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ABSTRACT

CALCULATION OF THE CRITICAL MASS AND THE EIGENVALUE OF
FAST NEUTRONS REACTION

KOKLU, Halide
MSc Thesis, Engineering Physics, University of Gaziantep
Supervisor: Assoc. Prof. Dr. Okan OZER

January 2013, 98 pages

Solution of the steady-state one-group diffusion equation for bare and reflected
reactors in three distinct geometries has great importance in the calculation of the
critic size and critical mass of the pure or mixtured fuel material. The eigenvalue of
the diffusion equation shows the relation between the material and the size of the
geometry in question. This relation is called the material Buckling, Bn, or the
geometric Buckling, By. Solving the steady-state one-group diffusion equation for
bare reactor systems, the critical mass values are obtained in three distinct geometries
for different material structures. After surrounding a bare reactor with a reflector
material, a reduction is observed in the critic dimensions in all geometries and also
the critical mass decreases to a certain value depending on the properties of the
reflector and the core material. The reactor savings is presented as a function of the
reflector thickness. The results obtained in this study are compared with the
numerical values existing in the literature.

Key words: critic mass, diffusion equation, fast neutrons



OZET

KRIiTiK KUTLE VE HIZLI NOTRONLARIN REAKSIYONLARININ OZ
DEGER HESAPLAMALARI

KOKLU, Halide
Yiiksek Lisans Tezi, Fizik Miihendisligi, Gaziantep Universitesi
Danisman: Dog. Dr. Okan OZER

Ocak 2013, 98 sayfa

Ug farkli geometrideki yalin ve reflektérlii reaktdrlerin kararli hal tek grup difiizyon
denklem coziimleri saf ve karisimli yakit malzemeli kritik kiitle hesaplari tartigmalar1
biliyiik bir 6neme sahiptir. Diflizyon denkleminin 6z degeri reaktoriin gerekli olan
minimum boyut ve malzeme iligkisini verir. Bu iligki malzeme B, ve geometri
biikiilme B, olarak adlandirilir. Oncelikle kararli hal tek grup difiizyon denklemi
coziilerek tli¢ farkli geometrili (kiire, silindir ve dikdortgen prizma) yalin reaktorlerin
kritik kiitle degerleri farkli materyal yapilari i¢in elde edildi. Yalin reaktor reflektorle
kaplandiktan sonra, biitiin geometrideki reaktorlerin kritik boyutlarinda kiiciilme
gozlenmistir. Ayrica kritik kiitle de reflektoriin ve yakit malzemesinin 6zelligine
bagl olarak belli bir degere kadar diismektedir. Bu ¢alismadaki hesaplama sonuglar1
literatiirdeki sayisal sonuglarla karsilastirilmistir.

Anahtar kelimeler: kritik kiitle, difiizyon denklemi, hizli n6tronlar



ACKNOWLEDGEMENTS

This study is composed thanks to my supervisor, Assoc. Prof. Dr. Okan Ozer, 1
express my grand appreciation for his endless patience and tolerance when replying
my lots of questions with devotion. He has always given me professional directions
and continuous encouragement in every phase of this thesis. Also the co-operation
and support of him were very valuable because of giving me the opportunity of
learning such an excellent subject. Furthermore, my great thanks go to him for his
sincere advice and suggestions. As well as all of them, I also thank him to trust me

for succeeding this study.

My gratitude also goes to Assoc. Prof. Dr Mehtap GUNAY (Department of Physics,

University of indnii, Malatya) for her valuable discussion and hospitality.

Additionally, I want to say thank to the lecturers in nuclear physics group especially

for their support.

Meanwhile, | thank to my researcher colleagues in the Department for their

friendship and pleasant coffee break conversations.

Especially 1 would like to thank to my mother, my father and my brother for their

support and faithful pray during the thesis study.

Finally, I am thankful to my husband Mustafa and my lovely little daughter Beyza.

Vi



CONTENTS

AB ST R A CT L. e e e e e e e e e e s v
OZET oottt v
ACKNOWLEDGEMENTS ..ottt e e a e Vi
CON T ENT S e e e e e e e s e e e e e e e e s s et rrrareeeeeeeaans vii
LIST OF FIGURES .....coo oottt e e a e e e e e IX
LIST OF TABLES . ...t e e e e X
LIST OF SYMBOLS ...t a e e e e Xi
CHAPTER 1:GENERAL INTRODUCTION ...ttt 1
CHAPTER 2: THEORITICAL INFORMATION ...oovviiiiiiiiiiieeeee e 5
2.1 INTERACTION OF NEUTRONS WITH MATTER ..o 5
2.1.1 THE PRODUCTION OF NEUTRONS ..ot 5
2.1.2 NEUTRON ABSORPTION REACTIONS .....ccoiiiiiiiieiieieeeee e 6
2.1.2.A Radiative Capture REACHIONS ........cccvuveeiiieeiiiie e ee e 7
2.1.2.B Charged Particle EMISSION .......ccceeiiiieiiieeiiiee e 8
2.1.2.C FiSSION REACIONS .....c.vviiiiieiiiieiie sttt 8
2.1.3NEUTRON SCATTERING REACTIONS ......ccoeiiiiiiie e 10
2.1.3. A EIastiC SCAtEriNG ......cccvveeiiiiieiiiee e 11
2.1.3.B Inelastic SCALEriNg .......c.ceovvveeiiiee e 12

2.2 CROSS-SECTIONS and NEUTRON FLUX .....cccvoiiiiiiieiienieceneee e 13
2.2.1 Microscopic Reaction Cross-SeCtiONS..........c.eeevveeeiieeeiieeeiieeesieeesiee e 16
2.2.2 Macroscopic Reaction Cross-SeCtiONS..........ccouveiiuveeiiiieeiiieeeiiee e s 17
2.2.3 NEULTON FIUX ..ttt 19
2. 24 FICKS LAW e 23
CHAPTER 3: SOLUTION OF DIFFUSION EQUATION FOR NON-
MULTIPLYING SYSTEMS ..ottt 31
3.1 EQUATION OF CONTINUITY L.oiiiieiiiie et 31
3.2 THE DIFFUSION EQUATION ....ooiiiiiiieiie et 34

Vii



3.3 SOLUTION OF THE DIFFUSION EQUATION IN NON-MULTIPLYING

SYSTEMS ettt bttt ettt e 39
3.3.1INfINite PIANET SOUICE ......cuviiiieiii e 39
3.3.2 POINE SOUICTE ... ettt ettt ettt ettt et et e e s e ens 42
3.3 3BArE SIaD .. 43
3.3.4 Two region example for sphere With SOUICe............ccoooveiiiiiieiiie i 46

CHAPTER 4: SOLUTION OF DIFFUSION EQUATION FOR MULTIPLYING

SYSTEMS et e ettt 50

4.1 SUBCRITICAL ASSEMBLIES FOR SPHERE .......cccccooiiiiiiiiecee 50
4.1.1 Subcritical assemblies for SPhere ... 51
4.1.2 Supercritical assemblies for SPNere .........ccccoveiiiiiiiiic e 53

4.2 CRITICAL ASSEMBLIES FOR DIFFERENT GEOMETRIES..............ccc....... 55
4.2.1 THe SIah FEACLON .....ccvviiiie e 55
4.2.2 SPRBIE .o 58
4.2.3 INFINILE CYHNAET ..o 63
4.2, 4 FINIE CYHNUET ...t 67
4.2.5 Rectangular parallel piped ..o 75

CHAPTER 5: REFLECTED REACTORS .....ccoiiiiiiiiiiie e 79

5.1 AXIAI TEFIECTON ... 79

5.2 Spherical refleCtOr........ccovvv i 84

CHAPTER 6: CONCLUSION ......ooiiiiiiiiiiiesie et 90

REFERENGCES ...ttt 92

APPENDIX ettt 94

viii



LIST OF FIGURES

PAGE
Figure 2.1 Schematics of the potential elastic neutron scattering ............c.cccceeveee. 11
Figure 2.2 Geometry for neutron reaction rate in thin target of volume V................ 14
Figure 2.3 Geometry for the derivation of the neutron current and Fick's Law. ....... 24
Figure 2.4 Neutron flux and CUIMTENT. ........c.ooiiiiiiiiiieic e 29
Figure 2.5 Neutron flux and current in the wall of reactor. ............cccoccevveiiiiiinnn 30
Figure 3.1 Extrapolation diStanCe. ...........ccueiiiiiieiiieiie e 38
Figure 3.2 Planer source at origin X=0.........cccouriiiiiiniieiiie e 39
Figure 3.3 Infinite slab with planar source at X=0. ..........ccccoovieiiiiiiiiiee 44
Figure 4.1 SIab reactor... ... ..o 55
Figure 4.2 Ordinary and modified Bessel functions................ccooooviiiiiiiiinnn. 65
Figure 5.1 AXial - RefIECIOr ......oveiiiiecee e 80

Figure 5.2 Calculated reflector saving as a function of Uranium reflector thickness 88

Figure B.1 Extrapolation distance of neutron flux at plane surface between diffusion
MEIUM AN VACUUIM. ... ettt et et et e e e e e e e e aae 98



LIST OF TABLES

PAGE
Table 2.1 Cross section symbols for different type of reaction.......................... 17
Table 4.1 Neutron cross-sections for >*Uand ?*°Pu used in Ref. [16]. .......cc.c.......... 62
Table 4.2 The critic radius and critic mass values at 2MeV neutron cross-sections for
25 from data library [ENDF/B-VIL1]......cceeeieeieeoee e 62
Table 4.3 Critical radius for infinite cylinder.....................cooiiiiiii e, 67

Table 4.4 Comparison of chosen heights and the corresponding critical radii with
extrapolated distance and non-extrapolated distance for bare finite cylinder of

Table 4.5 Chosen heights and the corresponding critical radii and critical masses with
extrapolated distance and non-extrapolated distance for 2°U, for 2MeV neutrons. ..73

Table 4.6 Chosen heights and the corresponding critical radii and critical masses with
extrapolated distance and non-extrapolated distance for *°Pu, for 2MeV
0T D13 001 74

Table 4.7 Buckling and flux distributions in Bare systems for distinct geometries...78

Table 5.1 Axial Uranium core and Uranium reflector..................ccovvvienennnn.n. 83
Table 5.2 Axial Uranium core- Pu-239 Reflector..........ccovvviiiiiiiiiiiinnne, 84
Table 5.3 Pure U core surrounded with pure ?**U reflector for sphere.................. 89
Table 5.4 Pure **Pu core surrounded with pure **Pu reflector for sphere. .............. 89
Table 5.5 Comparision of spherical reflector results with literature.................... 89



LIST OF SYMBOLS

o
L 1o A

SN M Q@

<l

DC,I’

<y

A

Bm

Neutron Flux Function
Extrapolation Distance
Extrapolated Radius of a Sphere
Critic Radius of a Sphere
Reflector Savings

Microscopic Cross Section
Macroscopic Cross Section
Multiplication Factor

Multiplication Factor for Infinite Medium

Gradient Operator

Laplacian Operator
Diffusion Length
Diffusion Coefficient (for core and reflector, respectively)

Neutron Current Density Vector
Transport Mean Free Path

Buckling
Geometrical Buckling

Material Buckling

Xi



CHAPTER 1

GENERAL INTRODUCTION

Nuclear power plants are substantially efficient in energy production and still being
used by lots of countries all over the world. With thriving technology, nuclear power
reactor types are multiplied by time. Although the reactor types are different, the
basic components of these systems are the same. A nuclear reactor is basically
composed of several elements like moderator, coolant, control rods, blanket and
reflector. The moderator is used to slow down the neutrons from fission to thermal
energy levels. The coolant is used to remove the heat from the core and the other
parts of the reactor. The blanket is the part of the reactor made of fertile material that
surrounds the core of the breeder reactors. As understandable, control rods are
movable pieces of neutron-absorbing material which are used to control the
criticality of the reactor. Lastly, the reflector is adjacent to the core that catches the
neutrons escaping after more collisions from the core of reactor. This study also

includes reflector saving calculations.

The heart of a fission reactor, the fission takes place in the core, breeds the whole
power plant with fission chain reaction energy. Accordingly Uranium and its
isotopes are essential for a fission reactor that produces energy from fission
reactions. The natural uranium consists of 99.27 % of Uranium-238, 0.72 % of
Uranium-235 and 0.0057 % of Uranium-234. [1, 2]. Uranium-235 is more effective
in fission by thermal neutrons and also more preferable in practice because of some
certain reasons such as Binding energy and the activation energy of Uranium
isotopes. Due to limited amount of Uranium-235, enrichment and various
compositions are used in core for fission chain reaction as an energy source.
Furthermore, importance of critic mass appears due to the little amount of Uranium-

235 isotope in natural uranium. Critic mass is the smallest mass for sustaining the
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fission chain reaction in a nuclear power reactor. The denoted parameter k, called as
“multiplication factor” (or survival factor) is the ratio of the number of neutrons
generated in present fission to the number of neutrons generated in the previous
fission [3]. Therefore, the parameter k can get three different values: If k is less than
1, then the number of fission chain reactions decrease with time and the energy
production reduces in time. This condition is called “subcritical”. If k is equal to 1,
then the generation of fission neutrons is stable and the reactor is called “critical”. If
k is greater 1, then the generation of neutrons increase with time and the reactor is
called “supercritical”’. As a result of these conditions, the generation of fission
neutrons gets great importance in the reactor core which may be made of different

composition of uranium isotopes.

