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ABSTRACT 

CALCULATION OF THE CRITICAL MASS AND THE EIGENVALUE OF 

FAST NEUTRONS REACTION 

 

KÖKLÜ, Halide 

MSc Thesis, Engineering Physics, University of Gaziantep 

Supervisor: Assoc. Prof. Dr. Okan ÖZER 

January 2013, 98 pages 

  

Solution of the steady-state one-group diffusion equation for bare and reflected 

reactors in three distinct geometries has great importance in the calculation of the 

critic size and critical mass of the pure or mixtured fuel material. The eigenvalue of 

the diffusion equation shows the relation between the material and the size of the 

geometry in question. This relation is called the material Buckling, Bm, or the 

geometric Buckling, Bg. Solving the steady-state one-group diffusion equation for 

bare reactor systems, the critical mass values are obtained in three distinct geometries 

for different material structures. After surrounding a bare reactor with a reflector 

material, a reduction is observed in the critic dimensions in all geometries and also 

the critical mass decreases to a certain value depending on the properties of the 

reflector and the core material. The reactor savings is presented as a function of the 

reflector thickness. The results obtained in this study are compared with the 

numerical values existing in the literature. 
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ÖZET 

KRİTİK KÜTLE VE HIZLI NÖTRONLARIN REAKSİYONLARININ ÖZ 

DEĞER HESAPLAMALARI  

KÖKLÜ, Halide  

Yüksek Lisans Tezi, Fizik Mühendisliği, Gaziantep Üniversitesi 

Danışman: Doç. Dr. Okan ÖZER 

Ocak 2013, 98 sayfa 

 

Üç farklı geometrideki yalın ve reflektörlü reaktörlerin kararlı hal tek grup difüzyon 

denklem çözümleri saf ve karışımlı yakıt malzemeli kritik kütle hesapları tartışmaları 

büyük bir öneme sahiptir. Difüzyon denkleminin öz değeri reaktörün gerekli olan 

minimum boyut ve malzeme ilişkisini verir. Bu ilişki malzeme Bm ve geometri 

bükülme Bg olarak adlandırılır. Öncelikle kararlı hal tek grup difüzyon denklemi 

çözülerek üç farklı geometrili (küre, silindir ve dikdörtgen prizma) yalın reaktörlerin 

kritik kütle değerleri farklı materyal yapıları için elde edildi. Yalın reaktör reflektörle 

kaplandıktan sonra, bütün geometrideki reaktörlerin kritik boyutlarında küçülme 

gözlenmiştir. Ayrıca kritik kütle de reflektörün ve yakıt malzemesinin özelliğine 

bağlı olarak belli bir değere kadar düşmektedir. Bu çalışmadaki hesaplama sonuçları 

literatürdeki sayısal sonuçlarla karşılaştırılmıştır.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 

Nuclear power plants are substantially efficient in energy production and still being 

used by lots of countries all over the world. With thriving technology, nuclear power 

reactor types are multiplied by time. Although the reactor types are different, the 

basic components of these systems are the same. A nuclear reactor is basically 

composed of several elements like moderator, coolant, control rods, blanket and 

reflector. The moderator is used to slow down the neutrons from fission to thermal 

energy levels. The coolant is used to remove the heat from the core and the other 

parts of the reactor. The blanket is the part of the reactor made of fertile material that 

surrounds the core of the breeder reactors. As understandable, control rods are 

movable pieces of neutron-absorbing material which are used to control the 

criticality of the reactor. Lastly, the reflector is adjacent to the core that catches the 

neutrons escaping after more collisions from the core of reactor. This study also 

includes reflector saving calculations. 

 

 

The heart of a fission reactor, the fission takes place in the core, breeds the whole 

power plant with fission chain reaction energy. Accordingly Uranium and its 

isotopes are essential for a fission reactor that produces energy from fission 

reactions. The natural uranium consists of 99.27 % of Uranium-238, 0.72 % of 

Uranium-235 and 0.0057 % of Uranium-234. [1, 2]. Uranium-235 is more effective 

in fission by thermal neutrons and also more preferable in practice because of some 

certain reasons such as Binding energy and the activation energy of Uranium 

isotopes. Due to limited amount of Uranium-235, enrichment and various 

compositions are used in core for fission chain reaction as an energy source. 

Furthermore, importance of critic mass appears due to the little amount of Uranium-

235 isotope in natural uranium. Critic mass is the smallest mass for sustaining the
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fission chain reaction in a nuclear power reactor. The denoted parameter k, called as 

“multiplication factor” (or survival factor) is the ratio of the number of neutrons 

generated in present fission to the number of neutrons generated in the previous 

fission [3]. Therefore, the parameter k can get three different values: If k is less than 

1, then the number of fission chain reactions decrease with time and the energy 

production reduces in time. This condition is called “subcritical”.  If k is equal to 1, 

then the generation of fission neutrons is stable and the reactor is called “critical”. If 

k is greater 1, then the generation of neutrons increase with time and the reactor is 

called “supercritical”. As a result of these conditions, the generation of fission 

neutrons gets great importance in the reactor core which may be made of different 

composition of uranium isotopes.  

 

 

In the reactor core that has fissionable material there occur many kinds of neutron 

interactions like elastic- inelastic scattering of neutrons and radiative capture reaction 

as well as fission reaction. These interactions fluctuate the number of neutrons in the 

core composition. Some interactions increase, others decrease the neutron population 

with time. So, the flux and also the density calculations require obtaining the net 

number of neutrons at the boundaries of the core. To determine the neutron flux in 

the reactor core, neutrons may be assumed to be solute in a solution: The density 

goes from region of high concentration to that of low concentration region. As a 

good approximation, Fick’s Law [4] for neutron diffusion in reactor core can be 

used. Furthermore, Fick’s Law states that the rate of solute flow is proportional to the 

negative of the gradient of the solute concentration [1, 3]. So, Fick’s law is the 

starting point for the solution of diffusion equation in the determination of the 

parameters required to calculate the multiplication factor (or survival factor), k. Then 

calculations are done for the reveal the critic mass of reactor core. 

 

The most general form of the diffusion equation for fission neutrons depends on 

geometry of the system and the time variable. If one does not consider the reactor 

kinetics for time parameter, then an important question arises: For what geometry the 

critical mass is the lowest one? To answer this curious question, initially the most 
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primitive system that is one-group (fast-group because of narrow energy range than 

thermal group) steady-state neutron diffusion equation is considered. In this thesis, 

the solution of the one-group steady-state neutron diffusion equation for certain 

distinct geometries is obtained and the critical mass calculations are studied. 

 

In Chapter 2, the neutron interactions with matter and the derivation of the Fick’s law 

is given. Definitions of the microscopic and macroscopic cross-sections, neutron 

flux, mean-free path are discussed.  

 

In Chapter 3, the equation of continuity is obtained and the solution of the steady-

state neutron diffusion equation for non-multiplying media is considered. Solutions 

are obtained for certain reactor geometries: Solutions of the diffusion equation are 

done to understand the behavior of neutron flux for non-multiplying systems 

consisting of a point source, an infinite planer source and a bare slab. These 

calculations help to understand the solution of non-multiplying bare systems.  

 

A bare reactor is considered with multiplying medium that consists of fissionable 

materials in Chapter 4. The diffusion equation with multiplying media has an 

eigenvalue which is called the material buckling related with the composition of the 

core material. Here, the term “buckling” is defined by the curvature or bending of the 

neutron flux in the system. The analytical or numerical expression of the buckling 

parameters for different specific reactor systems is determined by expressing the 

Laplacian operator in the most appropriate coordinates that depend on the reactor 

shape and then one can solve the resultant steady-state differential equation subject 

to the boundary conditions of the system under investigation. In general, the 

expression of the buckling parameter satisfying the mathematical requirements of the 

differential equation is not unique but the smallest numerical value has physical 

significance in the solution of the problem. It is shown in this Chapter why one shall 

be interested in obtaining the smallest value of the buckling parameter. 
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Surrounding a bare system with a reflector, that is a medium having high scattering 

cross section and low absorption cross section, has some certain advantages which 

are studied in Chapter 5. Since the power production in the reactor core is also 

proportional to the average neutron flux in the system, the reactor can be run at a 

higher total power output for the same neutron flux if it is maximized throughout the 

system. The effect of flux-flattening is observed as the higher power production rate 

especially in large power reactors from the operational point of view. If one can 

obtain the neutron flux function for the geometry in the question, then the power 

produced in this system can also be calculated by using the type of fissile material 

and its fission energy value. However, the main purpose of this thesis study focuses 

on the critic size and mass of the reactor core. After determining the critical mass 

value for the bare systems in certain geometries, the calculations are done for the 

same systems with certain type of reflector materials. Our results are compared with 

the existing literature. 
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CHAPTER 2 

THEORITICAL INFORMATION 

 

2.1 INTERACTION OF NEUTRONS WITH MATTER 

In this Chapter a brief information about the neutron interactions is given. 

 

2.1.1 The Production of Neutrons 

Neutron sources are various kinds of required for experimental purpose and also play 

an important role in the start-up of nuclear reactors. Neutrons are obtained by the 

action of alpha particle on some light elements like beryllium, boron, or lithium. The 

reaction [5] may be shown by 

 

9 4 12 1

4 2 6 0    Be He C n  
 

(2.1) 

 

Alternatively, this may be written in the abbreviated form 

 

9 12( , )Be n C
 

(2.2) 

  

This representation states that Be is the target nucleus, interacting with an incident 

alpha particle (α); a neutron (n) is ejected and a 
12C  nucleus, referred as the recoil 

nucleus, remains. The major alpha particle emitters used in (α,n) sources, together 

with beryllium, are radium-226, polonium-210, and plutonium-239. In these cases, 
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output neutrons have high energy range from 1 to 10 MeV or more. Such neutrons 

are known as polyenergetic. 

 

On the other hand, monoenenergetic neutrons can be obtained by the action of 

gamma rays about 2 MeV on certain type nuclei such as deuterium, heavy hydrogen 

and beryllium. The reactions are given as 

 

9 0 8 1

4 0 4 0Be Be n  
 

(2.3) 

 

and 

 

2 0 1 1

1 0 1 0
H g H n 

 
(2.4) 

 

These are described as (γ, n) reactions and called as photoneutron sources. This 

reaction occurs only if the energy of the gamma rays is at least equal to binding 

energy of the neutron in the target nucleus. Due to the fact that the binding energy is 

exceptionally low in deuterium (2.2 MeV) and beryllium (1.6 MeV) that these 

substances are generally used in (γ, n) neutron sources. Obtaining neutrons from 

other elements requires gamma rays of at least 6 to 8 MeV energy [5]. 

 

2.1.2 Neutron Absorption Reactions 

Reactions of neutrons with nuclei separate into two groups, scattering and 

absorption. In absorption process the neutron is witholded by the nucleus and a new 

particle is formed. The most important absorption reaction in nuclear reactors are 

radiative capture and fission which will be mentioned in detail. There are also a few 

neutron absorption reactions of different types. In considering absorption reactions it 
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is convenient to distinguish between reactions of slow and of fast neutrons. There are 

three main kind of slow neutron reactions;  

a. Emission of gamma radiation (radiative capture) (n, γ) 

b. The ejection of a charged particle (such as (n, α) and/or (n,p) reactions) 

c. Fission (n,f) 

Radiative capture occurs with a wide variety of elements. The (n, α) and (n,p) 

reactions,  these are called charged particle emission, with slow neutrons are limited 

to a few isotopes of low mass number, however fission by slow neutrons is restricted 

to certain nuclei of high mass number. 

 

2.1.2.A. Radiative Capture Reactions 

In these reactions, excited compound nucleus emits its excess energy as gamma rays. 

The process may be shown  like this form         

                   

1 1 1

0 [ ]*A A A

Z z ZX n X X       (2.5) 

                                                               

Having an atomic number Z and a mass A, ZX
A

 is the target nucleus. The product 

ZX
A+1 

is the isotope of ZX
A
 and it may be radioactive or not [5]. If it is radioactive, it 

will most likely be a beta emitter because the capture of a neutron will have produced 

a nucleus in which the neutron-to-proton ratio is too large for stability for the given 

atomic number. Actually all the elements show the radiative capture reaction much 

or less extent. However some nuclei exhibit little inclination to capture neutrons. 

Two example for radiative capture is uranium-238 and thorium-232, and also 

uranium-235 and plutonium-239 represent radiative capture, in competition with 

fission, especially for neutrons of intermediate and low energies. The neutron capture 

reaction does not require any specific neutron energy and the reaction can occur with 

the neutron of any energy. In this reaction the Q-value becomes positive, that is, 

exothermic since the binding energy of the product nucleus is larger than the 

summation of the binding energy of the neutron and the original nucleus. 
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2.1.2.B. Charged Particle Emission 

 A charged particle reaction, which is also called as “transmutation” reaction, usually 

pioneers to emission of an α particle or a proton from the nucleus. Due to the fact 

that a positively charged particle can be expelled from a nucleus only if it has 

sufficient energy to overcome an electrostatic potential, the slow-neutron reactions 

rarely produce the charged particles. Only for a few element of low atomic number, 

for which the nuclear electrostatic repulsion is small,  

 

10 1 11 * 7 4

5 0 5 3 2B n B Li He     (2.6) 

 

that charged-particle emission is possible after capture of a slow neutron. The (n, α) 

reaction with boron-10 can be shown as  representing the α particle. In this 

reaction, the charged particles are ejected in opposite directions with relatively high 

energy. This is the basis of a method for detecting and counting slow neutrons. Since 

boron undergoes the (n, α) reaction very rapidly with slow neutrons, this element is 

used for controlling the reactor core like cadmium. Another reaction producing the 

charged particles is the (n, α) reaction of Li: 

 

6 7 * 3 4

3 3 1 2( )Li n Li H He     (2.7) 

 

This reaction is similar with the previous one. Here  is the residual and a beta-

active, hydrogen isotope of mass number 3 is called tritium. 

