK software and its block 

diagram is shown in figure 6.4: 

 

Figure 6.4: Block diagram of fuzzy logic control of SLFM 

Inputs of controllers are errors and outputs are voltages. Error 1(e1) is equal to 

difference between reference position value and actual position value. Error 2 (e2) is 

equal to difference between zero and actual tip point deflection value. V1 and V2 are 

outputs of the controllers and create the final voltage value which is control signal. 

In this step fuzzy logic controllers will be designed. Block diagram of fuzzy logic 

controller of theta is shown in figure 6.5: 

 

Figure 6.5: Fuzzy logic controller of hub position 

K1, K2 and K3 gains are scaling constants. In this controller structure time error and 

its time derivative enter the fuzzy logic controller and output of fuzzy logic controller 

is integrated. So PI-type fuzzy logic controller can be generated. PI-type fuzzy logic 

controller means that fuzzy logic controller behaves like conventional PI controller. 

Fuzzy logic controller block is taken from SIMULINK library. When double click on 

it, an interface will open. In this interface number of inputs and outputs, inference 
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engine and ‘If…..then…..’ rules can be written. For this problem there are two 

inputs. The view of interface is shown in figure 6.6. 

 

Figure 6.6: Fuzzy logic controller interface 

First step is opening a new FIS editor. For this application Sugeno type inference 

system is chosen. Second step is defining the number of inputs.  

 

Figure 6.7: Sugeno type fuzzy logic controller editor 

Another step is clicking on input block. An editor will open and membership 

functions for this variable can be chosen. For input1 the membership functions are 

shown figure 6.8.  
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Figure 6.8: Membership function editor 

As seen from figure 6.8 there are three membership functions for input 1. The same 

membership functions are assigned for input 2. The universe of discourse for both 

inputs is assigned between -1 and 1. Another important thing is tuning the shape of 

membership function. Generally triangular membership function and standard shapes 

are preferred. But it can be changed depends on requirements. If sharp rise is needed, 

width of mf2 can be decreased. So there will be rapid response but more overshoot. 

For this application standard membership functions are used. 

 Also there are five output membership functions. These are negative big (-1), 

negative small (-0.8), zero (0), positive small (0.8) and positive big (1). 

After defining the membership functions, ‘If…..then…..’ relation will be written. 

These relations are previously given in this chapter. The editor of these rules is 

shown in figure 6.9. 
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Figure 6.9: Rule editor 

After defining the rules, simulation can be done. When system, which is represented 

in figure 6.4, is run, results can be taken from the scope. The output of the scope is 

shown in figure 6.10.   
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(b) 

Figure 6.10: (a) hub position, (b) tip point oscillation 

With respect to these results, hub position comes to reference value in 1 second. 

Besides this tip point has an oscillation. But this oscillation is eliminated in 1 second 

by the controller. Maximum overshoot is approximately 0.018 meters. This results 

show that when no overshoot is necessary in hub position, this controller is very 

effective.   
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CHAPTER 7 

 

NEURAL NETWORK CONTROL OF SLFM 

 

7.1 Introduction 

It is known that human brain has learning ability over time. By using this learning 

ability, humans can overcome complex situations. Also these properties of nervous 

systems can be used as a model which is work on complex data sets [25]. 

Neural network is a mathematical model which is inspired from human brain. Neural 

networks creates a mathematical relationship between inputs and outputs of a system. 

Neural networks composed of artificial neurons. So it is beneficial that to answer the 

question of ‘what is an artificial neuron?’ An artificial neuron is basic component of 

nervous system. In order to make it easy it understand, there are some statements 

[33]. These are: 

1. Neurons are basic components of the whole nervous system. 

2. Connection between the neurons are made by connection links and the signals 

are transferred by this connections. 

3. All connection links have own weights and signals are multiplied by this 

weights. 

4. Each neuron has own mathematical equation which depends on inputs, 

weights and activation function. 