In the reactor core that has fissionable material there occur many kinds of neutron
interactions like elastic- inelastic scattering of neutrons and radiative capture reaction
as well as fission reaction. These interactions fluctuate the number of neutrons in the
core composition. Some interactions increase, others decrease the neutron population
with time. So, the flux and also the density calculations require obtaining the net
number of neutrons at the boundaries of the core. To determine the neutron flux in
the reactor core, neutrons may be assumed to be solute in a solution: The density
goes from region of high concentration to that of low concentration region. As a
good approximation, Fick’s Law [4] for neutron diffusion in reactor core can be
used. Furthermore, Fick’s Law states that the rate of solute flow is proportional to the
negative of the gradient of the solute concentration [1, 3]. So, Fick’s law is the
starting point for the solution of diffusion equation in the determination of the
parameters required to calculate the multiplication factor (or survival factor), k. Then

calculations are done for the reveal the critic mass of reactor core.

The most general form of the diffusion equation for fission neutrons depends on
geometry of the system and the time variable. If one does not consider the reactor
Kinetics for time parameter, then an important question arises: For what geometry the

critical mass is the lowest one? To answer this curious question, initially the most



primitive system that is one-group (fast-group because of narrow energy range than
thermal group) steady-state neutron diffusion equation is considered. In this thesis,
the solution of the one-group steady-state neutron diffusion equation for certain
distinct geometries is obtained and the critical mass calculations are studied.

In Chapter 2, the neutron interactions with matter and the derivation of the Fick’s law
is given. Definitions of the microscopic and macroscopic cross-sections, neutron

flux, mean-free path are discussed.

In Chapter 3, the equation of continuity is obtained and the solution of the steady-
state neutron diffusion equation for non-multiplying media is considered. Solutions
are obtained for certain reactor geometries: Solutions of the diffusion equation are
done to understand the behavior of neutron flux for non-multiplying systems
consisting of a point source, an infinite planer source and a bare slab. These

calculations help to understand the solution of non-multiplying bare systems.

A bare reactor is considered with multiplying medium that consists of fissionable
materials in Chapter 4. The diffusion equation with multiplying media has an
eigenvalue which is called the material buckling related with the composition of the
core material. Here, the term “buckling” is defined by the curvature or bending of the
neutron flux in the system. The analytical or numerical expression of the buckling
parameters for different specific reactor systems is determined by expressing the
Laplacian operator in the most appropriate coordinates that depend on the reactor
shape and then one can solve the resultant steady-state differential equation subject
to the boundary conditions of the system under investigation. In general, the
expression of the buckling parameter satisfying the mathematical requirements of the
differential equation is not unique but the smallest numerical value has physical
significance in the solution of the problem. It is shown in this Chapter why one shall

be interested in obtaining the smallest value of the buckling parameter.



Surrounding a bare system with a reflector, that is a medium having high scattering
cross section and low absorption cross section, has some certain advantages which
are studied in Chapter 5. Since the power production in the reactor core is also
proportional to the average neutron flux in the system, the reactor can be run at a
higher total power output for the same neutron flux if it is maximized throughout the
system. The effect of flux-flattening is observed as the higher power production rate
especially in large power reactors from the operational point of view. If one can
obtain the neutron flux function for the geometry in the question, then the power
produced in this system can also be calculated by using the type of fissile material
and its fission energy value. However, the main purpose of this thesis study focuses
on the critic size and mass of the reactor core. After determining the critical mass
value for the bare systems in certain geometries, the calculations are done for the
same systems with certain type of reflector materials. Our results are compared with

the existing literature.



CHAPTER 2

THEORITICAL INFORMATION

2.1 INTERACTION OF NEUTRONS WITH MATTER

In this Chapter a brief information about the neutron interactions is given.

2.1.1 The Production of Neutrons

Neutron sources are various kinds of required for experimental purpose and also play
an important role in the start-up of nuclear reactors. Neutrons are obtained by the
action of alpha particle on some light elements like beryllium, boron, or lithium. The

reaction [5] may be shown by

9 4 12 1
.Be + ;He——C + /n (2.1)

Alternatively, this may be written in the abbreviated form

*Be(a,n)*C (2.2)

This representation states that Be is the target nucleus, interacting with an incident

alpha particle (a); a neutron (n) is ejected and a “C nucleus, referred as the recoil
nucleus, remains. The major alpha particle emitters used in (a,n) sources, together

with beryllium, are radium-226, polonium-210, and plutonium-239. In these cases,



output neutrons have high energy range from 1 to 10 MeV or more. Such neutrons

are known as polyenergetic.

On the other hand, monoenenergetic neutrons can be obtained by the action of
gamma rays about 2 MeV on certain type nuclei such as deuterium, heavy hydrogen
and beryllium. The reactions are given as

2Be+ y—— JBe+ 4N (2.3)

and

2HJrog—)lHJr ln (2.4)
1 0 1 0

These are described as (y, n) reactions and called as photoneutron sources. This
reaction occurs only if the energy of the gamma rays is at least equal to binding
energy of the neutron in the target nucleus. Due to the fact that the binding energy is
exceptionally low in deuterium (2.2 MeV) and beryllium (1.6 MeV) that these
substances are generally used in (y, n) neutron sources. Obtaining neutrons from

other elements requires gamma rays of at least 6 to 8 MeV energy [5].

2.1.2 Neutron Absorption Reactions

Reactions of neutrons with nuclei separate into two groups, scattering and
absorption. In absorption process the neutron is witholded by the nucleus and a new
particle is formed. The most important absorption reaction in nuclear reactors are
radiative capture and fission which will be mentioned in detail. There are also a few

neutron absorption reactions of different types. In considering absorption reactions it



is convenient to distinguish between reactions of slow and of fast neutrons. There are

three main kind of slow neutron reactions;

a. Emission of gamma radiation (radiative capture) (n, v)
b. The ejection of a charged particle (such as (n, o) and/or (n,p) reactions)

c. Fission (n,f)

Radiative capture occurs with a wide variety of elements. The (n, a) and (n,p)
reactions, these are called charged particle emission, with slow neutrons are limited
to a few isotopes of low mass number, however fission by slow neutrons is restricted

to certain nuclei of high mass number.

2.1.2.A. Radiative Capture Reactions
In these reactions, excited compound nucleus emits its excess energy as gamma rays.

The process may be shown like this form

A+l

XA+ ot —— [ XM —— Xy (2.5)

Having an atomic number Z and a mass A, zX* is the target nucleus. The product
X1 is the isotope of zX* and it may be radioactive or not [5]. If it is radioactive, it
will most likely be a beta emitter because the capture of a neutron will have produced
a nucleus in which the neutron-to-proton ratio is too large for stability for the given
atomic number. Actually all the elements show the radiative capture reaction much
or less extent. However some nuclei exhibit little inclination to capture neutrons.
Two example for radiative capture is uranium-238 and thorium-232, and also
uranium-235 and plutonium-239 represent radiative capture, in competition with
fission, especially for neutrons of intermediate and low energies. The neutron capture
reaction does not require any specific neutron energy and the reaction can occur with
the neutron of any energy. In this reaction the Q-value becomes positive, that is,
exothermic since the binding energy of the product nucleus is larger than the

summation of the binding energy of the neutron and the original nucleus.



2.1.2.B. Charged Particle Emission

A charged particle reaction, which is also called as “transmutation” reaction, usually
pioneers to emission of an a particle or a proton from the nucleus. Due to the fact
that a positively charged particle can be expelled from a nucleus only if it has
sufficient energy to overcome an electrostatic potential, the slow-neutron reactions
rarely produce the charged particles. Only for a few element of low atomic number,
for which the nuclear electrostatic repulsion is small,

PB+,n——>4B ——Li+,He (2.6)

that charged-particle emission is possible after capture of a slow neutron. The (n, o)
reaction with boron-10 can be shown as 3He representing the a particle. In this
reaction, the charged particles are ejected in opposite directions with relatively high
energy. This is the basis of a method for detecting and counting slow neutrons. Since
boron undergoes the (n, o) reaction very rapidly with slow neutrons, this element is
used for controlling the reactor core like cadmium. Another reaction producing the

charged particles is the (n, o) reaction of Li:

2Li+n——>(JLi) ——H + ;He (2.7)

This reaction is similar with the previous one. Here 3He is the residual and a beta-

active, hydrogen isotope of mass number 3 is called tritium.

2.1.2.C. Fission Reactions

Neutrons colliding with certain nuclei may cause the nucleus split apart to undergo
fission. Fission occurs only with certain nuclei of high atomic (and mass) number,
and hence the repulsive force within the nucleus is an important contributory factor.
When fission occurs, the excited compound nucleus formed after absorption of a

neutron breaks up into two lighter nuclei, called fission fragments. If the neutron is



one of low Kinetic energy, i.e. a slow neutron, the two fragment nuclei generally have
unequal masses. That is to say, symmetrical fission by slow neutrons is rare; in the
majority of slow- neutron fissions the mass ratio of the fragments is appoximately 2
to 3.

Only three nuclides, having sufficent stability to permit storage for a long time,
namely uranium-233, uranium-235, and plutonium-239, are fissionable by neutrons
of all energies, from thermal values to millions of electron volts. Of these nuclides,
uranium-235 is the only one which occurs in nature; the other two are produced
artifically from thorium-232 and uranium-238, respectively.

In addition to the nuclides which are fissionable by neutrons of all energies, there are
some other nuclides that require fast neutrons to cause fission such as thorium-232
and uranium-238. For neutrons below about 1 MeV energy, but above this theresold
value, fission also occurs to some extent. Since fission of thorium-232 and uranium-
238 is possible with sufficently fast neutrons, they are known as fissionable
nuclides. In distinction, uranium-233, uranium-235, and plutonium-239, which will
undergo fission with neutrons of any energy, are referred to as fissile nuclides.
Moreover, since thorium-232 and uranium-238 can be converted into the fissile
species, uranium-233 and plutonium-239, respectively, they are also called fertile

nuclides.

Some fertile nuclides can be converted into useful nuclear fuel for fission reactors in
which most of neutrons are moving slowly. The most important two fissile breeding

reactions are [6]

Z2Th 4 n—— 2T L5 %pa—L 57 (2.8)

and



238, \ 239 1 * £ 239 B~ 239
od +n > ‘U > ‘e Np——,Pu (2.9)

The importance of fission, from the standpoint of the utilization of nuclear energy,
lies in two facts: First, the process is associated with the release of a large amount of
energy per unit mass of nuclear fuel and, second, the fisson reaction, which is
initiated by neutrons, is accompanied by the liberation of neutrons. It is the
combination of these two circumtances that makes possible the design of a nuclear
reactor in which a self-sustaining fission chain reaction occurs with the continuous
release of energy. Once the fission reaction has been started in a few nuclei by
means of an external source of neutrons, it can be maintained in other nuclei by the
neutrons produced in the reaction. It should be noted that it is only with the fissile
nuclides mentioned above that a self sustaining chain is possible. Thorium-232 and
uranium-238 cannot support a fission chain because the fission probability is small
even for neutrons with energies in excess of the threeshold of 1 MeV, and inelastic
scattering soon reduces the enegies of many neutrons below the theresold value [5].

Some typical neutron-induced fission reactions for different neutron energies are

U +n——*U*—— PRb+*'Cs+2n
B 4 P x5 1 4 B 430 (2.10)

29 4 n——s B *—Cs + ©Rb 4+ 4n

These reactions are possible for incident neutrons of thermal energies. [7]

2.1.3 Neutron Scattering Reactions

Neutrons having energies above the thermal range, a scattering collision results in
degradation of the neutron energy. Energy degradation caused by scattering is
referred to as neutron slowing down. In a medium where the average energy lose per

collision and the ratio of scattering to absorption cross section is large, the neutron

10



spectrum becomes close to thermal equilibrium. That is referred to thermal or soft
spectrum. Contrary in a system for which small degradation to absorption, neutrons
are absorbed before significant slowing down takes place. Then the neutron spectrum
becomes closer to the fission spectrum and is called to be hard or fast. To understand
the neutron energy distribution more quantitively, we must consider first elastic and
inelastic scatterings. In elastic scattering the sums of the kinetic energies of the
neutrons and the target nucleus is same before and after collision. That is energy is
conserved. However in inelastic collision, it is not conserved because the some of
Kinetic energies of nucleus and target nucleus before scattering is less or greater than
after scattering. Both elastic and inelastic scattering are of considerable importance

in nuclear reactors.

2.1.3.A. Elastic Scattering

In elastic scattering, the target nucleus remains in its lowest energy (ground) state,
this interaction treats as a billiard ball type collision as seen in Figure 2.1. Thus, this
behavior can be analyzed in terms of mechanic laws with conservation principles of

both momentum and energy

Before Intermediate After

A{Xr
4 Y

Neutron ° ,\ °
4 Neutron NeutroN

Figure 2.1 Schematics of the potential elastic neutron scattering [4]

After sufficient number of elastic collisions, the velocity of neutron reduces that has
approximately the same average kinetic energy as the atoms of the scattering

medium. This energy depends on the temperature of the medium that is called

11



thermal energy. Thermal neutrons are the neutrons in thermal equilibrium with the
atom in the medium. A certain thermal neutron undergoing scattering collision with
the nuclei of the present medium may gain or lose energy in any one collision. But, if
a large number of thermal neutrons diffusing in a non-absorbing medium are

considered, becomes no net energy change for all the neutrons.

