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ABSTRACT 

HAMILTONIANS FOR SPIN QUANTUM HALL EFFECT AND THEIR 

SOLUTIONS 

LATİFOĞLU,Kenan 

M.Sc. in Physics Engineering 

Supervisor: Prof.Dr.Ramazan KOÇ 

January 2013 

The main objective of this is to investigate physics behind the quantum Hall effect 

and solution of quantum Hall Effect Hamiltonians. Quantum integer and fractional 

Hall Effect appears in semiconductors and it is explained by kinetic energy 

quantization of electrons in a magnetic field or Landau quantization. In this work 

various Hamiltonians describing quantum Hall effect and including spin orbit 

coupling are also studied. We present solution of two level Hamiltonians.  

In this thesis we propose an analytical approach to solve the Hamiltonians and we 

exhibit their eigenvalues and eigenfunctions in the analytical form. In order to 

investigate two level physical systems we introduced a general Hamiltonian in terms 

of Pauli matrices and ladder operators, including almost all spin-orbit coupling terms. 

The Hamiltonian consists of various parameters and under some specific conditions 

we obtained solution of the Hamiltonians. We show that the results are suitable to 

describe quantum Hall effect. 

Finally, spin quantum Hall Effect is studied in detail. Using Mathematica program 

we solved various Hamiltonians concerned with quantum Hall Effect. At the end the 

results are concluded. 

Key words: Quantum optics, Spin-Orbit Coupling, Spin Hall Effect, Hamiltonians.



ÖZ 

HAMILTONIANS FOR SPIN QUANTUM HALL EFFECT AND THEIR 

SOLUTIONS 

LATİFOĞLU,Kenan 

Yüksek Lisans Fizik Müh.Bölümü 

Tez Yöneticisi(leri): Prof. Dr. Ramazan KOÇ 

Ocak 2013 

Bu tezin temel amacı kuantum Hall Etkisinin arkasındaki fiziği ve kuantum Hall 

Etkisi Hamiltoniyenlerinin çözümünü araştırmaktır. Tam ve kesirli kuantum Hall 

etkileri yarı iletkenlerde gözlenmekte olup manyetik alan içerisinde elektronun 

kinetik enerjisinin kuantumlanması, yani Landau kuantumlanmasıyla açıklanmıştır. 

Bu çalışmada kuantum spin Hall etkisini açıklayan ve spin-orbit çiftlerini içeren 

çeşitli Hamiltoniyenlerin çözümleri çalışılmıştır.  

Bu tezde, Hamiltoniyenlerin çözümü için analitik bir yaklaşım tasarlanmış ve öz 

fonksiyonlar ile öz değerler analitik olarak elde edilmiştir. İki seviyeli fiziksel 

yapıları incelemek için, Pauli matrisleri ve merdiven operatörleriyle ifade edilen, 

spin orbit çiftlerini içeren genel bir Hamiltoniyen önerilmiştir. Bu Hamiltoniyen 

çeşitli parametreler içermekte olup, bazı özel durumlar için çözülmüştür. Sonuçların, 

kuantum Hall Etkisini açıklamak için uygun olduğu görülmüştür. 

Son olarak, spin kuantum Hall Etkisi detaylı olarak çalışılmıştır. Mathematica 

programı kullanarak bu etki ile ilişkili bazı Hamiltoniyenlerin çözümü yapılmıştır. 

En son olarak sonuçlar özetlenmiştir. 

Anahtar Kelimeler: Kuantum optik, Spin-Orbit çiftleri, Spin Hall etkisi. 
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CHAPTER 1 

INTRODUCTION 

Classical Hall Effect was discovered by Edwin Hall in 1879, based on production of 

potential difference across an electrical conductor. The potential difference is 

generated by applying a magnetic field perpendicular to the current [1]. It is well 

known that Hall Effect is due to the movements of charge carriers, such as electrons, 

holes or ions under the influence of Lorentz force through magnetic field. The basic 

principle underline the Hall Effect is Lorentz force.  Hall Effect occurs in metals and 

semiconductors. 

In 1943, Klaus von Klitzing [2] discovered that Hall resistance is quantized to     , 

which is called von Klitzing constant. Mathematically we can write    

 
 

   
 

    where   is integer. Therefore, it is important to note that Hall resistance is a 

universal quantity, independent from material and geometry of material and its 

impurity distribution or concentration. Nowadays it is used as the resistance standard 

[3]. Origin of this quantization can be explained by kinetic energy quantization of 

electrons in a magnetic field (Landau quantization). This phenomenon is known as 

quantum Hall Effect or integer quantum Hall Effect. 

After three years from the discovery of integer quantum Hall Effect, Tsui, Stormer 

and Gossard discovered that in the    integer   can take fractional value, such as 

      [4]. Origin of this fractional quantum Hall effect was explained by Laughlin 

in 1983. This production is due to incompressible electron liquid that is collective 

behavior of electrons because of condensation of electron gas [5].  Fractional number 

can be generalized as      , where p and q are integers with no common factors. 

The other type of Hall Effect is known as quantum spin Hall Effect. This effect can 

be explained as follows [6]: when current flows through conductor or semiconductor 
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spin flux of the carriers directed from interior to exterior of the slap as a result 

spinning carriers collection the surface of the slap. They form a layer and this layer is 

known as spin layer. Thus transverse spin imbalance is produced and this generates a 

spin Hall voltage. This phenomena is called spin Hall Effect by Hirsch [7]. The spin 

Hall effect is due to spin orbit interaction. Using the same analogy as in the classical 

Hall Effect, Hirsch proposed an experiment to detect spin current and to measure 

Hall voltage in a paramagnetic metal. Various physicist observed spin orbit 

interaction using various experimental techniques [8-10].  Spin polarizations near the 

edge of strained and unstrained gallium arsenide was detected and imaged [8].  

Experimental measurements of spin Hall effect in 2 dimensional hole system 

including spin orbit coupling was reported in [9]. Kane and Mele [10] was studied 

effect of spin orbit interaction in graphene surface under low energy. They reported 

effect of temperature, Rashba coupling, disorder and chemical potentials on spin 

orbit coupling. 

The quantum spin Hall Effect is significantly different from the quantum Hall effect.  

First of all, the spinning charge carriers can be accumulated on spin layer without 

magnetic field. Spin polarization destroyed with magnetic field. 

There are various physical and mathematical models for spin quantum Hall Effect. A 

first model Hamiltonian was introduced Laughlin [5],  to describe condensation of 

two dimensional electron gas leads to the generation of Hall Effect. A quantum 

Hamiltonian to describe spin Hall Effect based on SU(2) symmetry recently 

proposed in [11]. The Hamiltonian consists of two types spin orbit coupling and 

Berry phase obtained from the wavefunction of the Hamiltonian to calculate spin 

Hall conductivity. 

Another model Hamiltonian for quantum Hall Effect has been presented in [12], 

based on ladder geometry. J. Fröhlich, G. M. Graf and J. Walcher [13] proposed a 

Hamiltonian to study electron gases in uniform magnetic field. A review paper 

entitled “Hamiltonian theories of the fractional quantum Hall effect”  deals with 

progress on fractional quantum Hall Effect [14]. Recently Yu and Zhang [15] 

presented super symmetric Hamiltonian for fractional quantum Hall Effect to study 

edge excitations for fraction number      . 
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Meanwhile we point out application of the quantum (spin) Hall effect. In recent 

years, Hall Effect has found application in the areas; spin physics, information 

theory, quantum computers, and spintronics devices, sensors, magnetic field 

measuring devices, in various laboratory instruments, integrated circuits etc.  

In this we obtained eigenvalues and eigenfunctions of quantum Hall effect 

Hamiltonians by using Mathematica program. We also investigate behaviour of 

electrons and spins in different magnetic fields. Obviously, simulating of eigenvalues 

for variety magnetic field will improve our understanding of spin quantum. We focus 

our attention to show eigenvalues and eigenfunctions in variety Hamiltonians on 

Mathematica. 

In our work we deal with the algebraic solution of the Hamiltonians of the spin 

quantum hall effect and fractional quantum hall effect. We proposed a general 

Hamiltonian for two level systems. Depending on the choices of parameters various 

types Hamiltonians can be obtained. We concentrate our attention to the solution of 

Hamiltonians may be related to the Hall Effect. 

The thesis is organized as follows. Chapter 2 provides a brief theory of  Classical 

Hall Effect. This chapter include an overview of classical hall effect, involve 

classical equations, in this way, we calculated Hall coefficient, Hall voltage and other 

physical quantities. Hall coefficients of various materials are listed in this chapter.  

Classically, occurrence of Hall Effect in a semiconductor is described.   

In chapter 3, we discussed the fractional quantum hall effect in detail. We have given 

a Hamiltonians and computed fractional coefficients for states. Fractional states are 

investigated by applying magnetic field.  

Chapter 4 is devoted to study Hamiltonians of two level systems. We calculated 

eigenvalues and eigenfunctions of the Rabi and Jaynes Cummings type 

Hamiltonians.  