If inputs are nxxx ,...,, 21 and its connection weights are nwww ,...,, 21 , the net input 

will be


n

i

iiwx
1

. So the output of the neuron is: 









 



bwxfy
n

i

ii

1

                   (7.1) 

The block representation of this neuron is presented in figure (7.1). 
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Figure 7.1: Simple neuron representation 

In this thesis only feed-forward neural network will be used. Feed-forward means 

computation is only forward as indicated by arrows in figure 7.1. In this neuron 

structure there are an input layer which has input nodes as nxxx ,...,, 21  and an output 

layer which is indicated as y. This structure of neural networks are called as single-

layer neural networks. This single layer structure is also called as perceptron.  

Learning process can be explained as tuning of weights and biases with respect to an 

error function. So another question arises that ‘how the error information can be 

achieved?’. In order to get this information training sets must be created. This sets 

are based on input and output relationship. Learning type from this type of 

information is named as supervised learning. There are inputs and outputs which are 

taken from system previously. The main aim is train the neural network to behave the 

same as the system. So same inputs are given to real system and neural network. The 

difference between outputs of neural network and real system is named as error. 

Error is used by a performance function. The main aim is the minimizing the 

performance function. In order to minimizing the error function delta rule is 

developed. 

The delta rule is a learning algorithm. By using the delta rule, output of the neural 

network,
qo  will be same as the output of the real system, qy . So the performance 

function, which is given equation 7.2, will be minimized. 

 
2

12

1




m

i

q

i

q

i

q oyE                    (7.2) 
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where y is real output, o is neural network output. q  number of outputs.  

The gradient descent method will be used for optimizing performance function. In 

order to use this method,
ijw must be written in differential form. The output of the 

neural network, io  the function of
ijw as given in equation 7.3. 














 



n

j

q

jiji

q

i xwfo
0

                     (7.3) 

where 
ijw is weight between thj  input node and thi  output neuron. if is activation 

function at thi  output neuron. This activation function can be different type 

functions. The most commonly used activation function is sigmoid function is given 

in equation 7.4. 

 
xe

xf



1

1
                      

(7.4) 

Wight 
jkw  update algorithm is:  

jkoldjknewjk www  __                   (7.5) 

Where 
ij

jk
w

E
w




   and   is learning rate. In this equation 

ijw

E




can be written as: 

   















n

i

ijijjjk

ij

xwfyox
w

E

0

                   (7.6) 

This equation is written for the thj  neuron. 

7.2 Neural Network Control 

In reference [34] PID controller is built by neural networks. The block diagram 

representation of control structure is shown in figure 7.2. 
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Figure 7.2: Block diagram of the controller and plant [34] 

In this system neural network structure behaves like a PID controller. Where 

321 ,, xxx are: 
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These inputs multiplied by weights which are updated by change of error. Weight are 

defined as: 

         
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                   (7.8) 

where i is integral learning rate, p is proportional learning rate, d is derivative 

learning rate. 

So control signal is described as: 

       



3

1

1
i

ii kxkwKkuku                     (7.9) 

K is neuron proportional gain. 
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In this section plant must be described as a discrete model. Because the controller has 

discrete structure. The system, which is shown equation 3.35, is: 

       t
JM

tqtqtq
i

i
iiiii  
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

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 
 22                   (3.35) 

The state space matrices are: 
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By using MATLAB ‘c2d’ code system can be converted to discrete system. Discrete 

system is: 

 
12

1078.3108.3
2

66








zz

xzx
zG                  (7.11) 

7.3 Simulations and Results 

In order to simulate the control action MATLAB m-file is generated. It is given in 

appendix B.  

An initial tip point displacement is given to the system. The expected behavior from 

the controller is generating of a control signal which is eliminates the deflection on 

the beam. Weights in controller are updated with respect to error between tip point 

and reference value. Also control signal depends on error and weights. 