There are two possible ways for a neutron to scatter elastically. The first one is
resonance or compound elastic scattering: the neutron is absorbed by the target
nucleus to form a compound nucleus followed by re-emission of a neutron. The other
is potential elastic scattering. the short range nuclear force scatter the neutron away
from the nucleus surface. The more unusual of the two interactions is the resonance
elastic scattering that is highly dependent on initial neutron Kinetic energy. Near the
resonance energies there is a quantum mechanical interface between the potential and
resonance scattering. As the neutrons approach the nucleus, they are scattered by the
short range nuclear forces and is expressed by relation as o (potential

scattering)=47R* where R is the radius of the nucleus [4].

2.1.3.B. Inelastic Scattering

When a fast neutron undergoes inelastic scattering, it is first captured by the target
nucleus to form an excited state of the compound nucleus, then a neutron having
lower Kinetic energy is emitted when it leaves the target nucleus in an excited state.
An excess energy becomes this energy is subsequently emitted as one or more

photons of gamma radiation which is called inelastic scattering gamma rays.

If E; is the total Kinetic energy of the neutron and target nucleus before collision and
E, is the Kinetic energy after the collision also E, is the emitted energy from gamma

radiation, so,

E1:E2+Ey
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It is obvious that in inelastic scattering kinetic energy is not conserved. Nonetheless,
momentum is conserved. For elements of moderate and high mass number, the
energy of the lowest excited state above the ground state, is usually from 0.1 to
1MeV. When the nucleus having with decreasing mass number, becomes a general
tendency for the excitation energy to increase, hence the neutrons must have higher
energies if they are to undergo inelastic scattering. Due to the fact that the separation
of the excited levels of a nucleus is smaller at high excitation energies. The relative
probability of its occurrence, increases with increasing neutron energy. For inelastic
scattering by elements of low mass number, the total gamma-ray energy must be
high.

2.2. CROSS-SECTIONS and NEUTRON FLUX

Each of the reactions may occur under certain conditions and there is a need for the
parameters that are used to calculate the probability if a reaction occurs or not. First,

it is necessary to define the interaction area for the interacting particles.

Roughly speaking, the cross section is a measure of the relative probability for the
reaction to occur. The probability that a nuclear reaction will take place is measured
in units of "barns", where 1 barn equals 10%* cm? This is a unit of area. You can
visualize a target material as an array of little disks. Larger disks would be easy to hit
(large cross section, large reaction probability), and smaller disks would be hard to
hit.

As we mentioned above, neutron interactions with matter can be either scattering or
absorption reactions. As it is well known that the scattering can result in a change in
the energy and direction of motion of a neutron but cannot directly cause the
disappearance of a free neutron; and the absorption leads to the disappearance of free
neutrons as a result of a nuclear reaction with fission or the formation of a new
nucleus and another particle or particles such as protons, alpha particles and gamma

photons. The probability of occurrence of these reactions is primarily dependent on
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the energy of the neutrons and on the properties of the nucleus with which it is

interacting.

The probability of a particular reaction occurring between a neutron and a nucleus is
called the microscopic cross section (o) of the nucleus for the particular reaction.
This cross section will vary with the energy of the neutron. The microscopic cross
section may also be regarded as the effective area the nucleus presents to the neutron
for the particular reaction. The larger the effective area, the greater the probability for

reaction.

Let’s consider a thought experiment to determine the reaction rate R [reactions/sec]
that would occur in a small volume of a thin target material of area A [cm?] and
thickness x [cm] when a beam of neutrons moving in the x direction with a density n
[neutrons/cm®] and velocity v [cm/sec] as shown in Fig. 2.2. If the density of the
material is p [g/cm®], and its atomic weight is M [amu] we can use a modified form

of Avogadro’s law to determine the nuclei density in the target:

I=nv V=AX

L J

L J

L J

w

n X

Figure 2.2 Geometry for neutron reaction rate in thin target of volume V.

So that the reaction rate R should be construed to be proportional to the area of the
target A, its thickness x, the number density of the particles in the neutron beam, n,
the velocity of the neutrons, v, and the number density of the nuclei in the target N.

This can be expressed mathematically as:
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Roc AX | N (Reactions/sec) (2.11)

where I'=nv. The proportionality symbol can be replaced by an equality sign

provided we add a proportionality constant, leading to;

R=0c AxnvV N (Reactions/sec) (2.12)

Since the volume of the target is V = Ax, then one writes

*

R'=—= Ai =onv N (Reactions/cm’sec) (2.13)
X

R
v

If the equation is rearranged for o, we find the units of the proportionality constant

as:

(cm?) (2.14)

Thus the proportionality constant ¢ has units of area and physically represents the
area that a nucleus in the target presents to the interacting neutrons in the impinging
beam.

The cross section is not in general equal to the actual area of the nucleus. For
instance the radiative capture cross section for **’Au at the peak of 4.9 eV resonance
is 3x102%cm?, whereas the geometrical area of its nucleus is just 1.938x10**cm?. The

reaction cross section is much greater than the physical cross section of the nucleus,
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except at very high neutron energies where the cross section becomes of the same
order of magnitude as the nucleus. This can be calculated from the knowledge about

the empirically determined expression for the radius of the nucleus as:

r=rA"
. (2.15)
r,=1.35x10"cm
then the cross sectional area is
s=ar’ =1/ A’ (cm?) (2.16)
For *®Au, the area of the nucleus becomes:
s =7(1.35x107%)?(197)*®
$=1.938x10* (cm?) (2.17)

s=1.938 barn

It is well understood that the probability of a particular reaction occurring between a
neutron and a nucleus is called the microscopic cross section (o) of the nucleus for

the particular reaction.

2.2.1 Microscopic Reaction Cross-Sections
Each probable reaction that a neutron can undergo with a nucleus is associated with a

specific cross section. The most important of them are given in Table 2.1.
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Table 2.1 Cross section symbols for different type of reactions

o, =fission crosssection

- . 0,=0, o, =absorption crosssection
o, =radiative capture crosssection

. . . o,=total crosssection
o, =elasticscattering crosssection

, , ) . 10,=0, 10, =scattering crosssection
0,, =1nelasticscattering crosssection

The sum of the cross sections that can lead to the disappearance of the neutron is

designated as the absorption cross section:

c,=0,t0;+0,+0; t0,
(2.18)

The sum of the cross sections that can lead to the scatterance of the neutron is

designated as the scattering cross section: (for the elastic and inelastic scattering)

O-s = Gse +Gsi (2 19)

and the total cross section is written as:

0 =0, +0; (2.20)

2.2.2 Macroscopic Reaction Cross-Sections

Whether a neutron will interact with a certain volume of material depends not only
on the microscopic cross section of the individual nuclei but also on the number of
nuclei within that volume. Most materials are composed of several elements, and
because most elements are composed of several isotopes, most materials involve

many cross sections, one for each isotope involved. Therefore, to include all the
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isotopes within a given material, it is necessary to determine the macroscopic cross
section (X) for each isotope and then sum all the individual macroscopic cross
sections. The macroscopic cross section is the probability of a given reaction
occurring per unit travel of the neutron [1]. It is related to the microscopic cross

section (o) by the relationship

X=No (2.21)

where:
%, = macroscopic cross section (cm™)
N = atom density of material (atoms/cm™)

o = microscopic cross-section (barn)

The difference between the microscopic and macroscopic cross sections is extremely
important and is restated for clarity. The microscopic cross section (o) represents
the effective target area that a single nucleus presents to a bombarding particle. The
units are given in barns or cm® The macroscopic cross section () represents the
effective target area that is presented by all of the nuclei contained in 1 cm® of the

material. The units are given as 1/cm or cm™.

Equation (2-21) can be used to determine the macroscopic cross section for a

composite material:

2=N,0,+N,0,+N,o,+:--+ N, o, (2.22)

where
N is the number nuclei per cm® of the n™ element,

o is the microscopic cross section of the n™ element.
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2.2.3 Neutron Flux
Suppose a thick target of thickness X is placed in a monodirectional beam of

intensity 1, and a neutron detector is located at some distance behind the target.

Every neutron that has a collision in the target is lost from the beam, and only those

neutrons that do not interact enter the detector behind the target. Let 1(x) be the

intensity of the neutrons that have not collided after penetrating the distance x into
the target. Then in traversing the additional distance dx, the intensity in the thin

sheet of target having an area of 1 cm® and the thickness dx. By using the equation
(2.12), this decrease in intensity is given by

—dl(x) =N o, 1(x) dx =%, 1(x) dx (2.23)

This equation can be integrated and we get

1(x) =1, %" (2.24)

Thus, the intensity of the neutrons uncollided with the target nuclei is given by

I(X)=1,e>" (2.25)

Since the X, is the probability of interaction per path length, p(x)dx is
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p(x) dx =e " x X, dx (2.26)

and the average distance that a neutron moves between collisions is called the mean
free path, and it is equal to the average value of x, the distance traversed by a neutron
without any collision. So we get,

A= Txp(x) dx

< 2.27
/I:Et.[xe‘ztxdx (227
0

A=1/%,

Since a beam of neutrons of intensity | strikes a thin target, the number of collisions

per unit volume per time is given by
F=I1Z%, (2.28)

where X, is the macroscopic total cross-section. Let’s consider an experiment in

which a target is exposed simultaneously to several neutrons beams. Assume the
intensities of the beams are different but the neutrons have the same energy. The

beam’s directions are different. Then, the total interaction rate is given by
F=2,+1g+1c+) (2.29)

Since the neutrons are monoenergetic, then Eq. (2.29) becomes
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F=%(n,+ng+n.+--)v (2.30)

where n,,ng,n.... are the densities of neutrons with speed of v. Since

n,+ng +n; +--- is equal to the total n, then

F=Znv (2.31)

The situation at any point in a reactor is a generalization of this experiment, but with
the neutrons moving in all directions. Eq. (2.31) is valid for any reactor.

The quantity nv is called the neutron flux, in this case for monoenergetic neutrons,

and is given by the symbol ¢ . Then the collision density is given by

M
I

Z ¢ (2.32)

We now extend this result to include neutrons that have a distribution of energies.
Thus consider n(E) be defined as the neutron density per unit energy; that is, n(E)dE
is the number of neutrons per cm® with energies between E and E + dE. From Eq.

(2.32) the interaction rate for these essentially monoenergetic neutrons is

dF = X(E)x n(E)dE x v(E) (2.33)

where energy dependence of all parameters is noted explicity. The total interaction

rate is then given by the integral
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F =[S ENEE)E =[5, (E)4(E)dE (2.34)

where
#(E) =n(E)v(E) (2.35)

This equaiton is called the energy-dependent flux or the flux per unit energy. The
limit of this equation is indicated that the integration is examined over all neutron
energies and Eq. (2.34) shows the total interaction rate. Specific interaction rates can
be found similar way. The number of scattering collision rate is

F, = [Z,(E)$(E)dE (2.36)
0
and the absorption interaction rate per cm®/s is
F, = [Z.(E)$(E)dE (2.37)
0

2.2.4 Fick’s Law:

The neutrons in a reactor move about in complicated paths as the result of repeated
nuclear collisions. To a first approximation, the overall effect of these collisions is
that the neutrons undergo a kind of diffusion in the reactor medium, much like the
diffusion of one gas in another. The approximate value of the neutron distribution

can be found by solving the diffusion equation — essentially the same equation used
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to describe diffusion phenomena in other branches of engineering such as molecular
transport. This procedure is called the diffusion approximation. Diffusion theory is
based on Fick’s law [8].

The diffusion theory of neutron transport plays a crucial role in reactor theory since it
is simple enough to allow scientific insight, and it is sufficiently realistic to study
many important design problems. The neutrons are here characterized by a single
energy or speed (that means they are monoenergetic), and the model allows
preliminary design estimates. The mathematical methods used to analyze such a
model are the same as those applied in more sophisticated methods such as
multigroup diffusion theory, and transport theory. The derivation of the diffusion
equation will depend on Fick's law, even though a direct derivation from the
transport equation is also possible. The Helmholtz equation is derived, and the
limitations on diffusion equation as well as the boundary conditions used in its

application to realistic problems are discussed.

The neutron flux (¢) and current (J) are related in a simple way under certain

conditions. This relationship between ¢ and J is identical in form to a law used in

the study of diffusion phenomena in liquids and gases: Fick's Law. In Physical
Chemistry, Fick's law states that: “If the concentration of a solute in one region is
greater than in another of a solution, the solute diffuses from the region of higher
concentration to the region of lower concentration.” The use of this law in reactor
theory leads to the diffusion approximation. Let us make the following assumptions:
1. We consider an infinite medium.
2. The cross sections are constants, independent of position, implying a uniform
medium.
Scattering is isotropic in the Laboratory (LAB) system.
4. The neutron flux is a slowly varying function of the position.
5. We use a one speed system where the neutron density is not a function of
energy.
6. A steady state system where the neutron density is not a function of time.

7. No fission source in the system.
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Later, some of these assumptions will be relaxed. For instance, the diffusing medium
will be taken as finite in size rather than infinite. Now, we shall attempt to calculate

the current density at the center of the coordinate system in Figure 2.3.

1f§qi.uxu~n ¥ 5in8 drd ook
# J*I-

cha-d ‘Q‘Jﬂp

g;é;iﬁiryWN,

Figure 2.3 Geometry for the derivation of the neutron current and Fick's Law [8].