In chapter 5, we presented spin quantum Hall Effect. Two different model 

Hamiltonian are given in this chapter. We discuss our results and solution of the 

Hamiltonians. The  results are discussed and concluded all aspects of the energy 

eigenvalues of spin quantum hall effect in chapter 6. 
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CHAPTER 2 

          HALL EFFECT 

As it is well known that a voltage difference causes Hall Effect, namely Hall voltage, 

across an electrical conductor and Edwin Hall discovered it when he was a graduate 

student [1]. It can be described as follows: Consider a thin flat and uniform 

conducting material immersed in a uniform magnetic field as in the figure. Suppose 

that a current flow through the conductor. It is obvious that positively charged 

particles deflect one side and negatively charged particles deflected to the opposite 

sides. Consequently a potential difference is produced between edges of the 

conductor. This potential difference is known as Hall potential and its formulation as 

follows.  

Firstly we define the magnetic force on a given infinitesimal  charge is of magnitude 

      ( infinitesimal charges each has a charge q and move along the plate with the 

drift velocity   ), since the negative charges move in the plate actually at right-

angles to the magnetic field. We know the steady-state, the electric force get 

balanced  this force due to the set up of charges on the upper and lower edges of the 

plate. If the Hall voltage is   , and the width of the plate is  , then the elecric field 

pointing from the upper to the lower edge of the plate is of magnitude        . 

Now,    on a infinitesimal charge is known the electric force  This force roles up 

opposition to the magnetic force. In a steady-state can be shown by the following, 

   
   

 
                                                      (2.1) 

Giving 

                                                                 (2.2) 
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It means magnitude of the magnetic field is directly proportional to the Hall voltage. 

Normally, Hall current is a property of any material for each other, and we called it 

probed of Hall, which is used to measure of strength in magnetic field. Otherwise, 

suppose that any plate which is conducting the current has a thickness of d, and that 

it possessed n infinitesimal charge carriers per unit volume. So it ensures that the 

total current in the plate which is flowing through line can be described 

                                                           (2.3)  

since all infinitesimal charges get located in a geometric shape that can be said 

rectangular a plate volume of length  , width    and thickness d, flow past a given 

point on the plate in one second. Combining Eqns. (2) and (3), we get 

              
  

   
                                                         (2,4) 

It is clear that the Hall current is commensurate the voltage can be created by flowing 

the current in the plate, strength of magnetic field is definitely inversely proportional 

the number of density of infinitesimal charges in the plate, and surely the depth of 

the plate. In this way, in order to occur a tunable Hall button, we need to take a thin 

material that is made of plate which possesses same charges per unit volume (e.g., a 

semiconductor) according to each other, and then apply a large current through it. 

We can easily see Hall voltage and Hall Effect in the figure2.a and figure2.b 

                                     

               a                                                                                  b 

Figure 2.1: In this figure we see the motion of charge carriers (negative and positive) 

and  Hall effect is occurred. 
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       We also have to mention about Hall coefficient for induced Hall Effect as 

classical in order to compute too. Now we can define the Hall coefficient as by the 

following formula;                

 

   
  

   
                                                          (2.5) 

where j is the current density of the carrier electrons, and  _  is the induced electric 

field. In SI units, this becomes 

       
     

 
  

   
 

   

  
  

 

  
                                  (2.6) 

 

 

Figure 2.2. Hall effect diagram in a semiconductor 

 

As final, the Hall Effect is very facilitator in terms of measuring the Hall current and 

Hall Voltage in any magnetic field or charge carrier densities of a semiconductor 

plate. Spin that, in atomic and molecular physics, quantum mechanics and particle 

physics, is very important a characteristic property of elementary particles, 

composite particles (hadrons), and atomic nuclei. After classical Hall Effect, we look 

at the other side of Hall Effect that is Unconventional Hall effect and Berry’s 
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Table 2.1. Hall coefficient of the some materials          

phase in order to grasp easily as quantum. We hereby see the classical Hall Effect 

and its calculation.  Hall coefficient for each semiconductor or conductor is different 

each other. The Hall coeffients change fractionally numbers, so we also investigate 

the fractional and integer levels, quantum numbers and Landau Levels into the next 

chapters. 

Experimental results classical Hall effect that, we can show a diagram and give some 

examples for Hall coefficient each material. In this diagram some examples for Hall 

coefficient each material. 

2.1 Unconventional Hall Effect and Phases of Berry 

Berry’s phase   characterize charge carriers Dirac fermions in which we can get 

some results in a shifted position of Hall plateaus. Standard integer position, the Hall 

conductivity plateaus generally resulted in Landau quantization fermions, but missed 

the last plateau. In this section, the conventional zero-level anomaly, insulation stark 

contrast to the behaviour at low concentrations and high magnetic field, the limit is 

accompanied by metallic conductivity. No chiral fermions in the quantum-

mechanical analogue and present an interesting case studies known to us. 

Figure 2.3.a shows the quantum Hall Effect (QHE) as a picture that grabs very useful 

information about the behaviour of bilayer (2L) graphene observed in. So we can 

easily compare it with the conventional integer QHE in the standard theory. Hall 

conductivity makes a quantum  
 

   with Landau level which is each filled single-

Metal            

Be -0.2 

Li 0.8 

Na 1.2 

Rb 1.0 

Ag 1.3 
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degenerate as it contributes one conductance so that we obtain fractional and integer 

quantum numbers. The Conventional Quantum Hall Effect is shown in Figure 3a, 

where, lines in the graph, Hall conductivity     make up sustained ladder of that 

steps are equal to each other in 2L graphene, QHE tableland at zero temperature is 

unavailable. Unlikely, there is a conductivity of Hall continuous a couple-sized step 

in regime. After that, 2L graphene in terms of longitudinal conductivity     in 2L 

graphene remains of the order of   
 

   , even at zero   . In fact, we may explain that 

the origin of the unconventional Quantum Hall Effect behaves going along in the 

coupling bilayer of graphene, which transforms massless Dirac fermions, 

characteristic of single-layer graphene, into a novel type of chiral quasiparticles. 

Such quasiparticles have an ordinary parabolic spectrum H(p)=  /2m with effective 

mass m but accumulate Berry’s phase of 2  along cyclotron trajectories. The latter is 

shown to be related to a peculiar quantization where the two lowest LLs lie exactly at 

zero energy H, leading to the missing plateau and double step shown in Fig. 2.3.a  

Bilayer films in this study getting a good formulation of microscopic forces with 

atomic and optical 2L crystals of pure graphite structures. It followed by the 

selection made by micromechanical cleavage. Many-terminal field-effect equipments 

( Fig. 2.3.b) structures were selected getting standard manufacturing techniques. 

Between graphite atomic structure and the substrate as a substrate is the gate voltage 

Vg us permission to apply for used. We studied on partially an oxidized silicon 

heavily doped devices, the concentrations of electrons and holes up to 10 13cm-2 can 

be induced by the effect of such an ambipolar electric field is displayed. Figure 2.3.b 

2L graphene at a constant gate voltage (n fixed), and the magnetic field B ranging 

from 30T shows a typical behaviour of QHE. Pronounced plateaus are clearly       3 

high B Hall resistivity, and these are associated with zero longitudinal resistivity     

to be completed. QHE double spin and double-valley degeneracy with the plateau 

observed in the sequence of two-dimensional (2D) the same sequence as expected for 

the free fermions system      = h/4Ne2 is described by. However, a clear difference 

between the conventional and reported QHE regime of a small fill-factor S <1 (see 

Fig. 2.3.c). This regime has been investigated by different concentrations of electrons 

and holes B and suitable for fixing flowing along the similarity point |n||0 where     

changes its signal and, ordinal, Q=0. Also, because infinitesimal charge carriers P in 
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graphitic films are a little dependent on n, measurements show the in constant B are 

more effective. The quality of Landau quantization is defined previously we called 

that parameters correspond to a constant parameter PB, and this allows us to carry 

out snapshot taken datas several QHE plateaus through the double voltage instead of 

single voltage goes in same adjustments with magnetic fields (Fig. 2.3.a). The some 

periodic datas have been found by quantum oscillations in      as it described n is 

number of density with states 00 gB /I on each LL [1-10] In Fig. 2.3.c, for example, 

'n|1.2˜10 12 cm-2 at B=12T, which gets around g=4 for 2L the calculations are 

clearly seen in Fig.2.3.c and shows that, all integer numbers are followed by Hall 

plateaus in 2L graphene in Fig.2.3.c confirmed the couple spin and couple valley 

degeneracy expected from atomic plateau structure.  

   =r (4e2/h) N for N, means any sign cannot be seen in zero-N plateau at    =0, 

which may be hoped for 2D free-fermions systems (Fig. 2.3.c). In this way, the QHE 

for massless Dirac fermions is shown (Fig. 2.3.c), and they are behaviour resembles 

too. In Fig.2.3.c. Where a step reveal out, however, there is no plateau when     

flows the stability point. However, in 2L graphene, when we look up the graph, this 

time, that step possesses a couple height and is related to a central peak in    , that 

must be  twice line  border than all other peak (Fig. 2.3.c). In 2L graphene the feature 

is yielded peak which in 2L graphene for the penetration among the Quantum Hall 

Effect plateaus need double carriers due to the transition in lowest hole and electron 

Hall lines.  