By simulating the system, tip point oscillation output, which is shown in figure 7.3, 

can be achieved.  
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Figure 7.3: Tip point deflection of SLFM 

 

Figure 7.4: Tip point position error  

It is easily seen that from the figures 7.3 and 7.4, at the beginning of the motion error 

increases. After 1 second past, error decreases to zero. This behavior can be tuned by 

changing parameters of the controller such as learning rates, initial gain values and 
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proportional neuron constant. The change of proportional, integral and derivative 

gains are given in figure 7.5. 
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(c) 

Figure 7.5: Change of (a) proportional, (b) integral, (c) derivative gains 
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CHAPTER 8 

 

CONCLUSION AND DISCUSSION 

 

8.1 Conclusion and Discussion 

In the content of this thesis, first single link flexible manipulator has been 

mathematically modeled. After that Simulink and MATLAB code format of this 

model is designed. The next step has been designing the controller which controls the 

position of the manipulator. This controller should also eliminate or at least reduce 

the residual vibrations on the link.  

With this idea firstly proportional-integral-derivative controller has been designed. In 

that stage it has been seen that proportional and derivative controller is sufficient.  

 

Figure 8.1: Response of system at 100pK and 10dK  
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Systems response time is smaller than 0.1 seconds but overshoot value is bigger than 

1.3 radians. If quick response requirement is high, this type of controller will be 

sufficient. But if there is no overshoot requirement, this controller will not be useful. 

Controller can be modeled as no overshoot controller but at this time response time 

will be longer. Besides these, if there are some uncertainties or some change of 

properties of manipulator, controller may not be do its duty correctly. So more robust 

controller must be used for this kind of situations. 

The second controller is designed by command shaping techniques. In order to 

constitute this controller all characteristic properties of the system must be specified.  

Because command, which will be given to the system as input, is shaped by these 

characteristic properties. Total traveling time of the shaped command must be 

multiplications of the system period. For proposed command function, controller 

technique works efficiently for all multiplies of natural frequency. But in reality 

system can give an effective response between some limits. These limits are mainly 

depends on the actuator. The results which are shaped for 3 times system period for 

traveling time are shown in figure 8.2: 
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(b) 

Figure 8.2: Traveling time is equal to three times of system period. (a)  Proposed 

acceleration profile, (b) tip point deflection of SLFM with respect to input in (a). 

It is seen from results response time is approximately 1 second. This result is taken 

for 1 radian angular displacement. There is approximately 0.0025 meters overshoot. 

Main disadvantage of this control type is its robustness. If there are some uncertain 

properties, this technique will not give a proper response. Because input function is 

created with respect to system properties.  

The third controller is generated by using fuzzy logic. Fuzzy logic gives a great ease 

to use it in different applications because fuzzy logic uses human linguistic rules in 

order to describe relations between variables. By using these linguistic rules PI-type 

fuzzy logic controller has been designed in the content of this thesis. The results have 

shown that fuzzy logic is very effective to control the position of the link.  
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(a) 

 

(b) 

Figure 8.3: (a) hub position, (b) tip point oscillation 

Response time is approximately 1 second and maximum overshot in tip point is 

0.018 m. This means that fuzzy logic controller is better than other controllers. 
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The last controller type is neural network controller. Neural network is a model 

which is originated from human brain. In this thesis neural network structure has 

been used for constructing a PID-type neural network controller. In this controller 

gains are adapted themselves with respect to error between actual output and 

reference input. Delta rule has been used to minimizing this error. The result is 

shown in figure 8.4. 

 

Figure 8.4: Tip point deflection of SLFM 

It is shown from figure 8.4; response time is slightly more than 1 second. Also there 

is oscillation until 1 second. By tuning learning rate, proportional network constant, 

this result can be enhanced. Also this control structure can adapt itself for all 

uncertainties because of its learning capability. 

Control applications shows that, system response time is one second for all controller 

types. Generally classical controllers cannot work efficiently, if system parameters 

are not exactly known. But controllers which are designed by using soft computing 

techniques are more capable for varying system parameters. They can be adapted 

themselves for different situations. 
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8.2 Recommendations for the Future Works 

Even though there are a lot of applications of flexible mechanical systems, they can 

be more popular with further studies. Currently studies are generally about single 

link systems. Besides there is a shift to multi-link flexible systems. By this way use 

of these systems will be more widespread.   