 

2.1.2.C. Fission Reactions 

Neutrons colliding with certain nuclei may cause the nucleus split apart to undergo 

fission. Fission occurs only with certain nuclei of high atomic (and mass) number, 

and hence the repulsive force within the nucleus is an important contributory factor. 

When fission occurs, the excited compound nucleus formed after absorption of a 

neutron breaks up into two lighter nuclei, called fission fragments.  If the neutron is 
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one of low kinetic energy, i.e. a slow neutron, the two fragment nuclei generally have 

unequal masses. That is to say, symmetrical fission by slow neutrons is rare; in the 

majority of slow- neutron fissions the mass ratio of the fragments is appoximately 2 

to 3.  

Only three nuclides, having sufficent stability to permit storage for a long time, 

namely uranium-233, uranium-235, and plutonium-239, are fissionable by neutrons 

of all energies, from thermal values to millions of electron volts. Of these nuclides, 

uranium-235 is the only one which occurs in nature; the other two are produced 

artifically from thorium-232 and uranium-238, respectively. 

 

In addition to the nuclides which are fissionable by neutrons of all energies, there are 

some other nuclides that require fast neutrons to cause fission such as thorium-232 

and uranium-238. For neutrons below about 1 MeV energy, but above this theresold 

value, fission also occurs to some extent. Since fission of thorium-232 and uranium-

238 is possible with sufficently fast neutrons, they are known as fissionable 

nuclides.  In distinction, uranium-233, uranium-235, and plutonium-239, which will 

undergo fission with neutrons of any energy, are referred to as fissile nuclides. 

Moreover, since thorium-232 and uranium-238 can be converted into the fissile 

species, uranium-233 and plutonium-239, respectively, they are also called fertile 

nuclides. 

 

Some fertile nuclides can be converted into useful nuclear fuel for fission reactors in 

which most of neutrons are moving slowly. The most important two fissile breeding 

reactions are [6] 

 

                      
232 233 * 233 233

90 90 91 92Th n Th Pa U  

                                     (2.8) 

 

and 
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238 239 * 239 239

92 92 93 94U n U Np Pu  

     (2.9) 

 

The importance of fission, from the standpoint of the utilization of nuclear energy, 

lies in two facts: First, the process is associated with the release of a large amount of 

energy per unit mass of nuclear fuel and, second, the fisson reaction, which is 

initiated by neutrons, is accompanied by the liberation of neutrons. It is the 

combination of these two circumtances  that makes possible the design of a nuclear 

reactor in which a self-sustaining fission chain reaction occurs with the continuous 

release of energy.  Once the fission reaction has been started in a few nuclei by 

means of an external source of neutrons, it can be maintained in other nuclei by the 

neutrons produced in the reaction. It should be noted that it is only with the fissile 

nuclides mentioned above that a self sustaining chain is possible. Thorium-232 and 

uranium-238 cannot support a fission chain because the fission probability is small 

even for neutrons with energies in excess of the threeshold of 1 MeV, and inelastic 

scattering soon reduces the enegies of many neutrons below the theresold value [5]. 

 

Some typical neutron-induced fission reactions for different neutron energies are   

 

235 236 93 141* 2U n U Rb Cs n      

235 236 137 96

53 39* 3U n U I Y n      

235 236 142 90

55 37* 4U n U Cs Rb n      

                                                

(2.10) 

 

 

These reactions are possible for incident neutrons of thermal energies. [7] 

 

2.1.3 Neutron Scattering Reactions 

Neutrons having energies above the thermal range, a scattering collision results in 

degradation of  the neutron energy. Energy degradation caused by scattering is 

referred to as neutron slowing down. In a medium where the average energy lose per 

collision and the ratio of scattering to absorption cross section is large, the neutron 
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spectrum becomes close to thermal equilibrium. That is referred to thermal or soft 

spectrum. Contrary in a system for which small degradation to absorption, neutrons 

are absorbed before significant slowing down takes place. Then the neutron spectrum 

becomes closer to the fission spectrum and is called to be hard or fast. To understand 

the neutron energy distribution more quantitively, we must consider first elastic and 

inelastic scatterings. In elastic scattering the sums of the kinetic energies of the 

neutrons and the target nucleus is same before and after collision. That is energy is 

conserved. However in inelastic collision, it is not conserved because the some of 

kinetic energies of nucleus and target nucleus before scattering is less or greater than 

after scattering. Both elastic and inelastic scattering are of considerable importance 

in nuclear reactors. 

 

2.1.3.A. Elastic Scattering 

In elastic scattering, the target nucleus remains in its lowest energy (ground) state, 

this interaction treats as a billiard ball type collision as seen in Figure 2.1. Thus, this 

behavior can be analyzed in terms of mechanic laws with conservation principles of 

both momentum and energy 

 

 

Figure 2.1 Schematics of the potential elastic neutron scattering [4] 

 

After sufficient number of elastic collisions, the velocity of neutron reduces that has 

approximately the same average kinetic energy as the atoms of the scattering 

medium. This energy depends on the temperature of the medium that is called 
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thermal energy. Thermal neutrons are the  neutrons in thermal equilibrium with the 

atom in the medium. A certain thermal neutron undergoing scattering collision with 

the nuclei of the present medium may gain or lose energy in any one collision. But, if 

a large number of thermal neutrons diffusing in a non-absorbing medium are 

considered, becomes no net energy change for all the neutrons. 

 

There are two possible ways for a neutron to scatter elastically. The first one is 

resonance or compound elastic scattering: the neutron is absorbed by the target 

nucleus to form a compound nucleus followed by re-emission of a neutron. The other 

is potential elastic scattering. the short range nuclear force scatter the neutron away 

from the nucleus surface. The more unusual of the two interactions is the resonance 

elastic scattering that is highly dependent on initial neutron kinetic energy. Near the 

resonance energies there is a quantum mechanical interface between the potential and 

resonance scattering. As the neutrons approach the nucleus, they are scattered by the 

short range nuclear forces and is expressed by relation as σel (potential 

scattering)=4πR
2
 where R is the radius of the nucleus [4]. 

 

2.1.3.B. Inelastic Scattering 

When a fast neutron undergoes inelastic scattering, it is first captured by the target 

nucleus to form an excited state of the compound nucleus, then a neutron having 

lower kinetic energy is emitted when it leaves the target nucleus in an excited state. 

An excess energy becomes this energy is subsequently emitted as one or more 

photons of gamma radiation which is called inelastic scattering gamma rays. 

 

If  is the total kinetic energy of the neutron and target nucleus before collision and 

 is the kinetic energy after the collision also  is the emitted energy from gamma 

radiation, so,  

 

 



 

13 
 

It is obvious that in inelastic scattering kinetic energy is not conserved. Nonetheless, 

momentum is conserved. For elements of moderate and high mass number, the 

energy of the lowest excited state above the ground state, is usually from 0.1 to 

1MeV. When the nucleus having with decreasing mass number, becomes a general 

tendency for the excitation energy to increase, hence the neutrons must have higher 

energies if they are to undergo inelastic scattering. Due to the fact that the separation 

of the excited levels of a nucleus is smaller at high excitation energies. The relative 

probability of its occurrence, increases with increasing neutron energy. For inelastic 

scattering by elements of low mass number, the total gamma-ray energy must be 

high.  

 

2.2. CROSS-SECTIONS and NEUTRON FLUX 

Each of the reactions may occur under certain conditions and there is a need for the 

parameters that are used to calculate the probability if a reaction occurs or not. First, 

it is necessary to define the interaction area for the interacting particles.  

 

Roughly speaking, the cross section is a measure of the relative probability for the 

reaction to occur. The probability that a nuclear reaction will take place is measured 

in units of "barns", where 1 barn equals 10
-24

 cm
2
. This is a unit of area. You can 

visualize a target material as an array of little disks. Larger disks would be easy to hit 

(large cross section, large reaction probability), and smaller disks would be hard to 

hit. 

 

As we mentioned above, neutron interactions with matter can be either scattering or 

absorption reactions. As it is well known that the scattering can result in a change in 

the energy and direction of motion of a neutron but cannot directly cause the 

disappearance of a free neutron; and the absorption leads to the disappearance of free 

neutrons as a result of a nuclear reaction with fission or the formation of a new 

nucleus and another particle or particles such as protons, alpha particles and gamma 

photons. The probability of occurrence of these reactions is primarily dependent on 
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the energy of the neutrons and on the properties of the nucleus with which it is 

interacting. 

The probability of a particular reaction occurring between a neutron and a nucleus is 

called the microscopic cross section ( ) of the nucleus for the particular reaction. 

This cross section will vary with the energy of the neutron. The microscopic cross 

section may also be regarded as the effective area the nucleus presents to the neutron 

for the particular reaction. The larger the effective area, the greater the probability for 

reaction. 

 

Let’s consider a thought experiment to determine the reaction rate R [reactions/sec] 

that would occur in a small volume of a thin target material of area A [cm
2
] and 

thickness x [cm] when a beam of neutrons moving in the x direction with a density n 

[neutrons/cm
3
] and velocity v [cm/sec] as shown in Fig. 2.2. If the density of the 

material is ρ [g/cm
3
], and its atomic weight is M [amu] we can use a modified form 

of Avogadro’s law to determine the nuclei density in the target: 

 

 

Figure 2.2 Geometry for neutron reaction rate in thin target of volume V. 

 

So that the reaction rate R should be construed to be proportional to the area of the 

target A, its thickness x, the number density of the particles in the neutron beam, n, 

the velocity of the neutrons, v, and the number density of the nuclei in the target N. 

This can be expressed mathematically as: 
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where I n v
 

. The proportionality symbol can be replaced by an equality sign 

provided we add a proportionality constant, leading to; 

 

 

Since the volume of the target is V Ax , then one writes 

 

 

If the equation is rearranged for  , we find the units of the proportionality constant 

as: 

 

 

Thus the proportionality constant σ has units of area and physically represents the 

area that a nucleus in the target presents to the interacting neutrons in the impinging 

beam. 

 

The cross section is not in general equal to the actual area of the nucleus. For 

instance the radiative capture cross section for 
197

Au at the peak of 4.9 eV resonance 

is 3x10
-20

cm
2
, whereas the geometrical area of its nucleus is just 1.938x10

-24
cm

2
. The 

reaction cross section is much greater than the physical cross section of the nucleus, 

R A x I N  (Reactions/sec) (2.11) 

R A x n v N


 (Reactions/sec) (2.12) 

* R R
R n v N

V Ax
  


 (Reactions/cm

3
sec) (2.13) 

*R

n v N
    (cm

2
) (2.14) 
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except at very high neutron energies where the cross section becomes of the same 

order of magnitude as the nucleus. This can be calculated from the knowledge about 

the empirically determined expression for the radius of the nucleus as: 

 

 

then the cross sectional area is 

 

 

For  
197

Au, the area of the nucleus becomes: 

 

 

It is well understood that the probability of a particular reaction occurring between a 

neutron and a nucleus is called the microscopic cross section ( ) of the nucleus for 

the particular reaction. 

 

2.2.1 Microscopic Reaction Cross-Sections 

Each probable reaction that a neutron can undergo with a nucleus is associated with a 

specific cross section. The most important of them are given in Table 2.1. 

 

1/3

0

13

0 1.35 10

r r A

r cm



 
 (2.15) 

2 2 2/3 2

0 ( )s r r A cm    (2.16) 

13 2 2/3

24 2

(1.35 10 ) (197)

1.938 10 ( )

1.938

s

s cm

s barn

 



 

 



 (2.17) 
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Table 2.1 Cross section symbols for different type of reactions 

f

a γ f

γ

es

s es in

in

σ =fission crosssection
σ =σ +σ =absorption crosssection

σ =radiativecapturecrosssection

σ =elasticscatteringcrosssection
σ =σ +σ =scatteringcrosssection

σ =inelasticscatteringcrosssection




 


 
 
 

tσ =total crosssection

 

 

The sum of the cross sections that can lead to the disappearance of the neutron is 

designated as the absorption cross section: 

 

The sum of the cross sections that can lead to the scatterance of the neutron is 

designated as the scattering cross section: (for the elastic and inelastic scattering) 

 

  

and the total cross section is written as: 

 

t a s     (2.20) 

2.2.2 Macroscopic Reaction Cross-Sections 

Whether a neutron will interact with a certain volume of material depends not only 

on the microscopic cross section of the individual nuclei but also on the number of 

nuclei within that volume. Most materials are composed of several elements, and 

because most elements are composed of several isotopes, most materials involve 

many cross sections, one for each isotope involved. Therefore, to include all the 

a f p T            
     

(2.18) 

        s se si     
                       

(2.19) 
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isotopes within a given material, it is necessary to determine the macroscopic cross 

section ( ) for each isotope and then sum all the individual macroscopic cross 

sections. The macroscopic cross section is the probability of a given reaction 

occurring per unit travel of the neutron [1]. It is related to the microscopic cross 

section ( ) by the relationship 

 

where: 

  = macroscopic cross section (cm
-1

) 

 N = atom density of material (atoms/cm
-3

) 

  = microscopic cross-section (barn) 

 

The difference between the microscopic and macroscopic cross sections is extremely 

important and is restated for clarity. The microscopic cross section ( ) represents 

the effective target area that a single nucleus presents to a bombarding particle. The 

units are given in barns or cm
2
. The macroscopic cross section ( ) represents the 

effective target area that is presented by all of the nuclei contained in 1 cm
3
 of the 

material. The units are given as 1/cm or cm
-1

. 