This four degeneracy represents that the Landau Level at zero level has double 

degeneracy     4B /I , which easily can be seen two Landau Levels exceed together 

at n|0 (see LL charts in Fig. 2.3.c). Attendance records of laboratuvar results Q=0 as 

identified in Fig. 2.3.c unfortunately possesses numbers possible for conventional 2D 

systems where the lowest landau plateau in    =    /(    2+    2) is inferred from 

a rapid  increase in     >>h/   with increasing B and decreased temperature T for  

factors called filling factors Q<1, it is indicated an insulating state. To be sure that 

we can compare directly the conventional QHE measurements, immediately we 

investigate the Fig. 2.3.c that figure shows      in 2L graphene with some peaks in 

variable coefficients also changing magnetic field and temperature around zero Q. 2L 

graphene presents that temperature dependent of Hall plateaus can be defined like 
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that     in 2L graphene does not destroy in any domestic of Q and be measured zero 

just one point on the graph, where     orients just its direction and magnitude of 

number. We should know that interestingly assures a peak value |h/g   in yields on 

to 20T and temperatures and peaks are fell down to 1K. If finite values taken as of 

    |h/4   so lowest landau levels in the limit should be infinitesimal and low 

density of charge carrier concentrations measured in B. This was studied on already 

before 2L graphene [32]. These experimental results were convenient with 

theoretical ones which contribute the finite conductivity of metal and the spectrum of 

1L graphene support the relativistic like with also destroyed any localization (see 

refs. in [30]).  2L graphene experimental results show us that the plateaus have the 

usual parabolic spectrum, and maximum resistivity is observed |h/4   and, moreover, 

when the magnetic field B is going weaker and weaker, the system is more 

unpredictable. We understood from these experimental results that, the 

unconventional Quantum Hall Effect in 2L graphene, when charge carriers or mobile 

charges like fermions or chiral bosons are related with a finite mass, that time, it is 

clearly appeared from significant properties of its charge carriers as we interrupted in 

the Fig.2.3.c. Some calculations were used for the quasiparticles spectrum in 2L 

graphene, one of the calculation is standard nearest-neighbour approximation [12]. 

This technique is being used for computing the quasiparticles with distances as K-

points, we find  
 

 
    

 

 
  

    
     where   

  

 
     , a is the atomic level 

period and           are the intra-and inter-layer coupling constants, respectively 

[13]. This dissipation is related (Fig. 2.3.c) as in agreement with the first-principle 

band-structure calculations [14] and, at low energies, becomes parabolic   

                   
   (sign   refers to electron and hole states). Effective 

Hamiltonian is also other technique to calculate, so it helps us to analysis [15] 

quasiparticles in 2L graphene. [40]. 

     
 

  
 

      
 

    
                                             (2.7) 

where             

    plays a simple role in space of two-component Bloch functions are so helpful to 

find out the pseudo spins in order to describe the amplitude of electron waves on 
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weakly-coupled nearest sites F1 and F2 are belonged to two non-equivalent carbon 

sub lattices F1 and F2 are two graphene layers marked as 1 and 2. For a given 

direction of quasiparticles momentum p=( p cosM, p sinM), Hamiltonian  HJ of a 

general form          
 

    
   can be rewritten as  

                                                                      ( 2.8) 

where     = -(cosJ ,sinJ  and vector    is made from Pauli matrices. For 2L graphene 

J=2 but notation J is useful to be allowed calculating Eq. (1b) to be signed with the 

case of 1L graphene where J=1. The eigenstates of   
  correspond to pseudo spins 

negative charges (electrons) or anti parallel to the ‘quantization’ axis  n. The rotation 

of momentum p     by angle J  which is related to an adiabatic evolution of such 

pseudo spin states in terms of the axis rotating by angle . Finally, if a quasiparticles 

like fermions that penetrate a closed contour in the momentum space (that is  =2  ), 

a phase shift  =J  known as Berry’s phase is gained by the quasiparticle’s 

wavefunction. Rotation of pseudo spin arises like in the graph and Berry’s phase is 

seen. Therefore quasiparticles again and again go between different carbon sub 

lattices (F1 and F2 for 1L graphene, and F1 and F2 for 2L graphene).  

The phase of Shubnikov-de Hans oscillations (SdHO) is affected and separated to the 

semi classical quantization by Berry’s phase, also cyclotron orbits are being 

completed for fermions. For 1L graphene, in the sequence of QHE plateaus is 

resulted in that a  -shift in SdHO and has a relation ½-shift, Berry’s phase will be 

zero due to the conventional 2D systems have a comparison.  For 2L graphene  =2  

and in the quasiclassical (N >>1) limit unfortunately must not be changed. One may 

also suppose that the quantum Hall Effect sequences may not be affected from the 

changing phase 2 . However, the exact analysis of the LL starts from the zero level 

and keep going the other degeneracy with excited levels like 2L. They have a 

combination J-fold degeneracy of the zero-energy Landau level. This is already 

known limit of quantum N=0). Sometimes Berry’s phase is absent, it means there is 

free fermion in Quantum Hall Effect,               and we say the minimum 

state stays in same finite energy      , where         . For 1L graphene (J=1; 

   ),              and there would be single state    at zero energy. For 2L 
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graphene (J=2; ;     ),                and two states       lies at zero 

energy. 

We should say that the unconventional QHE found in 2L graphene can be defined by 

the existence of a double-degenerate LL. This LL reveals at all sides  between 

electron and hole gases and, taking into account the quadruple spin and valley 

degeneracy, infinitesimal carrier density is shown as      . As we mentioned above 

to Fig. 2.3.c, Quantum Hall Effect can be divided into two levels and they are seen in 

different magnetic fields, hence Landau Levels exist with like this phenomena in 

graphene. They are unsimilarity across the stable level. When Landau Level is seen, 

we should point out there is double degeneracy in 2L so, these degeneracy fold 

coupled numbers to fill it (all levels are in different regions), Also, the twice higher 

causes the step between the plateaus due to the energy levels, that is 8  /h as 

compared to 4  /h for the other steps must be more densities. These results are 

obtained by experimental and proved as theoretical. As conclusion, 2L graphene is a 

very good example to denote the Landau Levels as well as energy levels in an 

experiment. It contributes many double degenerate levels in order to observe the 

quantum Hall Effect system. 

Berry’s phase 2  is investigated widely and accompanied with reality of massive 

chiral fermions. Massive fermions are separated in other quasiparticles. All 

conductivities conductivity for metals   /h at same filling parameters v=0 poses a 

serious challenge for theory.  

 

 

 

 

 

Figure. 2.3.a. 
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The integer quantum Hall Effect has three types in this schema. It is easily can be 

seen LL degrees that drawings illustrated for some values schematically conventional 

integer QHE found in 2D semiconductor systems(a) and the QHE in 2L graphene 

described in the present paper  

 

                                    

                               

                        

                          

                                             Figure. 2.3.b 

Plateaus in Hall conductivity     occur at values (ge2/h)N where N is integer, e2/h 

the conductance quantum and g the system 

 

 

 

 

 

 

Figure. 2.3.c 

This figure also shows the QHE behaviour for massless Dirac fermions in 1L 

graphene. 

Degeneracy that is the density of states gB /   on each LL define distance among 

steps along the concentration axis, in 2D spectrum had been observed independently 

each other. Here, B is magnetic field and   =h/e the flux quantum. The  sequences of 
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Landau levels are having a function of mobile carriers concentrations n are presented 

in blue and orange for electrons and holes, according to lines.  

 

                                     Figure.2.3.d  QHE in bilayer graphene.  

 

We can see changeable Quantum Hall Effect and their domains previously figure. 

The Hall conductivity    =      /(   
 +   

 )2) is able to calculate directly from 

experimental curves for     and           allows quantum Hall Effect plateaus 

followed respectively.     crosses zero without any sign of the zero-level plateau 

that would be expected for a conventional 2D system. Shows all calculations have 

different energy spectrums for 2L graphene, which is clearly seen as parabolic at 

low  . Charge carriers conductivities   in figure 2L devices were ordinary  3,000 

cm2/Vs, which is nicer than for plates made from 1L graphene. There is an 

interesting situation in here. Because, we consider the mobile carriers are more 

damaged and more exposure than they are unprotected from both sides in case of 1L 

graphene at zero energy.  

The Landau spectrum cannot be appeared due to the yields has no gaps, for a fixed n 

 0 and varying B, small magneto resistance was observed by us experimentally. The 

picks can be occurred by different values for adjustable equipments and 

configuration also will be varying notes. However, the observed magneto resistance 

overcome a factor of 2 in any theoretically for undoped 2L graphene. 
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We therefore separated Landau Levels into two parts as experimental results, energy 

spectrum for 1L behaves massless Dirac fermions unlikely, energy spectrum for 2L 

is Berry’s phase and has a massive chiral fermions that results means their spectrum 

domains are different each other.   

2.2 Integer Quantum Hall Effect 

Before talking about the Fractional quantum Hall effect (FQHE) and Spin Quantum 

Hall effect (SQHE), we shortly mention about Integer Quantum Hall Effect (IQHE) 

which we need to compute these functions in quantum world. Therefore, we define a 

Hamiltonian for a system of electrons in 2+1 dimensions living in a magnetic field, 

   
 

  
               

 

                                          (2.9) 

and try to solve Schrödinger’s equation. We neglected interactions between electrons 

in order to figure out Hall Effect for fractional filling. 