Another opinion is about robustness of the control techniques. These kinds of 

systems can have some uncertainties. Also payloads on the links can be variable. So 

different kind of self-tuning control schemes like fuzzy logic or neural network 

should be discussed. 
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APPENDICES 

 

Appendix A 

MATLAB codes which are used in chapter 5: 

Main program codes: 

 

close all 

clear all 

clc 

  

global delta tp wi wp gama M input aa2 

l=0.7; 

m=0.1382; 

E=71e9; 

w=0.002; 

h=0.0255; 

I=(h*w^3)/12; 

  

syms x  

  

A=0.4251;      %%%  wrt mode 

beta=2.67;     %%%  wrt mode 

  

phi=A*((sin(beta*l)-sinh(beta*l))*(sin(beta*x)-

sinh(beta*x))+(cos(beta*l)-cosh(beta*l))*(cos(beta*x)-

cosh(beta*x))); 

gamma=-m*int(x*phi,0,l); 

gama=eval(gamma); 

wi=(beta*l)^2*sqrt(E*I/(m*l^4));         %%% wrt mode 
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M=m*int(phi^2,0,l); 

M=eval(M); 

%% 

%%% INPUTS %%% 

  

ti=2*pi/wi; 

tp=ti*1.25;    

tpp=tp/4; 

delta=6/(12*(tpp^2));  %%% angular path 

 

x0=[0 0]; 

dt=0.01; %time increment 

t0=0;  

tf=6; % total time 

%% 

for N=(1:tf/dt) 

     %% solve the systems of odes until next frame 

     [t,x]=ode45(@four_cyc_ramp,[t0,t0+dt],x0);    

     x0=x(size(x,1),:); 

     xs(N,:)=x0; 

     aa2s(N,:)=aa2; 

     clear x 

     clear t 

     inputs(N,:)=input; 

     t0=t0+dt; 

end 

%% 

tplot=0:dt:tf-dt; 

figure 

plot(tplot,inputs(1:N,1));grid on; 

title('input') 

figure 

plot(tplot,xs(1:N,1));grid on; 

title('output') 
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inputs=inputs'; 

input3(1,:)=tplot(1,:); 

input3(2,:)=inputs(1,:); 

 

Function (four_cyc_ramp) codes: 

%Four piece ramp & cycloid for flexible beam 

function xdot=four_cyc_ramp(t,x) 

global delta tp wi wp gama M input aa2 

tpp=tp/4; 

wp=2*pi/tpp; 

Y1=delta*(1-(wp/wi)^2); 

Y2=delta*((wp/wi)^2); 

Y=(Y1+Y2); 

aa1=x(2); 

if t<=tpp 

    input=((Y1/(2*pi))*(wp*t-sin(wp*t))+Y2*t*wp/(2*pi)); 

    aa2=(-wi^2)*x(1)+(gama/M)*input; 

 elseif tpp<t && t<=2*tpp 

     t=(t-tpp); 

     input=(Y-((Y1/(2*pi))*(wp*t-

sin(wp*t))+Y2*t*wp/(2*pi))); 

     aa2=(-wi^2)*x(1)+(gama/M)*input; 

elseif 2*tpp<t && t<=3*tpp 

    t=(t-2*tpp); 

    input=-((Y1/(2*pi))*(wp*t-sin(wp*t))+Y2*t*wp/(2*pi)); 

    aa2=(-wi^2)*x(1)+(gama/M)*input; 

elseif 3*tpp<t && t<=4*tpp 

     t=(t-3*tpp); 

     input=(-Y+((Y1/(2*pi))*(wp*t-

sin(wp*t))+Y2*t*wp/(2*pi))); 

     

    aa2=(-wi^2)*x(1)+(gama/M)*input; 

 else 
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    input=0; 

        aa2=(-wi^2)*x(1)+(gama/M)*input; 

end 

 xdot=[aa1 aa2]'; 

 

Appendix B 

MATLAB codes used in chapter 7: 

 

%Single Neural Adaptive PID Controller 

clear all; 

close all; 

x=[0,0,0]'; 