 

Equation (2-21) can be used to determine the macroscopic cross section for a 

composite material: 

 

where  

 N is the number nuclei per cm
3
 of the n

th
 element, 

   is the microscopic cross section of the n
th

 element. 

N    (2.21) 

1 1 2 2 3 3 n nN N N N          (2.22) 
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2.2.3 Neutron Flux 

Suppose a thick target of thickness X  is placed in a monodirectional beam of 

intensity 0I  and a neutron detector is located at some distance behind the target. 

Every neutron that has a collision in the target is lost from the beam, and only those 

neutrons that do not interact enter the detector behind the target. Let ( )I x  be the 

intensity of the neutrons that have not collided after penetrating the distance x into 

the target. Then in traversing the additional distance dx , the intensity in the thin 

sheet of target having an area of 1 2cm  and the thickness dx . By using the equation 

(2.12), this decrease in intensity is given by  

 

 

This equation can be integrated and we get 

 

 

Thus, the intensity of the neutrons uncollided with the target nuclei is given by 

 

 

Since the t  is the probability of interaction per path length, ( )p x dx  is  

 

( ) ( ) ( )t tdI x N I x dx I x dx     (2.23) 

0( ) t x
I x I e


  (2.24) 

0( ) t x
I X I e


  (2.25) 
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and the average distance that a neutron moves between collisions is called the mean 

free path, and it is equal to the average value of x, the distance traversed by a neutron 

without any collision. So we get, 

 

 

Since a beam of neutrons of intensity I  strikes a thin target, the number of collisions 

per unit volume per time is given by 

 

 

where t  is the macroscopic total cross-section. Let’s consider an experiment in 

which a target is exposed simultaneously to several neutrons beams. Assume the 

intensities of the beams are different but the neutrons have the same energy. The 

beam’s directions are different. Then, the total interaction rate is given by 

Since the neutrons are monoenergetic, then Eq. (2.29) becomes 

 

( ) t x

tp x dx e dx


    (2.26) 

0

0

( )

1/

t x

t

t

xp x dx

x e dx















 

 



  

(2.27) 

tF I   (2.28) 

( )t A B CF I I I      (2.29) 
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where , , ....A B Cn n n  are the densities of neutrons with speed of v . Since 

A B Cn n n    is equal to the total n , then 

 

 

The situation at any point in a reactor is a generalization of this experiment, but with 

the neutrons moving in all directions. Eq. (2.31) is valid for any reactor.  

 

The quantity nv  is called the neutron flux, in this case for monoenergetic neutrons, 

and is given by the symbol  . Then the collision density is given by 

 

 

We now extend this result to include neutrons that have a distribution of energies. 

Thus consider n(E) be defined as the neutron density per unit energy; that is, n(E)dE 

is the number of neutrons per cm
3
 with energies between E and E + dE. From Eq. 

(2.32) the interaction rate for these essentially monoenergetic neutrons is  

 

where energy dependence of all parameters is noted explicity. The total interaction 

rate is then given by the integral 

 

( )t A B CF n n n v      (2.30) 

   tF n v   (2.31) 

   tF  
 (2.32) 

   ( ) ( ) ( )dF E n E dE E     (2.33) 
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where 

 

 

This equaiton is called the energy-dependent flux or the flux per unit energy. The 

limit of this equation is indicated that the integration is examined over all neutron 

energies and Eq. (2.34) shows the total interaction rate. Specific interaction rates can 

be found similar way. The number of scattering collision rate is 

 

 

and the absorption interaction rate per cm
3
/s is  

 

 

2.2.4 Fick’s Law: 

The neutrons in a reactor move about in complicated paths as the result of repeated 

nuclear collisions. To a first approximation, the overall effect of these collisions is 

that the neutrons undergo a kind of diffusion in the reactor medium, much like the 

diffusion of one gas in another. The approximate value of the neutron distribution 

can be found by solving the diffusion equation – essentially the same equation used 

0 0

( ) ( ) ( ) ( ) ( )t tF E n E E dE E E dE 
 

      (2.34) 

( ) ( ) ( )E n E E   (2.35) 

0

( ) ( )s sF E E dE


   (2.36) 

0

( ) ( )a aF E E dE


   (2.37) 



 

23 
 

to describe diffusion phenomena in other branches of engineering such as molecular 

transport. This procedure is called the diffusion approximation. Diffusion theory is 

based on Fick’s law [8]. 

 

The diffusion theory of neutron transport plays a crucial role in reactor theory since it 

is simple enough to allow scientific insight, and it is sufficiently realistic to study 

many important design problems. The neutrons are here characterized by a single 

energy or speed (that means they are monoenergetic), and the model allows 

preliminary design estimates. The mathematical methods used to analyze such a 

model are the same as those applied in more sophisticated methods such as 

multigroup diffusion theory, and transport theory. The derivation of the diffusion 

equation will depend on Fick's law, even though a direct derivation from the 

transport equation is also possible. The Helmholtz equation is derived, and the 

limitations on diffusion equation as well as the boundary conditions used in its 

application to realistic problems are discussed. 

 

The neutron flux ( ) and current  ( J


) are related in a simple way under certain 

conditions. This relationship between   and J


 is identical in form to a law used in 

the study of diffusion phenomena in liquids and gases: Fick's Law. In Physical 

Chemistry, Fick's law states that: “If the concentration of a solute in one region is 

greater than in another of a solution, the solute diffuses from the region of higher 

concentration to the region of lower concentration.” The use of this law in reactor 

theory leads to the diffusion approximation. Let us make the following assumptions: 

1. We consider an infinite medium. 

2. The cross sections are constants, independent of position, implying a uniform 

medium. 

3. Scattering is isotropic in the Laboratory (LAB) system. 

4. The neutron flux is a slowly varying function of the position. 

5. We use a one speed system where the neutron density is not a function of 

energy. 

6. A steady state system where the neutron density is not a function of time. 

7. No fission source in the system. 
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Later, some of these assumptions will be relaxed. For instance, the diffusing medium 

will be taken as finite in size rather than infinite. Now, we shall attempt to calculate 

the current density at the center of the coordinate system in Figure 2.3. 

 

 

Figure 2.3  Geometry for the derivation of the neutron current and Fick's Law [8]. 

 

In a cartesian coordinate system given in Figure 2.3, we consider an infinite medium 

in which neutrons are diffusing and being scattered, with an element of volume dV 

whose position is defined by the vector r


, and an element area of dA lying in the x-y 

plane at the origin of the coordinate system. Let the neutron flux at r


be  ( r


). Then, 

the neutron current density vector J


is given by: 

 

   
ˆˆ ˆ

x y zJ J i J j J k  


 (2.38) 

 

So that we must determine the components of J


. These net current components can 

be written in terms of the partial axial currents as: 
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x x x

y y y

z z z

J J J

J J J

J J J

 

 

 

 

 

 

 (2.39) 

 

Let us concentrate on the estimation of one single component: zJ crossing the 

element of area dSz at the origin of the coordinate system in the negative z direction, 

as shown in Fig. 2.3. Every neutron passing through dSz in the x-y plane comes from 

a scattering collision. A neutron scattering above the x-y plane will thus flow 

downward through dSz . 

 

Consider the volume element: 

 

2 sin( )dV r dr d d    (2.40) 

 

The number of scattering collisions occurring per unit time in the volume element dV 

is: 

 

2( ) ( ) sin( )s sr dV r r dr d d      
 

 (2.41) 

                                        

 

where s is the macroscopic scattering cross section, and  ( r


 ) is the particle flux in 

three dimensions. Since scattering is isotropic in the LAB system, the fraction 

arriving to dSz is that subtended by the solid angle dΩ, given by: 

 

2

2

cos( )

4 4

z

dS
dSd r

r



 


 


 

 

(2.42) 

                                                           

Thus the number of neutrons scattered per unit time in dV reaching dSz after being 

attenuated in the medium by the exponential factor t r
e


 is: 

2

2

cos( )
( ) sin( )

4
t r z

s

dS
dN e r r dr d d

r


   




 


 (2.43) 
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The partial current 
zJ  can now be written as: 

                       

/ 2 2

0 0 0

( )sin( )cos( )
4

t rs
z

z

dN
J e r dr d d

dS

 

    




 
    


 (2.44) 

 

Since  ( r


 ) is an unknown function, we expand it in a Taylor's series assuming it 

varies slowly with position: 

  

0

0 00

( ) ...
x zy

r x y z
x y z

  
 

 

  
    

  


 (2.45) 

 

Writing x, y, z in spherical coordinates, we get 

 

0

0 00

( ) sin( )cos( ) sin( )sin( ) cos( )
x zy

r r r r
x y z

  
      

 

  
   

  


 (2.46) 

 

Substituting Eq. (2.46) into Eq. (2.44), we write, 

 

0
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0

0 0 0

00

sin( )cos( )

sin( )cos( )
4

sin( )sin( ) cos( )
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z
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xdN

J e dr d d
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r r
y z

 


  

   
  

  






 
  

   
  

 
   

   
(2.47) 

 

The terms containing cos( ) and sin( )  are integrated to zero over the interval 

φЄ[0,2π]. Thus we get 

 

/ 2 2

0

00 0 0

cos( ) sin( )cos( )
4

t rs
z

zz

dN
J e r dr d d

dS z

 

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







  
   

 
     (2.48) 

 

The first term can be evaluated as: 
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 (2.49) 

  

Then second term is: 
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 (2.50) 

  

As a result, the Eq. (2.48) is written as 
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If the same procedure is done for 
zJ    then we get 

0 2

0

1 1

4 6

s s
z

zt t

J
z





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  
 (2.52) 

  

Similarly, the other current values can be obtained, and substituting the results into 

the Eq. (2.39), we can write 
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 (2.53) 

 

Substituting into Eq. (2.38), we get the expression for the current density after 

dropping the evaluation at the origin notation, since the origin of the coordinates is 

arbitrary: 
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 (2.54) 

  

In the last equation, we define the "diffusion coefficient": 

 

2

1

3

s

t

D



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 (2.55) 

 

Thus Fick's law for neutron diffusion is given by: 

 

J D   
 

 (2.56) 

  

It states that the current density vector is proportional to the negative gradient of the 

flux, and establishes a relationship between them under the enunciated assumptions. 
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Notice that the gradient operator turns the neutron flux, which is a scalar quantity 

into the neutron current, which is a vector quantity, see Fig. 2.4 and Fig. 2.5. 

                                     

 

Figure 2.4 Neutron flux and current. 

 

It must be emphasized that Fick's law is not an exact relation. It expresses the fact 

that if the gradient of the flux is negative, then the current density is positive. This 

means that the particles will diffuse from the region of higher flux to the region of 

lower flux through collisions in the medium. 

 

The Fick’s Law is just an approximation, then it is in particular not valid under the 

following conditions: 

1. In a medium that strongly absorbs neutrons, 

2. Within about three mean free paths of either a neutron source or the surface 

of a medium, 

3. When the scattering of neutrons is strongly anisotropic. 

 

The parameter of Diffusion Coefficient given in Eq. (2.55) can be calculated 

approximately by a more easy formula: 

1

4
3 (1 )(1 ...)

5
a

s

t

D






   


 
(2.57) 

 

 

                                                                                               

x 

Jx 

(x) 
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Figure 2.5 Neutron flux and current in the wall of reactor. 