When we investigate the non-interacting particles, the operators           commute 

for different i, hence assumption of non-interacting electrons thus are reducible a 

problem to solve and understand easily. We call these problems one particle 

problems. The particle label i is failed, i, from the operators for obvious. We point 

out electric field perpendicular to the plane. Invariant gauge tunes can be 

configurated in combining with this situation is, (0,-Bx, 0). Adding this, for one 

particle and its solution can be shown Hamiltonian yields,  

  
 

  
   

                   
 
                                 (2.10) 

The operator    are commuted with this Hamiltonian, so we immediately know the 

wave function can be constructed, 

                                                             2.11) 

By obturation this approach there is a harmonic oscillator in the equation and we 

then solve the Schrödinger equation its potential shifted by    
 

 
. We can write 

down our Hamiltonian with related to annihilation and creation operators, which we 

describe in the usual trend, 
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                                              (2.12) 

        
 

 
          

 

 
  ,                              2.13) 

and A is the state in the ground state regarded to annihilation. In the equation for the 

Hamiltonian appears,   
  

  
, which, is the cyclotron frequency can be shown like 

this. Moreover it is found a suitable to obtain x dimensionless a factor    is 

absorbed or in unconventional units  
  

  
. This depth measurement is to know as the 

magnetic length. A is in the ground state which must be already there, we write down 

a Hamiltonian that we are able to compute to grant for A in the ground state wave 

function. Therefore normalized it reads, 

        
 

 
 

 

  
 

 
           

                              (2.14) 

We apply 
 

  
      to be occurred higher states in ground state. It is simple to 

understand this operation provides a polynomial (  ) in front of the exponential. As 

we get the first state multiplies with      
 

 
       

 from the left (we can neglect a few 

constants) we obturate a equation is generation by this polynomial. 

       
 

 
  

       
 

 
  

  
 

 
  

         
 

 
  

                 (2.15) 

This polynomial gets around assures the generating Hermite polynomials with 

equation. Properly normalized wave functions then read, 

        
  

      
 

 

 
           

 

 
           

               (2.16) 

The energy states after ground state are easily determined, 

          
 

 
                                              (2.17) 

We should note that each state has different number  , it can be chosen freely 

therefore energy levels have degeneracy like Zeeman Effect. If we presume our state 

is ground state, for describing we choose a four edges having geometry of 
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dimensions        the states’ for all states values can be solved in finite levels but 

this is just theoretical assumptions. Firstly, eigenvalues of    are quantized, k=
  

  
   

for the wave functions are shown (  ) to lay on the disk, we must decelerate 

0        this constrain k to the domain 0   
     

  
  Hence in a Landau level 

that the maximum number of states is 
     

  
  

The one- particle problem has been solved by us; hence their quantum numbers, state 

levels and energies are identified. The wave function entirely found which it was 

written for one particle and all wave functions were solved and we obtained non-

interaction between electrons and holes. Other wave function is needed component is 

essential to write down for obtaining that wave functions would be accumulated. In 

fact component that refers to electrons are fermions. Pauli excursion principle always 

is applied to fermions that mean which their wave function has to be anti-symmetric. 

We can show the total wave function any more, these wave functions are obtained by 

Pauli matrices. the wave functions are subsequently same but opposite magnitude 

also they are solved for one-particle and we inferred them is the particle  coordinates.
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CHAPTER 3 

THE FRACTIONAL QUANTUM HALL EFFECT 

3.1 Background 

There is a clear difference between Fractional Quantum Hall Effect and Integer 

Quantum Hall Effect, we can explain like that, level fillings and quantum numbers 

are fractional values in FQHE, and however, the level fillings and quantum numbers 

are exact numbers that means there are no rational values in IQHE [15].  Fractional 

fillings cannot say any information exactly for single-electron physics. The energy 

gaps in particle are many, so we would like to compute the fractional values for 

many-particle origin is inferred as within potentially degenerate, we can say  Fermi 

energies have energy gaps  as well as Landau or spin level. 

 In 1982, the fractional quantum Hall Effect was discovered as experimentally. So 

new Landau Levels were made recovery as well as spectrum levels. Then all old 

acknowledgments were rewritten and new values were added to Landau Levels with 

fractional numbers. These results are coming from electrical conduction in 

semiconductors. Initially enigmatic to theorists, it was expressed by R.B. Laughing 

as theoretical and it was so important to find out the wave functions for liquid. The 

fractional quantum Hall effect is an interaction between many-electron system, and 

between electrons that fractional values could be appeared, for example, to consist of 

a two dimensional gas of particles of charge which the numbers of fractional values 

are equal to one-third electron charge. Because of the fractional numbers and levels 

spectacular overviews, the theory of the fractional quantum Hall effect has been used 

to reveal out the properties of the electrons clearly development in many-body theory 

of this decade. 
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Early in the progression of experimental technique has been followed by reforms, in 

particular, semiconductor technology is advanced constantly improved the quality of 

the measurements experiments of quantum transport. Because of fractions of levels 

are obviously determined. Most of the currently observed quantum states, especially 

theoretical progress Laughling original work (but not all) from the picture hierarchy 

in the developing, as well as made. Much, however, has to be done. By the way, a lot 

studies  on  fractions  has  been continuing in laboratuvars. Experimental side, the 

other measurements, data development, transportation, multi-layered structures, 

extension, and even the most urgent clarification will be completed. theoretical side-

dominator fractions, senior, and even denominators, the problems associated with 

finite temperature, nad a great need for multi-layered still in work. 

Basically, we have been mentioning about the fractional quantum hall that, we get 

touched on the different parts.  For the inhomogeneous state, the clearest example 

can be shown the many-body particle problems. All states are seen rational fractions 

within the high-field magnetic field. This state’s includes 1L and 2L degenerates in 

terms of 2D spectrums and if we look up a unbounded-electron to the orbits gas and 

slowly investigate the interactions between the charge carries density, the interaction 

turns out to be potential energy from kinetic energy. In the Wigner crystal, we are 

aim to seek an arrangement of the electrons with at minimized the potential energy. 

In the Hall case, due to quenching of kinetic energy, the Wigner crystal is appeared 

at lighter densities. It was initially thought by Fukuyama and Platzman in 1982 and 

this information was explained firstly. However, it was soon realized that state 

differs from the fractional quantum Hall States, because the fractional values belong 

to Hall conductance of levels. Unlikely, we see surprising that Hall Effect 

longitudinal and Hall conductance vanish at zero temperature and when the crystal is 

pinned by disorder leading to an insulating state. Further, the Wigner crystal state is 

not tied to any particular commensurate filling. Namely, the Wigner crystal state 

does not exactly equal to fractional Hall Effect.  

At the next figure.3.1 shows that we demonstrate the fractional values of a 

semiconductor at the 80mK and increasing with magnetic field.  
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These findings are recorded at 80mK. Also resistivity components are diagonal 

includes, which these includes show regions are measurable at zero resistivity 

respectively to each Fractional Quantum Hall Effect plateau. The layers in the 

semiconductors, they play up very important roles to become fractional quantum 

numbers. Because distance between the layers affect minimise the interaction energy, 

it is therefore favourable to charge both layers equally. 

                  

  Figure 3.1 GaAs-GaAlAs fractional quantum Hall effect  

The levels of fractional numbers have been seen in graphic as experimentally.  They 

generally get weaker going from left to right when magnetic field is increased.  

Likewise, as we try to explain another approach the quantum Hall effect with 

incompressibility that occurs when a two-dimensional electron gas becomes 

incompressible, it is provided that if the density of gases incompressible, it occurs 

magnetic field dependent. For the integer quantum Hall effect, the incompressibility 

can be easily understood. The quantization of the electron’s cyclotron motion refers 

to only a discrete set of kinetic energies is allowed, and both the separation between 

allowed energies and the number of states of a given energy are proportional to 

magnetic field. (Landau levels known as given kinetic energy to the set of states). 

The incompressibility responsible for the integer QHE occurs at densities where an 

Figure 3 
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integer number of Landau levels are filled and the chemical potential jumps from one 

allowed kinetic energy to another [3]. 

After the discovery of the Fractional Quantum Hall Effect with   
 

     a plethora of 

other types of Fractional Quantum Hall Effect were observed and afforded so many 

times by early years 1980’s. Each quantum number have to describe the 2/5 and 3/7 

states (i.e with   
 

 
  and   

 

 
), that are Landau series            with the exact 

numbers called        . This series explained the compelling explication within the 

alleged composite fermions ( CF) theory regarding to fractional quantum Hall Effect 

may be viewed as an integer quantum Hall Effect of a quasi-particle that contains of 

an electron that all integer number of flowing quantized. [13,14]. It is  interesting 

quantum numbers with only states       by the way fractional values observed in 

bilayer systems. In here, these quantum numbers origin from Coulomb interaction, 

because fractional quantum numbers facts observed in high magnetic fields. Every 

state, this interaction makes each other between the spin-orbit or electron and 

electron. Coulomb forces are already shown like-charged. After integer quantum 

numbers and conductivity values caused the fractional quantum Hall effect in 2D. 

These realities were found by 2D spectrum and many-particle states made quantum-

mechanical future. Fractional quantum numbers and exactly fractional charged 

quasiparticles are probably the most gorgeous of its subsumptions. 