  

xiteP=9; 

xiteI=0; 

xiteD=1; 

  

%Initilizing kp,ki and kd 

wkp_1=100; 

wki_1=7; 

wkd_1=1; 

%wkp_1=rand; 

%wki_1=rand; 

%wkd_1=rand; 

  

error_1=0; 

error_2=0;  

y_1=1;y_2=0;y_3=0; 

u_1=0;u_2=0;u_3=0; 

  

ts=0.001; 

A=[0 1 ; -441 -0.84] 

B=[0;-7.6] 

C=[1 0] 
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D=[0] 

[b,a] = ss2tf(A,B,C,D); 

sys=tf(b,a) 

dsys=c2d(sys,ts,'z') 

[num,den]=tfdata(dsys,'v') 

for k=1:1:5000 

    time(k)=k*ts; 

    rin(k)=0; 

     

 yout(k)=(-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2); 

 error(k)=rin(k)-yout(k); 

    

%Adjusting Weight Value by hebb learning algorithm 

M=3; 

if M==1              %No Supervised Heb learning 

algorithm  

   wkp(k)=wkp_1+xiteP*u_1*x(1);  %P 

   wki(k)=wki_1+xiteI*u_1*x(2);  %I 

   wkd(k)=wkd_1+xiteD*u_1*x(3);  %D 

   K=100;    

elseif M==2          %Supervised Delta learning algorithm  

   wkp(k)=wkp_1+xiteP*error(k)*u_1;  %P 

   wki(k)=wki_1+xiteI*error(k)*u_1;  %I 

   wkd(k)=wkd_1+xiteD*error(k)*u_1;  %D 

   K=100;    

elseif M==3          %Supervised Heb learning algorithm  

   wkp(k)=wkp_1+xiteP*error(k)*u_1*x(1);  %P 

   wki(k)=wki_1+xiteI*error(k)*u_1*x(2);  %I 

   wkd(k)=wkd_1+xiteD*error(k)*u_1*x(3);  %D 

   K=1000;    

elseif M==4          %Improved Heb learning algorithm  

   wkp(k)=wkp_1+xiteP*error(k)*u_1*(2*error(k)-error_1); 

   wki(k)=wki_1+xiteI*error(k)*u_1*(2*error(k)-error_1); 

   wkd(k)=wkd_1+xiteD*error(k)*u_1*(2*error(k)-error_1);  
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   K=1000;    

end 

   x(1)=error(k)-error_1;             %P 

   x(2)=error(k);                     %I 

   x(3)=error(k)-2*error_1+error_2;   %D 

  

   wadd(k)=abs(wkp(k))+abs(wki(k))+abs(wkd(k)); 

   w11(k)=wkp(k)/wadd(k); 

   w22(k)=wki(k)/wadd(k); 

   w33(k)=wkd(k)/wadd(k); 

   w=[w11(k),w22(k),w33(k)]; 

     u(k)=u_1+K*w*x;     %Control law 

 if u(k)>150 

   u(k)=150; 

end    

if u(k)<-150 

   u(k)=-150; 

end    

  error_2=error_1; 

error_1=error(k); 

   u_3=u_2;u_2=u_1;u_1=u(k); 

y_3=y_2;y_2=y_1;y_1=yout(k); 

   wkp_1=wkp(k); 

wkd_1=wkd(k); 

wki_1=wki(k); 

end 

figure(1); 

plot(time,rin,'b',time,yout,'r'); 

xlabel('time(s)');ylabel('rin,yout'); 

%% 

figure(2); 

plot(time,error,'r'); 

xlabel('time(s)');ylabel('error'); 

figure(3); 
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plot(time,u,'r'); 

xlabel('time(s)');ylabel('u'); 

figure(4); 

subplot(311); 

plot(time,wkp,'r'); 

xlabel('time(s)');ylabel('kp'); 

subplot(312); 

plot(time,wki,'r'); 

xlabel('time(s)');ylabel('ki'); 

subplot(313); 

plot(time,wkd,'r'); 

xlabel('time(s)');ylabel('kd'); 

 

 

 