 

If a << t t then it can be written as 

 

1 1

3 (1 ) 3 3

tr

s tr

D



  

  
 

(2.58) 

  

Since  1 1s tr tr      where tr is the transport mean free path and  tr  is 

called macroscopic transport cross-section and  s  is the macroscopic crosssection 

of the medium, and m is the average value of the cosine of the angle at which 

neutrons are scattered in the medium in the laboratory system. The value of   is 

computed in reactor calculations by a simple equation as [2, 4, 9] 
1

3A
 

 
where A 

is the mass number. 
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CHAPTER 3 

SOLUTION OF DIFFUSION EQUATION FOR 

NON-MULTIPLYING SYSTEMS 

 

3.1 EQUATION OF CONTINUITY 

Assume an arbitrary volume V within a medium containing neutrons. As time, 

neutron number in volume may change if there is a net flow of neutrons out of or into 

that volume: If some of the neutrons are absorbed within the volume and leakage 

from the volume, or if some sources emitting neutrons  are present within that 

volume. Then, the equation of continuity can be a mathematical statement that  the 

time rate of change in the number of neutrons in that volume must be accounted for 

in terms of these processes since neutrons do not disappear unaccountably: 

Therefore, one can write 

 

  

   

     

    

rateof changein rate of production rateof fissionof

number of neutrons in V of neutrons in V neutrons inV

rate of leakage of rate of absorption

neutrons from V of neutrons in V

     
      

     

   
    
   

 (3.1) 

   

Each of these terms is considered in the followings: 

Let n  be the density of neutrons at any point and time in V . The total number of 

neutrons in V  is then  

,
v

ndV
 

(3.2) 
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where the subcript on the integral indicates that the integration is to be performed 

throughout V . The rate of chance in number of neutrons is  

,
v

d
ndV

dt 
 

(3.3) 

 

which can also be written as 

 

.
v

n
dV

t




 

(3.4) 

 

let s be the rate at which neutrons are emitted from sources per cm
3
 in V . The rate at 

which neutrons are produced throughout V  is given by 

 

.
v

Productionrate sdV 
 

(3.5) 

 

The rate of neutrons produced by fission, contributes to source is equal to f  , per 

cm
3
/sec.  f is the macroscopic fission cross section, over all the volume the total 

produced of neutrons by fission becomes [2] 

 

f

v

Fission rate dV  
 

(3.6) 

 

Consider that  the flow of neutrons into and out of V . If J


 is neutron current density 

vector through the surface of a volume V  and n is a unit normal pointing outward 

from the surface, then the net number of neutrons passing outward through the 

surface per cm
2
/sec is define by 
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J n
 


 

(3.7) 

 

It follows that the total rate of leakage of neutrons (which may be positive or 

negative) through the surface A of the volume is  

 

.
v

Leakagerate J n dA 
 


 
(3.8) 

 

This surface integral can be transformed into a volume integral by using the 

divergence theorem (see Appendix A for details):  

 

,
A v

J n dA div J dV 
 


 
(3.9) 

 

and so 

 

.
v

Leakagerate div J dV 


 
(3.10) 

 

The rate at which neutrons are lost by absorption per cm
3
/sec is equal to a  , where 

a  is the macroscopic absorption cross-section (which may be a function of 

position) and   is the neutron flux. Throughout the volume V , the total loss of 

neutrons per second due to absorption is then 

 

a

v

Absorption rate dV 
 

(3.11) 
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The equation of continuity can now be obtained by introducing the prior results into 

equation Eq.(3.1). This gives us 

 

.f a

v v v v v

n
dV sdV dV dV divJdV

t
  


     

    
 

(3.12) 

All of the previous integrals are to be caried out over the same volume , and so their 

integrands must be equal. The equation must hold for any arbitrary volume. 

Therefore, the integrands on the right when summed must be equal to the integrand 

on the left. Thus,  

 

.f a

n
s divJ

t
  


    




 
(3.13) 

                                    
                                                          

Equation (3.13) is the general form of the equation of continuity. If the neutron 

density is not a function of time, this equation reduces to  

 

0fa
divJ s      

 
(3.14) 

 

which is kown as the steady-state equation of continuity [1-4]. 

 

3.2 THE DIFFUSION EQUATION 

We need to develop a one-speed diffusion theory mathematical description of nuclear 

reactors. Such a relatively simple description has the great advantage of illustrating 

many of the important features of nuclear reactors without the complexity that is 

introduced by the treatment of important effects associated with the neutron energy 

spectrum and with highly directional neutron transport, which are the subjects of 

subsequent chapters. Moreover, diffusion theory is sufficiently accurate to provide a 
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quantitative understanding of many physics features of nuclear reactors and is, in 

fact, the workhorse computational method of nuclear reactor physics. 

 

It is developed a neutron balance equation for unit volume of a medium in which 

neutrons are being produced, absorbed and are diffusing at constant energy. The rate 

of change of the neutron density is equal to the rate at which neutrons are produced 

per unit volume in the medium minus the sum of the rates of neutron leakage and 

absorption per unit volume in the medium. In the previous section, an equation called 

the continuity equation has been obtained for the process. Unfortunately, the 

continuity equation has two unknowns –the neutron density, n , and the neutron 

current density vector, J


. In the Fick’s Law, a relationship has been obtained 

between the current and the flux: J D   
 

. By substituting this relation into the 

continuity equation, one obtains the neutron diffusion equation: 

 

( )f a

n
s div D

t
   


      




 

(3.15)  (3.15) 

where the constant D is not a function of position and


 is gradient operator (see 

Appendix A for details). If the equation is rearranged, then we get the neutron 

diffusion equation in explict form: 

2

f a

n
s D

t
   


     


 (3.16) 

 

where
2  is called Laplacian (see Appendix A for details). The Laplacian is written 

in different forms for various coordinate systems. Now, the flux can be assumed to 

be n   , where   is the constant speed of neutrons. If this is replaced into the last 

equation, we find 
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21
f as D

t


   




     


 (3.17) 

 

Since we deal with the time-independent conditions, then we can write 

 

2 0f aD s          
(3.18) 

 

This is the steady-state diffusion equation. It is more useful to write the equation in a 

convenient form as 

 

2

2 2

1 1s
k

L D L
        (3.19) 

 

where k∞ is the infinite medium multipication factor equal to /f ak      the 

parameter 
2L  is given by 2

a

D
L 


 and called as the diffusion area, quantity L itself is 

called as the diffusion length. The diffusion length is a very important parameter in 

nuclear engineering and its significance will be given in the following examples. 

The solution of the diffusion equation must satisfy certain boundary and other 

conditions. 

It is summarized as followings: 

1. Since the equation is a partial differential equation, it is obviously 

necessary to specify the neutron flux and its properties. Since a negative or 

imaginary flux function is meaningless, then the neutron flux must be finite 

and non-negative at all points where the diffusion equation applies. The 

condition of finite flux does not necessarily apply at points where localized 

neutron sources exist as the diffusion equation itself is not valid at such 

points. 
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2. In a system which has a plane, line or point of symmetry, the neutron flux 

is symmetrical about such a plane, line or point. 

3. At an interface between two different media the neutron current density 

normal to the interface and the neutron flux are both continuous across the 

interface. 

 

A B

A BJ J

 


   (3.20) 

 

Note that the gradient of the flux d dx  is not continuous across the boundary. That 

is: 

 

J D   
 

 (3.21) 

If J


 and   are continuous, then d dx will change abruptly because the value of D , 

the diffusion constant, is different for each medium. Hence, there will be a change in 

the slope of the flux at the interface. 

4. At the free surface of a medium the neutron flux varies in such a way that 

if it is extrapolated beyond the free surface it becomes zero at a fixed 

distance, known as the extrapolation distance. 

 

It is obvious that the conditions 1 and 2 are more or less self-evident. One can apply 

these two conditions by the equations of current density in ““ and “+” directions for 

any coordinate axis at the boundary layer of two different media. 

 

In the derivation of neutron current density, it has been pointed out that the Fick’s 

law is not valid in the immediate vicinity of some surfaces such as a surface between 

the medium and the atmosphere (or vacuum). It follows that the diffusion equation is 
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not valid. If the flux calculated from the diffusion equation assumed to vanish at a 

small distance d beyond the surface, then the flux determined from the diffusion 

equation is very nearly equal to the exact flux in the interior of the medium, see 

Figure 3.1. This is obviously nonphysical assumption but it is a convenient 

mathematical approximation that provides a high degree of accuracy for estimates of 

the flux inside the medium. The parameter d is called as the extrapolation distance 

(Appendix B) and given mostly as 

 

0.71 trd   (3.22) 

 

where tr  is the transport mean free path of the medium [1] and given by 3tr D  . 

Then, one gets 

2.13d D  (3.23) 

 

For most media, the diffusion coefficient is about 1 cm , and the extrapolation 

distance is about 2 cm . Many reactors are a few meters in size, and the extrapolation 

distance can be neglected by comparison with this size. 

 

 

Figure 3.1 Extrapolation distance  
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3.3 SOLUTION OF THE DIFFUSION EQUATION IN NON-MULTIPLYING 

SYSTEMS 

In these systems it is necessary trying to understand diffusion treatment so that one 

can try to solve diffusions equations for nonmultiplying systems. That is, one can 

firstly consider the medium in which there is no fissionable material. 

 

3.3.1 Infinite Planer Source 

Firstly an infinite planer source is considered  emitting S neutrons per cm
2
/sec in 

infinite diffusing medium as shown in Figure 3.2. 

 

 

 

 

 

 

Figure 3.2: Planer source at origin x=0 

 

The Figure shows that there is no variation in the y or z directions, so, the flux 

changes do not occur. In this case flux has only be a function of x- the distance from 

the plane. Another examination is the symmetry about x=0 point. Then the solution 

may be divided into two parts for x>0 and x<0. Due to having no neutron sources 

present except at x≠0,  

 

0adiv J s    (3.24) 

 

which is known as the steady state equation of continuity. On sustitution of Fick’s 

law into the equation of continuity, neutron diffusion equation is obtained 

 

S n/sec 

x (m) 
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2 0aD s      (3.25) 

 

This is the steady state diffusion equation where D is the diffusion coefficient and 

2  is called laplacian. Formulas laplacian can be applied for various coordinate 

systems in here we are examining a plane so the laplacian for cartesian coordinate 

becomes  

 

2 2 2
2

2 2 2x y z

  
   

  
 (3.26) 

 

It is more convenient to divide the equation by D, and the diffusion length L is 

/ aL D   which gives  

 

2

2

1
0, 0x

L
      (3.27) 

 

Because of the symmetry we may only solve the one half of the plane of the 

equation. The general solution of  Eq. (3.27) is 

  

/ /x L x LAe Ce    (3.28) 

 

where A and C are constants (we didn’t here assign B because B has a different 

meaning in nuclear engineering) to be determined from boundary conditions. Our 

equation is second order differetial equation so we need two boundary conditions. 

Suppose that we want to solve for the problem domain that is a semi infinite medium 

occupying the space 0≤x≤∞. If no neutrons are entering from the right, then all of the 

neutrons entering from the left will be absorbed as they diffuse to the right, requiring 
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that  (∞)=0, we thus have  two needed boundary conditions. Inserting them into Eq. 

(3.28) 

 

/ /( ) 0L LAe Ce       (3.29) 

 

Since the flux must vanish at infinity, Eq. (3.29) can be satisfied only if A=0. Then 

one finds 

 

/x LCe   (3.30) 

 

To find C the second boundry condition is applied. In the limit, x goes to zero, the 

net flow must approach S the source density of the plane. It follows that  

 

0
lim ( )

2x

S
J x


  (3.31) 

 

This relation is known as a source condition and is useful for other situations as well 

from Fick’s law 

 

/x Ld DC
J D e

dx L

     (3.32) 

 

Inserting into Eq. (3.31) and taking the limit one gets  

2

SL
C

D
  (3.33) 

 

From Eq. (3.30) the flux is found to be 
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/

2

x LSL
e

D



  (3.34) 

 

Because of symmetry, the flux must be the same at “–x”  and “+x” thus the solution 

for all points in the x-axis can be obtained by replacing x by its absolute value |x|. 

 

3.3.2 Point Source 

One can now assume that a point source S is located at the origin of an infinite 

medium which is extending from r=0 to r=∞. So the point source is taken in 

spherical coordinate system that depends only on r. Then the Laplacian expressed in 

spherical coordinates the diffusion equation becomes for , 

 

2

2 2

1 1
0

d d
r

r dr dr L


   (3.35) 

  

To solve Eq. (3.35), one identifies a new variable, ω, defined by 

 

r   (3.36) 

 

Substituting in Eq. (3.35) the following equation is found for ω:  

/ /r L r LAe Ce    (3.37) 

 

and   is found to be 

 

/ /

( )
r L r Le e

r A C
r r




   (3.38) 
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where A and C are constants again and can be found by two boundry conditions 

applied. Firstly, if r goes to infinite, the flux must be zero. So C becomes zero. A is 

found from source condition, that is in the limit as r→ 0. Emerging from all sphere 

with a surface area= 4πr
2
, must just be equal to the source strength. Thus 

 

2

0
lim4 ( )r
r

r j r S


  

(3.39) 
/

2

1 1
( ) ( ) r L

r

d
j r D r DA e

dr rL r
  

    
 

 

 

and then one can determine the constant A as 

 

4

S
A

D
  (3.40) 

 

Combining equations (3.38) and (3.40) the flux distribution function is found as: 

 

/

( )
4

r LS e
r

D r






  (3.41) 

 

Clearly all of the neutrons produced by the point source must be absorbed in the 

infinite medium. Taking an incremental volume as dV=4πr
2
dr, it is shown that 

 

( )a

all space

r dV S   
(3.42) 

 

3.3.3 Bare Slab 

Assume that an infinite slab of thickness 2a which has an infinite planer source at its 

center emits S neutrons per cm
2
/sec as shown in Figure 3.3 shown below. The 
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diffusion equation of this system is same with Eq. (3.27) when , and also the 

left half plane and then right half plane has equal flux because of symmetry.  