In a cartesian coordinate system given in Figure 2.3, we consider an infinite medium
in which neutrons are diffusing and being scattered, with an element of volume dV
whose position is defined by the vector ', and an element area of dA lying in the x-y

plane at the origin of the coordinate system. Let the neutron flux at ¥ be ¢ (7). Then,

the neutron current density vector J is given by:

J=30+3,j+3k (2.38)

So that we must determine the components of J . These net current components can

be written in terms of the partial axial currents as:
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J,=3;-7, (2.39)

Let us concentrate on the estimation of one single component: J,crossing the

element of area dS; at the origin of the coordinate system in the negative z direction,
as shown in Fig. 2.3. Every neutron passing through dS; in the x-y plane comes from
a scattering collision. A neutron scattering above the x-y plane will thus flow
downward through dS, .

Consider the volume element:

dV =r?sin(@)drd@de (2.40)

The number of scattering collisions occurring per unit time in the volume element dV

is:

Y. #([)dV =X g(F)r?sin(@)drddde (2.41)

where 2 is the macroscopic scattering cross section, and ¢ (T ) is the particle flux in

three dimensions. Since scattering is isotropic in the LAB system, the fraction

arriving to dSz is that subtended by the solid angle dQ, given by:

ds
dQ (2 dS,cos(d)
0 a4 aar 242)

Thus the number of neutrons scattered per unit time in dV reaching dSz after being

attenuated in the medium by the exponential factor e*" is:

dS, cos(@)
Arr?

dN =e™" X _¢(F)r’sin(@)drddde (2.43)
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The partial current J, can now be written as:

dN X R .
J, = d—SZ: e = }[ ! .([e “(r)sin(@)cos(8)dr dode (2.44)

Since ¢ (T ) is an unknown function, we expand it in a Taylor's series assuming it

varies slowly with position:

_ o¢ o o
Nzg+x— +y—| +z— +..
¢(r) = ¢, x|, . y ol (2.45)
Writing X, y, z in spherical coordinates, we get
@(F) = ¢, +rsin(6) COS(go)% +rsin(@)sin(p) o9 + rcos(H)% (2.46)
X x=0 y=0 oz z=0
Substituting Eq. (2.46) into Eq. (2.44), we write,
@, +rsin(d) COS((/))6—¢ +
Xleo : (2.47)

wrxl22rx
, .[dN P ,[Iez‘r sin(@) cos(@)drddde
Z 0 00

rsin(e)sin((p)%

+ rcos(9)6—¢

y=0

z=0

The terms containing cos(e)and sin(p) are integrated to zero over the interval

¢€[0,2n]. Thus we get

J; = S?N ij”fzfezt {¢O+rcos(9) of

}sm(e) cos(A)drd@éde (2.48)

z=0
The first term can be evaluated as:
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o 7l22r
|1:§” j¢0 ™" sin(0) cos(8)dr d0dg
4'ﬂ.O 0 0
2 11
l,==2¢2r—= 2.49
. & ”Zt 2 ( )
12
| ==%&s
=g
Then second term is:
~ zs 8¢ o xl22x ) )
) _Eazz ‘H‘ ! “rsin(@)cos”(Q)drddde
Y. 0¢ 11
—=s GV o - 2 2.50
? 4roz|,., X*3 (2.50)
13, o
’ 6 th oz z=0
As a result, the Eq. (2.48) is written as
_ S 12,0
==+ —2—¢ (2.51)
4 Z 62 0z,
If the same procedure is done for J; then we get
+ 1 Z:s 1 Z‘43 a¢
J; “ay =% 6 oz (2.52)

Similarly, the other current values can be obtained, and substituting the results into

the Eqg. (2.39), we can write
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__ 12,99
D
__ 12,99
y 3 212 ay o (253)
__12,0¢
©3Y? azl,,

Substituting into Eg. (2.38), we get the expression for the current density after
dropping the evaluation at the origin notation, since the origin of the coordinates is

arbitrary:

5:—12—2 %9 .9 ]+% k
3L Xlyeo OV, 02l
j:—lz—g(gf+ij+gﬁj¢ (2.54)
3 \ox oy oz
jo 1o 12
J= 3% @ 3% grad¢

In the last equation, we define the "diffusion coefficient":

_12,

D==-%2s
357 (2.55)
Thus Fick's law for neutron diffusion is given by:
J=-DV¢ (2.56)

It states that the current density vector is proportional to the negative gradient of the

flux, and establishes a relationship between them under the enunciated assumptions.
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Notice that the gradient operator turns the neutron flux, which is a scalar quantity

into the neutron current, which is a vector quantity, see Fig. 2.4 and Fig. 2.5.

AX)

JX
—_— —_—)

N

Figure 2.4 Neutron flux and current.

It must be emphasized that Fick's law is not an exact relation. It expresses the fact
that if the gradient of the flux is negative, then the current density is positive. This
means that the particles will diffuse from the region of higher flux to the region of

lower flux through collisions in the medium.

The Fick’s Law is just an approximation, then it is in particular not valid under the
following conditions:
1. Ina medium that strongly absorbs neutrons,
2. Within about three mean free paths of either a neutron source or the surface
of a medium,

3. When the scattering of neutrons is strongly anisotropic.

The parameter of Diffusion Coefficient given in Eg. (2.55) can be calculated
approximately by a more easy formula:

D= 1 1

325(1_ﬁ)(1_g

2
2

) (2.57)
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Figure 2.5 Neutron flux and current in the wall of reactor.

If >, <<2,tthen it can be written as

S S
T3y.(1-m) 3%, 3 (2.58)

Since X, (1-z)=X, =1/, where A, is the transport mean free path and X is
called macroscopic transport cross-section and 2, is the macroscopic crosssection

of the medium, and m is the average value of the cosine of the angle at which

neutrons are scattered in the medium in the laboratory system. The value of z is
. . . . 1
computed in reactor calculations by a simple equation as [2, 4,9] u= A where A

is the mass number.
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CHAPTER 3
SOLUTION OF DIFFUSION EQUATION FOR

NON-MULTIPLYING SYSTEMS

3.1 EQUATION OF CONTINUITY

Assume an arbitrary volume V within a medium containing neutrons. As time,
neutron number in volume may change if there is a net flow of neutrons out of or into
that volume: If some of the neutrons are absorbed within the volume and leakage
from the volume, or if some sources emitting neutrons are present within that
volume. Then, the equation of continuity can be a mathematical statement that the
time rate of change in the number of neutrons in that volume must be accounted for
in terms of these processes since neutrons do not disappear unaccountably:

Therefore, one can write

{rate of changein }

rate of production . rateof fissionof
number of neutrons inV

of neutrons in V neutronsinV

. (3.1)
{rate of leakage of} {rate of absorptlon}

neutrons from V of neutrons in V

Each of these terms is considered in the followings:

Let n be the density of neutrons at any point and time in V . The total number of

neutrons in V is then

!ndv, (32)
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where the subcript on the integral indicates that the integration is to be performed

throughout V . The rate of chance in number of neutrons is

d

which can also be written as

on
J5ov (3.4)

let s be the rate at which neutrons are emitted from sources per cm® in VV . The rate at

which neutrons are produced throughout V is given by

Productionrate = Jv'st. (3.5)

The rate of neutrons produced by fission, contributes to source is equal tov >, ¢, per
cm’/sec. ¥, is the macroscopic fission cross section, over all the volume the total

produced of neutrons by fission becomes [2]

Fission rate = !UZf gdv (3.6)

Consider that the flow of neutrons into and out of V . If J is neutron current density
vector through the surface of a volume V and n is a unit normal pointing outward
from the surface, then the net number of neutrons passing outward through the

surface per cm?/sec is define by
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[y
]
1]

(3.7)

It follows that the total rate of leakage of neutrons (which may be positive or
negative) through the surface A of the volume is

Leakage rate = f JUAdA. 3.8)

This surface integral can be transformed into a volume integral by using the
divergence theorem (see Appendix A for details):

jjmﬁdA=jdivjdv,
A

v

(3.9)

and so

Leakagerate = Idiv Jdv. (3.10)

The rate at which neutrons are lost by absorption per cm®/sec is equal to 2., ¢, where
2., Is the macroscopic absorption cross-section (which may be a function of

position) and ¢ is the neutron flux. Throughout the volume V , the total loss of

neutrons per second due to absorption is then

Absorption rate = J;Za ¢ dv (3.11)
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The equation of continuity can now be obtained by introducing the prior results into
equation Eq.(3.1). This gives us

j%dv _ .[sdv +£uzf pdv —gZa pdv —gdideV- (3.12)

All of the previous integrals are to be caried out over the same volume , and so their
integrands must be equal. The equation must hold for any arbitrary volume.
Therefore, the integrands on the right when summed must be equal to the integrand
on the left. Thus,

on ;
E:s+uzf¢—za¢—d|v\]. (3.13)

Equation (3.13) is the general form of the equation of continuity. If the neutron

density is not a function of time, this equation reduces to

divi+)  ¢-s—vX,¢=0 (3.14)

which is kown as the steady-state equation of continuity [1-4].

3.2 THE DIFFUSION EQUATION

We need to develop a one-speed diffusion theory mathematical description of nuclear
reactors. Such a relatively simple description has the great advantage of illustrating
many of the important features of nuclear reactors without the complexity that is
introduced by the treatment of important effects associated with the neutron energy
spectrum and with highly directional neutron transport, which are the subjects of

subsequent chapters. Moreover, diffusion theory is sufficiently accurate to provide a
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quantitative understanding of many physics features of nuclear reactors and is, in
fact, the workhorse computational method of nuclear reactor physics.

It is developed a neutron balance equation for unit volume of a medium in which
neutrons are being produced, absorbed and are diffusing at constant energy. The rate
of change of the neutron density is equal to the rate at which neutrons are produced
per unit volume in the medium minus the sum of the rates of neutron leakage and
absorption per unit volume in the medium. In the previous section, an equation called
the continuity equation has been obtained for the process. Unfortunately, the

continuity equation has two unknowns —the neutron density, n , and the neutron
current density vector, J. In the Fick’s Law, a relationship has been obtained
between the current and the flux: J =—DV¢. By substituting this relation into the

continuity equation, one obtains the neutron diffusion equation:

% =s+0X, ¢-3, p—div(-DV¢)
(3.15)

where the constant D is not a function of position andV is gradient operator (see
Appendix A for details). If the equation is rearranged, then we get the neutron

diffusion equation in explict form:

%=S+sz¢—za¢+DV2¢ (3.16)

where V2 is called Laplacian (see Appendix A for details). The Laplacian is written
in different forms for various coordinate systems. Now, the flux can be assumed to

be ¢ =nv , where v is the constant speed of neutrons. If this is replaced into the last

equation, we find
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iaat—("s:s+qu¢5—Za¢5+ DV’¢ (3.17)

14

Since we deal with the time-independent conditions, then we can write

DV’p+5+0Y, $—3, =0 (3.18)

This is the steady-state diffusion equation. It is more useful to write the equation in a

convenient form as

V- —g=— Kk § (3.19)

where k. is the infinite medium multipication factor equal to k, =03 /X, the

parameter L’ is given by L* = b and called as the diffusion area, quantity L itself is

called as the diffusion length. The diffusion length is a very important parameter in

nuclear engineering and its significance will be given in the following examples.

The solution of the diffusion equation must satisfy certain boundary and other

conditions.
It is summarized as followings:

1. Since the equation is a partial differential equation, it is obviously
necessary to specify the neutron flux and its properties. Since a negative or
imaginary flux function is meaningless, then the neutron flux must be finite
and non-negative at all points where the diffusion equation applies. The
condition of finite flux does not necessarily apply at points where localized
neutron sources exist as the diffusion equation itself is not valid at such

points.
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2. In a system which has a plane, line or point of symmetry, the neutron flux

is symmetrical about such a plane, line or point.

3. At an interface between two different media the neutron current density
normal to the interface and the neutron flux are both continuous across the

interface.

Pn =05
\TA _ jB (3.20)

Note that the gradient of the flux d¢/dx is not continuous across the boundary. That

is:

J=-DV¢ (3.21)
If J and ¢ are continuous, then dg¢/dxwill change abruptly because the value of D,

the diffusion constant, is different for each medium. Hence, there will be a change in

the slope of the flux at the interface.

4. At the free surface of a medium the neutron flux varies in such a way that
if it is extrapolated beyond the free surface it becomes zero at a fixed

distance, known as the extrapolation distance.

It is obvious that the conditions 1 and 2 are more or less self-evident. One can apply

113

these two conditions by the equations of current density in and “+” directions for

any coordinate axis at the boundary layer of two different media.

In the derivation of neutron current density, it has been pointed out that the Fick’s
law is not valid in the immediate vicinity of some surfaces such as a surface between

the medium and the atmosphere (or vacuum). It follows that the diffusion equation is
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not valid. If the flux calculated from the diffusion equation assumed to vanish at a
small distance d beyond the surface, then the flux determined from the diffusion
equation is very nearly equal to the exact flux in the interior of the medium, see
Figure 3.1. This is obviously nonphysical assumption but it is a convenient
mathematical approximation that provides a high degree of accuracy for estimates of
the flux inside the medium. The parameter d is called as the extrapolation distance
(Appendix B) and given mostly as

d=0.714, (3.22)

where A, is the transport mean free path of the medium [1] and given by A4, =3D.