The many-electron wave function is required by attachment of the magnetic field that 

is assumption of zeroes fields along the partial yield whereby there are magnetic flux 

quanta flowing through it. Each level “heals” in the parameter magnetic length 

(           ) and, we can draw border of it to minimum energy level of Landau, 

each like “hole” in the electron around the atom mentions whole charge parts deficit 

of   . In the magnetic field, charges also turn and get interaction a 2  phase strain to 

the wavelengths at the same position of each such lowest level, these terms are read 

vortices. In particular calculation, vortices are the solidified of flux in magnetic field 

quanta in an spin and electron system. A small plate can be conflict or get counter 

through the plane of the electrons loaded energy to harvest just one more magnetic 

flux quantum through its core could generate more interaction such hurricane. Hence, 

widely talking, hurricanes are often formulated with quantized energies. 
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Just like electrons, vortices are not landed in the plane. However, electron system 

combine a charge cumulative and vortices a charge scarcity, they attract perfectly 

each other. To consider Coulomb energy can be gained interaction between electrons 

by locating vortices onto electrons. At       there would be existed four times as 

many vortices as there are small negative charges, each vortex representing a local 

charge scarcity of 
 

 
 . 

For negative charge has to carry at least one vortex equivalent, Pauli principle always 

satisfied the all electron’s wave function in one zero level. Coulomb energy would 

carry a high gain. Hurricane sticks in orbital to an electron, demonstrating a finitely 

consummation of electrons, filled energise. The condition is precisely is very hard 

and quantized in movement of charge. 

So electrons are turning around the orbit and four holes to each electron is defined as 

Laughling wave function in prominent   
 

 
  fractional quantum Hall Effect state 

expressed by Laughling’s wave function as [14] 

             
  

         
 

 
   

  
                          (3.1) 

The         refers to coordinates of n electrons in a complex 2D plane, which complex 

interference the wave function more impact. To find the normalization of wave 

function, we set the polynomials and identify the functions. All electron-electron 

interaction would be derived second term, which is distance between electrons so, it 

would be a new item all over the complex pair. The each electron could be vortices 

in mathematical terms for four connections between electrons exponent 3 in each 

factor in position. It is occasionally known that, states at       ( =even numbers) 

consist of negative charges put up by   vortices, so, exponent comes to the upper of 

the wave function and they are so different, which are changed from 2 to  . Only 

even   are allowed, they are definitely not anti-symmetry, if they would be show the 

anti-symmetry feature, they have to become odd numbers, but wave function seem in 

here as symmetry feature since they are even numbers. When electron –electron 

interaction appears the anti-symmetry property, it would be recordable in order to 

observe the energy storage. Hurricane movement is increasing by induced the 

magnetic field, namely when magnetic field is going up steady, a new creation 
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movements we obtain for it. So it is  required limitless amount of energy. The 

electronic state at this filling factor is varying with incompressibility by the energy 

blanks at        

Electron freely wanders around the orbit like quasiholes, and when they got the 

energy or given the high magnetic field, they earn the action as carries +1/3 of. This 

can be seen in figure 3.1. 

We again return the energy of the electrons in the gaps the       state, they are 

getting together with new elements. electrons to which three vortex-generating flux 

quanta have been attached. This approach makes it to understand electron’s world.  

First, two flux quanta per electron does not cause the magnetic field, however, when 

electrons have the three flux quanta, magnetic field that we can got it. Second, if we 

write the wave functions of these electrons in the plate, we would calculate the flux 

quantized energies. Third, electrons which are exchanged among the each other and 

shifted the phase a bit of, then the Berry’s phase could be obtained for the electrons 

around such hurricane. 

After electrons, this results are valid for the fermions in the particles, they can be 

easily written down by wave functions. Whereas, the       state comes from the 

chiral bosons created by the stick of three flux quanta to each electron, that magnetic 

field is disappeared with the movement of the electrons. This feature, a new concept 

about the fermions are caused by developing of energy states. 

Different scientists investigated the fractional values and energy states in different 

times, and they got the same results about the energy states of the fermions and 

electrons. Energy states are seem that filling factor        as well as         

(odd numbers cause the electron-vanish symmetry), are understood so much. The 

scientists which their wave functions were researched repeatedly and interesting 

values recorded for science world and they helped the developing of the spintronics 

devices.  

3.2 Composite Fermion in the Fractional Quantum Hall Effect 

The fractional quantum Hall Effect has improved with the behaviour of electrons are 

understood, and new particles found recently years. New particles that can be said 
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composite fermions (CFs) are fresh particles and it provides us shortly investigating 

it. Their quantum numbers are odd and it means fractional filling and energy gaps 

can be possessed. First, the primary states at      . This state notify the theorist to 

find out the fractional fillings and quantum numbers as at      .  

Higher-order FQHE states (     ,    or    ) are abundant in experimental 

results, and the these results produce very similar to other values at      . That 

result may be for other state’s energy gaps at          which come together to 

half filling. Certainly, Coulomb energy is same in here, which informs thequantum 

Hall Effect subject at      , is hoped to be at study. But, in this state, these 

fractional values are hard to identify the in many-electron and their wave functions 

related to higher-order      . So physicists were used to start integer quantum 

states and then they calculated fractional ratios for the energy gaps. Whereby the 

electrons have a relation first states at      , and filling factors can be derived 

from this situation. Electron charges or quasiholes may intercourse and make a 

formalism for new quantum liquids of quasiparticles at filling factors in terms of 

rational values. This alternatively can be used for odd fractions and after progression 

even exact values of filling factors. 

The aim of the fractional values is to bring into the open feature for such states at 

      of the Laughling wave function at      , and Coulomb energy can be 

computed easily from this principle with fermions’ wave functions for upper states. 

This interaction as new model was introduced by using 2D, so higher energy states 

were built with new notations. This explanations          set the new energy 

states and states were condensed with starting at       and approaches towards 

     . For these states, electrons play important role for revealing out the wave 

functions of the states. this       state is formed with electrons and that means to 

many-electron system due to the 1/3 fractional ratio, and we call it Laughling wave 

function. By the following equation, the wave function can be written as,[14] 

              
     

               
 

 
         

 
 
                 (3.2) 

          
      

 
                                                                  (3.3) 
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Landau level must be filled with second factor,   , that vortex or movement 

provides fractions for each electron and Pauli excursion principle is valid for this 

calculation. In this equation, spin is neglected to non-interaction between many-

particles. therefore, the equation will be reduced from fractional quantum Hall state 

to integer quantum Hall state, these reductions can be shown with at          . 

Unfortunately, every electron move with 2 vortices. New particle is interacted with  

flux-quanta per electron, purpose is to reduce the magnetic field and effect of the flux 

quantum per fermions, that is equal to the field at       These fermions carry the 

quantized flux with even number, treat as composite particle and not vanish the 

energy levels.  

Landau level has valuable formal description in order to generalize the composite 

fermions and calculate the filling factor with new state as at n 51/3. Along the states 

for the composite fermions generate the new states in energy levels and filling 

factors, hence, many-particle problems can be solved with this technique. Wave 

functions of these particles can be written with these functions includes states. Like 

composite fermions particles produce perfect many-particle wave function for states 

n 5p/(2p11), it is implied to many-particle when comparison of lower –order particle 

calculations. 

(Dev and Jain, 1992).  Besides this explanation, these implications help to identify 

wave functions domain in the formulation. These states can be shown in(see Fig. 

3.2). 

Utilizing parameters  between the integer quantum Hall Effect and fractional 

5p/(2p11) quantum Hall Effect, the composite fermions act the filling factor at 

Landau level, it is demonstrated clearly the similarity between composite fermions 

gap energy and Landau gaps in the electron case (all gaps of the Landau guides 

external magnetic field), electrons are similar to this action and gap energies are 

prediction to start directly magnetic field. Unless the composite fermions introduce 

the function with gaps, the cyclotron mass could not appear and derive in the 

function. Electrons interact to composite fermions for many-particle interaction, and 

these interaction is represented electron-electron interaction as we said before. 

Hence, assume a fraction number, extends of the function of the electron density. 

Many-particle interaction is very weird a phenomena for infinitesimal masses. The 
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fractional numbers refer to quantum Hall effect due to the discrete lines. Fractional 

quantum states represent the different values at different magnitude of  magnetic 

fields. For example the figure 3.2 that  shows obviously fractional quantum Hall 

Effect is changing with different Tesla. It means also quantum interference would be 

avoid by resistance fluctuations. When theoretical calculations are so this reasons. 