 

                                                                         S n/cm
2
-sec 

                                                                        

 

                                           

 

 

Figure 3.3 Infinite slab with planar source at x=0 

 

Now, however, the condition on the flux as |x|→∞ must be diffirent because here the 

flux is vanished at the extrapolated surfaces of the slab, that is, at x a d   for the 

right half plane and at x a d     for the left half of the plane where d is the 

extrapolated distance which is equal to d=2.13D. The solution is obtained as 

 

/ /x L x LAe Ce    (3.43) 

 

The boundary conditions are 

 

( ) ( ) 0a d a d     
 (3.44) 

 

Then in view of boundary condition at a +d, 

 

 

 

                   

       

 

      

 

 

 

 

 

                                           

 

a a 

a ,D                                           

 

a ,D                                           

 

X=0 
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( ) / ( ) /( ) 0a d L a d La d Ae Ce        (3.45) 

 

so that  

2( ) /a d LC Ae    
(3.46) 

 

If we substitute this result into Eq (3.43) 

 

/ / 2( ) /x L x L a d LA e e        (3.47) 

The constant A is found from source condition when the limit x goes to zero, current 

density becomes equal to the source 

 

0
lim ( )

2x

S
J x


  (3.48) 

 

then 

( ) / 1(1 )
2

a d LSL
A e

D

     (3.49) 

 

For positive x, therefore, ( )x  is given by 

 

/ / 2( )/

2( )/
( )

2 1

x L x L a d L

a d L

SL e e
x

D e


  

 




  
(3.50) 

 

In view of the symmetry, a solution valid for all x is obtained by substituting |x| for 

x; hence 

 



 

46 
 

| |/ | |/ 2( )/

2( )/
( )

2 1

x L x L a d L

a d L

SL e e
x

D e


  

 




  
(3.51) 

 

This solution may be written in more convenient form if the numerator and 

denominator are multiplied by e
(a+d)/L

. This gives 

 

 
 

sinh ( | |) /
( )

2 cosh ( ) /

a d x LSL
x

D a d L


 


  
(3.52) 

 

where one can use the trigonometric porperties 
-

sinh( )
2

x xe e
x




 
and 

-
cosh( )

2

x xe e
x


 . 

 

3.3.4 Two Region Example for Sphere with Source 

Now assume that system has two regions same infinite planer source but has 

distributed source. It shows the treatment of the boundary condition at the origin and 

also interface conditions. Consider a sphere of radius R with material properties D 

and a includes a uniform source S. The sphere is surrounded with by a second 

source free medium with properties D and a  that extends to r=∞. Our aim is now 

to determine the neutron flux. For this aim we write the diffusion equation as 

 

2

2 2

1 1
( ) ( ) 0

d d S
r r r r R

r dr dr L D
       (3.53) 

 

and  

2

2 2

1 1
( ) ( ) 0

d d
r r r R r

r dr dr L
        (3.54) 
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where L


is the outside medium diffusion length, within the sphere we must apply 

general and particular solutions for Eq. (3.53) 

( ) ( ) ( ) 0g pr r r r R       (3.55) 

 

for a uniform source the particular solution is constant. Thus  

 

2

p

a

L S S

D
  

  (3.56) 

 

The general solution is same as the solution of the point source given in Eq. (3.38) 

and inserting ( )g r and ( )p r  into Eq. (3.55) one gets 

( ) exp( / ) exp( / ) 0
a

A C S
r r L r L r R

r r
      

  (3.57) 

 

The solution of Eq. (3.54) has the same form as Eq. (3.38)        

                                       

/ /( ) r L r LA C
r e e R r

r r
  

    
 

 (3.58) 

where / aL D 
 

. 

Now one has two flux functions for two regions and in these equations there are four 

coefficients. So one must apply four boundary and interface conditions and D


symbolizes the outside medium diffusion coefficient. 

# 1. 0< (0)<∞ # 2.  (∞)=0 

(3.59) 

    # 3.  (R-)= (R+) # 4. ( ) | ( ) |R R

d d
D r D r

dr dr
 

 
 


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Appliying the boundary condition #1 by taking the limit of Eq. (3.57) as r→0, we see 

that the flux will remain finite only if C2=-C1. Using the definition of the hyperbolic 

sine, Sinh, then Eq. (3.57) reduces to  

 

2
( ) sinh( / ) 0

a

A S
r r L r R

r
    

  (3.60) 

 

We next apply condition #2 to Eq. (3.58): Since the first term becomes infinite, but 

the second vanishes at r→∞, the condition is satisfied if 0A  :  

 

/( ) r LC
r e R r

r
 

     (3.61) 

 

At last we apply interface boundary conditions #3 and #4 the remaining  arbitrary 

coefficients:                

 

/2
sinh( / ) R L

a

A S C
R L e

R R


 




 (3.62) 

 

and                  

/

2 2

1 1 1 1
2 cosh( / ) sinh( / ) ( ) R LDA R L R L DC e

RL R RL R

 
    

 


  (3.63) 

 

When we solve Eq (3.62), C  becomes; 

 

/2
sinh( / ) ReR L

a

A S
C R L

R

 
   

 



 (3.64) 
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Putting this into Eq. (3.63) we obtain the coefficient A  as follwing 

sinh( / )

1 1 1 1
2 ( coth( / ) ) 2

a

SR

R L
A

D
D R L

L R R L R




 
   

 




 (3.65) 

 

Substituting A  into Eq. (3.60), the result in the solution is found as 

2 sinh( / )
( ) sinh( / ) 0

1 1 1 1
2 coth( / ) 2

a

a

SR

SR L
r r L r R

Dr
D R L

L R R L R



 
 
    

    
      

    

  

(3.66) 

And finally one obtains 

sin( / ) 1
( ) 1

1 1 1 1sinh( / )
coth( / )a

S R r L
r

Dr R L
D R L

L R R L R



 
 
  

     
      

    





 

 

 

(3.67) 

 

If we combine all the constans together  

1

( / )coth( / ) 1
1

( / ) 1

D R L R L
C

D R L



 
   

 
   

(3.68) 

 

The flux becomes 

sinh( / )
( ) 1 0

sinh( / ) a

R r L S
r r R

r R L


 
    

 
 (3.69) 

and one can write [2] 

 

( ) /
( ) (1 )

r R L

a

S R
r C e R r

r


       




 

(3.70) 
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CHAPTER 4 

SOLUTION OF DIFFUSION EQUATION FOR MULTIPLYING SYSTEMS 

 

In this Chapter we consider that our system has now fissionable material which is 

called “multiplying system”. The solution of steady-state one-group diffusion 

equation for bare systems with fissionable materials in certain geometries is studied.  

 

4.1 CRITICALITY ASSEMBLIES FOR SPHERE 

In this system it is assumed to have fissionable material in the medium so υ∑f > 0. 

Therefore, the diffusion equation that we represent into Eq. (3.19) is now defined by 

 

2

2 2

1 1s
k

L D L
        

 

The Laplacian operator for spherical coordinates gives  

 

 

To solve the non-homogeneous differential equation, homogeneous and particular 

solutions must firstly be solved for the general solution  

 

2

2 2

1 1
( ) (1 ) ( )

d d S
r r k r

r dr dr L D
      (4.1) 
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( ) ( ) ( )g p hr r r     (4.2) 

 

The particular solution goes to constant the derivation term vanishes and we have 

 

(1 )
p

a

S

k





 

 (4.3) 

 

The homogeneous solution satisfy 

 

2

2 2

1 1
( ) (1 ) ( ) 0h h

d d
r r k r

r dr dr L
     

(4.4) 

 

Using the function  

 

1
( ) ( )h r r

r
   (4.5) 

 

Eq. (4.4) is simplified as 

 

2 2

1
( ) (1 ) ( ) 0

d
r k r

dr L
     (4.6) 

 

The form of the solution depends on k∞ parameter: k∞<1 or k∞>1.  

 

4.1.1 Subcritical Assemblies for Sphere 

Firstly, we consider k∞<1 condition to obtain the solution of the equation that we 

solved in preceding section. It is known that the solution is 
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( ) exp( )r C r   (4.7) 

 

where  2

2

1
(1 )k

L
   or equivalently 

 

1
1 k

L
   

 
(4.8) 

Thus, one gets 

2
2

2
( ) exp( )

d
r C r

dr
  

 
(4.9) 

 

Solution of Eq. (4.9) is now written as 

 

1 1

1 2( ) exp( 1 ) exp( 1 )r C L k r C L k r  

     
 

(4.10) 

 

Inserting this expression into Eqn. (4.5) and combining the result with Eqns. (4.2) 

and (4.3) we obtain the flux function in its general form as 

 

1 11 2( ) exp( 1 ) exp( 1 )
(1 ) a

C C S
r L k r L k r

r r k
  

 



     
   

(4.11) 

 

Then we apply the boundary conditions to obtain the constant. We can achieve 

condition that  (0) must be finite only by requiring the two exponential terms to 

cancel exactly when r=0 thus we take 2 1C C   then with the definition of the sinh(x) 

= 1/2(e
x
-e

-x
), it becomes 

 

112
( ) sinh( 1 )

(1 ) a

C S
r L k r

r k
 





  
   

(4.12) 
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The second boundary condition is to be the extrapolated radius of the sphere 

( ) 0R  and then Eq. (4.12) is now written as 

 

112
0 sinh( 1 )

(1 ) a

C S
L k R

R k







  
 




 
(4.13) 

 

Solving for C1 and inserting the result into Eq. (4.12) we find the flux for subcritical 

systems 

 

1

1

sinh( 1 )
( ) 1

(1 ) sinh( 1 )a

L k rS R
r

k r L k R







 

 
  

    



  
(4.14) 

 

4.1.2 Supercritical Assemblies for Sphere 

Now we solve the diffusion equation for supercritical systems, that is, k∞ >1. For this 

purpose we may write same equations up to obtaining the general solution because 

we consider again same medium for supercritical systems so that diffusion equation 

remain same. That means, Eqn. (4.6) can be applied for general solution. However, 

the general solution takes a different form. This is most easily seen by noting that for 

k∞ >1 the second term of Eqn. (4.6) is now positive: 

 

2 2

1
( ) ( 1) ( ) 0

d
r k r

dr L
   

 
(4.15) 

 

The general solution of this form differential equation becomes; 

 

1 1

1 2( ) sin( 1 ) cos( 1 )r C L k r C L k r  

    
 

(4.16) 
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Similarly to the k∞ <1 case, we insert this expression into Eqn. (4.5) and combine the 

result with Eqn. (4.2) and (4.3) to obtain the flux distribution  

 

1 11 2( ) sin( 1 ) cos( 1 )
( 1) a

C C S
r L k r L k r

r r k
  

 



    
   

(4.17) 

 

One can apply the same boundary conditions as in the subcritical case: At the origin, 

 (0) must be finite. Therefore, the second term becomes infinite unless we set C2=0. 

Because cos(0)=1 the first becomes finite since 1 1 1

0
lim sin( 1 ) 1
r

r L k r L k  

 


   . 

If sin(Br)=nπ at r=0, this becomes zero for critically condition and n takes the first 

value: n=1. Then, the term B is called geometric buckling that means  and 

1 1mB L k

   in which  is material buckling depending on the material 

properties of the material composition of the reactor system.  

 

Consequently 

11( ) sin( 1 )
( 1) a

C S
r L k r

r k
 





  
   

(4.18) 

One can determine the constant 1C  by requiring using the boundary condition of 

( ) 0R  . Finally one obtains 

 

1

1

sin( 1 )
( ) 1

( 1) sin( 1 )a

L k rS R
r

k r L k R







 

 
  

    



  
(4.19) 

 

 

This is the flux equation for the supercritical-spherical system [2, 3]. 
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4.2 CRITICAL ASSEMBLIES FOR DIFFERENT GEOMETRIES 

The criticality conditions for k=1 in different geometries with finite size are 

determined in the following sections. Three distinct geometries are considered and 

numerical results for bare systems with multiplying media are presented. 

 

4.2.1 The Slab Reactor 

Consider a bare reactor for critically condition consisting of an infinite bare slab of 

thickness a as shown in Figure 4.1. The reactor equation in this case becomes; 

 

2
2

2
0

d
B

dx


 

 
(4.20) 

 

where x is the distance from the center to the slab. The solution of this form of 

diffusion equation we know from the previous section; 

 

( ) cos( ) sin( )x A Bx C Bx  
 

(4.21) 

 

 

 

Figure 4.1: Slab reactor 
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To determine the two arbitrary constant boundary conditions must be applied. The 

first one is flux vanishes at the extrapolated faces of the slab, that is, at x=-ã/2 where 

ã=a+2d. Then the boundary condition becomes; 

 

( ) ( ) 0
2 2

a a
   

 

 
(4.22) 

 

It may also be noted that, because of the symmetry of the problem, there can be no 

net flow of neutrons at the center of the slab. Since the neutron current density is 

proportional to the derivative of , this means that 

 

0
d

dx


  (4.23) 

 

at x=0. The condition given by Eqn. (4.23) is equivalent to requiring that   be an 

even function; 

 

( ) ( )x x    (4.24) 

  

and has a continuous derivative within the reactor. In the general solution A and C 

are constant to be determined. Placing the derivative of Eqn. (4.21) equal to zero at 

x=0 gives immediately C=0 reduces to 

 

( ) cosx A Bx   (4.25) 

 

Next, introducing the boundary condition given by Eqn. (4.22) gives; 
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( ) cos( ) 0
2 2

a Ba
A  

 
 (4.26) 

 

This equation is satisfied both taking A=0, which leads to the trivial solution  (x)=0 

and by requiring that  

 

cos( ) 0
2

Ba



 (4.27) 

 

Eq. (4.27) is satisfied when  

 

n

n
B

a





 (4.28) 

 

and for integer values of “n” the critically condition is satisfied. Finally one obtains 

[1, 3] 

 

( ) cos( )
x

x A
a


 

   
 (4.29) 

To determine the valu of A, the calculation of total reactor power by fissions per 

cm
3
/sec, that is ( )f x at the point x, and by using the recoverable energy is ER 

joules per fission is obtained. The total power per unit area of the slab, in Watts/cm
2
: 

 

/ 2

/ 2
( )

a

R f
a

P E x dx


  
  
 (4.30) 

 

Substituting the flux equation Eq.(4.29) into Eq. (4.30); 
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/2

/2
cos( )

a

R f
a

x
P E A dx

a




   
 

(4.31) 

 

After performing the integration the result becomes; 

 

2 sin
2

R f

a
aE A

a
P





 
  

 




 

 

(4.32) 

 

The unknown parameter A is now found to be 

 

2 sin
2

R f

P
A

a
aE

a






 
  

 




 
 

(4.33) 

 

 Replacing A value in the flux function for the slab in Eq.(4.29), one gets 

( ) cos

2 sin
2

R f

P x
x

a a
aE

a

 




 
  

     
 






 
(4.34) 

 

4.2.2 Sphere 

Consider a critical spherical reactor with radius R. The steady-state diffusion 

equation in spherical coordinates is now written as; 

 

2 2

2

1
0

d d
r B

r dr dr


   (4.35) 

 

By substituting  =ω/r into Eq. (4.35) one  can obtain the general solution as 
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sin cos
( )

BR BR
r A C

r r
    (4.36) 

 

where A and C are constants. As the first condition, when the r goes to zero, flux 

must be finite thus the second term becomes infinite. So C must be equal to zero. 