Then, one gets

d=2.13D (3.23)

For most media, the diffusion coefficient is about 1 c¢cm , and the extrapolation
distance is about 2 cm . Many reactors are a few meters in size, and the extrapolation

distance can be neglected by comparison with this size.
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| - Diffusion
o~ Theor
Transport Y \\/ y
<~
theory (actual) AL

MEDIUM VACUUM NN

v

A
o
v

Figure 3.1 Extrapolation distance
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3.3 SOLUTION OF THE DIFFUSION EQUATION IN NON-MULTIPLYING
SYSTEMS

In these systems it is necessary trying to understand diffusion treatment so that one
can try to solve diffusions equations for nonmultiplying systems. That is, one can
firstly consider the medium in which there is no fissionable material.

3.3.1 Infinite Planer Source
Firstly an infinite planer source is considered emitting S neutrons per cm?/sec in

infinite diffusing medium as shown in Figure 3.2.

S n/sec

-

> x (m)

4L

Figure 3.2: Planer source at origin x=0

The Figure shows that there is no variation in the y or z directions, so, the flux
changes do not occur. In this case flux has only be a function of x- the distance from
the plane. Another examination is the symmetry about x=0 point. Then the solution
may be divided into two parts for x>0 and x<0. Due to having no neutron sources

present except at x£0,

divl+2, ¢+s=0 (3.24)

which is known as the steady state equation of continuity. On sustitution of Fick’s

law into the equation of continuity, neutron diffusion equation is obtained
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DV2$-Y, ¢+5=0 (3.25)

This is the steady state diffusion equation where D is the diffusion coefficient and
V? is called laplacian. Formulas laplacian can be applied for various coordinate
systems in here we are examining a plane so the laplacian for cartesian coordinate

becomes

2 2 2
sza_+a_+ a

— 3.26
aXZ ayZ 822 ( )

It is more convenient to divide the equation by D, and the diffusion length L is

L =/D/Y, which gives

1
V2¢_F¢:0’ X # 0 (3.27)

Because of the symmetry we may only solve the one half of the plane of the

equation. The general solution of Eq. (3.27) is

¢=Ae""+Ce " (3.28)

where A and C are constants (we didn’t here assign B because B has a different
meaning in nuclear engineering) to be determined from boundary conditions. Our
equation is second order differetial equation so we need two boundary conditions.
Suppose that we want to solve for the problem domain that is a semi infinite medium
occupying the space 0<x<oo. If no neutrons are entering from the right, then all of the

neutrons entering from the left will be absorbed as they diffuse to the right, requiring
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that ¢ (0)=0, we thus have two needed boundary conditions. Inserting them into Eq.

(3.28)

P(x0) = Ae™" +Ce™" =0 (3.29)

Since the flux must vanish at infinity, Eq. (3.29) can be satisfied only if A=0. Then
one finds

$=Ce ™" (3.30)

To find C the second boundry condition is applied. In the limit, x goes to zero, the
net flow must approach S the source density of the plane. It follows that

: S
XILmo‘] (x)= > (3.31)

This relation is known as a source condition and is useful for other situations as well

from Fick’s law

J :—Dd_¢:D_Ce_X/L

3.32
dx L (3.32)
Inserting into Eq. (3.31) and taking the limit one gets
SL
C=— 3.33
D (3.33)

From Eq. (3.30) the flux is found to be

41



L x
_SL hin

= (3.34)

Because of symmetry, the flux must be the same at “—Xx” and “+X” thus the solution

for all points in the x-axis can be obtained by replacing x by its absolute value |x|.

3.3.2 Point Source

One can now assume that a point source S is located at the origin of an infinite
medium which is extending from r=0 to r=co. So the point source is taken in
spherical coordinate system that depends only on r. Then the Laplacian expressed in

spherical coordinates the diffusion equation becomes for r # 0,

1d ,d¢ 1
__r —_——— :O .
rdr dr L? (3.35)

To solve Eqg. (3.35), one identifies a new variable, o, defined by

o=rg (3.36)

Substituting in Eq. (3.35) the following equation is found for w:

—r/L

o=~Ae"" +Ce"" (3.37)

and ¢ is found to be

e—r/L er/L
p(r)=A +C (3.38)
r
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where A and C are constants again and can be found by two boundry conditions
applied. Firstly, if r goes to infinite, the flux must be zero. So C becomes zero. A is
found from source condition, that is in the limit as »— 0. Emerging from all sphere
with a surface area= 4nr?, must just be equal to the source strength. Thus

Iing47zr2jr(r) =S

(3.39)
jr(r) — _Di¢(r) — DA(i+i2je—r/L
dr rL r

and then one can determine the constant A as

A=— (3.40)
Combining equations (3.38) and (3.40) the flux distribution function is found as:

S e—r/L
4zDr

P(r) = (3.41)

Clearly all of the neutrons produced by the point source must be absorbed in the

infinite medium. Taking an incremental volume as dV=4m*dr, it is shown that

[ Zpdv =s (3.42)

all space

3.3.3 Bare Slab
Assume that an infinite slab of thickness 2a which has an infinite planer source at its

center emits S neutrons per cm?/sec as shown in Figure 3.3 shown below. The

43



diffusion equation of this system is same with Eq. (3.27) when x # 0, and also the
left half plane and then right half plane has equal flux because of symmetry.

S n/cm?-sec

A

A\ 4
A
A 4

X=0
2,.D 2,.D

Figure 3.3 Infinite slab with planar source at x=0

Now, however, the condition on the flux as [x|—o0 must be diffirent because here the
flux is vanished at the extrapolated surfaces of the slab, that is, at X=a+d for the
right half plane and at —X=—-a—d for the left half of the plane where d is the

extrapolated distance which is equal to d=2.13D. The solution is obtained as

¢= Ae—x/L +Cex/L (343)

The boundary conditions are

p(a+d)=¢(-a—-d)=0 (3.44)

Then in view of boundary condition at a +d,
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pa+d) = Ae @'t L et —g (3.45)

so that

C =—Ae 2@t (3.46)

If we substitute this result into Eq (3.43)

¢ _ AI:e—x/L _ ex/L—Z(a+d)/L:' (3.47)

The constant A is found from source condition when the limit x goes to zero, current

density becomes equal to the source

lim 3 (x) :% (3.48)

then

SL
A:_ 1+e—(a+d)/L -1 .
D ( ) (3.49)
For positive x, therefore, ¢#(x) is given by

SL e—x/L _ex/L—Z(a+d)/L
Pp(X)=-—
2D

(3.50)

14 g A+

In view of the symmetry, a solution valid for all x is obtained by substituting |x| for

X; hence
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—|x|/L |x[/L-2(a+d)/L
SL ¢ ¢ (3.51)

¢( )=—= 14 g 2@+t

This solution may be written in more convenient form if the numerator and

RO

denominator are multiplied by . This gives

SL sinh[(a+d—|x[)/L]

7= 50 cosh[(a+d)/ L] (3.52)

X =X

where one can use the trigonometric porperties =sinh(x) and

eX+e

=cosh(x) .

3.3.4 Two Region Example for Sphere with Source

Now assume that system has two regions same infinite planer source but has
distributed source. It shows the treatment of the boundary condition at the origin and
also interface conditions. Consider a sphere of radius R with material properties D

and X, includes a uniform source S. The sphere is surrounded with by a second

source free medium with properties D and 2, that extends to »=o0. Our aim is now

to determine the neutron flux. For this aim we write the diffusion equation as

1
__2

di 2—¢(r)+ —p(r) = 0<r<R (3.53)

and

—riz% r? d ¢(r)+ ﬁ2¢(r) 0 R<r<w (3.54)
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where L is the outside medium diffusion length, within the sphere we must apply
general and particular solutions for Eq. (3.53)

#(r)=¢,(N+4,(r) 0<r<R (3.55)

for a uniform source the particular solution is constant. Thus

’s S
9, = D 3 (3.56)
The general solution is same as the solution of the point source given in Eq. (3.38)

and inserting ¢, (r) and ¢, (r) into Eqg. (3.55) one gets

o(r)= éexp(r/ L) +Eexp(—r/ L) +i 0<r<R (3.57)
r r >

a

The solution of Eq. (3.54) has the same form as Eq. (3.38)
¢(r):ée”ﬁ+9e‘”E R<r<ow (3.58)
r r
where L=4D/3, .

Now one has two flux functions for two regions and in these equations there are four

coefficients. So one must apply four boundary and interface conditions and D

symbolizes the outside medium diffusion coefficient.

#1. 0< ¢ (0)<co #2. ¢ (0)=0
(3.59)
#3. 6 (R)=4 (R.) #4. D4 4 =Dk
r dr
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Appliying the boundary condition #1 by taking the limit of Eq. (3.57) as r—0, we see
that the flux will remain finite only if C,=-C; Using the definition of the hyperbolic
sine, Sinh, then Eq. (3.57) reduces to

o(r) = ?sinh(r/ L) +zi 0<r<R (3.60)

a

We next apply condition #2 to Eq. (3.58): Since the first term becomes infinite, but

the second vanishes at r—o0, the condition is satisfied if A'=0:

¢(r):CTe‘”L R<r<o (3.61)

At last we apply interface boundary conditions #3 and #4 the remaining arbitrary

coefficients:
2A . S C' qr
?smh(R/L)+Z—:Ee RIL (3.62)
and
1 1 . -, 1 1, ri
2DA ﬁcosh(R/L)—Fsmh(R/L) =-DC (E+?)e (3.63)
When we solve Eq (3.62), C’" becomes;
C'= [2_Ffsinh(R/ L) +zij Re®* (3.64)
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Putting this into Eq. (3.63) we obtain the coefficient A as follwing

SR
sinh(R/L
A= Zs ( )D T 1 (3.65)
2D(= coth R/L—— 2
¢ oomirin-y+22( L2
Substituting A into Eq. (3.60), the result in the solution is found as
SR
(1) = Zsinh(r /L) - zas'”h(lR”‘) = +Zi 0<r<R
' 2D(coth(R/L)—]+2{+j a
L R R\L R
(3.66)
And finally one obtains
S Rsin(r/L 1
St rs'”hER/L)) p = oth(R/L)—— b1 1
L RIL R (3.67)
If we combine all the constans together
-1
cr 1+2(R/L)coth(R/L)—l (3.68)
D (R/L)+1
The flux becomes
R sinh(r/L) | S
N=1-———=|— 0<r<R
41 { r sinh(R/L)}Za < (3.69)
and one can write [2]
) 3.70
J=-cord T Rarso (3.70)
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CHAPTER 4

SOLUTION OF DIFFUSION EQUATION FOR MULTIPLYING SYSTEMS

In this Chapter we consider that our system has now fissionable material which is
called “multiplying system”. The solution of steady-state one-group diffusion
equation for bare systems with fissionable materials in certain geometries is studied.

4.1 CRITICALITY ASSEMBLIES FOR SPHERE

In this system it is assumed to have fissionable material in the medium so v) > 0.

Therefore, the diffusion equation that we represent into Eq. (3.19) is now defined by

1 S
V2¢_F =——

1
— =k
b 2%

The Laplacian operator for spherical coordinates gives

1
2

d , 1 s
T’ g 20+ Ak =5 (4.1)

To solve the non-homogeneous differential equation, homogeneous and particular

solutions must firstly be solved for the general solution
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¢, (r)=¢,(r) +4,(r) (4.2)

The particular solution goes to constant the derivation term vanishes and we have

S
¢p - (1—koo)za (43)
The homogeneous solution satisfy
288 (- a-k ) () =0 44
r2dr dr’" L2 etnal
Using the function
1
¢ (r) :Fl//(r) (4.5)
Eq. (4.4) is simplified as
d 1
Ww(r)—g(l—k@)u/(r) =0 (4.6)

The form of the solution depends on k., parameter: K.,<1 or k,>1.

4.1.1 Subcritical Assemblies for Sphere
Firstly, we consider k,,<1 condition to obtain the solution of the equation that we

solved in preceding section. It is known that the solution is
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w(r) =Cexp(xr) 4.7

where x? = %(1_ k_)or equivalently

k=+—,/1-k (4.8)
Thus, one gets

2

%V/(r) = Cx? exp(xr) (4.9)

Solution of Eq. (4.9) is now written as

w(r)=C,exp(L*1-k,r)+C,exp(-L"\/1-k_r) (4.10)

Inserting this expression into Egn. (4.5) and combining the result with Eqgns. (4.2)

and (4.3) we obtain the flux function in its general form as

Gk 1)+ Zexp(c L ik ) 4>
¢(r):Texp(L 1-k, r)+ ; exp(-L 1 kwr)Jr(l—kw)Za (4.11)

Then we apply the boundary conditions to obtain the constant. We can achieve

condition that ¢ (0) must be finite only by requiring the two exponential terms to
cancel exactly when r=0 thus we take C, =—C, then with the definition of the sinh(x)

= 1/2(e*-e™), it becomes

2C, . 1 S
¢(r)=Tsmh(L 1 kwr)+—(1—km)2a (4.12)
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The second boundary condition is to be the extrapolated radius of the sphere

#(R) =0and then Eq. (4.12) is now written as

2C1 - -1 _ 5 S
0_?S|nh(L J1 ka)Jr—(l—km)Za (4.13)

Solving for C; and inserting the result into Eq. (4.12) we find the flux for subcritical
systems

S _ Rsinh(L*1-k, 1)
¢(r)_(1—kw)za : r sinh(L*\1-k_R) (4.14)

4.1.2 Supercritical Assemblies for Sphere

Now we solve the diffusion equation for supercritical systems, that is, k., >1. For this
purpose we may write same equations up to obtaining the general solution because
we consider again same medium for supercritical systems so that diffusion equation
remain same. That means, Eqn. (4.6) can be applied for general solution. However,
the general solution takes a different form. This is most easily seen by noting that for

K. >1 the second term of Eqgn. (4.6) is now positive:

%l//(r) + 5 (K, =Dy (r) =0 (4.15)

The general solution of this form differential equation becomes;

w(r)=C,sin(L™/k, —1r)+C, cos(L™*\/k, —1r) (4.16)
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Similarly to the k., <1 case, we insert this expression into Eqgn. (4.5) and combine the
result with Eqgn. (4.2) and (4.3) to obtain the flux distribution

C.. 4 C, B S
¢(r):Tsm(L 4/ w—lr)+Tcos(L Jk, —1r) —(kw Dy, (4.17)

One can apply the same boundary conditions as in the subcritical case: At the origin,

¢ (0) must be finite. Therefore, the second term becomes infinite unless we set C,=0.
_ . . : : -1 a: -1 — 1! —
Because cos(0)=1 the first becomes finite since Irm risin(LtJk, —1r) =Lk, —1.