When we calculate the fractional numbers in different magnetic fields, we obtain 

changing values for fractions. In the figure 3.2, the lines that their draws pick with 

different magnetic fields and it makes the matter can be classified with this way.  The  

fractional quantum Hall state  =  1/3. In the high magnetic fields ,the 

semiconductors that are observable for fractional quantum Hall Effect, namely if we 

identify the properties of the each semiconductor or conductor, in fact we use this 

process. And then, fractional coefficients help us to compare their numbers with the 

Landau Levels. Landau-levels, as we said before, it is decisive for the fractional 

quantum numbers in order to n or p type of semiconductors, Lowest Landau-Levels 

(LLL) is already resulting of the fractional coefficient. Normally, we use the  
  

 
 as 

the fractional quantum levels. Moreover, integer quantum Hall State and fractional 

quantum Hall State is separated from each other with this way. The causes of the 

fractional quantum number is to edges of the plate that current carry negative charges 

and electrons are interaction between each other. We may infer also the 

quasiparticles may be explained with movement of the composite fermions and 

energy gaps of the orbits in quantum computer. These topics also are very interesting 

a study title for the physicist nowadays. It is the new step towards a full 

understanding of these new fractional charges like fermions.   
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Figure.3.2. Quantum Spin Hall state   

In this shema we represent Magneto transport at high magnetic fields and 

observation of Fractional Quantum Hall Effect in graphene [27]. 

The next chapter a general Hamiltonian of a two-level system is constructed also the 

present  chapter  emphasizes a general  method to solve  physical  system.
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CHAPTER 4 

HAMILTONIAN SOLUTIONS FOR TWO LEVEL QUANTUM OPTICAL    

              SYSTEM 

In two dimensional geometry that we can write Hamiltonian of a two level system as 

generally[36] 

                                                    4.1  

where  

                                                             (4.2) 

a,b and       are bosonic annihilation and creation operators, respectively and 

        and    are physical constants and          are usual Pauli matrices and 

they are given by, 

    
  
  

           
  
  

             
   
  

                  (4.3) 

The Hamiltonian (4.1) contains different physical Hamiltonians depending on the 

choice of the parameters. If  

a)                         and               , the 

reducible  the E   Jahn-Teller (JT) Hamiltonian by  Hamiltonian, H,  

b)                         and                    , the 

Hamiltonian, H, becomes the Hamiltonians of quantum dots including spin-orbit 

coupling 

c)                              and  =
  

 
 the Hamiltonian,H, 

becomes  JC  Hamiltonian  with  RWA,
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d)                 ,                ,    =
   

 
  and      

then we obtain JC Hamiltonian without RWA 

e)              ,                  and  =     the Hamiltonian, H, 

takes the form of modified JC (MJC) Hamiltonian. 

Therefore Hamiltonians are demonstrated with first column and last column would 

help us to their algebras. So we computed the Hamiltonians and get the result of 

investigation.  

The relationship between the suitable Lie algebra and Hamiltonian is like that they 

combine its bosonic and fermionic representation. We are inserted in the two-level 

system in a one and two-dimensional geometry, matrix-differential or bosons 

fermions give the Hamiltonians. Therefore, it is important to define a convenient 

function of the operators which Hamiltonians may be found by connection between 

boson-fermions and matrix differential. End of this, we can begin with  by 

corresponding differential equations of the boson operators: 

   
 

 
       

 

  
                                              (4.4) 

  
 

 
       

 

  
                                                 (4.5) 

   
 

 
       

 

  
                                              (4.6) 

  
 

 
       

 

  
                                                 (4.7) 

where l= 
  

 
 is the length parameter and the boson operators obey the usual 

commutation relation 

                                                                (4.8) 

              =      =        =0                        (4.9) 

In principle, when boson operators introduce the Hamiltonian, number of particles 

would define the bosons operators that is steady on the known formula on a state 
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unless solving differential equations. We can separate the method from each other, 

occasionally transformation properties of the bosons could involved the 

Hamiltonians for putting a simple form. 

4.1 Rabi Hamiltonian 

We shortly mention about Rabi Hamiltonian which is useful to figure out the 

eigenvalues for the spin quantum hall effect, so in this thesis, we need to say 

something about Rabi Hamiltonian. The next chapter we carry the energy 

eigenvalues out with this Hamiltonian. 

Fourfold axis symmetry refers to cyclooctatetraene molecular ion, which is a 

particular case, then a single mode would actualize the a doubly degenerate state. 

    Jahn-Teller system is this system for solving complex cases of the Jahn-Teller 

effect. The     Jahn-Teller system coupled to a system terminating harmonic 

oscillations whose energy eigenvalues differ by 2  is characterized by the Rabi 

Hamiltonian [41] 

                                                            (4.10)      

       

where    
 

 
         and          are Pauli matrices and the parameter   is a 

linear coupling constant. Hamiltonian (4.1.1) that we easily define as a differential 

equation by using the realizations of the bosonic operators 

                                   
 

  
                                       (4.11) 

 

In this derivation, we would set the linear first-order differential equation and it is 

useful to write the part of the Schrödinger equation. Equation (4.10) and equation 

(4.11) exchanged each other and (4.11) into (4.10) a system is obtained by two linear 

differential equations for the functions 

 

                                                                    (4.12) 
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                                                (4.13) 

     
      

  
                                                (4.14) 

where E is the eigenvalues of the Rabi Hamiltonian. We eliminate       between 

the two equations, and substituting 

                                                                        (4.15) 

a second order differential equation is obtained 

          
      

   
                           

     

  
  

  [                                                   (4.16) 

For figuring out generators of the Lie algebra, we have to write down the 

Hamiltonians that are accompanied quasi exact solvability of (4.14).  

4.2 Computation of Eigenvalues and Eigenfunctions of the Rabi Hamiltonian 

We search a solution to obtain eigenvalues and eigenfunctions for quasi-exact 

solution. Since the function R(x)={1,x,  ,....   } forms a basis function for called su 

(1,1) algebra, we seek for a solution the polynomial of degree 2j 

            
                                                    (4.17) 

Energy polynomials are coming from production of the wavefunction. So, roots of 

the polynomials assist us to generate the eigenvalues.  Hence the function can be 

followed as  

                     
  
                                       (4.18) 

By substituted (4.18) into (4.17) and carrying out a straightforward calculation, we 

get the definition 

       
               

             
                  (4.19) 
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Here        satisfies the recurrence relation  

                                             

+4                                                                                     (4.20) 

With the initial conditions          and         certain properities of the 

polynomial       can be debuted. Whether    is a root of the polynomial       , 

the series (4.19) rounded to m 2j+1 and    Rabi Hamiltonian has this polynomials. 

Therefore the solution given in (4.19) wage at m =2j and it becomes a polynomial of 

degree 2j. The first four term are presented by  

                                                                    (4.21) 

                                                      (4.22) 

               4(3                                  (4.23) 

 

                             +   

                                                  (4.24) 

  

For j = 0,       , respectively. The components of the eigenfunctions are expressed 

as  

                                                                  (4.25) 

                                             (4.26) 

where            are normalization constants. It is clear that the degrees of 

polynomials in the expressions for       and       are     and     , respectively.  

The eigenfunctions can be written for a given j. We give an instance review the j= 

    case. The polynomial      =0. The zeros of the       are given by  
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                                                                       (4.27) 

In this condition     Rabi Hamiltonian can be obtained for the exact solution, and 

its normalized eigenfunctions may be written as follows 

             
               

     
                                                  (4.28) 

      
                           

    
 

                                                                         (4.29) 

With the eigenvalues 

                                                             (4.29) 

The functions give the condition normalizability as 

              and           
 

 
        

 

 
                                  (4.30) 

When j=1 the roots of the polynomial        can be obtained from (4.23) and they 

read  

              
 

 
                                                  (4.31) 

 (4.28) and (4.29) functions give the eigenfunctions by evaluating the unnormalized 

eigenfunctions for j=1 are given by 

                                       
   

                             (4.32) 

                                      

        
   

      
            

                                                   (4.33) 

Hereby we reached the our aim that is the eigenfunctions are normalizable regarding 

to their wave functions and eigenvalues are more easier under the situation given in 

(4.31).    
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CHAPTER 5 

                                      SPIN QUANTUM HALL EFFECT 

5.1 Background 

We study on Spin Quantum Hall Effect in this thesis  and we investigate the 

relationship  between  classical  Hall Effect and Spin Hall Effect. Spin Quantum Hall 

Effect  (SQHE)  is similar to classical Hall Effect in fact. However, as we research 

the spin Hall Effect, there is a different a current that is called spin current due to the 

movement of the spins.  

The spin Hall Effect is observed recently in both n and  p  doped semiconductors, 

but, it is still unclear if the underlying mechanism is intrinsic or extrinsic. These 

investigations opened up a new technological developments which are like sensors, 

quantum spintronics devices, integrate information processing and storage units. All 

new sensors (pressure sensors, current sensors etc...) rule this Hall Effect. With this 

development of the electronic devices also help the understanding of the 

semiconductors well. On the other hand, all of the semiconductors are not same each 

other, they can be divided into two groups that are n type and p type. 

N type semiconductors works for increasing the load on the valence of four 

semiconductor elements an impurity adding five-valent  a doping operation, is 

obtained by carrying out carriers. Doping material is added, the semiconductor atoms 

release a poor-linked outer electrons. Give away some of its electrons, since the 

donor material of this type is called as doping agents. The purpose of the N type 

doping material, carrier to produce an abundance of electrons.  To understand exactly 

how the n-type doping is performed, silicon (Si) can be shown an example. Four 

neighbouring Si atoms of Si atoms covalently connected with one of the each of the 

four valence electrons. Such periodic table group 15 (Former group VA, akanitrogen 

group) five valence electrons, such as an atom (e.g. phosphorus (P), arsenic (As), or 

antimony (Sb)), are included in the crystal lattice instead of a Si atom,  the atom and 
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an electron-stick will have four covalent bonds. This is only weakly bound to the 

extra electron can be excited into the conduction band and easily. At normal 

temperatures, almost all of these electrons are excited into the conduction band.  