Hence the flux becomes 

 

sin( )
( )

Br
r A

r
   (4.37) 

 

For the second boundary condition, ( ) 0R  , it is yielded by taking B to be any one 

of the eigenvalues; 

 

n

n
B

R





 (4.38) 

 

where again n is an integer and the first value is relevant for a critical reactor. Thus 

the buckling parameter is found to be  

2

2

1B
R

 
  
 

 (4.39) 

 

Therefore, the flux function is written as 

 

sin( / )
( )

r R
r A

r


 


 (4.40) 

 

This flux equation for sphere has an unknown coefficient that is found samely in  

slab reactor by using the reactor power calculation. If we write the power equation; 
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( )R fP E r dV    (4.41) 

 

where dV is the volume element of the sphere so it can be written as 24dV r dr , 

Now substituting the volume element and flux equations into the integral; 

 

 

Now the integration is found as; 

 

 

 If we write the A value in terms of other parameters, one gets 

 

4 sin cosR f

P
A

R R R
E R R

R R



 





    

     
    




 

 
 

(4.44) 

 

After inserting the expression of A into the flux function in Eq.(4.40), one obatins 

 

sin( / )
( )

4 sin cosR f

P r R
r

rR R R
E R R

R R

 


 





    

     
    






 

 
 

(4.45) 

 

2

0

sin( / )
4

R

R f

r R
P E A r dr

r


  


 (4.42) 

4 sin cosR f

R R R R
P E A R

R R

 


 

    
      

    

 

 
 (4.43) 
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In the system if extrapolation distance, d, is small and ignored in the Eq.(4.45), so the 

flux of the sphere can be written as; 

 

2

sin( / )
( )

4R f

P r R
r

E R r


 




 

(4.46) 

 

Since the material buckling is related to the material composition and is defined as 

2 2( 1) /mB k L   one can obtain a relation between the radius of the system and the 

material composition; 
1 1L k

  . Therefore, the critic radius and also the critic mass 

of bare spherical reactor is as following; 

 

2 2

m gB B
 

(4.47) 

 

Then, one finds the critic radius of the sphere as 

 

1

L
R

k








 
(4.48) 

The following data is used to calculate the critical size and the critic mass of the pure 

uranium-235 system for 1.0 MeV neutrons [10, 11, 12]: 2.42  , 1.336 b
f

  ,

5.959 bs  , 0.153 bc  , 
24 30.048 10 /N x atoms cm  and 

318.75 /gr cm  . 

Then one finds the critic radius as 10.53 cm and 1.99 cm extrapolated distance then 

dropping 8.55 cm and the critical mass is found 49.85 kg (nearly 50 kg) [13, 14, 15]. 

In Refs. [13, 14, 15], different methods have been applied to solve the steady-state 

neutron diffusion equation. In Ref. [13], OB-1 method includes consists of the 

Maxwellian averaged fission and absorption cross sections and the thermal values of 

nubar values. The method based on the square-fitting of the evaluated data values. 

Ref. [14] applies the FN method to the one-group diffusion equation in spherical 

geometry. The method based on the integration of equally spaced intervals of 
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unknown flux function depending on the parameter c of which values are between 1 

and 2. The method is particularly efficient if and only if the polynomials and the log 

functions are coefficients in the system of algebraic equations obtained in the 

process. Ref. [15] consists a relatively simple method to calculate the critical mass of 

fissionable istopes. It is based on three simplifications such that non-fission 

absorption of neutrons is ignored, the f  neutrons are assumed only to be emitted 

along the radial direction and the all emitted neutrons are monoenergetic. It includes 

the series expansion of the flux function under these conditions.  

 

Table 4.1 Neutron cross-sections for 
235

Uand 
239

Pu used in Ref. [16], for 2 MeV 

neutrons. 

Material f  
s  c  a  T    

235 U 
1.287 5.804 0.0593 1.346 7.150 2.42 

239 Pu 
1.947 5.245 0.00799 1.982 7.227 2.98 

       

 

Table 4.2 The critic radius and critic mass values at 2MeV neutron cross-sections for 

235
U and  

239
Pu spheres from data library [16] 

Material 

Present 

Results
 Ref [17] Percent Error % 

R 

(cm) 

M 

(kg) 

R 

(cm) 

M 

(kg) 

R 

(cm) 

M 

(kg) 

235 U 8.61 49.72 8.92 50.7 3.47 1.93 

239 Pu 4.88 9.64 4.99 10.321 2.20 6.59 

 

Additionally, one can also calculate the critic radius and critic mass values for bare 

spheres 
235

U and 
239

Pu for 2MeV neutrons by using the updated data Library [16] 
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given in Table 4.1. The calculated results by using library cross-section data are 

represented in Table 4.2 

 

Subtracting the extrapolated distance, that is, d=2.07 cm from the radius of the 

sphere, the critic radius of the sphere is found to be 8.61 cm and the corresponding 

critic mass is calculated as 49.72 kg. On the hand, the critic radius of the sphere with 

non-extrapolated radius is found as 10.68 cm and the corresponding critic mass is 

found as 94.91 kg. This result is compared with other geometries in the following 

sections. By applying the same procedure for a pure Pu
239

 spherical reactor core, the 

extrapolated radius is yielded as 6.85 cm then subtracting the extrapolation distance -

that is d=1.97 cm- the non-extrapolated radius becomes 4.88 cm. Then, the 

corresponding critic mass for pure plutonium core is calculated as 9.64 kg (nearly 10 

kg) [17, 18] 

 

4.2.3 Infinite Cylinder 

Now consider an infinite critical cylindrical reactor of radius R and infinite height Z 

in the diffusion equation we ignore Z because of infinite the flux depends on only r 

from the axis. With the Laplacian operator in cylindrical coordinates the reactor 

equation becomes 

 

21
0

d d
r B

r dr dr


   (4.49) 

 

When the differentiation in the first term is carried out 

 

2
2

2

1
0

d d
B

dr r dr

 
    (4.50) 

 

This form recall us the  Bessel differential equations as 
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2 2
2

2 2

1
0

d d m
B

dr r dr r

 


 
    

 
 (4.51) 

 

where m is an arbitrary constant. When we compare Eqn. (4.50) with (4.51) it is 

shown that m is equal to zero. So the general solution can be written as 

 

0 0( ) ( )AJ Br CY Br    (4.52) 

 

where A and C are constants. The functions assigned as Jm(Br) and Ym(Br) are called 

ordinary Bessel functions of the first and second kind, respectively[19, 20]. The 

functions J0(x) and Y0(x) shown in Figure 4.2 gives us Y0(x) is infinite at x=0 while 

J0(0)=2.405. Therefore, C must be taken to be zero, due to   remaining finite within 

the reactor. Thus Eq. (4.50 ) reduces to form of 

0( ) ( )r AJ Br   (4.53) 

 

Applying the boundary condition for ( ) 0R  , one finds 

 

0( ) ( ) 0R AJ BR     (4.54) 

 

The function J0 is equal to zero at a number of values of x so that J0(xn)=0. So, Eq. 

(4.52) is satisfied with providing B defined as 

n
n

x
B

R


  (4.55) 
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Figure 4.2 Ordinary and modified Bessel functions 

 

which are the eigenvalues of the problem. As explained below, only the first 

eigenvalue is relevant for the criticality condition that means . Therefore, 

 

1

2 2

2 1 2.405x
B

R R

   
    

     (4.56) 

  

Then the flux equation becomes; 

 

0

2.405
( )

r
r AJ

R


 
  

   (4.57) 
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To define A, the same procedure is applied, if we write the flux Eq. (4.57) and 

cylinder volume element 2dV rdr  into the power equation by considering the d 

is small, so it becomes 

 

0
0

2.405
2

R

R f

r
P E A J rdr

R


 
   

 
  (4.58) 

 

The integral is solved by using the Bessel Function integral rule that is; 

 

   0 1J x xdx xJ x  (4.59) 

 

If we apply this rule the power is found as; 

 

 2

12 2.405

2.405

R fE AR J
P

 
  (4.60) 

 

If one uses the Bessel function properties of  1 2.405J is eqaul to 0.5202. If we put 

this number into equation and multiplying the constant  

 

21.359 R fP E AR   (4.61) 

 

Finally the flux equation for infinite cylinder becomes that; 

 

02

0.735 2.405

R f

P r
J

E R R


 
  

  
 (4.62) 

 

The calculated critic radius of an infinite cylinder is presented in Table 4.3. 
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Table 4.3 Critical radius for infinite cylinder, 1 MeV neutrons. 

Boundary 

Conditions  

Rc (cm) 

Ref. [10, 11, 12]  

Rc (cm) 

Present Result 

Percent Error 

%
 

Extrapolated 

distance 
 8.0589  8.0590 0.00124 

Non-extrapolated 

distance 
 6.1863  6.1864 0.00162 

 

 

In Ref. [10,11, 12], the homotopy perturbation method that includes the change of 

variables and the series solution of the diffusion equation to obtain the numerical 

results. 

 

4.2.4 Finite Cylinder 

As another geometry, the cylinder with fi nite height and radius is examined. 

Therefore, the flux function now depends on r and z variables. The diffusion 

equation in cylindrical coordinates is written as 

 

2
2

2

1 ( , ) ( , )
( , ) 0

r z r z
r B r z

r r z z

 


  
  

  
 (4.63) 

 

where the boundary conditions are given as 0 ( , )r z   ; 0 r R    and 

/ 2 / 2H z H    . To obtain the solution, separation of variables is defined as 

 

( , ) ( ) ( )r z r z    (4.64) 

 

Then one writes 
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   
2

2

2

1
( ) ( ) ( ) ( ) ( ) ( ) 0r r z r z B r z

r r z z
     

  
  

  
 (4.65) 

 

Following the partial derivatives and then dividing the final equation by ( ) ( )r z  , 

one obtains  

 

2
2

2

1 1 1
0r B

r r r z

 

 

  
  

  
 (4.66) 

 

This equation must be satisfied for any r or z combination; the first and second terms 

must be constants so the first part can be written as 

 

21
0r

d d
r B

r dr dr



   (4.67) 

 

where rB  is the Buckling parameter for the radial part. Eq. (4.65) is in the form of 

Bessel differential equation of the first-kind zero order and its solution, as we have 

found in Eq. (4.50), is given by 

 

0 0( ) ( ) ( )r rr AJ B r CY B r    (4.68) 

 

Applying the same boundary condition in infinite cylinder, then Y0 term drops from 

the equation. We know the value of rB  from Eq. (4.53). 

 

For the z-dependent part we have 
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2
2

2
0z

d
B

dz


   (4.69) 

 

The solution of this form of differential equation is given by 

 

( ) cos( ) sin( )z zz A B z C B z     (4.70) 

 

This equation is the same as for the infinite slab reactor. Using the boundary 

condition for the height, / 2 / 2H z H     and ( / 2) 0H  , one sets 0C   for the 

acceptable solution for the flux function that must be symmetric about the origin: 

 

( ) cos( )zz A B z   (4.71) 

 

The total buckling 
2B  is; 

2 2 2

r zB B B   (4.72) 

 

where rB  is the same as infinite cylinder for critically condition given in Eqs. (4.52) 

to (4.54) and zB  is found as similar as infinite slab given in Eqs. (4.26) to (4.29). So, 

one can write 

 

2 2

2 2 2.405
,z rB B

H R

   
    
    

 

(4.73)

 

 

The general solution is obtained with the required boundary conditions as 
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0

2.405
( , ) cos( )

r z
r z AJ

R H




 
  

  
 (4.74) 

 

Samely, to determine A if we put the finite cylinder flux into total power equation, it 

becomes; 

 

/ 2

0
0 / 2

2.405
cos( )2

R H

R f
H

r z
P E AJ rdrdz

R H






 
   

 
     (4.75) 

 

where the radial part of the integral result from the infinite cylinder solution is 

known. When the axial part of the integral is solved, we get; 

 

 
2

/ 2

1
/ 2

2 2.405 cos( )
2.405

H

R f
H

R z
P E A J dz

H





   

 
(4.76) 

 

Solving for the axial part one gets 

 
2

14 2.405
2.405

R f

R H
P E A J


   

(4.77) 

 

Solving for A one obtains 

 

 2

1

2.405 3.63

4 2.405R f R f

P P
A

E R HJ VE




 

 
 (4.78) 

 

Replacing the value of A into the finite cylinder flux Eq.(4.74) one obtains 
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0

3.63 2.405
( , ) cos( )

R f

P r z
r z J

VE R H




 
  

   
 (4.79) 

 

where R R d   and 2H H d  . Numerical applications are presented in Table 

4.4, 4.5 - 4.6 for pure 235U and 239Pu fuel elements [13, 14]. A set of chosen critical 

height values corresponding critical radii of a finite cylinder calculated list is 

tabulated in Table 4.4 with corresponding reference values. 