If sin(Br)=nz at r=0, this becomes zero for critically condition and n takes the first

value: n=1. Then, the term B is called geometric buckling that means B, = 7 /r and
B, =L"/k, -1 in which B,, is material buckling depending on the material

properties of the material composition of the reactor system.

Consequently

C, .. . S
¢(r):Tsm(L «/kw —lr)—m (4.18)

One can determine the constant C, by requiring using the boundary condition of

#(R) =0. Finally one obtains

(4.19)

A1) = S {E sin(Lt/k, —1r) 1}

k-, | rsin(L*Jk,-1R)

This is the flux equation for the supercritical-spherical system [2, 3].
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4.2 CRITICAL ASSEMBLIES FOR DIFFERENT GEOMETRIES

The criticality conditions for k=1 in different geometries with finite size are
determined in the following sections. Three distinct geometries are considered and

numerical results for bare systems with multiplying media are presented.

4.2.1 The Slab Reactor
Consider a bare reactor for critically condition consisting of an infinite bare slab of
thickness a as shown in Figure 4.1. The reactor equation in this case becomes;

2
L eBtp-0 (4.20)

where X is the distance from the center to the slab. The solution of this form of

diffusion equation we know from the previous section;

¢(x) = Acos(Bx) + C sin(Bx) (4.21)

W
s

- §=U

] i

il [
. ) o

Figure 4.1: Slab reactor
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To determine the two arbitrary constant boundary conditions must be applied. The
first one is flux vanishes at the extrapolated faces of the slab, that is, at x=-4/2 where

a=a+2d. Then the boundary condition becomes;

&y _ sy
¢(§)—¢( 2) 0 (4.22)

It may also be noted that, because of the symmetry of the problem, there can be no
net flow of neutrons at the center of the slab. Since the neutron current density is
proportional to the derivative of ¢, this means that

-0 (4.23)

at x=0. The condition given by Eqn. (4.23) is equivalent to requiring that ¢ be an

even function;

P(=x) = $(x) (4.24)

and has a continuous derivative within the reactor. In the general solution A and C
are constant to be determined. Placing the derivative of Eqn. (4.21) equal to zero at

x=0 gives immediately C=0 reduces to

#(x) = Acos Bx (4.25)

Next, introducing the boundary condition given by Eqgn. (4.22) gives;
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3 _ acos(B3) -
¢(§)— Acos( > )=0 (4.26)

This equation is satisfied both taking A=0, which leads to the trivial solution ¢ (x)=0
and by requiring that

B4
003(7&) ~0 (4.27)
Eq. (4.27) is satisfied when
nz
B =2 4.28
= (4.28)

and for integer values of “n” the critically condition is satisfied. Finally one obtains
[1 3]

(x) = Acos(%x) (4.29)

To determine the valu of A, the calculation of total reactor power by fissions per

cm’/sec, that is X, #(x)at the point x, and by using the recoverable energy is Eg

joules per fission is obtained. The total power per unit area of the slab, in Watts/cm?:

P=E.%, [ #(x)dx (4.30)

Substituting the flux equation Eq.(4.29) into Eq. (4.30);
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al2 X 4.31
P=E;2, L/ZACOS(%)dX (4.31)

After performing the integration the result becomes;

28E, Y, Asin(”aj

P— (4.32)
T
The unknown parameter A is now found to be
A 7P .
28E, Y, sin(”J (4.33)
Replacing A value in the flux function for the slab in Eq.(4.29), one gets
#(x) = i COS(”—f(j
28E, Y, sin (”aj a (4.34)

4.2.2 Sphere
Consider a critical spherical reactor with radius R. The steady-state diffusion

equation in spherical coordinates is now written as;

14d..d¢

B%4=0 .
r? dr err ¢ (4.35)

By substituting ¢ =w/r into Eq. (4.35) one can obtain the general solution as
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sin BR cos BR
; +C ; (4.36)

¢(r)=A

where A and C are constants. As the first condition, when the r goes to zero, flux
must be finite thus the second term becomes infinite. So C must be equal to zero.

Hence the flux becomes

o(r)= Aw (4.37)

For the second boundary condition, ¢(R) =0, it is yielded by taking B to be any one

of the eigenvalues;

B:nﬂ'

- (4.38)

where again n is an integer and the first value is relevant for a critical reactor. Thus

the buckling parameter is found to be

2
VA
B = (Ej (4.39)
Therefore, the flux function is written as

(r) = AM (4.40)

This flux equation for sphere has an unknown coefficient that is found samely in

slab reactor by using the reactor power calculation. If we write the power equation;
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P=E.Z, [4(r)dv (4.41)

where dV is the volume element of the sphere so it can be written as dV = 4zr*dr ,
Now substituting the volume element and flux equations into the integral;

rsin(zr/R) c2dr

P=E.Y, 47zAj0 : (4.42)
Now the integration is found as;
P=E,¥, 4rAR sin(ﬁ—BJE— Rcos(”—Bj (4.43)
V4 R )x R
If we write the A value in terms of other parameters, one gets
A= ”RP R R
E.Y, 47R sin(”~ j—Rcos(”~ j (4.44)
R )«x R

After inserting the expression of A into the flux function in Eq.(4.40), one obatins

7P sin(zr / R)

¢(r) = = - r
E. >, 47rl=~{sin(”~ j—Rcos(”~ D (4.45)
R )« R
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In the system if extrapolation distance, d, is small and ignored in the Eq.(4.45), so the
flux of the sphere can be written as;

P sin(zr/R) (4.46)

#(r) = E.>, 4R. 1

Since the material buckling is related to the material composition and is defined as

B2 =(k, —1)/ L one can obtain a relation between the radius of the system and the

material composition; L™./k, —1. Therefore, the critic radius and also the critic mass

of bare spherical reactor is as following;

B =B; (4.47)

Then, one finds the critic radius of the sphere as

k, -1 (4.48)

The following data is used to calculate the critical size and the critic mass of the pure
uranium-235 system for 1.0 MeV neutrons [10, 11, 12]: v = 2.42,0f =1.336Db,

05 =5.959b, 0 =0.153b, N =0.048x10%4 atoms/cm’ and p =18.75 gr/cmS.

Then one finds the critic radius as 10.53 cm and 1.99 cm extrapolated distance then
dropping 8.55 cm and the critical mass is found 49.85 kg (nearly 50 kg) [13, 14, 15].
In Refs. [13, 14, 15], different methods have been applied to solve the steady-state
neutron diffusion equation. In Ref. [13], OB-1 method includes consists of the
Maxwellian averaged fission and absorption cross sections and the thermal values of
nubar values. The method based on the square-fitting of the evaluated data values.
Ref. [14] applies the Fy method to the one-group diffusion equation in spherical

geometry. The method based on the integration of equally spaced intervals of
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unknown flux function depending on the parameter ¢ of which values are between 1
and 2. The method is particularly efficient if and only if the polynomials and the log
functions are coefficients in the system of algebraic equations obtained in the
process. Ref. [15] consists a relatively simple method to calculate the critical mass of
fissionable istopes. It is based on three simplifications such that non-fission
absorption of neutrons is ignored, the f neutrons are assumed only to be emitted
along the radial direction and the all emitted neutrons are monoenergetic. It includes

the series expansion of the flux function under these conditions.

Table 4.1 Neutron cross-sections for **Uand ?*°Pu used in Ref. [16], for 2 MeV

neutrons.

Material o o, o, o, Lo v

o35y L1287 5804 00593 1346 7150  2.42

s39py L1947 5245 000799 1982  7.227  2.98

Table 4.2 The critic radius and critic mass values at 2MeV neutron cross-sections for
2% and #*°Pu spheres from data library [16]

Present
0
Results Ref [17] Percent Error %
Material

(cm)  (kg) |(cm) (kg) |(cm) (kg)

35U | 861 49.72 892 50.7 |3.47  1.93

239 Py | 488 9.64 |4.99 10.321|2.20 6.59

Additionally, one can also calculate the critic radius and critic mass values for bare

spheres 2°U and #*°Pu for 2MeV neutrons by using the updated data Library [16]
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given in Table 4.1. The calculated results by using library cross-section data are
represented in Table 4.2

Subtracting the extrapolated distance, that is, d=2.07 cm from the radius of the
sphere, the critic radius of the sphere is found to be 8.61 cm and the corresponding
critic mass is calculated as 49.72 kg. On the hand, the critic radius of the sphere with
non-extrapolated radius is found as 10.68 cm and the corresponding critic mass is
found as 94.91 kg. This result is compared with other geometries in the following

sections. By applying the same procedure for a pure Pu?*®

spherical reactor core, the
extrapolated radius is yielded as 6.85 cm then subtracting the extrapolation distance -
that is d=1.97 cm- the non-extrapolated radius becomes 4.88 cm. Then, the
corresponding critic mass for pure plutonium core is calculated as 9.64 kg (nearly 10

kg) [17, 18]

4.2.3 Infinite Cylinder

Now consider an infinite critical cylindrical reactor of radius R and infinite height Z
in the diffusion equation we ignore Z because of infinite the flux depends on only r
from the axis. With the Laplacian operator in cylindrical coordinates the reactor

equation becomes

1d d¢ _,
== r=24B%=0
rdrrerr ¢ (4.49)

When the differentiation in the first term is carried out

d2¢ 1dg 2
199 g24_0 4.50
dr2+r err ¢ (450)

This form recall us the Bessel differential equations as
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—+——+[Bz—m—22j¢=0 (4.51)

where m is an arbitrary constant. When we compare Eqn. (4.50) with (4.51) it is

shown that m is equal to zero. So the general solution can be written as

¢ = AJ,(Br)+CY,(Br) (4.52)

where A and C are constants. The functions assigned as Jn(Br) and Y ,(Br) are called
ordinary Bessel functions of the first and second kind, respectively[19, 20]. The
functions Jo(X) and Yo(x) shown in Figure 4.2 gives us Yo(X) is infinite at x=0 while

Jo(0)=2.405. Therefore, C must be taken to be zero, due to ¢ remaining finite within
the reactor. Thus Eq. (4.50 ) reduces to form of

¢(r) = AJy(Br) (4.53)

Applying the boundary condition for ¢(R) =0, one finds

#(R) = AJ,(BR) =0 (4.54)

The function Jo is equal to zero at a number of values of x so that Jo(x,)=0. So, Eq.

(4.52) is satisfied with providing B defined as

X
B = ,
=R (4.55)
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Ordinary and modified Bessel functions of order zero

2 ! ! 7 ! ' '
; | b : A Besselk(D)
‘ ‘ e ' : .
: | : A : : Besselj(0)
1.5 "“r """" r‘/r -------- Tooooo--- iy — — Bessely(0) |H
wo L — - — Bessell(0)

Figure 4.2 Ordinary and modified Bessel functions

which are the eigenvalues of the problem. As explained below, only the first

eigenvalue is relevant for the criticality condition that means n = 1. Therefore,

T _ (ZL%T (4.56)

Then the flux equation becomes;

4(r) = AJ, (%) (4.57)
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To define A, the same procedure is applied, if we write the flux Eq. (4.57) and
cylinder volume element dV =2zrdr into the power equation by considering the d

is small, so it becomes

P=21E,Y, AJORJO(ZAOSrerr (4.58)
The integral is solved by using the Bessel Function integral rule that is;
jJO(x)xdx =xJ,(x) (4.59)
If we apply this rule the power is found as;
o_ 27E: T, AR?J,(2.405) (4:60)

2.405

If one uses the Bessel function properties of Jl(2.405) is eqaul to 0.5202. If we put

this number into equation and multiplying the constant

P=1359E, Y, AR? (4.61)

Finally the flux equation for infinite cylinder becomes that;

g 0T3P | (2.405rj .62

CE.X,RL R

The calculated critic radius of an infinite cylinder is presented in Table 4.3.
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Table 4.3 Critical radius for infinite cylinder, 1 MeV neutrons.

Boundary Rc (cm) R¢ (cm) Percent Error
Conditions Ref. [10, 11, 12] Present Result %
Extrapolated 8.0589 8.0590 0.00124
distance
Non-extrapolated 6.1863 6.1864 0.00162
distance

In Ref. [10,11, 12], the homotopy perturbation method that includes the change of
variables and the series solution of the diffusion equation to obtain the numerical

results.