This does not result in the formation of electron hole Since excitation such a 

material, the number of electron-hole far exceeds. In this case, the electron holes are 

the majority carriers and minority carriers. Five-electron atoms "donation" is not an 

extra electron, they that each moving electron donor atoms can be said. 

Semiconductors note is still never far from a positive ion dopant and N-doped 

material normally a zero net there is an electrical charge.  

P type semiconductors are composed holes with wealth situation. Due to the silicon,  

a trivalent atom (group IIIA  of the periodic table, such as boron or aluminium) is 

exchanged with other crystal structure. In this type, a dopant  atom can accept an 

electron from a neighbouring atoms covalent bond to complete the fourth bond.  So 

they gathers each other in order to compose a covalent bond. The other side, other 

atom loses an electron so, there will be a hole in the sequence of electron. This hole 

causes the electron which goes to near to negatively charge and hole wanders away 

into the lattice, one proton in the atom at the hole’s location will be brought out and 

cancelled by an electron. The quantity of positive charge is assured by this hole [20]. 

In addition to these information, we now take a partially different approach to 

understanding n and p doped materials or intrinsic semiconductors, while we are 

informing about the intrinsic semiconductor where the electrons move toward the left 

and the holes move toward the right when the applied electric field is to the right. It 

is already become a Hall Effect in material. 

It is important to point out that there are both negative and positive charge carriers in 

a semiconductor. Since a negative charge travels in the opposite direction according 

to positive charge, they compose a valence from the excitation state and it leaves out  

a hole, these electrons fill the valence band in atom. This hole appears as a positive 

charge, +e. The holes, as we said before, acts an important role for the interaction 

between the spin and orbit, electrons turn around the orbit, the same time spin turns 

around the itself, they cause an interaction due to the induced magnetic field. thereby 

electrons fill the holes and all electrons located stabile places. All intrinsic 
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semiconductors contains like this pairs and we call this pairs “ electron-hole pairs.” 

In this materials, holes move with the current in the electric field, unlikely electrons 

follow a opposite direction. 

Since we are deal with the spin Hall Effect, so we shortly mentioned about 

semiconductors and their types. Now, we can start with the quantum spin Hall Effect 

with their eigenvalues and eigenfunctions in a semiconductor, spin Hall Effect is a 

distinguishing  property for all materials and it is known as spin Hall State. Spin Hall 

state that is aimed to bring out to existence of spin current, two-dimensional, 

semiconductors with spin-orbit coupling. 

Let me  represent a figure about the spin Hall Effect and see the movement of the 

spins with electric current.   

 

                                                    

Figure  5.1. Spin Hall Effect demonstration 

If we evaluate the spin quantum from another window and infer it as below figure; 

                    

Figure 5.2 Opposite spin-orbit coupling force. 
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Total charge conductance vanishes but spin conductance is quantized. The Figure 

shows the lattice displacement leading to the strain configuration [12]. 

Bilayer system used for observing the spin current and Fig.5.2 obtained for it. This 

bilayer made the interaction between spins. So spins move different ways so that 

they are down and up direction. They get together each other edges of the plane, 

electric field is induced after they are separated. These two layers are located 

together. Negative charge of the electrons spin Hall conductivity is down 3 positive 

charges while electrons spin Hall conductivity. 

Graphene plane in the direction of the edges of a strip of zigzag one-dimensional 

energy bands, which is able to show you some experimental results. K and K 'points 

in the range of one-dimensional projections bulk band are clearly seen. In addition, 

the two groups K and K' connecting points traverse the gap. These bands are 

localized to the edges of strip, and each band has completely degenerated copies for 

each edge. Since the states of the states propagate in both directions on each side 

edge is not chiral. However, the edge states with opposite spin electrons propagate in 

opposite directions here in after "spin filter" is. In this case, K and K' and k = 0 is 

similar to 1D projections of the edge states occurs because the edges of the seat. This 

zigzag edges Δ so → 0 for an edge to make the states must insist on a completely flat 

striking. This is associated with zigzag edges of the Fermi energy density leads to an 

improved condition. Scanning tunnelling spectroscopy of graphite surfaces have 

recently seen this [34]. 

Whole system vanishes are filled the spin of electrons. Spin-orbit interaction is that 

induced magnetic field in the plane causes the interacting between the spin-up and 

spin-down. Then we can measure the current of spins. In here layers’ direction is not 

important, because interaction is just between the spin and orbits. However, type of 

semiconductor is valuable for induced electric field due to the spin current. However, 

the spin Hall conductance does not remain infinite, as the chiral states are spin-up 

while the anti-chiral states are spin down, as shown something like that. Although it 

is so difficult to decide measuring as experimentally in spin Hall effect, the 

measurement of the charge quantum Hall effect has become relatively common.  
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Hall effect charge transport properties of solid-state scanning has proven to be a 

convenient and useful tool, and is used as a routine method of standard material 

characterization. It finds wide application in magnetic field sensors, and the two-

dimensional systems and spin-dependent Hall effect in ferromagnetic systems, the 

integer and fractional quantum Hall effects of inconsistent Hall effect in a wealth of 

new phenomena, such as the way the spin Hall effect has been started up with it. Hall 

the effect of spin-orbit interaction with traditional analog also as a result of 

paramagnetic systems have been proposed, and in the absence of an electric field 

applied with a cross-flow generation means pure spin applied magnetic fields. A pure 

spin current in one direction, spin-up electrons and charged with no net current flow 

of spin angular momentum, resulting in a current flow in the opposite direction to 

spin down electrons can be considered as a combination of a Hall voltage of the Hall 

effect can be revealed. Conventional the edges of the sample caused by the 

accumulation of charge, similar to the edges of the spin accumulation is expected to 

sample the spin Hall effect. Early theoretical studies is referred to as an external spin 

Hall effect caused by the up and down spin asymmetries for the scattering of a spin 

Hall effect predicted. More recently, the band structure, even in the absence of 

scattering that occurs as a result has been pointed out that there may be an internal 

spin Hall effect. This idea has led to much theoretical debate, however, experimental 

evidence has been missing for the spin Hall effect. 

5.2 Hamiltonians for Spin Quantum Hall Effect  

To Start with describing free electrons in a magnetic field, one needs to replace the 

momentum by its gauge-invariant [38] 

                                                             (5.1) 

Where    (r) is the vector potential that generates the magnetic field    =       . 

That gauge-invariant momentum is proportional the electron velocity v, which must 

naturally be gauge-invariant because it is a physical quantity. Since    (r) is not gauge 

invariant, neither is the momentum   . if we remind the adding the gradient of an 

arbitrary derivable function                             does not change the 

magnetic field because the rotational of a gradient is zero. By the way, the 

momentum transforms as                 under a gauge transformation in order to 
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compensate the transformed vector potential, such that   is gauge-invariant. The 

substitution (5.12) is called minimal substitution. 

Electrons located to the lattice, this exchange is more deceptive because several 

bands can be occurred like this. Moreover, the vector potential is independent that we 

calculate the Hamiltonian, vector potential is added to equation in magnetic field. 

This becomes clear if one chooses a particular gauge, such as the Landau gauge 

     =             in this magnetic field, vector potential goes the largely as           

where        is the macroscopic extension of the system in the y-direction. On the other 

hand, it may be shown that the substitution (5.1), which is called Peierls substitution 

in the context of electrons on a lattice, remains correct as long as the lattice spacing a 

is much smaller than the magnetic length 

    
 

  
                                                           (5.2) 

After induced magnetic field, we have a basic length parameter of the wave function. 

Because a is typically an atomic scale (              ) and                 

magnetic field causes the lattice and all electrons fill the lattices with 

interaction.[22].           

With equation exchange(5.1), we easily define the Hamiltonian for electrons in a 

magnetic field and now we show the this with differential equation.[39], 

                                  .                                (5.3) 

We take a attention of the vector potential, the resulting Hamiltonian is independent 

in magnetic field anymore. Momentum     is a conserved quantity. We will limit the 

discussion to the B-field Hamiltonians corresponding to the Hamiltonians. 

  
  

            

   
                                                        (5.4) 

for non-relativistic and  

  
                                                                (5.5) 

for relativistic 2D charged particles, respectively. 
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In equation, one particle can be analyzed with Hamiltonian (5.4) and (5.5) in a 

quantum mechanical fixing, the canonical quantisation that is called standard 

method which is used, where operators are shown physical quantities for inferred that 

they act on state vector in a Hilbert space. These operators do in general not 

commute with each other, i.e. the order matters in which they act on the state vectors 

that describe the physical system. Formally one introduces the commutator 

                  between the two  operators    and   , which are said to 

commute when [     ]=0 or else not to commute. All processes are done in 2D, so 

our Hamiltonians help us to understand the basic physical quantities. Let show r = 

(x,y) and its canonical momenta p = (     ), which satisfy the commutation relations  

[    ]                     and                               ,      (5.6) 

i.e. each component of the position operator does not commute with the momentum 

in the corresponding direction. Heisenberg inequality says that non-commutativity 

between the position and its momentum is the origin of the association of position., 

its momentum is following,  

     
    and      

   . 