 

As seen in Table 4.4, the critic radius of a finite cylinder reduces to a certain value 

about 6.186 cm for 1 MeV neutrons as the height of the cylinder is increased. It 

means that the system behaves like an infinite cylinder of which radius is also given 

in Table 4.3. There is a correspondence between our results.  

 

In Table 4.5, we present the critic radius and the critic mass of the finite cylinder for 

235
U, for 2MeV neutrons. As the height of the cylinder is increased, it is observed 

that the critic radius is decreased. It is observed that the mass reaches at its minimum 

value at a certain height and radius of the cylinder. When the height is 18.32 cm and 

the corresponding radius is 7.9705 cm with the non-extrapolated distance, then the 

minimum critic mass is found to be 52.58963 kg. 

 

We also present the numerical results for 
239

Pu, for 2MeV neutrons in Table 4.6. 
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Table 4.4 Comparison of chosen heights and the corresponding critical radii with
 

extrapolated distance and non-extrapolated distance for bare finite cylinder of 
235

U. 

 

H cm  

R cm
 

[Ref 9] 

R cm  

[Ref 9] 

R cm
 

Present 

Results 

R cm  

Present 

Results 

 R cm  R cm  

Percent Error %
 

10.529 665.253 663.381 665.126258 663.253658  0.0200 0.0192 

10.530 439.235 437.362 439.195063 437.322463  0.0090 0.0091 

11.000 27.817 25.9445 27.816750 25.944150  0.0001 0.0015 

12.000 16.7953 14.9227 16.795064 14.922464  0.0014 0.0013 

13.000 13.7383 11.8657 13.738167 11.865567  0.0010 0.0017 

14.000 12.2267 10.3541 12.226542 10.353942  0.9000 0.0019 

15.000 11.3144 9.44178 11.314240 9.441640  0.0018 0.0015 

20.000 9.47880 7.60620 9.478681 7.606081  0.0020 0.0015 

30.000 8.60656 6.73396 8.606450 6.733850  0.0018 0.0016 

40.000 8.35371 6.48111 8.353609 6.481009  0.0012 0.0015 

50.000 8.24399 6.37139 8.243887 6.371287  0.0012 0.0016 

100.000 8.10420 6.23160 8.104098 6.231498  0.0013 0.0016 

200.000 8.07035 6.19775 8.070248 6.197648  0.0013 0.0016 

400.000 8.06195 6.18935 8.061852 6.189252  0.0012 0.0015 

600.000 8.06040 6.18780 8.060300 6.187700  0.0012 0.0016 

800.000 8.05986 6.18726 8.059757 6.187157  0.0013 0.0016 

1000.000 8.05961 6.18701 8.059506 6.186906  0.0013 0.0016 
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Table 4.5 Chosen heights and the corresponding critical radii and critical masses with
 

extrapolated distance and non-extrapolated distance for 
235

U, for 2MeV neutrons. 

 

H cm  H cm  R cm  R cm  M kg  

10.67 6.5200 651.6670 649.590 160764.1000 

10.70 6.5500 107.6560 105.580 4219.71100 

11.00 6.8500 33.5550 31.4780 396.61300 

16.00 11.8465 10.9601 8.8833 54.62643 

18.00 13.8465 10.1411 8.0643 52.61846 

18.31 14.1565 10.0501 7.9733 52.58968 

18.32 14.1665 10.0472 7.9705 52.58963 

18.33 14.1765 10.0445 7.9677 52.58964 

20 15.85 9.6560 7.5790 53.07400 

50 45.85 8.3600 6.2830 105.66200 

100 95.85 8.2140 6.1370 210.4600 

200 195.85 8.1790 6.1020 425.83900 

400 395.85 8.1700 6.0930 857.88200 

800 795.85 8.1680 6.0910 1725.32600 

1000 995.85 8.1680 6.0910 2158.90700 
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Table 4.6 Chosen heights and the corresponding critical radii and critical masses with
 

extrapolated distance and non-extrapolated distance for 
239

Pu, for 2MeV neutrons 

 

H cm  H cm  R cm  R cm  M kg  

6.85 2.909 427.158 425.186 32713.723 

6.86 2.916 112.089 110.116 2199.396 

7.00 3.056 25.687 23.715 106.909 

8.00 4.056 10.165 8.193 16.935 

10.00 6.056 7.202 5.230 10.303 

11.00 7.055240 6.705983 4.733603 9.8336 

11.67 7.725240 6.480713 4.508333 9.766953 

11.68 7.735240 6.477797 4.505417 9.766947 

11.69 7.745240 4.502512 6.474892 9.766965 

11.70 7.755240 6.471998 4.499618 9.7670 

15 11.056 5.897 3.924 10.5890 

20  16.056 5.583 3.611 13.0220 

50 46.056 5.295 3.323 31.6340 

100 96.056 5.258 3.285 64.4770 

200 196.056 5.248 3.276 130.8820 

400 396.056 5.246 3.274 264.0760 

800 796.056 5.246 3.273 530.4570 

1000 996.056 5.245 3.273 663.7290 
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4.2.5 Rectangular Parallel-piped 

As a last example, we consider rectangular parallel piped system. The diffusion equation 

depends on the length of rectangular parallel piped a, b, c. Therefore, the diffusion 

equation  

 

2 2 0B     (4.80) 

 

with appropriate Laplacian operator in Cartesian coordinates is written as 

 

2 2 2
2

2 2 2
0

d d d
B

dx dy dz

  
     (4.81) 

 

Using the variable separation 

 

( , , ) ( ) ( ) ( )x y z A x B y C z   (4.82) 

 

one writes 

 

2 2 2
2

2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 0

d A x B y C z d A x B y C z d A x B y C z
B A x B y C z

dx dy dz
     

(4.83) 

 

Then three differential equations are obtained as following  

2
2

2

2
2

2

2
2

2

( )
0

( )
0

( )
0

x

y

z

d A x
B

dx

d B y
B

dy

d C z
B

dz

 

 

 

 (4.84) 

 

Here the buckling is defined as 
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2 2 2 2

x y zB B B B    (4.85) 

 

The solution of equations in Eq. (4.80) are found to be 

 

( ) sin( ) cos( )

( ) sin( ) cos( )

( ) sin( ) cos( )

x x

y y

z z

A x A xB A xB

B y B yB B yB

C z C zB C zB

  

  

  

 (4.86) 

 

For the boundary conditions when a, b, c→0,   must be finite. So the first term in each 

solutions becomes zero. Then, one gets 

 

cos( ) cos( ) cos( )x y zA xB B yB C zB     (4.87) 

 

For any arbitrary constant, one can write Eq. (4.83) in the form of 

 

cos( )cos( )cos( )x y zK xB yB zB   (4.88) 

 

Applying the boundary conditions for each axis, one writes 

 

( , , ) 0, ( , , ) 0 ( , , ) 0
2 2 2

a b c
y z x z and x y    

 
 (4.89) 

 

Eq. (4.89) means that, buckling parameter for each side must provide the condition such 

as 

 

From the critically condition we take a for the first value, and also the other has similar 

value so the Buckling becomes; 

 

2 2
x x

a n
B n B

a

 
  




 (4.90) 
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2 2 2

2B
a b c

       
       
     

 (4.91) 

 

Finally the flux function is obtained as 

 

( , , ) cos( )cos( )cos( )x y z K x y z
a b c

  
   (4.92) 

 

Let define the unknown coefficient K by using the same procedure; 

 

/ 2 / 2 / 2

/ 2 / 2 / 2
cos( )cos( )cos( )

a b c

R f
a b c

P E K x y z dxdydz
a b c

  
  

      (4.93) 

 

If we solve this integral the constant K is found as 

 

3 3.87

8 R f R f

P P
K

abcE VE


 

 
 (4.94) 

 

Now, after inserting the value of K into the flux of rectangular parallpiped this result is 

obtained 

 

3.87
( , , ) cos( )cos( )cos( )

R f

P
x y z x y z

VE a b c

  
 


 (4.95) 

 

 

In Table 4.7, the Buckling parameters and the neutron flux functions in different 

geometries are tabulated. 
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Table 4.7 Buckling and flux distributions in Bare systems for distinct geometries [1, 5] 

Geometry Dimension Buckling Flux 

Infinite slab 

Thickness 

a 

2

a

 
 
 

 cos
x

A
a

 
 
 

 

Rectangular 

paralelpiped 
a x b x c 

2 2 2

a b c

       
      

     
 cos cos cos

x y z
K

a b c

       
     
       

Infinite 

cylinder 

 

Radius R 

2
2.405

R

 
 
 

 
0

2.405r
AJ

R

 
 
 

 

Finite 

cylinder 

Radius R 

Height H 

2 2
2.405

R H

   
   

   
 0

2.405
cos

r z
AJ

R H

   
   
   

 

Sphere Radius R 

2

R

 
 
 

 
1

sin
r

A
r R

 
 
 
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CHAPTER 5

 

REFLECTED REACTORS 

 

A reflector reduces the fraction of the neutrons leaking from the reactor, that is, they 

are reflected back into core [21]. A reflector’s importance diminishes as the size of a 

reactor becomes larger. Neutron distribution equations within a uniform core remain 

valid for reflected reactors. To solve a reflected reactor system the same diffusion 

equation is used, however, the boundary conditions are different when the reflector is 

added, the core size is reduced. Now the axial and spherical reflector applications for 

two different reflector material combinations are considered in this Chapter. 

 

5.1 AXIAL REFLECTOR 

In a reflector there is no fissionable material so the diffusion equation becomes 

 

2

2

1
0

L
     (5.1) 

where the diffusion length is the parameter of the reflector material. In cylindrical 

geometry the Laplacian operator takes the form as 

2

2 2

1 1
0

d d d
r

r dr dr dz L
      (5.2) 

 

Now we separate variables 

( , ) ( ) ( )r z r z    (5.3) 
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Figure 5.1 Axial - Reflector 

 

Then the result is divided by  ζ to yield 

 

2

2 2

1 1 1
0

d d d
r

r dr dr dz L
 

 
    

 

(5.4) 

 

From Eq. (4.65) one can  

 

21
r

d d
r B

r dr dr



   

 

(5.4a) 

 

and then rearranging Eq.(5.4) one obtains 

 

2
2

2 2

1 1
0r

r

d
B

dz L




 
   
 

 
 

(5.4b) 

 

where one can set a new parameter 2  as 

2 2

2

1
.r

r

B
L

    
 

(5.5) 

 



 

81 
 

Thus, Eq. (5.4) reduces to 

 

2
2

2
0

d

dz
     

 

(5.6) 

 

The solution of this form for the axial reflector in Figure 5.1 is found as 

 

( ) exp( ) exp( )z A z C z      (5.7) 

 

We next add a reflector of height T to the top and bottom of the core. Adding the 

reflector reduces the height of the critical reactor from H to a yet to be determined 

value H  . Thus, the boundary conditions at top and bottom of the reflector removes 

the one of the arbitrary coefficients where 0 ( )z    and 

2 2

H H
T z T

    
       
   

: 

 

sinh cosh 0
2 2 2

H H H
T A T C T  

          
              

        
 (5.9) 

 

Here the cosh term drops from the equation since it does not satisfy the boundary 

condition, 0C  , and the first term gives:  

 

   sinh ( / 2z A H T z      (5.10) 

 

This equation represents the reflector flux and also we know the core flux equation 

from Eq. (4.68) as  
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( ) cos( )zz C B z    (5.11) 

 

in which zB  is the buckling parameter for the reduced height of the core, H  . We 

now apply the interface boundary conditions at the core-reflector system: The 

continuity of the flux for the axial functions at the interface is 

 

( / 2) ( / 2)H H    (5.12) 

 

which is 

 

cos( ) sinh( )zC B z A T   (5.13) 

 

and the current functions at the interface is 

 

/ 2 / 2

( ) ( )c r

H H

d d
D z D z

dz dz
 

 

  (5.14) 

 

then one gets 

 

 

When we divide Eq. (5.15) to Eq. (5.13) we obtain 

 

tan( / 2) coth( )z c z rB D B H D T    
 (5.16)

 

 

sin( / 2) cosh( )z c z rB D C B H D A T       (5.15) 
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where 
cD  and 

rD  are diffusion coefficients of  core and reflector, respectively. 