4.2.4 Finite Cylinder
As another geometry, the cylinder with fi nite height and radius is examined.

Therefore, the flux function now depends on r and z variables. The diffusion

equation in cylindrical coordinates is written as

10 94(r,z) d°¢(r2) .. _
ror o o +B9(r2)=0 (4.63)

where the boundary conditions are given as O<g(r,z)<w: 0<r<R and

—H /2<z<H/2.To obtain the solution, separation of variables is defined as

#(r,2) =y () x(2) (4.64)

Then one writes
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LL L (p 2D+ (y (0 £(D) + By (1) 1(D) =0 (4.65)

Following the partial derivatives and then dividing the final equation by y(r)x(z),

one obtains

2
119 r"’—'/’+1‘3—7f+32 =0 (4.66)
wror or yoz

This equation must be satisfied for any r or z combination; the first and second terms

must be constants so the first part can be written as

— Iy +Bf= (4.67)

where B, is the Buckling parameter for the radial part. Eq. (4.65) is in the form of

Bessel differential equation of the first-kind zero order and its solution, as we have

found in Eq. (4.50), is given by

l//(r) = A‘]O(Brr)+CYO(Brr) (468)

Applying the same boundary condition in infinite cylinder, then Y, term drops from

the equation. We know the value of B, from Eq. (4.53).

For the z-dependent part we have

68



S Z.B2y=0 (4.69)
The solution of this form of differential equation is given by

x(z) = A'cos(B,z) +C'sin(B,z) (4.70)

This equation is the same as for the infinite slab reactor. Using the boundary
condition for the height, -H/2<z<H /2 and ¢(H/2)=0, one sets C'=0 for the

acceptable solution for the flux function that must be symmetric about the origin:

x(z) = A'cos(B,z) (4.71)

The total buckling B? is;

B*=B/+B; (4.72)

where B, is the same as infinite cylinder for critically condition given in Eqgs. (4.52)

to (4.54) and B, is found as similar as infinite slab given in Egs. (4.26) to (4.29). So,

one can write

, (zY Lo (2405Y
(2], o[22 w73

The general solution is obtained with the required boundary conditions as
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¢(r,z) = AJO(2'4§5r)COS(%Z) (4.74)

Samely, to determine A if we put the finite cylinder flux into total power equation, it

becomes;

RIH " Al, ( 2'4§5rjc03(%~z)27zrdrdz (4.75)

where the radial part of the integral result from the infinite cylinder solution is

known. When the axial part of the integral is solved, we get;

P=E.Y, Azn%31(2.405) " cos(%z)dz (4.76)
Solving for the axial part one gets
P=E, X, A4;z%;531(2.405)% (#.77)
Solving for A one obtains
P2.4057 _ 3.63P 4.78)

T E.X, 47R°HJ,(2.405) VE.Y,

Replacing the value of A into the finite cylinder flux Eq.(4.74) one obtains
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3.63P 2.405r
¢(r,2) ‘]O(

_ = jcos(”—f) (4.79)
VE, 3, R H

where R=R+d and H =H +2d. Numerical applications are presented in Table
4.4, 4.5 - 4.6 for pure 235U and 239Pu fuel elements [13, 14]. A set of chosen critical
height values corresponding critical radii of a finite cylinder calculated list is
tabulated in Table 4.4 with corresponding reference values.

As seen in Table 4.4, the critic radius of a finite cylinder reduces to a certain value
about 6.186 cm for 1 MeV neutrons as the height of the cylinder is increased. It
means that the system behaves like an infinite cylinder of which radius is also given

in Table 4.3. There is a correspondence between our results.

In Table 4.5, we present the critic radius and the critic mass of the finite cylinder for
25y, for 2MeV neutrons. As the height of the cylinder is increased, it is observed
that the critic radius is decreased. It is observed that the mass reaches at its minimum
value at a certain height and radius of the cylinder. When the height is 18.32 cm and
the corresponding radius is 7.9705 cm with the non-extrapolated distance, then the

minimum critic mass is found to be 52.58963 kg.

We also present the numerical results for >*°Pu, for 2MeV neutrons in Table 4.6.
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Table 4.4 Comparison of chosen heights and the corresponding critical radii with

extrapolated distance and non-extrapolated distance for bare finite cylinder of 2*°U.

R cm R cm R cm R cm Rcm R cm

H cm [Ref 9] [Ref 9] Present Present Percent Error %

Results Results

10.529 665.253 663.381 665.126258 663.253658 0.0200 0.0192

10.530 439.235 437.362 439.195063 437.322463 0.0090 0.0091

11.000 27.817 25.9445  27.816750 25.944150 0.0001 0.0015

12.000 16.7953 14.9227  16.795064 14.922464 0.0014 0.0013

13.000 13.7383 11.8657 13.738167 11.865567 0.0010 0.0017

14.000 12.2267 10.3541  12.226542 10.353942  0.9000 0.0019

15.000 11.3144 9.44178 11.314240 9.441640  0.0018 0.0015

20.000 9.47880 7.60620 9.478681  7.606081  0.0020 0.0015

30.000 8.60656 6.73396  8.606450 6.733850  0.0018 0.0016

40.000 8.35371 6.48111  8.353609  6.481009  0.0012 0.0015

50.000 8.24399 6.37139  8.243887 6.371287  0.0012 0.0016

100.000  8.10420 6.23160  8.104098 6.231498  0.0013 0.0016

200.000  8.07035 6.19775 8.070248 6.197648  0.0013 0.0016

400.000  8.06195 6.18935 8.061852  6.189252  0.0012 0.0015

600.000  8.06040 6.18780 8.060300 6.187700  0.0012 0.0016

800.000  8.05986 6.18726  8.059757  6.187157  0.0013 0.0016

1000.000 8.05961 6.18701  8.059506 6.186906  0.0013 0.0016
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Table 4.5 Chosen heights and the corresponding critical radii and critical masses with

extrapolated distance and non-extrapolated distance for 2°U, for 2MeV neutrons.

H cm H cm R cm R cm M kg

10.67 6.5200 651.6670 649.590 160764.1000

10.70 6.5500 107.6560 105.580 4219.71100

11.00 6.8500 33.5550 31.4780  396.61300

16.00 11.8465 10.9601  8.8833 54.62643

18.00 13.8465 10.1411 8.0643 52.61846

18.31 14.1565 10.0501 7.9733 52.58968

18.32 14.1665 10.0472  7.9705 52.58963

18.33 14.1765 10.0445 7.9677 52.58964

20 15.85 9.6560 7.5790 53.07400

50 45.85 8.3600 6.2830  105.66200

100 95.85 8.2140 6.1370 210.4600

200 195.85 8.1790 6.1020  425.83900

400 395.85 8.1700 6.0930  857.88200

800 795.85 8.1680 6.0910 1725.32600

1000 995.85 8.1680 6.0910 2158.90700
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Table 4.6 Chosen heights and the corresponding critical radii and critical masses with

extrapolated distance and non-extrapolated distance for %°Pu, for 2MeV neutrons

H cm H cm R cm R cm M kg
6.85 2.909 427.158 425.186 32713.723
6.86 2.916 112.089 110.116 2199.396
7.00 3.056 25.687  23.715  106.909
8.00 4.056 10.165  8.193 16.935

10.00 6.056 7.202 5.230 10.303

11.00 7.055240 6.705983 4.733603 9.8336

11.67 7.725240 6.480713 4.508333 9.766953

11.68 7.735240 6.477797 4.505417 9.766947

11.69 7.745240 4.502512 6.474892 9.766965

11.70 7.755240 6.471998 4.499618 9.7670

15 11.056 5.897 3.924 10.5890
20 16.056 5.583 3.611 13.0220
50 46.056 5.295 3.323 31.6340
100 96.056 5.258 3.285 64.4770
200 196.056  5.248 3.276 130.8820
400 396.056 5.246 3.274 264.0760
800 796.056  5.246 3.273 530.4570
1000 996.056  5.245 3.273 663.7290
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4.2.5 Rectangular Parallel-piped

As a last example, we consider rectangular parallel piped system. The diffusion equation
depends on the length of rectangular parallel piped a, b, c. Therefore, the diffusion
equation

V2+B2%=0 (4.80)

with appropriate Laplacian operator in Cartesian coordinates is written as

&, 0% & oo g

+ 4.81
dXZ dyZ dZZ ( )
Using the variable separation
#(x,y,z) = A(X)B(Y)C(2) (4.82)
one writes
2 2 2
dAMB(YC(@) , d*ANB(YIC(E) , I*ANBUICE) , g2p 0 a(y)c(2) =0
dx dy dz
(4.83)
Then three differential equations are obtained as following
2
d AEX) +B2=0
dx
d”B(y)
o By =0 (4.84)
2
d ng) +B2=0
dz

Here the buckling is defined as
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(4.90)

n_7Z'
a
(4.85)

The solution of equations in Eq. (4.80) are found to be
(4.86)

A(x) = A'sin(xB, ) + A" cos(xB, )
B(y) = B’sin(yB,) + B"cos(yB,)
C(z)=C'sin(zB,) +C"cos(zB,)

For the boundary conditions when a, b, c—0, ¢ must be finite. So the first term in each
(4.87)

solutions becomes zero. Then, one gets
¢ = A"cos(xB,)B"cos(yB,)C"cos(zB,)

For any arbitrary constant, one can write Eq. (4.83) in the form of
(4.88)

¢ = K cos(xB, ) cos(yB,)cos(zB,)

Applying the boundary conditions for each axis, one writes
(4.89)

é,y,z):o,¢(x,%,z):0 and ¢(x, y,g):o

45

Eq. (4.89) means that, buckling parameter for each side must provide the condition such

as
From the critically condition we take a for the first value, and also the other has similar

value so the Buckling becomes;
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Finally the flux function is obtained as

#(x,¥,2) = K 005(*X) cos(:-Y) cos(2) (4.92)

Let define the unknown coefficient K by using the same procedure;

al2 pb/2 J~c/2

P:Esz_[

T T /A
—ar2d-br2d—cr2 K COS(E X) COS(E y) COS(E z)dxdydz (4.93)

If we solve this integral the constant K is found as

7P 387P
8abcE, >, VE.2,

(4.94)

Now, after inserting the value of K into the flux of rectangular parallpiped this result is

obtained

3.87P

pxy.2) = >

cos(% X) cos(% y) cos(% z) (4.95)

In Table 4.7, the Buckling parameters and the neutron flux functions in different

geometries are tabulated.
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Table 4.7 Buckling and flux distributions in Bare systems for distinct geometries [1, 5]

Geometry Dimension Buckling Flux
Thickness 2 X
Infinite slab [Ej ACOS(—j
a a a
| 2 (zYV (=Y X Ty 7
Rectangu ar axbxc (_J +[_j + (_) K COS(—)COS(—)COS(—)
paralelpiped a b C a b c
Infinite (2-405j2 Al (2.405rj
cylinder  Radius R R ‘U R
Finite  RedIUSR (2.405)2 ( z T (2.405rj (ﬂzj
kbl N A AJ, cos| —
cylinder Height H R H R H
2 1. (7xr
Sphere  Radius R (zj A=sin [”—)
R r R
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CHAPTER 5

REFLECTED REACTORS

A reflector reduces the fraction of the neutrons leaking from the reactor, that is, they
are reflected back into core [21]. A reflector’s importance diminishes as the size of a
reactor becomes larger. Neutron distribution equations within a uniform core remain
valid for reflected reactors. To solve a reflected reactor system the same diffusion
equation is used, however, the boundary conditions are different when the reflector is
added, the core size is reduced. Now the axial and spherical reflector applications for
two different reflector material combinations are considered in this Chapter.