Commutation relations can be shown (5.6), the components of the gauge-invariant 

momentum no longer commute themselves,  

                                                             

   
   

  
       

   

  
       

   

  
       

   

  
                  (5.7) 

where we have used the relation 

           
  

   
                                                     (5.8) 

Between two arbitrary operators, the commutator of which is a c-number or an 

operator that commutes itself with both    and    [16]. With the help of the 

commutation relations (5.8), one finds that 

             
   

  
 

   

  
               

 
                         (5.9) 
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and, in terms of the magnetic length (5.8), 

 

          
  

   
                                                        (5.10) 

After that, in order to compute (5.3) and (5.4), it is suitable to get the conjugate 

operators are pair           to introduce ladder operators one-dimensional 

harmonic oscillator treats the quantum mechanical repairment. If we remind the old 

lecture notes about the quantum mechanics where the ladder operators can be done as 

the complex position of the one-dimensional in the phase space, which is prolonged 

the momentum and position 

   
 

  
 

 

  
  

 

  
   and     

 

  
 

 

  
  

 

  
                               (5.11) 

 

where                         are normalization constants from the 

oscillator frequency    namely, conjugate variables refers to the position x and the 

momentum p. Normalization constants can be chosen significant numbers and 

commutation relation            for the ladder operators[26]. 

The feature in 2D electron in a magnetic field, the ladder operators act like complex 

gauge-invariant momentum (or velocity), and they read 

  
  

   
                

  

   
                                   (5.12) 

 

where the convenient normalization has been chosen by us such as to obtain the 

usual  commutation  relation 

                                                                  (5.13) 
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The ladder operators assist us to solve for the equation next Hamiltonians to reverse 

the expression easily.(5.8), 

                               
 

    
          and         

 

     
                             (5.14) 

 

5.3 Hamiltonians for Spin-Orbit Coupling                                             

Let me investigate in semiconductor structure,  two-dimensional electron system. 

The spin-orbit interactions will be studied with different magnetic fields. A 

Hamiltonian is demonstrated and will consist of two terms. The following general 

model Hamiltonian with two types of spin-orbit coupling is considered [11]  

                          ).                                (5.15)  

  Where    k= (    )  calls  wave vector with the Pauli matrices are given by 

    
  
  

 ,      
   
  

 ,      
  
   

 .                         (5.16)     

Matrix formation, and the Hamiltonian operator (1) can be written explicitly as 

H= 
                     

                   
 .       (5.17) 

All eigenvalues can be calculated with this Hamiltonian H in (5.17) are given 

explicitly as  

            
    

        
    

            
 
 = 

          
    

  
    

  
 
                                                                    (5.18) 

Where k=   
    

  
 
   and     . This denotes a band point in terms of        

index. Describe the angle   in the regarding to, 
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                                         Sin(2  )=
     

  
    

          
  

    
 

  
    

                                 (5.19) 

  

From (5.19), tan   is easily seen to be related to the componenst of k and simplifies 

to a very concise form, 

                                       Tan    
       

     
 

  
  

    
 

  
    

 

     

  
    

 

= 
  

  
                                   (5.20) 

The required eigenenergies of H in (5.17) can be evaluated, and in terms of   are, 

            ,                                            (5.21) 

Also, the eigenvectors of H in (5.17), which we write 

 

       
                  

                  
 

  
 

 
  =   

 

     
                   

 
                 (5.22) 

 

Now, we look at the other Hamiltonian for spin quantum Hall effect and their 

eigenvalues that Hamiltonians include spin-orbit couplings in changing magnetic 

field in quantum optics. In this part, the most used mechanical model is known as 

Jaynes-Cummings (JC) that is also simple a formation [36].     

                                                             (5.23) 

 This Hamiltonian defines a single two-state atom, demonstrated by the Pauli 

matrices, that is interaction between the spin-orbit in electromagnetic field.      are 

the photon creation (annihilation) operators, and V is the coupling strength between 

the atom and electromagnetic field [37]. 

                 
  
  

    
  
  

     
  
   

                       (5.24)                                                                    



44 

 

  

Now we define        

       
 

  
                                                 (5.25) 

 

And we rewrite the equation (5.23) 

  

      
 

 

  

  
    

  
   

   = 
 

  

  

    
  

  

  
    

  

  
                      (5.26) 

 

     
 

  
       

                                                    -             

   
       

  
      

     

 

  

 
  

   

  
  

     

 

  

 
 

 

 
   

  
           

 

 
     

 

 
   

  
 

          

 
     

 
   

  
  

     

  

 

 
    

     

  
   

 

and then, 
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                                                           ln  =  lnx+lnC   

 

so, 

       

  in here             

     

  
                           

          

                                                       (5.27) 

 

 

  Where n=1,2… non-negative integer ,  = . 

These interaction guide us that spin-orbit interaction and eigenvalues for these wave 

functions are found. By the way, these results may be represented many different 

ways. Because when gauge adjustment would be changed, all eigenvalues 

configuration will be varied. Energy between the electromagnetic field and the two-

level system, known as Rabi oscillations. In terms of the Hamiltonian in Eq.5.34, the 

two-level atom in the pseudo spin ½ due to the two sub lattices in graphene, and the 

photon operators    and   are translated to operators in graphene that are acting on 

Landau levels       

    
    and      

    
  

 

When we look at the another Hamiltonian that is [39] 

   
       

  
 

  

  
                                                  (5.28) 
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Here A refers to vector potential that guides to the magnetic field B=   = - B  , p 

is the kind of momentum of the electron, -  is its charge, and m is its bare or band 

mass. Note that B points along the negative z axis. 

The wave functions can be limited with light gauge shifted and we can infer the A. 

All spectrum are found by this way. Let us define a cyclotron coordinate  

 

 

                                                                 (5.29) 

Where      
    is the magnetic length. Despite the name, the two components of 

  are not commuting but canonically conjugate variables: 

 

                                                                 (5.30) 

 

It follows that 

   
  

    
                                                         (5.31) 

 

Describes a harmonic oscillator with energies 

 

     
 

 
                                                        (5.32) 

 

Where n is the Landau-level index. 

Electronic coordinates can be written with Hamiltonians and describing the 

composite fermions (CF), we focus on spin-polarized case for fractions of the form  
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                                                                  (5.33) 

The results contain to  =
 

     
. 

Let me look up band electrons with mass m and number density n, described by the 

following first quantized Hamiltonian: 

     
        

  
                                                     (5.34) 

 

  
    

 

                                                               (5.35) 

And then,  

 

  
    

 

    
                                                            (5.36) 

 

                                            
 

 
 +              

   
 

  
 

                                                            (5.37) 

 

where          refers to unit vector with the   -axis,   is the magnetic length, B is 

the applied field, V is the inter-electron potential, and   is the cyclotron coordinate, 

whose components are canonically conjugate: 

             

Gradient of the A gives –eB and we propose the length of the magnetic. These are 

written in electronic coordinates. Therefore, if magnetic field is changed these results 
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would have different values. Fractional quantum numbers cause the generation of 

rational energy gaps. Landau levels provide the energy spectrums as followed. 

        
          

                                                (5.38)
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CHAPTER 6 

CONCLUSION 

The goal of the Hamiltonian solutions are to start with the Hamiltonian for two-

dimensional interacting electrons, final quasiparticles can be described in fractional 

quantum states and we can make some comments about this Hall Effect  in a 

magnetic field and arrive at a comprehensive description. With Hamiltonians, we 

have shown the spin and its movement also energy eigenvalues and wave functions 

have been investigated by Rabi Hamiltonians. Different Hamiltonians have used in 

order to infer energy eigenvalues of spin quantum. While investigating these, we 

have used magnetic field and potentials so that Hall Effect occurred. 

The work presented in this thesis also has been aimed to develop spintronics devices 

and some method to solve various kinds of physical Hamiltonians. After chapter 3, 

we have briefly mentioned and discussed some models and Rabi Hamiltonians. 

These models can be solved quasi-exact solvability. 

A general Hamiltonian has been expressed by changing the parameters, so we can 

easily get a number of models can be obtained. After that, we also investigated quasi-

exact solution of Rabi Hamiltonians. Because of some Hamiltonians has been used to 

compute the energy eigenvalues by Rabi Hamiltonians.  

The most important results and achievements of this study are: 

 Attentively studying Hall Effect, especially Spin Quantum Hall Effect for 

obtaining energy eigenvalues. Through energy eigenvalues and 

eigenfunctions is achieved and developed into special and different some 

Hamiltonians. 

 Studying the new science of Spin Quantum and all its main components 

which help with the designing of many other different quantum hall effects.
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 Obtaining the energy eigenvalues of Spin Quantum Hall Effect through 

familiarization with the Hamiltonians. Formulating all the above-mentioned 

processes in Spin Quantum Hall Effect by using Mathematica program, 

achieving remarkable results. 

 All these will result in the development of Spin Quantum Hall Effect science 

and combining it with Mathematica program. Using this program for all the 

Hamiltonians of this science which have thus far been discovered.    

Finally, we speculated that Quantum spin Hall effect with their energy eigenvalues 

by using different Hamiltonians.
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