When T goes to infinity in Eq. (5.16), it means that the reflector has an infinite 

thickness and one finds coth( ) 1  . So, Eq. (5.16) reduces to; 

 

Solving for H  , one obtains 

 

This is the critic height of the finite cylinder with reflector Ref. [2] 

 

Table 5.1 Axial Uranium core with Uranium reflector 

T (cm) Hexp (cm) Hnon-exp M (kg) 

0 18.320 14.167 52.589 

1 16.415 12.262 45.519 

2 14.965 10.812 40.135 

4 13.556 9.402 34.902 

6 13.156 9.003 33.420 

8 13.055 8.901 33.043 

10 13.030 8.876 32.950 

20 13.021 8.868 32.919 

50 13.021 8.868 32.919 

100 13.021 8.868 32.919 

 

 

 

tan( / 2) /z z r cB B H D D     (5.17) 

12
tan r

z z c

D
H

B B D
  

   
  

 (5.18) 
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Table 5.2 Axial Uranium core with Pu-239 Reflector 

T (cm) Hexp (cm) Hnon-exp M (kg) 

0 18.320 14.167 52.589 

1 16.342 12.188 45.245 

2 14.937 10.783 40.031 

4 13.761 9.607 35.664 

6 13.497 9.343 34.684 

8 13.443 9.290 34.486 

10 13.433 9.279 34.446 

20 13.430 9.276 34.436 

50 13.430 9.276 34.436 

100 13.430 9.276 34.436 

 

It is observed in Tables 5.1 and 5.2, the critic height of the bare reactor system 

reduces to a certain value when the thickness of the reflector is increased [10, 11, 12, 

15, 22]. For the comparison at 2MeV neutrons, the first values in the first row are the 

critic height and the critic mass of the bare-finite-cylinder systems with pure 235U 

materials, given in Table 4.5. 

 

5.2 SPHERICAL REFLECTOR 

Consider a spherical reactor consisting of a radius R surrounded by a reflector having 

thickness T. Since there is no fissionable material in the reflector, the flux in this 

region satisfies the one group diffusion equation [1, 3] 

 

2

2

1
0r r

rL
     (5.19) 

 

The general solution of this equation is 
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cosh( / ) sinh( / )r r
r

r L r L
A C

r r
     (5.20) 

 

where A  and C  are constants. Applying the condition for the vanishing of the flux 

r  at r R T   where T is the thickness of the reflector. 

 

cosh( ) sinh( )
r r

R T R T

L L
A C

r r

 

    (5.21) 

 

Considering C from the Eq. (5.21), one gets 

 

cosh( )

coth( )

sinh( )

r

r

r

R T
A

L R T
C A

R T L

L





    


 (5.22) 

 

If C is substituted into flux Eq. (5.20) then one obtains 

 

sinh( )cosh( ) cosh( )sinh( )

sinh( )
r

r r r r

r

A R T r R T r

R T L L L L
r

L


   

    
 

(5.23) 

 

Rearranging  Eq. (5.23), one obtains the flux function as 

 

sinh( )

sinh( )
r

r

r

A R T r

R T L
r

L


  




 
(5.24) 
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Previously the solution in the core has known from solution of spherical bare reactor 

that is  

 

sin( )
c

Br
A

r
   (5.25) 

 

The functions c  
and r  must be also satisfied at the interface boundary conditions: 

These conditions are  

 

( ) ( )c rR R    (5.26) 

Appliying the boundary condition one finds 

 

sin( )
sinh( )

sinh( ) r

r

BR A T
A

R TR L
R

L





 

(5.27) 

and using the definition of current function at the boundary one gets 

( ) ( )c c r r

R R

d d
D r D r

dr dr
 

 

  (5.27) 

 

Substituting the relevant equations one writes 

2 2

cosh( ) sinh( )
cos( ) sin( )

sinh( )

r r
c r

r

r

R T r R T

L LB Br Br A
AD D

R Tr r L r r

L

   
  
        
 
 

(5.28) 

 

Dividing Eq. (5.28) by Eq. (5.7) one gets 
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coth( )
cot( ) 1 1r

c r

r

T

LB BR
D D

R L R

 
  
    

   
 
 

 
 

(5.29) 

 

After some arrangement, one can write a more convenient form as 

 

1 1
cot( ) 1 coth( )r r

c c r r

D D T
BR

BR D D BL L

 
   

 
 (5.30) 

 

This equation represents the relationship between the core radius of sphere and the 

reflector thickness. For an infinite reflector the Eq. (5.30) becomes 

 

cot( ) 1 1r

c r

D R
BR BR

D L

 
    

 
 (5.31) 

 

This equation must be satisfied for the reactor to be critical. For example if the 

composition of the core is known, the material Buckling can be determined and then 

the core radius,  R, can be calculated, or vice versa. 

 

As it is seen in Table 5.3 and Table 5.4, the critic radius of spherical core, 

surrounded by a reflector of which thickness is gradually increased, decreases to a 

certain final value.   The decrease in critical size of a core due to a reflector is 

expressed by a term called “reflector savings, ” and given by  

 

cR R    (5.32) 
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where 
cR  is the critical radius of the unreflected system [23]. For a spherical system, 

cR  is defined in Eq. (4.34) as /B  . A plot of the reflector savings derived from Eqs. 

(5.31) and (5.32) as a function of pure 
235

U reflector thickness for the pure 
235

U core 

is presented in Figure 5.2. It is observed that beyond a certain reflector thickness, 

further increase does not affect the reflector savings. Our result in Figure 5.2 is in 

consistent  with Ref. [5]. 

 

 

 

 

Figure 5.2 Calculated reflector saving as a function of Uranium reflector thickness 

 

As shown in Table (5.5), the spherical  
235

U core-reflector calculation results have 

3.4% error with the existing literature, Ref. [24] . It is also shown that 
239

Pu core-

reflector spherical system has 1.6% error with the numerical value proposed in Ref. 

[24]. 
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Table 5.3: Pure 
235

U core surrounded 

with pure 
235

U reflector for sphere. 

( )T cm  ( )R cm  ( )M kg  

0 10.68 49.72 

1 9.733 34.97 

2 8.998 25.84 

4 8.222 18.03 

6 7.941 15.71 

8 7.841 14.92 

10 7.805 14.65 

20 7.785 14.49 

30 7.785 14.49 

 

 Table 5.4: Pure 
239

Pu core surrounded 

with pure 
239

Pu reflector for sphere. 

( )T cm  ( )R cm  ( )M kg  

0 4.88  9.64  

1 3.98 5.18 

2 3.41 3.26 

4 2.97 2.16 

6 2.85  1.91 

8 2.82 1.85 

10 2.82 1.85 

20 2.81  1.83  

30 2.81 1.83  

 

 

 

Table 5.5: Comparision of spherical reflector results with literature
 

( )T cm  
Core-Reflector 

materials 

Ref[24] 

( )M kg  

Present 

Results 

( )M kg  

Percent Error % 

infinite 
235

U-
235

U 15.00 14.49 3.4 

infinite 
239

Pu-
239

Pu 1.80 1.83 1.6 
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CHAPTER 6 

CONCLUSION 

 

In this thesis work, solution of the steady-state one-group diffusion equation for bare 

and reflected reactor systems in three distinct geometries has been worked out for the 

calculation of the critic size and critical mass. A relation between the material 

composition and the size of the geometry in question has been obtained by the 

eigenvalue, called Buckling parameter, of the diffusion equation. It is observed that 

there is a direct relation between the material Buckling, Bm, and the geometric 

Buckling, Bg. It is also observed that a reflector material reduces the critic size and 

mass of a system. 

 

Firstly, the derivation of the steady-state one-group diffusion equation is studied by 

reviewing the neutron reactions. After determining the parameters in the equation, 

the critical mass values in three distinct geometries for pure 
235

U and 
239

Pu materials 

are obtained by solving the steady-state one-group diffusion equation for bare reactor 

systems for certain neutron energy in fast region. 

 

Then, the diffusion equation is solved for systems with a reflector surrounding the 

core to reduce the critic size of the original system: It is observed that there is a 

reduction in the size of the active core if a reflector is added into the system. 

Although the core and reflector are assumed to be made of same materials, for 

simplicity in calculations, a reduction which is called as “reflector savings” is also 

observed in all geometries in our examples. It is seen that the critic dimension of the 
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active core decreases down to a certain value even the thickness of the reflector is 

increased.  

 

The results obtained in this thesis study are in consistent with existing numerical 

results in the literature. The method used in this study is the direct solution of the 

diffusion equation without using any approach and relatively simple with respect to 

other methods, given throughout the text, for estimating the critical mass of a 

fissionable element in all distinct geometries to obtain the solution of the neutron 

diffusion function for mixture material compositions in the nuclear reactor systems. 

 

Since the steady-state one-group diffusion equation is considered in three basic 

geometries in this work, it is thought that the study can be extended to two-group 

calculations for different core-reflector material compositions. One can consider the 

solution of the diffusion equation by the Monte-Carlo Method for N-Group 

calculations.  It is also possible to study the reactor kinetics, which are time-

dependent parameters, of a reactor system as a future work. 
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APPENDICES 

APPENDIX A 

GRADIENT 

The gradient of a function f is defined as the vector whose componenets are equal to 

the rates of change of f along the direction of the component. Thus,  

1 2 3
1 2 3

aa a
f f f

grad f
s s s
  

  
  

 

Where ,
1 2 3
, aa a  are unit vectors normal to the coordinate surfaces. It follows that the 

components of the gradient in rectangular coordinates are; 

, ,
x y z

f f f
grad f grad f grad f

x y z
  

  
  

 

In cylindrical coordinates are; 

1
, ,

r z

f ff
grad f grad f grad f

r r z 

 
  
    

In spherical coordinates; 

1 1
, ,

sinr

f ff
grad f grad f grad f

r r r   

 
  
  

 

DIVERGENCE 

The general formula for the divergence of a vector in curvilinear coordinates can be 

obtained by applying the divergence theorem to the infinitely small volume element 

1 2 3
dV ds s s  According to this theorem; the integral of the normal component of a 

vector over a closed surface is equal to the integral of the divergence of the vector 

throughout the enclosed volume. In symbols, 
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A V

F n dA = div FdV   

Where n is a unit vector. If V is infinitely small, the volume integral is simply  

A

F ndAFdiv dV    

Carrying out the integral over the faces of dV, 

   

   

   

1 2 3 1 2 3
1 1 1A

2 1 3 2 1 3
2 2 2

3 1 2 3 1 2
3 3 3

F n dA
q dq q

q dq q

q dq q

F ds ds F ds ds

F ds ds F ds ds

F ds ds F ds ds







      

  
  

  
  

 

The first bracket can be written as  

     

 

1 2 3 1 2 3 1 2 3 1
1 1 1

1

1 2 3 1 2 3

1

q dq q
F ds ds F ds ds F ds ds dq

q

F h h dq dq dq
q



  
   





 

Combining terms then gives  

     1 2 3 2 1 3 3 1 2 1 2 3
1 2 3

Fdiv dV F h h F h h F h h dq dq dq
q q q

   
      

 

Dividing by dV becomes finally 

 

     1 2 3 2 1 3 3 1 2

1 2 31 2 3

1
F =div F h h F h h F h h

q q qh h h

   
     

 

Introducing the values of the 'h s in rectangular coordinates gives 

F yx z
FF F

div
x y z

 
  
  

 

In cylindrical coordinates; 
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 
1 1

F z
r

F F
div rF

r r r z




 
  

  
 

In spherical coordinates; 

   2

2

1 1 1
sin

sin sin
F r

F
div r F F

r r rr




   

 
  

  
 

LAPLACIAN 

This operator is the divergence of the gradient of a scalar function. The component 

1
F  of the gradient is  

1
1 1

1
,

f
F

h q





 

With similar expressions for the other components. Inserting these components into 

the previous formula for the divergence gives for the Laplacian: 

2 3 1 3 1 22

1 1 1 2 2 2 3 3 31 2 3

1 h h h hf f h h f
f

q h q q h q q h qh h h

          
        

            

 

The symmetry of this formula should be noted. In view of his result, the Laplacian in 

rectangular coordinates is; 

2 2 2
2

2 2 2

f f f
f

x y z

  
   

  
 

In cylindrical coordinates ; 

 

2 2
2

2 2 2

1 1f f f
f r

rr r r z

   
       

 

And in spherical coordinates; 

2
22

2 2 2 2 2

1 1 1
sin

sin sin

f f f
f r

rrr r r


  

      
            
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APPENDIX B 

THE LINEAR EXTRAPOLATION DISTANCE FOR PLANE SURFACE 

At the boundary there is a net flow of neutrons in one direction. It is assumed that 

“near the boundary between a diffusion medium and a vacuum the neutron flux 

varies in such a manner that linear extrapolation would require the flux to vanish at a 

given distance beyond the boundary. According the diffusion theory based on; Fick’s 

Law are given by; 

( ) ( )
4 2 4 2

D d D d
J x and J x

dx dx

   
 

     

These are the x-component of the current function through the x-axis. The current J 

is known from the Fick’s Law and also the difference of these two components is 

agreement with the current vector. As a boundary condition at the medium-vacuum 

intersection, the current density to the –x-direction, ( )J x


, is zero that means no 

neutrons scattered back from the vacuum. Therefore, one writes 

0 0( ) 0
4 2

dD
J x

dx

 


    

then one gets 

0

0

1 1

2

d

dx D




  

where 
3
trD


 . Thus, one writes 

0

0

1 3

2 tr

d

dx



 
  

 On the other hand, one defines the slope of the function 
0
  by using the geometry 

given in Figure B.1 as 

0

0

tan( )

x

d

dxd






   

then one obtains 
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Figure B.1 Extrapolation distance of neutron flux at plane surface between diffusion 

medium and vacuum. 
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