5.1 AXIAL REFLECTOR

In a reflector there is no fissionable material so the diffusion equation becomes

Vig-=g=0 (5.1)

where the diffusion length is the parameter of the reflector material. In cylindrical

geometry the Laplacian operator takes the form as

1d
Tdr E(ﬁ ¢— ¢—0 (5.2)
Now we separate variables
#(r,z) =y (r)g(z) (5.3)
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Figure 5.1 Axial - Reflector

Then the result is divided by y ( to yield

1d d 1d? 1

+__
wr dr ar” ¢ dz? L2 (5.4)

From Eqg. (4.65) one can

7
wrdr dr (5.43)

and then rearranging Eq.(5.4) one obtains

2
ld_é’_(BrZJri]:o

¢ dz? L; (5.4b)
where one can set a new parameter a2 as
a® =B} +i2 :
L
; (5.5)
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Thus, Eq. (5.4) reduces to

d2
— —-ad* =0
7Y (5.6)

The solution of this form for the axial reflector in Figure 5.1 is found as

¢ (z) = A"exp(az)+C"exp(az) (5.7)

We next add a reflector of height T to the top and bottom of the core. Adding the
reflector reduces the height of the critical reactor from H to a yet to be determined
value H'. Thus, the boundary conditions at top and bottom of the reflector removes
the one of the arbitrary coefficients where 0<{(z)<ew and

—i—T <z< i+Tj-
2 2 '

g[%+Tj = A”’sinh(a(%+TD+C’”cosh (a( |_2|' +TD =0 (5.9)

Here the coshterm drops from the equation since it does not satisfy the boundary

condition, C" =0, and the first term gives:

¢(z)=A"sinh(a(H'/2+T -2) (5.10)

This equation represents the reflector flux and also we know the core flux equation
from Eq. (4.68) as
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x(z) =C’cos(B,z) (5.11)

in which B, is the buckling parameter for the reduced height of the core, H'. We

now apply the interface boundary conditions at the core-reflector system: The
continuity of the flux for the axial functions at the interface is

Z(H'12)=C(H'12) (5.12)

which is

C'cos(B,z) = A"sinh(aT) (5.13)

and the current functions at the interface is

d d
D.—x(z)) =D,—<{(2) 5.14
TR DA I 619
then one gets
B,D.C'sin(B,H'/2) = aD, A" cosh(aT) (5.15)
When we divide Eq. (5.15) to Eq. (5.13) we obtain
B!D, tan(B/H'/2) = aD, coth(aT) (5.16)

82



where D, and D, are diffusion coefficients of core and reflector, respectively.
When T goes to infinity in Eq. (5.16), it means that the reflector has an infinite
thickness and one finds coth(w) =1. So, Eq. (5.16) reduces to;

B! tan(B/H'/2) = aD, / D, (5.17)

Solving forH', one obtains

H'=£'tan‘1(a D, J (5.18)
B
This is the critic height of the finite cylinder with reflector Ref. [2]

Table 5.1 Axial Uranium core with Uranium reflector

T(cm) Hep (€M) Huonep M (k)
0 18.320 14.167 52.589
1 16.415 12.262 45.519
2 14.965 10.812 40.135
4 13.556 9.402 34.902
6
8

13.156 9.003 33.420
13.055 8.901 33.043
10 13.030 8.876  32.950
20 13.021 8.868  32.919
50 13.021 8.868  32.919
100 13.021 8.868  32.919
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Table 5.2 Axial Uranium core with Pu-239 Reflector

T(cm) Hep(cm) Huonexpy M (k)
0 18.320 14.167 52.589
1 16.342 12.188 45.245
2 14.937 10.783 40.031
4 13.761 9.607 35.664
6
8

13.497 9.343 34.684
13.443 9.290 34.486
10 13.433 9.279  34.446
20 13.430 9.276  34.436
50 13.430 9.276  34.436
100 13.430 9.276  34.436

It is observed in Tables 5.1 and 5.2, the critic height of the bare reactor system
reduces to a certain value when the thickness of the reflector is increased [10, 11, 12,
15, 22]. For the comparison at 2MeV neutrons, the first values in the first row are the
critic height and the critic mass of the bare-finite-cylinder systems with pure 235U

materials, given in Table 4.5.

5.2 SPHERICAL REFLECTOR

Consider a spherical reactor consisting of a radius R surrounded by a reflector having
thickness T. Since there is no fissionable material in the reflector, the flux in this

region satisfies the one group diffusion equation [1, 3]

v2¢r __2¢r =0 (519)

The general solution of this equation is
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4= A

cosh(r/L) _,sinh(r/L)
~+C ’ 2
- (5.20)

r

where A" and C' are constants. Applying the condition for the vanishing of the flux

¢ at r=R+T where T is the thickness of the reflector.

cosh(R:T) sinh(R:T)
Ay (5.21)
r r

Considering C' from the Eq. (5.21), one gets

R+T

A’ cosh( ) RaT
C'=— ~—— =~ coth( s
sinh(~"~) L

T

) (5.22)

If C'is substituted into flux Eq. (5.20) then one obtains

R+T, . r
C )smh(?r)j (5.23)

r

4 = AR — [sinh(R T cosh(-—) — cosh(
rsinn( ") . L

T

T

Rearranging Eq. (5.23), one obtains the flux function as

;- AR+T L
rsinn(=") L

T

(5.24)
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Previously the solution in the core has known from solution of spherical bare reactor
that is

¢, = Aw (5.25)

The functions ¢, and ¢, must be also satisfied at the interface boundary conditions:

These conditions are

¢, (R)=¢.(R) (5.26)

Appliying the boundary condition one finds

Asln(BR) _ AR+-|- sinh(l)
R RsinnEHy L (5.27)
Lr
and using the definition of current function at the boundary one gets
D, 4,(1) =D,<-4(r) .27
c dr c & r dr r r '
Substituting the relevant equations one writes
, coshRFHT =0y sinnR AT
Bcos(Br) sin(Br) A ) L,
AD, -——|=D, RoT + 5
r r sinh( ) Lr r
Lr
(5.28)

Dividing Eq. (5.28) by Eq. (5.7) one gets
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T
coth(—
(L )

—DC(BCOt(BR)_lj _p, c 1
R L R (5.29)

After some arrangement, one can write a more convenient form as

COt(BR) = Bi(1—EJ—ﬂicoth(l) (5.30)

This equation represents the relationship between the core radius of sphere and the
reflector thickness. For an infinite reflector the Eq. (5.30) becomes

BReot(BR)—1=—2c| R 41 (5.31)
D\ L

c T

This equation must be satisfied for the reactor to be critical. For example if the
composition of the core is known, the material Buckling can be determined and then

the core radius, R, can be calculated, or vice versa.

As it is seen in Table 5.3 and Table 5.4, the critic radius of spherical core,
surrounded by a reflector of which thickness is gradually increased, decreases to a
certain final value. The decrease in critical size of a core due to a reflector is

expressed by a term called “reflector savings, 6§ and given by

5=R -R (5.32)
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where R, is the critical radius of the unreflected system [23]. For a spherical system,
R, is defined in Eq. (4.34) as B/ z. A plot of the reflector savings derived from Egs.

(5.31) and (5.32) as a function of pure U reflector thickness for the pure U core
is presented in Figure 5.2. It is observed that beyond a certain reflector thickness,
further increase does not affect the reflector savings. Our result in Figure 5.2 is in
consistent with Ref. [5].

Calculated reflector saving as a function of uranium reflector thickness

reflector saving, cm

[] 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

reflector thickness, cm

Figure 5.2 Calculated reflector saving as a function of Uranium reflector thickness

As shown in Table (5.5), the spherical 2*°U core-reflector calculation results have
3.4% error with the existing literature, Ref. [24] . It is also shown that ***Pu core-
reflector spherical system has 1.6% error with the numerical value proposed in Ref.
[24].
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Table 5.3: Pure ?**U core surrounded Table 5.4: Pure ***Pu core surrounded

with pure 2*°U reflector for sphere. with pure ?*°Pu reflector for sphere.
T (cm) R'(cm) M (kg) T (cm) R’ (cm) M (kg)
0 10.68 49.72 0 4.88 9.64
1 9.733 34.97 1 3.98 5.18
2 8.998 25.84 2 3.41 3.26
4 8.222 18.03 4 2.97 2.16
6 7.941 15.71 6 2.85 1.91
8 7.841 14.92 8 2.82 1.85
10 7.805 14.65 10 2.82 1.85
20 7.785 14.49 20 2.81 1.83
30 7.785 14.49 30 2.81 1.83

Table 5.5: Comparision of spherical reflector results with literature

Present
Core-Reflector o124l Percent Error %

T (cm) Results
materials M- (kg)
M (kg)
infinite
235238y 15.00 14.49 3.4
infinite 239p.23%py 1.80 1.83 1.6
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CHAPTER 6

CONCLUSION

In this thesis work, solution of the steady-state one-group diffusion equation for bare
and reflected reactor systems in three distinct geometries has been worked out for the
calculation of the critic size and critical mass. A relation between the material
composition and the size of the geometry in question has been obtained by the
eigenvalue, called Buckling parameter, of the diffusion equation. It is observed that
there is a direct relation between the material Buckling, By, and the geometric
Buckling, By. It is also observed that a reflector material reduces the critic size and

mass of a system.

Firstly, the derivation of the steady-state one-group diffusion equation is studied by
reviewing the neutron reactions. After determining the parameters in the equation,
the critical mass values in three distinct geometries for pure **U and ?*°Pu materials
are obtained by solving the steady-state one-group diffusion equation for bare reactor

systems for certain neutron energy in fast region.

Then, the diffusion equation is solved for systems with a reflector surrounding the
core to reduce the critic size of the original system: It is observed that there is a
reduction in the size of the active core if a reflector is added into the system.
Although the core and reflector are assumed to be made of same materials, for
simplicity in calculations, a reduction which is called as “reflector savings” is also

observed in all geometries in our examples. It is seen that the critic dimension of the
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active core decreases down to a certain value even the thickness of the reflector is

increased.

The results obtained in this thesis study are in consistent with existing numerical
results in the literature. The method used in this study is the direct solution of the
diffusion equation without using any approach and relatively simple with respect to
other methods, given throughout the text, for estimating the critical mass of a
fissionable element in all distinct geometries to obtain the solution of the neutron

diffusion function for mixture material compositions in the nuclear reactor systems.

Since the steady-state one-group diffusion equation is considered in three basic
geometries in this work, it is thought that the study can be extended to two-group
calculations for different core-reflector material compositions. One can consider the
solution of the diffusion equation by the Monte-Carlo Method for N-Group
calculations. It is also possible to study the reactor Kinetics, which are time-

dependent parameters, of a reactor system as a future work.
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APPENDICES
APPENDIX A
GRADIENT

The gradient of a function f is defined as the vector whose componenets are equal to

the rates of change of f along the direction of the component. Thus,

_of , of o
grad f _8sla1+asz a2+833 a,

Where a,a,a, are unit vectors normal to the coordinate surfaces. It follows that the

components of the gradient in rectangular coordinates are;

grad f :g—];, grady f :g;, grad, f :%
In cylindrical coordinates are;
grad, f:%, grad, f :igg grad, f:(gfz
In spherical coordinates;
grad_f :%, grad, f =i§]f9 gradw f= rsilnggp

DIVERGENCE

The general formula for the divergence of a vector in curvilinear coordinates can be
obtained by applying the divergence theorem to the infinitely small volume element

dV =dss,s, According to this theorem; the integral of the normal component of a

vector over a closed surface is equal to the integral of the divergence of the vector

throughout the enclosed volume. In symbols,
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[Fn dA= jdiv FdVv
A Vv

Where n is a unit vector. If V is infinitely small, the volume integral is simply

divFdV = [Fn dA
A

Carrying out the integral over the faces of dV,

Fds,ds, )ql}
J{( F,ds,ds, )q2+ i, —( Fyds,ds, )qz }

+[( F;ds,ds, )q3+ " —(Fyds,ds, )q3 }

/{ Fn dAz[( Fldszds:,,)ql+ day —

The first bracket can be written as

0
1

0
:a( Fh,hs )d%d%d%

i

Combining terms then gives

. 0 0 0
div FdV =| —(Fh,h,)}+—(F,hh,)+—(F;hh,) |dgdg.d
iv {aq( 123)+ q(ZhL 3)+6q( sy 2)} 0,09,dq,

1 a2 3

Dividing by dV becomes finally

. 1 0 0 0
div F= —(FRh,hy )+—(F,hhy )J+—(FKhh
L E) o (Fn)s 2 (Fi)

Introducing the values of the h'sin rectangular coordinates gives

div F:a—':>&+aj+aj
0z

In cylindrical coordinates;
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div leg(rFr)+laji+%
ror ro$ oz
In spherical coordinates;
div F:%@(rzﬁ)+ L i(sin19Flg)+ ! F,
reor rsin$o94 rsing op

LAPLACIAN

This operator is the divergence of the gradient of a scalar function. The component

F, of the gradient is

fLat
h, 6q,

With similar expressions for the other components. Inserting these components into

the previous formula for the divergence gives for the Laplacian:

vor_ 1 { o ( hyhy of ja( hlhafJGthhJaf

“hhohy| da\ 8, ) ag,\ h, 8a, ) g5l hy Jog,

The symmetry of this formula should be noted. In view of his result, the Laplacian in

rectangular coordinates is;

2 2 2
_o’f o' f |, o°f
X% oy? ozt

In cylindrical coordinates ;

2 2
v2f10 r@ LLof ot
ror\ or ) r?209% oz°

And in spherical coordinates;

2
szz%g 2 ), 21_ O [singd |+ : _12 a—z
reor\ or ) r°sin9od 08 ) r°sin° 3o¢
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APPENDIX B
THE LINEAR EXTRAPOLATION DISTANCE FOR PLANE SURFACE

At the boundary there is a net flow of neutrons in one direction. It is assumed that
“near the boundary between a diffusion medium and a vacuum the neutron flux
varies in such a manner that linear extrapolation would require the flux to vanish at a
given distance beyond the boundary. According the diffusion theory based on; Fick’s
Law are given by;

3 0=2-P9 ang 5 (x=9,D9¢

* 4 2 dx - 4 2 dx
These are the x-component of the current function through the x-axis. The current J
is known from the Fick’s Law and also the difference of these two components is

agreement with the current vector. As a boundary condition at the medium-vacuum

intersection, the current density to the —x-direction, J (x), is zero that means no

neutrons scattered back from the vacuum. Therefore, one writes

then one gets

ldg_ 1

¢ dx 2D
where D :&3& Thus, one writes

1ldg__ 3

¢O dX 2ﬂ1r

On the other hand, one defines the slope of the function ¢ by using the geometry

given in Figure B.1 as

%ztan(a):—if

x=0
then one obtains
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d = §/1tr
P(X)
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N ‘> X
< d >

Figure B.1 Extrapolation distance of neutron flux at plane surface between diffusion

medium and vacuum.
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